
Theoretical Equivalence as Representational Equivalence

MSc Thesis (Afstudeerscriptie)

written by

Minzhe Li

under the supervision of dr. Benno van den Berg and dr. Sebastian De Haro Ollé, and
submitted to the Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
June 25th, 2025 dr. Benno van den Berg

dr. Sebastian De Haro Ollé
prof. dr. Sonja Smets
prof. dr. Albert Visser



Abstract

This thesis explores the relationship between theoretical equivalence and representational equivalence.
It mainly contains three parts: the first part summarizes current criteria of theoretical equivalence and
proves some results about their comparative strengths; the second part develops a formal framework of
representation and shows how formal criteria of theoretical equivalence are related to representational
equivalence; the third part applies the framework to the hole argument in philosophy of physics, and
gives a critical evaluation of the formalist response to the hole argument.
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Chapter 1

Introduction

When are two scientific theories equivalent? This question is at the heart of recent debates in
philosophy of science. A general criterion of theoretical equivalence will be able to tell us when two
scientific theories are equivalent, and thus obviate the need to conduct further physical or philosophical
investigations to choose from equivalent theories. It will also have significant consequences in the long-
standing debate between the syntactic versus semantic conceptions of theories, i.e., the debate whether
theories should be viewed syntactically, as sets of sentences, or semantically, as classes of models.1

As argued in Halvorson (2012), if the criterion of theoretical equivalence is given in, say, syntactical
rather than semantical terms, then it seems that we have a reason to prefer the syntactical view as it
is able to characterize scientific theories up to equivalence and vice versa.

People have proposed various formal criteria as the standard of theoretical equivalence, including
isomorphism, (first-order, single-sorted) definitional equivalence (Glymour, 1970, 1977, 1980), Quine
equivalence (Quine, 1975), Morita equivalence (Barrett and Halvorson, 2016), categorical equivalence
(Weatherall, 2016a, 2016b, 2017), definable categorical equivalence (Hudetz, 2019), etc. But, as many
people complained,2 scientific theories are not standalone formal structures. They are used to say
things about the world, or, to represent the world. Thus, a purely formal characterization cannot fully
capture the notion of theoretical equivalence. Consider the following example in classical mechanics
(Taylor, 2005, p.173). The following equation in Newtonian mechanics describes the motion of a cart
with mass m, subjected to a resistive force f = −bẋ, and linked by a spring that exerts an elastic force
−kx:

mẍ+ bẋ+ kx = 0.

But precisely the same equation can also be used to represent a completely physical domain. Specifi-
cally, the movement of charges in a circuit with an inductor (inductance L), a capacitor (capacitance
C), and a resistor (resistance R) can be described by the same equation if we interpret m as L, b as
R, k as 1/C, and x as the charge q.

Lẍ+Rẋ+
1

C
x = 0.

Despite sharing the same formal structure, the two equations really say different things about the
world.

Although people have recognized this problem in general, the proposed remedy has been to either
consider only interpretative or representational equivalence (Coffey, 2014; Nguyen, 2017; Teitel, 2021),
or stick to the formal criteria and add a requirement regarding interpretational or representational
perspective, such as empirical equivalence, in addition to the formal requirement (Halvorson, 2019;
Weatherall, 2021). The first option fixes the problem, but precisely as the criteria of interpretational
or representational equivalence are informal, we cannot study them using tools of mathematics and

1See Halvorson (2012, 2013), Glymour (2013) for typical syntactical views of theories; See Suppes (2002), van Frassen
(2008, 2014) for typical smentical views of theories. See Luz (2017) and Frigg (2022) for an overview of the debate.

2See Sklar (1982), Coffey (2014), Nguyen (2017), Teitel (2021), De Haro and Butterfield (2021).
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formal logic, and we lack a rigorous method to apply such criteria in practice. However, while adding
an extra interpretive requirement to the formal criteria may also solve the problem, it becomes unclear
what the relationship between the formal and the representational criterion is, in particular, how the
former relates to the latter. When we ask whether two theories are equivalent, we ultimately want to
ask if they say the same thing about the world, but not whether they possess the same formal structure.
But if we are ultimately asking a representational question, what guarantees that formal criteria will
be of any use? Or, more specifically, how do they contribute to the representational equivalence that
concerns us?

Thus motivated, this thesis approaches the question of theoretical equivalence from the perspective
of representation. In Chapter 2, I summarize the current criteria of theoretical equivalence that have
been proposed in the literature and prove some results about their comparative strengths that were
not known before. Then in Chapter 3, I develop a formal framework of representation based on
the idea of representation as definition. We analyze the structure of representation, define several
relevant notions of equivalence with respect to representation, and then show how some of the previous
formal criteria of theoretical equivalence correspond to certain species of representational equivalence.
Chapter 4 discusses the implications of this framework in the debate about theoretical equivalence (in
a relatively sketchy manner due to the space limit). Chapters 5, 6, and 7 then apply the framework
of representation to a specific debate in the philosophy of physics, namely, the hole argument. More
specifically, Chapter 5 introduces a formalism called restricted set-theoretical language, which allows us
to schematically assign a canonical language to bare set-theoretical structures. This makes the formal
framework of “representation as definition” developed in Chapter 3 applicable to physical models,
which are typically bare set-theoretical structures. A specific restricted set-theoretical language LM

is also designed for Lorentzian manifolds. This gives a formalism of GR whose isomorphism criterion
is precisely isometry, and is used in discussions of the hole argument in Chapters 6 and Chapter 7.
Chapter 6 summarizes the hole argument and evaluates the formalist response. It is argued that while
many defects of the formalist response can be remedied if we base the response on the correct notion of
representational equivalence that is relevant there, there is still a critical assumption of the formalist
response that remains unjustified. Chapter 7 then suggests a possible solution to the hole argument
inspired by the previous evaluation of the formalist response, which avoids the commitment to the
critical assumption.

The thesis also contains three appendices. Appendix A addresses the technical issue of non-disjoint
languages in theoretical equivalence. Appendix B discusses the alternative definition of Morita exten-
sion given in Meadows (2024). Appendix C gives a proof of Beth’s definability theorem for many-sorted
logic, as an attempt to improve the previous result by Andreka, Madarasz, and Nemeti (2008, Theorem
2.5.1).
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Chapter 2

Theoretical Equivalence

2.1 Introduction

This chapter summarizes current criteria of theoretical equivalence that have been proposed in the
literature, compares their differences, and proves certain results with respect to their relative strengths
which were not known before.

We classify all these criteria into three groups according to the formats in which these criteria are
defined: the common-extension criteria, the coordinated-interpretation criteria, and the categorical
criteria.

We use ∼= for isomorphism of models, ≡ for logical equivalence. For a theory T , we also use LT to
denote its language, and ΣT to denote its signature. x denotes a sequence of variables, and xσ denotes
a sequence of sorted variables where σ is the corresponding sequence of sorts.

We use M|Σ to denote the reduct of M to the language LΣ, and T |Σ to denote the set of all
Σ-sentences entailed1 by T .

Sometimes, instead of giving definitions, we give schemas for definitions. We will use bold font to
emphasize that certain terms are meant to be placeholders for several different technical terms.

2.2 The Common-Extension Criteria

Common-extension criteria are given through the concept of “definitional extension”. The basic
idea is that a definitional extension of a model or a theory only adds new symbols that are defined out
of the old symbols, and hence really adds nothing over and above the structure of the original model
or theory. In other words, the extra structures in the extended theories or models are “free lunches”,
as they can already be defined from the original ones. Thus, if two theories/models can be made the
same (modulo logical equivalence/isomorphism) by doing definitional extensions, then according to
criteria in this group, we should really say that they are equivalent. As a schema,

Schema 2.1. Two theories/models are (common-extensionally) equivalent if they have a common
definitional extension (modulo logical equivalence/isomorphism).

Different species of common-extensional criteria are obtained by plugging in different technical
notions for the placeholder “definitional extension”, i.e., by specifying what kind of structures are
taken to be “free lunches”.

2.2.1 Standard Definitional Equivalence

We first present the most standard notion of definitional extension below, where we are only allowed
to define constants, functional and relational symbols, but not sort symbols. We refer to this as the

1Here we use the semantic notion of entailment as it is almost always available: ϕ is entailed by T if for every model
M that satisfies T , M also satisfies ϕ.
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standard definitional extension.

Definition 2.2. Let T (respectively, M) be a first-order theory (model) of language L. An (explicit)
definition Φα of a symbol α by T (M) is given as follows:

• if α is a relational symbol R, then Φα = ∀x(R(x) ↔ ϕR(x)), where x is a sequence of variables
with the same length as the arity of R, and ϕR(x) is a formula in L;

• if α is a constant symbol c, then Φα = ∀x(x = c↔ ϕc(x)), where ϕc(x) is a formula in L, and,

– T satisfies the admissibility condition, T ` ∃!x(ϕc(x));

– (M satisfies the admissibility condition, M |= ∃!x(ϕc(x)));

• if α is a function symbol f , then Φα = ∀x∀y(f(x) = y ↔ ϕf (x, y)), where x is a sequence of
variables with the same length as the arity of f , ϕf (x, t) is a formula in the language of T , and,

– T satisfies the admissibility condition, T ` ∀x∃!y(ϕf (x, y));

– (M satisfies the admissibility condition, M |= ∀x∃!y(ϕf (x, y)));

Then we define the standard definitional extension of a theory/model.

Definition 2.3. Let T be a theory in signature Σ and T+ be a theory in signature Σ+ such that
Σ ⊆ Σ+. We say that T+ is a standard definitional extension of T if there is a set of definitions for
each symbol in Σ+−Σ by T , say, Φ = {Φα|α ∈ Σ+−Σ}, such that T+ is logically equivalent to T ∪Φ.

Using a convention, we will use Φ for a set of definitions, Φs for the specific definition of the symbol
s in Φ, and ϕs the formula equated with s in the definition Φs.

Definition 2.4. Let M be a model in signature Σ andM+ a model in signature Σ+ such that Σ ⊆ Σ+.
We say that M+ is a standard definitional extension of M if there is a set of definitions Φ for each
symbol in Σ+ − Σ by M such that:

• M+|Σ ∼= M, and,

• M+ |= Φα for each α ∈ Σ+ − Σ.

We have the following theorem (Corollary 4.6.13 in Halvorson (2019)),

Theorem 2.5. Let T be a theory in signature Σ+ and T a theory in signature Σ such that Σ ⊆ Σ+.
If T+ is a definitional extension of T , then T+ is conservative over T in the sense that, for any
Σ-formula ϕ, T+ ` ϕ if and only if T ` ϕ.

The similar theorem holds for models as well.

Theorem 2.6. If M+ is a definitional extension of M, then M+ is conservative over M in the sense
that, for any Σ-formula ϕ, M+, a |= ϕ if and only if M, a |= ϕ.

This is simply a consequence of the coincidence lemma.

Definition 2.7. We say that two theories/models with disjoint signatures are definitionally equivalent
if they have a common definitional extension.
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Note that for a theory T+ to be a definitional extension of T , we only require that T+ be logically
equivalent to T ∪ Φ, but not identical. Equally, we only require M+|Σ to be isomorphic to M, but
not identical. If we require T+ = T ∪ Φ and M+|Σ = M instead, then the definition of definitional
equivalence needs to be changed to saying that two theories/models have a common definitional
extension up to logical equivalence/isomorphism, so that we guarantee that logically equivalent theories
or isomorphic models are always considered definitionally equivalent.

This is the standard presentation of definitional equivalence. We define two further notions for
future use.

Definition 2.8. Let T be a theory in signature Σ. A potential definition of T is a tuple 〈a, ϕ〉 such
that one of the following three holds:

• a = n, and ϕ is a Σ-formula with n distinct free variables;

• a = 0 → 1, and ϕ is a Σ-formula with one free variable and T |= ∃!x(ϕ(x));

• a = n→ 1, and ϕ is a Σ-formula with n free variables and T |= ∀x∃!y(ϕ(x, y)).

Intuitively, ϕ is a formula that can potentially be used for definition and a the arity of the symbol
that ϕ may define.

Definition 2.9. Let T+ be a definitional extension of T , namely T+ = T ∪Φ for some set of definitions
Φ. Let s be a symbol in the signature of T+ − T . We say that s is defined by a potential definition
〈a, ϕ〉 of T , if Φs defines s as a symbol with arity a by the formula ϕ.

We note two features of this criterion.

1. The definitional equivalence is only defined for theories with disjoint signatures.

2. The definitional extension is limited to definitions of non-logical symbols.

Item 1 is addressed in Appendix A, and item 2 is left for future work. For the following discussion, we
will always assume that it suffices to give a criterion of equivalence for theories with disjoint signatures
and we will restrict ourselves to cases where the logic is fixed.

2.2.2 Morita Equivalence

Definitional equivalence is mainly designed for first-order single-sorted logic, where we understand
“definitional extension” as first-order definability. In the context of many-sorted logic, we can still
have the standard definitional extension and consequently the standard definitional equivalence, as
long as we further require that definitions of symbols preserve arities. However, many people think
that in such contexts it is natural to give a more general notion of definitional extension where we are
allowed to define not only relation symbols, function symbols, and constants, but also sort symbols .
Thus, we have the notion of Morita extension, which generalizes the standard notion of definitional
extension. The notion was first proposed and studied in Andréka, Madarász and Németi (2008) under
the name “generalized definitional extension”; Barrett and Halvorson (2016) then introduced it to the
philosophical discussion of theoretical equivalence under the name “Morita extension”.

We present the version of Morita equivalence in Barrett and Halvorson (2016) as follows:

5



Definition 2.10. Let T (respectively, M) be a many-sorted first-order theory (model) in signature
Σ. Let σ be a new sort symbol. We say that Φσ is a definition of σ in T (respectively M) if one of
the following holds:

• Product:
Φprod
σ := ∀xσ0∀yσ1∃!zσ(π0(z) = xσ0 ∧ π1(z) = yσ1);

where π0 and π1 are functions with arity σ → σ0 and σ → σ1 and σ0 and σ1 are sort symbols in
Σ;

• Coproduct

Φcop
σ := ∀zσ(∃xσ0(zσ = p0(x

σ0)) ∨ ∃xσ2(zσ = p(xσ1))) ∧ ∀xσ0∀yσ1(p0(x
σ0) 6= p1(y

σ1))

where p0 and p1 are functions with arity σ0 → σ and σ1 → σ and σ0 and σ1 are sort symbols in
Σ;

• Subsort

Φsub
σ := ∀xσ0(ϕσ(x

σ0) ↔ ∃yσ(π(yσ) = xσ0)) ∧ ∀xσ0∀yσ0(π(xσ0) = π(yσ0) → xσ0 = yσ0)

where σ is a new sort symbol, π is a function with arity σ → σ0, σ0 a sort symbol in Σ, and T
proves that ∃xσ0ϕσ(x

σ0) (respectively, ϕσ(xσ0) is non-empty in M);

• Quotient

Φquo
σ := ∀xσ0∀yσ0(π(xσ0) = π(yσ0) ↔ ϕσ(x

σ0 , yσ0)) ∧ ∀zσ∃xσ0(zσ = π(xσ0))

where ϕσ is a Σ-formula with at most two free variable of sort σ0, and T proves that ϕσ gives
an equivalence relation (respectively, ϕσ defines an equivalence relation).

Definition 2.11. Let T (respectively, M) be a many-sorted first-order theory (model) in signature
Σ and T+ (M+) be a many-sorted first-order theory in signature Σ+ such that Σ ⊆ Σ+. We say that
T+ (M+) is a Morita extension of T (M) if there is a set of definitions Φ for each symbol in Σ+ −Σ

by T (M) such that:

• for any new function symbol f appearing in the definition of a new sort symbol σ, Φf = Φσ, and

• T+ ≡ T ∪ Φ (respectively, M+|Σ ∼= M and M+ |= Φ).

Definition 2.12. We say that T is a Morita descendant of T ′ if there is a finite sequence of Morita
extensions T, ..., Tn such that Tn ≡ T ′.

Similarly, we say that M is a Morita descendant of M′ if there is a finite sequence of Morita
extensions M, ...,Mn such that Mn

∼= M′.

Definition 2.13. We say that two theories T and T ′ (or two models M and M′) are Morita equivalent
if they have a common Morita descendant.

Again, for later use, we define the notion of a potential Morita definition.
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Definition 2.14. Let T be a theory in signature Σ. A potential Morita definition of T is a tuple
〈a, ϕ〉 such that one of the following holds:

• a = 〈σ0, ..., σn〉, and ϕ is a Σ-formula with n free variables of sorts σ0, ..., σn;

• a = σ, and ϕ is a Σ-formula with one free variable of sort σ and T |= ∃!xσ(ϕ(xσ));

• a = 〈σ0, ..., σn〉 → σ, and ϕ is a Σ-formula with n free variables of sorts σ0, ..., σn and one free
variable of sort σ, and T |= ∀x∃!yσ(ϕ(x, y)).

• a = σi × σj , ϕ = >.2

• a = σi + σj , ϕ = >.

• a = σi, ϕ is a Σ-formula with one free variable of sort σi, and T |= ∃xσi(ϕ(xσi)).

• a = σi, ϕ is a Σ-formula with two free variables of sort σi, and T entails that ϕ defines an
equivalence relation.

Definition 2.15. Let T+ be a Morita extension of T , namely T+ = T ∪Φ for some set of definitions
Φ. Let s be a symbol in the signature of T+ − T . We say that s is defined by a potential Morita
definition 〈a, ϕ〉 of T , if

• Φs defines s as a constant, relational or functional symbol with arity a by the formula ϕ;

• Φs defines s as a new product of σ0 and σ1, where a = σ0 × σ1;

• Φs defines s as a new coproduct of σ0 and σ1, where a = σ0 + σ1;

• Φs defines s as a new subsort of a = σ0 by the domain formula ϕ;

• Φs defines s as a new quotient of a = σ0 with ϕ being the equivalence relation.

It may be worried that there is some arbitrariness in the notion of Morita extension as we have
chosen particularly to allow definitions of sort symbols by product, coproduct, subsort, and quotient.
Theorem 2.5.1 by Andréka, Madarász and Németi (2008) shows that Morita extension coincides with
implicit definability in many-sorted logic, and hence is a natural criterion to consider.

Still, it can be weakened by rejecting any of these four operations as acceptable methods to define
new sorts. But notice that in the many-sorted context, at the very least we should be allowed to define
sort symbols by primitive sort symbols: substituting a sort symbol with another would be a case of
notational variant and we would certainly want to count notational variants as cases of theoretical
equivalence.

Thus, we give the following notion of primitive Morita extension.

Definition 2.16. Let T (respectively, M) be a many-sorted first-order theory (model) in signature
Σ. Let σ be a new sort symbol. We say that Φσ is a primitive definition of σ by T (respectively M) if
there is a sort symbol σ0 in Σ such that Φσ := ∀xσ0(∃yσ(π(yσ) = xσ0) ∧ ∀xσ0∀yσ0(π(xσ0) = π(yσ0) →
xσ0 = yσ0)) where π is a function with arity σ → σ0.

2For the case of product and coproduct, no associated formulas are needed. We include the argument ϕ here only for
the sake of uniformity.
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The notion of primitive Morita extension is then defined as an extension that only allows primitive
definitions. Consequently, the notion of primitive Morita equivalence can also be defined. In the
following, we use the superscript to specify which operations we allow in a certain variant of Morita
extension. For instance, we may use the notation “Moritap,c,s,q extension” for the standard Morita
extension, and “Morita∅ extension” for the primitive Morita extension.

2.3 The Coordinated-Interpretation Criteria

The fundamental concept for the group of coordinated-interpretation criteria is “interpretation”
or “translation”. The basic idea is that two theories are equivalent if they can mutually interpret or
translate what the other is talking about, and sometimes a further requirement (which we may call “the
requirement of coordination”) is that they can “check” that the other’s interpretation or translation
is “correct”. Different criteria are then given based on different understandings of “interpretation” or
“translation”, and different requirement of coordination. For convenience, we will mainly focus on the
case of theories. Similar coordinated-interpretation criteria can also be given for classes of models as
in Hodges (1993, Section 5.4)

Normally, people do not distinguish between interpretation and translation. However, there is a
good sense in which these two notions could be distinguished. In the following, we use interpretation
for cases where a theory is included in some definitional extension of another theory, and translation for
cases where we have a mapping of formulas that preserves theoremhood of theories. Both translation
and interpretation can be seen as a way by which one theory/model “understands” another, and in
many cases they coincide: whenever theory T1 is included in a definitional extension of another theory
T2, we have a natural translation manual from T1 to T2, and vice versa.

We first present the popular notion of “relative interpretation”, as given in Meadows (2024). Since
the definition is given in the form of translation, we use the name “relative translation” instead.3

Definition 2.17. Let T1 and T2 be two theories in signature Σ1 and Σ2. We say that t is a relative
translation from LΣ1 to LΣ2 in T2 if

• for each sort symbol σ ∈ Σ1, t(σ) is a sort symbol in Σ2, and δt,σ is a Σ2-formula with at most
one free variable xt(σ);

• for each relational symbol R of arity 〈σ0, ..., σn〉, t(R) is a Σ2-formula with at most free variables
xt(σ0), ..., xt(σn);

• for each function symbol f of arity 〈σ0, ..., σn〉 → σ, t(f) is a Σ2-formula with at most free
variables t(xσ0), ..., t(xσn , yσ), and that T2 satisfies the admissibility condition:
T2 ` ∀xt(σ0)...∀xt(σn)(δt,σ0(x

t(σ0))∧...∧δt,σn(x
t(σn)) → ∃!yt(σ)(δt,σ(yt(σ))∧t(f)(xt(σ0), ..., xt(σn), yt(σ))));

• for each constant symbol c of sort σ, t(c) is a Σ2-formula with at most one free variable xσ, and
that T2 satisfies the admissibility condition: T2 ` ∃!xt(σ)(δt,σ(xt(σ)) ∧ t(c)(xt(σ))).

3Note that the above definition of relative interpretation as given in Meadows (2024) assumes formulas are in functional
normal forms, i.e., we only have formulas of the form f(x) = y, and not iteration of functional terms such as f(g(x)) = y.
This is harmless as each formula can be transformed into functional normal forms modulo logical equivalence. There is
also a direct way by which we can define a translation, as given by Halvorson (2019, Definition 4.5.4). The essential idea
is that we induce a translation of Σ1-terms t(x) to Ft(x, y), which intuitively says that y is the object denoted by t(x).
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Now, t naturally induces a function from Σ1-formulas to Σ2-formulas defined as below, which we also
denote by t:

• for ϕ := R(xσ0 , ..., xσn), t(ϕ) :=
∧

i δσ,t(x
t(σi)) → t(R)(xt(σ0), ..., xt(σn));

• for ϕ := f(xσ0 , ..., xσn) = yσ, t(ϕ) := (
∧

i δσ,t(x
t(σi)) ∧ δσ,t(yσ)) → t(f)(xt(σ0), ..., xt(σn), yt(σ));

• for ϕ := xσ = c, t(ϕ) := δσ,t(x
t(σ)) → t(c)(xt(σ));

• for ϕ := ¬ψ(xσ0 , ..., xσn), t(ϕ) :=
∧

i δσ,t(x
t(σi)) → ¬t(ψ);

• for ϕ := ϕ1 ∧ ϕ2, t(ϕ) := t(ϕ1) ∧ t(ϕ2);

• for ϕ := ∀xσψ, t(ϕ) := ∀xt(σ)(t(ψ)(xt(σ))).

We say t supports a relative translation of T1 in T2 if for any Σ1-formula ϕ, if T1 ` ϕ, then T2 ` t(ϕ).
Let Mod(T ) be the category whose objects are models of T and whose morphisms are elementary

embeddings between models. Note that a relative translation t induces a functor t† from Mod(T2) to
Mod(T1), where a symbol s in Σ1 is interpreted in t†(M) as t(s) is interpreted in M.

The prefix “relative” is meant to suggest that we allow translation relativized to a subdomain.
In the case of relative translation, we have a corresponding notion of relative interpretation.

Definition 2.18. Let T1 and T2 be two first-order theories in signature Σ1 and Σ2. We say T1 relatively
interprets T2 if there is a Moritas extension T+

1 of T1 such that T2 ⊆ T+
1 |Σ2 . And we say that the

tuple 〈T1, T+
1 , T2, 〉 is a relative interpretation of T1 in T2.

It is not hard to see that relative translation corresponds to relative interpretation.

Theorem 2.19. Let T1 be a Σ1-theory and T2 be a Σ2-theory. There is a relative translation of T1 in
T2 if and only if there is a relative interpretation of T1 in T2.

Proof. Suppose that there is a relative translation t of T1 in T2. Then we can define a Moritas

extension T+
2 of T2 as follows: for each symbol α ∈ Σ1, we define α as the subsort of t(α) with the

domain formula δt,α; for each relational symbol R in Σ1, we use t(R) as ϕR in the definition R, and
similarly for functional symbols and constants. Then we prove by induction that for any Σ1-formula
ϕ, T+

2 |= ∀xσϕ iff T+
2 |= ∀xt(σ)t(ϕ). Thus, for any ϕ, if T1 |= ϕ, then T2 |= t(ϕ), and hence T+

2 |= ϕ.
Therefore, T2 ⊆ T+

2 |Σ1 .
Conversely, suppose there is a relative interpretation 〈T2, T+

2 , T1, 〉 of T1 in T2. Then we can define
a relative translation t of T1 in T2 as follows: for each symbol α ∈ Σ1, suppose it is defined in T+

2 as the
subsort of σ′ ∈ Σ2 with the domain formula ϕα, then we define t(α) as σ′, and δt,α as ϕα; similarly, if
R ∈ Σ1 is defined by ϕR, then we define t(R) as ϕR, and similarly for functional symbols and constants.
Again we prove by induction that for any Σ1-formula ϕ, T+

2 |= ∀xσϕ iff T+
2 |= ∀xt(σ)t(ϕ). Now for any

Σ1-sentence ϕ, if T1 |= ϕ, then T+
2 |= ϕ, and so T2 |= t(ϕ). Therefore, t is a relative translation of T1

in T2.

While interpretation and translation often coincide, there is an advantage in adopting the per-
spective of interpretation: we have a general schema from which we can generate different notions of
interpretation in a coherent manner and gives us a unified picture as to what resources we are allowed
to use in a specific case of interpretation.
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Schema 2.20. We say T1 interprets T2 if there is a definitional extension T+
1 of T1 such that

T2 ⊆ T+
1 |ΣT2

.

Thus, for instance, if we adopt Moritas extension as the accepted notion of definitional extension
in the above schema, we obtain relative interpretation. To take another example, we could adopt
the standard definitional extension as the accepted notion of definitional extension, and we name the
resulting notion of interpretation as strict interpretation.

Definition 2.21. Let T1 and T2 be two first-order theories in signatures Σ1 and Σ2. We say that T1
strictly interprets T2 if there is a standard definitional extension T+

1 of T1 such that T+
1 |Σ2 ≡ T2.

Strict interpretation also corresponds to a notion of translation. As one may expect, it is a notion
translation that does not allow relativization or renaming of sorts. In fact, it is the notion of translation
adopted by Barrett and Halvorson (2016), and we refer to it here as strict translation.

Definition 2.22. Let T1 and T2 be two theories in signatures Σ1 and Σ2. We say that t is a strict
translation from LΣ1 to LΣ2 in T2 if

• t is identity on sort symbols;

• for each relational symbol R of arity 〈σ0, ..., σn〉, t(R) is a Σ2-formula with at most free variables
xσ0 , ..., xσn ;

• for each function symbol f of arity 〈σ0, ..., σn〉 → σ, t(f) is a Σ2-formula with at most free
variables xσ0 , ..., xσn , yσ, and that T2 satisfies the admissibility condition:
T2 ` ∀xσ0 ...∀xσn∃!yσ(t(f)(xσ0 , ..., xσn , yσ));

• for each constant symbol c of sort σ, t(c) is a Σ2-formula with at most one free variable xσ, and
that T2 satisfies the admissibility condition: T2 ` ∃!xσ(t(c)(xσ)).

Now, t naturally induces a function from Σ1-formulas to Σ2-formulas defined as below, which we also
denote by t:

• for ϕ := R(xσ0 , ..., xσn), t(ϕ) := t(R)(xt(σ0), ..., xt(σn));

• for ϕ := f(xσ0 , ..., xσn) = yσ, t(ϕ) := t(f)(xt(σ0), ..., xt(σn), yt(σ));

• for ϕ := xσ = c, t(ϕ) := t(c)(xt(σ));

• for ϕ := ¬ψ, t(ϕ) := ¬t(ψ);

• for ϕ := ϕ1 ∧ ϕ2, t(ϕ) := t(ϕ1) ∧ t(ϕ2);

• for ϕ := ∀xσψ, t(ϕ) := ∀xt(σ)(t(ψ)(xt(σ))).

Theorem 2.23. Let T1 be a Σ1-theory and T2 be a Σ2-theory. There is a strict translation of T1 in
T2 if and only if there is a strict interpretation of T1 in T2.

Proof. The proof is exactly analogous to the proof of the previous theorem.
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We can also define the notion of Morita translation, which corresponds to Morita interpretation.4

For the sake of convenience, we consider here only relational languages.5

Definition 2.24. Let Σ1 and Σ2 be the many-sorted languages for T1 and T2. A Morita translation
of LΣ1 in LΣ2 is a function f = f0 ∪ f1 ∪ f2 ∪ f3 defined as follows:

• f0 (the map for sorts): for each sort σ in Σ1, f0(σ) = {〈0, σ0〉, ..., 〈n, σn〉} where σ0, ..., σn are
sequences of sorts in Σ2;

• f1 (the map for variables): for each variable xσ in Σ1, f1(xσ) is a set of sequences of Σ2-variables
{xσ〈i,σ〉|〈i, σ〉 ∈ f0(σ)};

– We require that yβ〈i,β〉, z
γ
〈j,γ〉 ∈ f1(x

σ) are disjoint if i 6= j.

– We require that variables appeared in f1(xσ) and f1(yγ) are disjoint if xσ and yγ are distinct
variables;

– For convenience, we call k ∈ Πxσ∈Σ1f1(x
σ) an assignment of f . We write A(f) :=

Πxσ∈Σ1f1(x
σ). And we write k̃(xσ) := 〈i, σ〉 for k(xσ) = xσ〈i,σ〉.

• f2 (domain formulas): for each variable xσ in Σ1, f2(xσ) is a function from A(f) to Σ2-formulas,
such that for each assignment k, f2(xσ)(k) is a Σ2-formula with free variables k(xσ).

– We require that if k̃(xσ) = k̃′(yσ), then f2(xσ)(k) = f2(y
σ)(k′)[k′(yσ) 7→ k(xσ)];

• f3 (the translation of atomic formulas): for each atomic Σ1-formula R(xσ) (including equality),
f3(R(x

σ)) is a function from A(f) to Σ2-formulas, such that for each assignment k, f3(R(xσ))(k)
is a Σ2-formula with free variables k(xσ1), ..., k(xσn).

– We require that if k̃(xσi) = k̃′(yσi) for all σi, then f3(R(xσ))(k) = f3(R(y
σ))(k′)[k′(yσ) 7→

k(xσ)]

Note that f together with an assignment k extends to a map from Σ1-formulas to Σ2-formulas as
follows:

• for ϕ := R(xσ1 , ..., xσn), f(ϕ)(k) :=
∧

1≤i≤n f2(x
σi)(k) → f3(R)(k);

• for ϕ := ¬ψ(xσ1 , ..., xσn), f(ϕ)(k) :=
∧

1≤i≤n f2(x
σi)(k) → ¬f(ψ)(k);

• for ϕ := ψ1 ∧ ψ2, f(ϕ)(k) := f(ψ1)(k) ∧ f(ψ2)(k);

• for ϕ := ∀xσψ, f(ϕ)(k) :=
∧

k′=k[k(xσ) 7→k′(xσ)] ∀k′(xσ)(f(ψ)(k′));

We say that f is a Morita translation of T1 in T2 if for any Σ1-formula ϕ, if T1 ` ϕ then T2 ` f(ϕ)(k)
for all assignment k.

Lemma 2.25. If f is a Morita translation of T1 in T2, then for any Σ1-formula ϕ, if ϕ has free
variables xσ1 , ..., xσn, then f(ϕ)(k) has free variables k(xσ1), ..., k(xσn).

4Definition 2.24 essentially corresponds to what Visser (2021) calls “relative, multi-dimensional, piecewise and non-
identity-absolute interpretation”.

5Particularly, it is much more elegant to treat the functionality of f as simply a theorem of T1, which T2 must preserve,
than to treat it as an ad hoc admissibility condition that the translation must satisfy.
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Proof. Easy induction.

Lemma 2.26. If f is a Morita translation of T1 in T2, and s is a Morita translation of T2 in T3, then
there is a Morita translation of T1 in T3.

Proof. We define a new translation g of T1 in T3 as follows.
Let σ = 〈σ1, ..., σn〉 be a sequence of sorts in Σ1. Suppose l ∈ Πσi∈Σ2s(σi). By l(σ) we mean the

sequence 〈〈π0(l(σ1)), ..., π0(l(σn))〉, 〈π1(l(σ1)), ..., π1(l(σn))〉〉.
Let σ be a sort in Σ1. For each k ∈ Πσi∈Σ1f(σi), and l ∈ Πσi∈Σ2s(σi), we define the sequence σk,l =

〈π0(k(σ)), π0(l(π1(k(σ))), π1(l(π1(k(σ)))))〉. We enumerate all σk,l by function α : {σk,l} 7→ N accord-
ing to the lexicographic order of 〈π0(σk,l), π1(σk,l)〉. Thus, we define g0(σ) = {〈α(σk,l), π2(σk,l)〉|k ∈
Πσi∈Σ1f(σi), l ∈ Πσi∈Σ2s(σi)}.

Let g1(xσ) = {l(k(xσ))|k ∈ A(f), l ∈ A(s)}.
Let h be a g-assignment, let g2(xσ)(h) := s(f2(x

σ)(k))(l) for any f -assignment k and s-assignment
l such that l(k(xσ)) = h(xσ). It is easy to check that g2 is well-defined: for any k, k′, l, l′ if l(k(xσ)) =
l′(k′(xσ)), then s(f2(x

σ)(k))(l) = s(f2(x
σ)(k′))(l′). And by by Lemma 2.25, s(f2(xσ)(k))(l) is a Σ3-

formula with free variables l(k(xσ)), which equals h(xσ).
Let g3(R(xσ1 , ..., xσn))(h) := s(f3(R(x

σ1 , ..., xσn))(k))(l) for any f -assignment k and s-assignment l
such that l(k(xσi)) = h(xσi), for 1 ≤ i ≤ n. Again, it is easy to check that g3 is well-defined. Similarly,
according to Lemma 2.25, g3(R(xσ1 , ..., xσn))(h) is a Σ3-formula with free variables h(xσ1), ..., h(xσn).

It is straightforward to check by induction that g is a translation of T1 in T3.

Theorem 2.27. Let T1 be a Σ1-theory and T2 be a Σ2-theory. There is a Morita translation of T1 in
T2 if and only if there is a Morita interpretation of T1 in T2.

Proof. Suppose that there is a Morita translation f of T1 in T2. Let σ ∈ Σ1 be arbitrary and
f(σ) = {〈0, σ0〉, ..., 〈n, σn〉}. Then we can define σ in T2 as follows:6

• for each σi = 〈σ1i , ..., σmi 〉, we define σ†i as the product of σ1i , ..., σmi ;

• for each σ†i , we define σ∗i as the quotient sort of σ†i by the equivalence relation that corresponds
to

∧
1≤j≤m f(=

σj
i )(k), where k(σ) = 〈i, σi〉;

• for each σ∗i , we define σ+i as the subsort of σ∗i with the domain formula that corresponds to∧
1≤j≤m f2(x

σj
i )(k), where k(σ) = σ1;

• finally, we define σ as the coproduct of σ+1 , ..., σ+n .

Once all sorts in Σ1 are defined, relational symbols in Σ1 can then be defined as disjunctions of
f3(R)(k) for all different assignments k. Thus, we have a Morita extension T+

2 of T2. It is routine to
prove by induction that for any Σ1-formula ϕ, T+

2 ` ϕ iff T+
2 ` f(ϕ)(k) for any assignment k. Thus,

T1 ⊆ T+
2 |Σ1 , and therefore T1 is Morita interpreted in T2.

Now assume that T1 is Morita interpreted in T2, and let 〈T2, T+
2 , T1, 〉 the Morita interpretation.

By Lemma B.3, there is a sequence of pure Morita successors S0, ..., Sn such that S0 = T2 and T+
2

is a standard definitional extension of Sn. We prove by induction on the length of n, that there is a
Morita translation f of Sn in S0. Suppose a new sort symbol σ of Sn is defined in Sn−1 as:

6This requires that we can do arbitrarily finite products and coproducts in a Morita extension.
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• a product of σ0 and σ1; then we define the translation f as follows:

– f0(σ) = {〈0, 〈σ0, σ1〉〉},

– f1 can be chosen arbitrarily,

– f2(x
σ)(k) := >,

– f3(x
σ = yσ)(k) := k(xσ) = k(yσ),

– f3(π0(x
σ, yσ0))(k) := [k(xσ)]1 = yσ0 , where [k(xσ)]1 is the first element of k(xσ),

– f3(π1(x
σ, yσ1))(k) := [k(xσ)]2 = yσ1 , where [k(xσ)]2 is the second element of k(xσ);

• a coproduct of σ0 and σ1; then we define the translation f as follows:

– f0(σ) = {〈0, σ0〉, 〈1, σ1〉},

– f1 can be chosen arbitrarily,

– f2(x
σ)(k) := >,

– f3(x
σ = yσ)(k) is defined as k(xσ) = k(yσ) if k̃(xσ) = k̃(yσ), ⊥ otherwise,

– f3(p0(x
σ0 , yσ))(k) is defined as k(yσ) = xσ0 if k̃(yσ) = 〈0, σ0〉, ⊥ otherwise,

– f3(p1(x
σ1 , yσ))(k) is defined as k(yσ) = xσ1 if k̃(yσ) = 〈1, σ1〉, ⊥ otherwise;

• a subsort of σ1 by domain formula ϕ; then we define the translation f as follows:

– f0(σ) = {〈0, σ0〉},

– f1 can be chosen arbitrarily,

– f2(x
σ)(k) := ϕ(k(xσ)),

– f3(x
σ = yσ)(k) := k(xσ) = k(yσ);

• a quotient of σ1 by equivalence relation ϕ; then we define the translation f as follows:

– f0(σ) = {〈0, σ0〉},

– f1 can be chosen arbitrarily,

– f2(x
σ)(k) := >,

– f3(x
σ = yσ)(k) := ϕ(k(xσ) = k(yσ)).

Thus, we have a Morita translation f of Sn+1 in Sn. By inductive hypothesis, we have a Morita
translation s of Sn in S0, by Lemma 2.26, we have a translation s ◦ f of Sn+1 in S0.

Since T+
2 is a definitional extension of Sn, there is a canonical translation l of T+

2 in Sn. Then
s ◦ (f ◦ l) is a Morita translation of T+

2 in S0 = T2. Then its restriction to Σ1 will be a Morita
translation of T1 in T2.

With different notions of definitional extension, we can reproduce different notions of interpretation
in the literature, which further correspond to different notions of translation, just as we did above.
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Definitional Ex-
tension

Interpretation Translation

Name Other Names Name Other Names
Standard
Definitional Ex-
tension

Strict
Interpretation

N/A Strict
Translation

“Translation”
in Barrett and
Halvorson (2016)
and Halvorson
(2019)

Moritas

Extension
Relative
Interpretation

N/A Relative
Translation

“Relative inter-
pretation” in
Visser (2021)

Moritap

Extension
Multi-
dimensional
Interpretation

N/A Multi-
dimensional
Translation

“Multi-
dimensional
Interpretation”
in Visser (2021)

Moritac

Extension
Piecewise
Interpretation

N/A Piecewise Trans-
lation

“Piecewise In-
terpretation” in
Visser (2021)

Moritaq

Extension
Quotientive
Interpretation

N/A Quotientive
Translation

“Non-identity-
absolute Interpre-
tation” in Visser
(2021)

Moritas,q

Extension
Relative, Quoti-
entive
Interpretation

“Interpretation”
in Button and
Walsh (2018)

Relative, Quoti-
entive Transla-
tion

N/A

Moritap,s,q

Extension
Multi-
dimensional,
Relative and
Quotientive
Interpretation

N/A Multi-
dimensional,
Relative and
Quotientive
Translation

“Generalized
translation” in
Halvorson (2019)

Moritap,c,s,q

Extension
Morita
Interpretation

“Morita Interpre-
tation” in Mead-
ows (2024)

Morita
Translation

N/A

Now we have a series of notions of interpretation. Given a specific notion of interpretation, we
can give different coordinated-interpretation criteria based on weaker or stronger requirements of
coordination (see, e.g., Visser (2004, 2009), Meadows (2024)).

Schema 2.28. We say that two theories T1 and T2 are

• interpretably equivalent if there is an interpretation t of T2 in T1 and an interpretation
s of T1 in T2 such that for any model M1 of T1, s†(t†(M1)) = M1, and for any model M2 of
T2, t†(s†(M2)) = M2.

• bi-interpretable if there is an interpretation t of T2 in T1 and an interpretation s of T1
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in T2 such that for any model M1 of T1, s†(t†(M1)) is provably isomorphic to M1 and for any
model M2 of T2, t†(s†(M2)) is provably isomorphic to M2.

• iso-congruent if there is an interpretation t of T2 in T1 and an interpretation s of T1 in T2
such that for any model M1 of T1, s†(t†(M1)) is isomorphic to M1, and for any model M2 of
T2, t†(s†(M2)) is isomorphic to M2.

• elementary-congruent if there is an interpretation t of T2 in T1 and an interpretation s

of T1 in T2 such that for any model M1 of T1, s†(t†(M1)) is elementarily equivalent to M1, and
for any model M2 of T2, t†(s†(M2)) is elementarily equivalent to M2.

• mutually interpretable if each interprets the other.

The advantage of using interpretation in our criteria of theoretical equivalence is that different
notions of interpretations are clearly classified according to which structures are considered as free
lunches, i.e., what notion of definitional extension we adopt. The drawback is that sometimes finding
the corresponding translation at the sentential level could be difficult. In particular, in standard
many-sorted logic where variables are sorted, we do not have a formula that intuitively speaks about
the coproduct of two sorts. This means that while we can extend our theories or models by coproduct,
we may not be able to give a straightforward translation of it. Visser (2009) develops the method
of “piecewise” translation to deal with coproduct. Alternatively, if we have a sort with at least two
distinguished elements, then one may use this sort as an auxiliary tool, translate coproduct via product
and quotient: use (a, b, 1) modulo b to represent a ∈ σ1, and use (a, b, 2) modulo a to represent b in
σ2 (Halvorson, 2019). Visser (2021) sketches a similar way of doing it.

2.4 The Categorical Criteria

The Categorical Criteria, as the name suggests, look at the categories assotiated with different
theories. The most common category that people focus on is the semantical category of a theory,
whose objects are models of the theory and arrows elementary embeddings between models.

Meadows (2024) discusses three notions of equivalence in category theory that could be applied to
discuss the equivalence between semantical categories of theories: categorical isomorphism, categorical
equivalence, and objective categorical equivalence. The first two are familiar; the third one is new.

Definition 2.29. We say that two categories C and D are objectively equivalent if there is a functor
F from C to D and a functor G from D to C such that for any object A ∈ C, F ◦G(A) ∼= A, and for
any object B ∈ D, G ◦ F (B) ∼= B.

So we have the following definition.

Definition 2.30. We say that two theories T1 and T2 are

• categorically isomorphic if their semantical categories are isomorphic.

• categorically equivalent if their semantical categories are equivalent.

• objectively categorically equivalent if their semantical categories are objectively equivalent.

We have the following results.
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Theorem 2.31. Two theories are categorically equivalent iff they are categorically isomorphic.

This was proved in Meadows (2024, Corollary 2.9). For future reference, we present the proof
below. The proof assumes that there is a least inaccessible cardinal Ω and objects in Mod(T ) are
models of T within the universe VΩ.

Lemma 2.32. Let Mod(T1) and Mod(T2) be the categories of models of T1 and T2 respectively. Let t
be a functor from Mod(T1) to Mod(T2) and s be a functor from Mod(T2) to Mod(T1) such that t and
s witness the categorical equivalence of T1 and T2. Then there is an isomorphism f between Mod(T1)

and Mod(T2) that respects t and s modulo isomorphism of the models (i.e. f(M) ∼= t(M) for each
model M ∈Mod(T1) and f−1(N ) ∼= s(N ) for each model N ∈Mod(T2)).

Theorem 2.31 then follows as a corollary.

Proof. Note that t establishes a bijection f between isomorphism classes of models of T1 and those
of models of T2. Let (·)∗ be a function that chooses a representative for each isomorphism class of
Mod(T1), and let π· be a function which chooses an isomorphism from a model to its representative
and that π[M]∗ = id[M]∗ for each model M of T1. (·)† and ρ· are defined analogously forMod(T2). For
each isomorphism class [M] of T1, note that |[M]| = |f([M])| = Ω, and so we can choose a bijection
H[M] between [M] and f([M]), which maps [M]∗ to f([M])†. Let H be a functor defined as follows:

• for each object M in Mod(T1), H(M) = H[M](M);

• for each arrow h from M to N in Mod(T1), H(h) = (ρH(N ))
−1 ◦ t(πN ◦ h ◦ (πM)−1) ◦ ρH(M).

It is easy to check that H is an isomorphism between Mod(T1) and Mod(T2). And by construction,
H respects t and s modulo isomorphism of models.

Theorem 2.33. If two theories are Morita equivalent then they are categorically equivalent.

This was proved in Barrett and Halvorson (2016, Theorem 5.6).
Instead of looking at the semantic category of a theory, we can also look at the syntactical category

of a theory. A syntactical category is a category whose objects are formulas in contexts and arrows
are provable functions between them.

Definition 2.34. Given a first-order many-sorted theory T with signature Σ, its syntactical category
CT is a category defined as follows:

• The objects are equivalence classes of Σ-formulas in contexts which we denote as x.ϕ, where x a
list of variables and ϕ is a Σ-formula with at most free variables in x. Let p be the function that
sends variables to sorts. Two Σ-formulas in contexts x.ϕ and y.ψ are equivalent if p(x) = p(y)

and ϕ = ψ[x/y].

• The arrows are also are equivalent classes of Σ-formulas in contexts {z.θ} : {x.ϕ} → {y.ψ} such
that

– θ `x,y ϕ ∧ ψ;

– θ ∧ θ[y/z] ` y = z;

– ϕ `x ∃yθ.
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There is also a corresponding notion of Morita equivalence defined in Johnstone (2003), which
we label as J-Morita equivalence, to distinguish it from the notion of Morita equivalence we defined
before.

Definition 2.35. Two cartesian theories T1 and T2 are J-Morita equivalent, if their syntactical cate-
gories are equivalent.

Definition 2.36. Two regular theories T1 and T2 are J-Morita equivalent, if the effectivization of
their syntactical categories are equivalent.

Definition 2.37. Two coherent theories T1 and T2 are J-Morita equivalent, if the effectivization of
the positivization of their syntactical categories are equivalent.

Definition 2.38. Two geometrical theories T1 and T2 are J-Morita equivalent, if the effectivization
of the infinite positivization of their syntactical categories are equivalent.

Tsementzis (2017) proves the following results.

Theorem 2.39. For coherent theories T1 and T2, they are J-Morita equivalent iff they are standard
Morita equivalent.

Theorem 2.40. For geometrical theories T1 and T2, they are J-Morita equivalent iff they are Morita
equivalent with subsort, quotient, product and infinite coproduct.

Theorem 2.41. For regular theories T1 and T2, they are J-Morita equivalent iff they are Morita
equivalent with subsort, quotient, product.

Theorem 2.42. For cartesian theories T1 and T2, they are J-Morita equivalent iff they are Morita
equivalent with subsort, and product.

And it is not entirely clear (justified) why for different types of theories we have different notions
of J-Morita equivalence. There seems to be some arbitrariness just as in the case of standard Morita
equivalence.

2.5 Results about Comparative Strengths

Meadows (2024) paints a map of theoretical equivalence:

Relatively Interpretably Equiv Morita Interpretably Equiv Categorical Isomorphism

Bi-interpretable Morita Bi-interpretable Categorical Equivalence

Iso-congruence Morita-congruence Objective Equivalence

Mutually Interpretable Morita Mutual Category Mutual
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To see how the notions in this map are defined, recall that we have a series of schemas of
coordinated-interpretation criteria based on different requirements of coordination (Schema 2.28): in-
terpretably equivalent, bi-interpretable, iso-congruent, elementary-congruent, mutually
interpretable. If we plug in relative interpretation in the above schemas, we get the leftmost column.
And if we plug in Morita interpretation, then we get the middle column. The rightmost column has
already been defined in Definition 2.30. It can be obtained by dropping the requirements related to
interpretation in Schema 2.28 and focusing solely on the requirements for coordinations — that is,
functors no longer need to be generated from interpretations.

There are two deficiencies in the above map. First, the common-extension criteria are not included.
Second, it is not known whether certain arrows are invertible. In particular, we have the following
questions (Meadows, 2024):

Relatively Interpretably Equiv Morita Interpretably Equiv Categorical Iso

Bi-interpretable Morita Bi-interpretable Categorical Equiv

Iso-congruence Morita-congruence Objective Equiv

?
?

?

?
?

?

? ?

The following two sections address each of these two deficiencies.

2.5.1 Situating the Common-Extension Criteria

The two most important common-extension criteria are definitional equivalence and Morita equiv-
alence. Meadows (2024, Proposition 7.1) shows that definitional equivalence can be positioned in the
map: it is the same as strict interpretably equivalence.

Proposition 2.43. Let T1 and T2 be two first-order theories in signatures Σ1 and Σ2. Then T1 and
T2 are definitional equivalent iff they are relatively interpretably equivalent.

It is also claimed that by Corollary 5.14 in Meadows (2024), Morita interpretably equivalence is
the same as Morita equivalence. But a valid proof is still lacking.7

In the following, we give the proof that Morita equivalence implies Morita interpretably equivalence.
For the sake of rigor, we define Morita interpretation and Morita interpretably equivalence formally.

Definition 2.44. Let T1 be a Σ1-theory, and T2 a Σ2-theory. We say that T1 Morita interprets T2
if there is a Morita descendant T+

1 of T1, such that T+
1 |Σ2 ≡ T2. A Morita interpretation t is then a

tuple (T1, T
+
1 , T2).

Recall that two theories are interpretably equivalent (as a schema) if they are mutually inter-
pretable and the functions t∗ and s∗ between their class of models induced by interpretations are

7This point is confirmed by the author in private correspondence, to which I am very thankful.
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inverses of each other. In the case of Morita interpretation, interpretations do not decide uniquely a
functor between the categories of models, thus we only require that there be functors compatible with
the interpretations that are inverses of each other.

Definition 2.45. Let T1 and T2 be two theories with signatures Σ1 and Σ2. Suppose T1 Morita
interprets T2 via the Morita interpretation t = (T1, T

+
1 , T2).

We say that a functor t† : Mod(T1) → Mod(T2) is compatible with this Morita interpretation, if
for all models M of T1, there is some model M′ of T+ such that:

• M′|Σ1 = M and,

• M′|Σ2 = t†(M).

Definition 2.46. We say that two theories T1 and T2 are Morita interpretably equivalent if there is
a Morita interpretation t of T2 in T1 and a Morita interpretation s of T1 in T2 such that there are
functors t† and s† compatible with t and s respectively, such that t† ◦ s† = id and s† ◦ t† = id.

Theorem 2.47. If two theories are Morita equivalent then they are interpretably equivalent.

Proof. Assume that T1 and T2 are Morita equivalent with signatures Σ1 and Σ2. Then there is a
theory T3 which is a common Morita extension of T1 and T2. Since T3|Σ2 ≡ T2 and T3|Σ1 ≡ T1, there
is a Morita interpretation t = (T2, T3, T1) of T1 in T2 and a Morita interpretation s = (T1, T3, T2) of
T2 in T1.

As in Barrett and Halvorson (2016, p. 572), we can define a Π1 functor from Mod(T3) to Mod(T1)

as follows:

• Π1(M) = MΣ1

• Π1(h) = hΣ1 for every arrow h : M → N in Mod(T3), where the family of maps hΣ1 is defined
to be hΣ1 = {hσ :Mσ → Nσ such that σ ∈ Σ1}.

By Propositions 5.2, 5.3, and 5.5 in Barrett and Halvorson (2016), Π1 witnesses the categorical equiv-
alence between Mod(T1) and Mod(T3), and let Π1 be its quasi-inverse.

Similarly, we can define a Π2 functor from Mod(T3) to Mod(T2) that witnesses the categorical
equivalence between Mod(T2) and Mod(T3), and let Π2 be its quasi-inverse.

By transitivity of categorical equivalence, Π1 ◦Π2 and Π2 ◦Π1 witness the categorical equivalence
between Mod(T1) and Mod(T2). By Lemma 2.28, there is an isomorphism f between Mod(T1) and
Mod(T2) that respects the Π1 ◦Π2 and Π2 ◦Π1 modulo isomorphism of models.

We only need to show that f and f−1 are compatible with Morita interpretations s and t respec-
tively. Let M1 be an arbitrary model of T1. Let M+

1 be an arbitrary expansion of M1 in T3. Since
Π1 is a categorical equivalence, Π1(Π1(M+

1 ))
∼= M1 and hence Π1(M) ∼= M+

1 . As functors preserve
isomorphisms, Π2(Π

1(M)) ∼= Π2(M+
1 ) = (M+

1 )|Σ2 . Substituting Π2(Π
1(M)) for (M+

1 )|Σ2 in M+
1

for the interpretation of symbols in Σ2, we have a new model M′. Since Π2(Π
1(M)) ∼= (M+

1 )|Σ2 ,
M′ ∼= M+

1 and hence is a model of T3. And by construction, M′|Σ1 = M1 and M′|Σ2 = Π1(M).
Thus, f is compatible with t. That f−1 is compatible with t is proved similarly. Thus, T1 and T2 are
Morita interpretably equivalent.

It is not yet known whether the converse also holds.
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2.5.2 Completing the Map

Now we try to complete the map by answering the question marks.
We first show that there are iso-congruent theories which are not categorically equivalent, and thus

answer all the question marks in the second row negatively.

Proposition 2.48. There are iso-congruent theories which are not categorically equivalent.

Proof. Let Σ1 be a signature with a single sort, a predicate P , a binary relational symbol R, and
infinitely many constants c0, c1, .... Let T1 be a Σ1-theory which says:

• ci 6= cj for i 6= j;

• P (ci) for each i;

• ∃x∃y(R(x, y) ∧ ¬P (x) ∧ ¬P (y) ∧ ∀z∀w(R(z, w) ↔ ((z = x ∧ w = y) ∨ (z = y ∧ w = x)))).

• There are infinitely (arbitrarily finitely) many elements that are not P .

Let Σ2 be a signature with a single sort, a predicate Q, and infinitely many constants d0, d1, ....
Let T2 be a Σ2-theory which says:

• di 6= dj for i 6= j;

• Q(di) for each i;

• There are infinitely (arbitrarily finitely many) many elements that are not Q.

We first prove that they are not categorically equivalent. Consider the model M1 of T1, which
contains exactly two elements a, b which are P but are not named by any constant, and R holds
between c, d. Note that the automorphism group of M1 contains two distinct normal subgroups of
order 2, one is the subgroup generated by the permutation between a and b, and the other by the
permutation between c and d. However, the models of T2 contain at most one such normal subgroup
of order 2 (when there are exactly two elements that are Q but are not named by any constant).8

Since categorical equivalence preserves automorphism groups up to isomorphism, T1 and T2 are not
categorically equivalent.

We then prove that they are iso-congruent. Let t be the translation from Σ2-formulas to Σ1-
formulas which sends Q(x) to P (x) and di to ci. It is easy to check that t supports an interpretation
of T2 in T1. Let t∗ be the induced function from models of T1 to models of T2.

Let s be the translation from Σ1-formulas to Σ2-formulas which sends P (x) toQ(x)∧x 6= c0∧x 6= c1,
ci to di+2, and R(x, y) to (x = d0 ∧ y = d1) ∨ (x = d1 ∧ y = d0). We keep the domain constant in
both t and s. It is easy to check that s supports an interpretation of T1 in T2. Let s∗ be the induced
function from models of T2 to models of T1.

Let M be an arbitrary model of T1. Let a, b be the elements in M of which R holds. Let S be
the infinite set of elements in M which are not P and does not contain a, b. We pick an arbitrary
bijection g from S to S ∪ {a, b}. Let k be the partial function that sends a to (c0)

M, b to (c1)
M ,

(cj)
M to (cj+2)

M for j ≥ 2, and remains identity on all points which are P but are not constants. It
is easy to check that f = g ∪ k is an isomorphism from M to s∗(t∗(M)).

8The part of the proof that the automorphism groups of M1 and M2 are not isomorphic was pointed out to me by
my classmate and roommate Ruiting Jiang during our oral conversations. I shall express my sincere gratitude to him.
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Let N be an arbitrary model of T2. Let V be the infinite set of elements in N which are not Q.
We pick an arbitrary bijection g from V to V ∪ {(d0)N , (d1)N }. Let k be the partial function that
sends (di)

N to (di+2)
N , and remains identity on all points which are Q but are not constants. It is

easy to check that f = g ∪ k is an isomorphism from N to t∗(s∗(N )).

Now we turn to arrows in the first rows, and answer the question whether bi-interpretability implies
definitional equivalence. The original version of bi-interpretability is defined in Meadows (2024) based
on relative interpretation (i.e., interpretation with subsort). We give an example to show that (relative)
interpretability does not imply definitional equivalence.

The definition of bi-interpretability based on relative interpretation can be given as follows. Note
that the formulation is based on Hodges (1993) and Visser (2021).

Definition 2.49. Let T1 and T2 be two theories with signatures Σ1 and Σ2 respectively. Let t and s
be interpretations of T1 in T2. We say that t and s are homotopic if there is a Σ2-formula χ(x, y) such
that T2 proves that χ(x, y) is a bijection and that for each R ∈ Σ1

T2 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

χ(xi, yi) → (t(R)(x0, . . . , xn) ↔ s(R)(y0, . . . , yn))
)

Or equivalently, for every model M of T2, χM is a bijection, and that for any a, b in M such that
M |= χ(a, b), we have M |= s(R)(a) iff M |= t(R)(b).

And we say that χ(x, y) is a homotopy from s to t.

We use χ(x, y) as an abbreviation for
∧

i<n χ(xi, yi).

Definition 2.50. T1 and T2 are (relatively) bi-interpretable iff there is a relative interpretation t of T1
in T2 and a relative interpretation s of T2 in T1 such that s◦t is homotopic to the identity interpretation
of T1 in itself, and t ◦ s is homotopic to the identity interpretation of T2 in itself.

Meadows (2024) instead uses the prefix “strictly” to emphasize that he uses the notion of relative
interpretation and does not allow interpretation by product, coproduct, or quotient.

We show that relative bi-interpretability does not imply definitional equivalence.

Theorem 2.51. There are two theories which are (relatively) bi-interpretable but not definitionally
equivalent.

Proof. Let Σ1 be a signature with a single sort, two constants c0 and c1, and two binary relational
symbols R and J . Let Σ2 be a signature with a single sort, a constant d0, and two binary relational
symbols Q and K.

Let M1 be the following model of Σ1:

c0 · · · · · ·

c1 · · · · · ·

R R R R

J

R

J

R

J

R

J

R
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And Let T1 = Th(M1).
Let M2 be the following model of Σ2:

d0 · · · · · ·

· · · · · ·

Q Q Q Q

K
Q

K
Q

K
Q

And Let T2 = Th(M2).
We prove that T1 and T2 are (relatively) bi-interpretable. Let t be the relative translation from

Σ1 formulas to Σ2 formulas with domain formula x 6= c0 and which sends c0 to Q(d0, x), c1 to
∃z(Q(d0, z) ∧K(z, x)), R(x, y) to Q(x, y), and J(x, y) to K(x, y). It is easy to check that t supports
an interpretation of T1 in T2. Let t∗ be the induced function from models of T1 to models of T2.

Let s be the relative translation from Σ2 formulas to Σ1 formulas with domain formula x 6= c1

and which sends d0 to c0, Q(x, y) to R(x, y), and K(x, y) to J(x, y). Again, it is easy to check that s
supports an interpretation of T2 in T1. Let s∗ be the induced function from models of T2 to models of
T1.

Note that R(x, y) defines an isomorphism from M1 to t∗(s∗(M1)), and Q(x, y) defines an isomor-
phism from M2 to s∗(t∗(M2)). Therefore, T1 and T2 are (relatively) bi-interpretable.

We then prove that T1 and T2 are not definitionally equivalent. Suppose (towards a contradiction)
that they are. Now there is a definitional extension T3 of T1 and T4 of T2 such that T3 ≡ T4. For
convenience, we refer to the point related to x by J or K the J-partner or the K-partner of x. Let
us call a point whose J-partner and K-partner are distinct a half-hearted point. Note that T2 and
consequently T4 proves that ¬∃x(K(d0, x)), in particular, T4 ` ∃y((J(d0, y)∧¬K(x, y)∧∃z(K(z, y)))),
i.e., that the J-partner of d0 has d0 as its J-partner, but not as its K-partner. Thus the J-partner
of d0, which we label as h1, is a half-hearted point. But then T2 and consequently T4 also prove that
the K-partner of h1 has h1 as its K-partner, but not as its J-partner, and hence the K-partner of h1,
which we label as h2, is also a half-hearted point. The same reasoning applies to the J-partner of h2
and so on. Thus, for arbitrary n, T4 will prove that there are n half-hearted points h1, h2, ... mutually
linked by K and J alternatively.

By distance we mean the distance between two points in the Gaifman graph. Note that for any
natural number n, T4 proves that the number of points within the n-neighborhood of d0 is below
some finite number i. Then T4 proves that for any natural number n, there will always be some half-
hearted points linked by K and J as above, but are outside of the n-neighborhood of d0. Reasoning
within T4, suppose x, y, z, w are four such points, and we have xKy, yJz and zKw (without loss
of generality). Then we have yJz but not xJw. Let ϕj be the definition of J in T2, then we have
ϕJ(y, z)∧¬ϕJ(x,w). Thus, since definitional extension is conservative, for any n, T2 proves that there
are four points x, y, z, w outside the n-neighborhood of d0 such that ϕJ(y, z) ∧ ¬ϕJ(x,w). But notice
that for any model M of T2, and for any such four points x, y, z, w outside the n-neighborhood of
d0, NM

n (y, z) ∼= NM
n (x,w). So, the locality rank of the query defined by ϕJ must be greater than

n. By Theorem 4.12 and Theorem 4.13 in Libkin (2004), ϕJ must have quantifier rank higher than
log3(2n+1

3 ). Since this holds for arbitrary n, ϕJ will have infinite quantifier rank, which is impossible.
Therefore, T1 and T2 are not definitionally equivalent.
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But this would be true if we adopt a stronger notion of bi-interpretability, in particular, if we do
not allow relativize quantification in interpretation, i.e., we do not allow non-trivial domain fomula.
We can show that, in this case, (strict) bi-interpretability indeed implies definitional equivalence.

We prove the following lemma.

Lemma 2.52. Let T1 and T2 be two theories with signatures Σ1 and Σ2 respectively. Let s, t be two
(strict) interpretations of T1 in T2. Let χ be a homotopy from s to t. We prove that for each formula
ϕ(x) we have:

T2 ` ∀x∀y
(
χ(x, y) → (s(ϕ)(x) ↔ t(ϕ)(y))

)
Proof. By routine induction on structures of ϕ. The base case is guaranteed by definition. The induc-
tive cases for conjunctions and negations are trivial. For the inductive case of existential quantifiers,
we notice that T2 proves that χ is a bijection of the entire domain (as we do not allow relativization
here), and therefore T2 proves that if there exists an x such that s(ϕ)(x, x), then there must exist a y
with χ(x, y) and t(ϕ)(y, y) follows by inductive hypothesis.

Theorem 2.53. If two theories are (strictly) bi-interpretable, then they are definitionally equivalent.

Proof. Let T1 and T2 be two theories with signatures Σ1 and Σ2 respectively. Let t be the interpretation
of T1 in T2 and s be the interpretation of T2 in T1. Let χ(x, y) be the formula that witnesses the
isomorphism from M1 to t∗(s∗(M1)) for any model M1 of T1, and let θ(x, y) be the formula that
witnesses the isomorphism between s∗(t∗(M2)) and M2 for any model M2 of T2. By Proposition 2.43,
we only need to prove that T1 and T2 are relatively interpretably equivalent.

We describe a distinct relative interpretation t′ of T1 in T2 as follows.

• for each relational symbol R in Σ1, let t′(R) := ∀y(t(χ)(x, y) → t(R)(y)),

• for each functional symbol f in Σ1, let t′(f) := ∀y(t(χ)(x, y) → t(f)(y)),

• for each constant symbol c in Σ1, let t′(c) := ∀y(t(χ)(x, y) → t(c)(y)).

We prove by induction that (Lemma A) for any Σ1-formula ϕ, T2 ` ∀x∀y
(t(χ)(x, y) → (t′(ϕ)(x) ↔ t(ϕ)(y))).

• ϕ := R(x). By the definition of t′, we only need to show that T2 ` ∀x∀y(t(χ)(x, y) →
(∀z(t(χ)(x, z) → t(R)(z)) ↔ t(R)(y))) which is clear as T1 proves that χ is a bijection over
the entire domain, and hence T2 proves that t(χ) is a bijection.

• The cases for functional symbols and constants are similar.

• The cases for conjunction and negation are trivial.

• ϕ := ∀xψ(x, x). By inductive hypothesis, T2 ` ∀x∀x∀y∀y(t(χ)(x, x; y, y) → (t′(ψ)(x, x) ↔
t(ψ)(y, y))). Since T1 proves that χ is a bijection, T2 proves that t(χ) is a bijection as well, so
for any y there exists an x such that t(χ)(x, y). Thus, T2 ` ∀x∀y(t(χ)(x, y) → (∀xt′(ψ)(x, x) →
∀yt(ψ)(y, y))). Similarly, for any x there exists a y such that t(χ)(x, y), so T2 ` ∀x∀y(t(χ)(x, y)
→ (∀yt(ψ)(y, y) → ∀xt′(ψ)(x, x))).
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As a corollary, for any Σ1-sentence χ, T2 ` t′(χ) ↔ t(χ). So for any χ, if T1 ` χ, then T2 ` t(χ) since
t is an interpretation, and then T2 ` t′(χ). Thus, we have shown that t′ is also an interpretation of T1
in T2.

Since T1 interprets T2 by s, Lemma A then gives us that (Lemma B) T1 ` ∀x∀y(s(t(χ))(x, y) →
(s(t′(ϕ))(x) ↔ s(t(ϕ))(y))). Notice that since χ is a homotopy from identity to s ◦ t, by Lemma 70,
we have (Lemma C) T1 ` ∀x1∀x2∀y1∀y2
((χ(x1, y1) ∧ χ(x2, y2)) → (χ(x1, x2) ↔ s(t(χ))(y1, y2))).

We prove that (Lemma D) T1 ` ∀x∀y(χ(x, y) ↔ s(t(χ))(x, y)) (illustrated by the diagram below).
Reason within T1, and assume that s(t(χ)) holds for y1, y2. Now, there must be an x1 and x2 such that
χ(x1, y1) and χ(x2, y2), since χ is a bijection. Thus, we have χ(x1, x2) by Lemma C. However, since χ is
a function, x2 = y1, and therefore χ(y1, y2) as well. Assume that χ holds for x2, y2. Then since s(t(χ))
is a bijection, there must be a y1 such that s(t(χ))(y1, y2). And since χ is also a bijection, there must
be an x1 such that χ(x1, y1). Thus, by Lemma C, we have χ(x1, x2). But since χ is a function, x2 = y1,
and therefore we have s(t(χ))(x2, y2). Thus, we have shown that T1 ` ∀x∀y(χ(x, y) ↔ s(t(χ))(x, y)).

x1 x2

y1 x2

χ

χ χ

s(t(χ))

Combining Lemma D with Lemma B, we have T1 ` ∀x∀y(χ(x, y) → (s(t′(ϕ))(x) ↔ s(t(ϕ))(y))).
By Lemma 2.52, we have that T1 ` ∀x∀y(χ(x, y) → (ϕ(x) ↔ s(t(ϕ))(y))). Thus, we have that
T1 ` ∀x(ϕ(x) ↔ s(t′(ϕ))(x)) for any Σ1-formula ϕ. Thus, for any model M1 of T1, and any R ∈ Σ1,
RM1 = s(t′(R))M1 = R(t′)∗(s∗(M1)), and similarly for functional symbols and constants. Therefore,
M1 = (t′)∗(s∗(M1)).

To prove that for any M2, M2 = (s)∗((t′)∗(M2)), we show that s∗ is surjective. Notice that for
any M2 of T2, θ(x, y) defines a bijection f on the domain of M2. Let f−1M be the model defined by
Rf−1M = {x|f(x) ∈ RM}. Since θ is a homotopy from identity to t ◦ s, f−1s∗(t∗(M2)) = M2. Since
f−1 and s∗ commute, s∗(f−1(t∗(M2))) = M2. Note that f−1(t∗(M2)) is isomorphic to t∗(M2) by
the function f , and therefore is also a model of T1. Thus, s∗ is surjective. Hence, for any model M2

of T2, M2 = (s)∗(M1) for some model M1 of T1. Therefore, (s)∗((t′)∗(M2)) = (s)∗((t′)∗(s∗(M1))) =

s∗(M1) = M2.

Now we show that Morita bi-interpretability implies Morita interpretably equivalence. Recall the
following item in Schema 2.28:

T1 and T2 are bi-interpretable if there is an interpretation t of T2 in T1 and an in-
terpretation s of T1 in T2 such that for any model M1 of T1, s†(t†(M1)) is provably
isomorphic to M1 and for any model M2 of T2, t†(s†(M2)) is provably isomorphic to
M2.

A strict definition of Morita bi-interpretability has not been given in the literature as it is not clear
what one means by saying that that t†(s†(M2)) is provably isomorphic to M2 in the many-sorted
case. Nevertheless, the following proof will only use the fact that t† ◦ s† is naturally isomorphic to the
identity functor, and the same holds for s† ◦ t†.
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Schema 2.54. We say that T1 and T2 are naturally congruent if there is an interpretation t of
T2 in T1 and an interpretation s of T1 in T2 such that s† ◦ t† ∼= id, and t† ◦ s† ∼= id.

Definition 2.55. We say that T1 and T2 are Morita naturally congruent if there is a Morita interpre-
tation t of T2 in T1 and a Morita interpretation s of T1 in T2 such that there are functors t† and s†

compatible with t and s respectively, such that s† ◦ t† ∼= id, and t† ◦ s† ∼= id.

Theorem 2.56. If two theories are Morita naturally congruent, then they are Morita interpretably
equivalent.

Proof. Let T1 and T2 be two theories with signatures Σ1 and Σ2 respectively. Let t = (T2, T
+
2 , T1) be

the interpretation of T1 in T2 and s = (T1, T
+
1 , T2) be the interpretation of T2 in T1. Let t† and s† be

the corresponding compatible functors. Let χσ(x
σ, yσ) be the formula that witnesses the isomorphism

from σM1 to σt†(s†(M1)) for any model M1 of T1, and let θδ(xσ, yσ) be the formula that witnesses the
isomorphism from σM2 to σs†(t†(M2)) for any model M2 of T2.

We only need to prove that T1 and T2 are Morita interpretably equivalent. As χ gives us a natural
isomorphism between functors t† ◦ s† and id, and θ a natural isomorphism between functors s† ◦ t†

and id, t† and s† witness the equivalence of categories Mod(T1) and Mod(T2). Using Lemma 2.32, we
obtain an isomorphism f between categories Mod(T1) and Mod(T2) which respects s† and t† modulo
isomorphism.

We then show that f is compatible with s. Let M1 be an arbitrary model of T1. Let M+
1 be an

arbitrary expansion of M1 in T+
1 . Notice that [M+

1 |Σ2 ] = [s†(M1)], and since f respects s† modulo
isomorphism, we have f(M1) ∼= M+

1 |Σ2 . Substituting f(M1) for M+
1 |Σ2 in M+

1 for the interpretation
of symbols in Σ2, we have a new model M′. Since f(M1) ∼= M+

1 |Σ2 , M′ ∼= M+
1 and hence is a model

of T+
1 . And by construction, M′|Σ1 = M1 and M′|Σ2 = f(M1). Thus, f is compatible with s. That

f−1 is compatible with t is proved similarly.

Presumably, any reasonable definition of Morita bi-interpretability should imply Morita natural
congruence.

Thesis 2.57. If two theories are Morita bi-interpretable, then they are Morita naturally congruent.

Thus we have the result that Morita bi-interpretability implies Morita interpretably equivalence,
by Theorem 2.56.

Thus, we answer all open questions in the diagram raised in Meadows (2024) as follows,

Relatively Interpretably Equiv Morita Interpretably Equiv Categorical Iso

Bi-interpretable Morita Bi-interpretable Categorical Equiv

Iso-congruence Morita-congruence Objective Equiv

× ✓ ✓

× ×

×

× ×
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In fact, we can add a further column to the diagram:

Strictly Interpretably Equiv Categorical Iso

Strictly Bi-interpretable Categorical Equiv

Strictly Iso-congruence Objective Equiv

✓

× ×

Lemma 2.58. Two theories are strictly interpretably equivalent iff they are relatively interpretably
equivalent.

Proof. The direction from left to right is trivial. For the other direction. Let t and s be relative
interpretations of T1 in T2 and T2 in T1 respectively. t and s must be constant on domains, and hence
are strict interpretations. For if not, then there is a model M of T1 such that t†(s†(M)) has a smaller
domain than M, and hence M 6= t†(s†(M)). This contradicts the fact that T1 and T2 are relatively
interpretably equivalent.

Theorem 2.59. If two theories are strictly bi-interpretable, then they are strictly interpretably equiv-
alent.

Proof. By Theorem 2.53, Proposition 2.43 and Lemma 2.58.

Proposition 2.60. There are strictly iso-congruent theories which are not categorically equivalent.

Proof. The counterexample in the proof of Proposition 2.48 is not only iso-congruent, but strictly
iso-congruent, which, therefore, suffices to prove the proposition.
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Chapter 3

Representation as Definition

3.1 Introduction

We have seen all kinds of different criteria of theoretical equivalence. But there are two distinct,
though often conflated, senses in which people use the notion of theoretical equivalence: structural
equivalence vs. representational equivalence. Structural equivalence tends to capture the idea that the
two theories or models have the same structure, while representational equivalence means that they
“say the same thing about the world”. All previous criteria can be seen as legitimate specifications of
structural equivalence, each of which captures a certain aspect in which theories and models share or
differ in their structure. But there is a gap in how such criteria of structural equivalence relate to the
notion of representational equivalence: sharing certain structures does not necessarily mean saying the
same thing about the world, particularly when it is not clear which part of the theories/models are
actually used for representation and how specifically they are used. For instance, Manet’s Olympia
and Titian’s Venus both depict Venus lying on a bed with the same pose, but the two paintings convey
drastically different themes. Similarly, while two theories may have equivalent categories of models,
it is not clear how, if purely for this reason, they are representationally equivalent, as it is not clear
what role the category of models plays in the process of representation.

The goal of this chapter is to develop the notion of representation in a formal manner and show
how different notions of structural equivalence may be seen as notions of representational equivalence
for certain methods of representation.

3.2 Representation as Definition

Not only do we have different representational tools, but also different methods of using these tools.
Here, I call a method on how we use representational tools to represent a representational protocol. A
prevalent representational protocol is representation by definition.1

The basic idea is to draw inspiration from the late logical empiricist proposal (e.g., Carnap, 1958):
to represent the observables is equivalent to defining symbols which are assumed to refer to the
observables. The idea can be generalized from observable quantities to all kinds of quantities that
we wish to represent. Thus, for a model to represent a quantity is simply for it to define the symbol
that we assume to refer to that quantity. (To simplify, I use the phrase “represent a quantity” for
“represent facts about a quantity”) Thus, claims about the models lead to claims about the quantity
through the definition of interpreted symbols.2 In quantum mechanics, for instance, we assume the
symbol 〈p〉 is interpreted as the expectation value of the momentum of a particle. To represent the

1See Suppes, 1957, chapter 8; Suppes, 2002, Section 3.1.
2The current framework allows only parts of our models to represent reality, thus accommodating various positions

regarding the question of scientific realism (realism, constructive empiricism (van Fraassen, 1980), qualified realism
(Dewar, 2015), etc.) whether the acceptance of a scientific theory requires the acceptance of its full truth.
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dynamics of the expected momentum, therefore, we simply define this symbol 〈p〉 in our structure of
Hilbert space as (in the one-dimensional case):

(∗) 〈p〉 = −ih̄
∫
(ψ∗ ∂

∂xψ)dx

The Schödinger equation which describes the evolution of wave functions in Hilbert space then leads to
hypotheses about the dynamics of expected momentum, which can be further tested by experiments.
In this manner, the Hilbert space of wave functions is used to represent (the evolution of) the expected
momentum, by definition (∗).

In gist, given a set of quantities Q, a set of symbols Λ, and a model M, I propose the following
equivalence as illustrated by Figure 2:

The Triangular Equivalence of Representation and Definition: Assuming that Λ
refers to Q, representation of Q by M can be equivalently transformed as definitions of Λ
by M, and vice versa.

M Q

Λ

represents

refers todefines

Figure 3.1: The Triangle of Representation.

The Triangular Equivalence of Representation and Definition suggests that every representation
(M represents Q) can be standardized as a two-step process (M defines Λ which refers to Q). Essen-
tially, we add a mediator between models and reality, that is, a set Λ of symbols which we assume refer
to the physical quantities Q we wish to represent. Thus, instead of directly discussing how models
say things about reality, we can discuss how models define symbols that we assume to have factual
contents.

If one is not so comfortable with the expression “Λ refers to Q”, e.g., due to its realistic flavor, we
can also talk instead about how Λ approximates or matches phenomena or experiences . In general,
we only need to assume here that Λ is related to what is represented in a manner that symbols in
Λ obtain factual or cognitive contents, so that by defining symbols in Λ, the theory or model will be
able to make statements with factual contents as well. We simply remain neutral on the question of
through what mechanism Λ obtains its factual contents.3

In the following, I simply make it a working hypothesis that we can identify a set of symbols Λ

with factual content (say, the factual signature), as is commonly done in physical practices. According
to representation as definition, to represent a quantity q is just to define the corresponding symbol in
the factual signature.

There are different views about definability, in particular, different views about how many resources
a theory/model can use to define new symbols. This essentially corresponds to different notions

3For potential answers to this question, see, e.g., Hughes (1997), Suárez (2004), Contessa (2007), Frigg (2022).

28



of “definitional extension”, as we mentioned in the previous chapter, specifically about what kind
of structures are free lunches for a theory/model. One’s position could vary from the extremely
deflationist answer that they are only allowed to use symbols currently available (and primitive) in
the signature, to the extremely inflationist answer that they are allowed to use whatever is definable
in first-order set theory. In the middle are various positions such as first-order definitional extension,
different notions of Morita extension with different sets of permissible operations etc. Here we will first
give general schemas about how notions related to representation are defined given a certain notion
of definability, and then give examples of how such schemas are used.

Suppose we have a notion of a definitional extension of a theory. The notion of representation can
be defined schematically as follows.

Definition 3.1. Let T be a theory with signature Σ. We assume that Σ and Λ are disjoint. A
representation of a set of factual symbols Λ by a theory T is a tuple Λ

δ−→ T : 〈T, T+,Λ〉, where:

• T+ is a definitional extension of T with signature Σ+ and Λ ⊆ Σ+\Σ.

• δ is the representational context, which is the set of definitions which specifies the definitions of
new symbols of T+ by T .

The representational content of Λ δ−→ T (in notation (Λ
δ−→ T )|Λ) is defined as T+|Λ which is the set of

semantical consequences of T+ in the language with signature Λ.

When Λ is clear from the context, we may also write T δ for Λ δ−→ T .
Then we have the notion of equivalence regarding representational contents:

Definition 3.2. Two representations Λ δ1−→ T1 and Λ
δ2−→ T2 are equivalent in contents if (Λ δ1−→ T1)|Λ =

(Λ
δ2−→ T2)|Λ.

We can also define the notion of equivalence regarding representational capacities.

Definition 3.3. Two theories T1 and T2 have equivalent representational capacities if for any set of
constants Λ (disjoint with both Σ1 and Σ2), for any representation Λ

δ1−→ T1, there is a representation
Λ

δ2−→ T2 such that (Λ δ1−→ T1)|Λ = (Λ
δ2−→ T2)|Λ, and vice versa.

Similar definitions can also be given using models.

Definition 3.4. Let M be a model with signature Σ. We assume that Σ and Λ are disjoint. A
representation of a set of factual symbols Λ by a model M is a tuple Λ

δ−→ M : 〈M,M+,Λ〉, where:

• M+ is a definitional extension of M with signature Σ+ and Λ ⊆ Σ+\Σ.

• δ is the representational context, which is the set of definitions which specifies the definitions of
new symbols of M+ by M.

The representational content of Λ δ−→ M (in notation (Λ
δ−→ M)|Λ) is defined as M+|Λ which is the

reduct of M+ in the language with signature Λ.

When Λ is clear from the context, we may also write Mδ for Λ δ−→ M.

Definition 3.5. Two representations Λ
δ1−→ M1 and Λ

δ2−→ M2 are equivalent in contents if (Λ δ1−→
M1)|Λ ∼= (Λ

δ2−→ M2)|Λ.
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Definition 3.6. Two models M1 and M2 have equivalent representational capacities if for any set of
constants Λ (disjoint with both Σ1 and Σ2), for any representation Λ

δ1−→ M1, there is a representation
Λ

δ2−→ M2 such that (Λ δ1−→ M1)|Λ = (Λ
δ2−→ M2)|Λ, and vice versa.

Note that in the above case, some symbols of our theories may not be used for representation.
But very often we are interested in a particular case where every symbol in a theory is interpreted as
having factual contents. In this case, we can define the full representational content of a theory as
follows.

Definition 3.7. Let Σ1 and Σ2 be two signatures. We say a function f from Σ1 to Σ2 is a rewriting,
if f sends sort symbols to sort symbols, constants, functional or relational symbols to constants,
functional or relational symbols with corresponding arities. We use f∗ to denote the induced function
from Σ1 formulas to Σ2 formulas.

Definition 3.8. Let T be a Σ-theory, T1 a definitional extension of T with signature Σ1, and T2 a
definitional extension of T with signature Σ2. We say that T1 is included in T2 if there is a rewriting
f from Σ1 to Σ2 such that:

• f is identity on Σ;

• T1 |= ϕ iff T2 |= f∗(ϕ) for any Σ1-formula ϕ.

We say that T1 and T2 are notational variants of each other if f in the above definition is a bijection.

Definition 3.9. We say that a definitional extension T+ of T is maximal, if every definitional extension
of T is included in T+.

Note that such a maximal definitional extension does exist.

Definition 3.10. We say that a definitional extension T+ of T is canonical, if for any potential
definition in T , there is a unique new symbol in T+ that is defined by that definition.

Thesis 3.11. Every canonical definitional extension of a theory is maximal.

Note that this is a thesis, since the term “definitional extension” is still a placeholder at this point.
However, it is intuitive why this thesis should be true: Let T+ be a canonical definitional extension of
T , and let T ′ be an arbitrary definitional extension of T . Now T ′ can be included by T+ by mapping
a new symbol in T ′ to the unique symbol in T+ that are defined by the same potential definition.

Definition 3.12. For a theory T , we say that T0, T1, ... is a sequence of maximal definitional extensions
if T0 = T and Ti+1 is a maximal definitional extension of Ti for each natural number i.

We say that T+ is a full definitional extension if there is a sequence of maximal definitional
extensions T0, T1, ... such that T+ ≡

∪
i Ti.

Intuitively, a full definitional extension of a theory T is simply what we get when we add all
possible definitions into T . To justify that indeed we cannot add new definitions to a full definitional
extension, we propose the following thesis.

Thesis 3.13. Let T+ be a full definitional extension of T . Then any definitional extension of T+ is
included in T+.
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It is intuitive why this thesis should be true: for any potential formula that defines a new symbol
in T+, it must belong to some Ti, and thus, by construction, the symbol defined by that formula will
be included in Ti+1.

Definition 3.14. Let T1 be a Σ1-theory and T2 be a Σ2-theory. We say that T1 and T2 are notational
variants of each other if there is a bijective rewriting f from Σ1 to Σ2 such that T1 |= ϕ iff T2 |= f∗(ϕ)

for any ϕ in the language of T1.

Definition 3.15. Let T1 and T2 be two theories. We say that T1 and T2 are objectively fully equivalent
in contents, if T1 has a full definitional extension T ∗

1 and T2 a full definitional extension T ∗
2 such that

T ∗
1 and T ∗

2 are notational variants of each other.

Full equivalence in contents really means that the two theories reach an objective agreement about
the final picture about the world. However, we may also weaken this criterion to require intersubjective
agreement only.

Definition 3.16. Let T1 and T2 be two theories. We say that T1 and T2 are intersubjectivley fully
equivalent in contents, if there is a full definitional extension T ∗

1 of T1 (with signature Σ∗
1) and a full

definitional extension T ∗
2 of T2 (with signature Σ∗

2), such that

• T ∗
1 represents T ∗

2 in the sense that, there is a representation Σ∗
2

δ1−→ T ∗
1 such that T ∗

2 ⊆ (Σ∗
2

δ1−→
T ∗
1 )|Σ∗

2
; and T ∗

2 represents T ∗
1 in the sense that, there is a representation Σ∗

1
δ2−→ T ∗

2 such that
T ∗
1 ⊆ (Σ∗

1
δ2−→ T ∗

2 )|Σ∗
1
.

• The two representations above are coordinated, which might be understood as one of the following.
Let t† and s† denote the functor fromMod(T ∗

1 ) toMod(T ∗
2 ) andMod(T ∗

2 ) toMod(T ∗
1 ) generated

by the two representations respectively.

1. t† ◦ s† = id and s† ◦ t† = id.

2. t† ◦ s† is provably isomorphic to id and s† ◦ t† is provably isomorphic to id.

3. t† ◦ s† is naturally isomorphic to id and s† ◦ t† is naturally isomorphic to id.

4. t† ◦ s†(M) ∼= M and s† ◦ t†(N ) ∼= N for any M and N in the respective categories.

5. t† ◦ s†(M) ≡ M and s† ◦ t†(N ) ≡ N for any M and N in the respective categories.

Now we illustrate the above schema by considering single-sorted first-order theories and adopting
standard first-order definitional extension as our notion of definability. We show how previous criteria
of theoretical equivalence can be related to different notions of representational equivalence.

We first focus on the case of common-extension criteria. We have the following result.

Lemma 3.17. (With strict definitional extension) Suppose that T2 is a definitional extension of T1
and that T1 is a definitional extension of T0. Then T2 is a definitional extension of T0.

Proof. Suppose that T1 is a definitional extension of T0, then T0 strictly interprets T1 and hence there
is a strict translation f from formulas of T1 to formulas of T0. Suppose that the new symbols in T2 are
defined by T1 with the definition δ. Then for any new symbol s of T2, we can define s using f(δ(s))
by T0. It is easy to check that T2 is a definitional extension of T0 via such definitions.

Lemma 3.18. (With strict definitional extension) T+ is a maximal definitional extension of T iff T+

is a full definitional extension of T .
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Proof. Assume that T+ is a maximal definitional extension of T . Let T0 = T and Ti = T+ for i > 0.
Note that since T+ is a maximal definitional extension of T+ itself, such a sequence T0, T1, ... is a
sequence of maximal definitional extensions. Thus, T+ =

∪
i∈N Ti is a full definitional extension of T .

Conversely, assume that T+ is a full definitional extension of T . Let T+ =
∪

i∈N Ti be a sequence
of maximal definitional extensions of T . By Lemma 3.17, each Ti is a definitional extension of T . Since
Ti ⊆ Ti+1 for each i, the definitions for a symbol are consistent in all Ti. Then T+ is also a definitional
extension of T by defining all symbols in Ti for each i at once. Note that T+ is maximal since for any
formula ϕ of T+ that potentially defines a new symbol s, ϕ must be a formula of some Ti, and thus
such a definition of s can be included in Ti+1.

Theorem 3.19. (With standard definitional extension) Assume that T1 is a Σ1-theory and T2 a
Σ2-theory. T1 and T2 are fully equivalent in contents iff they are standard definitionally equivalent.

Proof. Suppose that T1 and T2 are fully equivalent in contents. Then there is a full definitional
extension T ∗

1 of T1 and a full definitional extension T ∗
2 of T2 such that T ∗

1 and T ∗
2 are notational

variants of each other. Let the notational variance be witnessed by the bijective rewriting f from Σ2

to Σ1. Without loss of generality, assume that T ∗
2 and T ∗

1 have disjoint signatures. Then for each
symbol s ∈ Σ2, we define s as f(s) in T ∗

1 to obtain T3. Similarly, T3 can be obtained by defining s
as f−1(s) for each s ∈ Σ1 by T ∗

2 . Thus, T3 is both a definitional extension of T ∗
1 and T ∗

2 . By Lemma
3.18, T ∗

1 and T ∗
2 are also (maximal) definitional extensions of T1 and T2 respectively. By Lemma 3.17,

T3 is a common definitional extension of T1 and T2. Thus, T1 and T2 are definitionally equivalent.
Conversely, suppose that T1 and T2 are definitionally equivalent. Then there is a definitional

extension T3 of T1 and T2. Let T+
1 be a full definitional extension of T1 and T+

2 be a full definitional
extension of T2. Then T := T+

1 ∪ T+
2 ∪ T3 will be a common definitional extension of both T1 and T2.

Since any definitional extension of T1 is included in T+
1 , it is also included in T . Thus, T is a maximal

definitional extension of T1. Thus, by Lemma 3.17, T is a full definitional extension of T1. Similarly,
T is a full definitional extension of T2. Thus, T1 and T2 are fully equivalent in contents.

Now we turn to the case of coordinated-interpretation criteria. We have the following result.

Theorem 3.20. Assume that T1 is a Σ-theory and T2 a Σ′-theory. T1 and T2 are equivalent in
representational capacities iff they are mutually interpretable (with relative interpretation).

Proof. First, assume that T1 and T2 have equivalent representational capacities, we prove that they
are mutually interpretable. By symmetry, it suffices to prove that T1 is interpretable in T2.

Let Σ∗ be a disjoint copy of Σ witnessed by g. Assume that Σ∗ is also disjoint from Σ′, and let
δ be a representational context which defines x ∈ Σ∗

C as g(x). Then Σ∗
C

δ−→ T1 is a representation of
Σ∗
C by T1. By assumption, there is a representation Σ∗

C
δ′−→ T2 of Σ∗

C by T2 such that Σ∗
C

δ−→ T1 and
Σ∗
C

δ′−→ T2 are equivalent representations, i.e. (Σ∗
C

δ−→ T1)|Σ∗
C
∼= (Σ∗

C
δ′−→ T2)|Σ∗

C
.

Note that (Σ∗
C

δ−→ T1)|Σ∗
C
is a disjoint copy of T1. Therefore, T1 is interpretable in T2.

Then assume that T1 and T2 are mutually interpretable. We prove that T1 and T2 have equivalent
representational capacities. By symmetry, it suffices to prove that for any representation Λ

δ−→ T1,
there is an equivalent representation Λ

δ′−→ T2.
By assumption, there is a LΣ∗ disjoint copy T ∗

1 of T1 and a representation Σ∗
C

γ−→ T2 such that
(Σ∗

C
γ−→ T2)|Σ∗

C
∼= T ∗

1 . (Note that this ensures that Σ∗ and Σ′ only differ in constants.) Let g be the
function which witnesses that Σ∗ is a disjoint copy of Σ.
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Now, let Λ δ−→ T1 be an arbitrary representation. Let δ′ = δ[x 7→ g(x)] be a representational context
which substitutes every constant of Σ that appeared in definitions with its copies. Then Λ

δ′−→ T ∗
1 is

an equivalent representation with Λ
δ−→ T1, i.e., (Λ

δ−→ T1)|Λ ∼= (Λ
δ′−→ T ∗

1 )|Λ.
Now δ′ defines constants of Λ in LΣ∗ . And γ defines constants in Σ∗ in LΣ′ . Since Σ∗ and Σ′

only differ in constants, we can combine δ′ and γ to have a representational context γ ◦ δ′ that defines
symbols in Λ by LΣ′ .

Then we have (Λ
γ◦δ′−−→ T2)|Λ ∼= (Λ

δ′−→ ((Σ∗
C

γ−→ T2)))|Λ ∼= (Λ
δ′−→ T ∗

1 )|Λ ∼= (Λ
δ−→ T1)|Λ. Therefore,

Λ
γ◦δ′−−→ T2 is an equivalent representation with Λ

δ−→ T1.

Further, the hierarchy of coordinated interpretation criteria corresponds to the hierarchy of inter-
subjectively full equivalence as defined in Definition 3.16. We prove the case of strict bi-interpretability
for illustration.

Lemma 3.21. If T1 and T2 are strictly bi-interpretable by interpretation s and t, then there is a
Σ1-formula χ(x, y) such that T1 proves that χ(x, y) is a bijection and that for each Σ1-formula ϕ, we
have that

T2 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

χ(xi, yi) → (ϕ(x0, . . . , xn) ↔ s(t(ϕ))(y0, . . . , yn))
)

Proof. Easily proved by induction as s and t preserve conjunction, negation and quantification.

Theorem 3.22. T1 and T2 are strictly bi-interpretable iff they are intersubjectively fully equivalent in
contents (where we choose item 2 in Definition 3.16 as the requirement of coordination).

Proof. Assume that T1 and T2 are intersubjectively fully equivalent in contents. Let T ∗
1 , T ∗

2 be the full
definitional extensions of T1 and T2 respectively, and let Σ∗

2
δ1−→ T ∗

1 and Σ∗
1

δ2−→ T ∗
2 be the representations

that witness their intersubjective equivalence. Let t and s be the corresponding translations of T ∗
1 in

T ∗
2 and T ∗

2 in T ∗
1 .

By Lemma 3.18, T ∗
1 will also be a definitional extension of T1 and consequently Σ∗

2
δ1−→ T ∗

1 is also
a definitional extension of T1. Since T ∗

2 ⊆ (Σ∗
2

δ1−→ T ∗
1 )|Σ∗

2
, and T ∗

2 |Σ2 ≡ T2, we have T2 ⊆ (Σ∗
2

δ1−→
T ∗
1 )|Σ2 . Thus, 〈T1,Σ∗

2
δ1−→ T ∗

1 , T2〉 is an interpretation of T2 in T1. Similarly, 〈T2,Σ∗
1

δ2−→ T ∗
2 , T1〉 is an

interpretation of T1 in T2.
Let k be the canonical translation from T ∗

1 to T1 as in Lemma B.4 in the appendix. Then the
translation corresponds to the interpretation 〈T1,Σ∗

2
δ1−→ T ∗

1 , T2〉 is k◦s. Similarly, let l be the canonical
translation from T ∗

2 to T2. Then the translation corresponds to the interpretation 〈T2,Σ∗
1

δ2−→ T ∗
2 , T1〉

is l ◦ t.
By assumption, there is a Σ∗

1-formula χ(x, y) such that T ∗
1 proves that χ(x, y) is a bijection and

that for each R ∈ Σ∗
1

T ∗
1 ` ∀x0, . . . , xn ∀y0, . . . , yn

(∧
i<n

χ(xi, yi) → (R(x0, . . . , xn) ↔ s(t(R))(y0, . . . , yn))
)

by Lemma B.5, T ∗
2 ` ∀x(l(t(R)) ↔ t(R)). Thus, T ∗

1 ` ∀x(s(l(t(R))) ↔ s(t(R))).
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Therefore,

T ∗
1 ` ∀x0, . . . , xn ∀y0, . . . , yn

(∧
i<n

χ(xi, yi) → (R(x0, . . . , xn) ↔ s(l(t(R)))(y0, . . . , yn))
)

Then by Lemma B.5 and Lemma B.6, we have that

T1 ` k(∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

χ(xi, yi) → (R(x0, . . . , xn) ↔ s(l(t(R)))(y0, . . . , yn))
)
)

.
and therefore for any R ∈ Σ1, we have that

T1 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

k(χ(xi, yi)) → (R(x0, . . . , xn) ↔ k(s(l(t(R))))(y0, . . . , yn))
)

.
Also by Lemma B.5 and Lemma B.6, we have T1 proves that k(χ) is a bijection.
Similarly, there is a Σ∗

2-formula θ such that T2 proves that l(θ) is a bijection and for any R ∈ Σ2,

T2 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

l(θ(xi, yi)) → (R(x0, . . . , xn) ↔ l(t(k(s(R))))(y0, . . . , yn))
)

.
Thus, we have that T1 and T2 are strictly bi-interpretable.
Now supppose that T1 and T2 are strictly bi-interpretable. Let t = 〈T1, T+

1 , T2〉 and s = 〈T2, T+
2 , T1〉

be the interpretations that witness the bi-interpretability. Let T ∗
1 be the canonical definitional exten-

sion of T1 and T ∗
2 be the canonical definitional extension of T2. By Thesis 3.11 and Lemma 3.18,

T ∗
1 and T ∗

2 are full definitional extensions of T1 and T2 respectively. Let k and l be the canonical
translations from T ∗

1 to T1 and from T ∗
2 to T2 respectively. Then s ◦ k and t ◦ l are strict translations

from T ∗
1 to T ∗

2 and from T ∗
2 to T ∗

1 respectively.
By Lemma 3.21, there is a Σ1-formula χ(x, y) such that T1 proves that χ(x, y) is a bijection and

that for each Σ1-formula ϕ:

T1 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

χ(xi, yi) → (ϕ(x0, . . . , xn) ↔ s(t(ϕ))(y0, . . . , yn))
)

.
For any R ∈ Σ∗

1, we have that T ∗
1 ` ∀x(R↔ k(R)).

Therefore, for each R ∈ Σ∗
1, we have that:

T1 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

χ(xi, yi) → (R(x0, . . . , xn) ↔ s(t(k(R)))(y0, . . . , yn))
)

.
Since l remains constant on symbols in Σ2, we have that,

T1 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

χ(xi, yi) → (R(x0, . . . , xn) ↔ s(l(t(k(R))))(y0, . . . , yn))
)

.
And since T1 proves that χ is a bijection, T ∗

1 also proves that χ is a bijection.
Similarly, we can prove that there is a Σ∗

2-formula θ(x, y) such that T ∗
2 proves that θ is a bijection

34



and for any R ∈ Σ∗
2, we have that:

T2 ` ∀x0, . . . , xn ∀y0, . . . , yn
(∧
i<n

θ(xi, yi) → (R(x0, . . . , xn) ↔ t(k(s(l(R))))(y0, . . . , yn))
)

.
Therefore, we have that T1 and T2 are intersubjectively fully equivalent in contents.

However, if we adopt the standard Morita extension as our notion of definitional extension, then
the notion of structural equivalence (in this case, Morita equivalence) and full equivalence in contents
are not equivalent. In particular, full equivalence in contents does not imply Morita equivalence.

Lemma 3.23. (With standard Morita extension) Every canonical Morita extension is maximal.

Proof. Easily checked by definition.

Theorem 3.24. (With standard Morita extension) There are theories T1 and T2 which are fully
equivalent in contents but not Morita equivalent.

Proof. Let T be an empty theory with a single sort σ0 consisting of only two objects. Let T ′ be the
theory with countably infinite sorts σ0, σ1, ..., which says that σi+1 is the product sort of σi and σi

with corresponding projection functions, and σ0 has precisely two objects. We can prove by induction
on the length of Morita descendence that T ′ cannot be included in any Morita descendence of T . In
particular, we can prove by induction that for any sequence of Morita descendence T, T1..., Tn of T ,
sorts in Tn have at most 22n objects. But T ′ has sorts with an arbitrarily finitely large number of
objects. Thus, T and T ′ are not Morita equivalent.

However, T and T ′ are fully equivalent in content. Let T0, ... be a canonical sequence of Morita
extensions of T , and let T+ be the resulting full definitional extension of T . Let T ′

0, ... be a canonical
sequence of Morita extensions of T ′, and let (T ′)+ be the resulting full definitional extension of T ′.
We construct a rewriting f from (Σ′)+ to Σ+ as follows:

• for symbols in Σ0 (i.e., Σ), f is identity;

• for symbol σi+1 in Σ′
0 − Σ0, f(σi+1) is the symbol in Ti+1 defined as the product sort of f(σi)

and f(σi). The projection functions are mapped accordingly.

• for symbol σ in some Σ′
i+1 −Σ′

i defined by some potential definition 〈a, ϕ〉. Then there must be
some Tn such that 〈a, ϕ〉 is also a potential definition in Tn. Let f(σ) be the symbol in Tn+1

defined by 〈f(a), f(ϕ)〉. The projection functions are mapped accordingly.

It is easy to check that f is a bijection and witnesses that T+ and (T ′)+ are notational variants of
each other.

This gives us a case where the intuitive notion of structural equivalence may not capture the
equivalence of full representational contents. Indeed, if we take Morita extensions as free lunches and
add nothing over and above the original theory, then we should believe that T and T ′ in the above
proof say the same thing about the world even though they are not Morita equivalent.

We prove that if we modify the original definition of Morita extension to allow for arbitrarily
finite products and coproducts (generalized Morita extension), then definitional equivalence indeed
corresponds to full equivalence in contents.
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Lemma 3.25. (With generalized Morita extension) If T+ is a full definitional extension of T , then
T+ and T are Morita equivalent.

Proof. If T+ is a full definitional extension of T , then T+ is implicitly definable over T . By Beth’s
definability theorem for many-sorted logic (Appendix C), T+ and T are Morita equivalent.

Theorem 3.26. (With generalized Morita extension) T1 and T2 are Morita equivalent iff they are
fully equivalent in contents.

Proof. Assume that T1 and T2 are fully equivalent in contents. Then there is a full definitional
extension T ∗

1 of T1 and a full definitional extension T ∗
2 of T2 such that T ∗

1 and T ∗
2 are notational

variants of each other. By Lemma 3.25, there is a Morita descendant T †
1 of both T1 and T ∗

1 and a
Morita descendant T †

2 of both T2 and T ∗
2 . As T ∗

1 and T ∗
2 are notational variants of each other, we can

construct a Morita descendant T ′ of T †
1 by defining T ∗

2 using T ∗
1 and mimicking the definitions of T †

2

in T ∗
2 . T ′ will also be a Morita descendant of T †

2 as it can also define T ∗
1 using T ∗

2 and mimicking the
definitions of T †

1 in T ∗
1 . Thus, T ′ would be a common Morita descendant of T1 and T2.

Conversely, assume that T and S are Morita equivalent. Let T, T1, ..., Tn and S, S1, ..., Sm be two
sequences of Morita extensions of T and S such that Tn ≡ Sm.

Let T+ =
∪

i∈N{T i} be a full definitional extensions of T (T 0 := T ). And let S+ =
∪

i∈N{Si}
be a full definitional extensions of S (S0 := S). We may assume that Σ(Tn) ∩ Σ(T+) = Σ(T ) and
Σ(Sm) ∩ Σ(S+) = Σ(S), and that Σ(Tn) ∩ Σ(Sn) = ∅, Σ(T+) ∩ Σ(S+) = ∅, Σ(Tn) ∩ Σ(S+) = ∅,
Σ(Sm) ∩ Σ(T+) = ∅.

Let Fi = Ti ∪ T i, for 1 ≤ i ≤ n. Then Fi+1 is a maximal definitional extension of Fi. Let
Fn+j := Tn+j ∪ Sj . Since Fn is a Morita descendant of T which contains S, Fn+1 is a maximal
definitional extension of Fn, and similarly Fn+j+1 is a maximal definitional extension of Fn+j . Thus,
F :=

∪
i∈N{Fi} is a complete definitional extension of T . Similarly, let Gi = Si∪Si, for 1 ≤ i ≤ m. Let

Gm+j := Sm+j ∪ Tj . Thus, G :=
∪

i∈N{Gi} is a full definitional extension of S. And by construction,
F ≡ G. Thus, T and S are fully equivalent in contents.

3.2.1 Application: The Hole Argument

In the general discussion of the hole argument, the principle of Leibniz Equivalence was raised to
block the argument which says:

“Leibniz Equivalence: Isometric models represent the same physical situation”

The formal framework of representation can be used to support this principle. We have the
following theorem:

Theorem 3.27. (With standard definitional extension) For any two isomorphic LΣ-models M1 and
M2, the representation Λ

δ−→ M1 is equivalent to Λ
δ−→ M2 for any δ.

Proof. We need to prove that (Λ
δ−→ M1)|Λ ∼= (Λ

δ−→ M2)|Λ. It is enough to show that Λ
δ−→ M1

∼=
Λ

δ−→ M2, or in short, Mδ
1
∼= Mδ

2.
By definition, Th(Mδ

1) is explicitly definable over Th(M1). By Beth’s definability theorem,
Th(Mδ

1) is also implicitly definable over Th(M1). Thus, for any model M of Th(Mδ
1) such that

M|Σ1 = M1, we have M ∼= Mδ
1. By substituting M1 for M2 in Mδ

2, we have a new model M′. Since
M1

∼= M2, M′ ∼= Mδ
2. M′ is a model of Th(Mδ

2) and hence a model of Th(Mδ
1). By construction,

M′|Σ1 = M1. Thus, by implicit definability, M′ ∼= Mδ
1. Therefore, Mδ

1
∼= Mδ

2.
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Note that while we only state the theorem in the context of standard definitional extension, the
proof shows that it actually holds for any concept of definability that implies implicit definability.

So if, as Weatherall (2018) argues, in the case of general relativity the relevant criterion of iso-
morphism physicists have in mind is isometry, then by the above theorem, whenever a Lorentzian
manifold is used to represent the spacetime in a representational context δ, the isometric manifold in
the same representational context will be an equivalent representation. We will give a full discussion
of the hole argument in Chapter 6 and Chapter 7.

3.2.2 Application: Representational Capacities

Weatherall and Bradley (2020) relate the structural content of a model with its representational
capacities. They hold that “the representational capacities of mathematical objects are precisely those
preserved by isomorphism” (p. 1230). The following thesis is reformulated as follows:

Two modelsM1 andM2 have equivalent representational capacities iff they are isomorphic.

The direction from the right to left can be proved:

Theorem 3.28. If two models M1 and M2 are isomorphic, then they have equivalent representational
capacities.

Proof. If M1 and M2 are isomorphic, then they are both LΣ-models for some signature Σ. The con-
clusion easily follows from Definition 3.6, since for any δ, Mδ

1
∼= Mδ

2, so there exists a representational
context δ′ (i.e. δ′ = δ) such that Mδ

1
∼= Mδ′

2 .

The direction from left to right, however, is not true. First of all, note that there is no guaranteed
that two models with equivalent representational capacities share the same signature. For example,
the standard model of natural numbers 〈N,S, 0〉 and its notational variant 〈N,S′, 0′〉 will clearly have
the same representaional capacities, but do not share the same signature and hence not isomorphic.

So a more charitable interpretation is to claim that any two LS models with equivalent represen-
tational capacities are isomorphic. This, however, is false as well.

Theorem 3.29. There are LΣ models M1 and M2 that are not isomorphic but have equivalent
representational capacities.

Proof. Consider the models of integers M1 = 〈Z,+M1 , cM1〉 and M2 = 〈Z,+M2 , cM2〉, where +M1 =

+M2 is the standard addition on integers, and cM1 = 0 and cM2 = 1. Then M1 and M2 are not
isomorphic, since they are not elementarily equivalent, M1 |= c+ c = c while M2 6|= c+ c = c.

However, they are equivalent in representational capacities. Assume that Λ δ−→ M1 is an arbitrary
representation, we can define an alternative representational context δ′ = δ[c 7→ c − 1] (i.e., we
substitute every occurence of c appeared in the definitions in δ with c− 1), then it is easy to see that
Mδ

2|Λ ∼= Mδ′
1 |Λ, so Mδ

1 and Mδ′
2 are equivalent.

Now one may argue that “isomorphism” is too strict to serve as the criterion for structural equiv-
alence, and one may ask whether some weakened criterion of structural equivalence will coincide
with the equivalence of representational capacities. However, there are actually theories with equiva-
lent representational capacities but are not even categorically equivalent (not to mention definitional
equivalent, or Morita equivalent). And thus the equivalence of representational capacities seems to
be drastically different from criterion of structural equivalence.
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Theorem 3.30. There are theories T1 and T2 which have equivalent representational capacities but
are not categorically equivalent (and hence not definitionally equivalent, nor Morita equivalent).

Proof. Proposition 2.48 gives us an example where two theories are iso-congruent but not categorically
equivalent. Since iso-congruence implies mutual interpretability which is equivalent to the equivalence
of representational capacities by Theorem 3.20, we have two theories with equivalent representational
capacities that are not categorically equivalent.

3.3 Conclusion

We have seen three types of criteria of theoretical equivalence in chapter 2, the common-extension
criteria, the coordinated-interpretation criteria and the categorical criteria. In this chapter, we examine
such formal criteria from the perspective of representation based on the idea of representation as
definition. We showed that the common-extension criteria can be seen as capturing the notion of
“fully equivalent in representational contents”. In other words, if we include whatever definable in a
theory also as part of its representational contents, then two theories are equivalent in contents if and
only if they have a common definitional extension.

The coordinated-interpretation criteria, on the other hand, do not directly correspond to represen-
tational equivalence in contents. But they can be related to representation in other ways. Firstly, as
shown by Theorem 3.20, mutual interpretability can be seen as capturing the notion of “equivalent
in representational capacities”. Secondly, as seen in Theorem 3.22, the hierarchy of the coordinated-
interpretation criteria can be seen as capturing the hierarchy of intersubjective full equivalence (in
contents). Both are significant notions about representation that are worth studying.

However, there does not seem to be a direct connection between the categorical criteria and
representation. In particular, it is not clear how the category of models of a theory plays a role
in representation. In practice, physicists never use the categorical object-arrow structure to represent
a physical domain, and the internal structures of models, which are taken to be the objects of the
category, almost always matter. Thus, until such a connection can be established, the categorical
criteria remain only a group of purely formal equivalence relationships, which do not have a valid
influence on our judgment about whether two theories say the same thing about the world.
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Chapter 4

Pluralism about Theoretical Equivalence

This chapter serves as a primitive attempt to extract further philosophical implications from pre-
vious analysis, particularly on its consequences for the discussion of theoretical equivalence. Due to
space constraints, the discussion will be relatively sketchy, and details will be left for future work.

Let us call a theory in which every symbol is assumed to be included in the factual signature a full
theory. In this section, I will focus on the question of theoretical equivalence between full theories, as is
usually assumed in the literature.1 And I adopt the standard gloss that two theories are theoretically
equivalent just in case they say the same thing about the world. Thus, theoretical equivalence for full
theories is understood as full equivalence in representational contents, which I shall simply refer to as
representational equivalence in this section.

Interpreted in this way, the standard narrative in the literature suggests that we should find a
way to determine a uniquely correct candidate for representational equivalence, by reasoning about
the general principles as well as by looking at our intuitions about representational equivalence in
specific cases, e.g., different formulations of classical electromagnetism, Hamiltonian v.s. Lagrangian
mechanics, etc. I shall call this view monism about representational equivalence.

I shall argue that the formal analysis given in previous chapters presents a challenge to this monist
view. In particular, as we have seen in Chapter 3, for any two full theories T1 and T2, the question
whether they are representationally equivalent reduces to the question whether they have a common
definitional extension. Thus, monism about representational equivalence reduces to monism about
definability: there is a uniquely correct criterion of definability, which characterizes what kinds of
structures are free lunches for a theory, and this criterion is the same for all theories. But this
seems unlikely. In particular, we have seen a continuum of different notions of definitional extension,
including not only the standard definitional extension and the standard Morita extension, but also all
variants in between, e.g., Moritas, Moritac, Moritap, Moritaq extensions, and arbitrary combinations
of them. And, as one can imagine, there are even more notions of definitional extension that are
stronger than the standard Morita extension, e.g., definitional extensions that allow doing products or
coproducts of some transfinite size λ, or doing powerset over old domains. Indeed, by taking more and
more set-theoretically definable operations as “free lunches”, one gains stronger and stronger notions of
definitional extension, and finally we would reach a stage where everything set-theoretically definable
is taken to be definable. Choosing a particular notion of definability in the middle of this continuum
as the uniquely correct notion of definability would simply be arbitrary.

One might object that, e.g., the standard Morita extension is not an arbitrary choice. In particular,
it corresponds to implicit definability in many-sorted first-order logic. (See Appendix C.) Therefore,
there is a good reason to allow precisely subsorts, product sorts, coproduct sorts and quotient sorts

1Most literature about theoretical equivalence does not make the distinction between full and non-full theories.
(Though see Dewar (2015) for a discussion.) But the assumption that we focus on full theories should be clear once the
distinction is made. Particularly, when people talk about theoretical equivalence between two theories T1 and T2, we
would usually require that T1 should be able to “express” every detail of T2 and vice versa. This would be overkill if
either T1 or T2 is not a full theory.
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in definitional extensions. However, the notion of implicit definability is relative to the semantics of a
logic, and there is a continuum of logics as well. For instance, powerset is not implicitly definable in
many-sorted first-order logic, but is implicitly definable in many-sorted higher-order logic. Similarly,
infinite products or coproducts are not implicitly definable in many-sorted first-order logic, but they
are implicitly definable in infinite many-sorted first-order logic. The more powerful the logic is, the
more implicitly definable structures we will have. And if one is willing to go so far as to allow the entire
set theory as one’s “logic”, then one will have all set-theoretically definable structures as implicitly
definable. Again, choosing in the middle of this continuum of implicit definability as the uniquely
correct notion of definability would simply be arbitrary. It is particularly the case given the notions of
definability resulting from canonical choices of logic do not seem to work well. In particular, first-order
logic is known to be too weak to deal with physical theories in practice.

Now one may try to pick the extremes of the continuum to avoid the accusation of arbitrariness.
But I shall argue that this strategy fails as well. Presumably, the weakest notion of definability
says that we can only define new symbols when they are taken as a copy of an old symbol. This will
correspond to the meta-metaphysical view that symbols of theories are supposed to, not only represent,
but also represent in a way that carve the nature at its joints (Lewis, 1983; Sider, 2011, 2020). Take
Goodman’s new riddle of induction (1955, 59-83) as an example. Let T1 be a theory about the colours
of emeralds using standard terms for colours such as “green” and “blue”. Let T2 be a theory which
uses the terms “grue” and “bleen” instead, where “grue” means “green before 2025 and blue after
2025” and “bleen” means “blue before 2025 and green after 2025”. Despite the fact that T1 and T2

are, say, standard definitionally equivalent, etc., one may think that they are not representationally
equivalent, as the terms in T2 are not “natural”, “fundamental”, or do not carve the nature at its joint.
Thus, the primitive symbols we use in a theory matter significantly.

If we opt for this weakest notion of definability, two theories are representationally equivalent iff
they are notational variants of each other. But this faces a problem. Consider

• T1 := {∀x∀y(Rxy ↔ (x = a1 ∧ y = a2))};

• T2 := {∀x∀y(Sxy ↔ (x = a2 ∧ y = a1))}.

Essentially, both theories say that there are two things a1 and a2, and an asymmetric relation holding
(only) between the two. However, they differ as to whether this relation places a1 or a1 in the first
place. Choosing one of the two as the fundamental metaphysical picture of the world seems to make
a metaphysical judgement on a purely arbitrary ground.

A further suggestion by Dewar (2019a) is to say that both R and S above are fundamental.2

However, in this view, we will have that necessarily ∀x∀y(Rxy ↔ Syx). This necessary fact is an
unpleasant result since it is a brute necessity: R and S are independent components of the world,
but they are now dictated as the reverse of each other. Many metaphysicians believe that such
brute necessity is to be objected since this seems to be an arbirary metaphysical law without any
justification.3

Now we turn to the other direction of the continuum. At first glance, it is not clear whether there
is even an end in that direction. Perhaps one can have more and more powerful notions of definitional

2That is, the strategy of “sophistication” as oppose to the strategy of “simplification”.
3For similar arguments based on objections to brute necessities, see, for instance, Cameron (2008), Dorr (2008),

Kleinschmidt (2015).
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extension by devising more and more powerful set theory. But there is no need to go so far as we
already have a problem when we reach, say, the implicit definability for higher-order logic. The
problem is that natural numbers, real numbers, and mathematical structures defined over them are all
implicitly definable in higher-order logic, and thus will be counted as representationally equivalent. For
instance, the two dimensional Euclidean space E2 and the three dimensional Euclidean space E3 will
be counted as representationally equivalent, as they can be put into a common definitional extension
where we have both E2 and E3.4 This is possible since both E2 and E3 are definable in higher-order
logic, and thus, trivially, E2 can define E3 in its definitional extension and vice versa. If we go further
to set theory, then any two set-theoretically definable structures will be counted as representationally
equivalent. It is arguably a criterion of representational equivalence that is too crude.

We have presented the problems for the monist view of representational equivalence: there is a
continuum of different notions of definability, and there is no good reason to prefer any one of them.
The current analysis seems to suggest another possible way out: it may be the case that there is
simply no one uniquely correct criterion for representational equivalence, but rather multiple criteria
of representational equivalence that are equally correct.

Note that this form of pluralism is distinct from many previous pluralist proposals raised in the
literature of philosophy of science. Some have been pluralists about scientific methodologies or ap-
proaches, which, they argue, inevitably depend on one’s goals, values, or perspectives;5 Some have
been pluralists about scientific theories or models, since they believe, for instance, that the world
is too complicated to be fully represented by a single model or theory.6 Here, however, we are not
concerned with scientific methodologies or more generally the question how science as a type of social
practice should be conducted; nor do we make any assumption that theories can only represent a part
of the world. That is to say, the plurality of representational equivalence here does not come from the
plurality of subjective values, goals, and perspectives, nor from the partisanhood of scientific represen-
tation. Rather, it is resulted from the plurality of views about definability, or in other words, what
kinds of structures are free lunches and add nothing over and above the world. Thus, the plurality
of representational equivalence is best explained by the plurality of conceptions about the world or
reality. Here is one way the story might go: There are different conceptions of reality, all of which
are equally correct;7 according to some, certain structures, say, the product or coproduct of two old
domains, are “free lunches” and really add nothing over and above the content of the original theory,
since reality does not distinguish whether domains are accompanied by their products or coproducts;
but according to other conceptions of reality, products or coproducts are not free lunches, and it
is a factual question to ask whether there is, say, in extra to domain d1 and d2, a product domain
d1 × d2. Thus, some conceptions of reality will result in more fine-grained criteria of representational
equivalence, allowing us to store more information and details, while other conceptions result in more
coarse-grained criteria, allowing us to adopt a more abstract perspective. Still, they are equally correct.
We may call this view reality-pluralism.

To illustrate, let T1 be the formulation of Newtonian spacetime where we have a three-dimensional
space and a one-dimentional time, and let T2 be the formulation of Newtonian spacetime where we

4Indeed, by the same reasoning, E2 will be representationally equivalent to the empty domain.
5See Feyerabend (1975), Longino (1987, 1990).
6See Kellert, Longino and Waters (2006), Winther (2020).
7Of course, one does not need to commit to that every potential interpretation of reality is correct. Some minimal

restrictions, such as consistency or empirical adequacy, may be imposed.
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have a four-dimensional spacetime. Clearly, there is a sense in which they are equivalent, i.e., that
the four-dimensional spacetime can simply be constructed as the product of the three-dimensional
space and the one-dimensional time. This sense of equivalence may be captured by the coarse-grained
conception of reality corresponding to the standard Morita equivalence, where products are taken as
free lunches. But there is also a sense in which they are not equivalent. For instance, one may think
that T1 regards space and time as two distinct entities while T2 unifies them into one, and thus T1
and T2 are not equivalent if one adopts a more fine-grained view of reality. Now, reality-pluralism
holds that there is really no uniquely correct sense of equivalence, or uniquely correct conception of
reality. Both views presented above are equally correct, each capturing a perspective of the same and
the difference between T1 and T2.

This form of realism is particularly backed up by the heterogeneous nature of scientific ontologies
and practices of taxonomies of natural kinds. In particular, many people have argued that biological
practices suggest that there is really no one objective biological taxonomy, but multiple taxonomies
that are equally good,and the choice of which depends on one’s research interests and perspectives.
“The reality of biological research practices does not seem to support the idea of convergence towards
one absolute scientific conception of the biological world.” (Ludwig and Ruphy, 2024) Similar examples
are abundant in other specific sciences as well, such as astrophysics (Ruphy, 2010), chemistry (Chang,
2012), genetics (Griffiths and Stotz, 2013), etc. The general pluralism about the world thus coheres
well with the scientific practices of specific sciences.8

Note that reality-pluralism naturally leads to a pluralist answer to the question “What are theo-
ries?” as well. Recall that the syntactic notion of scientific theories holds that theories are syntactic
objects such as sentences, and supporters of semantic notions of theories hold that theories are seman-
tic models. An important argument against the semantic notion is that the semantic notion of theories
fails to provide a sensible criterion of theoretical equivalence. (Halvorson, 2012) And an important
argument against the syntactic notion is that scientific theories cannot always be axiomatized. (Suppe,
1977) Now reality-pluralism suggests that there is no uniquely correct conception of reality, and no
uniquely correct criterion of theoretical equivalence. Thus, the semantic notion is saved because there
is no longer a burden to offer an overarching criterion of theoretical equivalence, and it suffices to hold
that the semantic criterion of theoretical equivalence captures a conception of reality among the many,
say, a visualizable one. Similarly, the syntactic notion is saved because there is no longer a burden
to axiomatize every theory, and it suffices to say that axiomatization is necessary for a conception of
reality— say, the conception where the most fundamental part of the world consists of natural laws
to be written down as axioms — and not every scientific theory is meant to capture this conception of
reality.9 Thus, both the syntactic and semantic notions of theories are equally correct, each capturing
a legitimate conception of reality.

There is no space to present a thorough defense of reality-pluralism here, but it suffices to conclude
that it is a potentially appealing view that avoids the problem of monism indicated above, and coheres
well with scientific practices.

8Note that reality-pluralism is more general than the pluralism about these specific domains: one may acknowledge
the pluralities of specific domains but insist that all these different conceptions of the biological or chemical world are
reducible to a fundamental domain, say, the domain of fundamental physics, about which one holds a monist view. This
view is compatible with pluralism about specific domains, but not with reality-pluralism. In particular, it is still subject
to the problem of monism about representational equivalence presented above.

9For instance, as Beatty (1981) argues biological theories may not admit this conception of reality, as biological laws
are less central in biology than physical laws are in physics, and such laws are neither universal nor necessary.
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Chapter 5

Restricted Set-Theoretical Languages

5.1 Introduction

In Chapter 3, we have developed a framework for representation based on the idea of representa-
tion as definition. However, physicists often use bare set-theoretical structures in practice, without
assigning explicit object languages to them. However, definitions are only possible within a specific
language. Thus, to make sure that the framework is applicable, we develop the formalism called re-
stricted set-theoretical languages below, which allows us to schematically assign a canonical language
to any set-theoretical structure.

5.2 Restricted Set-Theoretic Theories/Models

Different representational tools are limited in different ways. For instance, first-order logic is
usually thought to be not expressive enough to formulate many physical theories, while set theory is
usually thought to be too expressive and hence contains many details that are physically irrelevant. In
practice, physicists often simply use set-theoretical structures to represent certain physical domains.
But unlike first-order theories, there may not be an explicit axiomatization of such set-theoretical
structures, and unlike full first-order set theory, certain details of set-theoretic structures are ignored,
sometimes by manually specifying a set of symmetries. Here, I suggest that the way of representation
adopted by physicists in practice is best reformulated using restricted set-theoretic languages. The
basic idea is that physicists simply take set-theoretic structures as their representational tools, but
are free to specify signatures to pick out only certain parts of these structures for representation, and
exclude set-theoretic details that are irrelevant to physical representation.

The signature Σ of such restricted set-theoretic languages includes eight essential elements ΣB, ΣD,
ΣC , ΣR, ΣQ, DefΣ. Intuitively, ΣB is the set of basic domains; ΣD is the set of derivative domains
that are constructed from basic domains; ΣC is the set of constant symbols; ΣR is a set of relational
symbols that specifies the part of set-theoretical structures to which we want to restrict; ΣQ gives
domains that we want to quantify over; and DefΣ is a function which gives the symbols mentioned
above their identification information.

Definition 5.1. A signature Σ is a tuple 〈ΣB,ΣD,ΣC ,ΣR,ΣQ,DefΣ〉 where:

• ΣB is the set of basic domain symbols b1, b2, ...

• ΣD is the set of derivative domain symbols d1, d2, ...

We call an element θ ∈ ΣB∪ΣD a domain symbol of Σ, and let ΣA = ΣB∪ΣD be the set of all domain
symbols.

• ΣC is a set of constant symbols: c1, c2, ...
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• ΣR is a set of relational symbols: R1, R2, ...

• ΣQ is a set of domain symbols;

• DefΣ is a function which

– assigns to each derivative domain symbol dj a first-order set-theoretic formula ϕ(v, bi1 , ...., bin)
with basic domain symbols as parameters , which specifies how the derivative domain dj is
defined from basic domains;1

– assigns to each constant symbol ci a domain symbol specifying the domain it belongs to;

– assigns to each relational symbol Ri a first order set-theoretical formula ϕ(vθ1 , ..., vθj ) with
variables indexed with domain symbols.

When the context is clear, we write Def for DefΣ.

The language LΣ with respect to Σ is defined naturally as follows:

Definition 5.2. LΣ:

• The symbols include: ¬,∧,=,∈, ∀, and for all domain symbols θ ∈ ΣQ, countably infinite vari-
ables vθ0, vθ1, ....

• The formulas can be defined recursively as:

– Atomic formulas:Rix1, ..., xn, where x1, ..., xn are either variables or constants with the same
corresponding domains as free variables in Def(Ri).

– If ϕ is a formula, then ¬ϕ is a formula.

– If ϕ and ψ are formulas, then ϕ ∧ ψ is a formula.

– If ϕ is a formula and vθi is a variable, then ∀vθi ϕ is a formula.

The semantics of LΣ is given in a routine manner.

Definition 5.3. A model M of a language LΣ is a quadruple 〈B,D, C, ·M〉, where ·M is a function
defined as the union of:

• a bijection from ΣB to B, which assigns each basic domain symbol bi ∈ ΣB, a basic domain
Bi ∈ B.

• a bijection from ΣD to D, which assigns each derivative domain symbol di ∈ ΣD, a set Di ∈ D
such that x ∈ Di iff ϕdi(x, (bi1)M, ..., (bin)

M) holds.

• a function which assigns each constant symbol ci ∈ ΣC , an element Ci ∈ C such that Ci ∈
Def(ci)M.

Definition 5.4. Let M be a LΣ-model. The semantical consequence is defined as follows:

• s is a variable assignment if it is a function whose domain is the set of variables in LΣ, and,
s(vθi ) ∈ θM.

1Here we require that we can prove in our background ZFC DefΣ(dj) indeed defines a set, i.e., there is a set including
all x such that Def(dj)(x, bi1 , ...., bin) holds, so that we can apply comprehension.
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• The denotation of a term t in M under s (in notation tMs ) is defined as:

– If t is a variable vθi , then tMs = s(vθi ).
– If t is a constant ci, then tMs = cMi .

• M, s |= ϕ is defined recursively as:

– M, s |= Rix1, ..., xN iff Def(Ri)((x1)
M
s , ..., (xn)

M
s ) holds.

– M, s |= ¬ϕ iff M, s ⊭ ϕ.
– M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ.
– M, s |= ∀vθi ϕ iff for all a ∈ θM, M, s[vθi 7→ a] |= ϕ.

• And M |= ϕ if for all variable assignments s, M, s |= ϕ.

From the above definitions, it should be clear that the essential non-logical symbols in a signature
Σ are really constants in ΣC and the basic domain symbols in ΣB: once the interpretation of these
symbols is determined, the interpretation of all other symbols in Σ is determined as well. In particular,
relational symbols in ΣR are not really relational symbols in the usual sense, say, relational symbols
in first-order logic: the interpretation of a relational symbol R here is fully fixed by Def(R). In this
sense, relational symbols here are more similar to “logical” rather than “non-logical” symbols.

The isomorphism of models is defined naturally:

Definition 5.5. Two LΣ-models M1 = 〈B1,D1, C1, ·M1〉 and M2 = 〈B2,D2, C2, ·M2〉 are isomorphic
iff for any θ ∈ ΣA, there is a surjection2 fθ : θ

M1 → θM2 , such that for f =
∪

θ∈ΣA
fθ, we have:

• for any Ri, for any sequence of elements a1, ..., an belonging to corresponding domains, we have
Def(Ri)(a1, ..., an) iff Def(Ri)(f(a1), ..., f(an));

• for any ci ∈ ΣC , f(cM1
i ) = cM2

i .

Theorem 5.6. For any two isomorphic LΣ-models, M1 and M2, for any LΣ-sentence ϕ, M1 |= ϕ

iff M2 |= ϕ.

Proof. Let f be the isomorphism between M1 and M2. Let s be an assignment of variables in M1.
Let f(s) be the corresponding assignment of variables in M2 defined by f(s)(vθi ) = f(s(vθi )). We
prove the following stronger claim: for any assignment s, M1, s |= ϕ iff M2, f(s) |= ϕ.

We proceed by induction.

• for atomic formulas ϕ := R(x1, ..., xn), we haveM1, s |= R(x1, ..., xn) iff Def(Ri)((x1)
M1
s , ..., (xn)

M1
s )

holds iff Def(Ri)(f((x1)
M1
s ), ..., f((xn)

M1
s )) holds iff Def(Ri)((x1)

M2

f(s), ..., (xn)
M2

f(s)) holds iffM2, f(s) |=
R(x1, ..., xn).

• The inductive cases for ∧,¬ are trivial.

• The inductive case: ϕ := ∀vθi ψ. M1, s |= ∀vθi ψ iff for all a ∈ θM1 , M1, s[v
θ
i 7→ a] |= ψ iff

for all a ∈ θM1 , M2, f(s)[v
θ
i 7→ f(a)] |= ψ iff for all b ∈ θM2 , M2, f(s)[v

θ
i 7→ b] |= ψ iff

M2, f(s) |= ∀vθi ψ.

This completes the induction.
The theorem follows when we take ϕ to be closed sentences.

2We do not require that f is necessarily a bijection, but as long as we include identity of each domain in ΣR, f must
be a bijection.
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5.3 Comparison with First-Order Languages

We can systematically translate first-order languages into some restricted set theoretical languages
LΣ, and first-order models into some LΣ models, while preserving the semantic consequence rela-
tionship and isomorphism between models. This justifies our claim that representation done using
first-order theories/models can be equivalently transformed into representation done using restricted
set-theoretic theories/models.

Without loss of generality, we only consider the translation of a first-order theory with a single
binary relational symbol R below. Consider a first-order language L1Γ with the signature Γ = {R}.
We define Σ as follows:

• ΣB = {b}; ΣD = {r}; ΣC = {R}; ΣR = {E,B}; ΣQ = {b}

• DefΣ is defined as:

– Def(r) is defined as the set-theoretical formula ϕr(v, b) which says that v is a binary relation
on b.3

– Def(R) := r.

– Def(E) := vb1 = vb2.

– Def(B) := (vb1, v
b
2) ∈ vr1.

The first-order formulas are translated into LΣ by a function ·∗ as follows:

• For ϕ := vi = vj , we define ϕ∗ := vbi = vbj .

• For ϕ := R(vi, vj), we define ϕ∗ := B(vbi , v
b
j , R).

• For ϕ := ¬ψ, we define ϕ∗ := ¬ψ∗.

• For ϕ := ψ ∧ χ, we define ϕ∗ := ψ∗ ∧ χ∗.

• For ϕ := ∀viψ, we define ϕ∗ := ∀vbiψ∗.

For any first-order model M = 〈X,R〉 where R is a binary relation on X, we can define a LΣ

model M∗ = 〈B,D, C, ·M∗〉 as follows:

• B = {X}; D = {R} where R is the set of all binary relations on X; C = {R};

• ·M∗ is defined as:

– bM
∗
= X, rM∗

= R, RM∗
= R.

The variable assignment s in M is translated into s∗ in M∗ as, for any variable vbi in LΣ, s∗(vbi ) =
s(vi).

Now we have the following theorems:
3More explicitly,
∗ ϕu := ∃x∃y(x ∈ v ∧ y ∈ v ∧ x ∈ b ∧ y ∈ b ∧ ∀z(z ∈ v → (z = x ∨ z = y))) which defines the set of unordered pairs of

b.
∗ ϕp := ∃x∃y(x ∈ v ∧ y ∈ v ∧ x ∈ b∧ϕu(y)∧ x ∈ y ∧∀z ∈ v(z = x∨ x = y)) which defines the set of ordered pairs of b.
∗ ϕr := ∀x ∈ v(ϕp(x)) which defines the set of all relations on b.
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Theorem 5.7. For any first-order formula ϕ of L1Γ, M, s |= ϕ iff M∗, s∗ |= ϕ∗.

Proof. We prove by induction:

• ϕ = vi = vj : M, s |= vi = vj iff s(vi) = s(vj) iff s∗(vbi ) = s∗(vbj) iff M∗, s∗ |= vbi = vbj iff
M∗, s∗ |= (vi = vj)

∗.

• ϕ = R(vi, vj): M, s |= R(vi, vj) iff (s(vi), s(vj)) ∈ R iff (s∗(vbi ), s
∗(vbj)) ∈ R iff (s∗(vbi ), s

∗(vbj)) ∈
RM∗ iff M∗, s∗ |= R∗(vbi , v

b
j).

• ϕ = ¬ψ: M, s |= ¬ψ iff M, s ⊭ ψ iff M∗, s∗ ⊭ ψ∗ iff M∗, s∗ |= ¬ψ∗ iff M∗, s∗ |= (¬ψ)∗.

• ϕ = ψ ∧ χ: M, s |= ψ ∧ χ iff M, s |= ψ and M, s |= χ iff M∗, s∗ |= ψ∗ and M∗, s∗ |= χ∗ iff
M∗, s∗ |= ψ∗ ∧ χ∗ iff M∗, s∗ |= (ψ ∧ χ)∗.

• ϕ = ∀viψ: M, s |= ∀vbiψ iff for all a ∈ X, M, s[vi 7→ a] |= ψ iff for all a ∈ X, M∗, s∗[vbi 7→ a] |= ψ∗

iff M∗, s∗ |= ∀vbiψ∗ iff M∗, s∗ |= (∀viψ)∗.

We also have:

Theorem 5.8. For any two first-order models M1 and M2, M1 and M2 are isomorphic iff their
corresponding LΣ models M∗

1 and M∗
2 are also isomorphic.

Proof. Assume that M1 = 〈X1,R1〉 and M2 = 〈X2,R2〉 are isomorphic, and let f be the isomorphism.
We define f∗ from M∗

1 to M∗
2 as follows:

• f∗b = f ;

• f∗r is induced naturally by f

Note that f∗r (R1) = R2 as f is an isomorphism between M1 and M2.
It can be easily checked that f∗ gives an isomorphism between M∗

1 and M∗
2.

On the other hand, if M∗
1 and M∗

2 are isomorphic, let f∗ be the isomorphism. Then f∗|X will serve
as an isomorphism between M1 and M2.

Therefore, restricted set-theoretical languages can be seen as natural generalizations of first or-
der languages. The advantage is that it has greater expressive power and is closer to the actual
physical practice. But of course, it will not have completeness and thus cannot have a syntactical
characterization of the (semantical) consequence relationship.

5.4 Mathematical Structures in Restricted Set Theoretical Languages

Mathematical structures are often presented as bare set-theoretical structures without an explicit
object language. For instance, a topological space is often constructed directly in our set-universe
as an ordered pair 〈X,T 〉, where X is the set of base points and T the set of open sets satisfying
the axioms of topology. Representation done using topological spaces can be reconstructed in this
restricted set-theoretic setting as follows. We have a basic domain symbol θ1 that denotes the set
X and two derivative domain symbols θ2, θ3 that denote P(X) and P(P(X)), respectively. Then
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we restrict membership sentences to vθ1i ∈ vθ2j and vθ2i ∈ vθ3j , and identity sentences to vθni = vθnj ,
for n = 1, 2, 3. Thus, we exclude irrelevant set-theoretic details like whether one base point belongs
to another, expressed as vθ1i ∈ vθ1j . As a sanity check, we can prove that two topological spaces
are homeomorphic iff they are isomorphic when attached with such restricted set-theoretic language.
Thus, we accurately capture the topologically significant information we wish to use in representation.

More explicitly, we can assign the following canonical signature to a topological space (X,T ):

• ΣT is defined as 〈ΣB,ΣD,ΣC ,ΣR,ΣQ,DefΣ〉 where:

– ΣB = {θ}; ΣD = {pθ, ppθ}; ΣC = {t}; ΣR = {R1, R2, R3, R4, R5}; ΣQ = {θ, pθ, ppθ};
– DefΣ is defined as:

∗ Def(px) := v ∈ P(θ), Def(ppθ) := v ∈ P(P(θ));
∗ Def(t) := ppθ;
∗ Def(R1) := vθ1 = vθ2, Def(R2) := vpθ1 = vpθ2 , Def(R3) := vppθ1 = vppθ2 ,

Def(R4) := vθ1 ∈ vpθ2 , Def(R5) := vpθ1 ∈ vppθ2

• The restricted set-theoretic language for topological spaces is then defined as LΣT .

Topological spaces can then be transformed into ΣT -models by interpreting the domain θ as the
set of base points, the domain pθ as its powerset, and ppθ as the powerset of its powerset. The only
constant t is interpreted naturally as the set of open sets. We now prove that two topological spaces
are homeomorphic iff their transformed logical models are isomorphic.

Theorem 5.9. Let S1 = 〈X1, T1〉, S2 = 〈X2, T2〉 be two topological spaces. Let M1 and M2 be their
transformed logical models with the canonical signature. Then S1 and S2 are homeomorphic iff M1

and M2 are isomorphic as logical models.

Proof. Assume that f is the homeomorphism from S1 to S2. We define the isomorphism f∗ from M1

to M2 as follows:

• f∗θ = f

• f∗pθ, f∗ppθ are defined as the natural extension of f to P(X1) and P(P(X1)) respectively.

It is easy to check that f∗ is an isomorphism:

• for any x ∈ X1 and y ∈ P(X1), we have x ∈ y iff f∗(x) ∈ f∗(y) by our construction of f∗.

• for any x ∈ P(X1) and y ∈ P(X2), we have x = y iff f∗(x) = f∗(y) by our construction of f∗.

• for any x, y ∈ X1 (or P(X1), P(P(X1))), x = y iff f∗(x) = f∗(y) since f is a bijection.

• f∗(T1) = T2 since f is a homeomorphism.

Conversely, assume that g is an isomorphism from M1 to M2. Let g∗ := gx be the restriction of
g to X1. Then g∗ is a bijection from X1 to X2, since we include the identity in domain θ as R1 in
ΣR. It is easy to check that g∗ is a homeomorphism: for any Y ∈ P(X), Y ∈ T1 iff f∗(Y ) ∈ f∗(T1) iff
f∗(Y ) ∈ T2

If we continue the procedure, taking into account the domain of Rn and the domain of functions
constructed thereof, we eventually arrive at an object language for Lorentzian manifolds, which physi-
cists use to represent spacetime in general relativity. We shall sketch the details of this construction
below.
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5.5 An Object Language for Lorentzian Manifolds

Now we sketch how to construct an object language LM for Lorentzian manifolds.
First of all, we need the domain of R (for curves and tangent spaces) and more generally Rn (for

charts and atlas). Both can be added to LM as derivative domains, since both can be defined by a
single set-theoretic formula. The definition simply follows the routine of textbooks. The set of natural
numbers is defined as the set closed under predecessors and whose element is either the empty set
(x = ∅) or a successor ∃y(x = {y} ∪ y). Then we can define sequences of natural numbers, by which
additions and multiplications can be defined by recursion. Integers are then defined as a quotient of
pairs of natural numbers by the equivalence relation (a, b) ∼ (c, d) iff a+ d = b+ c. Rational numbers
are defined as a quotient of the product of integers and positive integers Z× Z∗ with the equivalence
relation (a, b) ∼ (c, d) iff ad = bc. The set of real numbers is then defined as the quotient of Cauchy
sequences of rational numbers with the equivalence relation (an) ∼ (bn) iff for any ε > 0, there is N
such that for all n ≥ N , |an − bn| < ε. Topology over reals is generated by the open intervals (a, b),
a, b ∈ R.

For relational symbols on R and Rn, we include all common operations in analysis. There should be
no difficulties defining such operations following the standard textbooks — Addition, multiplication, or
exponentiation are induced from the addition, multiplication, or exponentiation of Cauchy sequences.
We may also include the function spaces of reals, which can be defined as a subdomain P(Rn × Rm).
The limits of functions are defined by the standard ε-δ notation.

We simply include the language for topological spaces in LM . Let θ be the domain of topological
points. The domain u of charts (U, ϕ) is then defined as a subdomain of P(θ) × P(θ × Rn), whose
elements satisfy the definition of charts, i.e., ϕ is a homeomorphism from U to Rn, and U and the
range of ϕ are both open sets. The domain a of maximal atlas is defined as a subdomain of P(u),
whose elements are maximal sets of C∞ compatible charts which cover the whole space θ. We add a
constant symbol atlas to denote the maximal atlas for our target manifold.

Finally, we add the metrical structure. The domain c of smooth curves can be defined as a
subdomain of P(R× θ), whose elements are smooth curves. The tangent bundle TM can be defined
as a subdomain of θ × P(c) such that for each of its elements (p, C), C is an equivalent class of
curves passing through p, where the equivalence relationship is defined by the sameness of derivatives.
Similarly, the binary product of tangent bundles TM2 can be defined as a subdomain of θ×P(c)×P(c).

The domain mt of (pseudo-Riemannian) metric tensor fields is then defined as a subdomain of
P(TM2×R), whose elements are functions from TM2 to R which are smooth, bilinear, non-degenerate,
and symmetric. The domain lmt can then be defined as a subdomain of mt whose elements are
Lorentzian metric tensors, i.e., those whose signature is (−,+, ...,+). This amounts to the requirement
that for any point p ∈ θ, there is a basis over the tangent space of p in which the metric tensor becomes
a diagonal matrix with one negative entry and the rest positive entries, or, in formula:

ϕ(ymt) := ∀xθ∃vpc1 , ..., v
pc
n ((xθ, vpc1 , ..., v

pc
n ) ∈ TM ∧

∧
1≤i≤n

(vpci 6= 0) ∧
∧

1≤i 6=j≤n

ymt(vpci , v
pc
j ) = 0

∧
∨

1≤i≤j

[ymt(vpci , v
pc
i ) < 0 ∧

∧
j 6=i,1≤j≤n

ymt(vpcj , v
pc
j ) > 0])

Here we assume that the dimension of the manifold is n. And for a domain symbol d, we use pd to
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denote the derivative domain defined as the powerset of d. To be more rigorous, vpci 6= 0 above can be
further unpacked as ∀xc ∈ vpci (∃yRxc(yR) 6= p).

Once the domain lmt is defined, we can add a constant g in lmt to denote the metric field in the
Lorentzian manifold.4

We may briefly summarize our language LM as follows:

• The only basic domain is θ, i.e., the domain for the topological space.

• The derivative domains include R, Rn, u, a, c, TM , TM2, mt etc.

• There are three constant symbols, t (the set of open sets), atlas (the maximal atlas), and g (the
metric tensor field).

• The relational symbols include all common operations in analysis and differential geometry.

It is then easy to see that isomorphisms of LM correspond to isometries. In particular, as all
derivative domains and relational symbols are defined in terms of the basic domain θ and constants
t, atlas and g, isomorphisms between two models M1 and M2 in LM are simply maps between θM1

and θM2 which preserve the interpretation of t, atlas and g. To show that this simply amounts
to the requirement of being an isometry, we reason as follows: the preservation of t is equivalent by
definition to the requirement that the map is continuous; the following theorem proves that the further
preservation of the maximal atlas is equivalent to the requirement that the map is a diffeomorphism;
and finally, it holds by definition that for a diffeomorphism to preserve the metric tensor field g is
precisely for it to become an isometry.

Theorem 5.10. Let M1 = (M1,A1) and M2 = (M2,A2) be two smooth manifolds, and f a continuous
map from M1 to M2. Then f is a diffeomorphism iff f preserves maximal atlas, i.e., for any chart
(U, ϕ) in A1, the map k(U, ϕ) = (f(U), ϕ ◦ f−1) is a bijection from A1 to A2.

Proof. Suppose that f is a diffeomorphism. Let (U, ϕ) be an arbitrary chart in A1. We show that
k(U, ϕ) := (f(U), ϕ ◦ f−1) is pairwise compatible with any arbitrary chart (V, ψ) in A2. So let (V, ψ)
be an arbitrary chart in A2. If f(U) ∩ V = ∅, they are vacuously compatible. If f(U) ∩ V 6= ∅, we
choose p such that f(p) ∈ f(U) ∩ V . By assumption, f is smooth at p, therefore, there is a chart
(W,χ) in A1 such that p ∈ W and χ ◦ f−1 ◦ ψ−1 is smooth. Since (W,χ) is compatible with (U, ϕ),
ϕ ◦ χ−1 is also smooth. Therefore, ϕ ◦ χ−1 ◦ (χ ◦ f−1 ◦ ψ−1) is smooth, and hence ϕ ◦ f−1 ◦ ψ−1 is
smooth. This shows that (f(U), ϕ ◦ f−1) is compatible with (V, ψ), and hence must be included in A2.
Similarly, for any chart (W,χ) in A2, we can show that h(W,χ) := (f−1(W ), χ ◦ f) must be included
in A1. Finally, it is easy to see that h ◦ k = id and k ◦ h = id, therefore, k is a bijection from A1 to
A2.

Suppose that f preserves the maximal atlas. Then for any point p ∈ M1, any chart (U, ϕ) ∈ A1

covering p, (f(U), ϕ◦f−1) is a chart in A2 covering f(p). And ϕ◦f−1 ◦f ◦ϕ−1 = id is trivially smooth.
Therefore, f is smooth at p. Since p is arbitrary, f is a diffeomorphism.

4To state the theory of GR, one may simply add a further constant T of domain P(TM2 × R) for the stree-energy
tensor field. As the Einstein tensor can be defined from g, the Einstein field equation can be stated. Or, following the
idea of representation as definition, one may simply define a tensor field T from g by the Einstein field equation, and let
T denote the stress-energy tensor field.
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The restricted set-theoretic language LM is clearly not the only way by which one may give an
explicit object language and consequently a theory of Lorentzian manifolds. Bradley and Weatherall
(2022) identify two previous attempts: Mundy (1992) argues that the Riemannian geometry can be
axiomatized in a similar way as Euclidean geometry is axiomatized presumably using higher-order
logic, and Shulman (2017) suggests that the classes of Lorentzian manifolds can be defined in HoTT
as a specific type whose terms are identified up to isometry. Their points are certainly valid, though
they do not bother to give further sketches of their constructions.5

Compared to the above approaches, the main advantage of using restricted set-theoretical languages
is that it is closest to the actual mathematical practices and hence is most convenient to adopt. As
can be seen in the above construction, we simply follow the standard set-theoretical definitions of our
targeted mathematical structures (here, Lorentzian manifolds), and include details that are specifically
relevant to this type of structures. Additionally, this approach is also more flexible, especially compared
to the higher-order approach, as it is applicable to any set-theoretical structures, while higher-order
logic can be limited in its expressive power.6

A mathematically natural but philosophically significant feature of LM is that we do not have
constants for points in manifolds. The only three constants we have in LM are t (the set of open
sets), atlas (the maximal atlas) and G (the metric tensor field). This makes LM a formalism that
corresponds to a variety of what philosophers often call “sophisticated substantivalism” (Belot and
Earman, 2001), supported by Maudlin (1988), Butterfield (1989), Stachel (1993, 2002), Rynasiewicz
(1994), Hoefer (1996), Pooley (2006), Russell (2014). See Gomes and Butterfield (2023a, 2023b), Cudek
(2024), Jacobs (2024) for more recent defenses. Roughly, sophisticated substantivalists say that while
spacetime points exist, there cannot be two distinct possible worlds that differ only regarding which
spacetime point is which. LM , therefore, is a specific form of sophisticated substantivalism, that simply
rejects that there is any matter of fact about the specific identities of spacetime points (i.e., there are
no “haecceitistic facts”), as we simply have no constants for spacetime points7 Quantificational facts
(over spacetime points) are all matters of facts there are about spacetime.

Some believe that sophisticated substantivalism, of one form or another, will need a reformulation
of GR. The formalization above suggests, instead, that if one assumes that the isomorphism criterion
for the theory of GR is isometry, then the theory of GR must contain no constants for spacetime
points, and hence, it must be some form of sophisticated substantivalism. The following two chapters
give a more detailed discussion of this point.

Another remark to be added concerns the relationship between LM and the well-known method
of Ramseyfication (Ramsey, 1929; Carnap, 1966; Lewis, 1966, 1970, 1972). In the context of Ram-
seyfication, the vocabulary of our language is divided into two parts: the “problematic” part and the
“benign” part (Frigg and Votsis, 2011; Dewar, 2019b). Let our theory be T (, t1, ..., tn) where t1, ..., tn
are symbols that belong to the problematic part, which could be first-order terms, relational symbols,

5Mundy does prove what he calls the “representation theorem”, which essentially says that for any Riemannian
manifold M, we can assign a first-order structure K(M) such that K preserves isomorphism classes. It is far from clear
how this suffices for a proof of axiomatizability, as the class {K(M)} is certainly not elementary in first-order logic.
Mundy further mentions the fact that the class of Riemannian manifolds is axiomatizable in higher-order logic (“Since
Riem is definable in higher-order logic...” (p.518)). But no further details are given for this axiomatization.

6For instance, higher-order logic presumably cannot deal with set-theoretical structures of ranks higher than Vω+ω,
as Z fails to prove the existence of ω + ω, but suffices to give a semantics for higher order logic.

7Not all varieties of sophisticated substantivalism can be represented by LM . For instance, certain views of metrical
essentialism (Maudlin, 1988) will concede hecceitistic facts but insist that it is metaphysically necessary that two distinct
worlds cannot differ merely hecceitisitically.
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or symbols in higher-order. Assuming T is finite, the Ramseyfication of T , TR, is then defined as
∃x1, ..., xnT (x1, ..., xn). It can be proved that TR will have the same consequences as T in the benign
part of our language, but it is better than T in the sense that it does not contain any problematic
symbols. In the current case of GR in LM , one may take the “problematic” symbols to be constants
for spacetime points, and take our final theory as the result of Ramseyfication of a fuller version of
GR which does contain constants for spacetime points.

But despite formal similarity, it is worth noting that the motivation behind LM is very different
from that behind the usual cases of Ramseyfication.

In usual cases of Ramseyfication, the problematic symbols are by themselves regarded as problem-
atic. For Ramsey, the problematic symbols consist of non-observational terms, which are also called
“secondary terms” or “theoretical terms”. Ramsey holds a verificationist view of meaning,8 which says
that a sentence is meaningful iff it is verifiable. Thus, he believes that such non-observational parts
of our language are simply meaningless.9 Carnap (1966) no longer holds such a naive verificationist
view of meaning at the time of his writing, but he still believes that only the observable part of our
language has cognitive contents or synthetic contents. Thus, Ramseyfication is able to extract the
purely synthetical content of a theory. Lewis (1972) applies the method of Ramseyfication in the con-
text of philosophy of mind. For him, the problematic part of our language is no longer non-observable
terms, but rather terms that denote mental states and processes. As he supports a materialist view of
mind, and in particular the type-type mind-brain identity thesis, it is critical for him to reduce those
mental terms to purely physical terms. The way he manages it is by Ramseyfication, in particular,
via a functionalist characterization of mental states. Thus, suppose T (pain, t1, ..., tn) is our psycho-
logical theory of pain, where t1, ..., tn are other mental terms, then Lewis offers a definition of pain
as Df(pain) := ιx∃x1, ..., xnT (x, x1, ..., xn)10 For humankind, this will pick out a unique neural state
that realizes the causal role of pain as specified by T . Of course, Df(pain) is non-rigid, and thus it
picks out different neural states for different species of creatures. But the mind-brain identity thesis
is still validated in the sense that there are only physical states. Mental terms are used to denote such
physical states rather than some distinct types of mental states.

In contrast, in the case of LM , constants for space-time points are not added not because we
regard them as problematic. Here, we share no verificationist view of meaning, nor do we think that
spacetime points have to be reduced to something else, as mental states have to be reduced to physical
states. The sole reason for not adding constants for spacetime points is that we wish to have isometry
as our criterion of isomorphism.

An additional difference is that sometimes Ramseyfication is not only able to eliminate problematic
terms, but also our ontological commitment to the objects denoted by such terms. Normally, if we Ram-

8“Has it meaning to say that the back of the moon has a surface of green cheese? If our theory allows as a possibility
that we might go there or find out in any other way, then it has meaning. If not, not; i.e. our theory of the moon is very
relevant, not merely our theory of things in general.” (p. 195, 1929)

9An interesting tweak here is that by Ramseyfication, although one gets rid of the non-observational terms, one is left
with quantifications ranging over them, which by Quine’s thesis of ontological commitment, would still commit one to
the existence of non-observable things. However, Ramsey himself does not seem to take this as a problem, as he seems
to adopt a purely inferential view of quantification:“So far, however, as reasoning is concerned, that the values of these
functions are not complete propositions makes no difference, provided we interpret all logical combination as taking place
within the scope of a single prefix...For we can reason about the characters in a story just as well as if they were really
identified, provided we don’t take part of what we say as about one story, part about another.” (p.194)

10Here ιx means “the x”. It is a complicated issue whether such a definition still works if there happens to be no or
more than two realizers of x, and Lewis himself changes his view several times on this issue. See Lewis (1972, 1994, 1997)
and also Weatherson (2021).
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seyfy over a sentence ϕ(c), we will still need the thing denoted by c to exist in order for the Ramseyfied
sentence ∃xϕ(x) to be true. But in Lewis’ definition of pain, Df(pain) := ιx∃x1, ..., xnT (x, x1, ..., xn),
it happens to be the case that we can always use specific physical states to realize the existential quan-
tification over x1, ..., xn, and thus Ramseyfication helps us to escape the ontological commitment to
mental states distinct from physical states. This, however, is not the case for LM . In LM , quantifica-
tions are made explicitly over spacetime points, and we do not have substitutes other than spacetime
points that can realize such quantifications. Thus, we are still fully committed to the existence, albeit
not specific identities, of spacetime points, and hence LM remains substantivalist.

A final remark: the most significant objection to Ramseyfication, i.e. the Newman problem (De-
mopoulos and Friedman, 1985), does not apply to LM . The general idea behind the Newman problem
is that the Ramseyfication RT of a theory T is true iff the benign part of T is true (Ketland, 2004),
and this could be an unpleasant result for certain application of Ramseyfication. For instance, in
the standard context of structural realism,11 we take the benign part to be observable terms and the
problematic part to be theoretical terms, and one wishes to use RT to capture the structural content
of T . However, the Newman Problem shows that RT captures only the empirical content of T , and
thus collapses structural realism into a form of empiricism.

The Newman problem, however, is not a problem for LM . Although GR formulated in LM contains
indeed only propositions that do not mention specific identities of points, this is not a problem in itself.
In particular, as we only Ramseyfy over spacetime points, but not over other theoretical terms such
as the metric tensor field g or the maximal atlas atlas, we will still be able to talk about the structure
of spacetime up to isometry. Instead, it simply means that LM commits to a form of sophisticated
substantivalism, which we call anti-specificsm. And while in the context of structural realism, we
may have good reasons to reject collapsing to empiricism, in the current context of substantivalism,
I do not see any reason to reject taking anti-specificism as a serious candidate. Indeed, as I shall
argue in chapter 7, anti-specificism actually has many independently appealing features over its peers,
including blocking the hole argument, and should be taken as the preferred version of (sophisticated)
substantivalism.

11For application of Ramseyfication in structural realism, see Sneed (1971), Frigg and Votsis (2011). For the debate
about the Newman problem, see Votsis (2003), Zahar (2004), Melia and Saatsi (2006), Ainsworth (2009), and Dewar
(2019b).
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Chapter 6

The Hole Argument and the Formalist
Response

6.1 Introduction: the Hole Argument

The hole argument was first formulated by Einstein in 1913, purportedly showing that there cannot
be any generally covariant theory of spacetime, which justifies his temporary failure to form such a
theory.1 Earman and Norton (1987) recast it as an argument against the substantivalist reading of
General Relativity (GR), the view that spacetime points exist independently of matter fields. In
particular, they argue that substantivalism leads to indeterminism.

Let M = (M, gab) be a model of GR, where M is a four-dimensional manifold, and gab a Lorentzian
metric field. Let d be a diffeomorphism from M onto itself. Let d∗M = (M,d∗gab) be the model we
obtained after dragging the metric field gab along d.

Assume that M can be foliated into space-like hypersurfaces, and Σ one such hypersurface. Con-
sider the case where d is a hole diffeomorphism: it smoothly moves points inside a hole2 H lying in the
future of Σ, but leaves points outside H intact. Then M and d∗M seem to witness the indeterminism
of GR: they are identical up to Σ, but differ in the future inside the hole H. See Figure 1 for an
illustration.

Σ

H
d

Figure 6.1: Illustration of the hole argument.

The argument can be specified as follows:3

• P1: M and d∗M represent two distinct physical situations S1 and S2.
1After such a generally covariant theory was found in 1915, Einstein rejected the hole argument by essentially accepting

Leibniz equivalence. See Norton, Pooley and Read (2023).
2A hole may be defined as a compact open subset of M , see Pooley (2021).
3Note that P1 and P2 are often combined into a single premise in the literature. We separated them here to better

classify different lines of response.

54



• P2: Models of GR represent physically possible situations.

• P3: If S1 and S2 are physically possible, then indeterminism holds.

• C: Indeterminism holds. (P1 - P3)

There are mainly two lines of responses to the hole argument: the metaphysical response and the
formalist response. The metaphysical response refutes either P2 (Butterfield, 1989; Maudlin, 1988,
1990; Gomes and Butterfield, 2023a, 2023b), asserting that S1 and S2 cannot be both possible, or P3
(Belot, 1995; Butterfield, 1989; Melia, 1999; Pooley, 2021), arguing that S1 and S2 do not witness the
indeterminism that we should care about. In contrast, the formalist response pays attention to the
mathematical formalism used in the representation of spacetime, rejecting P1: M and d∗M really
say the same thing about the world. (Weatherall, 2018; Bradley and Weatherall, 2022; Halvorson and
Manchak, 2022).

The core idea of the formalist response is to accept the following principle:

Leibniz Equivalence (LE): If two Lorentzian manifolds are isometric, then they represent
the same physical situation.

Now, since M and d∗M are isometric, as witnessed by the hole diffeomorphism d, they represent the
same physical situation according to LE. Thus, accepting LE will automatically refute P1, and hence
block the hole argument.

The basic idea behind LE is that mathematicians in practice treat isomorphic mathematical struc-
tures indistinguishably. Thus, formalists propose the following principle to justify LE:

The Bradley-Weatherall Principle (BWP): “the representational capacities of math-
ematical objects are precisely those preserved by isomorphism” (Bradley and Weatherall,
2022, p.1230).

And mathematical practice suggests that the relevant criterion of isomorphism for Lorentzian manifolds
is isometry. Formalists then conclude from BWP that if we stick to Lorentzian manifolds as the
standard formalism of GR, anything not preserved by isometry should be representationally irrelevant,
and therefore LE holds.

The critics of the formalist response (say, anti-formalists) raise alleged counterexamples against
LE. For instance, Roberts (2020) considers two misaligned half-planes M1 = 〈M1 = R× (0,+∞), gab〉
and M2 = 〈M2 = R × (1,+∞), gab〉 (both with an everywhere identical metric field gab). He argues
that M1 and M2 cannot represent the same physical situation, since M2 only includes points above
the line y = 1. But M1 and M2 are isometric by the map (x, y) 7→ (x, y + 1). Consequently, he
concludes that LE is false.

Similarly, Belot (2018) and Fletcher (2020) use the swerve model as a counterexample against LE.
“The swerve model” is essentially a system containing a single particle that starts to accelerate towards
a certain direction at a certain time. Consider a swerve model M, and the model d∗M, where d is a
spatial rotation of the manifolds. They argue that, despite M and d∗M being isomorphic, they really
represent different physical situations (in the substantivalist representational context): the particles
in M and d∗M are accelerating towards different directions.

Formalists respond to such counterexamples that they invoke “semantic metatheory”. In particular,
in the alleged counterexample to LE, to distinguish the two misaligned half-planes M1 and M2, one
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needs to invoke specific identities of plane points — so that we can say, e.g., M1 contains the point
(0, 1) while M2 does not. Similarly, we need to look into the set-theoretical details of M and d∗M in
the swerve model in order to distinguish different directions towards which the particle is accelerating.
Such specific identities, or specific directions are only expressible in our meta-theory of set theory, but
not in the object theory of General Relativity. And meta-theory is representationally irrelevant.

The current chapter aims to give a detailed analysis of this dialogue. I shall argue that while the
formalist response to anit-formalists can be formulated as a valid argument, it does not fully answer
the anti-formalist challenge, as a key premise is left unjustified.

6.2 Reformulating the Formalist Response

Formalists rely their response on the distinction between meta-theory and object theory. This
distinction essentially comes from the distinction between a physical domain and the representational
tools which we use to represent that physical domain.

Recall from the syntax-semantics debate, that we can choose different representational tools to
talk about the physical domain, among which we have theories (i.e., set of sentences), models (“logical
mdoels”, i.e., set-theoretical structures which interpret certain signature), or more generally, all kinds
of different mathematical structures. But then if we also want to talk about the representational tools
themselves, we need another level of representation. In this sense, object theories/models are what we
use to directly say things about the physical domain, and meta-theories/models are what we use to
say things about the object theories/models.

Now, formalists suggest that meta-theory is “representationally irrelevant”. There is no doubt that
meta-theory is not directly used for representing the physical domain, but instead for representing our
representational tools. However, this does not imply that details of meta-theory are irrelevant to
representation, especially when our meta-theory already contains the object theory as its part. An
extreme case is where the meta-theory/language is just the object theory/language, e.g., when we talk
about a natural language in itself. We articulate the truth condition of a sentence by saying, e.g., the
sentence “grass is green” is true iff grass is green. In this case, details of the meta-theory are indeed
representationally relevant.

The claim, therefore, should better be modified as saying that those details that present only in
the meta-theory but not in the object theory are representationally irrelevant. Note that then the
distinction between meta-theory and object theory is not really needed, since all formalists are saying
here is that only details of the object theory, which is simply the physical theory in question, are
representationally relevant. But this is almost a tautology: only details of a theory T , but not details
of some other theory T ′, contribute to the representational contents of T . To say that some background
theory T ′ is also tacitly assumed to represent in addition to T seems simply to say that one’s theory
of spacetime is not T but really T ∪ T ′.

The formalist response can then be summarized as pointing out the incompatibility of the following
two items for any theory of spacetime T :

• T commits to specific identities of spacetime points, or specific directions in spacetime, etc.

• The isomorphism criterion of T -models is isometry.

The argument can then be summarized as follows.
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1. T commits to specific identities of spacetime points (respectively, specific directions in space-
time).

2. Only details of T , but not details of some other theory T ′, contribute to the representational
contents of T .

3. T must include constants for spacetime points (respectively, directions) or mathematical con-
structions with a similar function. (By 1,2)

4. The isomorphism criterion of T -models is required to preserve such constants or similar mathe-
matical constructions. (By 3)

5. The isomorphism criterion of T -models cannot be isometry. (By 4)

The argument is not formulated in a deductive manner, but I shall argue that each premise is justified
and each move is valid. Item 1 is simply our assumption. Item 2 is true by the functional roles theories
play in the process of representation, i.e., representational tools. Item 3 follows from item 1 and item 2.
Item 4 is true by the concept of isomorphism. The only non-trivial move might be the last move from
item 4 to item 5. But as shown at the end of chapter 5, an isometry is precisely a map that preserves
the set of open sets, the maximal atlas, and the metric tensor field associated with a metric manifold,
and hence cannot preserve any extra mathematical constructions such as constants for spacetime
points. Indeed, the language LM we designed in Section 5.5 whose isomorphism criterion coincides
with isometry is a language that does not contain any constants for spacetime points or directions.

If we adjoin the above argument with the following assumption:

Isometry as Isomorphism (II) Lorentzian manifolds are mathematical structures whose
isomorphism criterion is isometry.

Then we simply arrive at the conclusion that if we stick to Lorentzian manifolds as our representational
tools for spacetime, then there are no specific identities of spacetime points or specific directions in
spacetime, and hence the antiformalist counterexamples fail. Note that II is supposed to be true
simply by what we mean by “Lorentzian manifolds”. In mathematical practices, people usually define
Lorentzian manifolds as simply set-theoretical structures for the sake of convenience, and then say, in
a hand-waving manner, that we only care about their structures up to isometry. The formalist reading
of such practices is that the definition of Lorentzian manifolds given as set-theoretical structures is
only a working definition, a definition that contains many concrete set-theoretical details that are not
inherently part of the structure of Lorentzian manifolds, and the caveat that we only care about their
structures up to isometry should be taken more seriously to suggest that Lorentzian manifolds are
only defined up to isometry, say, as the structures characterized directly by LM .4

Alternatively, one may suggest that Lorentzian manifolds are literally structures defined in set
theory. But then, as we are working in the language of set theory (together with a constant denoting
the Lorentzian manifold in question as a set), the isomorphism criterion will not be isometry, but

4This is just like first defining groups as the sets of automorphisms of vector spaces, and then say, in a hand-waving
manner, that we only care about their structures up to homomorphism. If we follow the formalist interpretation, then
groups are really only defined up to homomorphism, as the algebraic structures characterized by the usual axioms of
groups. The only difference is that it is much easier to work with an explicit theory of a group whose isomorphism
is homomorphism than to work with an explicit theory of Lorentzian manifolds whose isomorphism is isometry. This
explains why people use algebraic definitions for groups in practice, but rest assured with a set-theoretical definition for
Lorentzian manifolds.
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rather set-theoretical isomorphism, and so II would be false. To illustrate, in any model U of set
theory, two isometric Lorentzian manifolds M1 and M2 can be found such that M1 happens to
contain the empty set as a point in the manifold, while M2 does not. Then the sentence “there is
an emptyset in the manifold” will be true of M1 but false of M2.5 As isomorphism always implies
elementary equivalence, M1 and M2 cannot be isomorphic, although they are indeed isometric.

I think there are good reasons to prefer the formalist interpretation over the second interpretation.
Statements such as “The emptyset is in the domain of the metric manifold M” seem simply irrelevant
to differential geometry, and not included as part of our common understanding of what the structure
of Lorentzian manifolds amounts to. It also plays no role when physicists use Lorentzian manifolds to
represent the structure of spacetime, as it has no physical meaning to say that a spacetime point is
the emptyset.

But in any case, I regard it as a red herring to argue over what the term “Lorentzian manifolds”
really means, since the question we should really be asking is what kind of structures the spacetime
really possesses, whether it should be called “Lorentzian manifolds” or not. Thus, I simply choose the
convention, which I prefer for the above reasons, that the term “Lorentzian manifolds” refers to the
mathematical structures characterized by LM whose isomorphism criterion is indeed isometry. Thus,
II is true by convention.

We have seen how counterexamples raised by anti-formalists can be refuted. But this does not mean
that the formalist response is simply saved. For while the details about specific points or directions
are not part of the structure of Lorentzian manifolds, given the way a term is currently used, there
are three lingering questions to be answered:

• If one sticks to Lorentzian manifolds as one’s representational tools, is the hole argument blocked?

• Why should we stick to Lorentzian manifolds as representational tools to represent spacetime
(rather than, say, certain extensions of Lorentzian manifolds)?

Another independent but related question is:

• Do physicists actually use Lorentzian manifolds as their representational tools in practice?

We will address these questions in the following sections.

6.3 Does the Formalism Block the Hole Argument?

In this section, we analyze whether the hole argument is blocked if one sticks to Lorentzian mani-
folds as our representational tools for spacetime. I argued that the formalist strategy of using BWP
to defend LE is invalid, as BWP focuses on the wrong target of representational capacities but not
representational contents, and BWP itself is also only partly correct. Instead, in this section, I will
construct a valid justification of LE based on an alternative principle, GLE. Thus, I conclude that,
sticking to Lorentzian manifolds, the formalist response successfully blocks the hole argument— as
long as grounded in the correct argument.

5More rigorously, true of (U,M1) but false of (U,M2): since we are working with full-blooded set theory, we always
need to keep a model of set theory in the background to interpret the set-theoretical language.
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6.3.1 Representational Capacities vs. Representational Contents

Previously, we gave a conceptual framework for representation where we have the crucial compo-
nent of representational context. This element is sometimes ignored in the literature. Recall that P1
of the hole argument suggests that M and d∗M say different things about the world. But a pure
mathematical object alone cannot represent anything —it only represents when put into a represen-
tational context. Just as the string “red” only denotes red when we interpret it as such (we could
choose to interpret “red” as denoting blue as well).

Once we include the element of representational context, we are able to point out an important
distinction, that is, the distinction between representational contents and representational capacities.
The representational content of a model is relative to a specific representational context, while the
representational capacities of a model take into account how a model can be used for representation
across all possible representational contexts (within a representational protocol).

In view of this distinction, we can see that there is an ambiguity in LE that needs to be resolved.
Recall, the original version of LE says:

(LE) If two Lorentzian models M and M∗ are isometric, then they are representationally
equivalent.

But it is ambiguous whether representational equivalence refers to the equivalence of representational
capacities or the equivalence of representational contents in some specific contexts. Indeed, the termi-
nology in the literature can be confusing. Fletcher (2020) and Belot (2018) use the term “representa-
tional equivalence” for equivalence of representational capacities, but “representational distinctness”
for distinctness of representational contents in any common representational context.

Accordingly, we can distinguish two theses of Leibniz Equivalence:6

• Leibniz Equivalence of Capacities: (LEcap) If two Lorentzian manifolds M1 and
M2 are isometric, then, they have the same representational capacities, i.e., for any
representational context C1, if M1 represents a physical situation S in C1, then there
is a representational context C2 such that M2 represents S in C2, and vice versa.

• Leibniz Equivalence of Contents: (LEcon) If two Lorentzian manifolds M1 and M2

are isometric, then, for any representational context C, if M1 represents a physical
situation S in C, then M2 also represents S in C, and vice versa.

The premise of the hole argument P1 should also be specified in terms of representational contexts.
Recall,

P1: M and d∗M represent two distinct physical situations S1 and S2.

The specification of P1 that is relevant to the hole argument is the one which restricts to the repre-
sentational context adopted by substantivalists:

P1∗: For the representational context C adopted by the substantivalists of GR, M in C
and d∗M in C represent two distinct physical situations S1 and S2.

6There are many similar specifications of Leibniz Equivalence in the literature. “Strong Leibniz equivalence” vs.
“Weak Leibniz equivalence” in Roberts (2020), RUME vs. REME in Fletcher (2020), and RUME∗ and MIRD∗ in
Pooley and Read (2021) etc..
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Formalists must refute P1∗ to block the hole argument.
Now it is not hard to see that the only version of Leibniz equivalence that can refute P1∗ is LEcon,

but not LEcap, since the latter does not guarantee that in a common representational context, M
and d∗M will represent the same physical situation. However, the formalist justification of LE is to
invoke the Bradley-Weatherall principle, which can be paraphrased as:

BWP: Two models M1 and M2 are isomorphic iff they have equivalent representational
capacities.

Clearly, BWP only justifies LEcap, but not LEcon (which is strictly stronger than LEcap), and
so cannot block the hole argument. Echoing some anti-formalists (Roberts, 2020; Pooley and Read,
2021), I conclude here that the formalist defense focuses on the wrong target, i.e., representational
capacities.

While BWP does not help justify the relevant version of Leibniz equivalence, I shall still give it
an independent evaluation, as different variants of BWP are prevalent in the literature of philosophy
of physics, especially in discussions of symmetries and dualities. The next subsection, therefore, is
devoted to the task. As we shall see, not only do formalists focus on the wrong target, but their
statements about this target are also only partly correct.

6.3.2 On the Bradley-Weatherall Principle

The Bradley-Weatherall principle is a widely held speculative principle that has not been thor-
oughly evaluated. Various versions of it can be found in the literature of philosophy of physics:7

• Two solutions of a classical theory’s equation of motion are related by a symmetry if and only
if ... they are equally well- or ill-suited to represent any particular physical situation. (Belot,
2013, p. 1)

• Two models of a physical theory are symmetry-related iff they can represent the same possible
physical situations. (Luc, 2022, p. 72)

Here we evaluate BWP first by informal reasoning and then through formal proofs based on the
formal representation framework we developed previously.

I suggest that the direction of BWP from the right to the left is true. If two models are iso-
morphic, then the representational tool we are using is literally the same mathematical structure
(meta-)represented by the set-theoretic models. Therefore, as we are using the same representational
tool, we can only capture the same range of representational contents.

(Theorem 3.28) If two models M1 and M2 are isomorphic, then they have equivalent
representational capacities.

With the assumption that the relevant criterion of isomorphism for Lorentzian manifolds is isom-
etry, the above theorem logically entails LEcap. So at least, one version of LE is indeed correct,
though unable to block the hole argument.

However, the other direction of BWP, that equivalence of representational capacities entails
isomorphism, is not true in general. First, there is no guarantee that two models with equivalent

7See Hall and Ramírez (2024) for more examples.
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representational capacities even share the same signature. For example, the standard model of natu-
ral numbers 〈N,S, 0〉 and its notational variant 〈N,S′, 0′〉 will clearly have the same representational
capacities but are not isomorphic, since they do not share the same signature.

A more charitable reading is to claim that assuming the same signature, equivalent representational
capacities entails isomorphism. This, however, is false as well.

(Theorem 3.29) There are LΣ models M1 and M2 such that they are not isomorphic but
have equivalent representational capacities.

One might hope if equivalence of representational capacities does not entail isomorphism, it should
at least entail some weaker criterion of structural equivalence. Popular candidates raised in the liter-
ature include definitional equivalence, Morita equivalence, categorical equivalence, etc. However, as
proved in Theorem 3.30, there are models with equivalent representational capacities which are not
definitionally equivalent, Morita equivalent or even categorical equivalent.

While the formal proof depends on the details of the representational protocol we adopt, the
intuitive idea behind technical results is straightforward and more general. To illustrate, consider
Figure 3.

· · · · · ·

M′
2

M1 M2

M′
1

Figure 6.2: Models with equivalent representational capacities but not structurally equivalent.

It is intuitive that M1 and M2 have the same representational capacities. After all, no matter how
M1 is used for representation, M2 can mimic the representation of M1 using the copy M′

1 contained
within M2, so M2 will be able to do the same job, and vice versa. However, there is an intuitive sense
in which M1 and M2 are not structurally equivalent: as they still disagree about what the “shape” of
the outermost universe is, whether it is to be characterized as M1 or M2. Thus, it is unsurprising that
the equivalence of representational capacities does not entail popular characterizations of structural
equivalence, from isomorphism to Morita equivalence.

In sum, the right-to-left direction of BWP (isomorphism implies equivalence of representational
capacities) is true, while the left-to-right direction (equivalence of representational capacities implies
isomorphism) is false, and false even if we focus on weaker criteria of structural equivalence, such as
definitional equivalence or Morita equivalence. Therefore, not only does the formalists’ reply to their
critics focus on the wrong target, i.e., representational capacities instead of representational contents,
but what they say about the wrong target is also only partly true.

6.3.3 On Leibniz Equivalence of Contents

Now we have seen that the formalist defense of LE fails, as BWP is only partly correct and at most
justifies LEcap, which is too weak to block the hole argument. What is needed is the strictly stronger
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thesis LEcon. In this section, I argue that the formalist response can be saved by reconstructing a
valid justification for LEcon, based on the formal framework developed in chapter 3.

I propose the following argument for LEcon:

• Generalized Leibniz Equivalence (GLE): If two models M1 and M2 are isomorphic, then,
for any representational context C, if M1 represents a physical situation S in C, then M2 also
represents S in C, and vice versa.

• Isometry as Isomorphism (II): The relevant criterion of isomorphism for Lorentzian manifolds
is isometry.

• LEcon (from GLE and II)

This argument follows the general line of thought in Weatherall (2018) and Halvorson and Manchak
(2022), though it concerns representational contents rather than representational capacities. Indeed,
based on the representational protocols we developed previously, GLE can be stated and proved as
follows.

(Theorem 3.27) For any two isomorphic LΣ-models M1 and M2, the representation Λ
δ−→

M1 is equivalent to Λ
δ−→ M2 for any δ.

Another subtle difference between the above argument and the original argument of formalists is
that the concept of isomorphism used here is logical isomorphism rather than categorical isomorphism.
As we commented previously in Chapter 3, it is not clear how the category of physical models relates
to the process of representation. And so if the argument is interpreted in categorical terms (see
Pooley and Read, 2021), it is would be hard to give an explicit argument for the statement that if two
models are isomorphic in some category, they must represent the same content. However, adopting the
notion of logical isomorphism and building the formal framework of representation based on the idea of
representation as definition, we are able to show how isomorphism influences representational contents,
and rigorously prove the statement we need as Theorem 3.27. But since that logical isomorphism for
a theory T coincides with categorical isomorphism in Mod(T ), the above difference is more about
reasoning strategies but not the final conclusion.

Thus, we have vindicated the truth of GLE. And another assumption II is presumably a conceptual
truth about what kind of mathematical structures the term “Lorentzian manifolds” refers to, as used
by physical mathematicians. Therefore, LEcon is justified based on two plausible assumptions GLE
and II.

6.4 Do Physicists Actually Use Lorentzian Manifolds for Represen-
tation?

We have seen that if we stick to Lorentzian manifolds as our representational tools, then the hole
argument is indeed blocked. The counterexamples raised by antiformalists invoke resources in the
meta-theory extra to the structure of Lorentzian manifolds, and hence do not attack LE. However,
such counter-examples could also be interpreted as suggesting that we should not stick to Lorentzian
manifolds as our representational tools, but instead we should use certain extensions of Lorentzian
manifolds, e.g., Lorentzian manifolds extended with specific identities of spacetime points or directions.
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In this section, I shall first discuss a related but independent question, do physicists actually stick to
Lorentzian manifolds as their representational tools in practice?

This claim is presumably vindicated by standard textbooks of spacetime physics.8 But some
anti-formalists (Gomes and Butterfield, 2023; Landsman, 2023; Cudek, 2024) challenge this claim by
alleged counter-examples. In this subsection, I examine four such examples closely and defend the
formalist assumption against each.

6.4.1 Two Misaligned Planes and the Swerve Model

We first consider the examples already discussed previously, i.e., the two misaligned planes (Roberts,
2020) and the swerve model (Belot, 2018). These examples could be interpreted as suggesting that
physicists really distinguish between isometric manifolds, and so we need specific constants of either
spacetime points or directions in the vocabulary of GR to make sense of such practices. However, this
extension is not really needed to explain the practices. As argued by Luc (2022), these types of exam-
ple used by physicists are actually implicitly considered to represent subsystems of our universes. And
it is perfectly fine for formalists to distinguish isometric subsystems, since they are isometric only with
respect to the quantities within the subsystems, and we can still use the global resources to distinguish
them. So, indeed, if we already have, in our background system, some particle that swerves towards a
certain direction at a certain time, then we can use such a background particle as our reference frame
to distinguish situations in which the particle under current investigation swerves towards different
directions. This can be done even though we do not have constants for spatial directions and stick
to Lorentzian manifolds as our representational tools, where we only have quantification over but no
labeling for spacetime points.

6.4.2 Lie Derivative

Some people (Gomes and Butterfield, 2023; Landsman, 2023) argue that formalists cannot make
sense of the definition of Lie derivative:

LXg(x) = lim
t→0

1

t
(g(x)− (ϕt)∗g(ϕ−t(x)))

They submit that this definition requires one to fix the spacetime points while drag the field g along
the flow ϕ. Arnold (1989, p. 198) gives the metaphor that taking the Lie derivative at some point x,
is like having a fisherman sitting still at x and taking derivative with respect to the river flow (the flow
of the field g) passing in front of him. They argue that formalists cannot make sense of this picture,
since if the identities of spacetime points are fixed by their field values, then the spacetime points
cannot stand still while their field values are dragged elsewhere. Rather, the spacetime points always
stick to their field values. Thus, LXg(x) ≡ 0 for all x, since the field value attached to a spacetime
point does not change.

The genuine difficulty of evaluating this argument is that it is way too ambiguous to be understood.
The main part of the argument relies on a metaphor of fishing, and not every element of the metaphor
has a clear correspondence in differential geometry. While it is pretty clear what it means to say “the
river flows while the stones on the riverbed are fixed”, what does it mean to say “the field g is dragged
along the flow ϕ while the spacetime points stand still”, or that “a point x would stick to its field

8For instance, see Hawking and Ellis, 1973, p. 56 and Wald, 1984, p.260 and p.438
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value”? There is some genuine ambiguity in understanding these terms, which creates a difficulty in
assessing whether the formalist position really leads to such proposed consequences.

The most charitable interpretation of the argument seems to be this: As formalists identify two
isometric spacetimes, if a point x is related to another point y by isometry, then they must be identified,
and therefore, if we drag the field g along the flow ϕ, we construct an isometry between a point x
and ϕt(x). Thus, according to the formalist position, x and ϕt(x) must be the same point, and hence
LXg(x) ≡ 0.

But this interpretation relies on a false interpretation of the formalist position: if two points are
related by isometry, they must be the same point. This is typically what metrical essentialists would
say in spirit, but not formalists. Rather, sticking to Lorentzian manifolds identified up to isometry
only means that there is simply no matter of fact whether it is this point or that point, but not that
the two points are the same. Consider a Lorentzian manifold that has two distinct points related by
isometry. By the formalist response, the only fact of the matter is that there are two distinct points
which instantiate the same set of metric properties — which, however, is completely different from
saying that, since they share the same metric properties, they are identified as the same point. Indeed,
LM identifies Lorentzian manifolds only up to isometry, but we can still formulate a sentence in LM

which says that there is a function f from θ to θ such that f is an isometry (i.e., f is continuous,
diffeomorphic and preserves the metric value), yet there exists a point x such that f(x) 6= x.9 We
can further find LM -models where this sentence is made true. Thus, interpreted in this way, the
anti-formalist argument is based on a false assumption about what the formalist position commits to.

There might be other interpretations of Arnold’s metaphor, but here I shall simply argue that
the formalist shall have no problem dealing with the Lie derivative in principle. In particular, the
Lie derivative can be defined and calculated in LM (with the parameter X denoting an arbitrarily
chosen smooth vector field), a formalism whose isomorphism criterion is precisely isometry, and does
not contain any specific identities of spacetime points. This can be easily seen as follows: the flow ϕ

can be defined from X; g is already contained in LM as a constant, the limit operation is also defined
for the reals. Thus, the Lie derivative can be defined as (in sketch):

LXg(x
θ) = kR := ∃Upθ∃ϵR∃ϕ(xθ ∈ Upθ ∧ (ϕ : (−εR, εR)× U → θ)

∧ ∀yθ ∈ U(ϕ(0, yθ) = yθ) ∧ ∂

∂t
ϕ(t, yθ) = X(ϕ(t, yθ))

∧ kR = lim
t→0

1

t
(g(xθ)− (ϕt)∗g(ϕ−t(x

θ)))).

Here, ϕ is an abbreviation for ϕP(R×θ×θ).
For any Lorentzian manifold M, it is easy to check that the interpretation of the Lie derivative as

defined above must coincide with the standard Lie derivative defined directly in set theory, and thus
we cannot have the problem that LXg(x) ≡ 0 for all x.

9More rigorously, this can be said in some definitional extension of LM , where we add the domain of functions over
θ. Still, the isomorphism criterion remains to be isometry, as the preservation of the set of open sets, the maximal atlas
and the metric tensor field automatically guarantees the preservation of things that are definable from them. The same
point holds for the definition of Lie derivative below.
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6.4.3 Limits of Spacetimes

Gomes and Butterfield (2023) argue that in the definition of the limit of a family of spacetime it
is useful to identify (or in their terminology, thread) points by congruence of curves even if they are
not related by isometry. Cudek (2024) concludes from this example that the language of GR should
include the entire first-order language of set theory, and hence physicists do distinguish between
isometric manifolds.

However, the fact that physicists do use congruence of curves other than isometries in physical
practices per se does not entail that such congruence of curves must have physical significance, for
such talks may only be included for heuristic or practical purposes. And I shall argue that this is
indeed the case. Limits of spacetimes are defined in Geroch (1969) as follows:

Definition 6.1. Let 〈Mλ, gab(λ)〉 be a family of Lorentzian manifolds parameterized by λ, which we
may assume to be a foliation of a five-dimensional manifold M . A limit space of M is then defined as
a tuple 〈M ′, g′ab, λ

′,Ψ, ∂M ′〉 where:

• M ′ is a 5-manifold with boundary ∂M ′ ,

• λ′ is a smooth scalar field on M ′, and ∂M ′ is obtained by setting λ′ = 0,

• g′ab is a tensor field on M ′, with signature (0,+,−,−,−) on ∂M ′,

• Ψ is a smooth, one-to-one mapping from M onto the interior of ∂M ′ such that it takes gab to
g′ab and λ to λ′.

Note that, as Gomes and Butterfield also admit, the definition of limit per se does not rely on
any threading or identification of points other than isometries. The need for a family of frames is
only for the purpose of explicitly calculating metrics in some specific limits we wish to study. For
instance, if we wish to find a limit of Schwarzschild spacetimes, it is hard to use the above definition
directly, say, by putting Schwarzschild spacetimes into a five dimensional manifold with a well-defined
boundary. But it would be much easier if we work with explicit coordinate frames. Let the family of
Schwarzschild spacetimes index by λ (λ = m− 1

3 ). Using the standard Schwarzschild coordinates, we
can write the indexed family of metrics as:

ds2 =

(
1− 2

λ3r

)
dt2 −

(
1− 2

λ3r

)−1

dr2 − r2
(
dθ2 + sin2 θ dϕ2

)
.

If we work with the family of frames generated by the coordinate transformation x = r + λ−4 and
ρ = λ−4θ, the metric will converge to the Minkowski metric when λ → 0, and we will obtain the flat
spacetime as a limit of Schwarzschild spacetimes. In Gomes and Butterfield’s words, we are threading
any two points a and b lying on the Schwarzschild manifold Mλ1 and Mλ2 if r(a) + λ−4

1 = r(b) + λ−4
2 .

But this “threading” here only serves as a tool of calculation, and there are infinitely many distinct
threadings that deliver the same flat limit. Indeed, any threading induced by x = r + λ−n, ρ = λ−n

for any n ≥ 4 will do. Thus, while it may be argued that whether the flat spacetime is a limit of
Schwarzschild spacetimes is a question with physical significance, it is hard to see that the seemly
arbitrary choice of threading (e.g., the arbitrary choice of n ≥ 4 in x = r+λ−n, ρ = λ−n) that is used
to calculate such a limit can be physically significant as well.
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And indeed, the question of whether the flat spacetime is a limit of Schwarzschild spacetimes can
presumably be defined and answered using variations of LM . Here, I give a sketch of the basic idea.
Notice that LM talks only about a single Lorentzian manifold, say M1, with the basic domain θ. To
talk about limits, we only need to add the domain symbols and constant symbols for another five-
dimensional Lorentzian manifold, say M2. Let γ be its basic domain symbol. We add as our axiom
that M2 can be associated with a foliation such that each leaf is a four-dimensional Schwarzschild
spacetime, and that M1 is Minkowski. The question of whether the Minkowski spacetime is a limit
of Schwarzschild spacetimes can then be expressed as a question about whether there exists a five-
dimensional manifold structure over the domain γ ∪ θ, together with a smooth scalar field λ, such
that:

• its boundary is defined by λ = 0, and is precisely M1;

• its interior is precisely M2, and λ gives a foliation of M2 such that each leaf is a four-dimensional
Schwarzschild spacetime.

It is easy to verify that the definition given above coincides with Definition 6.1 and therefore gives
the same answer “yes” to the question. And the extended language which talks about two Lorentzian
manifolds (one four-dimensional, another five-dimensional) still characterizes them only up to isometry,
without any extra structures such as threadings or specific identities of spacetime points.

6.4.4 Quantum Reference Frames

The last example mentioned by Gomes and Butterfield (2023) is quantum reference frames where
“one should anchor the labeling of spacetime points onto the trajectories of the masses involved” (p.24)
To be more precise, Giacomini and Brukner (2023) develop the framework of quantum reference frame
by adopting an operational view of reference frames, where reference frames are seen as physical
systems in general. So spacetime points in different manifolds are operationally identified through
their relationship to the physical points of our apparatus. For instance, the locations of a probe
particle in different superposed spacetimes will be identified as the same. Thus, we are evaluating the
gravitational field “not at an abstract spacetime point but at the location of a particle” (p.5).

Again, we can perform such “identification” within the structure of Lorentzian manifolds. Although
we cannot name specific spacetime points in a Lorentzian manifold, there is no issue with talking
about spacetime points by the properties they satisfy, and in particular, their relationship with our
reference frames as physical systems. So we can uniformly speak about the operationally identified
point by the formula ∃x(ϕ(x) ∧ (...)) where ϕ(x) says that x is the position of the probe particle
(or, the quantum state of the probe particle in the positional basis has support at x), and (...) the
placeholder for whatever one wishes to express about the spacetime point operationally identified. In
any case, formalists have no problem with such operational identification of spacetime points, which is
essentially identification relative to our reference frame as a physical system, in contrast with absolute
identification, which requires identification of spacetime points independent of any physical systems
or spacetime structures they are related to.

6.4.5 Summary of Lessons

Thus, none of the above four examples require deviation from the structure of Lorentzian manifolds,
characterized up to isometry. The lessons can be summarized as follows:
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• Formalists do not commit to the view that isometric subsystems are not distinguished, but only
that isometric universes are not distinguished.

• Formalists do not commit to the view that isometry-related points are identical, but only that
isometry-related points are indistinguishable.

• Not all mathematical constructions that appear in physical practices have physical significance.
Some may just serve for heuristic or practical purposes.

• Formalists can make perfect sense of operational or physical identification of spacetime points
using quantification, but not absolute identification, which identifies spacetime points indepen-
dently of any physical systems or spacetime structures they are related to.

Thus, we conclude that physicists do stick to Lorentzian manifolds (recalled from Section 6.2,
structures characterized up to isometry), as their representational tools in GR. Thus, in the following
sections, by the formalism of GR, we refer to Lorentzian manifolds, i.e., structures characterized by
LM , or equivalently, objects in the category of Lorentzian manifolds Mod(LM ).

6.5 Why Should We Stick to Lorentzian Manifolds?

The last section defends that physicists do use Lorentzian manifolds as the standard representa-
tional tools for spacetime. But this does not mean that we should stick to Lorentzian manifolds as
our representational tools. In particular, the examples discussed in the previous sections could also be
taken to suggest that we should extend our representational tools by adding further structures, say,
specific identities for spacetime points or directions, into the structure of Lorentzian manifolds. In
this section, I shall argue that this is a necessary question that one needs to answer in order to refute
the hole argument, and that the current strategies offered by formalists are not satisfactory.

Now, at first glance, it seems that formalists take the burden of reasoning to be on the side of
anti-formalists. Mundy (1992) says:

“philosophers are welcome to construct modal extensions of physical theories. However, I
claim that nothing in standard physical theory supports such extensions: no scientific prob-
lem requires the introduction of any primitive relation extending across different models.”
(p.522)

Bradley and Weatherall (2024) echo:

“although one can extend the theory to accommodate the hole argument, there are no
empirical or scientific justifications for doing so.” (p.1229)

They are definitely correct that there is no physical motivation for extending the formalism of GR.
But recall that the hole argument is not really an argument that targets the theory of GR but the
substantivalist interpretation of GR, which is a philosophical position about spacetime. And from a
substantivalist point of view, there are indeed good, and even compelling, philosophical motivations
to seek such extensions. 10

10This is presumably also recognized by some formalists. For instance, Weatherall (2018) explicitly admits that his
aim is not to defend substantivalism, but the formalism of GR per se. And he believes that if additional structures to
Lorentzian manifolds are needed by substantivalists, then “would-be” substantivalists, in order to reply effectively to the
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Note that while Lorentzian manifolds are now shown to be free from the hole argument, such
extensions of Lorentzian manifolds would revive it. For instance, consider the case where we extend
the structure of Lorentzian manifolds by constants for spacetime points,11 and have two models M1

and M2 where in M1, c1 lying on the future of c2, yet in M2, c1 and c2 are permuted. Then we can
have the following variant form of the hole argument:

• P1′: M1 and M2 represent two distinct physical situations S1 and S2.

• P2′: S1 and S2 are both physically possible.

• P3′: If S1 and S2 are both physically possible, then indeterminism holds

• C′ indeterminism holds.

Now refuting P1′ along the formalist route is no longer possible, as our representational tools are
now extensions of Lorentzian manifolds and hence the relevant criterion of isomorphism will not be
isometry. Refuting P2′ or P3′ collapses the formalist response into our old metaphysical response. So,
the only intelligible and nontrivial move for formalists is to reject such extensions of the formalism
of GR. Otherwise, there is still a gap between the formalist conclusion (the formalism of GR is free
from indeterminism) and the intended conclusion (the metaphysical reality of spacetime conceived by
substantivalists is free from indeterminism). No wonder that some regard the formalist response as
irrelevant to the debate of the hole argument (Pooley, 2021; Pooley and Read, 2021; Teitel, 2021).

Intuitively, it is hard to justify such rejections. At the very least, substantivalists should accept
that space-time points exist. And there is an intuitive appeal that if something really exists, then it
can be represented by adding a constant to our domain. As Maudlin (1988) puts it,

After all, if event locations are fully in the ontology, why should we not be able to refer to
them as specific individuals? The restriction to bound variables simply has no reasonable
justification within the substantivalist program. (p.84)

So if something exists, then we should be able to talk about it, in one language or another, perhaps
in some extension of the language of GR, if needed.

Possible responses currently available in the literature to justify the rejection of such extensions
are not really successful. We consider a series of responses below.

First of all, to say that naming or reference, perhaps because it is part of our metatheory, is irrel-
evant to the representational capacities of Lorentzian manifolds is no rescue: we are no longer talking
about Lorentzian manifolds anymore (the formalism of GR per se is saved), but whether substanti-
valists are committed to certain extensions of this formalism that leads eventually to indeterminism.
And meta-semantic notions, such as naming, are indeed relevant in the sense that if it is possible,
e.g., to name space-time points, then it will also be possible to extend our Lorentzian manifolds with
constants.

Secondly, the answer given by Halvorson and Manchak (2022) also fails.

hole argument, need to stipulate what the additional structure might be and why we should think it matters.”(p. 344)
However, while Weatherall believes that this is not a promising route, the following discussions suggest that it is natural
and even compelling for substantivalists to extend the formalism of GR, construed as Lorentzian manifolds.

11See Rynasiewicz (1996) for the suggestion of adding constants to Lorentzian manifolds. Stachel (1989) also discusses
a similar kind of extension by adding individuating fields to Lorentzian manifolds.
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One possibility is that the substantivalist theory includes constant symbols for picking out
spacetime points ... But that can hardly be the intention of the substantivalist, because in
that case he would be committed to Minkowski spacetime having no symmetries. (p.12)

However, it is not clear whether it is problematic to have no symmetry in our spacetime. After all, one
may hold that yes, there are no symmetries “in the strictest sense”, but there are plenty of qualitative
symmetries, that is, maps that preserve all quantities that do not mention specific points. For instance,
consider the two-dimensional Euclidean space E2 with the flat metric. If we label each point with a
constant, say 〈x, y〉, where x, y are reals, then the map f : E2 → E2 defined by f(〈x, y〉) = (〈x+1, y+1〉)
is not a symmetry, as it will map the point with label 〈0, 0〉 to the point with label 〈1, 1〉. However,
one may say that f is still a qualitative symmetry in the sense that it preserves all quantities that do
not mention the labels of specific points. In particular, as f is an isometry, it preserves the metric, the
set of open sets and the maximal atlas. And as we have seen in Chapter 5, the preservation of these
three quantities simply means isomorphism of LM guarantees to preserve all properties that can be
expressed in the language of LM , which indeed does not contain constants for specific points. Thus,
one may say that while there is no symmetry in the strictest sense, there are plenty of qualitative
symmetries, and it is those qualitative symmetries that matter for physical purposes.

Thirdly, one may want to say that the extension of constants is illegitimate simply because it is
impossible: we cannot refer to specific spacetime points, in particular, we cannot physically identify
space-time points as specific individuals. Arledge and Rynasiewicz (2019) consider the case where we
tend to identify space-time points using Gaussian normal coordinates. The basic idea is to fix space-
time points by “special” coordinates of a hypersurface plus a “time” coordinate specified by geodesics
normal to the hypersurface. They conclude that this is impossible since at the common time-slice
Σ of M and d∗M, the physical operations we perform to trace geodesics into the future will be the
same, and hence our operation cannot distinguish between geodesics γ and d∗γ. This indeterminacy
of reference leads to the failure of the identification of space-time points as specific individuals.

This reply cannot succeed either. To begin with, notice that this underdetermination of reference
is only a special case of Putnam’s paradox of reference (1980), as also acknowledged by Arledge and
Rynasiewicz. So formalists can only renounce reference to specific space-time points at the cost of
renouncing reference all together. This may be too high a cost to pay. Second, this argument is
vulnerable to a Lewisian reply (1984), just as Putnam’s paradox. Lewis argues forcefully:

Referring isn’t just something we do. What we say and think not only doesn’t settle what
we refer to; it doesn’t even settle the prior question of how it is to be settled what we refer
to. Meanings –as the saying goes – just ain’t in the head. (p. 226)

So reference is partly fixed by the physical world. Take the example from Putnam himself, the
physical operations human did on earth before 17th century to fix the reference of “water” may be
the same as what human did on a twin earth, where “water” is secretly replaced by XY Z but not
H2O. But still, the referents of “water” on earth and twin earth are each determined, i.e., as H2O and
XY Z respectively. Equally, despite the physical operations we perform to establish Gaussian normal
coordinates will be the same in M and d∗M, the referents of the coordinates will be determined by
M and d∗M themselves, i.e., as points traced along geodesics γ and d∗γ respectively.

Additionally, the point is not even about whether our reference is possible. For indeterminism will
follow as long as substantivalists acknowledge that there exist two possible physical situations S1, S2
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with a common time-slice and different futures, whether or not we can identify or specify them by our
limited physical capacities. As a metaphor, it suffices for God to be able to name specific space-time
points, imagine dragging the points along a hole transformation, and decree worlds both before and
after the transformation as possible.

We have argued that the above three justifications for rejecting the extension of Lorentzian man-
ifolds are not really successful. The final prospective resort we consider here, which I believe is also
implicitly suggested by many formalist writings, is to appeal to a specific form of naturalism, which I
call “Matter-of-Fact Naturalism”. The next section gives an analysis of this response and argues that,
at least, the naive version of this principle is hard to defend.

6.6 Matter-of-Fact Naturalism

A naturalist motivation can be identified behind most formalist writings. The general idea seems
to be that philosophers should trust our best scientific theory, not only what it says, but also the
language in which it says it.

As a rough guide, the language of general relativity allows us to say the sort of things
that expert users of general relativity say about the external world – for example, ‘there is
an inextendible geodesic of finite length’ or ‘if the mass increases beyond a certain bound,
then a singularity will form’..... So, when a philosopher starts talking about spacetime
points having different properties in different possible worlds, then they have already gone
beyond the language of general relativity. (Halvorson and Manchak, 2022)

Weatherall (2018) also echoes that we should stick to the formalism of GR since “the fact that we
use the particular mathematical structures we do is the end result of a long process of developing and
interpreting general relativity.” (p.345)

Formalists suggest here that we should simply adopt the language of our best scientific theory, and
any question that goes beyond it would simply not be worth asking. It seems from the above remarks
that formalists assume the following “naive” principle:

Matter-of-Fact Naturalism: If a proposition ϕ about a domain cannot be said in the
language of our best scientific theory about that domain, then we should believe that there
is simply no matter of fact whether ϕ.

For instance, while followers of Aristotle might debate over whether the earth is at the center of the
universe, Lorentzian manifolds simply do not include the structure of “a center”, not even anything
it could be approximately reduced to. Thus, we should simply believe that there is no matter of fact
as to which celestial object is at the center of the universe. Similarly, as Lorentzian manifolds do not
include the specific identities of spacetime points, we should simply believe that there is no matter of
fact whether it is this or that spacetime point that is so-and-so.

However, this principle is subject to the attack of anti-realist arguments against scientific realism.
In particular, Laudan (1981) gives a list of scientific theories that were empirically successful at some
point, but was later proved to be radically false, some of which include “the crystalline spheres of
ancient and medieval astronomy”, “the effluvial theory of static electricity”, and “ the electromagnetic
aether”. Laudan argues that this historical list inductively suggests that scientific theories that are
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empirically successful are prone to radical revisions, and thus, we should not believe in what our
current best scientific theory literally says despite their empirical success.

While scientific realism focuses on the contents of our best scientific theories, Matter-of-Fact Natu-
ralism focuses on the language in which our best scientific theories are stated. But a similar historical
list can be produced to show that there are many things that the once best scientific theories cannot
say in their languages, but were later proved to be physically significant. For instance, in Newto-
nian mechanics, we simply lack the structure to describe the phenomena of quantum entanglement.
People who believe in Matter-of-Fact Naturalism at the age of Newton, would then conclude that
a particle always has an independent state and there is no matter of fact whether two particles are
entangled. Similar examples are abundant. Indeed, every time when scientists discover a phenomenon
that requires essential addition of new structures to the existing theory, the principle of Matter-of-Fact
Naturalism is disconfirmed.

One may object that Matter-of-Fact Naturalism should really be interpreted as saying that we
should believe in the language of our current best scientific theory at this moment, which is perfectly
compatible with changing our views later as science advances. Not so. In particular, the principle of
reflection in formal epistemology states that:

Principle of Reflection If a rational agent believes that their future credence in a propo-
sition will be p, then their current credence in the proposition should also be p.

In formulas, we have Credat (A|Credat+x(A) = r) = r where Credat (A|B) denotes the credence of an
agent a at time t in the proposition A conditioned on the proposition B. Van Fraassen (1984) shows
that a Dutch book can be constructed against any agent who violates the principle of reflection. The
principle of reflection then suggests that if we believe that it is very likely that we will not believe in
the language of our current best scientific theory in the future, then we should not believe in it now.
While the principle of reflection is certainly not uncontested, violating the principle will need further
justification.12

Another possible response is to restrict the Matter-of-Fact Naturalism to the language of our
best scientific theory of all time. While this makes the principle much plausible, we have difficulties
applying this principle to the case of the hole argument, as it is hard to believe that GR will be the
best theory of spacetime of all time.

I conclude that it is not plausible in general to hold the principle of Matter-of-Fact Naturalism,
i.e., to trust what the language of our best scientific theory cannot say. However, I suggest that in
this specific case of the hole argument, we do have good reasons to believe a specific thing that the
language of GR cannot say, which suffice to refute the hole argument. In the next section, I will
argue 1. to refute the hole argument, we only need to buy a specific feature about the formalism of
GR which I call “anti-specificism” about spacetime; 2. this specific feature actually subsists in the
long history of human investigations about the nature of spacetime, surviving all the way through
the radical revisions made by scientists, which gives a positive inductive argument for buying this
feature, and 3. apart from scientific practices, the metaphysical view brought about by this feature
is independently plausible as it avoids many problems faced by contemporary versions of spacetime
substantivalism.

12See e.g. Talbott (1991) and Christensen (1991) for counterexamples to the principle of reflection. Note, however,
such counterexamples of reflection contain essentially unusual cases of forgetting or memory altering. Thus, they do not
help directly to justify how the violation of reflection can be justified in the case of daily scientific practices where no
such unusual cases are involved.
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Chapter 7

Anti-specificism about Spacetime

7.1 Anti-specificism about Spacetime

Looking back at how the hole argument is constructed, we notice that the single most important
feature about the formalism of GR that blocks the hole argument is that Lorentzian manifolds do
not include the specific identities of spacetime points, as can also be seen from the explicit language
LM of Lorentzian manifolds we construct in Chapter 5. Thus, for M and d∗M in the hole argument,
while we drag the metric field along the hole diffeomorphism d within the hole, there is no danger of
indeterminism, since there is simply no matter of fact as to which point is which, or which point is
assigned a specific metric value, and so there is nothing to be indeterminate about. We may call the
view that there is no matter of fact about specific spacetime points anti-specificism about spacetime.

Anti-specificism is a view that belongs to the general camp of “sophisticated substantivalism” or
“anti-haecceitism”. “Sophisticated substantivalism”, a label introduced by Belot and Earman (2001),
is originally used to denote positions which deny that there can be two possible worlds that differ only
with respect to specific identities of spacetime points. And many people follow the original sense of
the term (Pooley, 2013, 2021; Teitel, 2019). But sometimes it is also used more broadly to refer to
any version of substantivalism that rejects indeterminism as the consequence of the hole argument
(Norton, Pooley and Read, 2023). “Anti-haecceitism” is another popular label in the literature that
does not have a fixed meaning. The term “haecceitistic” is often used to refer to those facts that involve
specific identities of some objects, which are sometimes also called “non-qualitative”, in contrast to
“qualitative” facts that do not mention specific objects. Thus, the most general anti-haecceitism says
that there are simply no two distinct possible worlds that differ only with respect to specific identities
of objects, i.e., differ only with respect to haecceitistic facts. A more limited version of haecceitism
(SP -haecceitism in Teitel, 2019) restricts the targeted domain of the thesis to only spacetime points,
saying that there are no two distinct possible worlds that only differ haecceitistically with respect to
spacetime points. Thus construed, (SP -)haecceitism is equivalent to sophisticated substantivalism in
its original meaning. A even more specific understanding of anti-haecceitism is to say that “spacetime
points do not possess trans-world identities” (Norton, Pooley and Read, 2023). In this section, we
will use “sophisticated substantivalism” in its original meaning, and “anti-haecceitism” in the more
specific sense of denying the trans-world identity of spacetime points. Adopting this convention, anti-
haecceitism becomes a specific type of sophisticated substantivalism: if there is no trans-world identity
of spacetime points, then there is no difference such as that p in M has the metric value g(p) while p
in d∗M has metric value g(d−1(p)). A typical example of anti-haecceitism is the counterpart theory
advocated by Butterfield (1989), Gomes and Butterfield (2024a, 2024b), and Jacobs (2024), which says
that there is no identity but only counterpart relationship between spacetime points across possible
worlds. And a typical example of sophisticated substantivalism that is not anti-haecceitism is metric
essentialism (Maudlin, 1988, 1990), which says that spacetime points possess their metric properties
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essentially. We will discuss these views in Section 7.3 in detail.
With terminologies defined as such, anti-specificism is a form of anti-haecceitism, as it denies

any specific identities of spacetime points whether cross-world or not, and a fortiori it is a form of
sophisticated substantivalism. But it is different from the counterpart theory in that anti-specificism
not only rejects haecceitistic facts about spacetime points across possible worlds, but also rejects
haecceitistic facts about spacetime points within a single world. That is, there are no haecceitistic
facts about spacetime points whatsoever.

This view was previously considered by Hoefer (1996), Caulton and Butterfield (2012) and Russell
(2014) under different names.12 There are some noteworthy objections to this view, some of which I
shall put in later sections. But it is important to deal with some prevalent concerns which, I doubt,
prevent people from considering this view seriously from the very beginning. In particular, one may
worry that anti-specificism is really relationalism in disguise.

I tend to think of metaphysical views that reject commitments to absolute spatial positions
of particular things as kinds of relationism, broadly speaking, rather than substantivalism...
Whatever label we give them, the rejecters face the same challenge as relationists: to
find some alternative empirically adequate theory of space without those commitments.
(Russell, 2014, p. 74)

While Russell takes anti-specificism to be what some substantivalists are essentially saying in response
to the hole argument, he thinks that this is really a form of relationalism, or at least, will require a
reformulation of our theory of spacetime just as relationalism does. And he is puzzled by why people
who seem to hold an anti-specificist view about spacetime “have not seemed to appreciate the challenge
to produce an alternative theory” (p.75) Hoefer (1996) similarly recognizes the need of reformulation,
though he argues that a re-interpretation of the formalism of GR in an anti-specificist manner can do
the same job as well.

Both authors believe that our physical theories of spacetime under literal interpretation do commit
to specific identities of spacetime points, and thus anti-specificists need to reformulate or reinterpret
the theory to avoid such commitments. As argued in Sections 5.5 and 6.2, this is a mistake. Instead,
if we believe that the isomorphism criterion for models of GR in its original form is already isometry,
then GR has to be anti-specificist theory from the very beginning. The formulation of GR in LM,
therefore, should not be taken as a reformulation or reinterpretation of the original formalism of GR,

1Russell suggests that haecceitistic propositions about spacetime points are non-factual. He seems to use the term
“factual” in a metaphysically loaded sense, and here I opt for a more neutral terminology by using “matter of fact”
instead. There is an intuitive sense in which whether something is a matter of fact is intelligible, though unpacking
the meaning under the metaphysical context may require future work. Hoeffer also expresses his view as abandoning
“the ascription of primitive identity to spacetime points” (1996, p. 14). Though Teitel (2022) reads Hoefer differently,
suggesting that he only rejects modal haecceitistic facts about spacetime points, i.e., haecceitistic facts across possible
worlds. Caulton and Butterfield (2012) use the term “structuralism” to label a continuum of views that roughly hold that
heuristic facts about spacetime points “are grounded in” qualitative facts. I suggest “the weak end” of the continuum (p.
237) corresponds precisely to anti-specificism considered in this paper. Their discussion also shows that anti-specificsm
is not only motivated for spacetime points, but likely for particles in quantum mechanics as well.

2One may also relate anti-specificism with “generalism”, and in particular, “quantifier generalism” in the discussion
of ontic structural realism (Dasgupta, 2014, 2016; Glick, 2020). However, a crucial difference is that “generalism”, as a
specific type of ontic structural realism, is under the burden of eliminating ontological commitments to individuals, or
at least individuals as fundamental objects, in order to say that, as the famous slogan goes, “all there is to the world
is structure”. In the current context, as a form of (sophisticated) substantivalism, anti-specificism faces no such burden,
and makes no bones about its commitment to the existence of spacetime points.
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but rather as an explication or rational reconstruction of GR. That is to say, it presents the full formal
picture of GR already assumed in physical practice.

And anti-specificism is not only true of the formalism of GR. As we will see later, as part of a
positive induction supporting anti-specificism, that this is so for all historical theories of spacetime,
from Aristotle’s view of spacetime, Newtonian mechanics, special relativity to general relativity. Thus,
among all versions of substantivalism, it is not anti-specificism that calls for a revisionary project,
either in formalism or in interpretation, but traditional versions of substantivalism which do grant
specific identities to spacetime points.

We will also argue that there are many independently good reasons why we should accept anti-
specificism, particularly compared to its peers. But whether or not anti-specificism is tenable, one may
worry, just as Russell, that it is really a form of relationalism in the first place, so the hole argument is
still successful, as it forces us to give up substantivalism. Here, I shall argue that this is not the case.

There are different characterizations of substantivalism. The universal requirement is the commit-
ment to the existence of spacetime points. Notice that anti-specificism does satisfy this requirement.
It does commit to the existence of spacetime points, only refraining from endowing them with specific
identities.

One may wonder what it means or how it is coherent to say that something exists but has no
specific identities.3 But LM is just a rigorous and consistent formulation of this view. In fact, cases
of anti-specificism are actually much more common than one might have thought. Consider a first
order language L1 with a binary relational symbol R as its only non-logical symbol, and a L1 theory
T1 with the following axioms:

• ∃x∃y(x 6= y ∧ ∀z(z = x ∨ z = y)) (there are exactly two distinct things)

• ∃x∃y(x 6= y∧xRy∧∀z∀w(zRw → (z = x∧w = y))) (there is a relation R holding (only) between
the two distinct things, and R is asymmetric)

Consider a further language L2 which adds to L1 two constants c0 and c1, and a L2 theory T2:

• c0 6= c1

• ∀x(x = c0 ∨ x = c1)

• ∀x∀y(xRy ↔ (x = c0 ∧ y = c1))

In comparison, both T1 and T2 say that there are two things, and there is an asymmetric relation
R holding between them. However, while T2 explicitly states that c0 points to c1, T1 is not specific as
to which point is pointing and which point is being pointed. Now, one could still say that T2 contains
more factual information than T1. But if we further take what can be expressed in the language of
L1 and L2 respectively as all matters of fact there are, then T1 does not leave anything out. In fact,
it is easy to see that T1 is complete in L1, i.e., any sentence that can be expressed in L1 is either
provable or disprovable by T1. Then, according to T1 in L1, there exist two things, but there is simply
no matter of fact as to which point is which, period. In this sense, T1 is anti-specific about its domain.

3Teitel (2021), for instance, confesses that “I have very little handle on what these views are meant to be claiming.
Like many, I find the glosses above – involving ideology like what has ‘primitive identity,’ or what ‘can be individuated’
across possibilities — opaque and obscure if not just colorful ways to express some precise first-order modal doctrine like
anti-haecceitism or no-shifts.” (p.266)
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Thus, any first-order theory with existential quantification over a domain but no constants naming
objects within, like T1, will be anti-specific about its domain. But clearly, there is nothing incoherent
or unintelligible about T1 or any such theory in general. The overall lesson is that the commitment to
the existence of something and the commitment to the specific identity of something that exists are
not quite the same thing. One can commit to that there are such and such things, but not to which
one is which.

Now there is often an additional requirement for a position to be qualified as substantivalism, in
extra to the mere commitment to the existence of spacetime points. In particular, substantivalists are
believed to hold that spacetime not only exists but exists “ independently of the processes occurring
within it” (Norton, Pooley and Read, 2023). That is to say, there is no way in which spacetime can
be reduced to relations or properties of material things. There are different senses in which we can
understand the notion of “reduction”, but I shall argue that, under all interpretations of “reduction”,
anti-specificism meets this requirement.

The first sort of reduction is metaphysical reduction, which is sometimes further unpacked as the
relation of grounding (Dasgupta, 2011) or ontological dependence (Cameron, 2023). The general idea
is that if A is metaphysically reduced to B, then A is nothing over and above B in the sense that
once God has created B, A is automatically created. For instance, the singleton set of Socrates (i.e.
{Socrates}) can be metaphysically reduced to Socrates himself. Or one may hold that the product
of domain A and domain B can be metaphysically reduced to A or B. It should be clear that for
anti-specificism, spacetime cannot be metaphysically reduced to sets of relations or properties. In
particular, anti-specificism allows for non-trivial symmetries of spacetime which relate one spacetime
point to a distinct yet indistinguishable spacetime point. As such pairs of points share the same
metrical properties but are still distinct points, there is no way to reduce spacetime points to merely
metrical relations or properties.

The second sort of reduction is semantic reduction. To say that T1 is semantically reduced to
T2 means that there is a translation from theory T1 to T2 that preserves meaning. For example, by
substituting “bachelor” with “unmarried man” one can semantically reduce a theory of bachelor to
a theory without the term “bachelor”. It should also be clear that semantic reduction is impossible
without metaphysical reduction. Particularly, anti-specificism will still contain (purely) existential
quantification of spacetime points. For instance, “there are two distinct spacetime points”, or in
formula, ∃xp∃yp(xp 6= yp) (assuming p as the sort of spacetime points), cannot be semantically reduced,
unless we find a way to metaphysically reduce the domain of spacetime points to another sort of things,
say, sets of metrical properties or relations. But we have just argued that such a metaphysical reduction
is not possible.

The final sort of reduction is epistemic reduction, the concept which features in Oppenheim and
Putnam (1958). Saying that T1 is epistemically reduced to T2 means that the epistemic role of T1, say,
explaining certain phenomena, can be played equally by T2. Now, there are indeed some alternative
formulations of GR, such as Leibniz algebra4, supported particularly by relationalists (e.g., Earman,
1989). The basic idea of Leibniz algebra is that, instead of looking at a concrete manifold M , we
look at the ring of continuous or smooth real-valued functions defined over M (in notation, C(M)

and C∞(M)). Smooth tangent vector fields are then defined as derivations on C∞(M), which form a
module D(M) over the ring C∞(M) that satisfies the Leibniz identity. Further constructions needed

4See Geroch (1972) for technical details.
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to write down field equations are then defined in terms of D(M). A Leibniz algebra or Leibniz model is
thus simply a tuple consisting of a ring R, a subring R∞ (both contain the real field which corresponds
to the set of constant functions over M ) and other objects of algebraic types that correspond to
different fields presented in the standard formalism of GR, e.g., a Lorentzian metric field.

Thus, one may argue that the essential role the manifoldM plays in GR is only to fix the algebraic
structure of C(M) and C∞(M), by which we then write down our field equations. By substituting
the Lorentzian manifold M with the Leibniz algebra that M realizes, we will lose nothing in terms of
explanatory or predictive power of our theory.

First of all, we notice that even if this argument were valid, this should be a challenge to all sorts
of views that purportedly claim to be substantivalist, not just anti-specificism, and thus it does not
disfavor anti-specificism against its substantivalist peers, e.g., metrical essentialism or counterpart
theorists. And we do have reasons to believe that it is invalid. In particular, there are some doubts
whether Leibniz algebra really eliminates commitments to spacetime points. Rynasiewicz (1992), for
instance, submits that a Leibniz algebra is still a substantivalist model in disguise. For one thing, there
is a natural process by which one can easily reconstruct the manifold structure given a Leibniz algebra.5

And secondly, each isometry of a Lorentzian manifold corresponds to a unique homomorphism of the
base ring in its Leibniz algebra through pre- and post-composition of the representation maps. So the
problem of the hole argument reappeared using the formalism of Leibniz algebra.

Finally, we think epistemic irreducibility is not central to how most people view the thesis of
substantivalism, as essentially a thesis concerning the fundamental structure of the world. It is surely
possible to have metaphysical structures or entities which do not play any specific role in explaining
certain phenomena, but adding them in our metaphysical pictures could nevertheless cater to certain
prevalent metaphysical principles that win favor among philosophers or add coherency or elegance to
our overall theory. In such cases, we do have reasons to add entities or structures that are epistemically
reducible. The general lesson is simply that explanatory power is not the only reason by which one
can justify a theory over another. Even if spacetime points are epistemically reducible, it does not
mean that they do not exist or have inferior metaphysical status.

In summary, we have argued that anti-specificism is a clear and coherent form of substantivalism
which is entailed by the formalism of GR. The following sections give in detail the reasons for accepting
this view.

7.2 An Optimistic Induction

Laudan’s pessimistic induction argues that we should not believe what our best scientific theories
say, since they are prone to radical revisions. Indeed, it is perfectly conceivable that physicists update
the theory of GR to a radically different theory, just as we updated Newtonian mechanics to Special
Relativity and then to General Relativity in the early 20th century. However, in this section, I shall
argue that the specific feature of anti-specificism possessed by the formalism of GR is a common
feature in all different historical theories of spacetime despite radical changes. This then gives us an
optimistic induction for anti-specificism.

5More specifically, the set of real maximal ideals of the ring R constitutes a smooth manifold which realizes the
structure of the Leibniz algebra.
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7.2.1 Spacetimes in History

We argued in Section 6.2 that anti-specificism holds if we stick to Lorentzian manifolds as the
formalism of GR, and in Section 6.4 that it is indeed the formalism which physicists actually used in
practice. Thus, we have come to the conclusion that anti-specificism holds for the formalism of GR.

The spacetime for special relativity, i.e., Minkowski spacetime, is really a special case when our
Lorentzian manifold happens to be a Minkowski space, i.e., a four-dimensional pseudo-Euclidean
manifold with a Minkowski metric. The relevant criterion of isomorphism for Minkowski space is again
isometry. The only difference is that, due to specific conditions we impose for a Lorentzian manifold to
be a Minkowski space, such isometry maps form a Poincaré group. But still, there is no requirement
that corresponds to the preservation of labels of spacetime points, and thus anti-specificism holds as
well.

While the above conclusion may not be surprising, we are going to see that anti-specificism is true
for all kinds of classical spacetime structures as well. We give a quick review of such structures below.
Though the labeling by the names of physicists may not be fully faithful to their views, we choose to
follow the convention in coherence with the literature (Friedman, 1983; Earman, 1989).

The sparsest spacetime structure is presumably what Earman (1989) calls “Machian spacetime”
which arguably demonstrates Mach’s view about spacetime. There is some vagueness as to what struc-
ture “the Machian spacetime” amounts to. The general idea is that we have only an absolute notion
of simultaneity, and a family of three-dimensional Euclidean metric spaces as instantaneous spaces.
If we follow this idea literally, then spacetime is simply represented by a family of three-dimensional
Euclidean spaces. The structure of time would only be literally a set of isolated points, and there is
no connection between two points lying on distinct instantaneous spaces. We may call this Machian-
sparse spacetime. One may not be satisfied and instead think that these different instantaneous spaces
are actually not isolated, but “glued together smoothly”. In this case, we may require the whole space-
time to be a four-dimensional manifold, with a smooth foliation into a family of three-dimensional
Euclidean spaces. The leaf space then represents the structure of time. We may require the foliation
to be simple, so that the leaf space also possesses a smooth manifold structure. At this moment, time
is “glued together”, but still not ordered. If one believes that time is indeed linearly ordered, then
we may further require the leaf space to be linearly orderable. One may even want to say that such
an order must be a linear continuum, i.e., a linear order which satisfies the following two intuitive
conditions.

• Density: for any two distinct points a and b, there is a point c such that a < c < b.

• Least upper bound property: for any subset S of the space, if S is bounded above, then there is
a least upper bound of S.

which would say that time is dense and there are no “gaps” in time. One can prove that this is
equivalent to requiring that the orderable leaf space be connected. Now our leaf space is a one-
dimensional, connected (Hausdorff and second-countable) manifold, which then can be proved to be
diffeomorphic to either (intervals or rays of) the real line R, or the circle S1 (Hirsch, 1976). Since the
leaf space is orderable, it cannot be diffeomorphic to S1, and if we add the further conditions that
the linear continuum compatible with the leaf space has no maximum nor minimum, which intuitively
says that time has no starting nor ending point, then the leaf space will be diffeomorphic to the real
line. This final structure, i.e., a four-diemensional spacetime simply foliated into three-dimensional
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Euclidean spaces with the leaf space orderable by a linear continuum, seems to be exactly what Earman
has in mind when he imposes the set of time symmetries for Machian spacetime as t′ = f(t) where
df
dt > 0.

We may call this Machian-rich spacetime. Though, as we have seen, this structure commits only
the mere notion of absolute simultaneity, but also that time is smoothly glued together with space,
and ordered in a particular manner. We also notice that since our leaves are all R3, by Corollary 31
in Meigniez (2002), the simple foliation forms a fiber bundle. And since the base space is contractible,
it is globally trivial. Therefore, in fact, this Machian-rich spacetime must be diffeomorphic to R4. On
the other hand, by positing our spacetime as R4, we precisely commit to the structure of Machian-rich
spacetime.

While Machian spacetime does not admit the comparison of “time interval”, Leibnizian spacetime
enables us to do this by adding a time metric to the above structure. Thus, one may take Leibniz
spacetime to be what we obtain by assigning a real number to each of the leaves in a Machian-rich
spacetime in a way compatible with the linear order. This method assigns a fixed real number as the
time of an instantaneous space, but what actually has physical significance is arguably only the time
interval between two instantaneous spaces. So a more popular approach (Friedman, 1983) is to add
a smooth non-vanishing covector field dt which is exact, i.e., it is indeed the exterior derivative of
some global function t intuitively interpreted as the global time function, which justifies the notation.
In this way, dt only determines t up to a constant, and hence gives no significance to the absolute
value of real a point receives. Note that since R4 is simply connected, it suffices to require that dt is
closed, from which exactness follows from the Poincaré lemma. At this point, we may also summarize
Euclidean metrics for instantaneous spaces into a (2,0)-tensor field h with signature (1, 1, 1, 0) which
is symmetric, and compatible with dt in the sense that habdta = 0. The family of instantaneous spaces
is then defined as the integral surfaces of dt, which, together with the three-dimensional metric fields
induced by h, is required to be three-dimensional Euclidean metric spaces.

Galilean spacetime adds to Leibnizian spacetime a flat affine connection D which is compatible
with h and dt in the sense that Dah

bc = 0 and Dadtb = 0. The fixed connection D allows us to
introduce the notion of parallel transport and consequently the absolute notion of acceleration. If we
take the normed tangent field V a as the velocity field of a particle, then the acceleration of the particle
can be evaluated as the deviation of the parallel transport of the original velocity vector along the
geodesic, or in notation, aa = V bDbV

a.
Newtonian spacetime assumes the further notion of absolute rest. This is done by picking a smooth

vector field A to be the state of rest. We require A to be compatible with previous structures we impose
by setting DaA

b = 0, dtaAa = 1. Then, the particles whose worldlines coincide with the integral curves
of A are said to be at absolute rest, and the absolute spatial velocity W of a particle is evaluated by
subtracting A from the normed velocity field V , in formula, W a = V a −Aa.

Now it is not hard to see that all classical spacetime structures introduced above respect anti-
specificism. Machian-sparse spacetime is only a family of isolated three-dimensional Euclidean spaces.
Euclidean spaces are affine spaces, which give no absolute coordinates to points. So for instance, there
is no matter of fact as to which point is the original point. Instead, an affine space is simply a set of
anonymous points on which a vector space (in this case, Euclidean vector spaces) acts, and there is
no specification as to which point is linked to which by which vector, as every vector equally acts on
every point. Thus, in a Marchian-lite spacetime, there is simply no matter of fact about a particular
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point, but only quantificational facts, e.g. the fact that, for any point x, for any vector v, here is some
instantaneous point y linked to x by v, where x, y, v are all general variables ranging over the whole
domains, but not names for specific points.

Machian-heavy spacetime admits a more substantival structure of time, resulting in essentially a
manifold diffeomorphic to R4. But again, we only move from a family of three-dimensional Euclidean
spaces to a four-dimensional Euclidean space, which still keeps the points within anonymous. Leibniz
or Galilean space is anti-specificist in a similar manner, as adding a time metric or an affine connection
does not add any information about specific points. But even Newtonian spacetime is anti-specificist.
With Newtonian spacetime, we are indeed able to identify points in different instantaneous spaces
by the congruence of integral curves of A. However, there is no specification as to which integral
curve is which. Indeed, any symmetry of a certain instantaneous space that permutes space points
will generate a global symmetry of our spacetime that permutes integral curves passing through the
corresponding space points.

Therefore, to break anti-specificism, we need to commit to a spacetime structure even richer than
Newtonian spacetime. Aristotelian spacetime, e.g., is constructed by adding “the center of the universe”
to Newtonian spacetime, which threatens to refute anti-specificism. Formally, we pick a particular
integral curve of A to specify the worldline of this center. Now, there could be different interpretations
of Aristotelian center of the universe. It could be interpreted as simply a property of spacetime points,
just as other metrical properties one assigns to spacetime points in GR. In this case, anti-specificism
still holds, as we only commit to a property that happens to be satisfied by a single point in each
situation, and we may well insist that there is no matter of fact as to whether it is the same point or
not that satisfies this property in different situations. This is just like some metrical properties which
can only be satisfied by a single point in each situation, and anti-specificists insist that there is no
matter of fact as to which point satisfies them. However, if we understand the Aristotelian center as
the very essence of some particular point which acts as the center of the universe in a metaphysically
necessary manner, then anti-specificism is indeed broken, and now we have at least one special point
in our theory, i.e., the center of the universe.

But there is still a long way to go from Aristotelian spacetime to full specificism, i.e., the case where
the specific identity of every single point is added to our structure. A full specificism would require
assigning specific identities to each spacetime point, which could be done by adding an extra ID field
on the manifold whose value at each point in the manifold is the identity or name of the spacetime
point to be represented. But no such field has ever been proposed in the literature of spacetime. The
only example that presumably validates specificism is the example of colour discussed by Riemann
himself when the notion of manifold was introduced (Riemann, 2004, p.258). Points in the manifold
of colour represent specific colours, and are mutually connected according to their RGB values. Thus,
one may take the manifold simply as a closed cube in R3. We may then add the ID field which assigns
specific RGB values to each point in the manifold. Note that what is special about this case is that
intuitively there is something intrinsic to specific colours that is not captured by the pure manifold
structure. For instance, while permutation of the base R with the base G preserves the manifold
structure, it maps red to green, which intuitively are different by their intrinsic nature. It is for this
reason that an ID field in the manifold of colour is well-motivated and even necessary. In contrast,
there is little motivation for positing specific identities, essence, or intrinsic nature for spacetime points
in addition to the metrical properties they instantiate in the manifold. Indeed, as we have seen, none
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of the classical spacetime structures posit such an ID field for spacetime. And except for Aristotelian
spacetime, all classical spacetime structures commit to anti-specificism to a full extent.

7.2.2 Physicists’ Views in History

One might worry that the formalisms above are really reformulations of classical spacetimes in
the hindsight of spacetime in General Relativity as exactly a four-dimensional metric manifold and
may not faithfully reflect the physicists’ view at that time. However, while physicists like Leibniz
or Newton surely do not have the formal notion of manifold in their mind, I shall argue that their
writings indeed commit to anti-specificism, just as illustrated by the above formalisms.

Due to the limited space, I will focus mainly on the view of Newton and give only a brief overview
of the positions held by other physicists. Indeed, people such as Leibniz or Mach are both famous
relationalists in history, and it should not be surprising at all that they are anti-specificist about
spacetime points. Leibniz, for instance, raises the shift argument against substantivalism of Newtonian
spacetime in Leibniz-Clark correspondence:

Space is something absolutely uniform; and, without the things placed in it, one point of
space does not absolutely differ in any respect whatsoever from another point of space.
Now from hence it follows ... that ’tis impossible there should be a reason, why God,
preserving the same situations of bodies among themselves, should have placed them in
space after one certain particular manner, and not otherwise; why every thing was not
placed the quite contrary way, for instance, by changing East into West. (Leibniz and
Clarke, 1956, p.26)

Leibniz’s argument, whether correct or not, clearly shows his commitment to anti-specificism: for if
there are indeed specific identities for spacetime points, then precisely by the above argument, we
can generate continuum many possible worlds by shifting all the matters in the universe some inches
away from their current positions, which would be objectionable to Leibniz. Galileo (1967) and Mach
(1893) also show a similar commitment to relationalism and consequently to anti-specificism.6

What is more interesting is the view of Newton, whose view of spacetime has been taken as
an archetypical form of full-blooded anti-specificism. But in fact, despite the prevalent impression,
scholars have emphasized that Newton never treats space or time as a full-fledged substance (Stein,
2002; Hoefer, Huggett, and Read, 2021). The following paragraphs of exegesis tend to show further
that Newton’s view of spacetime is indeed anti-specificist.

Newton summarizes his view about spacetime mostly in the Scholium attached to the Principia,
and also in an unpublished manuscript De Gravitatione. The notion of absolute space is introduced in
Scholium for which Newton gives six arguments. While the detailed reasoning of each argument varies,
the basic idea is the same, i.e., absolute space is necessary in order to define the true motion of a body.
As argued by Rynasiewicz (2019), Newton really takes for granted the common assumption, also held
by Aristotelian and Cartesian philosophers, that “each body has a unique state of true motion (or
rest)”, and absolute space is needed to make sense of this notion.

6Mach (1893) stands for relationalism by arguing that all inertial effects are to be explained by the relative motion
of a body with respect to other massive bodies in the universe, but not with respect to the absolute space. Galilean
does not address the issue of substanvalism vs. relationalism directly, but is famous for raising the principle of what
we now call Galilean Relativity (Galileo, 1967), which says that experimenters will observe the very same phenomena
whether they are at rest or moving uniformly with a certain velocity. While indistinguishability does not logically entail
indifference, it does suggest the redundancy of the absolute space as posited by Newton.
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However, as we have also seen in the formalism of Newtonian spacetime presented above, to have
the notion of absolute motion or rest, it suffices to posit the absolute space in an anti-specificist manner.
Specifically, the definition of absolute velocity, i.e., W a = V a−Aa, does not refer to any specific space
point. Instead, it is defined without committing to any specific fact about which space point is which,
left fully open to all symmetries of the three-dimensional Euclidean space. Thus, Newton’s reasons
for positing an absolute space really only support an anti-specificist form of spacetime, and position
of specific identities of spacetime points remains unjustified.

In fact, Newton himself explicitly withdraws from viewing space as “full” substance. In De Grav-
itatione, Newton considers three possible options to classify space, space as substance, as accident
(which is essentially another name for properties) or as nothing. Newton argues that they all fail:

Perhaps now it may be expected that I should define extension as substance, or accident, or
else nothing at all. But by no means, for it has its own manner of existing which is proper
to it and which fits neither substances nor accidents ... And much less may it be said to
be nothing, since it is something more than an accident, and approaches more nearly to
the nature of substance. (pp. 21-2, 2004)

Thus, Newton believes that 1. in contrast with relationalism, space exists, as it is not nothing; 2. in
contrast with metrical essentialism, space cannot be conceived as simply certain sets of properties; 3.
space is not substance neither, though it “approaches more nearly to the nature of substance”.

“Substance” as used by Newton has a very peculiar meaning in this context, and does not corre-
spond to the modern thesis of substantivalism, nor directly to the Aristotelian notion of substance. In
fact, the two reasons Newton gives for rejecting space as substance are the following.

On the one hand, because it is not absolute in itself, but is as it were an emanative effect
of God and an affection of every kind of being; on the other hand, because it is not among
the proper affections that denote substance, namely actions, such as thoughts in the mind
and motions in body. (p.21, 2004)

So Newton rejects the view of space as a substance simply because 1. space points cannot act, and 2.
they are not “absolute in themselves” but “an emanative effect of God and an affection of every kind
of being”. Although the first point is easy to understand, the second one is more elusive. Stein (2002)
carefully analyzes the meaning of this term, and argues that, despite its theological connotation, the
term is really used to mean that space is a necessary consequence of positing anything as existing.
Thus, in Newton’s view, space really exists not as the “characters” of our universe which act (what
Newton calls “substance”), but as “backgrounds” or “props” which have to be there in order for any
character to be able to act.

To argue for the immobility of space, Newton further explicitly advocates the view that both space
and time can only be individuated by their mutual position or order:

Moreover, the immobility of space will be best exemplified by duration. For just as the
parts of duration are individuated by their order, so that (for example) if yesterday could
change places with today and become the latter of the two, it would lose its individuality
and would no longer be yesterday, but today; so the parts of space are individuated by
their positions, so that if any two could change their positions, they would change their
individuality at the same time and each would be converted numerically into the other.
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The parts of duration and space are understood to be the same as they really are only
because of their mutual order and position; nor do they have any principle of individuation
apart from that order and position, which consequently cannot be altered. (2004, p.25)

The most straightforward reading of the above paragraph is a naive form of essentialism which says
that the essence of space (or time) points consists merely in their mutual positions (order), and any
two points which instantiate the same set of positional properties will be identified as the same.7

The problem with this reading is that such naive essentialism is blatantly incoherent with Newtonian
spacetime. In fact, any two points in the three-dimensional Euclidean space share the same set of
positional properties, and yet cannot be identified as one. Here I suggest a more coherent reading is
to take the anti-specificist perspective, and read “individuality” of a point above as the collection of
all matters of fact there are about a point. To individuate two points is simply to find a proposition
holds of one point but not of another. Thus, the above-quoted paragraph suggests the following view:

All matters of fact there are about a space (or time) point are exhausted by the positional
(or sequential) properties instantiated by the point;

which is simply a specific version of anti-specificism about Newtonian spacetime. Note that this view
avoids the problem of naive essentialism as it only claims that, e.g., points in the three-dimensional
Euclidean space are indistinguishable with respect to all matters of fact, but not that they are to be
identified as the same point. It also makes sense of several remarks made by Newton. For instance,
the interchange of positions would indeed lead to the interchange of individuality, as the previous facts
about one point now hold for the other point.

In sum, we have seen that not only the formalism of GR, but also the formalism of historical
theories of spacetime, including many physicists who invent and interpret these theories, advocates
anti-specificism. This gives us an optimistic induction to think that, just as it has survived through
the radical revisions of our past spacetime theory, it will likely survive through the future as well, and
we have good reasons to expect that anti-specificism will be part of the common core of spacetime
theories, if they converge at all. The next section gives a more detailed exposition on this argument,
particularly in comparison with Laudan’s pessimistic induction.

7.2.3 Optimism vs. Pessimism

This section gives a detailed construction of the optimistic induction for anti-specificism, in com-
parison with Laudan’s pessimistic induction. We show that they are not only compatible, but the
pessimistic induction actually strengthens the optimistic induction.

Laudan’s pessimistic induction has the following form:

• Inductive Premises: Theories T1,...,Tn were empirically successful but turned out to be false, and
not even approximately true.

• Inductive conclusion: The current best scientific theories, despite being empirically successful,
are likely to be false and not even approximately true as well.

Thus, Laudan concludes that we should not believe what our best scientific theories literally say.
7Note also that it is not clear whether this view really counts as substantivalism, as essences of space points can be

reduced to merely mutual positional relationship.
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A crucial feature to note about pessimistic induction is that the notion of “empirical success”
adopted in the inductive premises is really a relative one. To say, e.g., that Newtonian mechanics is
empirically successful is simply false, as it is unable to explain lots of empirical phenomena such as
the photoelectric effect (to be explained by quantum mechanics), or time dilation (to be explained
by special relativity). Rather, what is true is that Newtonian mechanics was empirically successful
during the age of 17-19th centuries, but it is not anymore.

Note that this is to say that the above notion of “empirical success” is a notion relative to time.
Rather, it is relative to the range of experience, which happens to be available to human society during
a specific period of time. Thus, for Newtonian Mechanics to be empirically successful, it only needs
to explain the portion of phenomena that were available to the human society during 17-19th century,
and phenomena such as the photoelectric effect or time dilation were simply not among them.

Once we recognize the relative nature of “empirical success”, we can see that the inductive con-
clusion of pessimistic induction is not as strong as it seems. It really says that the scientific theories
that best explain the range of phenomena that are currently available to us are likely not even approx-
imately true. But this should not come as a surprise, since the range of experience that is currently
available to us is really very limited, and it will increase predictably and vastly once scientists are able
to make larger or more precise experimental instruments. As a folklore, it is said that if we are able
to build a particle accelerator with the size of the solar system, we will be able to solve many open
questions in high-energy physics. The real lesson we learn from the pessimistic induction is perhaps
that as the range of experience increases, the scientific theories that best explain it tend to change
radically. But again, it is not clear whether that comes as a surprise, since we always take into account
simplicity or elegance of a theory when we talk about best explanation, and it seems natural to expect
that the simplest theory that explains a certain range of experience could be very different from the
simplest theory that explains a larger range of experience.

In any case, it is important to recognize that the conclusion of pessimistic induction only says
that relative empirical success (i.e., empirical success with respect to a certain range of experience)
does not guarantee truth. And this is natural to expect since a relatively successful theory could fail
very badly at explaining a larger range of experience. But then the induction is compatible with the
following thesis:

Absolute Scientific Realism (ASR): If a theory is absolutely empirically successful (i.e.,
empirically successful with respect to the maximal range of potential experience), then it
is likely to be true.

A no-miracle argument for ASR can be given: it would be a miracle if a theory is able to explain all
potential phenomena, and yet is false.

Note that ASR does not entail scientific realism in the normal sense, sometimes entitled “conver-
gent scientific realism”, which says the best scientific theories of different ages will be closer and closer
to the final truth.8 Indeed, one may hold that while all intermediate products of scientific practices are
radically false, the final scientific theory, which gives the best explanation for all potential phenomena,
is still likely to be true and thus ASR shall hold.

ASR then settles a ground for the optimistic induction for anti-specificism sketched above. Since
anti-specificism holds for all past spacetime theories, we may inductively conclude that it is likely to

8See Popper (1972) for a classical account. See Psillos (1994, 1999, 2009) for a defense of convergent realism by the
divide et impera strategy, and see Lyons (2006), Cordero (2011) for critique.
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hold still for spacetime theories that accommodate a larger and larger range of experience, and in
particular, for the theory that accommodates all potential phenomena, which by ASR, is likely to be
true. Thus, the optimistic induction for anti-specificism assumes only ASR, and is compatible with
the conclusion of pessimistic induction.

In fact, the lesson we learn from the pessimistic induction can be used to strengthen the optimistic
induction in the following manner.

• It is very likely that when we update to a larger range of experience, the scientific theory that
best explains our experience will be radically different from the previous one.

• However, anti-specificism is a feature that survives through all the updates of experience and
radical changes of spacetime theories until now.

• The simplest explanation for this is that anti-specificism is simply a part of the scientific theory
that gives the best explanation for all potential phenomena, and thus it is able to survive through
previous updates of experience.

Pessimistic induction tells us that scientific theories in general do not converge to the final truth
steadily but tend to sway drastically all along the way. But precisely because of this, the fact that anti-
speicficism as a feature of our spacetime theories remains stable throughout the updates of experience
turns out to be a more significant piece of evidence for its truth. Thus, the optimistic induction we
gave is not only compatible with the conclusion of pessimistic induction, but also strengthened by it.

7.3 Anti-speicficism and Its Peers

Apart from the above optimistic induction, I argue that anti-specificism is independently more
favourable than its peers from metaphysical considerations. We first introduce popular versions of
substantivalism about spacetime in literature, and show why anti-specificism is able to avoid the
challenges that plague its peers.

Metric essentialism (Maudlin, 1988, 1990) is a form of sophisticated substantivalism which says
that spacetime points possess their metric properties as their essence. There are different ways of
interpreting this thesis. We may call the position which takes the “metric properties” above as merely
qualitative properties as qualitative essentialism (Teitel, 2019), and non-qualitative essentialism other-
wise. It is also helpful to set the distinction between strict and loose essentialism: the former believes
that there cannot be two objects sharing the same essence, while the latter does not impose such a
restriction. Thus, we have four different versions of metric essentialism, and I will argue that all of
them have serious difficulties.

Non-qualitative essentialism, whether loose or strict, faces the problem of cheap determinism (Tei-
tel, 2022). For if one includes qualitative and non-qualitative metric properties a spacetime point
satisfies in its essence, then determinism holds trivially. For now if any two spacetimes are identical
up to a certain moment, then they must be the same about the future, since all facts about the future
are already included in the essences of the spacetime points lying in the past. But just as Earman and
Norton suggest that determinism should not fail for purely metaphysical reasons, one may similarly
believe that determinism also should not hold for purely metaphysical reasons. But as we have just
seen, Non-qualitative essentialism makes indeterminism simply metaphysically impossible
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Quanlitative loose essentialism is too weak to block the hole argument, as we can have two space-
times identical up to a certain moment but differ in the future haecceitistically, i.e., some set of
qualitative metric properties is instantiated in the future by one point in a spacetime, but by another
point in another spacetime. Qualitative strict essentialism, on the other hand, is incoherent at face
value. In any spacetime which allows symmetries, there will be two spacetime points that share the
same qualitative metric properties, and yet are not identical, which violates the strictness requirement.
One may try to restrict the strictness requirement as applicable only across different spacetimes, i.e.,
that there cannot be two distinct spacetimes where two points share the same qualitative metric prop-
erties. It is not entirely clear whether this restriction is backed up by a reasonable metaphysical notion
of essence that explains why objects in the same possible world may well share essences but objects
across possible worlds cannot. Worse still, it also faces the challenge of cheap determinism: If two
distinct spacetimes are identical to a certain moment, then they must be qualitatively the same, as
all qualitative properties about the future are already included in the essences of the spacetime points
lying in the past. But they also cannot differ haecceitistically, otherwise there will be two distinct
spacetimes where the same qualitative properties are instantiated by different points which violates
the (restricted) strictness requirement.

Another popular choice of sophisticated substantivalism is counterpart theory (Butterfield, 1989;
Gomes and Butterfield 2023a, 2023b; Jacobs, 2024). While metric essentialism may not belong to
the camp of anti-haecceitism, as spacetime points can still be identical or distinct across different
possible worlds, the counterpart theory insists that objects are world-bound, and simply rejects the
idea of cross-spacetime identities. Thus, it is anti-haecceitistic in our sense. Instead of identity or
distinctness, counterpart theorists suggest that objects in different possible worlds should be compared
by the “counterpart” relationship. One object could have zero, one or many counterparts in another
possible world, depending on whether there exists zero, one or many objects in that exotic world
that are similar enough to the original object. Since we are now comparing spacetime points using
counterpart relationship, M and d∗M will not falsify determinism once we pick d as the counterpart
relation which we use to compare the two worlds.

There have been many objections to the counterpart theory in general, all of which would apply to
this specific counterpart version of spacetime substantivalism. For instance, the first-order quantifica-
tional logic brought about by the counterpart theory has many unwelcome results (Lewis, 1968; Hall,
Rabern and Schwarz, 2024). For instance, the intuitive principle of necessity of identity and necessity
of distinctness are invalidated (where □ is the necessity operator):

• 6` □∀x∀y(x = y → □(x = y));

• 6` □∀x∀y(x 6= y → □(x 6= y)).

On the other hand, many counter-intuitive principles, such as Necessity of Existence and the Converse
Barcan Formula, turn out to be valid:

• ∀y□∃x(x = y);

• ∀x□ϕ→ □∀xϕ.

General worries aside, I believe that the specific application of the counterpart theory as a response
to the hole argument also faces difficulties. In particular, while it may avoid the metaphysical version
of the hole argument by denying cross-world identities, it does not seem to avoid the epistemic version.
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While metaphysical determinism says that there cannot be two possible worlds that are identical
up to a certain moment but differ in the future, the epistemic version says that for an agent with
idealized reasoning ability, given all the information about a world up to a certain moment, she will
be in a position to know any future facts about the world. We can give an epistemic version of the
hole argument, using M and d∗M as representing, not metaphysical possible worlds, but epistemic
possibilities concerning the current actual world: for an idealized agent believing in GR, she may know
all the information about the current actual world up to a certain moment, say, a moment before which
M and d∗M still agree, but she cannot know whether the future will be described by M or d∗M,
and thus epistemic determinism fails. Now, just as Earman and Norton argue that metaphysical
determinism should not fail for purely metaphysical reasons, one may similarly argue that whether
epistemic determinism holds or not should be determined a posteriori.

Counterpart theorists cannot answer the epistemic version of the hole argument. Specifically,
while one may deny that there are cross-world identities of spacetime points, the epistemic hole
argument concerns only one world, i.e., the actual world. That is, M and d∗M are not taken to
be representations of two possible worlds, but representations of different epistemic possibilities, i.e.,
conceivable situations in one’s mind, of the actual world. And the counterpart theorists do admit that
we can talk about identity or distinctness of spacetime points within one world. With the standard
notion of identity and distinctness available, it seems unjustified to choose instead the alternative
counterpart relationship and defend epistemic determinism in terms of it. In other words, it would be
unmotivated for counterpart theorists to argue that M and d∗M, when both are taken to describe the
same actual world, should be compared using the counterpart relationship d instead of the standard
identity map.

We have seen that both metric essentialism and counterpart theorists have their own problems.
But anti-specificism avoids such a problem quite easily. Anti-specificism is free from the challenge of
cheap determinism: things about specific identities are not regarded as matters of fact. Thus, being
identical up to a certain moment does not require the two worlds to align in the specific identities of
spacetime points before that moment, which, according to essentialists, could already entail qualitative
or non-qualitative facts about the future that lead to cheap determinism. Thus, whether determinism
holds or not is still left completely open by the field equation of our spacetime theory. Additionally,
anti-specificism has no problem dealing with the epistemic hole argument. For whether M and d∗M
are taken to be describing two possible worlds or two epistemic possibilities concerning the same actual
world, anti-specificists always hold that there is no matter of fact that involves specific identities of
spacetime points, and thus M and d∗M will always be taken to have the same representational
content.

7.4 Conclusion

We conclude that anti-specificism provides a form of (sophisticated) substantivalism which blocks
the hole argument. We have independently good reasons to accept anti-specificism since it is 1.
supported by the formalism of GR, 2. supported by the formalism of previous spacetime theories, and
3. is shown to avoid certain challenges (e.g., cheap determinism) that plague other popular versions
of sophisticated substantivalism, such as metric essentialism and counterpart theory.
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Chapter 8

Conclusion

In this thesis, I have explored the concept of theoretical equivalence from the perspective of rep-
resentational equivalence. The general lesson is that the interaction between the formal perspectives
and the representational or interpretational perspectives of scientific theories proves to be fruitful.
On the one hand, by adopting the perspective of representation, we are able to better understand
the philosophical significance behind all kinds of formal criteria and extract significant philosophical
consequences from formal theorems. On the other hand, the construction of a formal framework of
representation provides us with a rigorous tool to clarify and disentangle ambiguous philosophical
notions, such as representational contents or representational capacities, and to evaluate speculative
philosophical principles and claims, such as the Bradley-Weatherall principle and Leibniz equivalence.

It is undeniable that the discussions presented in this thesis are subject to many limitations. In
particular, the following questions are left for future work.

• Chapter 4 discusses how the formal results suggest a pluralist position on theoretical equivalence.
The discussion is relatively brief due to space limitations, and more detailed arguments may be
constructed in support of this view.

• The notion of definition, translation or interpretation explored in Chapter 2 focuses only on non-
logical symbols. According to logical anti-exceptionalism1, logic is continuous with the sciences
and logical symbols do not have a special status in scientific theories. Thus, generalizing current
work to include logical symbols would be a natural next step.

• This thesis takes the hole argument as its main example. There are many other discussions in
philosophy of physics that concern whether two theories are equivalent or not, e.g., the discussion
about the equivalence of Hamiltonian and Lagrangian formulations of classical mechanics, the
discussion about the equivalence of different formulations of quantum mechanics, etc. Further
applications to these cases may help clarify the discussion and potentially provide new insights.

1See Williamson (2013, 2017), Priest (2014), Martin and Hjortland (2021) for representatives of this view.
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Appendix A

Non-disjoint Languages

The reason why people restrict themselves to disjoint signatures is clear. If T1 and T2 have non-
disjoint signatures, then T1 cannot freely define symbols of T2, as the definitions can be in contradiction
to T2, and vice versa. Indeed, without restricting to disjoint signatures, definitional equivalence would
not even be transitive, as proved in Barrett and Halvorson (2016) Example 5 and Lefever and Székely
(2019) Theorem 1. Lefever and Székely (2019) then gives a definition of definitional equivalence that
is equivalent to the standard formulation for disjoint signatures, but applies to non-disjoint signatures
as well.

Definition A.1. T1 and T2 are definitional equivalent by chain if there is a finite sequence T1, ..., T2
such that for any neighboring pair T and T ′ in the sequence, either T definitionally extends T ′ or T ′

definitionally extends T .

It is easy to see that this relation is indeed an equivalence relation. Lefever and Székely (2019,
Theorem 4) give a proof that it is equivalent to standard definitional equivalence in disjoint signatures.

Theorem A.2. Two theories with disjoint signatures are definitional equivalent by chain if and only
if they are definitional equivalent in the standard sense.

While Lefever and Székely give only a syntactical version, the corresponding semantical version
can be given in a similar spirit.

Definition A.3. M1 and M2 are definitionally equivalent by chain if there is a finite sequence
M1, ...,M2 such that for any neighboring pair M and M′ in the sequence, either M definitionally
extends M′ or M′ definitionally extends M.

Similarly, we can prove the following theorem.

Theorem A.4. Two models with disjoint signatures are definitional equivalent by chain if and only
if they are definitional equivalent in the standard sense.

Here, I propose another conceptually simpler way to solve the issue of non-disjoint signatures.

Definition A.5. We say that Σ is a disjoint copy of Σ′, if they are disjoint and there is a bijection t
from Σ to Σ′ that preserves arity.

Note t naturally extends to a bijection t∗ from formulas of LΣ to formulas of LΣ′ , and hence a
bijection from theories of LΣ to theories of LΣ′ . Also note that it induces a bijection t† from models
of LΣ to models of LΣ′ , where for any symbol α ∈ Σ, we set t(α)t†(M) = αM.

Definition A.6. Let T1 be a theory in signature Σ1, and T2 a theory in signature Σ2. We say that
T2 is a disjoint copy of T1, if Σ2 is a disjoint copy of Σ1 witnessed by bijection t, and that t∗(T1) = T2.
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Definition A.7. Let M1 be a model in signature Σ1, and M2 a model in signature Σ2. We say
that M2 is a disjoint copy of M1, if Σ2 is a disjoint copy of Σ1 witnessed by bijection t, and that
t†(M1) = M2.

Thus, we can define the following notion of definitional equivalence modulo copy.

Definition A.8. Two theories T1 and T2 are definitional equivalent modulo copy if there exists a
disjoint copy T ′

2 of T2 such that T1 and T ′
2 are definitional equivalent.

Definition A.9. Two models M1 and M2 are definitional equivalent modulo copy if there exists a
disjoint copy M′

2 of M2 such that M1 and M′
2 are definitional equivalent.

It is clear that for disjoint signatures, definitional equivalence modulo copy is equivalent to (stan-
dard) definitional equivalence.

Theorem A.10. Two theories/models with disjoint signatures are definitional equivalent modulo copy
if and only if they are definitional equivalent in the standard sense.

It is also easy to show that definitional equivalence modulo copy is equivalent to definitional
equivalence by chain.

Theorem A.11. Two theories/models are definitional equivalent modulo copy if and only if they are
definitional equivalent by chain.

As disjoint copy gives a straightforward manner to generalize definitions and theorems given in
situations with disjoint signatures. Therefore, in the maintext of this thesis, we feel free to assume in
certain cases that the signatures of theories or models are disjoint.
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Appendix B

An Alternative Definition of Morita Ex-
tension

We present an alternative definition of Morita extension. A definition for pure Morita extension
will be given first.

Definition B.1. Let T be a many-sorted first-order theory in signature Σ and T+ be a many-sorted
first-order theory in signature Σ+ such that Σ ⊆ Σ+. We say that T+ is a atomic pure Morita
extension of T if one of the following holds:

• Σ+ = Σ ∪ {σ, π0, π1} and we have T+ ≡ T ∪ {Φprod
σ } .

• Σ+ = Σ ∪ {σ, p0, p1} and we have T+ ≡ T ∪ {Φcop
σ }.

• Σ+ = Σ ∪ {σ, π} and we have T+ ≡ T ∪ {Φsub
σ }, and T |= ∃xσ0ϕσ(x

σ0).

• Σ+ = Σ ∪ {σ, π} and we have T+ ≡ T ∪ {Φquo
σ }, and T proves that ϕσ defines an equivalence

relation.

We say that T+ is a pure Morita extension of T if there is a set of atomic pure Morita extensions
{Tα}α<ω, such that:

• for any two distinct α1, α2 < ω, ΣTα1
∩ ΣTα2

= ΣT .

• T+ =
∪
{Tα}α<λ;

Definition B.2. We say that T+ is a pure Morita descendant of T if there is a finite sequence of pure
Morita extensions T1, ..., Tn such that T1 = T and Tn = T+.

We notice the following lemma (Lemma 5.13 in Meadows (2024)).

Lemma B.3. T+ is a Morita descendant of T iff there is a pure Morita descendant T ∗ of T such that
T+ is a definitional extension of T ∗.

This lemma then gives us an alternative definition of Morita descendant, and consequently an
alternative definition of Morita equivalence.

The original proof’s use of the coding lemma (as proved in Andréka, Madarász and Németi,2008
and Barrett and Halvorson, 2016) is not entirely sound. Here we present a different proof which does
not rely on the coding lemma.

Lemma B.4. (Halvorson, 2019, p.124) Let T+ be a definitional extension of T . Let LT+ be the
language of T+, and let LT be the language of T . Then we can define a canonical translation t from
LT+ to LT obtained by translating every new symbol s to its definition ϕs, and every old symbol s to
itself, with no relativization over domains.
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Lemma B.5. (Lemma 4.6.11 in Halvorson, 2019) Let T+ be a definitional extension of T , and t the
canonical translation. T+ ` ϕ↔ t(ϕ) for all LT+ formulas ϕ.

Lemma B.6. (Lemma 4.6.12 in Halvorson, 2019) Let T+ be a definitional extension of T and t the
canonical translation, if T+ ` t(ϕ) then T ` t(ϕ).

Now we give the proof of Lemma B.2 as follows.

Proof. We prove by induction on the length of the mixed Morita expansion T ∗. Suppose the conclusion
holds for mixed Morita expansion of length n. Consider a mixed Morita expansion T ∗

n+1 of length
n + 1. By definition, T ∗

n+1 is a mixed Morita successor of T ∗
n which is a mixed Morita expansion of

T of length n. By inductive hypothesis, there is a pure Morita expansion T+
n of T and a definitional

extension T †
n of T+

n such that T ∗
n ≡ T †

n.
Now T ∗

n+1 is a mixed Morita successor of T ∗
n . Let the set of symbols in T ∗

n+1 but not in T ∗
n be Σ

(i.e. Σ := ΣT ∗
n+1

\ΣT ∗
n
). We first define T+

n+1 as a pure Morita expansion of T+
n where we add sort

symbols in Σ. Note that since definitional extensions do not define new sorts, the set of sort symbols
will be the same for T+

n and T †
n. And since L

T †
n
= LT ∗

n
, the set of sort symbols will be the same for

T+
n and T ∗

n .

• Suppose σ ∈ Σ is defined in T ∗
n+1 as a product of σ1 and σ2. Then σ1 and σ2 are in T ∗

n and
hence already in T+

n . So we can also define σ in T+
n+1 as a product of σ1 and σ2.

• The case for coproduct is exactly the same as the product case.

• Suppose σ ∈ Σ is defined in T ∗
n+1 as a subsort of σ1, with the domain formula ϕ. Again, σ1 will

already be in T+
n . And since t preserves the quantification of domains, t(ϕ) is a formula in LT+

n

with at most one free variable of sort σ1. Thus, we can define σ in T+
n+1 as a subsort of σ1 with

the domain formula t(ϕ).

• Suppose σ ∈ Σ is defined in T ∗
n+1 as a quotient of σ1 by the formula ϕ. Then we define σ in T+

n+1

also as a quotient of σ1 by the formula t(ϕ). We check that the admissibility condition holds.
Let ψ be the sentence in T ∗

n that says ϕ defines an equivalence relation over σ. The admissibility
condition gives us that T ∗

n ` ψ. Then T †
n ` ψ. By Lemma B.5, we have T †

n ` t(ψ). By Lemma
B.6, we have T+

n ` t(ψ). As t preserves boolean connectives and quantifications, t(ψ) says that
t(ϕ) defines an equivalence relation over σ1. Thus, the admissibility condition indeed holds for
t(ϕ).

Along the way, we also define the projection functions in Σ accordingly.
We have defined all the sort symbols and associated projection functions in Σ in T+

n+1. Now we
give a definitional extension T †

n+1 of T+
n+1 where we define other constants, relational or functional

symbols in Σ, and also inherit definitions from T †
n.

For any constant, functional or relational symbol defined in T †
n by formula ϕ, let it be defined in

exactly the same way by ϕ in T †
n+1. For a constant, functional or relational symbol in Σ, we define it

in T †
n+1 as follows. It suffices to show the case for functional symbols.
Suppose T ∗

n+1 defines a new functional symbol f by a LT ∗
n
-formula ϕ with arity 〈σ1, ..., σn〉 → σ,

where σ1, ..., σn, σ are sorts in LT ∗
n
. Then we may define f in T †

n+1 by the LT+
n
-formula t(ϕ). Again,

we check the admissibility condition. Let ψ be the sentence in T ∗
n that says ϕ defines a functional
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symbol with arity 〈σ1, ..., σn〉 → σ. The admissibility condition gives us that T ∗
n ` ψ. Then T †

n ` ψ.
By Lemma B.5, we have T †

n ` t(ψ). By Lemma B.6, we have T+
n ` t(ψ). Since T+

n+1 is a pure Morita
expansion of T+

n , T+
n+1 includes T+

n , and hence T+
n+1 ` t(ψ). As t preserves boolean connectives and

quantifications, t(ψ) says that t(ϕ) defines a functional symbol with arity 〈σ1, ..., σn〉 → σ. Thus the
admissibility condition indeed holds for t(ϕ).

Now we have defined T †
n+1 as a definitional extension of a Morita expansion T+

n+1 of T . We then
show that T ∗

n+1 ≡ T †
n+1.

We first show that T †
n+1 entails T ∗

n+1. Note that T ∗
n+1 ≡ T ∗

n ∪ Φ1 ∪ Φ2, where Φ1 is the set of
definitions for new sort symbols and Φ2 the set of definitions for new constant, functional or relational
symbols.

By construction, T †
n+1 includes T †

n, and since T †
n ≡ T ∗

n , we have for any LT ∗
n+1

sentence ϕ ∈ T ∗
n ,

T †
n+1 ` ϕ.
Let δσ be the definition of a new sort symbol in Φ1. If it is a definition of a new product or

coproduct, it is already included in T+
n+1 and hence in T †

n+1. If it is a definition of a new quotient sort
by a formula ϕ, then T+

n+1 contains a definition of the same quotient sort by t(ϕ). By Lemma B.5, we
have T †

n ` ϕ↔ t(ϕ), and thus T †
n+1 ` ϕ↔ t(ϕ). Therefore, T †

n+1 ` δσ. The case for subsorts is similar.
Thus, for any sentence ϕ ∈ Φ1, T †

n+1 ` ϕ.
Let δs be the definition of a new constant, functional or relational symbol in Φ2 by the T ∗

n -formula
ϕ. By construction, T †

n+1 includes the definition of the same constant, functional or relational symbol
by the T+

n -formula t(ϕ). By Lemma B.5, we have T †
n ` ϕ↔ t(ϕ), and thus T †

n+1 ` ϕ↔ t(ϕ). Therefore,
T †
n+1 ` δs. Thus, for any sentence ϕ ∈ Φ2, T †

n+1 ` ϕ.
Therefore, for any formula ϕ, if ϕ ∈ T ∗

n+1, then T
†
n+1 ` ϕ. We then prove the other direction, i.e.

for any formula ϕ in T †
n+1, we have T ∗

n+1 ` ϕ.
T †
n+1 is defined as the definitional extension of T+

n+1 which is a pure Morita extension of T+
n . For

any formula ϕ ∈ T+
n , since T †

n is a definitional extension of T+
n , T †

n ` ϕ; and since T †
n ≡ T ∗

n , T ∗
n ` ϕ,

and consequently T ∗
n+1 ` ϕ.

T+
n+1 is obtained by adding new sort symbols to T+

n . Let δσ be the definition of a new sort symbol
σ in T+

n+1. It suffices to demonstrate the case where σ is a quotient sort defined by a formula t(ϕ).
Note that this means that T ∗

n+1 contains a definition of σ as a quotient sort by ϕ. By Lemma B.5,
we have T †

n ` t(ϕ) ↔ ϕ. Again, since T †
n ≡ T ∗

n , and T ∗
n+1 includes T ∗

n , we have T ∗
n+1 ` t(ϕ) ↔ ϕ.

Therefore, T ∗
n+1 ` δσ as well.

Finally, T †
n+1 is defined as a definitional extension of T+

n+1. For the part of T †
n+1 which coincide

with T †
n, as T †

n ≡ T ∗
n , we have T ∗

n+1 ` ϕ for any formula ϕ in T †
n. Now consider the part which consists

of definitions of new constant, functional or relational symbols in Σ. It suffices to demonstrate the
case where T †

n+1 contains a definition δf of a functional symbol f by the formula t(ϕ). This means
that f is defined in T ∗

n+1 by ϕ. By Lemma B.5, we have T †
n ` t(ϕ) ↔ ϕ. Again, since T †

n ≡ T ∗
n , and

T ∗
n+1 includes T ∗

n , we have T ∗
n+1 ` t(ϕ) ↔ ϕ. Therefore, T ∗

n+1 ` δf as well.
Thus, for any sentence ϕ ∈ T †

n+1, we have T ∗
n+1 ` ϕ.
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Appendix C

Beth’s Definability Theorem for Many-
Sorted Logic

In this section, we prove Beth’s definability theorem for many-sorted logic. The proof essentially
follows the general line in Andréka, Madarász, and Németi (2008) who prove the theorem for many-
sorted theories with countable languages (for the use of omitting type theorem), finitely many sorts (for
the translation to first-order logic) and have at least one sort with more than one element (for technical
reasons). The following proof generalizes the result in the sense that we will assume none of these
conditions. Instead, we will assume the many-sorted version of some standard model-theoretical results,
in particular, the fundamental theorem and the Keisler-Shelah theorem of ultraproducts. Following
standard model-theoretical textbooks (e.g., Hodges (1993)), it can be checked that the single-sorted
proofs of such theorems also work for their many-sorted analogs by straightforwardly changing the
notation. For other standard results about many-sorted logic, e.g., completeness and compactness, see
Manzano (1996).

Unless otherwise noted, theories in this section concern first-order many-sorted logic. For conve-
nience, we focus only on relational theories. Morita extension in this section is allowed to do arbitrarily
finite products and coproducts. We use xσ for sequences of variables of sorts σ, and we use the nota-
tion (xσ)i to denote the i-th element of xσ. And we assume in the following that T+ is a Σ+-theory
and T = T+|Σ, for some Σ ⊆ Σ+.

Definitions C.1-C.3 are generalized from Hodges (1993, Chapter 12).

Definition C.1. We say that T+ is implicitly definable in T if for any model of M of T , and any two
expansions M1 and M2 of M which are models of T+, we have that there is a unique isomorphism
from M1 to M2 which fixes M.

Definition C.2. We say that T+ has the uniform reduction property over T if for any Σ+-formula
ϕ(xσ), where xσ are Σ-variables, there is a Σ-formula tr(ϕ) with free variables among xσ such that
T+ ` ϕ(xσ) ↔ tr(ϕ)(xσ).

Definition C.3. We say that T+ is coordinatised over T if:

• T+ has the uniform reduction property over T ;

• For any M+ of T+, every element in M+ is in the definable closure of M+|Σ.

The following definition generalizes the notion of coding in Andréka, Madarász, and Németi (2008)
and Barrett and Halvorson (2016), which is essentially an analog of “piecewise” translation in Visser
(2009): we allow a new sort to be “coded” by many different sequences of sorts in different contexts.

The idea is intuitive: let Σ+ = Σ ∪ Σ∗, and we want to “code” a new Σ+ theory into an old Σ

theory. We will allow a new sort σ to be constructed by taking the union of a set f0(σ) of sequences
of old sorts. So whenever we want to translate a new formula with new variables, we need to use
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k ∈ Πσi∈Σ∗f0(σi) to record the old sorts from which the new objects are supposed to be constructed.
The formal definition is as follows.

Definition C.4. Let Σ+ = Σ ∪Σ∗ and let T+ be a Σ+-theory. We use x, y, z... as meta-variables for
variables in Σ∗ and p, q, r for variables in Σ.

A coding of of T+ in T is a function f = f0 ∪ f1 ∪ f2 ∪ f3 defined as follows:

• f0 (the map of sorts): for each sort σ in Σ∗, f0(σ) = {〈0, σ0〉, ..., 〈n, σn〉} where σ0, ..., σn are
sequences of sorts in Σ;

• f1 (the map for variables): for each variable xσ in Σ1, f1(xσ) is a set of sequences of Σ2-variables
{xσ〈i,σ〉|〈i, σ〉 ∈ f0(σ)};

– We require that yβ〈i,β〉, z
γ
〈j,γ〉 ∈ f1(x

σ) are disjoint if i 6= j.

– We require that variables appeared in f1(xσ) and f1(yγ) are disjoint if xσ and yγ are distinct
variables;

– For convenience, we call k ∈ Πxσ∈Σ1f1(x
σ) an assignment of f . We write A(f) :=

Πxσ∈Σ1f1(x
σ). And we write k̃(xσ) := 〈i, σ〉 for k(xσ) = xσ〈i,σ〉.

• f2 (the coding formulas): for each variable xσ in Σ∗, f2(xσ) is a function from A(f) to Σ+-
formulas, such that for each assignment k, f2(xσ)(k) is a Σ2-formula with free variables among
xσ, k(xσ);

– We require that if k̃(xσ) = k̃′(yσ), then f2(xσ)(k) = f2(y
σ)(k′)[yσ 7→ xσ, k′(yσ) 7→ k(xσ)];

• f3 (the map for formulas): for each assignment k, and each Σ+-formula ϕ(xσ1 , ..., xσn , pγ),
f3(ϕ)(k) is a Σ-formula with free variables among k(xσ1)(k), ..., k(xσn), pγ

– if k̃(xσi) = k̃′(yσi) for all 1 ≤ i ≤ n,
f3(ϕ(x

σ1 , ..., xσn , pγ))(k) = f3(ϕ(y
σ1 , ..., yσn , qγ))(k)[k(yσ) 7→ k(xσ), qγ 7→ pγ ]

Let [xσ1 , ..., xσn ] be the quotient of A(f) by the equivalence relation k ∼ k′ if k(xσi) = k′(xσi) for
all 1 ≤ i ≤ n. We write ∀k(xσ) for ∀k(xσ1)...∀k(xσn), and f2(xσ)(k) for f2(xσ1)(k) ∧ ... ∧ f2(xσn)(k).

We further require that

1. T+ ` ∀xσ(
∨

[k]∈[xσ ] ∃k(xσ)[(f2(xσ))(k)]),

2. T+ ` ∀k(xσ)∃≤1x
σ(f2(x

σ)(k))

3. for any two k, k′, if k(xσ) 6= k′(xσ), then T ` ∀xσ¬(∃k′(xσ)[(f2(xσ))(k′)] ∧ ∃k(xσ)[(f2(xσ))(k)]).

4. For any Σ+-formula ϕ(xσ1 , ..., xσn , pγ), we have that
T+ ` ϕ(xσ1 , ..., xσn , pγ) ↔

∧
[k]∈[xσ ] ∀k(xσ)(f2(xσ)(k) → f3(ϕ)(k))

Lemma C.5. If T+ is implicitly definable in T , then for any model M1,M2 of T , and any of their
expansions M+

1 and M+
2 in Mod(T+), if there is an isomorphism f from M1 to M2, then there is a

unique isomorphism f+ from M+
1 to M+

2 that extends f .
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Proof. Let h be the isomorphism from M1 to M2. Substituting M1 for M2 in M+
1 , we have a model

M∗
2. Since M1

∼= M2, there is an isomorphism k : M∗
2
∼= M+

1 that extends h. Since M∗
2 and M+

2

are both expansions of M2, there is a unique isomorphism between M∗
2 and M+

2 fixing M2. Thus,
M+

1
∼= M+

2 .
Suppose (towards a contradiction) that there are two different isomorphisms f, g from M+

2 to M+
1

that extends h−1. Then, combined with k, k ◦ f and k ◦ g are two different isomorphisms from M+
2

to M∗
2 (Note that k is a mono in Mod(T+)). Since k extends h, and both f, g extend h−1, we have

that k ◦ f and k ◦ g are two different isomorphisms from M+
2 to M∗

2 both fixing M2. Contradiction.
Therefore, there is a unique isomorphism f+ from M+

1 to M+
2 which extends h.

The following theorem is a variant of Hodges (1993), Lemma 12.5.1, and the proof is a modifica-
tion of Theorem 3.3.3 in Andréka, Madarász and Németi (2008). Both of the proofs essentailly use
the completeness of theories.1 Here, with the assumption of implicit definability, the assumption of
completeness can be dropped. We assume the many-sorted version of the Keisler-Shelah theorem, the
fundamental theorem and the expansion theorem of ultraproducts.

Theorem C.6. If T+ is implicitly definable in T , then T+ has the uniform reduction property over
T .

Proof. Suppose (towards a contradiction) that this is not the case. Then there is a Σ+-formula
ϕ(xσ1 , ..., xσn) such that for any Σ-formula ψ with free variables among xσ1 , ..., xσn , T 6|= ϕ(xσ) ↔
ψ(xσ).

We claim that there are models M1 and M2 of T+, their submodels N1 := (M1)|Σ, N2 := (M2)|Σ,
and sequences of elements, aσ in N1, b

σ in N2, such that tpN1(a
σ) = tpN2(b

σ
), and yet M1 |= ϕ(aσ)

and M2 6|= ϕ(b
σ
).

Suppose (towards a contradiction) that this is not the case, then if tpN1(a
σ) = tpN2(b

σ
), we must

have M1 |= ϕ(aσ) if and only if M2 |= ϕ(b
σ
). Then there is a subset Φ ⊆ SσT such that for any

model M of T+, and any sequence of elements aσ in M, we have that M |= ϕ(aσ) if and only if
tpM|Σ(a

σ) ∈ Φ. For any p ∈ Φ, T+ ∪ p ∪ {¬ϕ} is inconsistent. By compactness, we can find a finite
subset of p, take its conjunction as ψp and we have that T+ ` ψp → ϕ. Then we may list all the types
in Φ as {pi}i<λ. Then for any model M of T+, aσ in M, M |= ϕ(aσ) if and only if M |= ψpi(a

σ)

for some i < λ. Then T+ ∪ {¬ψpi |i < λ} ∪ {ϕ} is inconsistent. By compactness, there is a finite
subset {ψ1, ..., ψn} such that T+ ` (

∧
1<i<n ¬ψi) → ¬ϕ. As T+ ` ψp → ϕ for all p, we also have

T+ ` ¬ϕ→ (
∧

1<i<n ¬ψi). Therefore, T+ ` ¬ϕ↔ (
∧

1<i<n ¬ψi). Contradiction.
Then N1, a

σ ≡ N2, b
σ. By the Keisler-Shelah theorem, there is an ultrafilter U over some index

set I such that ΠDN1, a
σ ∼= ΠDN2, b

σ. By the expansion theorem (p.216, Chang and Keisler, 1973),
1Theorem 3.3.3 in Andréka, Madarász and Németi (2008) says if “For any model B of T , every automorphism of

BP extends to an automorphism of B” then T has the uniform reduction property (for the notation adopted here, see
Hodges (1993, chapter 12)). Despite claiming, the theorem still essentially requires the completeness of T . This can be
shown as follows. Let L be the language with only one unary predicate symbol Q, and let L+ contain two more unary
predicate symbols S and P . Let T contain the following two sentences

• ∀xP (x)

• ∀x∀y[S(x) ↔ S(y)] ↔ [Q(x) ↔ Q(y)]

And we relativize over P (i.e. we do trivial relativization). Then for any model B of T , an automorphism f of B|L maps
an element in/not in Q to another element in/not in Q, by (2), these two elements must be in S or not in S at the same
time, so f extends to an automorphism of B. But there is no uniform reduction of S(x), as in some models it corresponds
to Q(x), while in others, it corresponds to ¬Q(x). This point is confirmed by the authors in private correspondence, to
which I am very thankful.
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ΠDM1, a
σ and ΠDM2, b

σ are expansions of ΠDN1, a
σ and ΠDN2, b

σ. However, by the fundamental
theorem of ultraproducts, ΠDM1, a

σ |= ϕ but ΠDM2, b
σ 6|= ϕ. Thus, there is an isomorphism f from

ΠDN1 to ΠDN2 which maps aσ to bσ but this isomorphism cannot be extended to an isomorphism
from ΠDM1 to ΠDM2. This contradicts Lemma C.5.

To prove the next major lemma (Lemma C.14), we need to transform Lemma C.7 and Lemma C.8
below to the many-sorted context (Lemma C.13).

Lemma C.7. (Hodeges, 1993, p.279, a corollary of Theorem 10.2.1) Every single-sorted model M
has a λ-big elementary extension for arbitrarily large cardinal λ.

Lemma C.8. (Theorem 6.3.2 in Hodges, 1993) Let M be a single-sorted model, X a set of elements
of M, and a, b two sequences of elements of M. Write G(X) for the group of all automorphisms of
M which pointwise fix X. If M is λ-big, then the following are equivalent:

• There is an automorphism g in G(X) such that g(a) = b;

• tpM(a\X) = tpM(b\X).

Definition C.9. Let Σ be a many-sorted signature with sorts {σi}i<λ. Let bΣc be a single-sorted
signature which contains a un-sorted copy of each relational symbol and variable in Σ and unitary
predicates Ui for each sort symbol σi in Σ. We use bsc to denote the un-sorted copy of symbol s.

Definition C.10. Let M be a model of a many-sorted signature Σ. Let bMc be a model of bΣc
constructed as follows:

• The domain of bMc is the disjoint union of domains of M. That is, the domain consists of, for
each sorted element aσi of M, a corresponding element baσic = (a, σi) in bMc;

• The interpretation of relational symbols in bMc is the same as in M modulo the disjoint
union. That is, for each relational symbol R with arity 〈σ1, ..., σn〉, we have that bRcbMc =

{((a1, σ1), ..., (an, σn))|M |= R(a1, ..., an)};

• The interpretation of each unitary predicate Ui in bMc is the set {(a, σi)|a ∈ (σi)
M}.

Definition C.11. Let ϕ be an arbitrary formula in a many-sorted signature Σ with sorts {σi}i<λ.
Let bϕc be the formula in the single-sorted signature bΣc constructed inductively as follows:

• If ϕ = R(xσ1 , ..., xσn), bϕc := bRc(bxσ1c, ..., bxσnc);

• If ϕ = χ1 ∧ χ2, then bϕc := bχ1c ∧ bχ2c;

• If ϕ = ¬ψ, then bϕc := ¬bψc;

• If ϕ = ∀xσnψ, then bϕc := ∀bxσnc(Un(bxσ1c) → bψc).

Lemma C.12. Let M and bMc be as above. Then for any sequence of sorted elements aσ, M |= ϕ(aσ)

if and only if bMc |= bϕc(baσc).

Proof. By straightforward induction on the structure of ϕ.
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Lemma C.13. Let M be a Σ-model and X a set of sorted elements in M. Suppose that tpM(aσ\X) =

tpM(b
σ\X). Then there is an elementary extension M+ of M such that there is an automorphism g

which sends aσ to bσ and pointwise fixes X.

Proof. Assume that tpM(aσ\X) = tpM(b
σ\X). By straightforward induction, one proves that for

any bΣc-formula ϕ with parameters from X, we have bMc, s |= ϕ(baσc) for any assignment s iff
bMc, s |= ϕ(bbσc) for any assignment s. Thus, tpbMc(baσc\bXc) = tpbMc(bb

σc\bXc).2

By Lemma C.7 and C.8, there is an elementary extension bMc+ of bMc such that there is an
automorphism g of bMc+ which pointwise fixes bXc and sends baσc to bbσc.

Let M+ be the many-sorted model of signature Σ constructed from bMc+ as follows:

• σM
+

i := {χ(p)|p ∈ (Ui)
bMc+}, where χ(p) = a if p = (a, σi) ∈ (Ui)

M, and identity otherwise;

• RM+
:= {(χ(p1), ..., χ(pn))|(p1, ..., pn) ∈ (bRc)bMc+}; Note that this is well-defined, since for

any relational symbol R ∈ Σ with arity 〈σ1, ..., σn〉, bMc |= ∀x1...∀xnbRc(x1, ..., xn) →
∧
Ui(xi),

and hence bMc+ |= ∀x1...∀xnbRc(x1, ..., xn) →
∧
Ui(xi).

Now we check that M+ is an elementary extension of M. It is an extension of M by construction.
To see that it is elementary, we note that for any Σ-formula ϕ(xσ), we have that M |= ϕ(aσ) iff
bMc |= bϕc(baσc) (by Lemma C.12) iff bMc+ |= bϕc(baσc) (by elementary extension) iff M+ |= ϕ(aσ)

(by straightforward induction).
The autormophism g on bMc+ induces a automorphism g† on M+, defined as g†(a) = b iff

g(χ−1(a)) = χ−1(b).3 By construction of χ, g† pointwise fixes X and sends aσ to bσ.

Lemma C.14. Suppose T+ is implicitly definable in T . Let M be an arbitrary model of T+, and let
N := M|Σ. Let aσ be a sequence of elements in M. Then tpM(aσ\N ) is isolated in SM

σ (N ).

Proof. Suppose (towards a contradiction) that this is not the case. Then there is a model M of
T+, and a sequence aσ in M such that for any formula ϕ(xσ) ∈ tpM(aσ\N ), there is a formula
ψ(xσ) ∈ tpM(aσ\N ) such that ThN (M) 6|= ϕ(xσ) → ψ(xσ). Since ThN (M) is complete, ThN (M) |=
∃xσ(ϕ(xσ) ∧ ¬ψ(xσ)). Therefore, there is a sequence bσ in M such that M |= ϕ(b

σ
) ∧ ¬ψ(bσ). Then

we have bσ 6= aσ.
2We demonstrate the base cases of the induction for relational theories as follows. The inductive steps are trivial.

And the proof for non-relational theories is similar.

• ϕ := x = y, ϕ := x = ⌊pδ⌋ or ϕ := ⌊pδi1 ⌋ = ⌊pδj2 ⌋: conclusion holds rivially.
• ϕ := x = ⌊aσi⌋. Then, ⌊M⌋, s |= x = ⌊aσi⌋ for any assignment s iff there is only one sort σi with one object aσi

in M iff ⌊M⌋, s |= ∀x(x = ⌊bσi⌋) for any assignment s.
• ϕ := ⌊pδ⌋ = ⌊aσ⌋. Then ⌊M⌋ |= ⌊pδ⌋ = ⌊aσ⌋ iff δ = σ and M |= pδ = aσ iff δ = σ and M |= pδ = bσ iff

⌊M⌋ |= ⌊bσ⌋ = ⌊pδ⌋.
• ϕ := ⌊aσi

1 ⌋ = ⌊aσj

2 ⌋. Then ⌊M⌋ |= ⌊aσi
1 ⌋ = ⌊aσj

2 ⌋ iff σi = σj and M |= aσi
1 = a

σj

2 iff σi = σj and M |= bσi
1 = b

σj

2

iff ⌊M⌋ |= ⌊bσi
1 ⌋ = ⌊bσj

2 ⌋.

• ϕ := ⌊R⌋(⌊xσ1
1 ⌋, ..., ⌊xσn

n ⌋, ⌊aσ⌋, ⌊pδ⌋). Then ⌊M⌋, s |= ⌊R⌋(⌊xσ1
1 ⌋, ..., ⌊xσn

n ⌋, ⌊aσ⌋, ⌊pδ⌋) for any assignment s

iff there is only one sort σ and M, s |= ∀xσ
1 ...x

σ
nR(xσ

1 ...x
σ
n, a

σ, pδ) iff there is only one sort σ and M, s |=
∀xσ

1 ...x
σ
nR(xσ

1 ...x
σ
n, b

σ
, pδ) iff ⌊M⌋, s |= ⌊R⌋(⌊xσ1

1 ⌋, ..., ⌊xσn
n ⌋, ⌊bσ⌋, ⌊pδ⌋) for any assignment s.

• ϕ := ⌊R⌋(⌊aσ⌋, ⌊pδ⌋). Then ⌊M⌋ |= ⌊R⌋(⌊aσ⌋, ⌊pδ⌋) iff M |= R(aσ, pδ) iff M |= R(b
σ
, pδ) iff ⌊M⌋ |=

⌊R⌋(⌊bσ⌋, ⌊pδ⌋).

3It can be checked by straightforward induction that g† is indeed an automorphism on M+.
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Thus, for any formula ϕ(xσ) ∈ tpM(aσ\N ), T ∪ {ϕ(xσ) ∧ ϕ(yσ), xσ 6= yσ} is consistent. By
compactness, T ∪{ϕ(xσ)∧ϕ(yσ)|ϕ ∈ tpM(aσ\N )}∪{xσ 6= yσ} is consistent. Then there is a model M
of T , and sequences aσ, bσ in M such that tpM(aσ\N ) = tpM(b

σ\N ) and aσ 6= b
σ. By Lemma C.13,

we can find an elementary extension M+ of M, and an automorphism f of M+ which pointwise fixes
N and maps aσ to bσ. Since aσ and b

σ are distinct, f cannot be the identity. This contradicts the
fact that T+ is implicitly definable in T .

Theorem C.15. If T+ is implicitly definable in T , then T+ is coordinatised over T .

Proof. We have already proved that T+ has the uniform reduction property over T . It remains to
show that for any model M of T+, every element in M is in the definable closure of N := M+|Σ.

Let M be an arbitrary model of T+, and N := M|Σ and let aσ be an arbitrary element of
M. By Lemma C.14, tpM(aσ\N ) is isolated in SM

σ (N ). Let it be isolated by a formula ϕ(xσ) ∈
tpM(aσ\N ). We show that M |= ∃!xσϕ(xσ). Suppose (towards a contradiction) that there are two
distinct elements bσ and cσ in M such that M |= ϕ(bσ) ∧ ϕ(cσ). Since tpM(aσ\N ) is isolated, we
have that tpM(bσ\N ) = tpM(cσ\N ). By Lemma C.13, we can find an elementary extension M+ of
M and there is an automorphism f of M+ which pointwise fixes N and maps bσ to cσ. Since bσ and
cσ are distinct, f cannot be the identity. This contradicts the fact that T+ is implicitly definable in
T . Therefore, we have that M |= ∃!xσϕ(xσ).

Theorem C.16. Assume that T+ is coordinatised over T . Then T+ is coded in T .

Proof. We construct a coding f as follows.
Let Σ+ = Σ∪Σ∗. We use x, y, z, ... as meta-variables for variables in Σ∗ and p, q, r for variables in

Σ. And let Ψ(σ) = {ϕ(xσ, pγ)|ϕ ∈ FormΣ+(xσ, pγ)}.
We first prove that for any new sort σ in Σ∗, there is a finite set of formulas Φ(σ) ⊆ Ψ(σ) such

that for any model M of T+, every element in σM is defined by some formula in Φ(σ), with pγ filled
by some elements in M|Σ of sorts γ.

Suppose (towards a contradiction) that this is not the case. Then there is a new sort σ such
that for any finite set of formulas Φ, T ∪

∧
ϕ∈Φ ¬∃pγϕ(xσ, pγ) is consistent. By compactness, T ∪

{¬∃pγϕ(xσ, pγ)|ϕ ∈ Ψ(σ)} is also consistent. But then there is a model M of T , and an element aσ

in M that is not in the definable closure of M|Σ. Contradiction.
Let σ be an arbitrary sort in Σ∗. We may enumerate Φ(σ) as {ϕ1(xσ, pσ1

1 ), ..., ϕn(x
σ, pσn

n )}. Let
θm := ϕm ∧

∧
1≤i≤m ¬∃piσi(ϕi), and let Θ(σ) := {θm|1 ≤ m ≤ n}. Then for arbitrary M, every

element in σM is defined by precisely one formula in Θ(σ).
Then let f0(σ) := {〈i, σi〉|θi(xσ, piσi) ∈ Θ(σ)}. Let f1 be chosen arbitrarily.
Let k be an arbitrary assignment. We define f2(xσ)(k) := θπ0(k̃(xσ))(x

σ, k(xσ)). Then by our
construction of Θ, T+ satisfies item 1-3 in Definition C.4.

To prove item 4, let k be an arbitrary assignment. And let ϕ(xσ, pγ) be an arbitrary Σ+-formula.
Since T+ has the uniform reduction property, let f3(ϕ)(k) be the Σ-formula with free variables among
pγ , k(xσ) such that:

T+ ` [∃xσ(ϕ(xσ, pγ) ∧ f2(xσ)(k))] ↔ f3(ϕ)(k).

Now we have:
T+ ` ϕ(xσ, pγ)
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↔
∧

[k]∈[xσ ] ∀k(xσ)((f2(xσ)(k)) → ϕ(xσ, pγ))

↔
∧

[k]∈[xσ ] ∀k(xσ)((f2(xσ)(k)) → [∃xσ(ϕ(xσ, pγ) ∧ f2(xσ)(k))])
↔

∧
[k]∈[xσ ] ∀k(xσ)((f2(xσ)(k)) → f3(ϕ)(k))

Theorem C.17. If T+ is coded in T , then T and T+ are Morita equivalent.

Proof. Let T+ be a Σ+-theory, and Σ+ = Σ ∪ Σ∗, and let T := T+|Σ. Let f be a coding of T+ in T .
We construct a Morita descendant T † of T as follows. For each σ ∈ Σ∗, we define σ as follows:

• Step 1: for each 〈i, σi〉 ∈ f0(σ), define a new product sort of σi, which we denote as 〈σi〉.

• Step 2: for each 〈σi〉, define σ∗i as a new subsort of 〈σi〉 by the domain formula f3(∃xσ(f2(xσ)(k)))
where k(σ) = 〈i, σi〉.

• Step 3: for each σ∗i , define σ
†
i as a new quotient sort of σ∗ by the equivalence formula which

corresponds to f3(∃xσ(f2(xσ)(k)(yσi) ∧ f2(xσ)(k)(zσi))), where k̃(xσ) = 〈i, σi〉.

• Step 4: define σ as the coproduct of all σ†i .

• Step 5: Let π1, ..., πn be the projection functions in step 1, inc be the inclusion function in step
2, h be the quotient function in step 3 and q1, ..., qm the injection functions in step 4. For each
k ∈ Πσi∈Σ∗f0(σi), we define F (xσ)(k) as the formula with free variables among xσ, k(xσ) as
follows:
F (xσ)(k) := ∃x〈σi〉∃xσ∗∃xσ

†
i (
∧

1≤j≤n[πj(x
〈σi〉) = (k(xσ))j ] ∧ inc(xσ∗

i ) = x〈σi〉 ∧ h(xσ∗
i ) = xσ

†
i ∧

qi(x
σ†
i ) = xσ), where k is such that k̃(xσ) = 〈i, σi〉.

It can be checked that by construction, we have:
(*): T † ` f3(∃xσ∃yσ(f2(xσ)(k)∧f2(yσ)(k)∧xσ = yσ) ↔ ∃xσ∃yσ(F (xσ)(k)∧F (yσ)(k)∧xσ = yσ))

(**): T † ` f3(∃xσ(f2(xσ)(k)) ↔ ∃xσ(F (xσ)(k)));.

• Step 6: we define R ∈ Σ∗ in T † by adding the definition

δR := R(xσ1 , ..., xσn , pγ) ↔
∧

[k]∈[xσ ]

∀k(xσ)(F (xσ)(k) → f3(R)(k))

Let Σ† be the signature of T † constructed above. We define a Σ†-Morita extension (we may denote
as T ′) of T+ as follows:

• Repeat Step 1-3.

• Define the injection functions as follows:
qi(x

σ†
i , xσ) ↔ ∃k(xσ)∃x〈σi〉∃xσ∗∃xσ

†
i (f2(x

σ)(k)∧
∧

1≤j≤n[πj(x
〈σi〉) = (k(xσ))j ]∧inc(xσ∗

i ) = x〈σi〉∧
h(xσ

∗
i ) = xσ

†
i ), where k(σ) = 〈i, σi〉. It is easy to check that T ′ proves that {qi}1≤i≤m defined

above form a family of injection functions from σ†i to σ.

• Repeat Step 5.

Notice that by construction, T ′ ` F (xσ)(k) ↔ f2(x
σ)(k), and thus by item 4 in Definition C.4,

definitions added to T † in step 6 are proved by T ′. Therefore, for any Σ†-formula ϕ ∈ T †, T ′ ` ϕ.
We then prove that for any Σ+-formula ϕ if T ′ ` ϕ, then T † ` ϕ. Note that T ′ is obtained by

adding a set of definitions to T+. By construction, these definitions are provable in T †. Thus, it
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suffices to show that T+ is entailed by T †. We prove by induction that for any Σ+-formula ϕ, if
T+ ` ϕ, then T † ` ϕ and if T+ ` ¬ϕ, then T † ` ¬ϕ.

There are two base cases. Consider the case where R ∈ Σ∗. For convenience, we abbreviate∧
[k]∈[xσ ] as

∧
[k].

T+ ` R(xσ1 , ..., xσn , pγ)

⇒T+ `
∧

[k]∈[xσ ]

∀k(xσ)((f2(xσ)(k)) → f3(R(x
σ, pγ))(k));4

⇒T+ `
∧

[k]∈[xσ ]

∀k(xσ)((∃xσ(f2(xσ)(k))) → f3(R(x
σ, pγ))(k)); 5

⇒T+ `
∧

[k]∈[xσ ]

∀k(xσ)(f3(∃xσ(f2(xσ)(k))) → f3(R(x
σ, pγ))(k)); 6

⇒T † `
∧

[k]∈[xσ ]

k(xσ)(f3(∃xσ(f2(xσ)(k))) → f3(R(x
σ, pγ))(k)); 7

⇒T † `
∧

[k]∈[xσ ]

k(xσ)(∃xσ(F (xσ)(k)) → f3(R(x
σ, pγ))(k)); 8

⇒T † `
∧

[k]∈[xσ ]

∀k(xσ)((F (xσ)(k)) → f3(R(x
σ, pγ))(k)); 9

⇒T † ` R(xσ1 , ..., xσn , pγ).10

Similarly, we have:

T+ ` ¬R(xσ1 , ..., xσn , pγ)

⇒T+ `
∨

[k]∈[xσ ]

∃k(xσ)((f2(xσ)(k)) ∧ ¬f3(R(xσ, pγ))(k)); 11

⇒T+ `
∧

[k]∈[xσ ]

∀k(xσ)(¬∃xσ(f2(xσ)(k))

∨ ∃k(yσ)(¬f3(R(yσ, pγ))(k) ∧ ∃yσ∃xσ(f2(yσ)(k) ∧ f2(xσ)(k) ∧ yσ = xσ))); 12

⇒T+ `
∧

[k]∈[xσ ]

∀k(xσ)(¬f3(∃xσ(f2(xσ)(k)))

∨ ∃k(yσ)(¬f3(R(yσ, pγ))(k) ∧ f3(∃yσ∃xσ(f2(yσ)(k) ∧ f2(xσ)(k) ∧ yσ = xσ)))); 13

⇒T † `
∧

[k]∈[xσ ]

∀k(xσ)(¬f3(∃xσ(f2(xσ)(k)))

4By item 4 in Definition C.4.
5By item 2 in Definition C.4.
6By item 4 in Definition C.4.
7Note that this is a Σ-sentence, and T+|Σ = T ⊆ T †.
8By (**).
9By logic.

10By δR.
11By item 4 in Definition C.4.
12By logic.
13By item 4 in Definition C.4.
14Note that this is a Σ-sentence, and T+|Σ = T ⊆ T †.
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∨ ∃k(yσ)(¬f3(R(yσ, pγ))(k) ∧ f3(∃yσ∃xσ(f2(yσ)(k) ∧ f2(xσ)(k) ∧ yσ = xσ)))); 14

⇒T † `
∧

[k]∈[xσ ]

∀k(xσ)(¬∃xσ(F (xσ)(k))

∨ ∃k(yσ)(¬f3(R(yσ, pγ))(k) ∧ ∃yσ∃xσ(F (yσ)(k) ∧ F (xσ)(k) ∧ yσ = xσ))); 15

⇒T † `
∨

[k]∈[xσ ]

∃k(xσ)((F (xσ)(k)) ∧ ¬f3(R(xσ, pγ))(k)); 16

⇒T † ` ¬R(xσ1 , ..., xσn , pγ).17

For the case where R ∈ Σ, the conclusion holds since T+|Σ = T ⊆ T †. And the inductive cases are
all straightforward.

Now, since T ′ ≡ T †, T+ and T have a common Morita descendant, and hence are Morita equivalent.

Theorem C.18. Let T+ be a Σ+-theory, Σ ⊆ Σ+, and T := T+|Σ. The following are equivalent:

1. T+ is implicitly definable in T ;

2. T+ and T are Morita equivalent;

Proof. By Theorem C.15, Theorem C.16, and Theorem C.17, item 1 implies item 2.
For the other direction, assume that T+ and T have a common Morita descendant T ∗. Suppose

(towards a contradiction) that T+ is not implicitly definable in T . Then there is a model M of T
which has two non-isomorphic expansions M1 and M2 in Mod(T+). By Theorem 4.2 in Barrett and
Halvorson (2016), every model of T and of T+ has a unique expansion inMod(T ∗) up to isomorphism.
Let M∗

1 be the expansion of M1 in Mod(T ∗), and M∗
2 be the expansion of M2 in Mod(T ∗). Then

M∗
1 and M∗

2 are two non-isomorphic expansions of M in Mod(T ∗). Contradiction. Therefore, T+ is
implicitly definable in T .

15By (*) and (**).
16Item 1 in Definition C.4 also holds with F in place of f2.
17By δR.
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