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Abstract

Curry’s paradox is a peculiar paradox for at least two reasons: it is largely left out by com-
mon definitions of paradozicality and it challenges paraconsistent solutions to the paradoxes
because it can persist in a paraconsistent system. In this thesis, we study the dynamics of this
paradox by adapting Kripke’s definition of paradoxicality (Kripke, |[1975) and a definition of
paradoxicality introduced by Hsiung (2024) such that they include more of Curry’s paradox.
We moreover explore the possibility of a notion of paradoxicality that can distinguish Curry’s
paradox from other paradoxes like the Liar, by embedding the definition in a paraconsistent
logic. The result is an overview of different formal characterisations of paradoxicality, that
capture Curry’s paradox and its relatives to various degrees.
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1. Introduction

[Paradozes] are associated with crises in thought and with revolutionary
advances. To grapple with them is not merely to engage in an intellectual game,
but is to come to grips with key issues.

— Sainsbury (2009} p. 1)

Ever since the ancient Greek prophet Epimenides, the Cretan, introduced the paradox of
the Liar by uttering the words ‘Every Cretan always lies’, thinkers have been fascinated by
paradox. In modern times, too, paradox is an important subject within the research areas of
logic and philosophy. Research on the notion of paradozicality abounds in modern literature
on philosophical logic. Much of this is still centered around the Liar (in its simpler form:
‘This sentence is false’) and variations on the Liar, such as Yablo’s paradox, a version of the
Liar containing infinitely many sentences. In this thesis, we focus on a different paradox:
Curry’s paradox.

Curry’s paradox is of the form ‘If this sentence is true, then the moon is made out of
blue cheese.” It is named after its discoverer Curry (1942)E] and arises in both truth theory
and set theory. We focus on the truth-theoretic variant, which can be formally expressed as
follows:

©) T7CT - B,

where T is a truth predicate, "—is a naming device, and B is an arbitrary sentence. Given
only minimal conditions on the background logic, Curry’s sentence allows us to derive the
sentence B, trivialising the logic. Thus, Curry’s paradox has the same disastrous effect on a
classical logical system as other famous self-referential paradoxes, such as the Liar. In other
respects, however, Curry’s paradox is different. Curry’s paradox, for instance, causes great
trouble for paraconsistent solutions to the paradoxes. Such solutions work by rejecting the
rule of explosion: AN —A |= B. This allows them to accommodate for the Liar, but not —
in general — for Curry. For Curry’s paradox, unlike the Liar, does not involve negation: it
involves implication. This makes it notoriously difficult to deal with; Weber has called it ‘the
most diabolical of all the paradoxes’ (Weber, 2021, p. 24).

Another remarkable feature of Curry is that it is not one paradox, but a family of para-
doxes: one for each sentence B. And Curry’s paradox behaves differently depending on the
status of B: if B is a contradiction, then Curry’s sentence behaves like the Liar — it is equiv-
alent its own negation. If B is a tautology, on the other hand, then Curry’s sentence is a
tautology too. If B is neither a tautology nor a contradiction, then the status of Curry’s
sentence varies, depending on the interpretation of B. Common existing notions of para-
doxicality, such as the ones put forward by Kripke (1975)), Cook (2004)), Hsiung (2024), and
Priest (1995), do not capture the complete family of Curry’s paradox: they capture only the
instances with a contradictory consequent — those that behave like the Liar.

!Though Léb (1955) independently came up with a derivation of the paradox that is closer to the one most
commonly known today.



But there is more to Curry than the Liar — even if its consequent B is a tautology, Curry’s
sentence seems paradoxical. Not because of the fact that we can derive B, but because of
the way in which B is derived: it is not right that its truth is due to the existence of Curry’s
paradox. As Pleitz (2020, p. 194) has put it, concerning the example ‘If this sentence is true
then snow is white’, which allows us to infer that snow is white:

we want to protest, ‘sure, snow is white — but not solely in virtue of some facts
that concern sentences!’

Thus, Curry’s paradox challenges traditional notions of paradoxicality, and pushes negation-
oriented solutions to the paradoxes to look beyond just negation. The aim of this thesis is
to study the dynamics of this interesting paradox more explicitly than has been done so far.
Our starting point is the question: ‘what makes Curry’s sentence paradoxical?’” Based on
different informal answers to this question, we propose different formal definitions of ‘Curry-
paradoxicality’. Some of these are based on existing notions of paradoxicality; we will be
considering Kripke’s [1975| influential definition and a more recent definition introduced by
Hsiung (2020} 2024). Other notions will be built up from scratch. The result is an overview
of different formal definitions of ‘Curry-paradoxicality’, each of which can be seen as a for-
malisation of an informal view of Curry’s paradox.

1.1. Overview of the thesis

Chapter [2| is an informal chapter, in which we propose different perspectives on Curry’s
paradox. We call these perspectives ‘intuitions’, and divide them into two groups: one group
is framed in terms of entailment, and one is framed in terms of models.

In Chapter [3] we introduce the necessary preliminaries for the formal definitions that
follow in subsequent chapters. We succinctly introduce the language of Peano arithmetic and
prove two distinct methods of self-reference, which we will both be using: strong and weak
diagonalisation.

In Chapters (] and [5] we take two existing notions of paradoxicality as starting points:
those introduced by Kripke (1975)) and Hsiung (2020), both of which are framed in terms
of models. We adapt these notions in order formalise the intuitions involving models that
we introduce in Chapter In Chapter [d] we first introduce Kripke’s theory of truth, and
Kripke’s corresponding notion of paradoxicality. We then consider the behaviour of Curry in
this theory, and see how this naturally gives rise to a definition that captures more instances
of Curry’s sentence (in Section . We will see that this definition does not, however,
capture Curry’s paradox in case its consequent is a tautology. To include these instances as
well, we introduce a second notion (Section . Chapter [5|is a shorter chapter, in which we
aim to show that the method we employed in Section [4.2] extends to Hsiung’s definition of
paradoxicality too.

In Chapter [6 we formalise the intuitions that are framed in terms of entailment; we
introduce a notion of paradoxicality that is framed in terms of entailment, and adapt this
notion as we go along to accommodate for the different intuitions. Among other things,
we will employ a paraconsistent background logic in order to capture the crucial difference
between Curry and the Liar in paraconsistent systems (Section [6.4).



2. Perspectives on Curry

In this chapter, we introduce different ways of thinking about Curry. As we have seen,
Curry’s paradox is unique among the self-referential paradoxes in that it is troublesome for
paraconsistent logics and that it is not fully recognised as paradoxical on standard definitions
of paradoxicality. What makes this so? By introducing different characterisations of Curry-
paradorical sentences, we propose different perspectives on this question. These perspectives
will come back in the more technical chapters that follow, where we will see how these
intuitions can be formalised.

2.1. Flavours of Curry

Before we outline the different informal views on Curry’s paradox, let us have a closer look
at the paradox itself. We will denote Curry’s sentence with consequent B by Cp :

(Cp) TCy — B.

We mentioned in the introduction that this sentence entails B to be true, given minimal
requirements on the background logic. Let us go through the argument informally. Suppose
for the moment that Cp is true. Then, by definition of Cp, the formula T"Cg' — B is true.
So, since we assumed that Cp is true, we have B by modus ponens. We just showed that if
Cpis true, then B. That is, we showed that T"Cg' — B is true! So Cpis true, and we just
saw that this means that B is true as well. One thing to note here is that Cp does not only
entail the truth of B, but also of itself: it is a sentence whose very existence proves its own
truth.

As we saw in the introduction as well, Curry’s paradox is not one paradox, but a family
of paradoxes, whose members differ substantially. Tautological Curry is the mildest form of
Curry: it is the instance whose consequent is T.

() Te T

From the point of view of logical models, this sentence is quite unproblematic: in many logics,
it is simply equivalent to =T "C1'V T, which is in turn equivalent to T. So, as far as logic is
concerned, tautological Curry is just a tautology. Any instance of Curry with its consequent
equivalent to T, i.e. a tautological consequent, of course behaves the same. In the sequel,
we will often be sloppy and use ‘tautological Curry’ to refer to any instance of Curry with a
tautological consequent.

Contradictory Curry is the most severe form of Curry. It is the instance whose consequent
is (equivalent to) L:

CL) TC > L.

In classical logic, and many other logics, this sentence is equivalent to =7T"C,™: it behaves
like the LiarE] In between tautological Curry and contradictory Curry are those instances

!The requirement here is negation equivalence =A < (A — 1). This is certainly not an exclusively classical
property: intuitionistic negation, for instance, is defined in exactly this way.



of Curry whose consequent is neither contradictory or tautological. These instances are not
equivalent to T, and not to a sentence expressing its own falsity either. They are, in a way,
the most interesting instances of Curry’s paradox: their behaviour is not set in stone, but
varies depending on the interpretation of their consequents. If their consequent is interpreted
as true, they behave like tautological Curry; while if it is interpreted as false, they behave
like contradictory Curry.

The takeaway is that Curry is not one paradox, but rather a family of sentences, some
of which are more obviously paradoxical than others. Among the different intuitive notions
that follow, some will capture tautological Curry and/or contradictory Curry, while others
will not.

2.2. First perspective: entailment

On the first perspective, a paradoxical sentence is a sentence whose existence logically entails
something that is unacceptable. This is close to the standard definition of paradox that was
proposed by Sainsbury, according to which a paradox is

an apparently unacceptable conclusion derived by apparently acceptable reasoning
from apparently acceptable premises. (Sainsbury, 2009, p. 1)

The ‘apparently unacceptable conclusion’ can take on various forms. As we saw in the
introduction, in the context of logical paradoxes, the conclusion is often a plain contradiction
of the form ‘A and not-A’. As Priest has put it:

The paradoxes are all arguments starting with apparently analytic principles con-
cerning truth, membership, etc., and proceeding via apparently valid reasoning
to a conclusion of the form ‘e and not-a’. (Priest, 2006, p. 9)

This would give us the following characterisation of paradoxicality:

Intuition 0. A paradoxical sentence is a sentence whose existence entails a contradiction.

The Liar is paradoxical in this sense; but Curry is not, unless its consequent is contra-
dictory. As we saw in the introduction, other instances of Curry’s paradox seem paradoxical
too — so the above notion is not satisfactory. One alternative may be the following, which
captures more of Curry’s paradox:

Intuition 1. A Curry-paradoxical sentence is a sentence whose existence entails the
truth of a sentence that is not a tautology.

Curry’s sentence is paradoxical in this sense as long as its consequent is not a tautology.
We will turn to a characterisation that captures Curry even in case its consequent is a
tautology in a moment — but first we sharpen the above intuition.

Intuition[I] captures both Curry and the Liar, while, as we saw in the introduction, there a
crucial difference between any instance of Curry and the Liar: there is no explosion involved in
Curry’s paradox — even in the case of contradictory Curry, the consequent is entailed directly,
without appealing to the principle of explosion. Curry moreover includes its entailed sentence
as a subformula, while the Liar does not. In these two senses, Curry stands in a more direct
relationship to its entailed sentence than the Liar. This invites a sharpening of the above
intuition, such that it captures only Curry and not the Liar:



Intuition 2. A Curry-paradoxical sentence is a sentence whose existence entails the
truth of a sentence that is not a tautology by means of a direct argument.

The notion of a ‘direct’ argument can be explicated in the two ways we mentioned before;
the first and perhaps most obvious option is to use the fact that the Liar relies on explosion,
while Curry does not:

Intuition 2a. A Curry-paradoxical sentence is a sentence whose existence entails the
truth of a sentence that is not a tautology by means of an argument that does not use
explosion.

This means, in particular, that Curry’s paradox can persist in logics that are paraconsistent,
i.e. logics that do not obey the rule of explosion, while the Liar cannot. We will use this fact
to formalise Intuition [2a) using a paraconsistent framework (in Section [6.4)).

The second option is to note that Curry contains the sentence that it forces to be true as
its consequent, while the Liar does not:

Intuition 2b. A Curry-paradoxical sentence is a sentence whose existence entails the
truth of one of its subformulas B, where B is not a tautology.

We will formalise this intuition in Section [6.3

2.2.1. Curry’s paradoxical argument

All of the above intuitions capture Curry’s paradox in case its consequent is not a tautology.
However, as we noted in the introduction, even if Curry’s consequent is a tautology — say,
‘0 = 0’ — it still can be seen as paradoxical. Not because it is unacceptable to be able to derive
that 0 equals 0, but because the argument that establishes it is unacceptable. The tautological
conclusion is thus not unacceptable by itself, but it is unacceptable as a conclusion of the
argument in question. As Pleitz has put it:

[T]hat snow is white is surely unacceptable as the conclusion of the Curry argu-
ment that starts from considering the sentence ‘If this sentence is true, then snow
is white’, because it clearly cannot be warranted by a bunch of non-empirical
premises alone. (Pleitz, 2015 p. 8, fn 8)

Pleitz subsequently proposes that we broaden our notion of an ‘unacceptable conclusion’
by ‘think[ing] of a conclusion as unacceptable either if it is false or if it intuitively cannot
be warranted by the premises of the argument it is the conclusion of” (Pleitz, 2015, p. 8, fn
8). It is not immediately clear how this last part should be made more precise. What we
seem to be dealing with here is the question of whether a (formal) argument is intuitively
unproblematic, and how to characterise problematic arguments formally. This is not an
easy question, and moreover one that goes beyond the scope of this thesis, which takes a
model-theoretic approach and therefore does not lend itself to the analysis of arguments or
proofs. An answer might be found in approaches built on proof theory, such as Tennant’s




proof-theoretic criterion of paradoxicality (Tennant, |1982, 1995)E| We will not go into these
technicalities here. Having said this, we still propose one intuition intended to capture the
paradoxicality of Curry’s argument.

The idea is the following: what is strange about the argument involved in Curry’s paradox
is that it is independent of the conclusion it proves. That is: from the existence of Curry’s
sentence with consequent B we can prove B, and exactly the same argument — modulo
replacing B by A — establishes A from the existence of Curry’s sentence with consequent A.
This thus means that Curry’s family allows us to derive any sentence whatsoever, leading to
triviality. The proposal is that the fact that the argument is independent of the conclusion is
to blame for this, and that this is what makes Curry’s sentence paradoxical — even in case the
consequent is a tautology. For the fact that the argument is independent of the tautology in
question tells us that the same argument could establish something that is not a tautology
too, and this cannot be right. There must therefore be something fishy about the argument.

To be sure: what is problematic is not the fact that the existence of some sentence A
entails another sentence B — for instance, this is always the case if B is a tautology. What
is problematic is that the argument has nothing at all to do with B. In the innocent case,
in which we derive a tautology from the existence of an arbitrary sentence, the argument in
question will appeal to the nature of the tautology: if we wish to prove 0 = 0, we appeal to
the definition of = in our logic, and the fact that the same logical symbol occurs on both
sides. By contrast, in the derivation of 0 = 0 from Curry’s sentence with consequent 0 = 0,
we do not care about the meaning of 0 = 0 at all. This is what is odd, and what we mean
by saying that Curry’s argument is independent of its consequentﬂ

Intuition 3. A Curry-paradoxical sentence is a sentence A whose existence entails the
truth of a sentence B by means of an argument that is independent of B.

Where the argument which derives B from the existence of A is independent from B
if replacing B by an arbitrary sentence C in both A and the argument gives us a valid
argument with the conclusion C.

Like Intuition [1| this intuition includes both Curry’s paradox and the Liar: from the
existence of the Liar we can derive any arbitrary sentence through the rule of explosion, and
this argument is clearly independent of the sentence in question — since explosion is blind
the conclusion in question. Unique about Curry is the fact that it entails its consequent by
means of an argument that is independent of this consequent yet does not use explosion. It

2This criterion is based on the observation that the known paradoxes (including Curry’s paradox) exhibit
proofs that cannot be brought into normal form — reduction sequences would enter a loop or be nonterminating
in another way. This is thought to be the determining factor: ‘The test was to see whether the (dis)proof in
question could be brought into normal form, by means of allowable reduction procedures. If it could not, then
one would be dealing with a genuine paradox.” (Tennant, 2024, p. 935)

3 Arguments that are independent of their conclusions are, of course, not problematic in general. They are
in fact very common. For instance, the argument that establishes A from the premise A A B is independent
of A, in the sense that replacing A by C in both premise, argument, and conclusion would result in a correct
argument. The argument thus does not care about the meaning of A. This is not problematic — because A is
part of the premise. Here, however, we are talking about arguments with as sole premise the existence of a
certain sentence. And this changes the game. For suppose that the existence of a sentence A entails B by means
of an argument independent of B; then replacing B by something unacceptable, say L, in premise, argument
and conclusion would give us some sentence whose existence entails | — and this is clearly unacceptable.

10



moreover contains the sentence it entails as a subformula. In other words, we have the same
sharpenings of Intuition [3| that we encountered for Intuition

Intuition 4. A Curry-paradoxical sentence is a sentence A whose existence entails the
truth of a sentence B by means of a direct argument that is independent of B.

We can put this in terms of the lack of explosion:

Intuition 4a. A Curry-paradoxical sentence is a sentence A whose existence entails the
truth of a sentence B by means of an argument that is independent of B and that does
not use explosion.

This characterisation captures every instance of Curry’s paradox, but not the Liar. In a
similar vein, we might restrict Intuition [3| by demanding that the entailed sentence B is a
subformula of the Curry-paradoxical sentence A:

Intuition 4b. A Curry-paradoxical sentence is a sentence A whose existence entails the
truth of one of its subformulas B by means of an argument that is independent of B.

The intuitions related to entailment will be formalised in Chapter [6] (Intuition [1] in

Section Intuition [2afin Section and Intuition [2b] in Section [6.3])

2.3. Second perspective: models

The previous four intuitions were framed in terms of entailment. There is, however, another
natural way to view Curry’s paradox, that arises when we consider the behaviour of Curry’s
paradox in the context of existing definitions of paradoxicality. This will be our starting point
in Chapter 4] and Chapter |5} The resulting notion of Curry-paradoxicality frames Curry in
terms of its behaviour across models, rather than entailment.

We assume an existing model-theoretic definition of paradoxicality which does not neces-
sarily include Curry’s sentence, but does include the Liar. Given such a definition, we can
look at the behaviour of the instances of Curry’s sentence in logical models. As we saw
in Section [2.1] contradictory Curry behaves just like the Liar in any logical model. Since
any notion of paradoxicality worth its salt should capture the Liar, this instance of Curry is
likely recognised as paradoxical by our chosen definition. The idea now is to view any other
instance of Curry as a variation of contradictory Curry: it would behave like the Liar, if
its consequent were false. This means that it is potentially paradoxical: it is paradoxical on
some interpretations of its consequent. Assuming that the base definition of paradoxicality
that we are working with is framed in terms of models, this means that Curry’s sentence is
paradoxical in at least some models:

Intuition 5a. A Curry-paradoxical sentence is a sentence that behaves paradoxically in
some models.

This intuition does not capture tautological Curry: we saw that tautological Curry is —
classically — equivalent to T, and thus behaves like a tautology in any model. It moreover

11



captures both contradictory Curry and the Liar: we cannot distinguish Curry from the Liar
on this approach, because both are paradoxical in all models. We can, however, look at a
restricted class of sentences, which includes only those instances of Curry’s sentence whose
consequent is neither a contradiction nor a tautology:

Intuition 5b. A Curry-paradoxical sentence is a sentence that behaves paradoxically in
some models, but not in others.

Since the Liar and contradictory Curry are paradoxical in any model, this set includes
only the instances of Curry with a consequent that is true in some models, but false in others.
It therefore is quite a restricted notion of Curry-paradoxicality; but it has the advantage that
it uniquely characterises Curry’s paradox. It moreover highlights an aspect that seems to be
unique to Curry’s paradox: its changeability across logical models.

The previous two intuitions do not capture tautological Curry; yet tautological Curry,
too, can be seen as a variation on the undoubtedly paradoxical contradictory Curry. Indeed,
if the consequent of tautological Curry were false, it would behave like the Liar; however,
since the consequent in question is T, this is never the case. What we seem to be dealing
with here is the logical form of tautological Curry, as opposed to its de facto behaviour.
Indeed, every instance of Curry has the same logical form — in particular, the logical form
of tautological Curry and contradictory Curry are the same. Since contradictory Curry is
clearly paradoxical, we might infer that tautological Curry is too — because it shares the same
logical form. This gives rise to the following characterisation:

Intuition 6. A Curry-paradoxical sentence is a sentence whose logical form is paradox-
ical.

This same suggestion was made by Oms (2023) who proposed the following characterisation
in the context of Curry’s paradox and the Sorites paradox: ‘A paradox is an apparently
valid argument whose logical form can be used to derive an apparently false conclusion from
apparently true premises.ﬁ (Oms, 2023, p. 217)

Intuition is formalised based on Kripke’s notion of paradoxicality in Chapter 4 and
based on a notion of paradoxicality introduced by Hsiung (2020) in Chapter |5 Both formal-
isations in principle allow for a formalisation of Intuition as well; but we especially pay
attention to this intuition in Chapter [ on Kripke’s definition. Formalising Intuition [f] is less
straightforward, but we propose a potential formalisation in terms of Kripke’s definition in
Section

4In fact, this proposal was only Oms’ first attempt at defining an appropriate notion of paradoxicality that
captures both Curry and the Sorites paradox, and one that he comes to reject later. His reasons to reject it,
however, are related to the Sorites paradox rather than Curry.

12



Below is an overview of the intuitions and where their formalisations can be found.

Intuition Section
Section [6.2
Section 6.2
Section [6.4
Section 6.3
Section 6.5
Section 4.2

Section and Chapter

Section

Intuition |0
Intuition
Intuition %
Intuition
Intuition
Intuition [5al
Intuition
Intuition |6
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3. Preliminaries

This chapter introduces the preliminaries that are necessary to formally express Curry’s
paradox. In particular, we fix the language of Peano arithmetic and consider the difference
between weak and strong diagonalisation. We conclude with an overview of some standard
paradoxes that will figure throughout the thesis.

3.1. Self-reference and diagonalisation

We define the necessary ingredients to formally express Curry’s paradox and the other para-
doxical sentences (see Halbach (2011))). The first ingredient we need is a method of naming
sentences: a function "—7 which takes a sentence and outputs a name. The second is a
method of self-reference, which allows a sentence to contain its own name. And the final
ingredient is a truth predicate. The first two ingredients are provided for in the language
and theory of Peano arithmetic, and the last one is accommodated for by adding a truth
predicate to the language.

We start from an arithmetical language without a truth predicate, a ground language. We
will be working either in the first-order language of Peano arithmetic, or an expansion of this
language that we specify in a moment. The first-order language of Peano arithmetic is the
language Lpa which includes a countably infinite set of variables, the quantifiers V and —, the
quantifier 3, and the identity symbol =. All other connectives and the universal quantifier
are defined in terms of these in the usual way. The signature of the language consists of
the constant 0, the successor function symbol S, and two binary operators + and x. The
expanded language of Peano arithmetic Lpp+ is obtained from Lpp by adding a function
symbol for a certain primitive recursive function that will be specified in a moment.

For naming and self-reference, we assume a Godel numbering, which assigns a natural
number to every formula in the language Lpa or Lpp+. We denote the Godel number of a
formula A by #A. We denote the numeral of a natural number n by 7, which is obtained
by applying the successor function n times to the constant 0. We denote the numeral of the
Godel number #A4 by "A7. We will also call "A™ the standard name of A.

The theory PA is the usual axiomatic theory of Peano arithmetic. The theory PAT
additionally contains the defining axiom for the primitive recursive function symbol that is
included in the language Lpp+.

Given a ground Lpa or Lpp+, we obtain the full language by adding a truth predicate 7T'.
We denote the resulting language by £§A and C;A +, respectively. When it is clear which of
Lpa and Lpp+ we are considering, we will simply denote the resulting full language by L.

For any first-order language L, the set of its formulas is defined inductively as usual, and
we denote this set by Form(L).

When the background logic is classical first-order logic, the theory PA proves the Diago-
nal Lemma, which is the usual means of self-reference (see Boolos (1993| pp. 53-54)):

Lemma 3.1.1 (Diagonal Lemma). Let A(y) be a formula in Lpa. Then there exists a
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sentence (G of Lpa such that:
PAE G« A(TGT).

Proof. Consider the primitive recursive function f defined as follows: f(n) = #A(n), if
#A(z) = n, and f(n) = 0 otherwise. Since f is primitive recursive, it is represented in PA
by some formula f°(z,y). That is, f° is such that PA = f°(n,m) if and only if f(n) = m.
Now let A(x) be any formula. Consider the formula

B(y) = 3z(f°(y, z) N A(x)).

And define G to be B("B™). Then f(#B) = #B("B") = #G. Hence PA |= f°("B","G").
By definition of G, we have

PAlE G« Jz(f°("B,z) AN A(z))
By the fact that PA = f°("B™, 'G"), it follows that
PAE G+ A(TGY).
O

There is, however, a sense in which the self-reference obtained by the Diagonal Lemma is
not truly self-referential: the sentence G does not refer to itself explicitly. Rather, it describes
itself by mentioning a certain property which happens to be possessed only by itself. It thus
refers to itself by definite description. For most purposes, this is enough: we have a sentence
that is provably equivalent to a sentence containing its own name.

In non-classical logics, however, the equivalence given by the Diagonal Lemma may break
down — for instance, if the theory of the biconditional is weakened, as we will see in Sec-
tion It is then useful to work in the expanded language Lps+, which we take to contain
a function symbol s for the primitive recursive function s, defined as follows:

TA(n/z)?, im=#A
sy — { A/ i =
0, otherwise.

In this expanded language, we can prove a stronger form of self-reference: one that is literal,
in the sense that we obtain a sentence containing (a term provably equal to) its own name.
It is given by the Strong Diagonal Lemma, which is originally due to Jeroslow (1973). We
follow the proof of Schindler (2015, p. 20).

Lemma 3.1.2 (Strong Diagonal Lemma). Let A(x) be any formula in Lpp+. Then there
exists a term ¢ of Lpa+ such that:

PAT =t =TA(@t)".
In particular, the sentence G = A(t) satisfies:

PAT = G < A(TG).

15



Proof. Define the term t by ¢t = s("A(s(z,x))", "A(s(z,x))"). Then note that, by definition
of s (and the fact that PAT contains the defining axiom for s),

PA* =t = TA(s(TA(s(z, 2))7, TA(s(z, z)) 7).

And thus, by definition of ¢,
PAT =t = TA(t)".

O]

The proof of this lemma still goes through in languages richer than Lps+, even if we
assume a weaker logic for the non-arithmetical part of the language. In particular, we may
extend Lpp+ with a truth predicate and use a weaker non-classical logic to govern the portion
of the language including truth predicate.

To see why, simply note that the above proof takes place entirely in the arithmeti-
cal part of the language, even if the formula A(z) is non-arithmetical. The term t =
s("A(s(z,x))", "A(s(z,x))" only contains the standard name of A, which simply refers to
a natural number. Since we assumed classical logic for the arithmetical part, this means that
the proof goes through unchanged. This will be very important to us in Chapter [4f and Sec-
tion when we will be needing a method of self-reference for non-classical logics.

The second benefit of using strong rather than weak diagonalisation is more philosophi-
cal: strong diagonalisation gives us a sentence which naturally corresponds to how we think
of the paradoxes in natural language. We expect the Liar to be of the form —7'(I), with as
its only subsentences itself and 7'(1). The Strong Diagonal Lemma gives us such a sentence.
The regular Diagonal Lemma, by contrast, gives us a sentence of the form

A(f°("B, 2) AT (),

where B is in turn the formula 3z (f°(y, z)A—=T'(x)). This is a rather complicated construction,
which is quite far from how we tend to think of paradoxes informally. The Strong Diagonal
Lemma thus has the advantage of capturing our intuitive picture of paradoxical sentences.
This will be especially relevant when we will be considering subsentences of the paradoxical
sentences in Sections and[6.3} the Strong Diagonal Lemma guarantees that the paradoxical
sentences have the subsentences we expect them to have, and thus allow for a straightforward
formalisation of the subsentence-based intuitions we saw in Chapter

Remark 3.1.3. It should be noted that, besides the formal and philosophical benefits that
are relevant here, the choice of strong diagonalisation over weak diagonalisation has important
formal consequences too; for instance, certain truth theoretic axioms that are consistent over
Lpa become inconsistent over the expanded language Lpp+; see Heck (2007), Schindler (2015)).

3.2. Paradoxes

Given a particular choice of diagonalisation — weak or strong — we use the following notation
to succinctly define the self-referential sentence G that it yields:

(@) A(TG).
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That is, this defines the sentence G such that PA = G <+ A("G") (weak diagonalisation) or
the sentence G' = A(t) such that PAT |= ¢ = A(t) (strong diagonalisation).

Both diagonal lemmas carry over immediately if we enrich the (corresponding) language
of Peano arithmetic by adding a truth predicate. This gives us the means to express our
classic Liar sentence:

(N =TT
And, for any sentence B in the ground language, a Curry sentence Cp such that
(Cp) TCg'— B.

These two paradoxes will be the main players of this thesis, with an emphasis on the
latter. But we will be interested in non-self-referential generalisations of these paradoxes as
well: we are talking about multi-sentence versions. Such paradoxes are interesting because
they are no longer explicitly self-referential, and they raise questions about the structure of
paradoxes.

In order to express them, we need multi-sentence generalisations of the diagonal lemmas.
Both the Diagonal Lemma and the Strong Diagonal Lemma generalise to versions in which
multiple sentences refer to each other:

Lemma 3.2.1 (Diagonal Lemma, multi-sentence version). Let n be a natural number. For
each i < n, let A;(y1,...,yn) be a formula of E;CA. Then there exist sentences Gy, ..., G, of
Lpa such that, for each i < n:

PA = Gi < Ai(TGoT,..., TGy O).

Lemma 3.2.2 (Strong Diagonal Lemma, multi-sentence version). Let n be a natural number.
For each i < n, let A;(y1,...,yn) be a formula of L';A+. Then there exist terms tg,...,t, of
Lpp+ such that, for each i < n:

PAT = t; = TA;(t1,...,ta)"
In particular, there are formulas Go, ..., Gy, defined by G; = A;(t1,...,t,), such that
PAT ): Gz A4 Ai(I—GO_‘, ceey I—Gn—l).

The Card Liar might be the simplest non-self-referential paradox. It consists of two
sentences that refer to each other:

(M) TmAy
(A2) T

The Card Liar is no longer explicitly self-referential, but still quite close: its reference
pattern is a loop. This raises the question: is circularity a requirement for paradox? Yablo
(1985) has argued to the contrary, proposing a version of the Liar that is not — prima facie —
circular, and contains infinitely many sentences. It is the set of sentences {S,, : n € w} such
that:
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(S0) (Vm > 0)(=T7Sy")
(S1) (Vm > 1)(=T7S5y7)
(S2) (Vm > 2)(=T"Sy")

Explicitly, S, is defined as
(Sn) (Vm > n)(=TTSy").

Here 11 is a device that allows us to quantify over m inside the name of S,,; see Picollo (2012])
for details.

Yablo’s paradox and the other multi-sentence versions of the Liar have inspired much
research on the general shape of paradoxesﬂ Of particular interest for us are ‘Curried’
versions of the Card Liar and Yablo’s paradox. The former is a straightforward adaptation
of the Card Liar:

Definition 3.2.3 (Card Curry). Card Curry is the set of sentences {Cp1,Cpa}, defined as
follows:

(CB1) T Cpy™
(CB2) T Cz,'— B

A Curried version of Yablo’s paradox was introduced by Cook (2009), under the name
Yablurry:

Definition 3.2.4 (Yablurry (Cook, [2009, p. 617)). Yablurry is the set of sentences {S, :
n € w} defined as follows:

(S()) (Vm > 0)(T TSy ' — B)
(S1) (Vm > 1)(T Sy — B)
(S2) (Vm > 2)(T Sy — B)

Explicitly, S, is defined as
(Sn) (Vm >n)(T"S; " — B).

These two multi-sentence versions of Curry’s paradox will recur throughout the coming
chapters.

!See e.g. Beringer and Schindler (2017), Cook (2006).
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4. Curry in Kripke's theory of truth

In this chapter, we look at the behaviour of Curry’s sentence in Kripke’s theory of truth. Our
main goal is to define a notion of paradoxicality based on Kripke’s definition that is tailored
to Curry’s paradox. We will be formalising Intuitions [5b| and [5a] and Intuition [6]

The chapter is structured as follows. In the first section, we set the stage by introducing
Kripke’s theory of truth. In the second section, we examine the behaviour of Curry’s paradox
in Kripke’s theory and formalise Intuitions and [bal In the third section, we formalise
Intuition [6] We conclude with an evaluation and comparison of the different definitions.

4.1. Kripke’'s fixed point definition

In this section, we work towards Kripke’s definition of paradoxicality by reviewing those parts
of Kripke’s theory of truth that we need. We follow Kripke’s seminal paper (Kripke, 1975)).

Kripke’s theory of truth is based on a simple idea: the concept of truth is to be under-
stood in stages. Suppose we speak a language that does not include the concept of truth;
let us call this the ground language. At stage 0, we do not know yet what ‘truth’ is. It is
thus impossible for us to understand sentences involving the concept of truth, such as ‘The
sentence “Snow is white” is true.” However, we may advance in our understanding of truth
by accepting the following rule:

we are entitled to assert (or deny) of any sentence that it is true precisely under
the circum- stances when we can assert (or deny) the sentence itself. (Kripke,
1975 p. 701)

We thus come to understand what it means to attribute truth to a sentence as ‘Snow is white.’
Indeed, we come to learn that the sentence ‘Snow is white’ is true. Having done so, we move
on to the next stage, at which we learn, by following the rule, that ‘The sentence “Snow is
white” is true’ is true. Continuing this process, we are able to assert the truth of more and
more complex sentences involving the notion of truth. This process is reflected in Kripke’s
fized point construction that we will see in a moment (Definition and Theorem . The
trick is that, if we pursue this into the transfinite ordinals, the process will come to a halt:
there will be a stage at which all sentences involving truth of which we can know whether
they are true or false, we will know. This is the fixed point. Will this include every sentence?
Undoubtedly not: only those sentences whose truth is grounded in facts that do not involve
truth will obtain a truth value. As Kripke has put it:

There is no reason to suppose that all statements involving ‘true’ will become
decided in this way, but most will. Indeed, our suggestion is that the “grounded”
sentences can be characterized as those which eventually get a truth value in this
process. (Kripke, 1975, p. 701)

Paradoxical sentences are examples of such ungrounded sentences: the truth of a sentence
such as the Liar, which asserts its own falsity, can evidently not be reduced to the truth of
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sentences in the ground language. This, then, is how Kripke’s theory of truth gives rise to a
definition of paradoxicality. In what follows, we will see how this is done formally; we first
consider the necessary technical preliminaries, and then turn to the definitions of fixed points
and paradoxicality in Kripke’s theory.

4.1.1. Technical preliminaries

Kripke’s theory of truth starts from a ground language that is rich enough to express elemen-
tary arithmetic. We use the expanded language of arithmetic Lpp+ described in Chapter (3| as
our ground language — this will give us the Strong Diagonal Lemma. We will simply denote
it by £ throughout this chapter. The full language £ is obtained from £ by adding a truth
predicate T

We will be considering classical first-order models M = (M, I) for the ground language
L that make the theory PA' true. We will call such models ground models.

Definition 4.1.1 (Classical model for £). A classical model for the language £ is a pair
M = (M, I) where M is the domain of M and I is an interpretation function such that:

1. For each function symbol f of arity n in £, I(f) is a function on M of the same arity;
2. For each predicate symbol P of arity n in £, I(P) is a relation on M of the same arity.

We will also denote I(f) and I(P) by f* and PM, respectively. The interpretation function
induces an interpretation of each closed term ¢, which we will denote by tM.

Truth in a classical model is defined as usual in classical first-order logic:

Definition 4.1.2 (Truth in a classical model). Truth of a sentence A in a classical model
M = (D,I) for L, denoted M |= A, is recursively defined as follows:

Mz P(ty,.. . t,) = tM,... tM) e pM

Mt =ty — tM =1
MEAVB = MEAoMEB
ME-A = MIpEA

M = Jz(A(z)) <= there exists some d € D such that M = A(d).
If ¥ is a set of sentences, we write M =X if M |= A for all A € ¥.

Let us stress that a ground model is not just any model for the ground language, but one
that makes the theory PAT true:

Definition 4.1.3 (Ground model). A ground model is a classical model M for £ such that
M = PAY,

For the full language £1, we use non-classical models that allow for truth value gaps:
sentences that are evaluated as neither true nor false. This will allow certain sentences
involving the truth predicate — notably, the paradoxical sentences — to lack a truth value. We
denote these non-classical models for £ by M7+ 1), given by ground model M together
with a partial interpretation (T, T7) of the truth predicate:
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Definition 4.1.4 (Partial interpretation of the truth predicate). A partial interpretation of
T is a pair (Tt,T7) consisting of an extension Tt C M and an anti-extension T~ C M such
that:

1. All members of T are (interpretations of Godel numbers of) sentences of LT,
2. The intersection of T+ and T~ is empty.

Truth or falsity of a formula in a model M+ p-) is determined by following one of
three possible valuation schemas: the strong Kleene truth conditions, the weak Kleene truth
conditions, or van Fraassen’s supervaluationism schema. Each of these logics gives rise to a
different theory, and each of these theories has its own advantages and disadvantages.

In all of the coming definitions, we tacitly enrich the language with a constant symbol d
for each element d in the domain of a model M = (M, I).

Definition 4.1.5 (Strong Kleene truth conditions). For a model M = (M, I) and a partial
interpretation (TF,T~) of T, we define recursively when a sentence is true (E7) or false
(F7) in M7+ p-) according to the strong Kleene (SK) conditions as follows:

M(T+7Tf) |:+ Jz(A(z))
M(T*,T*) ':7 El:L’(A(JZ))

there exists some d € M such that M+ r—) E* A(d)
foralld € M : Mp+ -y |~ A(d)

M(TJr’Tf) |:+ P(tl,...,tn) <~ M):P(tl,...,tn), lfP#T
M(T*,Tf) ':7 P(tl,,tn) <~ M%P(tl,,tn), lfP#T
M(T+7Tf) |:+ t1 = to = ti\/l = tﬁ/l
M+ -y E =t = M £
M+ -y EY T(t) = It)eT"
M-y E- T(1) — I(t)eT™
M(T+,T7) ':+ A V B < M T+ T~ ': A or M(T+ T— ):"" B
M(T*,T*) )ZiAVB — MT*T ': Aand./\/lT+T ':7 B
M(TJF,T*) |:+ —A — TJr T ': A
M(T*,T*) ':7 — M(T“r’T*) ': A

<~

—

Here and throughout the thesis, the connectives A and — and <> are defined as usual in
terms of = and V, and V is defined as usual in terms of — and 3. We take T to be defined as
TE9-0, and L as 1L % -7,

If Ais true in M+ p-y or false in M+ p-), we say that A has a truth value in M(p+ p-).

Definition 4.1.6 (Weak Kleene truth conditions). For a model M = (M, I) and a partial
interpretation (TF,77) of T, we define recursively when a sentence is true (E7) or false
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(F7) in M7+ -y according to the weak Kleene (WK) definitions as follows:

M+ -y EY P(ty,... tn) <= M P(t1,....t,), if P#T
M(T‘*,T‘)): P(tl,...,tn) <:>M}#P(t1,...,tn), lfP#T

M(T+ 7y ET =1t =t =)
M+ B ti=12 — tM £ 1
M+ -y ET T(t) — It)eTt
M+ -y E-T(1) — I(t)eT™
MT"’T ): AV B <:>MT+T ’* AOI‘MT+T ): B
and both A and B have a truth value in M+ -
M+r-yE- AV B = M+ -y~ Aand Mg+ -y ™ B,
and both A and B have a truth value in M(TJF,T*)
T+ T ):J,- — M(TﬂT*) li_ A
M(TJr’Tf) ):7 -A — M(TﬂT*) |:+ A

M+ -y T Fz(A(x)) = there exists some d € M such that M+ r—) ET A(d),
and A(e) has a truth value in M p+ p-) for every e € M
Mp+r-y E- Jx(A(z)) <= forallde M : Mp+ p—y = A(d)

For the supervaluationism conditions, there are multiple options; we consider the simplest
one, following Field (2009, Chapter 10.1) and Kremer and Urquhart (2008, Chapter 2)E|

Definition 4.1.7 (Supervaluationism truth conditions). A classical model Mx for the lan-
guage LT is a ground model M = (D, I) for £ together with a classical interpretation X C D
of the truth predicate. Truth in Mx, denoted M x |= A, is determined as usual in classical
first-order logic.

If (T,T7) is a partial interpretation of the truth predicate, we say that X is a precisi-
fication of (T, T7)if TT C X and T~ C D\ X. Truth (") and falsity (=) in a partial
model M7+ p-) are defined according to the supervaluationism (SV) truth conditions as
follows:

M+ ) =T A <= My | A for every precisification X of (TF,T7)
M+ -y E- A <= Mcx £ A for every precisification X of (Tt,T7).

Definition 4.1.8 (Logical consequence). For any logic L € {SK, WK, SV}, we define logical
consequence for L as follows. Let ¥ be a set of sentences and let A be a sentence.

¥ = A iff, for every partial model M+ -y for L if M (T+1- ): B forall Be X
then M+ 1) =" A according to the valuation scheme of L.

1The more involved variants of supervaluationism conditions place additional restrictions on the precisifi-
cations X; see e.g. (Field, 2009, Chapter 11.2).
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For our method of self-reference, we employ the Strong Diagonal Lemma. The regular
Diagonal Lemma does not literally go through: in classical logic, this gives us, for any formula
A, a sentence G such that

PAlEG « A(TGT).

However, in the current setting it is possible that both G and A("G™) have no truth value,
in which case the biconditional G <+ A("G™) has no truth value either.

The Strong Diagonal Lemma, on the other hand, goes through: as we mentioned in
Section [3.1], it holds even if we use a non-classical logic to govern the truth predicate, so long
as the logic governing the arithmetical part is classical.

Lemma 4.1.9 (Strong Diagonal Lemma). Let n be a natural number. For each i < n, let
Ai(y1,...,yn) be a formula of L. Then there exist terms to,...,t, of Lpa such that, for
each 1 < n:

PAT ):L t, = '_Ai(tl, e ,tn)—',

for any logic L € {SK,WK,SV}.
Proof. See Lemma [3.1.2] and the subsequent remark. O

This gives us formulas Go,...,G,, defined by G; = A;(t1,...,t,), such that, for any
model M+ 7y for PA, we have the following:

Mt ry ETGi = My ET A(TGoT, .., TGL)
M+ -y B~ Gi = Moy E Ai("Go,..., "GR),

on each of the strong Kleene, weak Kleene, and supervaluationism schemes. As a shorthand
for the above definition, we will usually simply denote each of the formulas G; by

(Gi) Ai("Go™y ..., TG

We say that the formula G; is diagonally defined by the formulas Ay, ..., A,.
To shorten notation, we introduce the following, slightly unconventional definition of
equivalence of sentences:

Definition 4.1.10 (Equivalence). We say that sentences A and B are equivalent, written
A = B, if they have the same truth value in every model:

M(T“t"T*) ):Jr A — M(T*,T*) ':Jr B
M(T*,T*) ):7 A — M(T‘F’T*) ):7 B.

Remark 4.1.11. Equivalence A = B is commonly defined as M+ 1) Et A < B for
every model M+ p-). On our definition, this is not the case: if both A and B are without
a truth value, then so is A <> B. Our definition is thus not put in terms of the biconditional
of the object language, but rather in terms of sameness of truth value.

The Strong Diagonal Lemma thus gives us sentences G; such that G; = A("Go ™, ..., "G,").
We moreover know that each sentence G; is truly referring to the sentences Gy, ..., G, in the
sense that G; contains terms ¢ such that PAT =t = "G}
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As we saw in Section the Strong Diagonal Lemma allows us to express the paradoxes
that we will be studying. To obtain the Liar, applying the Strong Diagonal Lemma to the
formula —7'(x) gives us a term [ such that

PAt = 1= =T ().

The Liar sentence is then the sentence A := =7'(1), and we have A = =T'"A™. Similarly, Curry’s
sentence is obtained by applying the Strong Diagonal Lemma to the formula T'(z) — B.
Curry’s sentence is then defined as Cp:= T'(¢) — B, where ¢ is the term such that

PAT =c= "T(c) = B".

To obtain multi-sentence paradoxes, we use multiple defining formulas A;: for instance,
the Card Liar is the set of sentences {\1, A2} defined as

(A1) T A"
(A2) T

4.1.2. Kiripke’s fixed point definition

The definition of paradoxicality that we are after is framed in terms of the fized points that
are central to Kripke’s theory:

Definition 4.1.12. A partial interpretation (T, T7) of T is a fized point of the ground
model M if

T = {'—A—'M A€ Form(£+) and M(T+,T—) ):“‘ A},
T~ ={de M :d+# "B™ for every sentence B € LT} U
{'—A—'M 1 Ae Form(£+) and M(T+,T—) == A}

If (T, T7) is a fixed point, we will refer to the corresponding model M+ -y as a fixed
point as well.

If (T*,T7) is a fixed point, we have M(p+ p—y T TTAT iff M+ p-) Y A and
M+ -y E- TTAT Mt Mp+ p-y B~ A. That is, the language contains its own truth
predicate, obeying a kind of T-schema: we have T"A" = A. Note however that we do not
have TTA" +» A: it may be that neither A nor T"A" has a truth value, in which case
TTA7 + A does not have a truth value either.

At the heart of Kripke’s theory is the fact that there exists a fixed point for every ground
model; a least fixed point, in particular. The construction of the least fixed point will be of
use later on, so we describe it here.

Definition and Theorem 4.1.13 (Strong Kleene, weak Kleene, supervaluationism (Kripke,
1975, pp. 704-705)). Let M be any ground model. The least fixed point construction for
M is the sequence ((T.}F, T, ))acora Of partial interpretations of the truth predicate defined
recursively as follows:

For a = 0, we define (T;",T;) = (2, 2).
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For a successor ordinal o = 8 + 1, we define
Tf ={"A7: A € Form(L") and M (¢ 15 ): A}

T, = {n € M : n is not the Gédel number of a sentence of L7} U
{TA7: A € Form(L") and M (T = AL

For a limit ordinal A\, we define
T = (T B <A}
Ty = | J{T; :B< AL

Then there exists an ordinal  such that (TB+ Ty) = (T+Jr17 Ty,,)- This is a fixed point

of M, and it contains any other fixed point of M. We call it the least fixed point of M.

Proof. To show that there exists 8 such that (Tgr Ty ) = (T/;r +1:T51), note that the exten-
sions and antiextensions keep growing as we travel up the ordinals: it is easy to check that
— in all three logics — if o < 3, then T C TIBJr and T, C TB_ . But they cannot keep growing
forever: Form(L") is a set of fixed cardinality &, so there must be some ordinal 8 <  such

that (T3, T5) = (T4, Ts0)-

By the very definition of TB++1 and T}, we have that (TE’TB_) is a fixed point of M.
To show that (Tg, Ty ) is a least fixed point of M, let (T™,T~) be any fixed point of M. It
can be shown by induction on « that T;F C T" and T,,; C T~ for any «; it then follows that
(Ty,Tg) (T, T7). O

The above construction can be repeated to obtain other fixed points by starting from
non-empty TO+ and Tj;. This allows us to create fixed points in which more sentences have a
truth value: some sentences have no truth value in the least fixed point of a model M, but
they do have a truth value in some other fixed points. A typical example of such a sentence
is the truth teller, which asserts of itself that it is true:

(7) T

It is straightforward to check by induction that 7 does not have a truth value in the least
fixed point of any model M. However, there are fixed points in which the truth teller does
have a truth value: if we repeat the construction by starting from T, = {7} and T, = &,
then we obtain a fixed point of M in which the it is true. Alternatively, defining 7, = @
and T, = {7} gives us a fixed point in which it is false. Thus, the truth teller has a truth
value in some, but not all fixed points.

Proposition 4.1.14 (Strong Kleene, weak Kleene, supervaluationism). Let M be any ground
model. The truth teller 7 does not have a truth value in the least fixed point of M, but
there exists a fixed point of M in which 7 does have a truth value.

Sentences such as 7 stand in contrast to sentences that have no truth value in any fixed
point, such as the Liar and the Card Liar. It follows from the definition of negation in strong
Kleene, weak Kleene, and supervaluationism, that it is impossible to assign a truth value to
any of these sentences in any fixed point.
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Proposition 4.1.15 (Strong Kleene, weak Kleene, supervaluationism). Let M be any ground
model. The Liar sentence A and both sentences A1 and A9 of the Card Liar do not have a
truth value in any fixed point of M.

Proof. Suppose (T, T~) is a fixed point of M. Then (in any of the three logics), M+ r-y =+
A E M+ -y =1 TT\7, by definition of a fixed point. However, by definition of \, we have
M+ -y ET XN iff Mgt p-y ET =TTA7. This is in turn equivalent to M+ -y =~ X in
all three loglcs So we obtaln that Mp+ r—) BT X iff Mpe ) 7 A, Wthh means that A
does not have a truth value in M+ 7).

For the Card Liar, similar reasoning gives us the following equivalences: M+ p- ):“‘ A1
lﬁ M(T+,T_) ):+ Tjr)\Qj lﬁ M(T+,T_) ):—i_ )\2 IH M(T+,T‘) ):+ _|TF)\1 lff M T+ T— ): )\1
So M+ -y ET A1 iff Mt p-y 7 A1, telling us that A; does not have a truth value in
M+ 7). An analogous argument shows us that A2 does not have a truth value in M+ 7
either. O

The difference between the truth teller and the Liar can be thought of as follows: The
truth value of a sentence like the truth teller cannot be determined, but it can still be assigned
a truth value coherently. The Liar, by contrast, cannot coherently be assigned any truth value
at all. This finally brings us to Kripke’s definition of paradoxicality and the closely related
definition of groundedness:

Definition 4.1.16 (Adaptation of (Kripke, 1975, p. 694)). A sentence is grounded in M if
it has a truth value in every fixed point of M. Otherwise, it is ungrounded in M.

The Liar and the truth teller are both examples of ungrounded sentences, for any ground
model M.

Definition 4.1.17 (Adaptation of (Kripke, 1975, p. 708)). A sentence is (Kripke-)paradozical
i a ground model M if it has no truth value in any fixed point of M. Otherwise, it is un-
paradoxical in M.

What Propositions [4.1.14] and |4.1.15| have told us is that the Liar and both sentences in
the Card Liar are paradoxical (in any ground model), while the truth teller is ungrounded
but unparadoxical (in any ground model).

Remark 4.1.18. As we will see in Chapter [5 not all definitions of paradoxicality recognize
multi-sentence paradoxes, such as the Card Liar, as paradoxical. It can be seen of one of the
strengths of Kripke’s framework that it does account for such multi-sentence paradoxes.

Remark 4.1.19. The truth teller, the Liar, and the Card Liar have the same status across
all three logics; but note that it may in general depend on which logic is used (strong Kleene,
weak Kleene, or supervaluationism) whether a sentence has a truth value in a model, and
thus whether a sentence is grounded or paradoxical in a model. In other words, the notions
of groundedness and paradoxicality are logic-dependent. In the next section, we will see some
examples of sentences whose groundedness and/or paradoxicality depends on which logic is
used (in particular: the (un)groundedness of Curry’s sentence in Propositions and
and the (un)paradoxicality of some composite sentences in Propositions [4.2.11| and 4.2.13)).

26



Kripke fixes the ground model M at the outset and is not explicit about the fact that
his notions of groundedness and paradoxicality depend on M, and this is the custom in
current work too. That is not unreasonable: for most sentences that are typically considered,
their paradoxicality and groundedness do not depend on M. We saw that the truth teller
is ungrounded and unparadoxical in any M, and the Liar and Card Liar are paradoxical
regardless of the ground model. But for some sentences, the choice of ground model matters
— they are paradoxical in some ground models, but not others. Curry’s sentence is an example
of such a sentence.

4.2. Curry’s sentence in Kripke’s theory

In this section, we see how Kripke’s definition of paradoxicality naturally gives rise to two
characterisations of Curry-paradoxical sentences, in the form of what we call local paradoxi-
cality and local-but-not-global paradoxicality. The former definition can be seen as a formali-
sation of Intuition[ba} ‘A Curry-paradoxical sentence is a sentence that behaves paradoxically
in some models.” The latter is a more restrictive notion that can be seen as a formalisation
of Intuition ‘A Curry-paradoxical sentence is a sentence that behaves paradoxically in
some models, but not in others.’

The main question we aim to answer in this section is: how do our proposed formalisations
play out formally? Do they capture the sentences that we would like to capture, or do they
have unwanted consequences? To answer these questions, we will be studying the set of
locally (but not globally) paradoxical sentences, and collect examples of its members.

4.2.1. Capturing Curry

Some sentences are not like the Liar in that they are paradoxical in every ground model,
but they still are paradoxical in some ground models. They are sentences such as Curry’s.
In this section, we will be considering Curry’s sentence with its consequent B in the ground
language:

Definition 4.2.1. Let B € L. Curry’s sentence is the sentence
(Cp) TCg'— B.
By definition of —, we have Cp = -T"Cp'V B.

To distinguish sentences such as the Liar from sentences such as Curry’s, we free Kripke’s
definition of paradoxicality from its dependence on a ground model. This gives rise to the
notions of local and global paradoxicality:

Definition 4.2.2. A sentence A of LT is globally (Kripke-)paradozical if A is paradoxical
in every ground model. It is globally (Kripke-)unparadoxical if it is unparadoxical in every
ground model.
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Definition 4.2.3. A sentence A of £V is locally (Kripke-)paradozical if there exists some
ground model M such that A is paradoxical in M.

Sentences like the Liar are globally paradoxical — and, a fortiori, also locally paradoxical.
Proposition 4.2.4. The Liar sentence X is globally paradoxical.
Proof. Follows from Proposition [4.1.15 0

Sentences such as Curry’s — except tautological Curry — are locally paradoxical, but not
necessarily globally so. The notion of local paradoxicality corresponds to Intuition [5al that
we saw in Chapter

Intuition 5a. A Curry-paradoxical sentence is a sentence that behaves paradoxically in
some models.

We also proposed a more restrictive characterisation — not with the goal of capturing all
of Curry’s paradox, but with the aim of distinguishing what makes Curry special — according
to which a Curry-paradoxical sentence is paradoxical in some models, but not in others:

Intuition 5b. A Curry-paradoxical sentence is a sentence that behaves paradoxically in
some models, but not in others.

This intuition does not capture contradictory Curry: contradictory Curry is paradoxical
in every model. But it does capture a unique feature of Curry’s paradox: some of its instances
behave differently depending on the interpretation of their consequent. Formally, this intu-
ition allows to be captured by the notion of local-but-not-global paradoxicality: a sentence is
locally but not globally paradoxical precisely when there exists some ground model in which
it is paradoxical, and another in which it is unparadoxical.

In what follows, we examine how local paradoxicality and local-but-not-global paradox-
icality fare as a formalisation of the above intuitions. We first verify that Curry is indeed
locally paradoxical so long as its consequent is not tautological, and locally but not glob-
ally paradoxical in case its consequent is neither a contradiction nor a tautology. Curry’s
sentence behaves slightly differently in weak Kleene than in the logics strong Kleene and
supervaluationism; we consider these two cases separately.

Proposition 4.2.5 (Strong Kleene, supervaluationism). Let M be any ground model. If
M = B, then Curry’s sentence [CH is grounded (and hence unparadoxical) in M. If M [~ B,
then Cp is paradoxical in M.

Proof. Strong Kleene. Let M+ p-) be a fixed point of M. We show that Curry’s sentence Cp
has a truth value in M+ p-) ifft M = B. In order to do so, we spell out the truth conditions
of Cpin M(p+ p-). The strong Kleene truth conditions tell us that M+ 7 =t Cpiff
M+ -y BT T'—CB or M+ p-y T B. Since M+ -y is a fixed point, M+ 7y = Cp
imphes that M+ 1y =t T'—CB So the above equivalence reduces to: ./\/((T+,T |:+ Cp
iff Mp+ - |:+Blff/\/l|—B
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Similarly, we have M(T“t’,T*) = Cpiff M(T*,T*) ':J'_ T™Cp' and M(TﬂL,T*) - B.
Again, since M+ p-y is a fixed point, M+ -y =~ Cp implies that M+ -y =~ T"Cp.
This gives us that M+ 7-) T TTCgY, so it is in fact impossible that M+ -y E~ Cp

This tells us: if M = B, then Cp is true in every fixed point of M. Hence if M = B,
then Cp is grounded in M. If M [~ B, however, Cp does not receive a truth value in any
fixed point of M, so Cp is paradoxical in M.

Supervaluationism. As for strong Kleene, we show that if Cg is true in a fixed point of M,
then M = B; and it is impossible that Cp is false in a fixed point of M. According to
the supervaluationism conditions, we have: M+ - =1 Cpiff for any precisification X of
(T*t,T7) we have Mx = T"Cg' — B, ie. Mx =T Cp'or Mx = B. Since (T,T7) is
a fixed point, we have: M+ 1) =t Cp implies "Cg™ € T+. This in turn implies that
CpM e X, ie. Mx =T"Cg", for any precisification X of (T, T~). So we obtain that for
any fixed point (T, 77): M+ p-y E' Cpiff M |= B.

Similar reasoning gives us that M(T+7T =~ Cpis impossible: we have Mp+ r-y |~ Cp
iff for any precisification X of (TF,T~) we have Mx = T™Cg' — B, ie. MX |: T Cg"
and Mx £ B. But My £ T™Cp" is impossible, since (T, 77) is a fixed point and

M+ 1-y E” CB.

Our clalms now follow: if M |= B, then M+ 7y =" Cp for any fixed point (TF,T7)
of M, so Cpis grounded in M. If M [£ B, then M+ -y = Cpand M+ -y =~ Cp, so
Cp receives no truth value in any fixed point M7+ r-); hence Cp is paradoxical in M. [

Proposition 4.2.6 (Weak Kleene). If M = B, then Curry’s sentence Cp is ungrounded but
unparadoxical in M. If M [~ B, then Cp is paradoxical in M.

Proof. We first spell out what it means for Cp to be true or false in a fixed point M p+ 7 of
M. For exactly the same reason as in the proof of the previous proposition, it is impossible
that M(p+ r-y =~ Cp, since the falsity condition for Cp in a model is the same in strong and
weak Kleene.

For M+ p-) =T Cp, the weak Kleene truth conditions give us:

M1+ 7-) =t Cp = M (T+,T- )=+ T"Cp" and M+ - ’* B
or M(T+,T—) =~ T7Cp" and M(T+,T—) =B
or Mp+ -y - T7Cp" and M(p+ -y - B.

The last two options are impossible, since M+ 7y =" T"Cg" by the fact that (TF,T7) is
a fixed point. We obtain:

M(T+,T ): Cpg — M (T+,T- ):+ T Cg'and M ): B.
This is impossible if M [~ B; hence, if M [~ B, then Cp does not receive a truth value in
any fixed point of M, ie. Cp is paradoxical in M.

Now suppose that M = B. Then we get truth-teller-like behaviour: for a fixed point
(T*,T7), we have M(p+ r—) ET Cpiff M(p+ p—y EY T"Cp". On the other hand, as before,
it is impossible that M(T+ ) FE" Cs

A straightforward induction shows that Cp does not have a truth value in the least fixed
point of M. Thus Cp is ungrounded in M. However, like the truth teller, it has a truth
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value in some fixed points of M: the least fixed point construction starting from (1,7, T, ) =
({"Cg™}, @) instead of (@, @) gives us a fixed point of M in which Cpis true. Thus, Cp is
ungrounded but not paradoxical. O

The previous propositions give us the following characterisation of the paradoxicality of
Curry in Kripke’s fixed point theory, put in terms of the status of its consequent:

Proposition 4.2.7 (Strong Kleene, weak Kleene, supervaluationism). If B # T and B # L,
then Curry’s sentence Cp is locally paradoxical but not globally paradoxical. If B = T, then
Cpis globally unparadoxical. If B = L, then Cpis globally paradoxical.

Proof. If B # T and B # L, then there exists some ground model M such that M ~ B
and some ground model M’ such that M’ = B. So by Propositions and we have
that Cp is paradoxical in M but not paradoxical in M’ in strong Kleene, weak Kleene, and
supervaluationism. This means that Cp is locally paradoxical but not globally paradoxical.
On the other hand, if B = T, then M | B for every ground model M, so by Propo-
sitions and [£.2.6] Cp is not paradoxical in any ground model M. Hence Cp is globally
unparadoxical. If B = 1, then M [~ B for every ground model M, so (by Propositions
and Cpis paradoxical in every ground model M — hence Cp is globally paradoxical. [

Thus, our formalisations of Intuitions and [5al seem to do what we want them to do:
they capture some instances of Curry’s paradox because they are paradoxical in some ground
model (but not in others). This is a generalisation over Kripke’s notion of paradoxicality,
which considers only one ground model. However, we should put a technical sidenote: since
we are only considering ground models for PAT, our definition only makes a difference for
instances of Curry with consequents that are independent of PAT. We are thus working
in quite a small margin. Still, we hope that our work demonstrates a certain method for
characterising more of Curry’s paradox as paradoxical, and a certain mechanism underlying
Curry’s paradox. The same method might be applied in an adapted context, in which its
impact might be bigger — for instance, if we adopt a different (artificial) method of self-
referenceﬂ or if we add a non-arithmetical part to the language.

4.2.2. Multi-sentence Curry

Having seen that Curry’s sentence is locally (but not globally) paradoxical depending on the

status of B, we examine what other sentences are locally (but not globally) paradoxical. We

first turn to multi-sentence variants of Curry, which we would like to fall under our definition.
Recall the definitions of Card Curry and Yablurry:

Definition 4.2.8 (Card Curry). Card Curry is the set of sentences {Cpy,Cps}, defined as
follows:

(CB1) TCpy!
(Cp2) TCg,"— B
2As in Cook, [2004L
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Definition 4.2.9 (Yablurry (Cook, [2009, p. 617)). Yablurry is the set of sentences {S,
n € w} defined as follows:

(So) (Vm > 0)(T TSm ' — B)
(Sl) (Vm > 1)(T'_Sm_' — B)
(S2) (Vm > 2)(T"S;" — B)

Explicitly, S, is defined as
(Sn) (Vm >n)(T"S; " — B),
where 71 is a device that allows us to quantify over m inside the name of S,,, as in Section [3.2]

Both these paradoxes behave as we would like them to with respect to local(-but-not-
global) paradoxicality; in all three logics, all sentences of Card Curry and Yablurry are
locally (but not globally) paradoxical for an appropriate consequent B:

Proposition 4.2.10 (Strong Kleene, weak Kleene, supervaluationism). Let B be a sentence
in the ground language. If B # T, then the following sentences are locally paradoxical. If
additionally B # 1, then they are locally but not globally paradoxical.

1. Both sentences Cp; and Cpq of Card Curry.

2. Every sentence S, of Yablurry.

Proof. 1. Suppose that B # T and let M be such M [ B. Then we have that
M+ -y EY Cy iff Mgt -y ET Cha, since (T, T7) is a fixed point. And, in
all three logics, M+ p-) ): C32 iff M(p+ -y E~ T"Cpy iff M(p+ p-y |~ Cpy since
M = B. So Cpy is true in M(p+ p-y iff CB1 is false in M+ 1-y; we conclude that Cp;q
has no truth value in Mg+ 7-). It follows that Cpo has no truth value in M+ 1)
either. So both Cp; and Cgy are paradoxical in M, ie. they are locally paradoxical.

Now suppose that B # L and let M’ be such that M’ = B. One can then check that
Cp» is unparadoxical in M’; the argument is the same as in Propositions and
So there is some fixed point (T",77) in which Cgy has a truth value. It then follows
that Cp; is unparadoxical as well: we have M/ (T+ 1) Et T™Cpy ' since (T, T7) is a
fixed point. This shows that both Cp; and Cpy are not globally paradoxical.

2. Let M be such that M £ B. Let (T't,T~) be any fixed point of M. One can then
check that M+ p—y EY T7S,," — B iff Mg+ p-y - T7Sy,", for any m € w. The
argument then proceeds as in the standard Yablo’s paradox.

If B# L, let M’ be such that M’ = B. Then it is again straightforward to verify that
any sentence S, in Yablurry is unparadoxical in M’.
O

This is a positive result: It is one of the strengths of Kripke’s definition of paradoxicality
that it recognises multiple-sentence versions of the Liar, like the Card Liar and Yablo’s para-
dox, as paradoxical. It might therefore be demanded of a definition of Curry-paradoxicality
within this framework that it captures the Curried versions of the Card Liar and Yablo’s
paradox. What the previous proposition shows is that the notion of local-but-not-global
paradoxicality meets this demand.
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4.2.3. Relatives to Curry: strong Kleene and supervaluationism

What other sentences are locally but not globally paradoxical depends on the underlying logic.
In Strong Kleene and supervaluationism, we can build locally but not globally paradoxical
sentences from globally paradoxical sentences, such as the Liar:

Proposition 4.2.11 (Strong Kleene, supervaluationism). Let S be any globally paradoxical
sentence and let A and B be sentences in the ground language. If A # 1 and B # T, then
the following sentences are locally paradoxical. If additionally A £ T and B # L, then they
are locally but not globally paradoxical.

1. SAA,
2. SV B,

3. S— B.

Proof. Let us consider the first example. In strong Kleene we have, for any fixed point
M+ -y Mps -y ET SANAME Mg p-y ET S and Mp+ p-y =T A. Since S is globally
paradoxical, S has no truth value in M(T+ 7-), S0 this is impossible. On the other hand,
S A Ais false in Mp+ gy iff Mpr p-y E= S or M(p+ p-y F~ A. Again, it is impossible
that S is false in M p+ 7y, so it must be that Mp+ 7-) ): A, ie. M = B. We see that
S A B has a truth value in a fixed point of M iff M £ B; so S A A is paradoxical in M iff
M [ A. Since A # 1, there exists some ground model M such that M = A. In this model,
S A A is paradoxical. This means that S A B is locally paradoxical. If moreover A # T,
then there are other models in which S A A is paradoxical: for then there exists some ground
model M’ such that M’ £ A. Hence S A A is locally but not globally paradoxical.

In supervaluationism, we have that M+ p-) =T S A A iff, for every precisification X
of (TT,T7): Mx |E S and Mx = A. Since S is globally paradoxical, it is impossible that
Mx = S for every precisification X of (T, T~), since this would imply that Mp+ p—y =T S.
On the other hand, have Mz+ r—y =~ S A A iff, for every precisification X of (T+,T7):
Mx = S or Mx = A. Now if M = B, this reduces to: Mx |= S for every precisification X
of (T, T™), which is again impossible since S is globally paradoxical. So if S A B has a truth
value in M p+ 7-), then it must be that M £ A, in which case we get M+ p—) = S A 4;
as in strong Kleene, we have that S A A is paradoxical in M iff M = A. This means that
there exist ground models in which S A A is paradoxical precisely when A £ 1. If A #£ T,
there also exist ground models in which S A A is unparadoxical — so S A A is locally but not
globally paradoxical.

In a similar manner, one can check that examples 2 and 3 are paradoxical in a model M

iff M £ B. 0

Time for a moment of reflection: is it desirable that the sentences above belong to the
class of intuitively Curry-paradoxical sentences? This might not be immediately obvious: a
sentence such as “The Liar is true or I am Santa Claus” (A V B) certainly does not have
the same ring as “If this sentence is true, then I am Santa Claus” (Cg). What the above
considerations show is simply is that these two sentences formally behave in a very similar
way — at least in Kripke’s setting and in the logics under consideration. Indeed, they both
are paradoxical in some models, but not in others — and so they match Intuition
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In particular, like Curry, all three sentences above force A or B to take on a certain truth
value. We go through the example A V B informally. Either A\ V B is true or it is false. If
it is true, then either A or B is true. If A is true, then A is false by definition of A; so, since
we assumed that A V B is true, it must be that B is true. If AV B is false, then both A
and B are false. So A is true, which means that A V B is true — and we just saw that this
means that B is true. Either way, B is true. We have avoided reasoning by contradiction, in
order to highlight the similarity between this argument and the standard argument of Curry’s
paradox (Chapter [2) as much as possible. And indeed, though the arguments are different,
we hope that the similarities are clear as well. Either way, this illustrates that these sen-
tences share a crucial power with Curry: to force another sentence (or its negation) to be true.

What about weak Kleene? The previous examples are all globally paradoxical in weak Kleene,
simply because any sentence containing a globally paradoxical sentence is again globally para-
doxical:

Proposition 4.2.12 (Weak Kleene). If S is paradoxical in M, then so is any sentence
containing S as a subformula.

Proof. It can be shown by induction on A that, for any sentence A and any model M p+ -,
A has a truth value in M p+ 1) under the weak Kleene truth conditions iff every subformula
of A has a truth value in M p+ 7-) under the weak Kleene truth conditions.

Now let S be paradoxical in M and let A be any sentence containing S. Let (T, T7)
be any fixed point of M. If A has a truth value in M p+ 7-), then, by the above, S has a
truth value in M7+ p-). This contradicts the assumption that S is paradoxical in M. We
conclude that A does not have a truth value in any fixed point of M; so A is paradoxical in

M. O]

Proposition 4.2.13 (Weak Kleene). The sentences in Proposition |4.2.11] are all globally
paradoxical in weak Kleene.

Proof. Follows from the previous proposition. O

In general, we can generate locally but not globally paradoxical sentences given a single
globally paradoxical sentence by appending to it any amount of sentences in the ground
language, so long as they meet a strong independence requirement.

Definition 4.2.14 (Joint independence). A set of sentences { B, ..., By} is jointly indepen-
dent iff any combination of truth values of these sentences is witnessed by some model; that
is: for every function f : {B,..., By} — {0,1} there exists a ground model M such that
My = By iff f(B;) = 1.

Proposition 4.2.15 (Strong Kleene, supervaluationism). Let S be any globally paradoxical
sentence and let {By,...,B,} C Form(L) be a jointly independent set of sentences in the
ground language, for some n > 1. Furthermore assume that B; # T and B; # L for every
i. Then the following sentence is locally but not globally paradoxical, for any choice of
connectives o; € {A,V,—} and ~;e {—, —}:

~on (- ~g (~1 (S oy By) oy By) -0, By).

“_»

Here indicates the absence of a negation, ie. is to be ignored.
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Proof. We prove the result by induction on n. For n = 1, Proposition [£.2.11] shows that
S o1 By is locally but not globally paradoxical. It is moreover straightforward to verify the
following: if A is locally but not globally paradoxical, then so is = A. This follows from the
fact that M+ p-) ET 2 A iff M+ -y E- A and Mps p-) = A Mps 7o) ET A
in both strong Kleene and supervaluatlomsm Thus, ~1 (S 01 By) is locally but not globally
paradoxical for any choice of ~1 and o;.

For the induction step, suppose that ®,, = ~,, (--+ ~g (~1 (S 01 By) oy Ba)--- o, By)
is locally but not globally paradoxical. Let B,41 be such that {Bj,..., By+1} is jointly
independent and let o; € {A,V,—} and ~;€ {—, —}. We show that

(Ppt1) ~nt1 (~n (- ~2 (~1 (S o1 By) og Ba) -+ 0y By) opy1 Bpti)

is locally but not globally paradoxical. As before, we may disregard ~,,1 since the negation
of a locally but not globally paradoxical sentence is again locally but not globally paradoxical.
We consider the case that o; = A; the other cases are analogous. Let M be such that &,
is paradoxical in M. Since {Bj,..., By+1} is jointly independent, there exists a model M)
such that

M By iff {Ml =B misw

always, ifi=n+1.

One can check by induction that then, ®,, is still paradoxical in M) in both strong Kleene
and supervaluationism. This fact will give us that @, is paradoxical in M| as well. Let
(T*,T7) be any fixed point of M). In strong Kleene, we have M+ 1) Et @, iff
M’I(T+7T,) =t @, and M/ = By,y1. Since @, has no truth value in M’I(T+7T,), we obtain
that MY i 7oy T Cpyr. Similarly, MY i ooy BT @pr if My s o) FT @ and M| =
Bry1. Since My & By, we obtain that My pp 70—y =7 ®pq1. So we conclude that ®p4q
does not have a truth value in any fixed point of M.

In supervaluationism, we have M’l(T+ ) =T @, iff M) | ®, and M} |= By for
any precisification X of (', 7). It is straightforward to verify that M}, = @, iff My =
®,,. Since ®,, does not have a truth value in M/1(T+ ) there exists some precisification Y of
(T%,T7) such that M/ y = ®p. So M (4 -y T Cpyr. Similarly, we have MY iy oy 7
Py iff M) = Py A Bpyr; but M = Bn+1, so this is never the case. We conclude that
®,,+1 does not have a truth value in any fixed point of M. This means that @, is locally
paradoxical.

Now let Ms be such that &, is not paradoxical in Ms. Then it is straightforward to
verify that ®, 1 has a truth value in every fixed point of Ms as well. So ®,, is not globally
paradoxical. ]

Examples of the previous proposition are sentences such as (SV A)A B and =(SAA)V B:
these are locally but not globally paradoxical for globally paradoxical S, so long as A and B
are independent and not equivalent to T or L.

To see why the independence requirement is needed, we give some examples of sentences
that are not locally paradoxical:

Proposition 4.2.16 (Strong Kleene, weak Kleene, supervaluationism). Let S be any sen-
tence in £1 and let B and C be sentences in the ground language. The following sentences
are not locally paradoxical:
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. (SAB)AN-B

. (SVB)V-B

. (SANB)VB
4. (SVB)AB
5. (SA(BA-B))VC
6. (SV(BV-B))AC

Proof. Straightforward to verify by unfolding the truth conditions of these sentences in the
three logics. O

4.2.4. Relatives to Curry: weak Kleene

Propositions [4.2.11] and [4.2.15| have provided us with examples of sentences that behave like
Curry in strong Kleene and supervaluationism. However, these are all globally paradoxical in
weak Kleene. We can still arrive at sentences that are locally but not globally paradoxical in
all three logics — they are sentences that are closer to Curry’s paradox than the examples we
saw before. Like Curry’s paradox, they assert their own falsity depending on the behaviour
of some sentence in the ground language.

Proposition 4.2.17 (Strong Kleene, weak Kleene, supervaluationism). Let A and B be
sentences in the ground language £. If A #Z 1 and B,C # T, then the following sentences
are locally paradoxical. If furthermore A # T and B,C # 1, then they are locally but not
globally paradoxical.

1. The sentence

(D) ~T™D7AA,

2. The sentence

(€) (TTETV B) — C.

3. The sentence

(F) (TTFTAA) - B.

Proof. The arguments are similar to those we saw for Curry’s paradox in Propositions [4.2.5
and For D, a ground model M such that M | A witnesses that D is not globally
paradoxical, while a model M’ such that M [~ A witnesses that D is locally paradoxical.
The sentence & is paradoxical in M if M }= B and M [~ C, while £ is unparadoxical in M if
either M = B or M |= C. For F, we have that F is paradoxical in M if and only if M = A

and M j= B.
It is worth noting that F is simply equivalent to an instance of Curry’s sentence: we have
F=T"F'— (-mAV B). O
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Remark 4.2.18. In the above proposition, we cannot take a sentence of the form
(H) “TTH'— A,

since "T"™H'" — B = T"™H 'V B: the negation disappears and we get unparadoxical truth-
teller like behaviour.

The above examples are again instances of a more general pattern, similar to our gen-
eralisation of the locally but not globally paradoxical sentences in strong Kleene and super-
valuationism of Proposition The difference is that the sentence must refer to itself
rather than to an external paradoxical sentence: it must assert its own falsity modulo the
truth or falsity of some formulas in the ground language. We must moreover be careful with
negation and the implication connective (since it is defined in terms of negation, as we saw
in Remark , since these may cancel the fact that the sentence expresses its own falsity.

Proposition 4.2.19 (Strong Kleene, weak Kleene, supervaluationism). Let {Bi,..., By} C
Form(L) be a jointly independent set of sentences in the ground language, for some n > 1.
Furthermore assume that B; % T and B; # L for every i. Then the following sentence is
locally but not globally paradoxical, for any choice of connectives o; € {A,V}:

(S) (((_'TI—S—I o1 Bl) 09 Bg)-"on Bn)

Proof. The proof is similar to the proof of Proposition 4.2.15] The proof is by induction on
n, and the base case that n = 1 is given by the local-but-not-global paradoxicality of Curry’s
sentence Cp and the sentence D of Proposition O

Note that the sentences D, £ and F of Proposition [4.2.17| are all equivalent to sentences of
the form displayed in Proposition [4.2.19] The latter proposition thus really is a generalisation
of the former.

We thus have two groups of sentences that are similar to Curry: those that are locally
(but not globally) paradoxical in the logics strong Kleene and supervaluationism, and those
that are locally (but not globally) paradoxical in all three logics, including weak Kleene.
We did not see any examples of sentences that are locally (but not globally) paradoxical
in weak Kleene but not in strong Kleene or supervaluationism. In other words: so far,
it seems like the notion of weak Kleene local(-but-not-global) paradoxicality is contained in
that for strong Kleene and supervaluationism. Proving such an inclusion, however, is far from
straightforward, since the fixed points of the three logics are not necessarily comparableﬂ

4.2.5. Summary

We proposed the notion of local paradoxicality as a formalisation of Intuition and the no-
tion of local-but-not-global paradoxicality as a formalisation of Intuition Both definitions
are very literal translations of the corresponding informal characterisations, so in this respect

3What we would like is an implication of the following form: ‘if S has no truth value in any fixed point in
weak Kleene, then S has no truth value in any fixed point in strong Kleene or supervaluationism.” However,
Kremer (2009) has shown that the relation between various fixed points of the three logics is rather complex.
For instance, the greatest intrinsic fixed points of weak Kleene, strong Kleene, and supervaluationism are
incomparable (Kremer, 2009, p. 372). This makes an easy proof of such an implication unlikely.
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they are successful. The main question was: how do these definitions play out formally? We
saw that Curry’s paradox is captured by both definitions in the manner that we expected; we
moreover saw that multi-sentence variants of Curry’s sentence are captured as well. In the
final subsection, we encountered other relatives to Curry’s paradox that fit the definitions as
well. Which sentences are captured depends on the background logic: as far as our examples
are concerned, the weak Kleene logic results in a smaller class of locally (but not globally)
paradoxical sentences than the other two logics.

We encountered two groups of sentences that are similar to Curry — in the sense that they
are locally (but not globally) paradoxical as well. The first group we encountered consists
of sentences of the form S o B, for some globally paradoxical sentence S (such as the Liar)
and some connective o. These are locally (but not globally) paradoxical in strong Kleene
and supervaluationism, but not in weak Kleene. The second group consists of sentences that
are, like Curry, self-referential; they are sentences such as D, £, and F of Proposition
These are locally (but not globally) paradoxical in all three logics.

Our results may be summarised as in the table of Figure 4.1

Locally, not globally paradoxical (WK)

‘ C ‘ D & F ‘ Ao B ‘ Card Curry Yablurry
* * % *
Locally, not globally paradoxical (SK,SV) | % | * * x

X * *

* * *x

(x) not captured
(¥) captured, under the condition that A# 1, B# T,and C # T.

Figure 4.1: Overview of Curry-paradoxical sentences on the definition of local-but-not-global
Kripke-paradoxicality.

4.3. Capturing all of Curry

In this section, we again take Kripke’s definition as a starting point. This time the aim
is to formalise Intuition [6} ‘A Curry-paradoxical sentence is a sentence whose logical form
is paradoxical.” The corresponding definition should capture tautological Curry, unlike the
previous notion of local (but not global) paradoxicality.

4.3.1. Tautological Curry and logical form

We saw that the previous notion of local paradoxicality captures Curry’s sentence just in case
its consequent is not logically equivalent to T — in particular, it does not capture tautological
Curry: the instance of Curry’s sentence whose consequent is T. This matches our informal
understanding of Intuitions [5b] and as we saw in Section neither of these intuitions
recognises tautological Curry as paradoxical. In the same section, we proposed the following
intuition that does include tautological Curry:
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Intuition 6. A Curry-paradoxical sentence is a sentence whose logical form is paradox-
ical.

This intuition does not translate as straightforwardly to the framework at hand as the
previous intuitions Intuitions [5b] and Still, we propose one possible formalisation in the
current setting; it is a valuable exercise to attempt to find a form of Kripke-paradoxicality
that includes tautological Curry as well. What is at play here is the fact that tautological
Curry behaves like a tautology, yet it has the same logical form as other instances of Curry.
We propose one way of cashing this out formally into a notion of Curry-type sentences, which
includes tautological Curry.

Let us first be a bit more precise about the sense in which tautological Curry ‘behaves
like a tautology’. In strong Kleene and supervaluationism, tautological Curry is, literally,
tautological in the sense of being true in every model:

Proposition 4.3.1 (Strong Kleene, supervaluationism). Tautological Curry is tautological,
ie. Ct=T.

Proof. Let M+ -y be amodel for L. In strong Kleene, M7+ p-y =1 Ciff M+ -y -
TTCr" or M+ 1y =1 T. The latter is always the case, so M1+ 7-) =t Cr.

In supervaluationism, M+ 7-) =1 Criff, for every precisification X of (T, T7): Mx ¥
TTCt'or Mx = T. Again, since the latter is always the case, we have M1+ 1) EtCr. O

This means that tautological Curry has a truth value in every fixed point of every ground
model; for this reason, the local-but-not-global paradoxicality of the previous section cannot
capture tautological Curry. In weak Kleene, however, the situation is different: tautological
Curry is not tautological, because it receives no truth value at all in some models. Still,
tautological Curry is never false:

Proposition 4.3.2 (Weak Kleene). Let M1+ -y be any model for LT. Then, in weak
Kleene, either Ct is true in M g+ 7-, or C1 has no truth value in M7+ 7-).

Proof. Let M+ -y be a model for LT, In weak Kleene, Mpt 1) E- Criff M+ -y =t
TTCr" and M+ r-y - T. The latter is impossible, so M7+ -y £~ C1. We conclude
that Ct is either true in M p+ 17— or has no truth value in M+ 7). O

Still, the notion of local-but-not-global-paradoxicality cannot capture tautological Curry
in weak Kleene either, because any ground model M has a fixed point in which it is true; we
can obtain one by repeating the least fixed point construction from (T(;r T)=({"C MY, 2)
(as mentioned in Proposition [4.2.6)).

To capture tautological Curry, we need to look beyond the behaviour of this particular in-
stance, and consider its logical form instead. One way to do so is by allowing the replacement
of one of its subsentences by another sentence (of the same kind); in this way, the logical form
is not altered, but its behaviour in logical models may change. In particular, it may become
(globally) paradoxical. Indeed, if we take tautological Curry Ct and replace its consequent
T by L, we obtain contradictory Curry — which is a globally paradoxical sentence. That is
the intuition that the following definition tries to capture:
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Definition 4.3.3. For any two sentences A and S any subformula F of A, the sentence
A[S/E] is the sentence obtained from A by replacing every occurrence of E by S.

Definition 4.3.4 (Basic Curry-type sentences, first attempt). A sentence S of LT is a basic
Curry-type sentence if there exists some subformula E € Form(L£) of S such that:

1. S[L/E] is globally paradoxical,
2. S[T/E] is globally unparadoxical.

The second clause is added in order to capture only those sentences that behave very
much like Curry: note that replacing the consequent of any instance of Curry by T gives
us a globally unparadoxical sentence. The definition expresses that the paradoxicality of S
depends on the truth value of the subformula E: if E is evaluated as false, the sentence
is paradoxical, and if it is true, then the sentence is unparadoxical. It thus captures those
sentences whose logical form has a strong resemblance to that of Curry — it is for this reason
that we call them Curry-type sentences.

While the above definition captures the above description intuitively, it has a technical
problem: it does not take into account the fact that the name of S changes when one or
more of its subsentences is replaced by T or L. This means that if S was self-referential, its
altered version S[A1/Bi]...[A,/B,] may no longer be. Consider, for instance, tautological
Curry Cr=T"Ct'— T. Replacing T by L gives us

CrlL/T]=TCr — L,

while the desired sentence is of the form C+* =T "C+*7 — L.
Given this notation, we can introduce a more sophisticated notion of basic Curry-type
sentences, which solves the problem we encountered:

Definition 4.3.5 (Basic Curry-type sentences). Let the sentence S in L1 be diagonally
defined by the formulas Ai(y1,...,Yn), -+, An(y1,...,yn). Then S is basic Curry-type if
there exists a subformula E € Form(L) of S satisfying

1. Sﬁ is globally paradoxical,
2. SE is globally unparadoxical.

Where, for any formula D and any subformula E € Form(£) of S, we let SE denote the
sentence that is diagonally defined by the formulas

Al(yla---ayn)[D/E]a' . 'aAn(ylw--»yn)[D/E]'

Example 4.3.6. Consider Curry’s sentence Cp that is diagonally defined by
A(z) =T(x) — B.
Then Sg is diagonally defined by

A(@)[T/B] =T(x) = T,
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and Sﬁ is diagonally defined by
A(z)[L/B] =T(x) — L.

Thus, S}, is the sentence which has the same truth value as T("S}7) — T in ground model,
and Sﬁ has the same truth value as T'("S ﬁj) — L in every ground model.

Remark 4.3.7. In the above definition, we restrict our attention to subformulas in the
ground language. This matches the fact that we are only considering instances of Curry that
have their consequent in the ground language. It also aligns with our previous notion of
local-but-not global paradoxicality, which is framed in terms of ground models. Moreover, it
helps avoid problems with sentences such as the following:

AV A

This sentence should not be classified as Curry-type: its logical form is not paradoxical.
However, it would be if we consider subsentences in the full language £1: We can take AV =\
to simply be (vacuously) diagonally defined by the formula

A(z) = (AV-N Az =,

and consider its subformula —A. Replacing this subformula with L gives us a globally para-
doxical sentence, and replacing it with T gives us a globally unparadoxical sentence. Hence
the sentence A V =\ meets the definition of basic Curry-type sentences. Restricting our
attention to subformulas in the ground language resolves this problem.

Remark 4.3.8. One might wonder whether it is necessary to include the second clause in
the above definition; the answer is yes, if we want to capture precisely those sentences whose
paradoxicality depends on the truth or falsity of one of its subformulas. The requirement is
motivated by sentences such as the following:

S:= (AAE)V (AA-E).

Note that both S[L/E] = LVA = Xand S[T/E] = AV_L = X are globally paradoxical. Thus,
while S satisfies the first clause, it does not satisfy the second; it is paradoxical regardless of
the status of E. Including the second clause means that we rule out such sentences.

Remark 4.3.9. The above definition is rather syntactical at first sight — and it has to be,
because tautological Curry cannot be distinguished from T semantically in strong Kleene and
supervaluationism. But note that, in effect, replacing part of the formula in question with T
or L is no more than a tool to control the interaction between the models and the formula:
to ensure that the subformula in question always receives value 1 or 0, respectively.

With the notion of basic Curry-type sentences, we have a definition intended to capture
those sentences whose logical form behaves similarly to that of Curry. Let us verify that
Curry’s sentence is indeed basic Curry-type:

Proposition 4.3.10 (Strong Kleene, weak Kleene, supervaluationism). Every instance of
Curry’s sentence is basic Curry-type, including tautological Curry; ie. Cpis basic Curry-type
for every B.
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Proof. We have seen in Proposition that Cp is globally paradoxical when B = |, while
Cpis globally unparadoxical if B = T. It is straightforward to check that this means that Cé
is globally paradoxical, while Cg is globally unparadoxical. O

In what follows, we consider other sentences that fit the mould of basic Curry-type sen-
tences, as well as a more general notion of Curry-type sentences.

4.3.2. Relatives to Curry

If basic Curry-type sentences are those that force one of their subformulas to be true, then
we might be interested in a more general notion — sentences that force more than one of their
subformulas either to be true or to be false. This is the notion of Curry-type sentences, in
which we allow the replacement of more than one subformula, and by either T or L. To state
it concisely, we first introduce some notation:

Definition 4.3.11. Let the sentence S in £1 be diagonally defined by the formulas

A1(yt, o oy Un)y o An(yi, - o, yn). Let B={DBy,..., By} C Form(L) be a set of subformulas
of Sin £, and let f : {By,...,B,} — {T,L} be a function. Then we let S[]; denote the
sentence that is obtained from S by replacing every occurrence of B; by f(B;) in the defining
formulas A1 (y1,---,Yn)s s An(Y1, .-, yn). Le., Slj; is diagonally defined by the following
formulas, for i < n:

Ai(yr, - yn)[f(B1)/Ba] ... [f (Bn)/ Bn]-

Example 4.3.12. Consider the sentence & = (T'"E7V A) — B of Proposition that is
diagonally defined by
D(z) = (T(x) NA) — B.

Let f(A) = A’ and f(B) = B'. Then 5{ 1.y 1s diagonally defined by
(T(z) N A) — B)[A/A'[B/B] = (T(x) NA') — B,

=7rel

so that &7 (4,8}

;
{4.B} '

Given this notation, Curry-type sentences may be defined as follows:
Definition 4.3.13 (Curry-type sentences). Let S in £ be diagonally defined by formulas
A1(yise -y Yn)y - s An(Y1, - yn). Then S is Curry-type (for B) if there exists a set of

subformulas B = {Bj,...,B,} C Form(L), for some n > 1, together with a function
f:A{Bi,...,B,} — {T, L} such that

1. Sl’; is globally paradoxical,

2. S}: is globally unparadoxical,

where f* is defined by: f*(B;) = T iff f(B;) = L, and f* = L iff f(B;) = T.

The notion of Curry-type sentences is closely related to the previous notion of globally
but not locally paradoxical sentences:
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Proposition 4.3.14. If S is Curry-type for {By,..., By}, and B; # | and B; # L for every
i, then S is locally paradoxical but not globally paradoxical.

Proof. Let S be as described. Let Ai(y1,-..,9n),---s An(y1,...,yn) be the formulas that
diagonally define S and let f: {B,..., By} — {T,.L} be as in Definition

We use the following fact: suppose that M |= B; iff f(B;) = T and M [ B; iff f(B;) = L.
Then M+ 1) =1 S iff M+ 1) =t SZJ;.

With this in mind, define the ground model M; such that M; = B; iff f(B;) = T and
My (= By iff f(B;) = L. Since each B; # L and B; # T, there exists such a ground model.
Then, by the aforementioned fact, S has a truth value in a fixed point of My iff SIJ; does.
By assumption and Definition Sl]; is globally paradoxical, so in particular SIJ; has no
truth value in any fixed point of M;. Hence, by the mentioned fact, .S has no truth value in
any fixed point of M;j. This tells us that S is locally paradoxical.

Similarly, show that .S is not globally paradoxical, we define M5 such that S has a truth
value in a fixed point of My iff Sl];* does. To achieve this, let My be such that My = B; iff
f(B;) = L and My |~ B; iff f(B;) = T. Since S{; is globally unparadoxical, it has a truth
value in some fixed point of Ms; so S is unparadoxical in M as well. This tells us that S is
not globally paradoxical. O

This means that many Curry-type sentences are in fact locally but not globally paradoxi-
cal. But not all are; crucially, tautological Curry — which is a globally unparadoxical sentence
—is (basic) Curry-type.

Some examples of locally but not globally paradoxical sentences for strong Kleene and
supervaluationism that we saw in Proposition are basic Curry-type:

Proposition 4.3.15 (Strong Kleene, supervaluationism). Let S be any globally paradoxical
sentence and let B be a sentence in £. The following sentences are basic Curry-type sentences:

1. Sv B,
2. S— B.

Note that unlike in Proposition [f.2.11 B may be equivalent to T or L. The other
example in Proposition and all examples in Proposition are not basic Curry-
type because of their syntactic shape, but they are still closely related: they are equivalent
to basic Curry-type sentences.

Proposition 4.3.16 (Strong Kleene, supervaluationism). Let S be any globally paradoxical
sentence and let B be any sentence in £7. The following sentence is not basic Curry-type,
but is logically equivalent to a basic Curry-type sentence:

S A B.

Proof. Note that S A B = (=S V —B); take E = —B. O

Proposition 4.3.17 (Strong Kleene, weak Kleene, supervaluationism). The following sen-
tences are not basic Curry-type, but are logically equivalent to basic Curry-type sentences.
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1. The sentence
(D) -“T™D7N B,
2. The sentence

(F) (TTFTAA) - B.

Proof. 1. Note that D = =(T'"D"V —B); consider the subsentence £ = —B. Then this
latter sentence is basic Curry-type for E.

2. Note that F is simply equivalent to an instance of Curry’s sentence: in all three logics,
we have

F=-TTF'V(-AVB)=T"F'— (-AV B).

Thus F is equivalent to a basic Curry-type sentence by taking £ = (-=AV B).
O

As is straightforward to check, the above sentences are all examples of Curry-type sen-
tences; we conjectureﬁ that it is the case in general that any sentence equivalent to a basic
Curry-type sentence is Curry-type.

Conjecture 4.3.18. If a sentence A is equivalent to a basic Curry-type sentence, then A is
Curry-type.

We conjecture that the converse is not true:

Conjecture 4.3.19. Not every Curry-type sentence is equivalent to a basic Curry-type
sentence; the sentence

&) (TT¢7Vv A) — B.
is Curry-type but not basic Curry-type.

Explanation. This sentence is globally paradoxical if B = 1 and A = 1, and globally un-
paradoxical if either B = T or A = T. It can therefore be checked that it is Curry-type
for {A, B}. To show that it is basic Curry-type, we would like to rewrite it to a sentence
containing the subsentence A V B, and such that A and B do not occur ‘by themselves’
outside of this subsentence. This does not seem possible; note for instance that the following
rewriting process is not helpful, since it still contains an isolated instance of B:

E=-(TE"VA)VB
=(-T"E"AN-A)VB
= (-TTE'V-B)A(-AV -B).

O]

4This conjecture should really have been a proposition; it is only due to limitations of time that the proof
was not worked out.
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4.3.3. Multi-sentence Curry

We saw examples of locally but not globally paradoxical sentences that are Curry-type.
But not all locally but not globally paradoxical sentences are Curry-type: in particular,
the definition of Curry-type sentences does not carry over nicely to multi-sentence Curry
paradoxes.

Proposition 4.3.20 (Strong Kleene, weak Kleene, supervaluationism). Of the sentences Cpq
and Cpy in Card Curry, only Cpy is Curry-type.

Proof. Recall that Cg; =T "Cpy ' and Cpy = T"Cpy ' — B. It is immediate that Cp; is not
Curry-type: its only subformula is itself. The sentence Cgy is Curry-type, as one can check
by replacing B by L or T. O

Corollary 4.3.21. There exist locally but not globally paradoxical sentences that are not
Curry-type.

So, though many locally but not globally paradoxical sentences are Curry-type, not all
of them are. That is, the set of Curry-type sentences does not contain the set of locally
but not globally paradoxical sentences. The converse does not hold either: we saw that
tautological Curry is Curry-type but not locally paradoxical. In this sense, the two notions
are incomparable.

It can be seen as a weakness that the notion of Curry-type sentences does not include
multi-sentence versions of Curry; as we argued in the previous section, one of the strengths
of Kripke’s definition of paradoxicality is its capacity to capture multi-sentence paradoxes,
so it is unfortunate that this does not carry over to the definition of Curry-type sentences. It
is, however, not entirely surprising: the definition of Curry-type sentences only considers
subformulas of the sentence in question, which causes it to capture only single-sentence
paradoxes. A more general definition, which allows us to replace formulas across the entire
language with T or L, might be fuel for further research.

4.3.4. Summary

Our aim was to find a definition of Curry-paradoxicality based on Kripke’s notion of paradox-
icality that captures all instances of Curry, not just those with a non-tautological consequent.
We took Intuition [6] according to which the paradoxicality of a sentence depends on its log-
ical form, as a starting point. The result is the notion of Curry-type sentences, which indeed
succeeds in capturing tautological Curry.

Curry-type sentences come in two flavours: basic Curry-type and Curry-type. The notion
of basic Curry-type sentences is quite restrictive, and captures only sentences that are very
similar to Curry’s paradox in that they force one certain subsentence to be true. The general
Curry-type sentences, on the other hand, may also force a set of numerous subsentences to
take on a certain combination of truth values. We conjectured that the set of Curry-type
sentences is not simply the set of basic Curry-type sentences closed under logical equivalence;
this was witnessed by the sentence .

A major weakness of our definition of Curry-type is that multi-sentence Curry paradoxes
are not included. Since multi-sentence Curry paradoxes seem to have a paradoxical logical
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form just as much as Curry’s paradox itself, this points to a defect of our definition of Curry-
type as a formalisation of Intuition [6]

An overview of the behaviour of different sentences on the definitions we saw in this
section can be found in Figure in the next section.

4.4. Summary and evaluation

In this chapter, we have studied the interaction between Kripke’s popular definition of para-
doxicality and Curry’s paradox, and have aimed to adapt the definition to make it more
Curry-friendly. We introduced two candidate notions of ‘Curry-paradoxicality’, based on two
intuitions that we found in Chapter [2, The notion of local Kripke-paradoxicality arises nat-
urally from Kripke’s definition of paradoxicality, by the simple observation that Curry’s sen-
tence is paradoxical in some ground models, but not in others. This allowed us to distinguish
Curry’s sentence from the Liar, which is paradoxical in all ground models. By considering
locally-but-not-globally paradoxical sentences, we obtained a set of sentences which includes
some instances of Curry but not the Liar. These definitions can be seen as formalisations of
Intuitions [pb| and A Curry-paradoxical sentence is a sentence that behaves paradoxically
in some models (but not in others).

The strength of these definitions is that they keep Kripke’s framework intact: it is a
natural tweak of the original definition that keeps all the benefits of the original definition.
This manifests as the fact that multi-sentence Curry paradoxes are captured by the notion
of local(-but-not-global) paradoxicality, just like Kripke’s original definition captures multi-
sentence Liar paradoxes. The weakness of the definition is that it is somewhat limited in the
range of Curry sentences that it captures: it captures only those instances of Curry whose
consequent is not equivalent to either T or L. Since we are working exclusively with models
of the theory PA™, this means that it in fact only captures those instances whose consequent
is independent of PA™.

In order to address the issue of capturing more instances of Curry, we introduced the
notion of Curry-type sentences, which is based on Intuition [6f A Curry-paradoxical sentence
is a sentence whose logical form is paradoxical. This definition includes all instances of
Curry, including tautological Curry. Its weakness, however, lies in the fact that it disturbs
Kripke’s construction — to determine whether a given sentence is Curry-type, we replace
its subsentences by T or 1, but we do not do the same in other sentences. This means
that multi-sentence paradoxes are no longer properly captured. Since multi-sentence Curry
paradoxes seem to have a paradoxical logical form as well, this is undesirable. A remedy
may be found in allowing the replacement of certain sentences by T or L across the entire
language — or framing the notion of Curry-type sentences in terms of sets of sentences, as we
will see in the definition of paradoxicality that we will see in the next chapter. This remains
food for further thought.

Across all definitions, our main find was the existence of two groups of ‘Curry-like’ sen-
tences: sentences such as D, £, and F, and sentences such as A o B, for some connective o.
The former are closer to Curry’s paradox in the sense that they, like Curry, are self-referential.
The latter form a novel class of sentences that are recognised as Curry-paradoxical (on all our
formal definitions) in strong Kleene and supervaluationism. In weak Kleene, the situation is
more complex: Ao B is globally paradoxical in weak Kleene for any B — including B = T
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(see Proposition [4.2.13)). This means that the sentence comes out as locally paradoxical, but
not as basic Curry-type nor Curry-type.
The table of Figure gives an overview of of our main results in this chapter.

C|D & F|XoB|Cs Ca

Locally Kripke-paradoxical (WK) x| ok ok % v *
Locally Kripke-paradoxical (SK,SV) x| x % % * *
Equivalent to basic Curry-type (WK) VIV o ox Y X X v
Equivalent to basic Curry-type (SK,SV) | v | v x V v X v
Curry-type (WK) ViV v v X X v
Curry-type (SK,SV) ViV v v v X v

(v') captured
(x) not captured
(¥) captured, under the condition that A% 1, BZ T,and C # T.

Figure 4.2: Overview of Curry-paradoxical sentences on the different definitions of Curry-
paradoxicality we saw in this chapter.

TC7— B
~TT™D7A A
(TTEWB) = C

aQ
S

A~ N~ N/
S
~—

F) (T"F"NA)— B
CB1) T Cpy"
CBQ) TI_CBl—l — B

Figure 4.3: Definitions of the sentences in Figure
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5. The ‘folk’ notion of paradoxicality

In this chapter, we consider the a definition of paradoxicality introduced by Hsiung (2020)).
We show that the method of local paradoxicality that we used in the previous chapter on
Kripke’s notion applies to this definition as well; this shows that our strategy is more generally
applicable than just to the case of Kripke’s definition. In the first section, we introduce
Hsiung’s definition. In the second section, we adapt it to capture Curry’s paradox.

5.1. Hsiung’s definition

The notion of paradoxicality that we consider here was introduced in the present form by
Hsiung (2020). Other definitions that are in essence the same can be found in numerous
sources. Hsiung calls it the ‘folk notion of paradoxicality’, because it has been used so widely
to (informally) verify whether a given sentence is paradoxical. The notion is different than
Kripke’s notion because it is framed in terms of sets of sentences. This means that it gives
rise not only to a notion of paradoxicality, but also potentially to a notion of paradoz: when
does a set of sentences constitute a paradox? It is in this context that it was used by Hsiung
(2024). We do not go into the question of definitions of paradox (as opposed to paradoxical-
ity) here, but the work that we do in this chapter may lay the basis for a more Curry-friendly
definition of paradox along the lines of Hsiung’s work.

The background logic of this definition is classical first-order logic; unlike in the previous
chapter, we will not be using non-classical interpretations of the truth predicate here. We
have the choice of working in the language Lpa of Peano Arithmetic or the expanded language
of Lpp+ — as we saw in Chapter |3, the former gives rise to the Diagonal Lemma, and the
latter to the Strong Diagonal Lemma. In other chapters, we work in Lp,+ because we employ
non-classical logics (that require a stronger form of self-reference) and because we want to
consider subsentences of the self-referential sentences (which is more natural on a stronger
form of self-reference). Here, however, we work in classical logic and will not be considering
subsentences — there is therefore no need to work in the expanded language. Hsiung moreover
formulates his definition in the language Lpa, so by working in Lpa we remain close to his
approach. It should be noted, however, that the self-referential sentences we consider here
are strictly speaking different from those that we consider in the other chapters: they are ob-
tained from the Diagonal Lemma rather than the Strong Diagonal Lemma. This means that
they are not explicitly self-referential; for an explanation of the difference, see Section

So we take as our ground language the first-order language of Peano Arithmetic Lpa,
denoted simply by £ throughout the chapter. We extend this language with a truth predicate
T to obtain the full language L. A ground model is a model M = (D, I) for the ground
language such that M = PA, and a model M x for LT is given by a ground model M together
with an interpretation X of the truth predicate.

Hsiung fixes a ground model M at the outset, and defines paradoxicality relative to this
model. In light of our aim of capturing Curry’s paradox, we give an adapted formulation, in
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which the dependence on the ground model is made explicit:

Definition 5.1.1 (Folk-paradoxicality). (Adapted from (Hsiung, 2024, p. 2549)). A set of
sentences Y is folk-paradozical in a ground model M if there exists no interpretation X of
the truth predicate such that Mx = A« T"A7 for all A € 3.

If the singleton {A} is folk-paradoxical, we say that A is folk-paradoxical.

On this definition, a sentence is paradoxical in a model precisely when it asserts its own
falsity in that model. To put it crudely, the Liar is the only paradoxical sentence.

Proposition 5.1.2. (Adapted from (Hsiung, 2024, p. 2550)) A sentence A is folk-paradoxical
in a ground model M if and only if Mx | A <> =T TA™ for every X.

Proof. Suppose A is paradoxical; then Mx £ A +» TTA™ for every X. But (by definition of
—) this means that Mx = A < -TTA" O

For Curry’s sentence Cp, this means that Cp is paradoxical in some ground models, but
not in others, depending on the behaviour of B in the ground model in question.

Proposition 5.1.3. Let B be any sentence in £T. Curry’s sentence Cp is locally folk-
paradoxical in a ground model M if and only if Mx (£ B for every X. In particular, if B
is a sentence in the ground language, then Cp is locally folk-paradoxical in M if and only if

M i~ B.

Proof. By Proposition Cp is folk-paradoxical in M if and only if Mx | Cp<«+> —-T"Cp"
for all X. We claim that Mx = Cp <+ -T"Cg" iff Mx [~ B. To see why, note that

MX ):CB<—> —|T'—CB_' — MX ': (T'—CB—'—>B) <—>—\T'_CB—'
<~ be&B.

Hence Cp is locally folk-paradoxical in M if and only if Mx £~ B for every X. If B is a
sentence in the ground language, then Mx (= B for all X if and only if M = B. O

Remark 5.1.4. Hsiung (2024, p. 2550) notes that Curry’s sentence Cp is folk-paradoxical
if and only if B = L. This seems to be a different situation than the one described above.
However, the two can be reconciled. The apparent difference is due to the fact that Hsiung
fixes a ground model M at the start, and defines both logical equivalence and paradoxicality
in terms of this particular model. Curry’s sentence is then paradoxical if and only if M x = B
for every X. At the same time, B = | precisely when Mx | B < L for every X. Thus,
Curry’s sentence is paradoxical (in M) precisely when B = | (in M) — despite appearances,
this matches our account.

5.2. Capturing Curry: local folk-paradoxicality

We formalise Intuition for folk-paradoxicality by introducing local folk-paradoxicality.
Recall Intuition Hak
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Intuition 5a. A Curry-paradoxical sentence is a sentence that behaves paradoxically in
some models.

In Chapter [, we formalised both Intuition [5a] and Intuition the latter was obtained
by demanding that a sentence is locally, but not globally paradoxical. Here, we restrict our
attention to Intuition and local paradoxicality for simplicity; but everything that we do
here can be generalised to local-but-not-global paradoxicality in the manner that one would
expect.

5.2.1. Local folk-paradoxicality

The definition of local folk-paradoxicality is analogous to the definition of local Kripke-
paradoxicality:

Definition 5.2.1. A set of sentences X is locally folk-paradoxical if there exists some
ground model M such that ¥ is folk-paradoxical in M.

Since a sentence is locally paradoxical if it is paradoxical in some model, it prefers some
ground models and rules out others. It therefore it forces some sentences to be true on pain
of avoiding paradoxicality — namely, those sentences that are true in all ground models in
which it is not paradoxical.

We have the following adaptation of the characterisation of folk-paradoxical sentences
that we saw in Proposition [5.1.2

Proposition 5.2.2. A sentence A is locally folk-paradoxical iff there exists some model M
such that, for any interpretation X of the truth predicate, we have: My = A «» =TTA™.

Proof. Immediate by Definition and Proposition O

Like on the notion of local Kripke-paradoxicality, the instances of Curry that are locally
folk-paradoxical are precisely those whose consequent B is not tautological, so long as B is
a sentence in the ground language. Unlike on local Kripke-paradoxicality, we can now also
easily characterise the instances of Curry that are captured in the more general case that B
contains the truth predicate:

Proposition 5.2.3. Let B be any sentence in £. Curry’s sentence Cg is locally folk-
paradoxical if and only if there exists some ground model M such that Mx [~ B for every
X. In particular, if B is a sentence in the ground language, then Cgis locally folk-paradoxical
if and only if PA = B.

Proof. By Proposition Cp is locally folk-paradoxical if and only if there exists some
ground model M such that Mx = Cp > =T "Cp" for all X. We claim that Mx [~ Cp <
T Cg iff Mx [~ B. To see why, note that

MX ):CBH —|T'—CB_' < MX lZ(T'—CB—'—>B) H—\T'_CB—'
<~ Mx £ B.
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It follows that Cp is locally folk-paradoxical iff there exists some ground model M such that
Mx = B for all X. If B is a sentence in the ground language, then Mx [~ B for all X if
and only if M [~ B. So then Cp is locally folk-paradoxical if and only if there exists some
ground model M such that M [~ B. O

Example 5.2.4. For an example of a locally folk-paradoxical instance of Curry’s sentence
with a consequent containing the truth predicate, consider the sentence

) T7C7 — (T(0) A =T(0)).

How does this notion compare to the notion of local Kripke-paradoxicality? Recall that
different logics gave us different flavours of Kripke-paradoxicality; the set of local Kripke-
paradoxical sentences includes more sentences in the logics strong Kleene and supervalua-
tionism, while the weak Kleene local Kripke-paradoxical sentences constitute a smaller class.
The sentences D, £, and F that we saw to be locally Kripke-paradoxical on all three logics
(Proposition are locally folk-paradoxical too:

Proposition 5.2.5. Let A, B and C be sentences in the ground language £ such that A #Z 1,
B # T and C # T. Then the following sentences are locally folk-paradoxical:

1. The sentence
D=-T"DNA.

2. The sentence
E=(TTE'VB)—C.

3. The sentence
F=(T"F'NA) — B.

Proof. For D, let M be a ground model such that M | A. Let X be any interpretation of
the truth predicate for M. Then Mx = -T ™D A A if and only if My = —T"™D". Hence
Mx |E D « —T"™D". By Proposition D is locally folk-paradoxical.

Similarly, for £ let M’ be a ground model such that M’ f£ B and M’ &= C. Then we
have that M’y = (T'"€7V B) — C if and only if M’y |= =T'"E7, for any X. It follows that
€ is locally folk-paradoxical.

Finally, F is simply equivalent to an instance of Curry’s paradox: we have
F=-T"F'V(-AV B). This means that a ground model M"” such that M” = A and
M" £ B will witness that F is locally folk-paradoxical. O

In Proposition we saw that combining a globally Kripke-paradoxical sentence —
such as the Liar — with any other sentence B gives us a locally Kripke-paradoxical sentence
in the logics strong Kleene and supervaluationism (so long as B # T). This same trick does
not go through for local folk-paradoxicality:

Proposition 5.2.6. Let A be any sentence. Then the following sentences are not locally
folk-paradoxical:

1. A\NA
2. AV A
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3.\ — A.

Proof. We consider only the first case; the other proofs are similar. Let M be any ground
model; we find an interpretation X of the truth predicate for M such that Mx E (AN A) +
TT™A N A7 Note that Mxy = AN A iff Mx = -T"A\7 and M = A. On the other hand,
Mx ETANATIME TAAN AT € X. Defining X = {\} gives us that Mx = 7"\ and thus
Mx = ANA. At the same time, M x B~ TTAANAT. We obtain Mx = (AAA) < TTANAT. O

The key to the previous proposition is the fact that folk-paradoxicality is framed in terms
of sets of sentences, and does not take any sentences into account beyond those in the set in
question. For this reason, the sentence AA A does not come out as paradoxical: it is perfectly
possible to interpret the truth predicate coherently for this sentence alone. What is not
possible is to interpret the truth predicate coherently for this sentence and simultaneously
for the sentence . That is, the singleton {A A A} is not locally folk-paradoxical, but the set
{AN A, A} is locally folk-paradoxical.

Proposition 5.2.7. Let A be any sentence. The following sets are locally folk-paradoxical:
L {ANA N}
2. {AV AN}
3. {A— A A}

Proof. Immediate by the fact that A is locally folk-paradoxical, and is a member of each
set. O

This brings us to the matter of multi-sentence paradoxes.

5.2.2. Multi-sentence paradoxes

Multi-sentence paradoxes such as the Card Liar and Yablo’s paradox are captured by the
notion of folk-paradoxicality. However, one needs to be careful here: as Proposition [5.1.2
shows, the single sentences, viewed in isolation, are not paradoxical — they are not equivalent
to their own negation. When viewed as sets, however, the paradoxes are paradoxical. But,
as Hsiung points out, this is a notion of paradoxicality, not of paradox; a set of sentences
containing more than just the paradox is still paradoxical.

Proposition 5.2.8. The sentences A\; and As in the Card Liar are not folk-paradoxical
paradoxical in any ground model. But, if {\, A2} C X, then X is paradoxical in every
ground model.

As we saw in the previous chapter (e.g. Remark , it is a strength of Kripke’s
definition of paradoxicality that all other sentences are always — implicitly — taken into con-
sideration when determining the paradoxicality of a single sentence. For this reason, there is
no need to consider sets of sentences. This makes Kripke’s notion more sophisticated than
the notion considered here. However, there is something to be said in favour of a notion
involving sets of sentences too: such a notion makes explicit how paradoxical sentences de-
pend on one another. If a certain paradoxical set of sentences X ceases to be paradoxical
when a certain sentence A is removed from it, this means that the sentence A is part of the
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paradox expressed by Y. In other words, a set-based notion of paradoxicality, such as the
one we consider here, can give rise to a notion of paradox: when does a certain set of sen-
tences constitute a paradox? Hsiung (2024)) uses the notion of folk-paradoxicality to develop
a definition of ‘paradox’.

Analogously, the adapted notion of local folk-paradoxicality could serve as a basis to
develop a more Curry-friendly definition of ‘paradox’. To start investigating whether this
would be feasible, we consider the behaviour of multi-sentence Curry paradoxes in our adapted
framework. Recall that Card Curry (Definition and Yablurry (Definition are
Curried versions of the Card Liar and Yablo’s paradox, respectively.

Proposition 5.2.9. Let B be a sentence in the ground language such that B Z T. Any set
containing both sentences Cp; and Cpy of the Card Liar is locally folk-paradoxical, i.e. if
{CB1,CBo} C X, then ¥ is locally-folk paradoxical.

Proof. Let M be a ground model such that M [~ B. Let ¥ be such that {Cp{,Cps} C X.
Suppose for contradiction that there exists some interpretation X of the truth predicate such
that Mx = S < TrS for all S € ¥. So Mx | Cpy <» T™Cp1 "' and Mx | Cpy <
T Cps . O

Proposition 5.2.10. Let B be a sentence in the ground language such that B £ T. Any set
containing all sentences S,, of Yablurry is locally folk-paradoxical, i.e. if {S, : n € w} C X,
then 3 is locally-folk paradoxical.

Proof. Let M be a ground model such that M F~ B, and let ¥ be such that {S,, : n € w} C 3.
IfMxES«+ TS forall S e€X, then Mx = S, <> T7S," for every n. Let m € w be
arbitrary. By definition of S, and the Diagonal Lemma, we have Mx = S,, if and only if
Mx E (VI > m)(T"S,," — B). Since M [~ B, this reduces to: Mx E S, if and only if
Mx E (VI > m)(=T7S;7). Since Mx | S, > TTS,™ for all n € w, we obtain: Mx = Sy,
if and only if Mx | (VI > m)—S;. The argument is finalised as in the standard Yablo’s
paradox. O

5.3. Summary and evaluation

In this short chapter, we showed that the method of ‘localising’ a model-dependent definition
of paradoxicality can be generalised to Hsiung’s ‘folk’ notion of paradoxicality. The result
is a definition of paradoxicality that captures more instances of Curry’s paradox. Hsiung’s
notion is framed in terms of sets of sentences, which means that multi-sentence paradoxes
are only captured if all of the necessary sentences are included. This makes the notion apt for
defining a notion of paradox, and our work might thus contribute to a more Curry-tailored
notion of paradox.

Like in the chapter on Kripke’s theory, our definition of local folk-paradoxicality formalises
Intuition A Curry-paradoxical sentence is a sentence that behaves paradoxically in some
models. The definition behaves as expected; like that of local Kripke-paradoxicality, but with
the properties of folk-paradoxicality rather than Kripke-paradoxicality. In particular, multi-
sentence Curry paradoxes are only captured if all of the relevant sentences are included.
Interestingly, we found that sentences of the form X\ o B are, in a sense, multi-sentence
paradoxes too: they are only captured when B is included explicitly — the singleton Ao B is
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not paradoxical. The sentences D, £, and F that we saw are single-sentence paradoxes, so
they are captured.

Like local Kripke-paradoxicality, local folk-paradoxicality captures only those instances
of Curry’s paradox with a non-tautological consequent. Further research might lie in devel-
oping a notion of Curry-type sentences (as defined in Section for the current framework;
this notion captures tautological Curry, but we saw that it struggles with multi-sentence
paradoxes. That might be resolved in the setting of folk-paradoxicality, where all sentences
of a multi-sentence paradox are always included explicitly — this makes it easier to perform
substitutions across multi-sentence paradoxes.

|C|D & F|XoB {AoB,A}|{Cs1,Ca} {Sn:necw}
Locally folk-paradoxical ‘ * ‘ x Kk ‘ X * ‘ * *

(x) not captured
(¥) captured, under the condition that A% 1, BZ T,and C #Z T.

Figure 5.1: Overview of Curry-paradoxical sentences on the definition of local folk-
paradoxicality.
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6. Paradoxicality in terms of entailment

In this chapter, we formalise the intuitions that were discussed in Section according to
which Curry-paradoxicality is framed in terms of entailment. The first section sets the stage
by introducing a definition of paradoxicality that is framed in terms of entailment. In the
subsequent sections, we adapt this definition to include Curry’s paradox in line with different
intuitive notions; below is an overview.

Section Intuition
Section [6.2] Intuitions |9| and ll'
Section Intuition
Section Intuition [2aj
Section Intuition

6.1. Classical paradoxicality

In this section, we propose what we call classical paradozicality; this is a notion of paradox-
icality framed in terms of entailment that does not capture Curry’s paradox, but sets the
stage for coming notions that do. It is a formalisation of Intuition [0] that we saw in Chapter

Intuition 0. A paradoxical sentence is a sentence whose existence entails a contradiction.

6.1.1. Preliminaries

Like in Chapter {4} our ground language L is the expanded first-order language of arithmetic
Lpp+, as defined in Chapter [3l We work in this expanded language in order to have access to
the Strong Diagonal Lemma, which will facilitate the straightforward expression of genuine
self-referential sentences, even in weak non-classical logics. This is helpful when talking about
their subsentences in Section [6.3], and when we will considering paraconsistent background
logics in Section The extended language £ is obtained from £ by adding a truth
predicate T'.

The set of terms of a language L is defined as usual based on the function symbols,
constants and variables. The closed terms are those terms that do not contain any variables.
The set of formulas of a language L is defined as usual from the terms and predicate symbols
of the language, and denoted by Form(L).

To formalise Intuition [0} we work in classical logic. We therefore consider classical models
for the ground language £ and the full language £7. As in the previous chapters, we restrict
our attention to models of the ground language that make the theory PAT (as defined in
Chapter (3] true — we need this in order to prove the Strong Diagonal Lemma.

Definition 6.1.1 (Classical model for £ and £T). A classical model for £ is a pair M =
(D, I) where M is the domain of M and I is an interpretation function such that:
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1. For each function symbol f of arity n in L, I(f) is a function on M of the same arity;
2. For each predicate symbol P of arity n in L, I(P) is a relation on M of the same arity.

The interpretation function induces an interpretation of each closed term ¢, which we will
denote by tM.

A classical model Mx for LT consists of a classical model M = (D, I) for L together
with an interpretation of the truth predicate X C D. We denote the induced interpretation
of a closed term t in Mx by tMx.

If M = (D,I)is a model for £ and X C D, the model My is the model for £* in which
the interpretation of T is given by X.

Truth in a model for £ is defined as usual in classical first order logic; truth in a model
for £T is defined the same, with no special restrictions on the interpretation of the truth
predicate.

As in the previous chapters, we will be restricting our attention to ground models that
make the theory PAT true:

Definition 6.1.2 (Ground model). A ground model is a model M for £ such that M |= PA™.

And as in the previous chapters, logical equivalence of sentences is defined with respect
to the class of models that make PAT true. That is, A = B if and only if, for every ground
model M and every interpretation of the truth predicate X: Mx | A < B.

6.1.2. Classical paradoxicality

The formalisation of Intuition @] we propose is framed in terms of what we call T'-models (for
a sentence S): these are models that make the T-schema true for a particular sentence S.

Definition 6.1.3 (T-model for S). Let S be a sentence in £7. A model Mx for L7 is
a T-model for S if M is a ground model and X is such that (the name of) S satisfies the
T-schema in Mx, i.e.

MX lZT'_S—' <~ MX ):S.

This notion allows us to formalise what we mean by the existence of a sentence in In-
tuition [)] We do not translate this literally by adding new sentences to the language — it
is easiest to keep the language fixed throughout, and assume that all sentences are already
available. However, since paradoxical sentences always involve the truth predicate, we may
frame the existence of such a sentence in terms of the truth predicate. We propose the fol-
lowing: we translate the ‘existence’ of a sentence by the demand that the T-schema holds for
that sentence. Since the T-schema ensures that the truth predicate means what we expect
it to mean, this is not unreasonable: demanding that the T-schema holds will ensure that
the sentence expresses what we expect it to express — that is, the sentence exists and has its
intended meaning.

Based on this idea, we may translate the fact that the existence of a sentence S entails a
contradiction as follows: there exist no models in which S satisfies the T-schema, i.e. there
are no T-models for S.
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Definition 6.1.4 (Classical paradoxicality). A sentence S in LV is classically paradozical
if there exists no T-model for S.

Remark 6.1.5. This definition can be generalised to sets of sentences Y, analogous to the
folk-paradoxicality that we saw in the Definition For simplicity, we only consider single
sentences here; this means that we will not be able to capture multi-sentence paradoxes.

If we look at a paradoxical sentence like the Liar, it has no T-models:
Proposition 6.1.6. The Liar sentence ) is classically paradoxical.

Proof. Let M be a T-model for A such that M = PA. Then M | X iff M = -TTA7iff
M ETTATiff M = A This is impossible; so there is no T-model for A. O

Thus, if we demand that the Liar falls under the T-schema, the existence of the Liar
entails a contradiction — every model that makes the Liar true makes L true, since there are
no such models. This is how Definition [6.1.4] formalises Intuition [0

It might not come as a surprise that this definition is closely related to our our previous
notion of folk-paradoxicality (Deﬁnition7 which was based on the T-schema in a classical
setting as well. It turns out that it coincides with folk-paradoxicality, when we take folk-
paradoxicality to range over every ground model. There just is one point where we need to
be careful: the notion of folk-paradoxicality was defined using the language Lpa, while we
are using the language Lpp+ here. This means that the equivalence does not hold for the
definition of classical paradoxicality as we defined it here, but rather for the corresponding
definition framed in the language EPAE

Proposition 6.1.7. Let the definition of classical paradoxicality be defined for the language
Lpp instead of [,PA+E| Then a sentence S is classically paradoxical (viewed in Lpa) if and
only if it is folk-paradoxical in every ground model.

Proof. Note that S is classically paradoxical if and only if, for every ground model M and
every X, we have: Mx £ T"™S7 + S.

Recall that a sentence S is folk-paradoxical in a ground model M if and only if Mx
TS« S for every X. This means that S is folk-paradoxical in every ground model if and
only if Mx £ T"S7 < S for every ground model M and every X. Thus, the two notions
coincide. O

We have thus not introduced any novel characterisation of paradoxicality in this section;
what we do have, however, is a definition that allows to be adapted to capture the other
intuitions that are framed in terms of entailment.

"We can frame our definition in the language Lpa as well; we are working in classical logic, so the (weak)
Diagonal Lemma goes through. Our preference for framing it in the expanded language Lpa+ (Which gives us
the Strong Diagonal Lemma) is only due to our consideration of subsentences of self-referential sentences in
Section and the general philosophical advantages of having truly self-referential sentences.

2That is: a T-model for S is a model Mx for the language Lpa such that Mx makes the T-schema true
for S, and S is classically paradoxical if there exists no T-model for S.
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6.2. Capturing Curry

Building on the previous definition of classical paradoxicality, we introduce contingent-paradozicality,
which intends to capture Intuition

Intuition 1. A Curry-paradoxical sentence is a sentence whose existence entails the
truth of a sentence that is not a tautology.

We compare our definition to the previous definition of local folk-paradoxicality and look at
what relatives of Curry are captured.

6.2.1. Contingent-paradoxicality

Intuition [1] readily allows to be formalised in the current framework as follows:

Definition 6.2.1 (Classical contingent-paradoxicality). A sentence S in L7 is (classically)
contingent-paradozical (for A) if there exists some sentence A in £ such that A # T, but
Mx [ A for every model My which is a T-model for S.

In other words, in every model (for PAT) that makes the T-schema true for S, the sentence
A is true — despite the fact that A is not a logical consequence of PAT. This means that, if
we demand that the T-schema holds for S, then the very presence of this sentence entails A.
Since A is not a tautology, this is problematic. We call this notion ‘contingent—paradoxical’E]

The restriction to sentences A in the ground language is necessary; if we drop this re-
striction, then every sentence S is contingent-paradoxical by simply taking A =TS < S.
Clearly, T™S7 <+ S is true in every T-model for S, but it is not a consequence of PA™.
Restriction to sentences in the ground language assures us that we have no problems of this
kind [

Contingent-paradoxicality clearly subsumes classical paradoxicality: if there are no T-
models for S at all, then the condition for contingent-paradoxicality trivially holds.

Proposition 6.2.2. If a sentence is classically paradoxical, then it is contingent-paradoxical.

As expected, Curry’s sentence is contingent-paradoxical precisely when its consequent is
not a tautology:

Proposition 6.2.3. Let B be any sentence in £. Curry’s sentence Cpis contingent-paradoxical
for B if and only if B £ T.

3The word ‘contingent’ is only to be interpreted loosely here; A may be a contradiction, which would not
normally be seen as a contingent sentence. We still choose this terminology because distinguishing part of
this definition is the case where A is not a contradiction: if A is a contradiction, then S is simply classically
paradoxical.

4This measure might seem drastic, and one might wonder if it would suffice, for instance, to demand only
that A does not contain 7'"S™ as a subsentence. It does not: consider for instance S = T. Then M =T "S"
for every T-model M for S. So, for every T-model for S, we have M | Jz(T(x)). Note that Jz(T(z))
does not contain T"S7. So, since PAT [£ 32(T(x)), this means that the sentence T would come out as
contingent-paradoxical — which is not what we want.
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Proof. First suppose that Cp is contingent-paradoxical for B. Then B # T by definition of
contingent-paradoxicality, so this direction is immediate.

Conversely, suppose that B # T. Let M be a T-model for Cg such that M = PA™.
By definition of Cp and the fact that M |= PAT, we have M = Cpiff M = T Cg" — B.
Since M is a T-model, this reduces to: M |= Cpiff M |= Cp — B. Now if M [~ B, this
in turn reduces to: M = Cp iff M = Cp, which is impossible; so M = B. Hence B is
true in every model for PAT that is a T-model for Cp. Since B # T, this means that Cp is
contingent-paradoxical for B. O

Classical paradoxicality coincides with folk-paradoxicality in every ground model; does
contingent-paradoxicality then coincide with local folk-paradoxicality? The answer is no:
the notion of contingent-paradoxicality is less general, because we restricted our attention
to sentences A in the ground language. Contingent-paradoxicality does imply local folk-
paradoxicality, so we have a strict inclusion of the set of contingent-paradoxical sentences in
that of local folk-paradoxical sentences.

Like in Proposition we need to be careful about the language we are working in:
in the previous chapter, we worked in the language Lpa rather than £p,+. The two notions
can only properly be compared if we phrase them in the same language; so for the following
proposition, we assume a definition of contingent-paradoxicality for Lpa rather than Lps+.

Proposition 6.2.4. Let the definition of contingent-paradoxicality be defined for the lan-
guage Lpp instead of Lpp+. If a sentence S is contingent-paradoxical (viewed in Lpa), then
S is locally folk-paradoxical.

Proof. 1f S is contingent-paradoxical for the sentence A in Lpa, then there exists some ground
model My for Lpp such that Mg = A. Moreover, M x |= A for every model M x for [,IJ{A such
that M x is a T-model for S. Then S is folk-paradoxical in M: Suppose that there exists
some extension My, of My to a model for the language £* such that Mg, | S+ T™S™.
Then My, is a T-model for S, and My, = A. This contradicts the fact that A is true in
every T-model for S. So S is folk-paradoxical in M. O

Conjecture 6.2.5. Not every locally folk-paradoxical sentence is contingent-paradoxical:
the sentence

©) T7C7 — (T(0) A —T(0))

is locally folk-paradoxical (see Example [5.2.4) but we conjecture that it is not contingent-

paradoxical, because the sentence 7'(0) A =7°(0) is not a sentence in the ground language.

6.2.2. Relatives to Curry

We saw that not every locally paradoxical sentence is contingent-paradoxical; the two notions
do not coincide. However, with respect to the sentences that have been the recurring examples
of Curry-paradoxical sentences throughout this thesis — the sentences D, £, F and those of
the form A o B — contingent-paradoxicality behaves just like local folk-paradoxicality.

Proposition 6.2.6. Let A and B be sentences in the ground language £. If A # L and
B,C # T, then the following sentences are contingent-paradoxical.
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1. The sentence
(D) -T™D'ANA
is contingent-paradoxical for —A,

2. The sentence
&) (TT¢7VvB)—C
is contingent-paradoxical for B V C|
3. The sentence
(F) (T"F"NA)— B
is contingent-paradoxical for =A VvV B.
Proof. Similar to the proof of the contingent-paradoxicality of Curry (Proposition . O

The fact that sentences of the form A o B are not contingent-paradoxical simply follows
from the fact that they are not locally folk-paradoxical:

Proposition 6.2.7. Let A be any sentence. Then the following sentences are not contingent-
paradoxical:

1. AnNA
2. AVA
3.\ — A

Proof. By Proposition [5.2.7] we know that these sentences are not locally folk-paradoxical.
Proposition then tells us that they are not contingent-paradoxical either. O

6.2.3. Summary

The notion of contingent-paradoxicality formalises Intuition [If A Curry-paradoxical sentence
is a sentence whose existence entails the truth of a sentence that is not a tautology. We saw
that this notion is closely related to local folk-paradoxicality — it seems that they coincide,
spare exceptions involving the discrepancy between the ground language and the full language
for the notion of contingent-paradoxicality. This tells us that Intuition [I] and Intuition
— according to which a Curry-paradoxical sentence is paradoxical in some models — can
coincide on certain formalisations. This hinges, of course, on the definition of paradoxicality
that is used as a basis in Intuition What we have shown here is that, if we use Hsiung’s
definition of paradoxicality as this basis, then Intuition [5a] aligns naturally with Intuition
on the current formalisation.

The overview of contingent-paradoxical sentences below is identical to that of the locally
folk-paradoxical sentences (Figure — except that we did not consider sets of sentences.
As we noted in Remark the current framework can be extended straightforwardly to a
set-based definition a la Hsiung: this might be of interest for further research.
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[C|D & F|XoB
Contingent-paradoxical ‘ * ‘ SR S ‘ X

(x) not captured
(¥) captured, under the condition that A% 1, B# T,and C # T.

Figure 6.1: Overview of Curry-paradoxical sentences on the definition of contingent-
paradoxicality.

6.3. The subsentence restriction

In this section, we briefly consider a formalisation of Intuition which is straightforwardly
implemented in the current framework. Intuition was designed to capture a distinction
between Curry’s paradox and the Liar in terms of subsentences:

Intuition 2b. A Curry-paradoxical sentence is a sentence whose existence entails the
truth of one of its subformulas B, where B is not a tautology.

We formalise it by restricting Definition such that A has to be a subsentence of S:

Definition 6.3.1 (Sub-contingent-paradoxicality). A sentence S in £V is sub-contingent-
paradozical (for A) if there exists some subsentence A € Form(L) of S such that A # T,
but Mx = A for every model M x which is a T-model for S.

It is immediate that Curry’s sentence Cp is sub-contingent-paradoxical: it is contingent-
paradoxical for its subsentence B. The other contingent-paradoxical sentences D, £ and F
are not sub-contingent-paradoxical:

Proposition 6.3.2. Let A and B be arbitrary. The sentences D, £, and F of Proposi-
tion |6.2.6] are not sub-contingent-paradoxical.

Proof. The proof proceeds by verifying that these sentences are not contingent-paradoxical
for any of their subsentences. O

The sentences D and F, however, are equivalent to sub-contingent-paradoxical sentences:

Proposition 6.3.3. Let A and B be sentences in the ground language such that A # 1 and
B # T. Then the sentences D and F are equivalent to sub-contingent-paradoxical sentences.

Proof. Note that D = —~(T'"™D"V —-A) and F = -T"F'V (mAV B). We saw that D is
contingent-paradoxical for = A, and that F is contingent-paradoxical for =A V B (Proposi-
tion [6.2.6)). The result follows. O

While we conjecture that £ is not (just like we conjectured that & is not equivalent to a
basic Curry-type sentence in Conjecture [4.3.19)):
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Conjecture 6.3.4. The sentence £ is not equivalent to a sub-contingent-paradoxical sen-
tence.

Ezxplanation. Note that £ is contingent-paradoxical for B V C, but we conjecture — like in
Conjecture — that it is not possible to rewrite £ to a sentence containing B V C' as
a subsentence, without any isolated occurrences of B or C'. This would mean that £ is not
sub-contingent-paradoxical. O

Finally, the Liar is not sub-contingent-paradoxical, simply because the Liar sentence
A = —T'(I) has no subsentences in the ground language — and we demand that the subsen-
tence A is in the ground language.

Thus, the notion of sub-contingent-paradoxicality gives us a formalisation of Intuition
that succeeds in capturing Curry but not the Liar. But, similar to the notion of basic Curry-
type sentences (Definition , it is rather limited in what relatives to Curry’s paradox it
captures. This is, of course, not a bad thing per se; but to distinguish sentences like Curry’s
from sentences like D, £ and F — and sentences like £ from sentences like D and F — only
because they do not contain the sentence they entail as an exract subsentence seems rather
superficial. The important fact seems to be that each of the sentences Cp, D, &, and F
contains complete information about the sentence they entail — in the sense of containing all
parts of the sentence as subsentences. The current definition might thus benefit for a gen-
eralisation to multiple subsentences as well as negated subsentences, just like we generalised
basic Curry-type sentences to obtain Curry-type sentences.

|C|D & F|AoB
Sub-contingent-paradoxical ‘ * ‘ = x = ‘ X

(x) not captured
(*) captured, under the condition that B # T.
( equivalent to a sentence that is captured, under the condition that A #Z | and

Figure 6.2: Overview of Curry-paradoxical sentences on the definition of sub-contingent-
paradoxicality.

6.4. Curry in a paraconsistent logic

In this section, we study Curry’s paradox in a paraconsistent context, formalising Intu-
ition 2a}
Intuition 2a. A Curry-paradoxical sentence is a sentence whose existence entails the

truth of a sentence that is not a tautology by means of an argument that does not use
explosion.

Our aim in doing so is to distinguish Curry from the Liar (see Section [2.2]). In this section,
we will find out whether our formalisation succeeds. We will moreover see that our approach
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gives us a systematic way to compare the behaviour of Curry’s paradox in a paraconsistent
logic with its behaviour in classical logic.

We will first consider a paraconsistent variant on classical paradoxicality; like classical
paradoxicality, this notion does not capture Curry. We then adapt our paraconsistent notion
of paradoxicality to capture non-tautological instances of Curry’s paradox.

6.4.1. Paraconsistent paradoxicality

We will be working in the paraconsistent logic LP™, which is obtained from Priest’s popular
paraconsistent Logic of Paradox LP (Priest, 2006) by adding a simple conditional that obeys
modus ponens (see e.g. Hazen and Pelletier (2019} Section 6.1)). This logic accommodates
for the Liar without exploding, while the existence of Curry’s sentence leads to triviality.
This allows us to distinguish the two in this logic.

Definition 6.4.1 (LP~-model for £*). An LP™-model M+ -y for LT consists of a clas-
sical ground model M = (M, I) for L together with a glutty interpretation (T, T~) of the
truth predicate, consisting of an extension 7" C M and an anti-extension T~ C M such that
THuT - =M.

Definition 6.4.2 (LP™ truth conditions). For a model M = (M, I) and a glutty interpreta-
tion (T, T7) of the truth predicate, we recursively define when a sentence is true (1) or
false (F=7) in M(p+ -y according to the LP™ conditions as follows:

M(T+,T—) ):+ A— B
M(T+,T*) - A— B
M+ -y ET 3x(A(z))
M(T+,T*) =" Jx(A(x))

As we did in Chapter 4] we adopt a notion of logical equivalence framed in terms of
sameness of truth values. We say that sentences A and B are equivalent, written A = B, if

lfMT+T ’* A thenMT+T ): B
M(T+,T*) -~ A and M(T+,Tf) ):+

there exists some d € M such that M p+ 7 =T A(d)
foralld € M : Mp+ p-y E~ A(d)

M(T"‘,T‘) ):J'_ P(tl,...,tn) — M):P(tl,...,tn), if P#£T
M(TﬂT*) ’:_ P(t1,...,ty) <= MW P(t1,...,tn), f P#T
M(T-&-,T—) ):+ t1 =12 <~ t{w = téw
M1+ 7-) ="t =t <~ t{w #* téw
M(T+,T—) ):+ T(t) <~ I(t) eT™
M(T-o—,T—) ’:_ T(t) — I(t)eT™
M1+ 7-) =t AV B — M+ o) =T Aor M+ 1) =t B
Mp+r-yE- AV B = Mp+r-yE Aand Mqprp-y F~ B
M(T+,T—) ):J'_ -A <~ M(T+,T—) A
M+ E- DA = M+ o) =T A

<~

<~

<~

g
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they have the same truth value in every LP~-model:

MT+T ): A<:>MT+T |:+B
M1+ 7-) FA = M1+ 1) - B.

Remark 6.4.3. Unlike in the case of the gappy logics of Kripke’s construction (weak Kleene,
strong Kleene, and supervaluationism), we can express this equivalence in the logic as well:
A and B have the same truth value in a model M+ -y precisely when M+ 7-) = (A <
B) A (=A <5 =B). Thus, A = B if and only if F p~ (A <> B) A (-4 + —B).

As we saw in Section the Strong Diagonal Lemma extends to logics that are weaker
than classical, so long as classical logic is used for the arithmetical part of the language. This
gives us access to the Strong Diagonal Lemma in the current setting.

The stage is now set to generalise our definition of classical paradoxicality (Definition|6.1.4])
to the paraconsistent setting of LP™. We first adapt our definition of a T-model (Defini-
tion to glutty models:

Definition 6.4.4 (T-model for S in an LP7-model). Let S be a sentence in £T. An LP7-
model M+ -y for LT is a T-model for S if the following holds:

M(T+,T ):J'_ TS «— MT+T ): S.

This yields the following paraconsistent variant on classical paradoxicality:

Definition 6.4.5 (Paradoxicality in LP™"). A sentence S in LT is paradozical in LP™ if
there exists no LP™-model for £1 which is a T-model for S.

The Liar sentence is not paradoxical in this sense, because paraconsistent logics can deal
with the Liar:
Proposition 6.4.6. The Liar sentence \ is not paradoxical in LP™.

Proof. Let N be the intended model of PAT. Now consider the LP™-model Ner+ 7-) given
by TT = T~ = {#A}. Then Nz+ 7—) =" TTA7, since "TA™ € TF. At the same time,
Nt -y E- TAY s0 Np oy T 2T r)\—' By definition of A, this means that N+ p- |:+
A Thus N+ 1-) ):“‘ T\ and Ner+ 7-y ET A, 80 Npt -y is a T-model for \. O

The logic LP™, however, cannot handle Curry’s paradox:
Proposition 6.4.7. Contradictory Curry C, is paradoxical in LP™.

Proof. Let Mp+ p-y be any glutty model for £*, and assume the LP™ valuation scheme;
we show that M p+ 7y is not a T-model for C;. Note that Mp+ p-) E* C if and only if
Mg+ -y ETTTCL" — L, by definition of C;. Now by definition of — in LP™, we have:

M(T'*‘,T‘) ’:+ T'—CL—' — | iff M(T+,T—) F&J’_ T[_CL—'.

We thus have: M+ p-) =1 C, if and only if M+ 1) BT C1. This shows that M1+ 1)
is not a T-model for C;. O
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It is worth noting that the fact that contradictory Curry is paradoxical in LP™ relies on
the fact that Curry uses the implication connective, and that the implication connective is
not the material conditional. Indeed, material Curry =T "C7V L is not paradoxical in LP™:

Proposition 6.4.8. The contradictory instance of material Curry
(™) -Trc,™7v L
is not paradoxical in LP™.

Proof. Note that C,"* = —T'"C,™"; we thus have a proof similar to the case of the Liar
(Proposition [6.4.6)). O

In fact, we conjecture that it is impossible to find a paradoxical sentence in LP™ that
does not use the implication connective:

Conjecture 6.4.9. If a sentence S in £ does not contain —, then S is not paradoxical in
LP~.

This gives us the means to differentiate at least one of the instances of Curry — contradic-
tory Curry — from the Liar, in a very natural manner. However, as on classical paradoxicality,
all other instances of Curry are left out:

Proposition 6.4.10. Let B be any sentence in the ground language. Curry’s sentence Cp is
paradoxical in LP™ if and only if B = 1.

Proof. If B = 1, then the proof that Cp is paradoxical is the same as in Proposition
For the other direction, suppose B # 1: so there exists some ground model M such that
M E* B. Then M can serve as the basis for a T-model for Cp : define (T, T7) by
T+ = {"Cg"M} and T~ = @. Then M+ -y =T T"Cg". Moreover, by definition of Cp,
we have M(p+ r—y ET Cpiff M(p+ -y T T"Cp' — B. By definition of — in LP™ and
the fact that M+ 7-) ET B, we have M+ 1) =1 Cp. Since M1+ 7-) =t Cp and
M+ -y ET TTCp", we conclude that M+ 7y is a T-model for Cp. O

6.4.2. Capturing Curry, paraconsistently

To capture instances of Curry’s paradox whose consequent is not contradictory, we adapt
the definition of contingent-paradoxicality to the current paraconsistent framework. This
gives us a formalisation of Intuition which was the goal of this section. We examine how
this formalisation plays out; our aim was to find a definition that captures non-tautological
instances of Curry, yet recognises the difference between Curry’s paradox and the Liar — we
will see that it meets this goal.

Definition 6.4.11 (Contingent-paradoxicality in LP™). A sentence S in LT is contingent-
paradozical (for A) in LP™ if there exists some sentence A in £ such that A # T, but
M+ -y ET A for every LP™-model My 1y that is a T-model for S.

Proposition 6.4.12. Let B be any sentence in the ground language. Curry’s sentence Cp is
contingent-paradoxical in LP™ if and only if B # T.
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Proof. For left-to-right, suppose that Cpis contingent-paradoxical in LP; so there exists some
sentence A in the ground language such that A # T, but M+ 7 =T A for every LP-
model M7+ p-) which is a T-model for S. Let My be the ground model witnessing that
A # T. Now assume for contradiction that B = T. Then, by a similar argument as in the
proof of Proposition we can define a T-model M ) for Cp with Mg as its ground
model. Hence Mo(Tin) K~ A. So we have a T-model for Cp in which A is not true; this
means that Cp is not contingent-paradoxical for A.

For the right-to-left direction, it suffices to show that, if M+ -y is a T-model for Cp,
then M7+ -y [ B. Suppose for contradiction that that M p+ 7-) is a T-model for Cp such
that M(p+ p-y £* B. Then, by definition of — in LP™, we have M+ -y ' Cp if and
only if M(p+ r—y T T"Cp". Hence Mg+ -y is not a T-model for Cp. O

Unlike the previous definitions of Curry-paradoxicality, this definition does not include a
large class of sentences that are ‘like Curry’; most examples that we considered were variants
on material Curry. Whereas here, as we saw in Proposition the paradoxicality of Curry
crucially depends on its use of the non-material implication connective. The same holds for
contingent-paradoxicality:

Proposition 6.4.13. Let B be any sentence in £*. Then material Curry
(C8™) T Cg"'V B
is not contingent-paradoxical in LP™.

Proof. Let A be any sentence in the ground language such that A Z T. We show that Cg™ is
not contingent-paradoxical for A. Since A # T, there exists some ground model M such that
M = A. No matter the ground model, defining T+ = T~ = {"Cg" ™M} gives us a T-model
for Cg™, as is straightforward to check. In particular, Mr+ -y is a T-model for Cg™, and

Mg+ -y T A since M £ A. O

Similarly, the sentence D, which does not employ the implication connective, is not
contingent-paradoxical in LP™:

Proposition 6.4.14. Let A be any sentence in £7. Then the sentence
(D) -T™D'ANA
is not contingent-paradoxical in LP~.

Proof. Similar to the proof of Proposition [6.4.13] O

Indeed — like for plain paradoxicality in LP™ — we conjecture that only sentences con-
taining the implication connective are paradoxical in LP™; the implication is to blame for all
evil.

Conjecture 6.4.15. If a sentence S in £1 does not contain —, then S is not contingent-
paradoxical in LP™.

Having said this, we can still find some variants on Curry’s paradox that are contingent-
paradoxical in LP™. Here are two examples that we encountered in previous chapters as
well:
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Proposition 6.4.16. Let A, B and C be sentences in £ such that A # 1, B # T, and
C # T. Then the following sentences are contingent-paradoxical in LP™:

1. The sentence

&) (TTE7V B) — C.

2. The sentence
(F) (TTF A A) = B.

Proof. Straightforward to check by an argument similar to the right-to-left direction of Propo-
sition [6.4.12) O

6.4.3. Summary

We proposed the definition of contingent-paradoxicality in the paraconsistent logic LP™ to for-
malise Intuition [2a] The result is a definition of paradoxicality that captures non-tautological
instances of Curry’s paradox, but does not capture the Liar — this was our aim, so our def-
inition is successful in this respect. It also highlights the differences between classical logic
and paraconsistent logic in their treatment of the logical paradoxes. What we seem to have
here is a device that allows us to characterise which sentences are ‘problematic’ in a given
logic, and this invites for a generalisation to other logics — paraconsistent or otherwise. One
might consider paracomplete logics such as the logics weak Kleene, strong Kleene, and super-
valuationism that we saw in Chapter [4, or weaker paraconsistent logics such as the logic LP.
A study and comparison of definitions of paradoxicality embedded in different logics would
highlight the changeablity of the notion of paradoxicality across different logics, and provoke
the question: is paradoxicality a logic dependent-notion?

For now, we conclude with a summary of the results of this section, in terms of the status
of some sentences on the two definitions of paradoxicality that we introduced.

| C|Cc"|D & F|AoB
X X X X X
X X * * X

Paradoxical in LP™

Contingent-paradoxical in LP™

k%

*

(x) not captured
(¥) captured, under the condition that A% 1, BZ T,and C £ T
(#*) captured, under the condition that B = L

Figure 6.3: Overview of Curry-paradoxical sentences on the definition of contingent-
paradoxicality.

6.5. Independent arguments

Before we conclude this chapter, we briefly consider Intuition |3| that we saw in Chapter
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Intuition 3. A Curry-paradoxical sentence is a sentence A whose existence entails the
truth of a sentence B by means of an argument that is independent of B.

Where the argument which derives B from the existence of A is independent from B
if replacing B by an arbitrary sentence C' in both A and the argument gives us a valid
argument with the conclusion C.

This characterisation is framed in terms of entailment, and therefore invites for a formali-
sation in the setting of this chapter. Due to constraints of time and space, we will not discuss
this proposal in as much detail as the previous definitions. Still, we would like to outline a
possible formalisation and point to the prospects for further research.

As we noted in Chapter [2] this intuition is framed in terms of arguments, and the model-
theoretic approach we take here is not well-suited to talk about arguments, proofs, or rea-
soning. However, we might still try to approach the intuition by model-theoretic means. The
idea is the following: the intuition demands that replacing B by arbitrary C' in both A and
the argument yields the conclusion C'. Thus, the existence of the sentence A[C/B] entails
the truth of C'. While we cannot talk about the argument involved in the present framework,
we can formalise the fact that the existence of A[C'/B] entails the truth of C. This gives us
a notion that is less strict, since it does not demand that the argument involved is identical
modulo replacing B by C'. However, if we range over all possible sentences C, it seems likely
that the argument in question is indeed the same in every case — though this is no more than
a speculation at this point, and requires further research.
The formal definition in question is the following:

Definition 6.5.1 (Independent-paradoxicality). Let the sentence S in £1 be diagonally
defined by the formulas Ai(y1,...,Yn)s---s An(Y1,...,yn). Then S is independent-
paradozical if there exists some subsentence B € Form(L) of S such that, for any C' in L,
we have: Mx = C for every model M x which is a T-model for Sg.

As in Definition Sg denotes the sentence that is diagonally defined by the
formulas

Ai(y1,-- - yn)[C/B], ..., An(y1, ..., yn)[C/B].

The need to talk about sentences of the form S%, rather than simply S[C/B], is due to
problems of (self-)reference that we encountered earlier in Definition

In other words, demanding that the T-schema holds for the sentence S with B appro-
priately replaced by C yields the truth of C. Thus, the existence of the sentence S with B
replaced by C' entails C, which gives us a partial formalisation of Intuition

Let us verify that Curry’s sentence is indeed independent-paradoxical:

Proposition 6.5.2. Every instance of Curry’s sentence with a consequent in the ground-
language is independent-paradoxical, i.e. Cp is independent-paradoxical for every sentence B
in L.
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Proof. Let C' be an arbitrary sentence in £. We show that Cp is independent-paradoxical for
B. We denote Cg by C to avoid cluttered notation. We show that, for any T-model M x for
C§, we have My = C. So let Mx be a T-model for Cg. Then Mx = T'_Cg1 if and only if
Mx E Cg. But, by definition of Cg, we have

Mx =CS «— MxE=TCS - C.
It thus follows that Mx = C, as desired. O

This formal definition thus succeeds in capturing at least Curry’s paradox, including
tautological Curry. It does so by allowing the replacement of a certain subsentence by another
sentence. In this sense, it places emphasis of the logical form of the sentence. Indeed, there
is a strong parallel between this definition and the definition of Curry-type sentences that we

saw in Definitions .3.5 and [1.3.13]

6.6. Summary and evaluation

In this chapter, we attempted to formalise each of the intuitions framed in terms of entail-
ment that we saw in Section The orthodox Intuition [0] was our starting point, which we
formalised as classical paradoxicality. This was only stage setting, since this definition does
not capture Curry. We then generalised classical paradoxicality to obtain a formalisation of
Intuition (1} in the form of contingent-paradoxicality. Most of the chapter centered around
this notion: in the two subsequent sections, we introduced adapted versions of contingent-
paradoxicality to capture Intuitions [2b|and [2a]— designed to distinguish Curry’s paradox from
the Liar. In the final section, we briefly considered the prospects of capturing Intuition [3] in
this framework — an intuition designed to capture the paradoxicality of the argument involved
in Curry’s paradox.

We saw that the central notion of contingent-paradoxicality (Section is closely related
to local folk-paradoxicality; every contingent-paradoxical sentence is locally folk-paradoxical,
and the converse holds for many key examples as well. This points to a potential correspon-
dence between Intuition [l and Intuition [Bal

Sub-contingent-paradoxicality (Section was proposed as a formalisation of Intuition
which highlights the fact that Curry’s sentence contains the formula that it forces to be true
as a subformula. We obtained a definition that captures Curry’s paradox, but not the Liar
— which was our aim. We saw, however, that the definition is restrictive, capturing only
sentences that are like Curry’s paradox in that they contain the sentence they entail as an
ezact subsentence — sentences like £ are not captured. This seems to me like it draws a rather
superficial distinction between different members of the Curry family, so this might not be a
desirable property.

The notion of contingent-paradoxicality in LP™ (Section offers a more profound char-
acterisation of the difference between Curry’s sentence and the Liar by employing a paracon-
sistent background logic. We use the logic LP™, in which Curry’s paradox is problematic but
the Liar is not. This results in a definition that captures Curry’s paradox but not the Liar,
and does not make superficial distinctions based on syntactic shape. It moreover gave us a
means to form a clear picture of the different behaviour of paradoxical sentences across logics
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— classical versus paraconsistent. We saw that the paradoxicality of Curry in paraconsistent
logics hinges on its use of the implication connective. This is well-known, but the definition
we presented gave us one framework in which to express this formally. The attractive thing
about this framework is that it can be extended readily to other non-classical logics, which
might be the basis for a unified overview of paradoxical sentences across different logics.

In the final section, we proposed independent-paradozicality as a potential partial for-
malisation of Intuition This intuition characterises Curry by means of its paradoxical
argument, which we argued to be independent of its conclusion in Section We hold that
this is difficult to faithfully represent in the present model-theoretic framework, but we have
considered whether there might be a (partial) way out. We have aimed to argue that our
formal strategy captures an aspect of the intuition, but how the definition works out formally
remains open for further research.

The table in Figure gives an overview of the behaviour of our example sentences in
the definitions we proposed.

[C|D & F|XoB
Contingent-paradoxical x| ox %
Sub-contingent-paradoxical x | = X = X
Contingent-paradoxical in LP™ | * | x x =« X

(X) not captured
(¥) captured, under the condition that AZ 1, BZ T and C # T
( equivalent to a sentence that is captured, under the condition that A #Z 1 and

Figure 6.4: Overview of Curry-paradoxical sentences on the different definitions of contingent-
paradoxicality.
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7. Conclusion and outlook

In this thesis, we have aimed to investigate the paradoxicality of Curry by asking the question:
‘what makes Curry’s sentence paradoxical?’ and taking different answers to this question as
starting points for formal definitions of paradoxicality. The result is an overview of formal
definitions of paradoxicality that each correspond to a certain perspective on Curry’s para-
dox. We have aimed to investigate how these definitions play out formally, to answer the
question: what are the formal upshots of the proposed views on Curry?

In Chapter we introduced the different perspectives on Curry’s paradox that figured
throughout the thesis, which we called intuitions. They were divided into two groups: those
that are framed in terms of models, and those that are framed in terms of entailment. In
both groups, there are two key themes: the question of distinguishing Curry’s paradox from
the Liar and the question of capturing all instances of Curry, including tautological Curry.

In Chapter |3] we discussed the necessary preliminaries for the formal chapters to come.
We payed special attention to the distinction between strong and weak diagonalisation, and
motivated our choice to use strong diagonalisation in most of the chapters.

In Chapters[4] to[6 we formalised the intuitions proposed in Chapter[2l Chapters [4] and
gave us two different formalisations of the intuitions that were framed in terms of models,
based on the existing definitions of paradoxicality introduced by Kripke and Hsiung. In
Chapter [6] we formalised the intuitions involving entailment.

In Chapter [4, we saw that Curry’s paradox is only captured by Kripke’s definition of
paradoxicality in case its consequent is false in a chosen ground model; in order to capture
more instances of Curry’s paradox, we defined the notions of local paradoxicality and local
but not global paradoxicality. We saw that these notions capture Curry’s paradox, so long
as its consequent is not a consequence of the theory PAT. In order to moreover account
for tautological Curry, we introduced the notion of Curry-type sentences, which succeeded
to capture tautological Curry but missed out on the benefits of Kripke’s theory regarding
multi-sentence paradoxes: multi-sentence versions of Curry were no longer included.

The main objective of Chapter [5] was to show that the strategy of defining a notion of
local paradoxicality extends to other definitions of paradoxicality that are framed in terms
of models — such as Hsiung’s notion of folk-paradoxicality. This notion is framed in terms of
sets of sentences, which causes some differences in the treatment of multi-sentence paradoxes.
We introduced the notion of local folk-paradoxicality, which behaved as we expected on the
basis of the results in Kripke’s chapter.

In the final Chapter [6] we formalised the four different intuitions that were framed in
terms of entailment. The central notion was contingent-paradozicality, which we saw was
closely related to local folk-paradoxicality. In order to differentiate Curry from the Liar on
this definition, we proposed two adaptations: one that was framed in terms of subsentences,
and one that uses a paraconsistent background logic. The definition that uses a paraconsistent
logic seemed promising because it highlights a deeper difference between Curry’s paradox and
the Liar than just syntactic shape, and because it provides a general framework that can be
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adapted to compare the behaviour of paradoxical sentences across logics. We concluded with
a definition that attempted to capture the paradoxicality of Curry’s argument, but we hold
that this is difficult in the current model-theoretic setting.

7.1. Outlook

Several potential avenues for further research present themselves. The first and perhaps most
natural option is to consider other influential model-theoretic definitions of paradoxicality and
consider whether any of our strategies (especially the ones of the first two chapters) carry
over. This would give us a more broad insight into the nature of Curry’s paradox, and
how its paradoxicality depends on different starting points. One relevant such definition of
paradoxicality, which seems to allow for a straightforward application of our strategy, is given
by Gupta and Belnap’s revision sequences (Gupta & Belnap, |1993).

A more radically different approach lies in proof-theoretic approaches to Curry’s para-
dox, such as the one proposed by Tennant (1982, (1995). As we have argued in Section
and again in Section the paradoxicality of Curry’s argument is not easy to catch in a
model-theoretic environment. A proof-theoretic approach highlights the structure of the in-
volved proofs, which brings us closer to arguments. The question would be whether such an
approach would, indeed, be able to formalise our Intuition [3] — or perhaps it would show us
how the intuition can be improved.

There are also some more specific open questions that we encountered throughout the thesis.

In Chapter [5] we met the opportunity for a notion of folk-paradoxicality that captures
tautological Curry by adopting the same strategy that we used when defining Curry-type
sentences in Section We argued that the setting of folk-paradoxicality might even be
better suited for such a definition, since it would not suffer the problems with multi-sentence
paradoxes that we encountered for the Curry-type sentences.

We moreover noted that all definitions of contingent-paradoxicality (Sections to
extend naturally to a framework that considers sets of sentences rather than individual sen-
tences, just like Hsiung’s definition of paradoxicality. This would give us the opportunity to
develop a notion of paradozr based based on our notion of contingent-paradoxicality, as in the
work of Hsiung (2024)).

Another point of interest is the definition of paradoxicality in a paraconsistent setting that
we introduced (Section. As we mentioned, it would be worth looking into a generalisation
of this definition to different background logics; for instance, to the paracomplete logics weak
Kleene, strong Kleene, and supervaluationism, or other paraconsistent logics such as LP.
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