
Lean Binary Decision Diagrams

MSc Thesis (Afstudeerscriptie)

written by

Eshel S. Yaron

under the supervision of Dr Malvin Gattinger, and submitted to the Examinations Board in partial

fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

June 30th, 2025 Dr Benno van den Berg (Chair)

Dr Malvin Gattinger (Supervisor)

Dr Gregor Behnke

Dr Andrés Goens



Abstract

We develop a formally verified Binary Decision Diagram library in, and for, the Lean 4 programming

language and proof assistant.

Binary Decision Diagrams (BDDs) are a fundamental data structure for efficient representation and

manipulation of Boolean functions. Popularized by Bryant in 1986, BDDs have been implemented and

deployed in various applications of computer science and logic, including circuit design and verification,

model checking, planning and constraint solving.

The significance of our contribution of a formally verified BDD library in Lean is threefold: first,

spelling out subtle correctness proofs for key BDD algorithms in a fully formal setting elucidates the

essential logical properties of the various interacting components in these algorithms. As Knuth (2009)

remarks after describing his BDD reduction algorithm, “the intricate link manipulations of Algorithm

R are easier to program than to explain.”

Additionally, the project has a practical benefit: a verified BDD implementation in Lean enables

proof automation by leveraging Lean’s meta-programming facility. Namely, proofs of various statements

about Boolean functions, such as satisfiability of a given propositional formula or semantic equivalence

of two formulae, can be delegated to a verified, efficient, BDD-based decision procedure within Lean.

Lastly, a verified BDD library can be used as a component of verified BDD-based applications, such

as verified model checkers whose correctness is formally proven in Lean. We implement and present a

BDD-based SAT solver as an example application of our library.

We describe the library’s external API and its capabilities, explain the underlying implementation,

discuss the design choices taken during formalization, and investigate implications of these choices.

Finally we evaluate the performance of the presented implementation, compare it with other BDD

implementations, and survey possibilities for further development.



Acknowledgements

I would like to thank my thesis advisor, Malvin, for outstanding guidance, encouragement and assistance

during my work on this thesis. Our weekly meetings were extremely helpful, interesting and enjoyable.

I couldn’t have asked for a better supervisor, thank you!

I also want to thank my thesis committee members Gregor and Andrés, and the committee chair

Benno, for reviewing my thesis and providing invaluable feedback in the thesis defense.

I’m grateful for the ILLC and the Master of Logic program in general. I was fortunate to meet

incredibly welcoming and inspiring people during the past two years, and I gained and learned far

more than I excepted. In particular, I want to thank Maria Aloni, who has been my academic mentor

during the Master of Logic. Thank you, Maria, your mentorship and support were highly appreciated.

Another big thank-you goes to my friends, old and new, that supported me in this journey and

enriched my experience with many fun moments.

Lastly, I want to thank my family for their endless care, support, and patience in hearing me ramble

about logic. My greatest gratitude goes to my wife, Adi. You motivated and encouraged me every step

of the way, and your belief in me means the world.

a



Contents

1 Introduction 2

1.1 Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Binary Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Calculus of Inductive Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Binary Decision Diagrams in Lean 20

2.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 The Abstract BDD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Semantic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Constructing BDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4 Variable Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.5 Finding Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Implementation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.3 BDD Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.4 Semantic Equivalence and Similarity . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.5 BDD Construction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.6 Deciding Variable Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.7 Implementation of Choice and Find . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3 Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Future Work and Summary 67

3.1 Directions for Further Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 70

1



Chapter 1

Introduction

In his 1986 paper “Graph-Based Algorithms for Boolean Function Manipulation” [Bry86], Randal

Bryant introduced a data structure for efficient representation of Boolean functions called ROBDD—

Reduced Ordered Binary Decision Diagram. ROBDDs, or just BDDs for short, represent Boolean

functions as directed acyclic graphs with certain structural constraints. They key benefits of BDDs are:

• Compact : Many important Boolean functions can be represented by BDDs using less space than

with alternative representations.

• Canonical : There is a unique ROBDD corresponding to each Boolean function.

• Efficient : Common operations on Boolean functions can be implemented as efficient graph

algorithms on BDDs.

Thanks to these benefits, BDDs have been implemented and applied to tackle various challenges in

computer science, electrical engineering, and logic, including applications in CAD [Bry95], planning

[BS21] and model checking [Gat18]. More than two decades after their introduction by Bryant, in 2008,

Donald Knuth said about BDD that “it is one of the only really fundamental data structures that

came out in the last twenty fives years.” [Onl19]

In this thesis, we present the implementation of a formally verified BDD library in Lean 4—a func-

tional programming language and formal proof environment based on Dependent Type Theory[MU21].

As a programming language, Lean 4 provides a rich functional programming environment with

features such as pattern matching, type inference, and monadic programming constructs, while

simultaneously serving as a powerful theorem prover with tactics for interactive proof development.

This dual nature makes Lean 4 particularly well-suited for our purposes, as we can implement efficient

BDD algorithms using familiar programming idioms, and formally prove their correctness within the

same system. Additionally, Lean programs are compiled to efficient executable code, which allows our

library to handle large BDDs with reasonable performance.

Our main references with regards to BDD implementation are Bryant’s original paper from 1986

[Bry86] and his subsequent work on BDD implementation techniques along with other authors in the

1990’s [BRB91; MIY91; Rud93; Bur+94; Bry95], as well as Knuth’s writings about BDD in The Art

of Computer Programming [Knu09], and Bryant’s more recent overview in the Hanbook of Model

Checking [Bry18]. We also take inspiration from existing implementations, most notably CUDD

[Som98] and CacBDD [LSX13], which are both high-performance implementations written in low-level

2



programming languages, along with implementations in higher-level languages such as Markus Triska’s

BDD implementation in Prolog [Tri16] and Masahiro Sakai’s implementation in Haskell1, as well as

the formalization of BDDs in the Rocq theorem prover as described in [Ver+00].

In section 1.1, we discuss key notions and definitions of Boolean functions, which motivate the

use of ROBDDs. In section 1.2, we introduce ROBDDs and show the main theoretical results that

underpin their practical utility. In section 1.3, we examine Lean 4 and see some code examples.

In chapter 2, we present our Lean 4 ROBDD library. Section 2.1 describes the library’s interface

and usage, while section 2.2 goes into the details of our implementation and formalization of ROBDDs,

including the formal correctness proofs for some of the fundamental ROBDD algorithms which our

library implements. In section 2.3, we present and evaluate a verified SAT solver, as an example

application of our library.

Lastly, in chapter 3 we discuss different directions for advancing our ROBDD library further.

1.1 Boolean Functions

We begin by examining and motivating the notion of Boolean functions. We can define Booleans in

different ways depending on the formal settings we adopt. In this thesis, we shall mostly work within

the context of Dependent Type Theory with Inductive Constructions, in which Booleans are defined as

an inductive type (see section 1.3). Regardless of the technicalities, there is just one thing to know

about Booleans: there are exactly two distinct Booleans. They are often called true and false, or

sometimes 0 and 1. They represent the most basic kind of distinction, either this or that. If it is this

then it is not that, and vice-versa. We could also call them “heads” and “tails”, or “here” and “there”.

In this thesis we stick with true and false, and define the set of Booleans B as B = {true, false}.
Since a Boolean embodies a single distinction, a Boolean-valued function can be thought of as a

single decision—based on some inputs, the function decides between “yes” and “no”, true and false.

Which inputs should we consider, when we think about functions that implement a single decision? It

is natural to make decisions based on existing discernible distinctions. To decide whether to make an

omelette, for example, one may distinguish between the case in which they have some eggs handy, and

the case they have none.

In this example we can consider the input of the decision function to be a Boolean too, just like

the output. In fact, we may need more than one Boolean to decide about the omelette, we may also

need to know if the stove is working, for instance.

In general, we can model any procedure that makes a single decision based on finitely many

distinctions as a function from Booleans to an output Booleans. These are called Boolean functions.

Definition 1 (Boolean Function). Given a natural number n, an n-ary Boolean function is a function

f : Bn → B. In words, f maps n input Booleans to one output Boolean.

The number of Boolean functions grows rapidly with their arity: there are exactly 2 nullary Boolean

functions, 4 unary functions, 16 binary functions, and 22
n
n-ary functions. n-ary Boolean functions

correspond to subsets of Bn—each function f characterizes a set of solutions Sf = {x | f(x) = true}.

Definition 2. We fix the following notation:

1https://github.com/msakai/haskell-decision-diagrams

3

https://github.com/msakai/haskell-decision-diagrams


• We use 0 to refer to the constantly-false Boolean function x0, . . . , xn−1 7→ false, and similarly 1

refers to x0, . . . , xn−1 7→ true.

• We use xi to refer to the “projection” function x0, . . . , xn−1 7→ xi that simply returns the value

of the input at index i.

• For any Booleans b, b′ ∈ B:

– The conjunction of b, b′ is:

b · b′ =

true if b = b′ = true

false otherwise

– The disjunction of b, b′ is:

b+ b′ =

false if b = b′ = false

true otherwise

– The negation of b is:

b̄ =

false if b = true

true otherwise

• We lift the above operation on Booleans to n-ary Boolean functions f, g: given an input vector

x = x0, . . . , xn−1, we have (f · g)(x) = f(x) · g(x), (f + g)(x) = f(x) + g(x) and f̄(x) = f(x).

• For n ∈ N, we use [n] to refer to the set {0, . . . , n− 1}.

We can represent a Boolean function in various ways. The minimal requirement for a representation

of a Boolean function, or any function for that matter, is that it should allow us to mechanically

determine the output of the function given (a suitable representation of) its input. The notation we

defined in definition 2 is an example of such a representation—we can represent any Boolean function

using expressions that consist of the basic functions 0,1,xi as well as conjunction, disjunction and

negation—but perhaps the simplest representation of a Boolean function is the truth table, which

explicitly lists the values of the function for any possible input. As an example, the following truth

table represents the ternary majority function, which is true if and only if at least two of its inputs are

true:

x0 x1 x2 f(x0, x1, x2)

true true true true

true true false true

true false true true

true false false false

false true true true

false true false false

false false true false

false false false false

4



Truth tables have the highly desirable property (which our algebraic notation lacks) that they

provide a canonical representation, which means that two Boolean functions are the same (in the sense

that they have the same extension—they return the same output when given the same inputs) if and

only if their truth tables are the same. More precisely, given two truth tables, it is trivial to check

whether they represent the same Boolean function—just sort both tables and compare line by line.

However, the canonicity of truth tables comes at the expense of compactness, another desirable

property truth tables lack completely. The truth table of an n-ary Boolean function consists of 2n

lines—one for each possible input—making them maximally verbose.

As an extreme example of this verbosity we can consider the truth table of the constantly-true

ternary Boolean function 1, which disregards its input completely and always returns true. Intuitively,

this function is as simple as can be, certainly simpler than the aforementioned majority function.

However, the truth tables of both functions are just as large:

x0 x1 x2 f(x0, x1, x2)

true true true true

true true false true

true false true true

true false false true

false true true true

false true false true

false false true true

false false false true

Since there are 22
n
n-ary Boolean functions, any representation scheme will yield exponentially large

representations for some functions. In other words, no representation is absolutely compact. However,

some representations, including Binary Decision Diagrams (which we introduce in the next section),

require less space to represent some functions. In particular, all symmetric functions admit very small

Binary Decision Diagrams. (See [Knu09] for a detailed analysis of “BDD-friendly” Boolean functions.)

Since some Boolean functions occur more commonly than others in many settings of interest, such

partial compactness can provide great practical benefits.

Beyond merely providing a more compact representation, Binary Decision Diagrams (BDDs) also

admit efficient algorithms for answering questions about the Boolean functions that they represent. In

[Knu09], Knuth enumerates various such “BDD virtues”, here we focus on the following:

Given a BDD representing a Boolean function of n variables f ,

1. we can efficiently evaluate f(x0, . . . , xn−1) for given inputs x0, . . . , xn−1;

2. we can check whether f is constant (either constantly-true or constantly-false) in constant time,

whereas answering the same question given the truth table of f requires checking up to 2n entries;

3. more generally, we can check whether two functions are equal given their BDDs in time that is

proportional to the size of the smaller of the two BDDs, which can be exponentially smaller than

the corresponding truth table;

4. we can find inputs x0, . . . , xn−1 such that f(x0, . . . , xn−1) = true (and likewise for false) in O(n)

5



time, instead of the exponential time we would need to find such inputs given the truth table of

f , or given f as an “oracle”;

5. we can efficiently check whether f depends on a given variable index (see definition 4 below), or

find all indices the function depends on.

In preparation for discussing Binary Decision Diagrams in more detail, we introduce two more

important definitions about Boolean functions: their restrictions and Shannon expansions.

Definition 3 (Restriction). The restriction of an n-ary Boolean function f : Bn → B at index i ∈ [n]

to value b ∈ B, denoted fi←b, is the function x0, . . . , xn−1 7→ f(x0, . . . , xi−1, b, xi+1, . . . , xn−1). In other

words, it is the same as f except that the input at index i is ignored and unconditionally replaced with

the Boolean b.

Definition 4 (Dependency on Input Variable). We say that a Boolean function f : Bn → B depends

on variable index i if fi←false ̸= fi←true. In other words, there exist x0, . . . , xi−1 and xi+1, . . . , xn−1

such that

f(x0, . . . , xi−1, false, xi+1, . . . , xn−1) ̸= f(x0, . . . , xi−1, true, xi+1, . . . , xn−1)

Since the restriction of an n-ary Boolean function “ignores” one of its inputs, we can think of it as

an n− 1-ary function. Formally:

Lemma 5. For an n-ary Boolean function f , for any restriction fi←b of f , there is an n − 1-ary

function g such that g(x0, . . . , xi−1, xi+1, . . . , xn−1) = fi←b(x0, . . . , xn−1) for all x0, . . . , xn−1.

Proof. We set g = y0, . . . , yn−2 7→ f(y0, . . . , yi−1, b, yi, . . . , yn−2), and get that for all x0, . . . , xn−1,

g(x0, . . . , xi−1, xi+1, . . . , xn−1) = fi←b(x0, . . . , xn−1), as needed.

Definition 6 (Shannon Expansion). The Shannon expansion of a non-nullary Boolean function f

around input variable i is the function given by xi · fi←true + x̄i · fi←false [Sha38].

Fact 7. Boolean functions are extensionally equal to their Shannon expansions.

The Shannon expansion allows us to express an n-ary Boolean function in terms of simpler, n−1-ary

Boolean functions (its restrictions)—a process we can repeat all the way down to the nullary constant

Boolean functions. Intuitively, deconstructing a Boolean function f along its Shannon expansion can be

understood as representing f as a series of “if-then-else” case distinctions, corresponding to the input

variables which we expand f around. This intuition underlies the use of Binary Decision Diagrams to

represent Boolean functions.

1.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a data structure introduced in [Bry86] that provides a symbolic

representation of Boolean functions. [CG18] gives a detailed historical perspective about the develop-

ment and use of BDDs, in particular from the point of view of the use of BDDs in applications related

to model checking. In this section we introduce the basic theory of BDDs and the properties that

make them such a useful representation, before discussing our concrete BDD implementation in Lean

in chapter 2.

6



x0

x1 x1

x2

false true

Figure 1.1: Binary Decision Diagram denoting the ternary majority function

Definition 8 (Binary Decision Diagram). Given a natural number n ∈ N, a Binary Decision Diagram

of n variables is a tuple ⟨V,E, root, var, val, label⟩, where ⟨V,E⟩ is a finite directed acyclic graph,

root ∈ V is a node in the graph, and var : V → [n], val : V → B and label : E → B are functions such

that:

• All nodes v ∈ V either have exactly two outgoing edges or none at all. We call nodes with no

outgoing edges terminals, and we call those with two outgoing edges nonterminals.

• For a nonterminal v ∈ V with outgoing edges e1, e2, we have label(e1) ̸= label(e2). In other

words, one edge is labeled with true and the other is labeled with false—we call them the high and

low edges, respectively.

We denote the set of BDDs of n variables by BDDn, or just BDD when n can be inferred from the

context. We also call n the input size of a BDD B ∈ BDDn.

Definition 9. For a BDD B = ⟨V,E, root, var, val, label⟩ ∈ BDDn and node v ∈ V , we write B[v] for

the BDD that is the same as B except with v as root, B[v] = ⟨V,E, v, var, val, label⟩.
For nonterminals nodes v ∈ V , we write high(v) for the target node of node v’s high edge, and

low(v) for the target of its low edge.

Furthermore, if root is nonterminal, we use high(B) as an abbreviation for B[high(root)], and

similarly low(B) abbreviates B[low(root)]. Note that high(B) is a BDD, while high(v) is a node.

We also use var(B) as an abbreviation for var(root) when that is more convenient.

We define the size of a BDD as follows:

Definition 10 (BDD size). The size of a BDD B, size(B), is the number of nonterminal nodes

reachable from its root, root(B).

We only take into account nonterminal nodes when we consider the size of a BDD because although

we didn’t require it up front, in practice we can assume there are (at most) two terminal nodes (one

for each Boolean value). In particular, this assumption always holds for reduced BDDs. In our imple-

mentation (chapter 2) we go a step further and represent terminal nodes implicitly, as distinguished

pointers, so we do not allocate any memory for them.

We associate with each BDD node v a Boolean function, which we call the denotation of v or d(v):

7



Definition 11 (BDD Denotation). For a BDD of n variables B = ⟨V,E, root, var, val, label⟩ ∈ BDDn,

the denotation function Dn : BDDn 7→ Bn → B is given by:

• If root is a terminal node, then the denotation of B is the constant function

Dn(B) = x0, . . . , xn−1 7→ val(root)

• If root is nonterminal, the denotation of B is

Dn(B) = xvar(root) ·Dn(high(B)) + x̄var(root) ·D(low(B))

(Note that the graph’s acyclicity guarantees that the denotation function Dn is well-defined.)

We often omit the index n and write simply D when n is not pertinent or clear from the context.

The definition of the denotation of a nonterminal mirrors the Shannon expansion of Boolean

functions: indeed, we have D(B)var(root)←true = D(high(B)) and D(B)var(root)←false = D(low(B)), and

thus D(B) is given by its Shannon expansion around the input variable var(root).

Lemma 12. For all n-ary Boolean functions f there exists a BDD B ∈ BDDn such that D(B) = f .

Proof. By induction on n.

Base If n = 0, then f is either 0 or 1. If f = 0, then any BDD B whose root is a terminal with

val(root(B)) = false gives D(B) = f . If f = 1, then any BDD B whose root is a terminal with

val(root(B)) = true gives D(B) = f .

Step If n = k + 1, then by fact 7 we get that f = xk · fk←true + x̄k · fk←false. By lemma 5, there

exist k-ary functions h, ℓ such that h(x0, . . . , xk−1) = fk←true(x0, . . . , xk) and ℓ(x0, . . . , xk−1) =

fk←false(x0, . . . , xk) for all x0, . . . , xk ∈ Bk+1.

Thus f(x0, . . . , xk) = xk · h(x0, . . . , xk−1) + x̄k · ℓ(x0, . . . , xk−1).

By I.H., there exists BDDs H,L ∈ BDDk such that D(H) = H and D(L) = ℓ. Hence

for a BDD B with high(B) = H, low(B) = L and var(B) = k we get D(B)(x0, . . . , xk) =

xk · h(x0, . . . , xk−1) + x̄k · ℓ(x0, . . . , xk−1) = f(x0, . . . , xk), as needed.

Lemma 12 shows that the BDD denotation function D is surjective: every Boolean function can

be represented by a BDD. However, for arbitrary BDDs, the denotation function is not injective: we

can represent the same Boolean function in multiple ways (for example, fig. 1.1 and fig. 1.3 show two

different BDDs with the same denotation). We would very much like for the denotation function to

be injective, because that would mean that our representation is canonical, and that we can check

whether two functions are equal by comparing their concrete representations.

To remedy the situation, instead of considering all BDDs, we restrict our attention (and the domain

of our denotation function) to Ordered BDDs, for which there exists a canonical form, called the

Reduced Ordered BDD.

8



x0

x1 x1

x2x0

false true

Figure 1.2: Example of a forgetful BDD

Definition 13 (Ordered BDD). A BDD B = ⟨V,E, root, var, val, label⟩ ∈ BDDn is called Ordered if,

for any edge ⟨v, u⟩ ∈ E reachable from root where u is a nonterminal, we have var(v) < var(u). We

abbreviate Ordered BDD to OBDD.

In other words, a BDD is ordered if on all paths from its root down to the terminal nodes, the

variable indices we encounter are in strictly increasing order.

While orderedness is a very natural property to consider, the BDD literature rarely clarifies its

importance. Even in the original BDD paper [Bry86], orderedness is simply included as part of the

definition of a BDD, without prior motivation. We suggest two motivations for restricting our attention

to ordered BDDs:

1. Orderedness excludes an undesirable property that we call forgetfulness.

2. The number of nodes in ordered BDDs of n variables is upper bounded by 2n, which is the size

of the corresponding truth tables.

Definition 14 (Forgetful BDD). A BDD B = ⟨V,E, root, var, val, label⟩ ∈ BDDn is called Forgetful

if there exists a path from root that includes distinct nonterminals v, u such that var(v) = var(u).

Each path down from the root corresponds to a series of “checks”, or distinctions, that the

represented function may make in order to make a decision (by reaching a terminal node). A forgetful

BDD encodes such a series in which we examine the value of the same variable twice, as if we forgot its

value in between. This is, of course, an undesirable property that we would rather avoid. It is related

to orderedness by the following fact:

Fact 15. If a BDD B ∈ BDDn is ordered up to variable permutation, which means that there exists a

permutation (bijective) function π : [n] ↪→ [n] such that replacing B’s var function with the composition

π ◦ var yields an ordered BDD, then B is not forgetful.

In addition, orderedness entails an upper bound on the size of the BDD:

Lemma 16. For ordered BDDs B ∈ BDDn we have size(B) ≤ 2n − 1.

Proof. Since B is ordered, every variable index may appear at most once on any path from root(B),

thus any such path includes at most n nonterminal nodes. Thus size(B) is bounded by the number of

nodes in a full binary tree of height n, which is 2n − 1.

9



x0

x1 x1

x2 x2

false true

Figure 1.3: Another BDD denoting the ternary majority function

The following useful lemma establishes that all sub-BDDs of an ordered BDD are also ordered:

Lemma 17. Given an ordered BDD B ∈ BDDn, for all nodes v reachable from root(B) we have that

B[v] is also ordered.

Proof. Let ⟨u, u′⟩ be an edge between two nonterminal nodes u, u′ reachable from root(B[v]) = v. Since

v is reachable from root(B) and reachability is transitive, we get that u and u′ are also reachable from

root(B). Thus, by orderedness of B, we get that var(u) < var(u′). Thus B[v] is ordered.

Fact 15 and lemma 16 show that Ordered BDDs are relatively well behaved, but they are still not

canonical with respect to Boolean functions. For example, fig. 1.1 and fig. 1.3 show distinct BDDs,

which are both ordered and both denote the same function—the ternary majority function.

Fortunately, the smallest OBDD representing a given Boolean function is unique, and we can

efficiently reduce any OBDD into this minimal form. These reduced OBDDs will act as our canonical

representation for Boolean functions.

First, we define a notion of Reduced OBDDs as a subset of BDD satisfying certain structural

constraints; then we show that Reduced OBDDs are canonical; and lastly we show that they are

minimal in size.

Intuitively, an OBDD is reduced when it encodes a given Boolean function as succinctly as possible—

it is the smallest OBDD for that function. Of course, a priori, there may be multiple distinct such

minimal OBDDs for the same function; the canonicity theorem that we show below (theorem 25)

ensures that reduced OBDDs representing a given function are unique (up to an equivalence relation

which we introduce in definition 20), which justifies talking about reduced OBDDs as the most succinct

OBDD with a given denotation.

Our definition of being reduced relies on a translation of BDDs to a simpler data structure that we

call decision trees:

Definition 18 (Decision Tree). A decision tree is defined inductively as follows:

t ::= b | i ? t : t (where b ∈ B, i ∈ N)

A decision tree t of the form b for b ∈ B is called a leaf, while decision trees of the form i ? t1 : t2 are

called branches. We read a branch i ? t1 : t2 as an if-then-else instruction: if i then follow t1, otherwise

follow t2.

10



Definition 19 (Decision Tree of BDD). We associate with each BDD B = ⟨V,E, root, var, val, label⟩ ∈
BDDn a decision tree T (B) as follows:

• If root is a terminal node, then T (B) = val(root).

• Otherwise, if root is nonterminal, then T (B) = var(root) ?T (high(B)) : T (low(B)).

Definition 20 (Similar BDDs). We say that two BDDs B,B′ are similar and write B ∼ B′ if

T (B) = T (B′).

For example, the BDDs shown in fig. 1.1 and fig. 1.3 are similar, since both of them induce the

same decision tree 0 ? (1 ? true : (2 ? true : false)) : (1 ? (2 ? true : false) : false).

Lemma 21. The BDD similarity relation ∼ is an equivalence relation.

Proof. By definition, ∼ is the inverse image of the equivalence relation = by the T function, hence it is

also an equivalence relation.

In essence, T (B) is a binary tree that forgets the graph structure of B and encodes only the

branching decisions that B prescribes. Note how the translation of a BDD B to decision trees T

corresponds to the translation to Boolean functions D from definition 11 above—indeed, BDDs with

the same decision tree also have the same denotation:

Lemma 22. For BDDs B,B′ ∈ BDDn, B ∼ B′ implies D(B) = D(B′).

Proof. Suppose B ∼ B′, thus T (B) = T (B′). By induction on T (B):

• If T (B) is a Boolean b, then root(B) is a terminal with value b, so D(B) is the constantly-b

function, and likewise for D(B′), since T (B) = T (B′).

• If T (B) = i ?T1 : T0, then root(B) is a nonterminal with variable index i, and we have T1 =

T (high(B)) and T0 = T (low(B)). Since T (B) = T (B′), we get that root(B′) is also a nonterminal

with variable index i, and that T (high(B)) = T (high(B′)) and T (low(B)) = T (low(B′)), and so

by I.H. we have D(high(B)) = D(high(B′)) and D(low(B)) = D(low(B′)).

By definition of D, we get:

D(B) = xi ·D(high(B)) + x̄i ·D(low(B)) = xi ·D(high(B′)) + x̄i ·D(low(B′)) = D(B′)

As a necessary condition for an OBDD B to be reduced, B must not contain distinct similar

sub-OBDDs, otherwise if B had two distinct similar OBDDs, say S1, S2, then we could obtain a more

succinct encoding of the same Boolean function that B denotes, by changing all edges that point to

root(S2) such that they point to root(S1) instead, and dropping root(S2) altogether. The resulting

OBDD would still induce the same decision tree, and hence it would denote the same Boolean function,

while its size would decrease.

However, lack of distinct similar sub-OBDDs is not sufficient for an OBDD to be reduced. Another

way for an OBDD to be extraneously large is to include trivial decision nodes, wherein both the low

and high edges lead to the same decision. Such a node increases the size of the OBDD, and provides

11



nothing but frustration in return. It is akin to a asking a stranger for directions to the train station,

and being asked in response if you prefer dogs or cats. Whether you are a dog person or a cat person,

the way to the train station is the same, so the interchange is entirely redundant. We formalize this

notion of redundancy in the following definition:

Definition 23 (Redundant BDD Node). A BDD node v is redundant if it is a nonterminal with

low(v) = high(v).

The notions of similarity and redundancy suffice for defining the notion of a reduced (O)BDD:

Definition 24 (Reduced BDD). A BDD B = ⟨V,E, root, var, val, label⟩ ∈ BDDn is reduced if the

following two conditions hold:

• No redundant nodes are reachable from root.

• For all v, u ∈ V that are reachable from root, B[v] ∼ B[u] implies v = u. In other words, there

are no two distinct sub-BDDs of B that are similar.

We can now state the fundamental theorem of BDDs, which establishes that Reduced Ordered

BDDs (ROBDDs) are canonical :

Theorem 25 (Canonicity). For Reduced and Ordered BDDs B,B′, D(B) = D(B′) implies B ∼ B′.

Proof. Let B,B′ ∈ BDDn be two ROBDDs with D(B) = D(B′). By strong induction on the

sum of the sizes of B,B′, we assume that the theorem holds for all pairs of BDDs C,C ′ such that

size(C) + size(C ′) < size(B) + size(B′). We proceed by case distinction on the roots of B and B′.

• If root(B) is a terminal node with val(root(B)) = b and root(B′) is a terminal node with

val(root(B′)) = b′, then by definition of the denotation function D we have D(B) = x 7→ b (D(B)

is the constant function with value b), and D(B′) = x 7→ b′. By assumption, x 7→ b = D(B) =

D(B′) = x 7→ b′, and thus b = b′. Hence B,B′ both induce the same decision tree, the leaf b, and

are thus similar.

• If root(B) is a terminal node with val(root(B)) = b and root(B′) is nonterminal, then we have:

x 7→ b = D(B) = D(B′) = xvar(B′) ·D(high(B)) + x̄var(B′) ·D(low(B))

Hence D(high(B)) = x 7→ b = D(low(B)). Since size(high(B)) + size(low(B)) < size(B) ≤
size(B)+ size(B′), we can apply our induction hypothesis and get that high(B) ∼ low(B). Hence

B is not reduced. Contradiction.

The case in which root(B) is nonterminal and root(B′) is terminal is analogous.

• If both root(B) and root(B′) are nonterminals, then to show T (B) = T (B′) we first show that

var(B) = var(B′).

Suppose, for contradiction, that var(B) ̸= var(B′). Without loss of generality, assume that

var(B) < var(B′). Since B′ is ordered, we get that the denotation of B′ D(B′) is independent of

var(B) (in our formalization in Lean, this implication is justified by lemma independentOf_lt_root—

see section 2.2.4 where we discuss our formalization of this proof).

12



Since D(B) = D(B′), we get that D(B) is also independent of var(B). But that implies that

D(high(B)) = D(low(B)), and by I.H. we get that high(B) ∼ low(B) and hence B is not reduced.

Contradiction. Thus var(B) = var(B′).

It remains to show that T (high(B)) = T (high(B′)) and that T (low(B)) = T (low(B′)). Since

D(B) = D(B′) and var(B) = var(B′), we get that D(high(B)) = D(high(B′)) and D(low(B)) =

D(low(B′)).

Since size(high(B)) < size(B) and size(high(B′)) < size(B′), we have size(high(B))+size(high(B′)) <

size(B) + size(B′). Hence, by I.H., we get T (high(B)) = T (high(B′)), and similarly for

T (low(B)) = T (low(B′)).

Corollary 26. For ROBDDs B,B′, D(B) = D(B′) if and only B ∼ B′.

Proof. By theorem 25 and lemma 22.

Corollary 27. For an ROBDD B,

• D(B) = 0 if and only if root(B) is a terminal with val(root(B)) = false.

• D(B) = 1 if and only if root(B) is a terminal with val(root(B)) = true.

Proof. If root(B) is a terminal with val(root(B)) = false, then by definition of D we have D(B) = 0,

and thus by canonicity we get for all ROBDDs B′ such that D(B) = 0 we have B ∼ B′, and thus B′ is

a terminal with val(root(B′)) = false.

The same holds for true instead of false.

Theorem 25 tells us that if two ROBDDs encode the same Boolean function, then they are similar.

Thus if we have two BDDs Bf , Bg representing n-ary Boolean functions f, g respectively, we can readily

decide whether f = g by checking if Bf ∼ Bg, which takes O(min {size(Bf ), size(Bg)}) time using an

algorithm that we present in section 2.2.4.

In particular, by taking g ∈ {0,1}, we get from corollary 27 that we can check whether f is a

tautology or a contradiction in constant time. This result demonstrates the power of BDDs: given

the BDD representing a Boolean function, problems such as satisfiability become trivial. Of course,

satisfiability checking is notoriously NP -hard, which implies that constructing ROBDDs for arbitrary

Boolean functions is also NP -hard.

Using our canonicity result, we can also prove that ROBDDs are the minimal OBDDs with a given

denotation. First, we define the notion of minimality for BDDs, and prove a couple of helpful lemmas:

Definition 28 (Minimal BDD). A BDD B ∈ BDDn is called minimal if for all B′ ∈ BDDn,

D(B) = D(B′) implies size(B) ≤ size(B′).

Lemma 29. Given a reduced OBDD B, for all nodes v reachable from root(B) we have that B[v] is

also reduced.

Proof. Similar to the proof of lemma 17.

Lemma 30. For two ROBDDs R,R′ ∈ BDDn, if R ∼ R′ then size(R) = size(R′).

13



Proof. If root(R) is a terminal, then root(R′) must also be a terminal with val(root(R)) = val(root(R′)),

and thus size(R) = 0 = size(R′).

Otherwise, we proceed by strong induction on the size of R. The induction hypothesis says

that for all ROBDDs B,B′ ∈ BDDn such that size(B) < size(R), we have that B ∼ B′ implies

size(B) = size(B′).

Suppose that size(R) ̸= size(R′). Without loss of generality, we assume that size(R) < size(R′).

Hence more nodes are reachable from root(R′) than from root(R).

Thus either size(low(R)) < size(low(R′)) (in words, there are more nodes reachable from low(R)

than from low(R′)), or size(high(R)) < size(high(R′)). Again without loss of generality, we assume

that size(low(R)) < size(low(R′)).

Since R and R′ are ordered and reduced, by lemma 17 and lemma 29 we get that low(R) and

low(R′) are also ordered and reduced. Thus by induction hypothesis, we have that low(R) ≁ low(R′),

and hence R ≁ R′. Contradiction.

Thus size(R) = size(R′), as needed.

Theorem 31. For a BDD R ∈ BDDn, R is minimal if and only if R is reduced.

Proof. We define a relation · ⇒ · ⊆ BDDn ×BDDn which we call the “reduction step” relation, as

the union of two relations ⇒= (⇒1 ∪ ⇒2), where:

• · ⇒1 · ⊆ BDDn ×BDDn, which we call the “redundancy elimination step” relation, is defined

as: B ⇒1 B′ if and only if B can be obtained from B′ by picking any node v reachable from

root(B′), adding a redundant node v′ such that low(v′) = high(v′) = v, and changing all edges

with target v to point to v′ instead.

• · ⇒2 · ⊆ BDDn ×BDDn, which we call the “duplication elimination step” relation, is defined

as: B ⇒2 B
′ if and only if B can be obtained from B′ by picking any node v that has multiple

incoming edges reachable from root(B′), adding a duplicate node v′ such that val(v) = val(v′),

var(v) = var(v′) and if v is a nonterminal then also low(v′) = low(v) and high(v′) = high(v), and

changing one of the incoming edges of v to point to v′ instead.

We have B ⇒1 B
′ implies size(B) > size(B′), and likewise for ⇒2. Hence also for their union we

have B ⇒ B′ implies size(B) > size(B′). Thus the ⇒ relation is well-founded.

A given BDD B has no ⇒-successors (which means that no B′ exists such that B ⇒ B′) if and

only if B has no redundant nodes and no two distinct similar sub-BDDs, which is the same as saying

that B is reduced.

We also have that both redundancy elimination ⇒1 and duplication elimination (⇒2) preserve

denotation, so B ⇒ B′ implies D(B) = D(B′).

Thus, for any BDD B ∈ BDDn, there exists a reduced BDD B⋆ such that B ⇒⋆ B⋆, where ⇒⋆ is

the reflexive transitive closure of ⇒.

Hence D(B) = D(B⋆) and size(B) ≥ size(B⋆), with size(B) = size(B⋆) if and only if B = B⋆.

Now, let R ∈ BDDn be an arbitrary BDD.

• Suppose R is reduced. Let B ∈ BDDn be a BDD such that D(R) = D(B). Thus there exists

a reduced BDD B⋆ such that D(B⋆) = D(B) and D(B⋆) ≤ D(B). Hence also D(B⋆) = D(R),

and by canonicity we get that R ∼ B⋆. By lemma 30 we get size(R) = size(B⋆), and thus

size(R) ≤ size(B), as needed to show that R is minimal.

14



• Suppose R is minimal. Assume that R is not reduced, then there exists a reduced BDD R⋆ with

D(R) = D(R⋆) and size(R⋆) < size(R). Contradiction to R being minimal.

Note that, strictly speaking, our definition of reduced BDDs differs from the standard definition(s)

in the BDD literature. In [Bry86], Bryant defined reduced BDDs using a different equivalence relation

than the similarity relation we employ in definition 24, namely an isomorphism relation. We paraphrase

the definition of this isomorphism relation in definition 32:

Definition 32 (BDD Isomorphism). BDDs B and B′ are isomorphic if there exists a one-to-one

function σ from the nodes of B onto the nodes of B′ such that for any node v if σ(v) = v′, then either

both v and v′ are terminal nodes with val(v) = val(v′), or both v and v′ are nonterminal nodes with

var(v) = var(v′), σ(low(v) = low(v′)) and σ(high(v) = high(v′)).

Note that BDD isomorphism is an equivalence relation, and moreover note that it is a subset of

our BDD similarity relation—if two BDDs are isomorphic then they are similar, but in general not all

similar BDDs are isomorphic.

In [Bry86], reduced BDDs are defined as we define them in definition 24, except with the similarity

relation replaced by the more fine-grained isomorphism relation. A priori it might seem like our

definition yields a different BDD property, but in fact the two definitions are equivalent: clearly the

isomorphism-based definition of being reduced implies our similarity-based definition, and in [Bry86]

Bryant shows that BDD minimality (definition 28) implies the isomorphism-based definition, so by

theorem 31 we get that our similarity-based definition 24 also implies the isomorphism-based definition.

Hence the two are equivalent. Therefore we are justified in using definition 24 in place of Bryant’s

isomorphism-based definition. We choose our similarity-based definition because we find it simpler

to formalize, and because the decision trees that this definition is based on are very convenient for

proving statements by induction, as we do in lemma 22, for example.

Furthermore, in later BDD literature (e.g. [Knu09] [And97; DS01; Knu09]), including Bryant’s own

more recent account in [Bry18], yet another equivalent definition is used for reduced BDDs, which does

not appeal to an equivalence relation between (sub-)BDDs. Instead, this definition requires there to

be at most one terminal node for each of the two Boolean values, and that there be no two distinct

nonterminals v, u with var(v) = var(u), low(v) = low(u) and high(v) = high(u). In addition, it requires

that no redundant nodes are reachable from root, like we do in definition 24.

This definition has the nice property that all of its conditions are “local” to individual nodes, rather

than whole sub-BDDs. However, we still need an equivalence relation on BDDs to state the canonicity

property of ROBDDs, which our similarity-based definition 24 already provides “for free”.

In chapter 2, we discuss the implementation of algorithms for constructing BDDs with a desired

denotation, and for reducing BDDs to their reduced, canonical form.

BDDs allows us to do more with Boolean functions than merely constructing them and comparing

them for equivalence—we also have efficient algorithms for finding inputs for which the function yields

a given output (true/false), counting how many such inputs exist, and checking whether the function

depends on a given input variable. The fact that BDDs admit efficient algorithms for these tasks

demonstrate how closely their concrete structure represents their semantics as Boolean functions.

Of course, BDDs also have their limitations—some Boolean functions can only be represented with

BDDs whose size is exponential in the number of variables. [Hun97] gives an interesting example of

such a function: the characteristic function for the set of permutations on the set [n] = {0, . . . , n− 1}

15



is a Boolean function of n · log2 n Boolean variables, and the size of a BDD denoting this function is

lower-bounded by 2n/2.

1.3 Calculus of Inductive Constructions

We implement our verified BDD library in Lean 4, a functional programming language and proof

assistant, which is based on the Calculus of Inductive Constructions [MU21].

The Calculus of Inductive Constructions is an extension of Dependent Type Theory, which is in

turn and expressive and versatile formalism able to represent both computation (executable programs)

and mathematical statements along with their proofs [Pau15].

In this section, we look at some Lean code, and describe some of the basic definitions and theorems

in Lean that we use in our BDD library.

In Lean, Booleans are defined as a simple inductive type:

inductive Bool : Type where

| false : Bool

| true : Bool

This code defines a type (a term of type Type) called Bool, with two constructors, which are ways

of creating terms of the defined type. Namely, there are just two ways: either using false or true,

with no additional information.

This definition is only trivially inductive, since none of the constructors actually require terms of

the inductively defined type. The type of natural numbers, Nat, does rely on induction, which does

more justice with the inductive keyword in the definition:

inductive Nat where

| zero : Nat

| succ : Nat → Nat

The next definition demonstrates the use of dependent pairs to define the type of natural numbers

below some number n, which corresponds to the set [n] in our notation from section 1.1:

def Fin (n : Nat) := { i // i < n }

Read: given a term n of type Nat, Fin n is the type of (dependent) pairs ⟨i, h⟩ where i is a Nat

and h is a term of type i < n, which we interpret as a proof of the proposition i < n.

Note how Lean allows us to specify just enough type annotations for it to infer the types of terms

in the definition, and leave the rest of the information implicit.

In general, for a pair p = ⟨l, r⟩, we use the notation p.1 to access the first constituent l, and p.2

to access the second constituent r.

Another type that we use throughout our BDD library in Vector, which is the type of arrays of

a given length. Lean provides a basic Array type that represents contiguous memory arrays that are

homogeneous in the sense that all elements of the array are of one given type. The type Vector α n

represents arrays of length n consisting of terms of type α.

In particular, we represent n-ary functions as functions that take a Vector of length n:

abbrev Func n α β := Vector α n → β

This defines Func n α β as an abbreviation for the type of functions from n input vectors of αs to

an output β.

16



In particular, we can define the type of n-ary Boolean functions as:

abbrev BoolFunc n := Func n Bool Bool

This is not the only possible way to represent Boolean function in Lean. First, Lean defines a

type BitVec of “bit vectors”, which is equivalent to Vector Bool. The BitVec type has a specialized

implementation using an underlying Nat, which makes it potentially more compact and efficient than

Vector Bool. While we can represent n-ary Boolean functions as BitVec n → Bool instead of our

definition, which amounts to Vector Bool n → Bool, we choose Vector Bool because it allows us to

define general notions about n-ary functions, such as restrictions (definition 3) and dependencies

(definition 4) at the right level of generality, whereas BitVec confines us to definitions about Boolean

functions in particular.

Also, the advantages of using BitVecs in terms of performance are only relevant for programs that

make heavy use of Boolean/bit vectors. While the proofs in our library include plenty of reasoning about

such vectors, for most BDD use cases these vector never occur at runtime, and so their representation

has no effect on performance whatsoever. For example, checking if two BDDs denote the same Boolean

function does not involve any actual input vectors. (See section 2.1.2 for more details.)

Another alternative representation for n-ary functions would be to use the Function.OfArity type

from Lean’s mathematics library, Mathlib. This type uses functions from Fin n to α to represent

the n inputs, each of type α, of an n-ary function. Such Fin n → α functions are also known as

tuples in Lean. For the purposes of our library, we found vectors to be more convenient than tuples

due to the vast number of operations and existing lemmas that Mathlib provides for working with vectors.

Next, we formalize the notion of dependency on an input variable from definition 4:

def IndependentOf (f : Func n α β) (i : Fin n) := ∀ a v, f v = f (Vector.set v i a)

def DependsOn (f : Func n α β) (i : Fin n) := ¬ IndependentOf f i

Thus a term of type IndependentOf f i is a proof that for all input vectors v and terms a of the

input type α, the function f returns the same output for v as it does for Vector.set v i a, which is v

with the ith index set to a. A term of type DependentOf f i says exactly the opposite—which is the

same as saying that there exists some input vector and two different values such that the output of the

function changes if one value appears instead of the other.

We define the set of input indices that a given n-ary function depends on, as a subtype of Fin n:

def Dependency (f : Func n α β) := { i // DependsOn f i }

We also formalize the notion of a restriction from definition 3:

def restrict (f : Func n α β) : α → Fin n → Func n α β := fun a i I 7→ f (I.set i a)

And we formally prove in Lean that the restriction of a function at a given index is independent of

that index:

lemma restrict_independentOf : IndependentOf (restrict f c i) i := by simp

Here, the proof term after the := is a tactic proof. We use the powerful simplification tactic, simp,

which is able to produce a concrete proof term all by itself in this case.

In contrast, the proof of the following lemma, which we use later in our proofs about BDDs is far

more involved:

17



lemma eq_of_forall_dependency_getElem_eq {f : Func n α β} {I J : Vector α n} :

(∀ (x : Dependency f), I[x] = J[x]) → f I = f J := by

induction n with

| zero =>

intro h

congr

ext i hi

contradiction

| succ n ih =>

intro h

let g : Vector α n → β := fun v 7→ f (Vector.push v I[n])

have h2 : ∀ V : Vector α (n + 1), I[n] = V[n] → f V = g V.pop := by

. . .

by_cases hf : DependsOn f n

. . .

The lemma states that f I = f J whenever I and J agree on all indices that f depends on. The

proof proceeds by induction on n. The base case of n = 0 is simple—we use the congr tactic to

reduce the goal from proving f I = f J to proving I = J, then we compare I and J index by index by

introducing an arbitrary index i, of which there are none since the vectors are both of length 0, and

we get a contradiction that proves the goal.

In the induction step, we get an inductive hypothesis ih that says that the lemma holds for n-ary

functions, and we use it to prove the lemma for n+ 1-ary functions. We define a specific n-ary helper

g—to which we apply the inductive hypothesis—in terms of our original n+ 1-ary f, and we proceed

by case distinction on whether or not f depends on its last input index by invoking the by_cases tactic.

Note that this tactic appeals to the classical principle of excluded middle, which is needed since we

are proving this lemma for arbitrary types α and β. However, for finite input types and for output

types with decidable equality, which we can readily express in Lean as well, we can decide whether

a function depends on a given input index without requiring the law of excluded middle, simply by

checking all possible inputs and comparing the corresponding outputs. But this naive procedure is not

very practical—already for Boolean functions, this means checking 2n inputs for an n-ary function.

Fortunately, as we show in section 2.1.4, using BDDs we obtain a much more efficient algorithm for

deciding function dependencies.

For expressing that a proposition is decidable, Lean provides the Decidable type class:

class inductive Decidable (p : Prop) where

| isFalse (h : ¬ p) : Decidable p

| isTrue (h : p) : Decidable p

This definition says that there are two ways to show that a proposition p is decidable: either by

claiming that it holds (applying the isTrue constructor) and providing a proof that it indeed holds, or

by claiming that it does not hold and showing that.

Hence if we have a type α and a predicate P of type α → Prop, we interpret a function f of

type (a : α) → Decidable (P a) as a decision procedure for the predicate P. Lean also provides

the abbreviation DecidablePred P which expands to (a : α) → Decidable (P a), saying that the

predicate P is decidable, and similarly DecidableRel R says that the relation R is decidable.

The fact that Decidable is type class just means that we can register Decidable-valued functions

(decision procedures) by defining them with the instance keyword, and then Lean tries to use these

18



“instances” to implicitly synthesize a Decidable term when it needs one. In particular, Lean’s decide

proof tactic attempts to prove a proposition p by synthesizing a Decidable p term and checking that it

is an isTrue.

In section 2.1, we show the Decidable instances that our library provides, which allow users to

prove certain statements about Boolean functions by simply invoking the decide tactic.

19



Chapter 2

Binary Decision Diagrams in Lean

This chapter describes our Lean 4 BDD library. We begin in section 2.1 with the library’s user-facing

interface and the facilities it provides for reasoning about Boolean functions. In section 2.2, we

investigate the underlying BDD formalization in Lean, as well as the implementation and verification

of key BDD algorithms. In section 2.3, we present a BDD-based SAT solver as an example application

of our library.

The source code for our library is available at https://github.com/eshelyaron/lean4-bdd. The

library is structured as follows:

• BDD.lean provides the main interface of the library, which we discuss in section 2.1.

• Nary.lean includes definitions and general results about n-ary functions, some of which we have

described in section 1.3.

• DecisionTree.lean includes definitions and results about decision trees (see definition 18).

• Basic.lean includes our basic BDD construction and various results about BDDs. We examine

key parts of this file in sections 2.2.1 and 2.2.2.

• Apply.lean implements a variant of the BDD Apply algorithm from [Bry86], which synthesizes a

composed BDD from two existing BDDs and a binary Boolean function. See section 2.2.5 for

more details.

• Choice.lean implements and proves the correctness of an algorithm for finding inputs for which

the denotation of a given BDD returns true. It is described in section 2.2.7.

• Collect.lean implements and proves the correctness of a DFS algorithm that collects all nonter-

minal nodes reachable from the root of a given OBDD.

• Lift.lean implements and proves the correctness of a simple BDD type-lifting operation, which

produces a BDD lift(B) ∈ BDDn′ from a BDD B ∈ BDDn under the assumption that n ≤ n′.

See section 2.2.3 for more details.

• Reduce.lean implements the BDD Reduce algorithm from [Bry86], which transforms an arbitrary

OBDD to an ROBDD with the same denotation.

20

https://github.com/eshelyaron/lean4-bdd


• Relabel.lean implements and proves the correctness of a BDD relabeling operation, which

changes the variable indices of a given OBDD according to a given relabeling function.

• Restrict.lean implements an algorithm for producing a BDD representing the restriction fi←b

of a Boolean function f given a BDD for f itself.

• Sim.lean implements a decision procedure for BDD similarity.

• Size.lean includes definitions and results about the size of OBDDs, per definition 10.

• Sat.lean is an example application of the library—it implements a SAT solver via translation of

propositional formulae in CNF to BDD, and proves the correctness of the translation to obtain

proofs of (un)satisfiability.

• Trim.lean implements and proves the correctness of a “garbage collection” operation, which

eliminates unreachable nodes from a given BDD.

With the exception of two lemmas in Reduce.lean, all of the Lean definitions and statements that

we present in this chapter are fully formalized and proved correct. We explicitly note the lemmas whose

formal proofs are not yet complete when we discuss the BDD reduction algorithm in section 2.2.5.

Figure 2.1 shows the dependencies between the different files in our library. The red circle around

Reduce expresses that, in contrast with all other files, not all formal proofs in Reduce.lean are complete.

Apply

BDD

Basic

Choice

Collect

Evaluate

Lift Relabel RestrictTrim

Sat

ReduceSize

DecisionTree

Sim

Nary

Figure 2.1: File-level dependencies in our BDD library

21



2.1 Interface

The interface of the library is a subset of the “Boolean Function API” described in [Bry18]. It is geared

towards facilitating operations on Boolean functions that are often used in model checking applications,

such as efficiently deciding semantic equivalence of logical formulae.

2.1.1 The Abstract BDD Type

Our library’s interface revolves around a type BDD, which represents a reduced and ordered BDD.

structure BDD where

nvars : Nat

. . .

Note that, unlike definition 8 wherein the set of BDDs BDDn is indexed by a natural number

n—the number of input variables in the denotation of elements of BDDn—the BDD type in Lean

represents (RO)BDDs of all variable numbers. Namely, we can think of BDD as corresponding to the

union
⋃

n∈NBDDn. Instead of indexing the type of BDDs by their input sizes, the BDD structure has a

public field nvars, which provides the input size of given BDD as a piece of data (available at runtime).

The use of a single type for BDDs of different input sizes contributes to the flexibility of the

interface, by allowing users to build up BDDs without committing to a number of input variables

ahead of time, while having the library keep track of this detail for them.

Besides the public field nvars, BDDs have additional private fields which are internal implementation

details, not exposed as part of the library’s API. (We describe these implementation details in

section 2.2.)

Given a BDD of n variables B ∈ BDDn and a natural number n′ such that n ≤ n′, we can lift B

to a BDD of n′-variables liftn′(B) ∈ BDDn′ , simply by considering each variable index i ∈ [n] that

occurs in B as an index in [n′] instead of [n]. The resulting liftn′(B) is “faithful” to B in the sense that

evaluating liftn′(B) with respect to inputs x0, . . . , xn, . . . , xn′ yields D(B)(x0, . . . , xn) where D is the

BDD denotation function from definition 11. Therefore, we can naturally evaluate B with respect to

n′ inputs by lifting B and then and evaluating. This observation allows us to formalize the notion of

semantic equivalence between BDDs of potentially different number input sizes, which is very useful in

practice since it allows users to compare any two BDDs that they construct, without worrying about

the finer details of whether or not the input sizes match. We define the denotation of BDDs accordingly:

Each BDD B denotes a Boolean function which maps (at least) B.vnars input Booleans to one output

Boolean. Formally, we define the denotation of B as a family of Boolean functions, one for each input

size greater or equal to B.nvars.

def denotation (B : BDD) (h : B.nvars ≤ n) : BoolFunc n := (B.lift h).evaluate

We also provide an abbreviated name for the common case of using denotation with n = B.nvars:1

abbrev denotation’ O := denotation O (le_refl _)

We discuss the implementations of the lift and evaluate functions later in section 2.2.3, but

we can already see how the definition of B.denotation h corresponds to D(liftn(B)) = x0, . . . , xn 7→
D(B)(x0, . . . , xB.nvars). If n = B.nvars, then liftn(B) is just B and so we get back to D(B). This is

expressed by the following lemma in Lean:

1All Lean definition in this section are in the BDD namespace, so denotation is accessed as BDD.denotation, etc.

22



lemma lift_refl {B : BDD} : (B.lift (le_refl _)) = B := by simp [lift]

For a BDD B ∈ BDDn, D(liftn′(B)) is independent of the last n′ − n inputs—it may only depend

on the first n variables. This is formalized in the following lemma:

lemma denotation_independentOf_of_geq_nvars {B : BDD} {i : Fin n} {h : B.nvars ≤ n} :

B.nvars ≤ i → IndependentOf (B.denotation h) i

We can read the lemma denotation_independentOf_of_geq_nvars as saying that for any BDD B, the

value of the denotation of B given some input vector I is the same regardless of the value of I at any

index i greater or equal to B.nvars. Hence B.nvars is an upper bound on the number of variables the

denotation of B depends on.

From the perspective of an external consumer of the library’s API, that is almost all there is to

know about terms of type BDD as such. Namely, a BDD B denotes a family of Boolean functions, which

may only depend on the first B.nvars input variables.

2.1.2 Semantic Equivalence

In section 2.1.3 we present the library’s facilities for constructing BDDs, but first we show how to

efficiently check two BDD that we already have at hand for semantic equivalence, which is one of the

main use cases for this library.

We formally define a semantic equivalence relation on BDDs, which holds for BDDs B and C iff they

denote the same function:

def SemanticEquiv : BDD → BDD → Prop := fun B C 7→
B.denotation (Nat.le_max_left ..) = C.denotation (Nat.le_max_right ..)

Note that, in this definition, we implicitly require the two BDDs to denote the same function for

inputs of size max {B.nvars,C.nvars}, which in turn implies that they denote the same function for

larger inputs as well. We formally prove a slightly stronger version of this implication in the following

lemma, which says that if we know that the denotations of two BDDs coincide for some input size,

then they coincide for any other input size as well:

lemma denotation_eq_of_denotation_eq {B C : BDD}

(hn : B.nvars ⊔ C.nvars ≤ n) (hm : B.nvars ⊔ C.nvars ≤ m) :

B.denotation (n := n) (by omega) = C.denotation (n := n) (by omega) →
B.denotation (n := m) (by omega) = C.denotation (n := m) (by omega)

We use denotation_eq_of_denotation_eq to show that SemanticEquiv is indeed an equivalence

relation, which requires amounts to proving reflexivity, symmetry and transitivity:

theorem SemanticEquiv.equivalence : Equivalence SemanticEquiv :=

{ refl := fun _ 7→ rfl,

symm := fun h 7→ Eq.symm (denotation_eq_of_denotation_eq (by omega) (by omega) h),

trans := by

intro B C D hBC hCD

simp_all only [SemanticEquiv]

let m := max (max B.nvars C.nvars) D.nvars

apply denotation_eq_of_denotation_eq (n := m) (by omega) (by omega)

trans C.denotation (by omega)

· exact denotation_eq_of_denotation_eq .refl (by omega) hBC

· exact denotation_eq_of_denotation_eq .refl (by omega) hCD

23



}

Thanks to the underlying implementation of the BDD type as actual BDDs, we can efficiently decide

the SemanticEquiv relation by exploiting the canonicity of reduced ordered BDDs. From the library’s

API perspective, this is manifested as a DecidableRel instance:

instance instDecidableSemanticEquiv : DecidableRel SemanticEquiv

. . .

We thus obtain the following general “recipe” for deciding semantic equivalence of propositional

formulae (or other structures that denotes Boolean functions) in Lean, using the provided BDD interface:

1. Define your type of formulae Φ,

2. define a semantic equivalence relation · ≡ · on Φ,

3. define a translation function f from Φ to BDD using the BDD construction API described in

section 2.1.3,

4. prove a correctness lemma C saying that your translation function f respects semantic equivalence,

in the sense that p ≡ q if and only if f(p) and f(q) are semantically equivalent BDDs

5. now, given two formulae p, q, we can obtain a proof of their (in)equivalence by applying

instDecidableSemanticEquiv (f p) (f q), and transporting the result back via C to obtain

a proof of p ≡ q (or the negation thereof).

We return to instDecidableSemanticEquiv and discuss its implementation in section 2.2.4.

2.1.3 Constructing BDDs

We construct and reason about BDDs via interface functions with a clear characterization in terms of

the denotation of the constructed BDD.

The basic building blocks are two kinds of BDDs with simple denotations:

1. BDDs that denote the constant Boolean functions 0 and 1, and

2. BDDs that denote the projection functions x1 for of a single decision variable i.

We provide the interface functions const and var which implement these basic building blocks:

def const : Bool → BDD

def var : Nat → BDD

The following lemma characterizes const in terms of the denotation of the BDD it produces:

lemma const_denotation : (const b).denotation h = Function.const _ b

This lemma, which is part of the library’s API, establishes the use of const to obtain BDDs that

denote a constant Boolean function.

Similarly, we provide the expected specification lemma for the denotation of BDDs produced via var:

lemma var_denotation : (var i).denotation h I = I[i]

24



In addition to the basic building blocks, const and var, we provide composition functions for

combining BDDs to construct BDDs that denote more complex Boolean functions. The composition

functions correspond to the logical connectives ∧,∨,⊗,→ and ¬:

def and : BDD → BDD → BDD

def or : BDD → BDD → BDD

def xor : BDD → BDD → BDD

def imp : BDD → BDD → BDD

def not : BDD → BDD

The simplicity of the types of these functions is where our decision to have a single BDD type for

BDDs of all input sizes really pays off, since users can freely compose BDDs of different input sizes.

For example, the following shows the construction of a BDD denoting the ternary majority function

(whose input size is 3, see section 1.1), by composing BDDs of smaller input size:

def majority3 :=

(or (or (and (var 0) (var 1)) (and (var 0) (var 2))) (and (var 1) (var 2)))

example : majority3.nvars = 3 := rfl

example : (and (var 0) (var 1)).nvars = 2 := rfl

example : (var 0).nvars = 1 := rfl

Furthermore, we can decide whether the BDDs that we construct are semantically equivalent, without

ever mentioning their input sizes. In the following examples, we pass the +native argument to the

decide tactic, which instructs Lean to use its native code complier to run the decision procedure

instDecidableSemanticEquiv. This is required because Lean’s elaborator, which is the default mech-

anism that the decide uses for evaluation, is currently unable to execute some the functions in our

implementation of instDecidableSemanticEquiv (which we describe in section 2.1.2).

-- The majority function is not constantly true.

example : ¬ majority3.SemanticEquiv (const true) := by decide +native

-- It is not constantly false, either.

example : ¬ majority3.SemanticEquiv (const false) := by decide +native

-- Another BDD, with a suggestive name.

def majority3’ :=

(and (imp (var 0) (or (var 1) (var 2))) (imp (var 0).not (and (var 1) (var 2))))

-- The two ways of writing the majority function are equivalent.

example : majority3.SemanticEquiv majority3’ := by decide +native

Of course, some use cases do require reasoning about the input size of BDDs. For example, in

order to evaluate a BDD with respect to a given input vector, we must be able to show that the size of

the vector is greater or equal to the input size of the BDD, since otherwise the BDD evaluation may

depend on indices that are out of the bounds of the input vector.

We therefore provide, as part of the library’s API, lemmas that characterize the input sizes of the

BDDs that the interface functions produce, starting with the building blocks const and var:

lemma const_nvars : (const b).nvars = 0

25



lemma var_nvars : (var i).nvars = i + 1

Each composition function is provided along with a lemma that expresses the nvars of the output

BDD as a function of the vnars of the input BDD(s). Namely, for the binary functions, the output nvars

is naturally the maximum of the nvars of the inputs, while the unary function not preserves nvars:

lemma and_nvars {B C : BDD} : (B.and C).nvars = B.nvars ⊔ C.nvars

lemma or_nvars {B C : BDD} : (B.or C).nvars = B.nvars ⊔ C.nvars

. . .

lemma not_nvars {B : BDD} : B.not.nvars = B.nvars

In addition, the composition functions come with associated specification lemmas, which characterize

the denotation of the output BDD in terms of the denotations of the inputs:

lemma and_denotation {B C : BDD} {I : Vector Bool n} {h} :

(B.and C).denotation h I =

((B.denotation (by simp_all) I) && (C.denotation (by simp_all) I))

lemma or_denotation {B C : BDD} {I : Vector Bool n} {h} :

(B.or C).denotation h I =

((B.denotation (by simp_all) I) || (C.denotation (by simp_all) I))

. . .

lemma not_denotation {B : BDD} {I : Vector Bool n} {h} :

B.not.denotation h I = ! B.denotation (by simp_all) I

These lemmas are to be used by consumers of the API to prove that a mapping from some

type of interest Φ to BDDs respects semantic equivalence, which in turns facilitates the use of

instDecidableSemanticEquiv to efficiently decide semantic equivalence in Φ.

All of these Boolean operators are implemented as specializations of a single general function called

apply, which takes a binary Boolean function op and two BDDs B and C, and returns a BDD whose

denotation returns op applied to the output of B and C:

def apply : (Bool → Bool → Bool) → BDD → BDD → BDD

lemma apply_nvars {B C : BDD} {op} : (apply op B C).nvars = B.nvars ⊔ C.nvars

lemma apply_denotation {B C : BDD} {op} {I : Vector Bool n} {h} :

(apply op B C).denotation h I =

(op (B.denotation (by simp_all) I) (C.denotation (by simp_all) I))

In addition to apply and the functions derived from it, we also provide a function that computes

the restriction fi←b of a Boolean function f at a given index i to a given Boolean value b:

def restrict (b : Bool) (i : Nat) (B : BDD) : BDD

The arguments that restrict takes are a Boolean b, a BDD B and an index i. According to our

definition 3, the index i should be i ∈ [n] where n is the arity of the restricted function. This suggests

defining i as a Fin B.nvars, while in the definition above we see i defined as a plain Nat. We do so

for flexibility—by keeping the type of the index independent of the BDD we are restricting, it becomes

easier to, for example, restrict a BDD repeatedly with a list of indices of type List Nat. If we were

26



to define i as a Fin B.nvars, then to restrict again with another index i’ we would need i’ to be

in Fin (B.restrict b i).nvars, which is equivalent to the Fin B.nvars we started with (by lemma

restrict_nvars below), but still not the same type.

For indices i < B.nvars, the restrict function exactly corresponds to definition 3. We generalize to

larger indices, on which the restricted function cannot actually depend, by simply defining B.restrict

b i = B when i ≥ B.nvars:

lemma restrict_geq_eq_self {B : BDD} : i ≥ B.nvars → B.restrict b i = B

We also provide interface lemmas that specify the behavior of restrict in terms of its affect on the

input size and the denotation of the restricted BDD:

lemma restrict_nvars {B : BDD} {i} : (B.restrict b i).nvars = B.nvars

lemma restrict_denotation {B : BDD} {I : Vector Bool n} {i} {hi : i < n} {h} :

(B.restrict b i).denotation h I =

(Nary.restrict (B.denotation (restrict_nvars ▶ h)) b ⟨i, hi⟩) I

We further use restrict along with binary operators to facilitate quantification over Boolean

variables:

def bforall (B : BDD) (i : Nat) : BDD :=

(and (B.restrict false i) (B.restrict true i))

def bexists (B : BDD) (i : Nat) : BDD :=

(or (B.restrict false i) (B.restrict true i))

These functions are also accompanied by corresponding interface lemmas:

lemma bforall_nvars {B : BDD} {i} : (B.bforall i).nvars = B.nvars

lemma bforall_denotation {B : BDD} {i} {hi : i < n} {I : Vector Bool n} {h} :

(B.bforall i).denotation h I =

(∀ b, B.denotation (by simp_all) (I.set i b) : Bool) := by simp_all [bforall]

In bforall_denotation we leverage Lean’s conversion between Prop and Bool: Lean knows that for

Bools, the Prop ∀ b, P b is the same as P true ∧ P false, which in our case is a conjunction between

two Bools, which is again just a Bool, so we can readily compare the two sides of the equation for

equality as Bools.

In model checking applications, we often want to quantify over multiple input variables at once

[CG18]. To facilitate that use case, we provide the following generalized functions:

def bforalls (B : BDD) (l : List Nat) := List.foldl bforall B l

def bexistss (B : BDD) (l : List Nat) := List.foldl bexists B l

Our implementation of bforall, bexists and the above generalized variants in terms of and, or

and restrict is clear and concise, but it is not the most efficient. More efficient algorithms exist for

quantifying over one or more Boolean variables with BDDs, without constructing BDDs and combining

BDDs for restrictions first [Bry18]. Since such quantification is essential in many model checking

applications (see [Bur+94; Yan+98; Gat18], for example), we hope to improve our implementation in

these directions in the future (see also section 3.1).

27



Another crucial ingredient for BDD-based model checking is the ability to relabel variables, which

is a necessary step in BDD-based computation of the image (and as well as preimage) of a relation

[CG18].

Relabeling means changing the input indices that a function depends on in a consistent manner.

We can imagine that each input has its index attached to it as a label, and our function uses those

labels to determine which input is which. When we relabel, we give some inputs new labels, keeping

track of the correspondence between new labels and old ones. It does not make sense to give two

inputs the same label, but we can detach an old label from one input and attach it to another as its

new label. We then equip our function with a dictionary that tells it the new label where it can find

the input corresponding to each old label it depends on.

def relabel (B : BDD)

(f : Fin B.nvars → Fin n)

(h : ∀ i i’ : (Dependency B.denotation’), i.1 < i’.1 → f i.1 < f i’.1) :

BDD

The relabel function takes a BDD and a relabeling function f, as well as a precondition h, and it

produces a relabeled BDD, in which the ith input is receives the new label f i.

The precondition h asserts that f is strictly increasing for input indices that the denotation of B

depend on. Obviously, f must be injective for such indices, since otherwise we would have two relevant

inputs with the same new label (index). Injectivity is implied by the requirement that f is strictly

increasing. We need f to be strictly increasing rather than merely injective, to ensure that the resulting

BDD remains ordered.

As with other BDD-valued functions, we provide lemmas that characterize the input size and

denotation of relabel B f h in terms of those of B:

lemma relabel_nvars {B : BDD} {f : _ → Fin n} {h} : (relabel B f h).nvars = n

lemma relabel_denotation {B : BDD} {f} {hf} {I : Vector Bool n} {h} :

(relabel B f hf).denotation h I = B.denotation’ (Vector.ofFn (fun i 7→ I[f i]))

The lemma relabel_denotation can be read as saying that evaluating the relabeled BDD with

respect to an input vector I is the same as evaluating the original BDD with respect to the vector in

which the value under label (in index) i is the value under the corresponding new label f i in I.

As an example for the use of relabel, we can define the functions mv and cp from [Gat18], which

take a BDD of some variables V to a “double domain” V ∪ V ′ with two copies v, v′ for each v ∈ V , as

follows:

def mv (B : BDD) :=

relabel B (n := 2 * B.nvars + 1) (fun i 7→ ⟨2 * i.1, by omega⟩) (by simp)

def cp (B : BDD) :=

relabel B (n := 2 * B.nvars + 1) (fun i 7→ ⟨2 * i.1 + 1, by omega⟩) (by simp)

We can also define the inverse functions unmv and uncp, which send a BDD B over V ∪ V ′ to a

BDD over V . unmv assumes that B only depends on variables in V (even indices), while uncp assumes

that B only depends on variables in V ′ (odd indices):

def unmv (B : BDD) : (∀ i : Dependency B.denotation’, Even i.1.1) → BDD := fun h 7→

28



relabel B (n := (B.nvars + 1) / 2) (fun i 7→ ⟨i / 2, by omega⟩) (by . . .)

def uncp (B : BDD) : (∀ i : Dependency B.denotation’, Odd i.1.1) → BDD := fun h 7→
relabel B (n := (B.nvars + 1) / 2) (fun i 7→ ⟨(i - 1) / 2, by omega⟩) (by . . .)

2.1.4 Variable Dependencies

As mentioned in section 1.3, we can decide whether an arbitrary n-ary Boolean function f depends

on a given input index i by going over all 2n possible inputs x and checking if changing the value of

xi changes the value of f(x). In contrast, if f is represented by a ROBDD B with D(B) = f , then

can check whether f depends on i more efficiently, by scanning the size(B) nodes in B for a node v

with var(v) = i. We implement this operation and prove its correctness as part of our library, and we

encapsulate it in the following DecidablePred instance:

instance instDecidableDependsOn (B : BDD) : DecidablePred (DependsOn B.denotation’)

For example, we can use instDecidableDependsOn to show that the ternary majority function

depends on its first input (at index 0), while its restriction at index 0 to any Boolean b does not:

example : DependsOn (majority3.denotation’) ⟨0, by simp⟩ := by

decide +native

example : ∀ b, ¬ DependsOn ((majority3.restrict b 0).denotation’) ⟨1, by simp⟩ := by

decide +native

2.1.5 Finding Solutions

In section 2.1.3, we saw an example of how instDecidableSemanticEquiv lets us decide whether the

denotation of a BDD has any satisfying inputs, by checking whether it is semantically equivalent to

const false. Given a BDD B ∈ BDDn, we can also efficiently obtain a concrete input vector x ∈ Bn

such that D(B)(x) = true, if such an x exists.

For an arbitrary n-ary Boolean function f , even if we are guaranteed that f is satisfiable, to find a

satisfying input we basically have no choice but to check all 2n possible inputs until we find one. In

contrast, with a BDD representation of f we can find such an input in at most n steps [Knu09], which

amounts to an exponential speed up.

We provide two interface functions for obtaining inputs that satisfy the denotation of a given BDD.

The first is a choice function, which is applicable when we know that the denotation of a given BDD

is satisfiable:

def choice {B : BDD} (s : ∃ I, B.denotation’ I) : Vector Bool B.nvars

The following lemma provides the correctness guarantee that the output of choice satisfies the

denotation of B:

lemma choice_denotation {B : BDD} {s : ∃ I, B.denotation’ I} :

B.denotation’ (B.choice s) = true

In addition to choice, we provide an Option-valued function called find, which returns an input

that satisfies the denotation of a given BDD if such an input exists, otherwise it returns none to signal

that there is no such input:

29



def find {B : BDD} : Option (Vector Bool B.nvars)

lemma find_none {B : BDD} : B.find.isNone → B.denotation’ = Function.const _ false

lemma find_some {B : BDD} {I} : B.find = some I → B.denotation’ I = true

For example, we can use find to find inputs that satisfy the ternary majority function:

#eval! majority3.find.bind (fun I 7→ some I.toList) -- some [false, true, true]

This concludes our discussion of the library’s interface. The most important principle in our design

of the described interface is that it must allow users to construct BDDs and reason (prove theorems)

about their denotations, while knowing nothing about the implementation details of BDDs beyond

the fact that they denote Boolean functions. The various lemmas that we provide facilitate reasoning

purely in terms of Boolean functions, while benefiting from the efficient implementation that the

underlying BDDs admit.

2.2 Implementation and Verification

In this section, we look under the hood of the abstract BDD type that we presented in section 2.1,

and discuss its implementation in Lean and the formal verification of the BDD operations the library

provides.

2.2.1 Structures

In addition to the nvars public field that we have introduced above, the BDD type has three more private

fields called nheap, obdd and hred:

structure BDD where

nvars : Nat

private nheap : Nat

private obdd : OBdd nvars nheap

private hred : obdd.Reduced

The obdd field holds the underlying Ordered BDD structure. Our concrete representation for

OBDDs is a family of types OBdd n m, indexed by two natural numbers: n is the input size of the BDD

and m is the size of the memory array allocated for the BDD, which we call the “heap” of the BDD—so

m is the maximum number of nonterminal nodes the BDD may contain. The abstract BDD type conceals

these type indices behind the nvars and nheap fields to provide a single uniform type for BDDs of all

sizes, but for implementation and formalization purposes it is convenient to have more specific types

for BDDs with given input and heap sizes.

The hred field of a BDD holds a proof that the underlying OBDD is also reduced as per definition 24.

We come back to our definition of Reduced after explaining the OBdd construction in more detail.

The OBdd type is naturally defined as a subtype of a more general type of possibly non-ordered

BDDs, which we call Bdd:

def OBdd n m := { B : Bdd n m // B.Ordered }

Note the difference in capitalization between BDD and Bdd—the former is our abstract type repre-

senting ROBDDs, while the latter is the underlying “raw” BDD type, whose inhabitants need not be

ordered nor reduced.

30



Our Bdd type is a concrete representation of the BDDs we defined in definition 8 in terms of abstract

graphs and functions. We first examine the definition of Bdd and then show how it induces the graph

structure from definition 8. Similarly to OBdd, Bdd is actually defined as a family of types, indexed by

two natural numbers which we think of as the BDD input size (n) and the number of nonterminal

nodes in the BDD graph (m). So a Bdd n m represents a BDD B ∈ BDDn with m nonterminal nodes.

(This implies size(B) ≤ m, but not necessarily size(B) = m, since some of the m nonterminal nodes

may not be reachable from root(B).)

inductive Pointer m where

| terminal : Bool → Pointer _

| node : Fin m → Pointer m

structure Node (n) (m) where

var : Fin n

low : Pointer m

high : Pointer m

structure Bdd (n) (m) where

heap : Vector (Node n m) m

root : Pointer m

We build up our BDD representation using two lower-level notions: pointers and nodes. Given a

natural number m, terms of type Pointer m represents pointers which are either one of two distinguished

terminal pointers, labeled by the two Booleans true and false, or they are indices in an array of size m.

Pointers that point to an array index are terms node i where i : Fin m. The use of Fin m instead

of, say, Nat means that our pointers are safe by construction: they can only represent valid (in-

bounds) pointers for arrays of size m. The two terminal pointers are akin to the NULL pointer in the C

programming language (and others) in that they point nowhere and cannot be dereferenced, but unlike

NULL, our terminals carry data—a single Boolean stored in the pointer itself, that says which terminal

it is.

A term N of type Node n m represents one nonterminal node in a BDD with input size n and m

nonterminals in total. The field N.var is the variable index of the node, corresponding to the var

function from definition 8. The N.low and N.high fields represent the low and high edges of node.

Note the odd detail that Nodes are indexed by m, the number of nodes in an array. This is required

because the low and high fields of a node are (valid) pointers, which are indexed by the maximum

node index.

Lastly, a term B of type Bdd n m consists of two fields: B.heap and B.root. The former is an array

of m nodes (which is represented by the type Vector (Node n m) m), and the latter is a pointer, either

a terminal or a pointer to one of the nodes in B.heap.

Any vector M : Vector (Node n m) m of m nodes of type Node n m induces a directed graph ⟨V,E⟩,
wherein the edge relation E is given by the following Edge M relation over Pointer m:

inductive Edge (M : Vector (Node n m) m) : Pointer m → Pointer m → Prop where

| low : M[j].low = p → Edge M (node j) p

| high : M[j].high = p → Edge M (node j) p

In words,

31



• The vertices of the graph are pointers, namely they are the set of all terms of type Pointer m.

Put differently, V = B⊕ [m].

• There is an edge in the graph from pointer p to pointer q if and only if p is a nonterminal pointer

node j pointing to the node M[j] for some index j : Fin m, and q is either the low pointer or

the high pointer of M[j].

So we read a term Edge M p q as a proof of the statement: “there is an edge from p to q in the

graph induced by M”.

We recover something that resembles our graph-based definition of BDDs in definition 8 from our

concrete representation in Lean by thinking of a term B : Bdd n m as the graph over the Pointer m

type induced by the vector B.heap, along with a distinguished pointer B.root.

For example, we can represent the BDD denoting the ternary majority function (as seen in fig. 1.1)

as the following Bdd term:

example : Bdd 3 4 :=

{ heap := ⟨#[{var := 0, low := node 1, high := node 2},

{var := 1, low := terminal false, high := node 3},

{var := 1, low := node 3, high := terminal true},

{var := 2, low := terminal false, high := terminal true}], rfl⟩
root := node 0 }

There are, however, two differences with respect to definition 8:

• The graphs induced by Bdd n m terms are not guaranteed to be acyclic. Recall that we relied on

the acyclicity assumption, for one, to justify the that our BDD denotation function is well-defined

(see definition 11), but our concrete representation may even yield graphs with self loops! For

example, the following Bdd term induces a graph with one node, such that both the low and high

edges of that node point back to itself:

example : Bdd 1 1 := ⟨Vector.singleton ⟨0, .node 0, .node 0⟩, .node 0⟩

We could leverage Lean’s rich type system to encode the acyclicity requirement in the raw Bdd n m

type, but it would make the definition more cumbersome, and provide little benefit in return:

recall that we are building up towards ordered BDDs, which are already guaranteed to be acyclic

by virtue of being ordered.

• The graphs induced by Bdd n m terms always have exactly two terminal nodes, one for each

Boolean, whereas in definition 8, to keep the definition as general as possible, we allowed any

number of terminal nodes for either Boolean. This does not hinder the expressivity of our

implementation in practice, because additional terminal nodes never arise in Reduced BDDs

anyway. On the other hand it allows us to slightly reduce the memory footprint of a BDD by

representing terminal node implicitly, without allocating room for them in the BDD heap. In

particular, we can represent BDDs whose root is a terminal with a mere terminal pointer and a

completely empty heap.

example : Bdd n 0 := ⟨Vector.emptyWithCapacity 0, .terminal true⟩

By taking the reflexive transitive closure of the Edge relation, we obtain a reachability relation,

which will come in handy in many of the following constructions:

32



def Reachable (M : Vector (Node n m) m) := Relation.ReflTransGen (Edge M)

Note that the Reachable relation is indexed by a given vector of nodes, which induces the underlying

Edge relation.

Also note that the heap of a Bdd may contain nodes that are not Reachable from the root pointer.

Intuitively, only nodes that are reachable from the root of a BDD are relevant for its denotation. The

possibility of having irrelevant nodes in our heap is a feature, not a bug, as it allows us to consider

and type proper sub-Bdds of a given Bdd, wherein the root of the original Bdd is not reachable from the

roots of its sub-Bdds, for example. The fact that we can give sub-Bdds the same type as the whole Bdd

allows us to define functions and prove statements about Bdds using recursion.

We formalize the notion of a relevant pointer with respect to a given BDD with the following

definition:

Definition 33 (B-Relevant Pointer). We say that a pointer p is relevant with respect to a BDD B

(or B-relevant in short) if p is reachable from the root of B in the graph induced by the heap of B.

def RelevantPointer (B : Bdd n m) := { q // Reachable B.heap B.root q }

Here again we use Lean’s subtype notation, namely we define RelevantPointer B as a subtype of

Pointer m, where Pointer m is implied and automatically inferred by Lean.

Additionally, we define relevant edges for a given BDD as edges between relevant pointers, by lifting

the Edge relation to RelevantPointers:

def RelevantEdge (B : Bdd n m) (p q : B.RelevantPointer) := Edge B.heap p.1 q.1

Given an Edge whose starting point is reachable, we can easily obtain a RelevantEdge with the same

endpoints:

lemma relevantEdge_of_edge_of_reachable {B : Bdd n m}

(e : Edge B.heap p q) (hp : Reachable B.heap B.root p) :

RelevantEdge B ⟨p, hp⟩ ⟨q, .tail hp e⟩ := e

2.2.2 Properties

Ordered BDDs

We proceed with formalizing the notion of an ordered BDD. Intuitively, a BDD is ordered if all edges

in the graph respect the variable ordering in the sense that edges go from a lower variable index to

a higher variable index. Of course, edges as we defined them in the previous section are a relation

between pointers, not between nodes, and pointers include terminals, which do not have a pertinent

variable index.

To paper over this distinction, we define the function toVar, which maps pointers to an extended

domain of variable indices, in which terminals get a special value distinct of all the “usual” variable

indices associated with BDD nodes:

def toVar (M : Vec (Node n m) m) : Pointer m → Fin n.succ

| terminal _ => n

| node j => M[j].var

33



The function toVar naturally requires a heap in which node pointers are resolved. Since all nodes

have variable indices up to but not including n, we can safely assign n itself as the pseudo variable

index of terminals.

Using toVar, we can define a relation on pointers p, q that is a precondition for the existence of an

edge from p to q in an ordered BDD. We call this relation MayPrecede:

def MayPrecede (M : Vec (Node n m) m) (p q : Pointer m) := toVar M p < toVar M q

Similarly to toVar, the MayPrecede relation is also indexed by a heap M, in which node pointers are

resolved.

As a sanity check, we prove a little lemma which says that terminal pointers never precede any

pointer:

lemma not_terminal_MayPrecede : ¬ MayPrecede M (terminal b) p := by

cases p with

| terminal _ => simp [MayPrecede]

| node j => exact not_lt.mpr (Fin.le_last _)

In our Lean definition of ordered BDDs, we want to require all edges in the BDD’s induced graph

to respect the MayPrecede relation. Of course, only relevant edges matters. For convenience, we lift

MayPrecede from a relation on m-pointers to a relation on B-relevant pointers similarly to how we

defined the RelevantEdge relation:

def RelevantMayPrecede (B : Bdd n m) (p q : B.RelevantPointer) :=

MayPrecede B.heap p.1 q.1

We can now readily define the orderedness predicate Ordered, which holds for BDDs in which the

existence of a relevant edge from pointer p to q implies that p may precede q:

def Ordered (B : Bdd n m) := Subrelation (RelevantEdge B) (RelevantMayPrecede B)

We define Ordered as a constraint on all relevant edges. This makes it quite trivial to formalize the

proof of lemma 17:

lemma Bdd.ordered_of_reachable {O : OBdd n m} :

Reachable O.1.heap O.1.root p → Ordered ⟨O.1.heap, p⟩ := fun hp ⟨_, hx⟩ _ _ 7→
O.2 (relevantEdge_of_edge_of_reachable (by simp_all) (.trans hp hx))

The Ordered property is of utmost importance, since it is needed to establish BDDs as a canonical

representation of Boolean functions. In addition, OBdds are much more well behaved than generic Bdds,

since the graph of a OBdd is always well-founded, while the graphs of arbitrary Bdds may in principle

contain loops. This well-foundedness allows us to perform well-founded recursion on OBdds in Lean,

which is an essential tool for defining functions and proving theorems.

To formally prove well-foundedness, we first lift the Edge relation to a corresponding relation

between OBdds:

Definition 34 (OBDD Edge). Given OBDDs O and U , we say that there’s an edge from O to U if O

and U share the same heap M and there’s an edge from the root of O to the root of U in the graph

induced by M .

def OEdge (O U : OBdd n m) := O.1.heap = U.1.heap ∧ Edge O.1.heap O.1.root U.1.root

34



In our proof of the following well-foundedness lemma 38, we rely on the following three facts, which

correspond to lemmas Subrelation.wf, InvImage.wf and Nat.lt_wfRel in Lean, respectively:

Fact 35. A subrelation of a well-founded relation is well-founded.

Fact 36. The inverse image of a well-founded relation by any function is well-founded.

Fact 37. The < relation on the natural numbers is well-founded.

Lemma 38. The OBDD edge relation is well-founded.

Proof. We define the function f from OBDDs to the natural numbers as the function that maps an

OBDD O to toVar of O’s root with respect to O’s heap. For all OBDDs O and U , if there is an edge

from O to U then by orderedness we have f(O) < f(U). Thus the edge relation is a subrelation of the

inverse image of < by f , and from facts 35, 36 and 37 we get that the edge relation is well-founded.

The OBDD edge relation is also converse well-founded, which turns out to be the more useful

direction for recursion purposes, where we usually want to prove a statement about the root of an

OBDD while assuming the statement holds for its sub-OBDDs.

Lemma 39. The OBDD edge relation is converse well-founded.

Proof. Similar to the last proof, except with f replaced with the function g(O) = n− f(O), where n is

the input size of O.

This well-foundedness of OBdd edges allows us to formalize the translation of OBDDs to decision

trees (definition 18) via well-founded recursion. We define decision trees in Lean as follows:

inductive DecisionTree n where

| leaf : Bool → DecisionTree _

| branch : Fin n → DecisionTree n → DecisionTree n → DecisionTree n

The DecisionTree is indexed by a natural number n, which upper-bounds the indices that may

appear on the “branches” of the tree, analogously to the input size n of an OBdd n m term.

We can evaluate a given decision tree, with respect to some input input vector of n Booleans to

obtain an output Boolean, by following the branches of the tree according to the values of the input

Booleans. Formally:

def DecisionTree.evaluate : DecisionTree n → Vec Bool n → Bool

| leaf b , _ => b

| branch j l h, v => if v[j] then h.evaluate v else l.evaluate v

Next, we would like to formalize the translation from OBDDs to decision trees that we defined in

definition 19. Naturally, we shall define this translation recursively. To facilitate recursion on OBDDs,

we introduce a couple of helper definitions first:

def Bdd.low (B : Bdd n m) : B.root = node j → Bdd n m

| _ => {heap := B.heap, root := B.heap[j].low}

def Bdd.high (B : Bdd n m) : B.root = node j → Bdd n m

| _ => {heap := B.heap, root := B.heap[j].high}

We also prove a pair lemmas that allows us to conclude that low(B) and high(B) are ordered given

that B is ordered.

35



Lemma 40. If B is ordered, then also low(B) and high(B) are ordered.

Proof. Immediate from lemma 17 and the fact that the roots of low(B) and high(B) are reachable

from the root of B.

lemma Bdd.high_ordered {B : Bdd n m} (h : B.root = node j) : B.Ordered → (B.high h).Ordered

lemma Bdd.low_ordered {B : Bdd n m} (h : B.root = node j) : B.Ordered → (B.low h).Ordered

Using these lemmas, we lift the definition of the BDDs low(B) and high(B) for BDD B to OBDDs

low(O) and high(O) for OBDD O:

def OBdd.high (O : OBdd n m) : O.1.root = node j → OBdd n m

| h => ⟨O.1.high h, Bdd.high_ordered h O.2⟩

def OBdd.low (O : OBdd n m) : O.1.root = node j → OBdd n m

| h => ⟨O.1.low h, Bdd.low_ordered h O.2⟩

The following lemmas are also trivial, they assert that O and low(O) stand in the well-founded

OBDD edge relation (and likewise for high(O)):

lemma oedge_of_low {h : O.1.root = node j} : OEdge O (O.low h)

lemma oedge_of_high {h : O.1.root = node j} : OEdge O (O.high h)

To instruct Lean to try and use the above lemmas to convince itself that recursive definitions are

correct if they go from O to low(O) and/or high(O), we extend the built-in tactic decreasing_trivial,

which Lean employs to automatically establish that a given recursive call follows a well-founded order:

macro_rules | ‘(tactic| decreasing_trivial) => ‘(tactic| exact oedge_of_low)

macro_rules | ‘(tactic| decreasing_trivial) => ‘(tactic| exact oedge_of_high)

With that, we are fully equipped to provide our first simple recursive function on OBDDs:

def OBdd.toTree (O : OBdd n m) : DecisionTree n :=

match h : O.1.root with

| terminal b => .leaf b

| node j => .branch O.1.heap[j].var (toTree (O.low h)) (toTree (O.high h))

termination_by O

We can compose the evaluation function defined above for decision trees with the toTree mapping

of OBDDs to decision trees, to obtain an evaluation function for OBDDs:

def OBdd.evaluate : OBdd n m → BoolFun n := DecisionTree.evaluate ◦ OBdd.toTree

The OBdd.evaluate function yields a Boolean function which corresponds to the denotation of a

BDD (definition 11). Note that constructing the decision tree corresponding to a BDD is a form of

decompression, which can potentially be quite costly. In section 2.2.3 we show a simple and efficient

BDD evaluation algorithm, which walks the BDD graph directly instead of constructing an intermediary

decision tree.

BDD Size

We also leverage well-founded recursion on OBDDs to implement a decision procedure for reachability

from the root of an OBDD, which simply walks down the BDD graph from its root and sees if it

encounters the pointer in question.

36



instance instDecidableReachable (O : OBdd n m) :

DecidablePred (Reachable O.1.heap O.1.root)

With the above instance in place, Lean can infer that the type of pointers reachable from the root

of an OBDD is a Fintype, which means that it is a finite type equipped with a procedure for producing

its finitely many inhabitants. Lean is able to establish that since the type of all pointers Pointer m is a

Fintype, and the pointers reachable from an OBDD’s root make up a subset of that Fintype, which

is defined by a decidable property. (In Lean, there is also a notion of Finite types, which similarly

express finiteness, but do not provide a way to compute the terms of the finite type.)

This allows us to formalize our notion of the size of a BDD from definition 10 for OBDDs, as the

cardinality (number of elements) in the finite type of nonterminal pointers reachable from the root of

an OBDD:

def OBdd.size {n m} (O : OBdd n m) :=

Fintype.card { j // Reachable O.1.heap O.1.root (.node j) }

Note that this definition is fully computable—we can use it to calculate the size of a given OBDD.

The computational content of this definition comes from our instDecidableReachable instance: to

compute OBdd.size of a given OBDD, Lean goes over all indices j, checks if node j is reachable from

the OBDD root using instDecidableReachable, and counts how may such pointers it found. This

definition is convenient for formalized reasoning, but since it decides for each index whether it is

reachable or not by traversing the entire BDD graph, it is clearly not computationally efficient. To

efficiently obtain the size of large OBDDs, we provide an alternative implementation that traverses the

BDD graph only once in file Size.lean:

def Size.size : OBdd n m → Nat := List.length ◦ Collect.collect

The Collect.collect function, which we describe in more detail in section 2.2.5, performs a DFS

traversal to produce a list of all reachable nodes. All that remain for our Size.size to do is to measure

the length of the resulting list. Then the correctness of Size.size, which is stated in the following

lemmaSize.size_spec, is obtained as a consequence of the correctness of Collect.collect:

lemma size_spec {O : OBdd n m} : Size.size O = OBdd.size O

We also formalize and prove our lemma 16, which gives an upper bound on the size of OBDDs:

lemma size_le {O : OBdd n m} : size O ≤ 2 ^ n - 1

Reduced BDDs

The toTree function we saw in section 2.2.2 is also instrumental in defining the notion of a reduced

OBDD via the BDD similarity relation, as we saw in definition 24 and 20.

Formally, we first define a “heterogeneous” similarity relation, HSimilar, which relates OBDDs that

may differ in their heap size, and thus inhabit different types. Homogeneous similarity, which we call

Similar, is then obtained as a special case of the heterogeneous definition:

def OBdd.HSimilar (O : OBdd n m) (U : OBdd n m’) := O.toTree = U.toTree

def OBdd.Similar : OBdd n m → OBdd n m → Prop := HSimilar

37



For convenience, we also define a corresponding similarity relation restricted to relevant pointers

for a given OBDD:

def OBdd.SimilarRP (O : OBdd n m) (p q : O.1.RelevantPointer) :=

Similar ⟨{heap := O.1.heap, root := p.1}, ordered_of_reachable p.2⟩
⟨{heap := O.1.heap, root := q.1}, ordered_of_reachable q.2⟩

Next, we formalize the notion of redundancy from definition 23:

inductive Pointer.Redundant (M : Vec (Node n m) m) : Pointer m → Prop where

| red : M[j].low = M[j].high → Redundant M (node j)

For convenience, we also define a predicate NoRedundancy that holds for BDDs for which no relevant

pointer is redundant:

def Bdd.NoRedundancy (B : Bdd n m) := ∀ (p : B.RelevantPointer), ¬ Redundant B.heap p.1

The formal definitions of similarity and redundancy suffice for formalizing definition 24:

def OBdd.Reduced (O : OBdd n m) : Prop

-- No redundant pointers.

:= NoRedundancy O.1

-- Similarity implies pointer-equality.

∧ Subrelation (SimilarRP O) (InvImage Eq Subtype.val)

With the definition of the Reduced predicate in place, we have now covered all of the ingredients

that take part in the BDD type definition that we saw in section 2.2.1.

2.2.3 BDD Evaluation

In section 2.1.1, we saw that the interface function BDD.denotation is implemented in terms of two

other functions, BDD.lift and BDD.evaluate:

def denotation (B : BDD) (h : B.nvars ≤ n) : BoolFunc n := (B.lift h).evaluate

The BDD.evaluate function is in turn a wrapper around a function on the underlying OBdd, called

Evaluate.evaluate:

abbrev evaluate (B : BDD) : BoolFunc B.nvars := Evaluate.evaluate B.obdd

The Evaluate.evaluate function implements the BDD evaluation algorithm, which produces the

output of the denotation of a BDD for a given input by simply walking down the BDD from the root

down to a terminal node, taking low or high edges based on the values of the input Booleans:

def Evaluate.evaluate (O : OBdd n m) : BoolFunc n := fun I 7→
match h : O.1.root with

| .terminal b => b

| .node j => if I[O.1.heap[j].var] then evaluate (O.high h) I else evaluate (O.low h) I

termination_by O

We show that this definition is equivalent to the DecisionTree-based implementation of OBdd.evaluate

which we saw in section 2.2.2, via a simple recursive proof.

lemma Evaluate.evaluate_eq_treeEvaluate : Evaluate.evaluate O = OBdd.evaluate O

38



This permits us to continue reasoning about BDD evaluation using OBdd.evaluate when that is

more convenient, while at runtime our library always uses the more efficient Evaluate.evaluate.

The BDD.lift function is similarly a wrapper around Lift.lift, which implements the BDD lifting

discussed in section 2.1.1:

def lift (h : n ≤ n’) (B : Bdd n m) : Bdd n’ m :=

⟨ Vector.map

(fun N 7→ ⟨⟨N.var.1, Fin.val_lt_of_le N.var h⟩, N.low, N.high⟩)
B.heap,

B.root

⟩

The Lift.lift function essentially leaves its input unchanged, adjusting only the proofs that the

variable indices of all of the nodes in the BDD heap are valid. Although lifting seems like a no-op, we

must nevertheless prove to Lean that it preserves the BDD properties that we care about. Namely, we

prove that lifting reduced ordered BDDs produces reduced ordered BDDs, starting from orderedness:

lemma lift_ordered {h : n ≤ n’} {B : Bdd n m} : B.Ordered → (lift h B).Ordered

The lift_ordered allows us to define a lift operation on OBDDs that we call olift. We further

prove that olift preserves the property of being reduced:

def olift (h : n ≤ n’) (O : OBdd n m) : OBdd n’ m := ⟨(lift h O.1), lift_ordered O.2⟩

lemma olift_reduced {h : n ≤ n’} {O : OBdd n m} : O.Reduced → (olift h O).Reduced

Lastly we show that our lift operation has the expected behavior with regards to the denotation of

the lifted BDD, namely that evaluating the resulting BDD with respect to some input is the same as

evaluating the original BDD with respect to the appropriate prefix of that input:

lemma olift_evaluate {h : n ≤ n’} {O : OBdd n m} {I : Vector Bool n’} :

(olift h O).evaluate I = O.evaluate (Vector.cast (by simpa) (I.take n))

We use olift_evaluate to prove the denotation_independentOf_of_geq_nvars lemma which we saw

in section 2.1.1.

2.2.4 Semantic Equivalence and Similarity

Next we take a closer look at BDD.instDecidableSemanticEquiv, the BDD semantic equivalence decision

procedure that we presented in section 2.1.2. The general strategy was sketched in section 1.2—we

want to rely on the canonicity of BDDs (theorem 25), which allows us to infer that BDDs are equivalent

whenever their concrete representation agrees.

Our formal proof of BDD canonicity in Lean relies on a few helper lemmas and definitions. For

convenience, we define a function OBdd.var, which returns the variable index at the root of a given

OBDD, or the OBDD’s input size in case its root is a terminal:

def Bdd.var (B : Bdd n m) : Fin n.succ := B.root.toVar B.heap

def OBdd.var (O : OBdd n m) : Nat := O.1.var

Next, we prove a couple of lemmas about how OBdd.var increases as we go down a given OBDD,

which are easily obtained from the orderedness of OBDDs:

39



lemma OBdd.var_lt_high_var {O : OBdd n m} {h : O.1.root = node j} : O.var < (O.high h).var

lemma OBdd.var_lt_low_var {O : OBdd n m} {h : O.1.root = node j} : O.var < (O.low h).var

Using these lemmas along with OBDD well-founded recursion, we prove the following lemma which

states that the denotation of an OBDD O is independent of any variable index below O.var:

lemma OBdd.independentOf_lt_root (O : OBdd n m) (i : Fin O.var) :

IndependentOf (O.evaluate) ⟨i.1, Fin.val_lt_of_le i (Fin.is_le _)⟩ := by

cases h : O.1.root with

| terminal _ => simp [evaluate_terminal’ h]

| node j =>

intro b I

rw [evaluate_node’’ h]

simp only

rcases i with ⟨i, hi⟩
congr 1

· simp only [eq_iff_iff, Bool.coe_iff_coe]

symm

apply Vector.getElem_set_ne _ _ (Nat.ne_of_lt (by simp_all))

· exact (independentOf_lt_root (O.high h) ⟨i, .trans hi var_lt_high_var⟩) b I

· exact (independentOf_lt_root (O.low h) ⟨i, .trans hi var_lt_low_var⟩) b I

termination_by O

We use the independentOf_lt_root lemma to formally prove our canonicity theorem, along the lines

of the proof we gave for theorem 25. Given two reduced OBDDs, we proceed by case distinction on the

nature of their root pointers, followed by appealing to canonicity of their sub-BDDs via well-founded

recursion:

theorem OBdd.Canonicity {O : OBdd n m} {U : OBdd n m’} (ho : O.Reduced) (hu : U.Reduced) :

O.evaluate = U.evaluate → O.HSimilar U := by

intro h

cases hro : O.1.root with

| terminal b =>

cases hru : U.1.root with

| terminal c => . . .

| node i =>

rw [evaluate_terminal’ hro] at h

have : (U.high hru).evaluate = (U.low hru).evaluate := . . .

absurd hu

apply not_reduced_of_sim_high_low hru

apply Canonicity (high_reduced hu) (low_reduced hu) this

| node j =>

cases hru : U.1.root with

| terminal c =>

. . .

apply not_reduced_of_sim_high_low hro

apply Canonicity (high_reduced ho) (low_reduced ho) this

| node i =>

. . .

have same_var : O.1.heap[j].var = U.1.heap[i].var := by

40



apply eq_iff_le_not_lt.mpr

constructor

· apply le_of_not_lt

intro contra

have := independentOf_lt_root O ⟨U.1.heap[i].var.1, . . .⟩
. . .

· intro contra

have := independentOf_lt_root U ⟨O.1.heap[j].var.1, . . .⟩
. . .

constructor

· exact same_var

· constructor
· apply Canonicity (low_reduced ho) (low_reduced hu) . . .

· apply Canonicity (high_reduced ho) (high_reduced hu) . . .

termination_by O.size + U.size

decreasing_by . . .

Note that the well-founded recursion in this proof requires a different decreasing measure than our

usual well-founded edge relation on OBDDs, since we apply the theorem recursively also in cases in

which the first argument in the recursive call is not a sub-OBDD of O, but rather it is a sub-OBDD of

U, and vice-versa. We thus use the sum of the sizes of the two input OBDDs as our decreasing measure,

and prove that all recursive calls indeed respect this well-founded relation.

We also prove a Canonicity_reverse result, which states that similar ROBDDs have the same

denotation. If fact, this holds for any two OBDDs, not necessarily reduced. Unlike Canonicity, the

reverse statement is trivial to prove given our definitions:

theorem OBdd.Canonicity_reverse {O : OBdd n m} {U : OBdd n m’}:

O.HSimilar U → O.evaluate = U.evaluate := by

simp_all [evaluate, Function.comp_apply, Similar, HSimilar]

Our next steps towards instDecidableSemanticEquiv is to lift the HSimilar relation, which we have

defined for OBDDs of a given input size, to similarity relation on our abstract BDD type. To do so, we

use the OBDD lifting operation to obtain OBDDs with the same input size given any two BDDs:

private def BDD.Similar (B : BDD) (B’ : BDD) :=

OBdd.HSimilar

(Lift.olift (Nat.le_max_left ..) B.obdd)

(Lift.olift (Nat.le_max_right ..) B’.obdd)

We use our canonicity theorems to show that for ROBDDs, similarity is equivalent to semantic

equivalence:

private theorem SemanticEquiv_iff_Similar {B C : BDD} :

B.SemanticEquiv C ↔ B.Similar C := ⟨l_to_r, r_to_l⟩ where

l_to_r h := by

simp only [SemanticEquiv, denotation, Evaluate.evaluate_eq_treeEvaluate] at h

exact Canonicity (Lift.olift_reduced B.hred) (Lift.olift_reduced C.hred) h

r_to_l h := by

simp only [SemanticEquiv, denotation, Evaluate.evaluate_eq_treeEvaluate]

exact Canonicity_reverse h

41



We appeal to exactly this equivalence between semantic and similarity for ROBDDs in our

implementation of instDecidableSemanticEquiv:

instance instDecidableSemanticEquiv : DecidableRel SemanticEquiv

| _, _ => decidable_of_iff’ _ SemanticEquiv_iff_Similar

This definition reads as follows: to decide whether two BDD are semantically equivalent, decide

whether they are similar, which suffices since the two relations coincide.

The last piece of the puzzle is providing a decision procedure for the BDD.Similar relation for

ROBDDs. We can, of course, check if two OBDDs are similar by simply translating them to decision

trees and comparing the resulting trees for equality. However, we want to avoid the potentially high

performance cost that may incur. In particular, when deciding whether a given ROBDD denotes a

contradiction (or a tautology), we need to compare an arbitrarily large ROBDD to an ROBDD of size 0,

since by canonicity we know that contradictions (and tautologies) are represented by ROBDDs whose

root is a terminal. In those cases, we most certainly do not want to unfold the arbitrarily large BDD

to a decision tree before comparing its root to a terminal. To provide good performance guarantees,

we implement algorithm 1, which decides whether two ROBDDs are similar in time proportional to

the size of the smaller among the two ROBDDs.

We implement algorithm 1 in file Sim.lean. The crucial aspect of this algorithm is that by keeping

a record of similar sub-BDDs in the two hash tables HOU and HUO, we get at most one recursive call

for each node in each of the two ROBDDs. Since in each call we perform checks that take constant

time, the algorithm has time complexity O(min{size(O), size(U)}) in total. Note that in line *, we are

justified in concluding that O ∼ U by virtue of having already establishing the following:

var(root(O)) = var(root(U))

O[low(root(O))] ∼ U [low(root(U))]

O[high(root(O))] ∼ U [high(root(U))]

Also note that the recursive invocations of the algorithm destructively mutate the hash tables. This

is desirable, because it means that if, for example, a node v is reachable both from low(root(O)) and

from high(root(O)), then by the time we encounter v when going down the high edge of root(O), we

already have a record for v in our hash tables from our previous descent down the low edge of root(O).

This kind of stateful computation, in which a side-effect of one part of the computation, in addition

to producing some result, also affects another part by mutating some commonly accessible state, is

ubiquitous in BDD algorithms—both in the literature about these algorithms, and in their imple-

mentations in practice. Indeed, many BDD implementations are written in imperative programming

languages which allow such side-effects via direct memory manipulation. For example, the popular

BDD package CUDD and CacBDD are implemented as low-level C and C++ libraries, respectively

[Som98; LSX13]. (A notable exception is Markus Triska’s BDD implementation in Prolog [Tri16], but

even that implementation relies heavily on mutating variable attributes.)

To implement such destructive mutation in the purely functional context of Lean, we embed our

algorithm in the StateM monad, which allows for computations that access and mutate a given state

object.

We define the type of states of our algorithm as a structure that holds the two hash tables, as well

as two invariant proofs that guarantee that the hash tables are symmetric and that any mapping they

42



Input: Two ROBDDs O and U
Output: true if O ∼ U , false if O ≁ U
HOU ← empty hash table mapping nodes in O to nodes in U
HUO ← empty hash table mapping nodes in U to nodes in O
def sim helper(O,U):

if root(O) is terminal then
if root(U) is terminal then

if val(root(O)) = val(root(U)) then
return O ∼ U

else
return O ≁ U

end

else
return O ≁ U

end

else
if root(U) is terminal then

return O ≁ U
else

if var(root(O)) = var(root(U)) then
if HOU [root(O)] = v for some node v then

if v = root(U) then
return O ∼ U

else
return O ≁ U

end

else
if HUO[root(U)] = v for some pointer v then

return O ≁ U
else

if sim helper(O[low(root(O))], U [low(root(U))]) then
if sim helper(O[high(root(O))], U [high(root(U))]) then

HOU [root(O)]← root(U)
HUO[root(U)]← root(O)

* return O ∼ U

else
return O ≁ U

end

else
return O ≁ U

end

end

end

else
return O ≁ U

end

end

end

return sim helper(O,U)
Algorithm 1: ROBDD similarity decision procedure

43



include implies similarity of the corresponding sub-BDDs:

structure State (O : OBdd n m) (U : OBdd n m’) where

lr : Std.HashMap (Fin m) (Fin m’)

rl : Std.HashMap (Fin m’) (Fin m)

hl : ∀ j j’,

lr[j]? = some j’ → rl[j’]? = some j ∧
Reachable O.1.heap O.1.root (.node j) ∧
∃ hj : Bdd.Ordered ⟨O.1.heap, .node j⟩,
∃ hj’ : Bdd.Ordered ⟨U.1.heap, .node j’⟩,

OBdd.HSimilar ⟨⟨O.1.heap, .node j⟩, hj⟩ ⟨⟨U.1.heap, .node j’⟩, hj’⟩
hr : ∀ j j’,

rl[j’]? = some j → lr[j]? = some j’ ∧ . . .

The core of the algorithm is then implemented in a recursive helper function sim_helper that

operates on two nodes, each reachable from the root of one of the ROBDDs that we want to compare,

and decides whether the OBDDs rooted at these two nodes are similar. In order to be able to access

and mutate our two hash tables, the sim_helper function works inside the StateM monad:

def sim_helper

(O : OBdd n m) (hO : OBdd.Reduced O)

(U : OBdd n m’) (hU : OBdd.Reduced U)

(p : Pointer m) (hpr : Reachable O.1.heap O.1.root p)

(q : Pointer m’) (hqr :Reachable U.1.heap U.1.root q) :

StateM

(State O U)

(Decidable

(OBdd.HSimilar

⟨⟨O.1.heap, p⟩, Bdd.ordered_of_reachable hpr⟩
⟨⟨U.1.heap, q⟩, Bdd.ordered_of_reachable hqr⟩)) := do

match hp : p with

| .terminal b =>

match hq : q with

| .terminal b’ =>

if hb : b = b’

then return isTrue (by simpa [. . .])

else return isFalse (by simpa [. . .])

| .node j’ => return isFalse (by simp [. . .])

| .node j =>

match hq : q with

| .terminal b’ => return isFalse (by simp [. . .])

| .node j’ =>

if hv : O.1.heap[j].var = U.1.heap[j’].var

then . . .

else return isFalse (by simp_all [. . .])

Lastly, we wrap the sim_helper function with a definition that creates an initial state object and

kick-starts the algorithm at the roots of two given ROBDDs. Note that in order to initialize the state

for the algorithm, we must provide two hash tables and prove that they satisfy the required invariants.

Fortunately, since our invariants are statements about records in the hash tables, proving that they

hold for the initial empty hash tables is trivial:

44



instance Sim.instDecidableRobddHSimilar (O : OBdd n m) (U : OBdd n m’)

(hO : O.Reduced) (hU : U.Reduced) : Decidable (O.HSimilar U) :=

((sim_helper O hO U hU O.1.root .refl U.1.root .refl)

⟨ Std.HashMap.emptyWithCapacity 0,

Std.HashMap.emptyWithCapacity 0,

by simp, by simp ⟩).1

2.2.5 BDD Construction Algorithms

In section 2.1.3 we presented and explained the use of the functions our library provides for constructing

BDDs, from BDD.const and BDD.var through BDD.restrict and BDD.apply (and its derivatives, and, or,

not, etc.) to BDD.relabel and BDD.foralls. In this section, we examine their implementation and

verification.

Basic Building Blocks

For BDD.const, we explicitly construct a BDD term with an empty heap and a terminal pointer at the

root. The BDD type also requires us to show that the BDD we construct is ordered and reduced, which

we do with the help of two useful lemmas, Bdd.ordered_of_terminal and Bdd.reduced_of_terminal,

which state that BDDs whose root is a terminal are ordered and reduced:

lemma Bdd.ordered_of_terminal : Bdd.Ordered ⟨M, terminal b⟩
lemma Bdd.reduced_of_terminal : Bdd.Reduced ⟨⟨M, terminal b⟩, o⟩

def const (b : Bool) : BDD :=

{ nvars := 0,

nheap := 0,

obdd := ⟨⟨Vector.emptyWithCapacity 0, .terminal b⟩, Bdd.ordered_of_terminal⟩,
hred := Bdd.reduced_of_terminal

}

Given this definition of BDD.const, the proofs of the two interface lemmas that characterize it,

BDD.const_denotation and BDD.const_nvars, are both trivial.

For BDD.var, we similarly construct a BDD explicitly, this time with a heap consisting of a single

node, corresponding to a single input variable. We use dedicated helper lemmas var_ordered and

var_reduced to establish that the resulting BDD is ordered and reduced:

def var (n : Nat) : BDD :=

{ nvars := n + 1,

nheap := 1,

obdd := ⟨⟨Vector.singleton ⟨n, terminal false, terminal true⟩, node 0⟩, var_ordered⟩,
hred := var_reduced

}

Apply

Next, we present the implementation of the BDD.apply, which is the core facility for constructing

BDDs (beyond the simplest cases, which BDD.const and BDD.var cover). Recall from section 2.1.3

that the purpose of BDD.apply is to combine two ROBDDs O,U ∈ BDDn and produce a new

45



ROBDD W ∈ BDDn such that D(W ) = D(O) •D(U), for some binary Boolean operator · • ·. By

D(W ) = D(O) •D(U) we mean that for all x ∈ Bn, D(W )(x) = D(O)(x) •D(U)(x).

Our implementation follows the Apply algorithm which Bryant describes in [Bry86]. In [Knu09],

Knuth describes a more sophisticated variant of this algorithm, which uses breadth-first, rather than

depth-first, traversal of the two BDD graphs, and produces an output OBDD that is also reduced.

Knuth dubs it “the most important algorithm on binary decision diagrams”. In [Bry18], Bryant also

provides a variation of his original Apply algorithm which directly produces reduced OBDDs. Our

implementation is close to Bryant’s original Apply algorithm, with the twist that our implementation

in Lean is accompanied by a formal correctness proof.

We implement BDD.apply by composing two subroutines, Apply.oapply and Reduce.oreduce. The

former produces an OBDD with the correct denotation, and then the latter is used to reduce the

resulting OBDD to a ROBDD.

We provide pseudo-code for the variant of the Apply algorithm that we implement in Apply.oapply

as algorithm 2. Similarly to algorithm 1, algorithm 2 starts with an initialization step, which sets up

an initial state, followed by a recursive execution step, which accesses and mutates the state while

computing the output BDD.

The state of algorithm 2 consists of an array of BDD nodes V and a hash table H, both initially

empty. During execution of the algorithm, we populate V with BDD nodes, and finally return it as the

heap of the output BDD, paired with a corresponding root pointer. We refer to the number of nodes

V contains as size(V ).

The hash table H maps pairs of input nodes (one from O and one from U) to output nodes. It is a

memoization cache that we use to avoid duplicate recursive calls to the helper function apply helper.

Note that apply helper contains 10 different possible recursive invocations of itself, such that in

each call to apply helper we either reach none of these recursive invocations , or we reach exactly 2 of

them. To prove that the algorithm terminates, it suffices to observe that in each of the 10 recursive

call sites, we either descend from O to low(O) or to high(O), or we keep O fixed and descend from U

to low(U) or to high(U). Therefore all recursive calls follow the well-founded edge relation on OBDDs,

lifted to a well-founded lexicographic order on pairs of OBDDs ⟨O,U⟩.
To prove the correctness of algorithm 2, we identify the following invariant that the recursive helper

function apply helper respects:

Definition 41 (Apply Invariant). Given two OBDDs O and U , a binary Boolean operator · • ·, and a

state ⟨H,V ⟩, the Apply invariant is the conjunction of the following conditions:

1. For all nodes Vj in V , if low(Vj) is a nonterminal pointer to some node Vk, then k < j; and

likewise for high(Vj). In other words, all pointers between nodes in V go from higher indices in

V to lower indices.

2. For all pointers o, u, w such that H[o, u] = w we have:

(a) If w is a nonterminal pointer, then:

i. w points to a node Vj at a valid index j < size(V ), and

ii. var(Vj) = min {var(O[o]), var(U [u])}

(b) O[o] is ordered.

(c) U [u] is ordered.

46



Input: Two OBDDs O and U , and a binary Boolean operator · • · : B→ B→ B
Output: OBDD W with D(W ) = D(O) •D(U)
V ← empty array of BDD nodes
H ← empty hash table mapping pairs of input pointers to one output pointer
def push node(O, U , i, l, h):

s← size of V
Push a new node Vs at the end of V
var(Vs)← i, low(Vs)← l, high(Vs)← h
H[root(O), root(U)]← s
return s;

def apply helper(O, U):
if H[root(O), root(U)] = p for some pointer p then

return p
else

if root(O) is terminal then
if root(U) is terminal then

return terminal with value val(root(O)) • val(root(U))
else

l← apply helper(O, low(U))
h← apply helper(O, high(U))
return push node(O, U , var(U), l, h)

end

else
if root(U) is terminal then

l← apply helper(low(O), U)

h← apply helper(high(O), U)

return push node(O, U , var(O), l, h)

else
if var(O) < var(U) then

l← apply helper(low(O), U)

h← apply helper(high(O), U)

return push node(O, U , var(O), l, h)

else
if var(root(O)) > var(root(U)) then

l← apply helper(O, low(U))
h← apply helper(O, high(U))
return push node(O, U , var(U), l, h)

else
*1 l← apply helper(low(O), low(U))
*2 h← apply helper(high(O), high(U))
*3 return push node(O, U , var(U), l, h)

end

end

end

end

end

r ← apply helper(O, U)⟩
return BDD ⟨V, r⟩ with heap V and root r

Algorithm 2: Apply

47



(d) The BDD W = ⟨V,w⟩ with heap V and root w is ordered, and D(W ) = D(O[o]) •D(U [u]).

Theorem 42 (Correctness of apply helper). If the Apply invariant holds for a given state ⟨V,H⟩ with
respects to OBDDs O,U and operator · • ·, then after invoking apply helper(O,U) and obtaining an

output pointer r and a new state ⟨V ′, H ′⟩, the following statements hold:

1. The Apply invariant holds also for the new state ⟨V ′, H ′⟩.

2. H ′[root(O), root(U)] = r.

3. size(V ) ≤ size(V ′).

4. For all pointers o, u:

(a) If ⟨o, u⟩ /∈ H ′ (no value associated with the key ⟨o, u⟩ in H ′), then also ⟨o, u⟩ /∈ H.

(b) For all pointers w, if H[o, u] = w then H ′[o, u] = w.

(c) If ⟨o, u⟩ /∈ H but ⟨o, u⟩ ∈ H ′, then o is reachable from root(O) and u is reachable from

root(U).

Proof. By well-founded induction on ⟨O,U⟩ with respect to the lexicographic order of OBDD edges,

we can assume that the theorem holds for all recursive calls.

We proceed by case analysis.

We give a detailed proof for the case in which root(O) and root(U) are nonterminals with the same

variable index and ⟨root(O), root(U)⟩ /∈ H, which corresponds to lines *1, *2 and *3 in algorithm 2.

Let ⟨V 1, H1⟩ be the state after we call apply helper recursively in line *1, and let r1 be the resulting

pointer from that call.

We assume that the Apply invariant holds for the initial state ⟨V,H⟩, thus by I.H. we have:

(I1) The Apply invariant holds for ⟨V 1, H1⟩.

(I2) H1[low(root(O)), low(root(U))] = r1.

(I3) size(V ) ≤ size(V 1).

(I4) For all pointers o, u:

(I4a) If ⟨o, u⟩ /∈ H1, then also ⟨o, u⟩ /∈ H.

(I4b) For all pointers w, if H[o, u] = w then H1[o, u] = w.

(I4c) If ⟨o, u⟩ /∈ H but ⟨o, u⟩ ∈ H1, then o is reachable from low(root(O)) and u is reachable from

low(root(U)).

Let ⟨V 2, H2⟩ be the state after we call apply helper recursively in line *2, and let r2 be the resulting

pointer from that call.

By assumption (I1), the Apply invariant holds for ⟨V 1, H1⟩. Thus we can apply our I.H. also to

the recursive call in line *2, and obtain:

(I5) The Apply invariant holds for ⟨V 2, H2⟩.

(I6) H2[high(root(O)), high(root(U))] = r2.

48



(I7) size(V 1) ≤ size(V 2).

(I8) For all pointers o, u:

(I8a) If ⟨o, u⟩ /∈ H2, then also ⟨o, u⟩ /∈ H1.

(I8b) For all pointers w, if H1[o, u] = w then H2[o, u] = w.

(I8c) If ⟨o, u⟩ /∈ H1 but ⟨o, u⟩ ∈ H2, then o is reachable from high(root(O)) and u is reachable

from high(root(U)).

First, we need to show that the Apply invariant holds for the final state ⟨V ′, H ′⟩, where V ′ is V 2

with an additional node v such that var(v) = var(O) = var(U), low(v) = r1 and high(v) = r2, and H ′

is obtained from H2 by setting H2[root(O), root(U)] to a pointer r = size(V2) to the new node v at

the end of V ′:

• To show part 1 of the Apply invariant, let V ′j be a node in V ′ at index j. We need to show that

if low(Vj) is a nonterminal pointer to node Vk then k < j, and likewise for high(Vj).

j < size(V ′) = size(V 2) + 1, thus j ≤ size(V 2). We distinguish between two cases: j = size(V 2)

(j is the last index in V ′, in which case V ′j = v) or j < size(V 2):

j = size(V 2) Suppose low(Vj) points to node Vk. But low(Vj) = low(v) = r1, so we get that r1 points to

node Vk at index k. By assumptions (I2) and (I8b), we get thatH2[low(root(O)), low(root(U))] =

r1. Since the invariant holds for ⟨V 2, H2⟩ (assumption (I5)), we get that k is a valid pointer

in V 2, so k < size(V 2) = j, as needed.

Now suppose high(Vj) = high(v) = r2 points to node Vk′ . By (I5) and (I6) we get that k′ is

a valid pointer in V 2, so k′ < size(V 2) = j, as needed.

j < size(V 2) In case that j < size(V 2), we get V ′j = V 2
j . But by (I5), the invariant already holds for V 2,

and in particular V 2
j has the needed property.

• To show part 2 of the Apply invariant, let o, u, w be pointers such that H ′[o, u] = w.

We again distinguish between two cases:

– If o = root(O) and u = root(U), then we have w = r, and so w is a valid pointer that points

to V ′size(V 2) = v, and we have

var(v) = var(O) = var(U) = min {var(O), var(U)} = min {var(O[o]), var(U [u])}

as needed to show part 2.a of the Apply invariant.

We also have that O[o] = O and U [u] = U are ordered, by the assumption that O and U

are OBDDs. This shows show parts 2.b and 2.c of the Apply invariant.

For part 2.d, we need to show that ⟨V ′, r⟩ is also ordered. Since low(r) = r1 and high(r) = r2,

it suffices to show that ⟨V ′, r1⟩ and ⟨V ′, r2⟩ are ordered, and that r may precede r1 and r2.

By assumptions (I5) and (I6), we know that ⟨V 2, r2⟩ is ordered. Hence ⟨V ′, r2⟩ is also

ordered because the additional node in V ′ does not affect the orderedness of ⟨V 2, r2⟩ (in
Lean, we formalize this statement in lemma Apply.push_ordered).

49



We also get that if r2 points to a nonterminal V 2
j , then var(V 2

j ) = min {var(high(O)), var(high(U))},
and thus var(V ′j ) = min {var(high(O)), var(high(U))}. Since O and U are ordered, we have

var(U) = var(O) < min {var(high(O)), var(high(U))}, so r may precede r2.

By similar reasoning, and using assumptions (I2), (I8b) and (I6), we get that ⟨V ′, r1⟩ is
ordered and that r may precede r1. Thus ⟨V ′, r⟩ is ordered.
Lastly, we need to show that D(⟨V ′, r⟩) = D(O) •D(U).

We have D(⟨V ′, r1⟩) = D(low(O)) •D(low(U)) and D(⟨V ′, r2⟩) = D(high(O)) •D(high(U)).

For brevity, let i = var(v) = var(O) = var(U). Thus:

D(⟨V ′, r⟩) = xi ·D(⟨V ′, r2⟩) + x̄i ·D(⟨V ′, r1⟩)

= xi · (D(high(O)) •D(low(U))) + x̄i · (D(high(O)) •D(low(U)))

= (xi ·D(high(O)) + x̄i ·D(low(O))) • (xi ·D(high(U)) + x̄i ·D(low(U)))

= D(O) •D(U)

To go from the second to the third line of the above equation, we rely on the fact that for

all c, b1, b2, b3, b4 ∈ B (and for any •) it holds that:

c · (b1 • b2) + c̄ · (b3 • b4) = (c · b1 + c̄ · b2) • (c · b3 + c̄ · b4)

This corresponds to lemma Apply.if_op3 in our formalization in Lean.

– Otherwise, if ⟨o, u⟩ ≠ ⟨root(O), root(U)⟩, then we have that H2[o, u] = w.

Since the invariant holds for ⟨V 2, H2⟩, we get:

9. If w is a nonterminal pointer to index j, then

(a) j < size(V 2) and

(b) V 2
j = min {var(O[o]), var(U [u])}

10. O[o] and U [u] are ordered, and

11. ⟨V 2, w⟩ is ordered and D(⟨V 2, w⟩) = D(O[o]) •D(U [u]).

Thus we have j < size(V 2) < size(V 2) + 1 < size(V ′), and since V ′j = V 2
j we also have

V ′j = min {var(O[o]), var(U [u])}.
It remains show that ⟨V ′, w⟩ is ordered and that D(⟨V ′, w⟩) = D(O[o]) •D(U [u]). These

hold because of (I11) and the fact that V ′ is V 2 with an additional node (v) that is not

reachable from w, and so it does not affect the orderedness and the denotation of ⟨V 2, w⟩.

We have thus established that the Apply invariant holds for the final state ⟨V ′, H ′⟩.
We also need to show that H ′[root(O), root(U)] = r, but that holds by construction of H ′.

Next, we need to show size(V ) ≤ size(V ′). But we have size(V ) ≤ size(V 1) (assumption (I3)) and

size(V 1) ≤ size(V 2) ((I7)), thus size(V ) ≤ size(V 2) holds by transitivity, and we get size(V ) ≤ size(V ′)

since size(V ′) = size(V 2) + 1.

Lastly, let o, u be pointers. We need to show:

• ⟨o, u⟩ /∈ H ′ implies ⟨o, u⟩ /∈ H.

• For all pointers w, if H[o, u] = w then H ′[o, u] = w.

50



• If ⟨o, u⟩ /∈ H but ⟨o, u⟩ ∈ H ′, then o is reachable from root(O) and u is reachable from root(U).

Suppose ⟨o, u⟩ /∈ H ′. Then ⟨o, u⟩ /∈ H2. But we have that ⟨o, u⟩ /∈ H2 implies ⟨o, u⟩ /∈ H1 and that

⟨o, u⟩ /∈ H1 implies ⟨o, u⟩ /∈ H, so we get that ⟨o, u⟩ /∈ H ′ implies ⟨o, u⟩ /∈ H.

Suppose that H[o, u] = w. We have that H[o, u] = w implies H1[o, u] = w which implies

H2[o, u] = w, so we get H2[o, u] = w. We need to show H ′[o, u] = w, but H ′ and H2 agree for all pairs

of pointers except for ⟨root(O), root(U)⟩. Thus it now suffices to show that ⟨o, u⟩ ≠ ⟨root(O), root(U)⟩.
By contradiction: assume ⟨o, u⟩ = ⟨root(O), root(U)⟩. Thus H2[root(O), root(U)] = w. We proceed by

case distinction on H1[root(O), root(U)]:

• IfH1[root(O), root(U)] = w′ for some w′, then by assumption (I8b) we get thatH2[root(O), root(U)] =

w′, and thus w = w′, so H1[root(O), root(U)] = w. But we know that ⟨root(O), root(U)⟩ /∈ H,

so we get from (I4c) that root(O) is reachable from low(root(O)) and that root(U) is reachable

from low(root(U)). Contradiction, since O and U are ordered.

• Otherwise, if ⟨root(O), root(U)⟩ /∈ H1, then from (I8c) we get that root(O) is reachable from

high(root(O)) and that root(U) is reachable from high(root(U)). Contradiction.

This concludes the proof for the case in which root(O) and root(U) are nonterminals with the same

variable index and ⟨root(O), root(U)⟩ /∈ H.

The other cases that involve recursive calls to apply helper are similar. The two remaining cases—

namely, the case in which ⟨root(O), root(U)⟩ ∈ H and the case in which both root(O) and root(U) are

terminals—are simpler to verify.

Corollary 43 (Correctness of algorithm 2). Given OBDDs O and U and operator · • ·, algorithm 2

outputs an ordered BDD W with D(W ) = D(O) •D(U).

Proof. The initial state of the algorithm satisfies the Apply invariant (definition 41) by virtue of V and

H being empty. Hence by theorem 42, we have that the end state ⟨V ′, H ′⟩ also satisfies the invariant,

and we have H ′[root(O), root(U)] = root(W ).

Thus by clause 2.d of the invariant, W is ordered and D(W ) = D(O) •D(U).

We implement algorithm 2 and formalize the proofs of theorem 42 and corollary 43 in the file

Apply.lean. There are a few technical details about our formalization in Lean that deserve a detailed

explanation.

First, note that although we described algorithm 2 as operating on two OBDDs with the same input

size O,U ∈ BDDn, the algorithm works just as well also if O and U have different input sizes. In general,

for O ∈ BDDnO and U ∈ BDDnU , algorithm 2 produces an OBDD W with input size max {nO, nU},
since all nodes in W have variable indices that come from either O or U . We similarly generalize our

characterization of the denotation of W from D(W ) = D(O) •D(U) to D(W ) = D(lift(O)) •D(lift(U)).

Accordingly, in our implementation, the type of O is OBdd n m and the type of U is OBdd n’ m’,

where both n and n’, and m and m’, may differ.

Also note that when we invoke algorithm 2, we do not know in advance what will be the size of the

heap of W . Since our type for (O)BDDs in Lean is indexed by the size of the heap, our Apply.oapply

function needs to return the resulting heap size s as additional data along with the OBDD itself:

51



def oapply (op : Bool → Bool → Bool) (O : OBdd n m) (U : OBdd n’ m’) :

(s : Nat) ×
{ OU : OBdd (n ⊔ n’) s //

∀ I,

OBdd.evaluate OU I =

(op

(OBdd.evaluate O (Vector.cast (by simp) (I.take n)))

(OBdd.evaluate U (Vector.cast (by simp) (I.take n’)))) }

Next, recall that in our concrete representation of BDDs as terms of type Bdd n m, the heap has type

Vector (Node n m) m, which means that the type of individual nodes is indexed by m, the overall size of

the vector which contains them. If we would push another node to the end of a Vector (Node n m) m,

we would get a Vector (Node n m) (m + 1), and if we would keep pushing more nodes we would get a

Vector (Node n m) (m + k), which means that all pointers in the m + k nodes of the vectors may only

point to the first m indices. This is clearly not what we want, especially seeing as we start with an

empty heap (m = 0),

Instead, we want to represent the under-construction heap V as an array of “raw” nodes, which

are not indexed by the overall heap size, but contain all of the data that makes up a regular node

otherwise. This in turn requires replacing the Pointer m type of safe pointers that we use for the low

and high pointers of each node with an alternative RawPointer type of “raw” pointers, which are not

indexed by the size of the vector into which they point:

private def RawPointer := Bool ⊕ Nat

private structure RawNode (n) where

va : Fin n

lo : RawPointer

hi : RawPointer

Note that a RawPointer uses an unbounded Nat for vector indices, whereas Pointer m uses a Fin m.

Thus a RawPointer is able to represent pointers to invalid (out-of-bounds) indices. To express that a

given RawPointer is in fact valid with respect to vectors of a certain length m, we define a predicate

RawPointer.Bounded m, which holds for raw pointers that are either terminal or that point to indices

below m:

private def RawPointer.Bounded (m : Nat) (p : RawPointer) := ∀ {i}, p = .inr i → i < m

We then define a function that turns a RawPointer to a ready-to-use Pointer m, which we call

RawPointer.cook. This function uses RawPointer.Bounded as a precondition:

private def RawPointer.cook (p : RawPointer) (h : p.Bounded m) : Pointer m

We lift the definitions of Bounded and cook from pointers to nodes, as follows:

private def RawNode.Bounded (m : Nat) (N : RawNode n) := N.lo.Bounded m ∧ N.hi.Bounded m

private def RawNode.cook (N : RawNode n) (h : N.Bounded m) : Node n m :=

⟨N.va, N.lo.cook h.1, N.hi.cook h.2⟩

Lastly we define a function that turns a vector of raw nodes to a proper heap, under the assumption

that all pointers in the raw heap point from higher indices to lower indices, which guarantees that all

pointers are valid, and corresponds to the first condition in the Apply invariant (definition 41):

52



private def cook_heap (v : Vector (RawNode n) m) :

(∀ i : Fin m, v[i].Bounded i) → Vector (Node n m) m

We represent the state ⟨V,H⟩ in algorithm 2 as a structure Apply.State, which is defined as follows:

private structure State (n) (n’) (m) (m’) where

size : Nat

heap : Vector (RawNode (max n n’)) size

cache : Std.HashMap (Pointer m × Pointer m’) RawPointer

The State.heap field corresponds to the array of nodes V , and State.cache corresponds to the

hash table H.

Note that we also have an additional field, State.size, which is just the size of State.heap,

corresponding to size(V ). This may seem redundant at first, since a Vector α n is just an Array α of

size n, so we could just as well have defined State.heap to be an Array (RawNode (max n n’)), and use

State.heap.size whenever we would want to use State.size, as in the following alternative definition:

private structure State’ (n) (n’) (m) (m’) where

heap : Array (RawNode (max n n’))

cache : Std.HashMap (Pointer m × Pointer m’) RawPointer

However, the separate size field in State leads to a significant performance improvement due to a

somewhat subtle reason.

In Lean, pushing a node to the end of an array is very efficient (O(1) time and space, amortized) if,

and only if, Lean can determine that the original array is never used afterwards. Otherwise, Lean has

to make a copy of the original array and extend the copy instead, to keep the original array intact,

which requires linear time and space in the size of the array. This decision occurs in the function

lean_array_push which is part of Lean’s low-level Array implementation.

Now, in the push node subroutine of algorithm 2, we push a node to the end of State.heap, and

then we return the index of the new node, which is the size that State.heap had before we pushed

the new node. By keeping the size of State.heap as a separate piece of data State.size, we avoid

referring to State.heap.size after extending State.heap in our implementation of push node, which

ensures that Lean can determine that State.heap has no other references, and avoid costly copies of

the underlying array. Other techniques, such as storing State.heap.size in a variable before extending

State.heap and similar semantics-preserving code transformations, have proven ineffective in our tests,

which used Lean version 4.20.

We formalize the Apply invariant from definition 41 in the predicate Apply.Invariant:

private def Invariant

(op : Bool → Bool → Bool) (O : OBdd n m) (U : OBdd n’ m’) (s : State n n’ m m’) :=

∃ hh : (∀ i : Fin s.size, RawNode.Bounded i s.heap[i]), -- part 1

∀ (k : (Pointer m × Pointer m’)) (p : RawPointer), -- part 2

s.cache[k]? = some p →
(∀ j h, p = .inr j →

(s.heap[j]’h).va.1 = (toVar O.1.heap k.1) ⊓ (toVar U.1.heap k.2)) ∧
∃ (hk1 : Bdd.Ordered ⟨O.1.heap, k.1⟩) (hk2 : Bdd.Ordered ⟨U.1.heap, k.2⟩),
∃ hp : p.Bounded s.size,

∃ o : Bdd.Ordered ⟨cook_heap s.heap hh, p.cook hp⟩,
∀ I,

53



OBdd.evaluate ⟨⟨cook_heap s.heap hh, p.cook hp⟩, o⟩ I =

(op

(OBdd.evaluate ⟨⟨O.1.heap, k.1⟩, hk1⟩ (Vector.cast (by simp) (I.take n)))

(OBdd.evaluate ⟨⟨U.1.heap, k.2⟩, hk2⟩ (Vector.cast (by simp) (I.take n’))))

Next, we define the initial state of algorithm, and prove that the invariant holds for it, which follows

directly from the fact that the initial hash table and vector of nodes are both empty:

private def initial : State n n’ m m’ :=

⟨0, Vector.emptyWithCapacity 0, Std.HashMap.emptyWithCapacity 0⟩

private lemma inv_initial {op} {O} {U} : Invariant op O U initial

Finally, we present the type of Apply.apply_helper, which implements the apply helper function

from algorithm 2, along with its correctness proof:

private def apply_helper

(op : Bool → Bool → Bool) (O : OBdd n m) (U : OBdd n’ m’)

(s : State n n’ m m’) (inv : Invariant op O U s) :

{ r : State n n’ m m’ × RawPointer //

Invariant op O U r.1 ∧
(r.1.cache[(⟨O.1.root, U.1.root⟩)]? = some r.2) ∧
(s.size ≤ r.1.size) ∧
(∀ (k : Pointer m × Pointer m’),

(r.1.cache[k]? = none → s.cache[k]? = none) ∧
(∀ p, s.cache[k]? = some p → r.1.cache[k]? = some p) ∧
(s.cache[k]? = none → (∃ p, r.1.cache[k]? = some p) →
Reachable O.1.heap O.1.root k.1 ∧ Reachable U.1.heap U.1.root k.2))

}

The implementation of Apply.apply_helper closely follows the pseudo-code of algorithm 2, except

that it also constructs and returns a proof that its output has the correct properties, along the lines of

the proof that we saw above for theorem 42.

In [Bry86], Bryant points at one additional optimization that we have not yet included in our

description, and implementation, of algorithm 2: given more information about the binary Boolean

operator •, it is possible to eliminate more recursive calls to apply helper. Namely, for some values

of •, we can determine that the D(O) • D(U) is a constant function, and return the appropriate

terminal without additional recursive calls, even if root(O) and root(U) are not both terminals. For

example, if • is + (disjunction) and root(O) is a terminal with value true, then we can already tell

that D(O) •D(U) = 1, even if root(U) is nonterminal.

We left this optimization out of the current implementation to simplify the proof of correctness. In

section 3.1, we outline a path towards enhancing our implementation with this optimization.

Restrict

The BDD.restrict function is similar in many ways to BDD.apply: both functions construct an ROBDD

whose denotation is a certain function of the denotations of existing ROBDDs, which apply and

restrict take as inputs. In other words, both functions implement operations on Boolean functions at

the level of the ROBDDs that represent them—apply implements ⟨f, g⟩ 7→ f • g for Boolean functions

54



f, g and a binary Boolean operator •, while restrict implements f 7→ fi←b for some Boolean b and

variable index i.

The implementations of restrict is also similar to the implementation of apply: the core of

BDD.restrict is the function Restrict.orestrict, which traverses an OBDD O (not necessarily reduced)

in depth-first order, starting from its root, and produces a new OBDD W such that D(W ) = D(O)i←b.

The key to OBDD restriction is the observation that for all Boolean functions f, g, c we have:

(c · f + c̄ · g)i←b = ci←b · fi←b + c̄i←b · gi←b

In Lean, we formalize this fact in lemma Nary.restrict_if:

lemma restrict_if {c : Func n α Bool} :

restrict (fun I 7→ if c I then f I else g I) b i I =

if (restrict c b i I) then (restrict f b i I) else (restrict g b i I) := rfl

Therefore, for an OBDD O with a nonterminal root, whose denotation is

D(O) = xvar(O) ·D(high(O)) + x̄var(O) ·D(low(O))

we can construct an OBDD with denotation D(O)i←b by first recursively constructing OBDDs with

denotations D(high(O))i←b and D(low(O))i←b.

The pseudo-code for our restriction algorithm, which employs this recursive scheme, is given in

algorithm 3.

To prove the correctness of algorithm 3, we proceed as we did in the case of algorithm 2. Namely,

we first identify an invariant that the recursive helper function restrict helper respects:

Definition 44 (Restrict Invariant). Given an OBDD O ∈ BDDn, a Boolean b, an index i ∈ [n], a

hash table H and an array of BDD nodes V , Restrict invariant is the conjunction of the following

conditions:

1. For all nodes Vj in V , if low(Vj) is a nonterminal pointer to node Vk, then k < j; and likewise

for high(Vk).

2. For all pointers o, w such that H[o] = w we have:

(a) If w is a nonterminal pointer, then:

i. w points to a node Vj at a valid index j < size(V ), and

ii. if var(O[o]) = i then var(Vj) > var(O[o]), otherwise var(Vj) = var(O[o])

(b) O[o] is ordered.

(c) The BDD W = ⟨V,w⟩ with heap V and root w is ordered, and D(W ) = D(O[o])i←b.

Next, we prove that restrict helper preserves the invariant, and satisfies additional post-conditions:

Theorem 45 (Correctness of restrict helper). If the Restrict invariant holds for a given state ⟨V,H⟩
with respects to OBDD O, Boolean b and index i, then after invoking restrict helper(O) and obtaining

an output pointer r and a new state ⟨V ′, H ′⟩, the following statements hold:

1. The invariant holds also for the new state ⟨V ′, H ′⟩.

55



Input: OBDD O ∈ BDDn, b ∈ B, i ∈ [n]
Output: OBDD W with D(W ) = D(O)i←b

V ← empty array of BDD nodes
H ← empty hash table mapping input pointers to output pointers
def restrict helper(O):

if H[root(O)] = p for some pointer p then
return p

else
if root(O) is terminal then

H[root(O)]← root(O)
return root(O)

else
if var(O) = i then

if b = true then
h← restrict helper(high(O))
H[root(O)]← h
return h

else
l← restrict helper(low(O))
H[root(O)]← l
return l

end

else
l← restrict helper(low(O))
h← restrict helper(high(O))
s← size(V )
Push a new node Vs at the end of V
var(Vs)← (var(O)), low(Vs)← l, high(Vs)← h
H[root(O)]← s
return s;

end

end

end

r ← restrict helper(O)⟩
return BDD ⟨V, r⟩ with heap V and root r

Algorithm 3: Restrict

2. H ′[root(O)] = r.

3. size(V ) ≤ size(V ′).

4. For all pointers o:

(a) o /∈ H ′ implies o /∈ H.

(b) For all pointers w, if H[o] = w then H ′[o] = w.

(c) If o /∈ H but o ∈ H ′, then o is reachable from root(O).

Proof. By induction on O, we can assume that the theorem holds for all recursive calls. We proceed

by case analysis, analogously to the proof of theorem 42.

We implement algorithm 3 and formalize its correctness proof in the Lean functions Restrict.orestrict

and Restrict.restrict_helper:

56



private def restrict_helper (O : OBdd n m) (b : Bool) (i : Fin n)

(s : State n m) (inv : Invariant b i O s) :

{ r : State n m × RawPointer //

(Invariant b i O r.1) ∧
(r.1.cache[O.1.root]? = some r.2) ∧
(s.size ≤ r.1.size) ∧
(∀ (k : Pointer m),

(∀ p, s.cache[k]? = some p → r.1.cache[k]? = some p) ∧
(r.1.cache[k]? = none → s.cache[k]? = none) ∧
(s.cache[k]? = none → (∃ p, r.1.cache[k]? = some p) →
Reachable O.1.heap O.1.root k))

}

def orestrict (b : Bool) (i : Fin n) (O : OBdd n m) :

(s : Nat) × { W : OBdd n s // W.evaluate = Nary.restrict O.evaluate b i }

Our formulation of BDD restriction in algorithm 3 is conducive for proving correctness in the formal

setting of Lean. As Bryant remarks in [Bry86], we can also construct the restriction of an OBDD O at

some index i just by modifying all pointers reachable from root(O) that point to nodes with variable

index i—thus changing the input BDD O—instead of constructing a completely new BDD as we do

algorithm 3. We describe this alternative restriction algorithm in pseudo-code in algorithm 4.

Note that in algorithm 4, the recursive helper function has just one recursive case, which is the

case wherein root(O) is not in the cache H and it is a nonterminal with variable index var(O) < i.

When var(O) ≥ i, algorithm 4 does not need to descend further down O, since the orderedness of

O guarantees that no pointers to nodes with variable index i are reachable from root(O). Thus if

all relevant nodes with variable index i are close to root(O) (and far from the terminal nodes), then

algorithm 4 may require significantly less recursive calls than algorithm 3, which always descends all

the way down to the terminal nodes. In general, both algorithm 3 and algorithm 4 have O(size(O))

time complexity.

Reduce

Both Apply.oapply and Restrict.orestrict produce OBDDs with a given target denotation. In general,

neither of these algorithms produce reduced OBDDs, however. To obtain ROBDDs, we employ an

additional reduction algorithm, which reduces an arbitrary OBDD O to an ROBDD R with the same

denotation D(R) = D(O).

Our implementation closely follows the Reduce algorithm from [Bry86]. The corresponding function

in Reduce.lean is Reduce.oreduce:

def oreduce (O : OBdd n m) : (s : Nat) × OBdd n s

We saw in theorem 31 that ROBDDs are the smallest OBDDs with a given denotation. In particular,

when we reduce an OBDD O to an ROBDD R, we have size(R) < size(O), except when O is already

reduced, in which case we get size(R) = size(O) of course. The Reduce.oreduce function thus produces

an OBdd with a (potentially) different heap size than the heap size of its input, so it also returns the

new heap size s alongside the resulting ROBDD, similarly to Apply.oapply.

Formally proving the correctness of Reduce.oreduce in Lean is very involved. Since our implemen-

tation closely follows the well-known Reduce algorithm from [Bry86], we opt to leave this correctness

57



Input: OBDD O ∈ BDDn, b ∈ B, i ∈ [n]
Output: OBDD W with D(W ) = D(O)i←b

H ← empty hash table mapping input pointers to output pointers
def restrict alt helper(O):

if H[root(O)] = p for some pointer p then
return p

else
if root(O) is terminal or var(O) > i then

return root(O)
else

if var(O) = i then
if b = true then

H[root(O)]← high(root(O))
return high(root(O))

else
H[root(O)]← low(root(O))
return low(root(O))

end

else
l← restrict alt helper(low(O))
h← restrict alt helper(high(O))
low(root(O))← l
high(root(O))← h
H[root(O)]← root(O)
return root(O);

end

end

end

r ← restrict alt helper(O)⟩
return O[r]

Algorithm 4: RestrictAlt

proof for future work. We state the correctness lemmas for Reduce.oreduce and take them as given for

now:

lemma oreduce_reduced {O : OBdd n m} : OBdd.Reduced (oreduce O).2 := sorry

lemma oreduce_evaluate {O : OBdd n m} : (oreduce O).2.evaluate = O.evaluate := sorry

The first step of the Reduce algorithm is to collect all nonterminal nodes reachable from the root

of the OBDD that we want to reduce, and put them in different “buckets” labeled by their variable

indices. In Bryant’s description of the algorithm in [Bry86], this is stated as “[p]ut each vertex u on

list vlist[u.index].” To do so, we implement a function Collect.collect, which collects all relevant

nonterminal nodes for a given OBDD into a list. It uses a recursive helper function collect_helper to

traverse the OBDD in depth-first order, accumulating newly encountered node indices:

private def collect_helper (O : OBdd n m) :

Vector Bool m × List (Fin m) → Vector Bool m × List (Fin m) :=

match h : O.1.root with

| .terminal _ => id

| .node j => fun s 7→

58



if s.1.get j

then s

else collect_helper (O.high h) (collect_helper (O.low h) ⟨s.1.set j true, j :: I.2⟩)
termination_by O

def collect (O : OBdd n m) : List (Fin m) :=

(collect_helper O ⟨Vector.replicate m false, []⟩).2

We formally prove the correctness of Collect.collect in the following two lemmas, which state

that the list of the node indices that the function produces contains each relevant nonterminal, without

duplications and with no other unrelated elements:

lemma mem_collect_iff_reachable {O : OBdd n m} {j : Fin m} :

j ∈ collect O ↔ Reachable O.1.heap O.1.root (.node j)

lemma collect_nodup {O : OBdd n m} : (collect O).Nodup

We use these lemmas to prove the Size.size_spec lemma, stating that the length of collect O is

exactly the size of O, which we saw in section 2.2.2.

Relabel

The last primitive our library provides for transforming BDDs, in addition to BDD.apply and BDD.restrict,

is the BDD.relabel function, which we have described in section 2.1.3. This interface function is imple-

mented on top of an internal function called Relabel.relabel, which modifies all variable indices in

the heap of a given BDD B ∈ BDDn according to a given function f : N→ N:

def relabel_node {f : Nat → Nat} (hf : ∀ i : Fin n, f i < f n) : Node n m → Node (f n) m

| ⟨var, low, high⟩ => ⟨⟨f var.1, hf _⟩, low, high⟩

def relabel_heap {f : Nat → Nat} (hf : ∀ i : Fin n, f i < f n) :

Vector (Node n m) m → Vector (Node (f n) m) m := Vector.map (relabel_node hf)

def relabel {f : Nat → Nat} (hf : ∀ i : Fin n, f i < f n) : Bdd n m → Bdd (f n) m

| ⟨heap, root⟩ => ⟨relabel_heap hf heap, root⟩

Note that unlike BDD.relabel, the lower-level Relabel.relabel operates on arbitrary BDDs, which

need not be reduced or even ordered. Its only precondition is that the function f , which relabels

individual variable indices, maps all variables indices i ∈ [n] to new variable indices below f(n), which

is the input size of the resulting BDD. This is more of a convention than a condition, though: since

n is not itself a valid variable index (n /∈ [n]), callers of Relabel.relabel can have f map n to any

number at all. Thus f(n) simply specifies the input size of the resulting BDD.

Next, we prove that Relabel.relabel produces ordered BDDs, under two condition:

1. The input BDD B ∈ BDDn is ordered.

2. f is strictly increasing for variable indices that B uses, that is variable indices i ∈ [n] such that

some nonterminal node v reachable from root(B) has var(v) = i.

59



def usesVar (B : Bdd n m) (i : Fin n) :=

∃ j, Reachable B.heap B.root (node j) ∧ B.heap[j].var = i

lemma relabel_ordered {B : Bdd n m} {f : Nat → Nat} {hf : ∀ i : Fin n, f i < f n} :

(∀ i i’ : Fin n, i < i’ → B.usesVar i → B.usesVar i’ → f i < f i’) →
Bdd.Ordered B → Bdd.Ordered (relabel hf B)

We then use the relabel_ordered lemma to lift the Relabel.relabel to a function Relabel.orelabel,

which takes and produces OBDDs, rather arbitrary BDDs:

def orelabel (O : OBdd n m) {f : Nat → Nat} (hf : ∀ i : Fin n, f i < f n)

(hu : ∀ i i’ : Fin n, i < i’ → O.1.usesVar i → O.1.usesVar i’ → f i < f i’) :

OBdd (f n) m := ⟨(relabel hf O.1), relabel_ordered hu O.2⟩

Recall that the purpose of BDD relabeling is to change the set of variable indices that the BDD’s

denotation depend on. More concretely, if we relabel an OBDD O ∈ BDDn with a relabeling function

f , the resulting OBDD W should satisfy D(W )(x0, . . . , xf(n)−1) = D(O)(xf(0), xf(1), . . . , xf(n−1)).

To establish the correctness of our orelabel function, we prove the following lemma:

theorem orelabel_evaluate (O : OBdd n m) {f : Nat → Nat} {hf : ∀ i : Fin n, f i < f n}

{hu : ∀ i i’ : Fin n, i < i’ → O.1.usesVar i → O.1.usesVar i’ → f i < f i’}

{I : Vector Bool (f n)} :

OBdd.evaluate (orelabel O hf hu) I = O.evaluate (Vector.ofFn (fun i 7→ I[f i]’(hf i)))

Lastly we prove that orelabel also preserves the property of being reduced, so it takes ROBDDs

to ROBDDs:

lemma orelabel_reduced {O : OBdd n m} {f : Nat → Nat} {hf : ∀ i : Fin n, f i < f n}

{hu : ∀ i i’ : Fin n, i < i’ → O.1.usesVar i → O.1.usesVar i’ → f i < f i’} :

O.Reduced → (orelabel O hf hu).Reduced

Recall that the interface function BDD.relabel, unlike the underlying Relabel.orelabel, does not

mention the Bdd.usesVar predicate in its precondition or otherwise, which is crucial since our library’s

interface deals only with the Boolean functions that BDDs denote, never exposing the specifics of how

BDDs represent these Boolean functions. Thus users of our library cannot (and should not) reason

about which variables a BDD uses in the sense of Bdd.usesVar.

Instead, we must provide a purely semantic characterization of the variable indices that a given

BDD uses, which users can reason about exclusively from the point of view of the BDD’s denotation.

Here, the tight connection between the structure of an ROBDD and its denotation comes to our aid,

as captured in the following theorem, which allows us to express statements about the variables an

ROBDD uses in terms of dependencies of the Boolean function it denotes:

Theorem 46. For an ROBDD O ∈ BDDn, O uses a variable index i ∈ [n] if and only if D(O)

depends on i.

Proof. Let O ∈ BDDn be an ROBDD.

⇒ Suppose that O uses a variable index i ∈ [n]. Thus there exists a nonterminal node v such that

var(v) = i and v is reachable from root(O), which means that there is a path P from root(O) to

a pointer to v.

By induction on the length of P :

60



Base If P is of length 0, we get that root(O) points to v directly. Hence we have:

D(O) = xi ·D(high(O)) + x̄i ·D(low(O))

Thus D(high(O)) = D(O)i←true and D(low(O)) = D(O)i←false. Suppose that D(O) does

not depend on i, thus D(O)i←true = D(O)i←false, and hence D(high(O)) = D(low(O)).

However, high(O) and low(O) are reduced, since they are reachable from the ROBDD O.

By canonicity (theorem 25), we get that high(O) ∼ low(O). But that means that O is not

reduced. Contradiction. Thus D(O) depends on i, as needed.

Step If P is of length ℓ + 1, then root(O) is a nonterminal and v is reachable from either

low(O) or high(O) via a path of ℓ edges. If v is reachable from low(O) via a path of

ℓ edges, then in particular that means that low(O) uses i. By I.H. we now get that

D(low(O)) depends on i. Thus there exists a vector x ∈ Bn with xi = false such that

D(low(O))(x) ̸= D(low(O))(x0, . . . , xi−1, true, xi+1, . . . , xn−1).

Let x′ = x0, . . . , xvar(O)−1, false, xvar(O)+1, . . . , xn−1 be the vector that is obtained from x by

setting the variable at index var(O) to false. Since O is ordered, low(O) does not depend

on var(O), and thus low(O)(x′) = low(O)(x). Hence we have:

D(O)(x′) = D(low(O))(x′)

= D(low(O))(x)

̸= D(low(O))(x0, . . . , xi−1, true, xi+1, . . . , xn−1)

= D(low(O))(x0, . . . , xvar(O)−1, false, xvar(O)+1, . . . , xi−1, true, xi+1, . . . , xn−1)

= D(low(O))(x′0, . . . , x
′
i−1, true, x

′
i+1, . . . , x

′
n−1)

= D(O)(x′0, . . . , x
′
i−1, true, x

′
i+1, . . . , x

′
n−1)

Thus O depends on i, as needed. We handle the case in which v is reachable from high(O)

rather than low(O) analogously.

⇐ By contraposition, suppose that O does not use i. We show that D(O) does not on i by well-

founded induction on O. If root(O) is a terminal, then D(O) is constant and in particular it does

not depend on i, as needed. Otherwise, if root(O) is nonterminal, then since O does not use i

we know that var(O) ̸= i and that low(O) and high(O) do not use i either. Thus by I.H. we get

that D(low(O)) and D(high(O)) do not depend on i, and by definition of BDD denotation we

conclude that D(O) does not depend i.

We formalize theorem 46 and its proof in the following Lean lemma:

lemma OBdd.usesVar_iff_dependsOn_of_reduced {O : OBdd n m} :

O.Reduced → (O.1.usesVar i ↔ Nary.DependsOn O.evaluate i)

With this lemma in place, we are able to translate the precondition of BDD.relabel, which is stated

in terms of variables that an ROBDD’s denotation depend on, to the precondition of the underlying

Relabel.orelabel, which is stated in terms of variables that the BDD uses, as we saw above.

Another difference between the interface function BDD.relabel and the lower-level Relabel.orelabel

is the type of the relabeling function f that they accept. With BDD.relabel, f has type Fin B.nvars → Fin n

61



where B.nvars is the input size of the input BDD, and n is the input size of the output BDD, which

callers can specify explicitly. This stands in contrast with the Nat → Nat type of the relabeling function

that the underlying Relabel.orelabel accepts, as we saw above. The reason for this difference is that

we expect the interface that BDD.relabel provides, with the ability to explicitly specify the resulting

input size, to be more convenient for users of our library. Under the hood, BDD.relabel converts the

Fin B.nvars → Fin n relabeling function to an appropriate Nat → Nat function before passing it to

Relabel.orelabel.

2.2.6 Deciding Variable Dependencies

Theorem 46, in addition to its utility for the definition of BDD.relabel, also induces an efficient algorithm

for deciding whether the denotation of an ROBDD depends on a given variable index. For an arbitrary

n-ary Boolean function f , deciding whether f depends on index i ∈ [n] requires checking potentially all

2n possible inputs. However, if we have an ROBDD B such that D(B) = f , then we can check whether

f depends on i in O(size(B)), by deciding whether B uses i, and leverage theorem 46 to translate this

decision to a decision about to the dependency of f on i.

We show a decision procedure for whether a given OBDD uses a given variable index in algorithm 5.

Input: OBDD O ∈ BDDn, i ∈ [n]
Output: true if O uses i, false otherwise
F ← ∅
def uv helper(O):

if root(O) is terminal or var(O) > i or root(O) ∈ F then
return false

else
if var(O) = i then

return true
else

if uv helper(low(O)) then
return true

else
if uv helper(high(O)) then

return true
else

F ← F ∪ {root(O)}
return false

end

end

end

end

return uv helper(O)
Algorithm 5: ROBDD variable usage decision procedure

We formalize algorithm 5 in Lean with the following DecidablePred instance:

instance OBdd.instDecidableUsesVar {O : OBdd n m} : DecidablePred O.1.usesVar

Note that algorithm 5 and its implementation in instDecidableUsesVar do not require that the

input OBDD O is reduced. However, to apply theorem 46 and conclude that D(O) depends (or rather

does not depend) on a given index, we must know that O is reduced.

62



With instDecidableUsesVar and usesVar_iff_dependsOn_of_reduced (which implement algorithm 5

and theorem 46, respectively), we implement the DecidablePred instance instDecidableDependsOn,

which we saw in section 2.1.4 as part of our description of the library’s interface.

instance instDecidableDependsOn (B : BDD) : DecidablePred (DependsOn B.denotation’) :=

fun i 7→
(show B.denotation’ = B.obdd.evaluate by simp [. . .]) ▶

(decidable_of_iff _ (OBdd.usesVar_iff_dependsOn_of_reduced B.hred))

2.2.7 Implementation of Choice and Find

Lastly, we describe the implementation the functions that our library provides for finding “solutions”—

inputs for which the denotation of a given BDD return true. These functions are BDD.choice and

BDD.find, which we saw in section 2.1.5.

The BDD.choice function is implemented on top of an internal function Choice.choice, which

takes an ROBDD O ∈ BDDn and returns an input vector x ∈ Bn such that D(O)(x) = true, under

the precondition that such an input exists. In fact, it returns the lexicographically smallest x with

that property, using an algorithm that Knuth briefly mentions in [Knu09]. The pseudo-code for this

algorithm is given in algorithm 6.

Input: ROBDD O ∈ BDDn for which there exists x ∈ Bn such that D(O)(x) = true
Output: x ∈ Bn such that D(O)(x) = true
def choice helper(O ∈ BDDn with nonterminal root(O), x ∈ Bn):

if low(root(O)) is nonterminal then
return choice helper(low(O), x)

else
if val(root(O)) = true then

xvar(O) ← false return x

else
if high(root(O)) is nonterminal then

x← choice helper(high(O), x)
end
xvar(O) ← true return x

end

end

x← ⟨false, . . . , false⟩
if root(O) is terminal then /* Must have val(root(O)) = true since D(O) is not 0 */

return x
else

return choice helper(O, x)
end

Algorithm 6: ROBDD Choice

In [Bry86], Bryant presents an algorithm called SatisfyOne, which is similar to algorithm 6 except

that Bryant’s algorithm works also for OBDDs that are not reduced. It also starts with an arbitrary

vector x ∈ Bn whereas we start with x = ⟨false, . . . , false to obtain the lexicographically smallest

solution. As Bryant notes, for ROBDDs, the SatisfyOne algorithm takes at most n recursive calls

for an input ROBDD O ∈ BDDn, since it traverses one path from root(O) to the true terminal,

and each of the n variable indices may appear at most once along such a path. The same holds for

63



our algorithm 6—its time complexity is linear in n. For non-reduced OBDDs, Bryant’s SatisfyOne

algorithm does not retain this performance guarantee: it may require up to 2n recursive calls in the

worst case.

We implement algorithm 6 in the function Choice.choice, and prove its correctness in the lemma

Choice.choice_evaluate:

def choice (O : OBdd n m) : (∃ I, O.evaluate I) → Vector Bool n

def choice_evaluate {O : OBdd n m} (hr : O.Reduced) (ht : ∃ I, O.evaluate I = true) :

O.evaluate (choice O ht) = true

The interface function BDD.choice is implemented as a wrapper around Choice.choice. The

BDD.find function is in turn implemented on top of BDD.choice—it first checks whether its input

denotes a satisfiable Boolean function by comparing it to BDD.const false, and if so it delegates to the

BDD.choice function; otherwise it returns none to indicate that no solution exists:

private lemma find_aux {B : BDD} :

¬ B.SemanticEquiv (const false) → ∃ (I : Vector Bool B.nvars), B.denotation’ I = true

def find {B : BDD} : Option (Vector Bool B.nvars) :=

if h : B.SemanticEquiv (const false) then none else some (choice (find_aux h))

2.3 Example Application

In this section, we describe an example application of our library—a verified SAT solver. The purpose

of a SAT solver is to determine whether a given propositional formula is satisfiable. The Lean standard

library defines a type of propositional formulae in conjunctive normal form (CNF), called Std.Sat.CNF.

This Std.Sat.CNF type is indexed by another type α, which is the type of literals that appear in the

formula. In our case, we set α to Fin n—the type of indices in a vector of size n. The standard library

also provides a function Std.Sat.CNF.eval, which evaluates a given CNF formula with respect to a

given assignment (a function mapping literals to Booleans, so Fin n → Bool) and outputs a Boolean.

Lastly, the standard library provides a predicate Std.Sat.CNF.Unsat, which holds for a formula if it

evaluates to false for all possible assignments.

In file Sat.lean in our library, we implement a decision procedure for this Std.Sat.CNF.Unsat

predicate, which translates a given CNF φ to an ROBDD Bφ using the BDD.and, BDD.or and BDD.not

functions, and finally applies instDecidableSemanticEquiv to check if D(B) = 0. By proving that our

translation from CNF to BDD is semantically correct (which means that a formula φ evaluates to true

with a given assignments if and only if D(Bφ) yields true for the corresponding input), we are able to

translate a proof that D(Bφ) = 0 back to a proof that φ is unsatisfiable, and likewise when we get

D(Bφ) ̸= 0 we are able to produce a proof that φ is satisfiable.

The following three functions implement the translation from CNF formulae to ROBDDs:

def BDD_of_literal (l : Std.Sat.Literal (Fin n)) : BDD :=

if l.2 then (BDD.var l.1) else (BDD.var l.1).not

def BDD_of_clause (c : Std.Sat.CNF.Clause (Fin n)) : BDD :=

(c.map BDD_of_literal).foldr BDD.or (BDD.const false)

def BDD_of_CNF (C : Std.Sat.CNF (Fin n)) : BDD :=

(C.map BDD_of_clause).foldr BDD.and (BDD.const true)

64



Next, we establish that the input size of the resulting BDD is always bounded by the number of

literals n:

lemma BDD_of_literal_nvars : (BDD_of_literal (n := n) C).nvars ≤ n := by

simp only [BDD_of_literal]; split <;> (simp; omega)

lemma BDD_of_clause_nvars : (BDD_of_clause (n := n) C).nvars ≤ n := by

induction C <;> simp_all [BDD_of_clause]

lemma BDD_of_CNF_nvars : (BDD_of_CNF (n := n) C).nvars ≤ n := by

induction C <;> simp_all [BDD_of_CNF]

Lastly we prove that our translation from CNF to BDD is semantically correct, which allows us to

define a Decidable instance for the Std.Sat.CNF.Unsat predicate, which goes through the translation

to BDD and our instDecidableSemanticEquiv instance which decides if a given BDD is semantically

equivalent to another BDD, in this case to BDD.const false:

lemma BDD_of_CNF_correct {f : Fin n → Bool} (C : Std.Sat.CNF (Fin n)) :

Std.Sat.CNF.eval f C =

(BDD_of_CNF C).denotation (n := n) (by simp) (Vector.ofFn f) := by

induction C with

| nil => simp [BDD_of_CNF]

| cons head tail ih =>

simp only [Std.Sat.CNF.eval_cons, BDD_of_CNF, . . .]

simp only [Std.Sat.CNF.eval_cons, BDD_of_CNF, . . .] at ih

rw [ih]

congr 1

induction head with

| nil => simp [BDD_of_clause]

| cons head tail ih =>

simp only [Std.Sat.CNF.Clause.eval_cons, Fin.eta]; rw [ih]

simp only [BDD_of_clause, Fin.eta, . . .]

congr 1

simp only [BDD_of_literal]; split <;> simp_all

instance instDecidableUnsat (C : Std.Sat.CNF (Fin n)) : Decidable (Std.Sat.CNF.Unsat C) :=

decidable_of_iff ((BDD_of_CNF C).SemanticEquiv (BDD.const false)) ⟨l_to_r, r_to_l⟩ where

l_to_r h := by . . .

r_to_l h := by . . .

To evaluate the performance of our SAT solver, we applied it to random 3-CNF formulae with

differing numbers of variables and clauses, and measured the time that our SAT solver needed to check

their satisfiability. All input CNF instances were generated using the CNFgen tool [Lau+17]. All

performance measurements where conducted on a MacBook Pro laptop with a 2.3 GHz 8-Core Intel

Core i9 CPU and 64GB of 2667 MHz DDR4 memory, using the SatSolver.lean program which can be

found in the library’s repository at https://github.com/eshelyaron/lean4-bdd.

For each input size n between 10 and 50, we checked 5 random 3-CNF formulae, each with 128

clauses, and measured the time each run took. We also measured the maximum BDD size created

during the run, by slightly modifying BDD_of_CNF as presented above to keep track of the maximum

BDD size while processing the CNF clauses. We found that both the run time and the maximum BDD

65

https://github.com/eshelyaron/lean4-bdd


size grow exponentially with the number of variables, as one would expect. Figure 2.2 shows these

results, on the left we see the average run time on a logarithmic scale, plotted as a function of the

number of variables; on the right we see the run time plotted as a function of the maximum BDD size

with both axes scaled logarithmically. The right plot in particular shows that the run time of our SAT

solver is roughly proportional to the maximum BDD size.

At around 50 variables, we reach maximum BDD size of the order of 108. Our library is able to

handle such large BDDs, but constructing them takes a significant amount of time (several hours).

Hence in modern SAT solver standards, our SAT solver performs rather poorly, seeing as state-of-the-art

SAT solvers can often handle hundreds of thousands of variables and more [HJS10].

By applying a sampling profiler while running our SAT solver, we observe that most of the runtime is

spent in the functions Apply.apply_helper and Reduce.oreduce which we have described in section 2.2.5.

This finding accords with our expectations, since we expect most of the run time to be spent in the

translation of CNF to BDD—where these two functions do most of the work—rather than in the check

for satisfiability of the resulting BDD, which should be instantaneous.

20 30 40 50

10−1

100

101

102

103

104

Number of variables

T
im

e
in

se
co
n
d
s

103 104 105 106 107 108

10−1

100

101

102

103

104

Maximum BDD size

Figure 2.2: SAT solver run time by number of variables and maximum BDD size

In addition to varying the number of variables, we also measured the performance of our SAT solver

with a varying number of 3-CNF clauses while keeping the number of variables fixed to 32. The run

time of our SAT solver appears to be mostly independent of the number of clauses, as seen in fig. 2.3.

0 200 400 600 800 1,000

5

10

15

20

Number of clauses

T
im

e
in

se
co
n
d
s

Figure 2.3: SAT solver run time by number of 3-CNF clauses

66



Chapter 3

Future Work and Summary

3.1 Directions for Further Development

In this section we discuss various ways in which our BDD library can be developed further.

Perhaps the most pressing task for our BDD library is to complete the correctness proof of our

implementation of the Reduce algorithm, which we have discussed in section 2.2.5. This is the only

part of the library that we have not fully formalized yet. Completing this last step would allow our

library to be used in broader formalization projects and in applications that require strict correctness

guarantees, as well as automated proof tactics in Lean based on the BDD-based decision procedures

that our library provides.

We expect that completing the correctness proof for our current implementation of the Reduce

algorithm will not be too difficult, based on our experience proving the correctness of the rest of

the algorithms in the library. However, as we discuss below, there are also ways to enhance the

current implementation, and such enhancements may affect any such correctness proof. Therefore an

alternative approach would be to first optimize our implementation, e.g. by switching to a shared

representation, and then to prove the correctness of the new implementation.

We would also like to extend our library with facilities for reasoning about the sizes of BDDs.

Currently, we provide a function BDD.size which returns the size of a given BDD, but we do not

provides any formal lemmas that facilitate reasoning about the result. The BDD sizes are of great

interest since they significantly affect the performance of BDD based applications (as we saw, for

example, in section 2.3), and indeed the problem of minimizing BDDs has been studied extensively in

the BDD literature (e.g. [DG99; Fel+93; Sch+02; EGD03; BW96]).

In particular, we would like to formalize the notion of the cofactors of a Boolean function, and

prove that the size of a BDD is lower-bounded by the number of its denotation’s cofactors. This should

be a rather straightforward task, and it would allow us to formalize the proof from [Hun97] which

shows that the characteristic function for the set of permutations only admits BDDs of exponential

size.

Next, we would like to implement and formally prove the correctness of BDD solution counting

algorithm (see e.g. [Bry86; Knu09]). Currently, our library provides a method for obtaining one

solution (an input for which a BDD’s denotation returns true) via the BDD.choice and BDD.find

functions. Solution counting yields the total number of such solutions, and can be achieved in

O(size(B)) time for a BDD B, via a simple recursive algorithm. In [Knu09], Knuth shows several

interesting combinatorial problems that can be solved via BDD-based solution counting, such as finding

67



the number of independent sets in a given graph.

As discussed in section 2.1.3, our library provides the BDD.apply and BDD.restrict function which

can be combined to implement all sorts operations on Boolean functions, such as existential and

universal quantification. However, for some common operations, we can provide more efficient direct

implementations, instead of building on top of apply and restrict. In particular, an efficient imple-

mentation of the relational product operation—for example, as described in [Yan+98]—can be very

beneficial for model checking applications [Bry18; CG18].

Similarly, our library could be extended with a ternary if-then-else operator along the lines of

[BRB91]. This is a common operation in BDD implementations in practice, provided by both CUDD

and CacBDD, as two prominent examples [Som98; LSX13].

Lastly, we survey several implementation techniques that our library can adopt to improve perfor-

mance.

First, our library can benefit from the use of complemented edges (CE) [Kar88; BRB91]. With CE,

each BDD edge is enriched with a Boolean “flag” that says whether or not the edge is complemented.

A complemented edge negates the denotation of the BDD it points to, so we can represent both a

Boolean function f and its negation f̄ using the same BDD. In particular, we only need one terminal

node, since we can replace any edge pointing to the false terminal with a complemented edge pointing

to true terminal. BDDs with CE are more compact, as they reuse the same space for Boolean

functions that arise along with their negation, and they also let us negate a BDD in constant time (by

(un)complementing one edge) whereas in our current implementation, without CE, applying negation

to a BDD B takes O(size(B)) time.

We consider CE to be a natural next step in the development of our library, that should require

no changes in the library’s interface, and only some adjustments to the existing core definitions and

proofs.

A more involved, yet very promising, potential enhancement for our library would be to represent

all BDDs using one heap with multiple roots, which allows sharing common structures across different

BDDs. Using such a shared representation [MIY91], all similar BDDs are represented by the same

exact pointer, which reduces the task of checking for BDD similarity to mere a pointer equality test,

which can be performed in constant time. (In our current implementation using a split representation,

such a similarity check takes linear time, see section 2.2.4.)

Another prominent BDD optimization which our library currently lacks is dynamic variable

reordering, which consists of switching the order of adjacent variables during the execution of a BDD-

based program. Different variable orders induce BDDs of different sizes for a fixed Boolean function.

Thus dynamic reordering techniques, such as the sifting algorithm ([Rud93]), can decrease the size of a

constructed BDD, allowing our implementation to handle Boolean functions that it would otherwise

fail to represent due to memory constraints.

In section 2.2.5, we mentioned a potential optimization for our implementation of the Apply

algorithm that dates back to Bryant’s description of the algorithm in [Bry86]: we can eliminate more

recursive calls in Apply.apply_helper by leveraging the fact that the output of some binary Boolean

operators (which the Apply algorithm applies to to two Boolean functions represented by BDDs) can be

determined even if one or two of its arguments are not fully determined, e.g. false · b = false regardless

of the value of b. Using complemented edges and a shared representation provides even more such

early termination opportunities, as Bryant details in [Bry18].

68



Finally, the Reduce algorithm (section 2.2.5) involves a list sorting operation for which we currently

rely on Lean’s merge sort implementation in List.mergeSort. This has special runtime support in

Lean that makes it especially efficient, but it nevertheless has O(n log n) time complexity. In [Knu09],

Knuth shows a variant of the Reduce algorithm that employs a sorting method based on bucket sort,

which has linear average time complexity.

When examining the performance our example SAT solver (section 2.3), we saw that List.mergeSort

accounts for the second highest amount of total run time, right after Apply.apply_helper. Hence

replacing List.mergeSort with a faster alternative may yield a significant performance improvement.

3.2 Conclusion

In this thesis, we developed and presented an implementation of a Binary Decision Diagrams library in

Lean 4.

We began by presenting the theory of BDDs in chapter 1, followed by a detailed description of our

library in chapter 2.

Notably, in section 2.1 we presented our library’s interface, which provides methods for constructing

BDDs and applying them to various tasks related to Boolean functions, such as efficiently deciding

whether two BDDs represent the same Boolean function. The key characteristic of our library’s

interface is that it fully hides the details of our BDD implementation, allowing users to reason (prove

statements) purely in terms of Boolean functions, while benefiting from the efficient algorithms that

the underlying BDDs admit.

With the exception of one correctness proof which remains to be completed, our implementation is

fully verified, in the sense that all of the library’s functions are accompanied by correctness proofs in

the formal system of Lean. These correctness proofs build on top of results from the theory of BDDs

that we formalize and prove in our library, such as our proof that ROBDDs constitute a canonical

form for Boolean functions (see section 2.2.4).

In section 2.2, we examined our implementation and formalization of BDDs in detail, and investigated

some of the aforementioned formal correctness proofs, most notably the correctness proof for the BDD

Apply algorithm which we discussed in section 2.2.5.

We evaluated an example application of our library, a BDD-based SAT solver, in section 2.3. This

SAT solver has the unique advantage that it uses the correctness lemmas of our library to provide a

Lean proof of (un)satisfiability as part of its output. However, its performance pales in comparison

with state-of-the-art SAT solvers such as CaDiCal [Bie+24].

In section 3.1, we surveyed several possible enhancements that may improve our library’s perfor-

mance.

69



Bibliography

[And97] Henrik Reif Andersen. “An introduction to binary decision diagrams”. In: Lecture notes,

available online, IT University of Copenhagen 5 (1997). http://cc.ee.ntu.edu.tw/~ric/

teaching/DataStructureProgramming/S09/Project/Intro_BDD_Henrik97.pdf (cited

on page 15).

[Bie+24] Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian

Pollitt. “CaDiCaL 2.0”. In: Computer Aided Verification - 36th International Conference,

CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part I. Edited by Arie

Gurfinkel and Vijay Ganesh. Volume 14681. Lecture Notes in Computer Science. Springer,

2024, pages 133–152. https://doi.org/10.1007/978-3-031-65627-9_7 (cited on

page 69).

[BRB91] Karl S. Brace, Richard L Rudell, and Randal E Bryant. “Efficient implementation of a

BDD package”. In: Proceedings of the 27th ACM/IEEE design automation conference. 1991,

pages 40–45. https://doi.org/10.1145/123186.123222 (cited on pages 2, 68).

[Bry18] Randal E. Bryant. “Binary Decision Diagrams”. en. In: Handbook of Model Checking.

Edited by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem.

Cham: Springer International Publishing, 2018, pages 191–217. isbn: 978-3-319-10574-1.

https://doi.org/10.1007/978-3-319-10575-8_7 (cited on pages 2, 15, 22, 27, 46, 68).

[Bry86] Randal E. Bryant. “Graph-based algorithms for boolean function manipulation”. In: Com-

puters, IEEE Transactions on 100.8 (1986), pages 677–691. https://doi.org/10.1109/

TC.1986.1676819 (cited on pages 2, 6, 9, 15, 20, 46, 54, 57, 58, 63, 67, 68).

[Bry95] Randal E. Bryant. “Binary decision diagrams and beyond: Enabling technologies for formal

verification”. In: Proceedings of IEEE International Conference on Computer Aided Design

(ICCAD). IEEE. 1995, pages 236–243. https://doi.org/10.1109/ICCAD.1995.480018

(cited on page 2).

[BS21] Gregor Behnke and David Speck. “Symbolic search for optimal total-order HTN planning”.

In: Proceedings of the AAAI Conference on Artificial Intelligence. Volume 35. 13. 2021,

pages 11744–11754. https://doi.org/10.1609/aaai.v35i13.17396 (cited on page 2).

[Bur+94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, and David L.

Dill. “Symbolic model checking for sequential circuit verification”. In: IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 13.4 (1994), pages 401–424.

https://doi.org/10.1109/43.275352 (cited on pages 2, 27).

70

http://cc.ee.ntu.edu.tw/~ric/teaching/DataStructureProgramming/S09/Project/Intro_BDD_Henrik97.pdf
http://cc.ee.ntu.edu.tw/~ric/teaching/DataStructureProgramming/S09/Project/Intro_BDD_Henrik97.pdf
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1145/123186.123222
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1609/aaai.v35i13.17396
https://doi.org/10.1109/43.275352


[BW96] Beate Bollig and Ingo Wegener. “Improving the variable ordering of OBDDs is NP-complete”.

In: IEEE Transactions on computers 45.9 (1996), pages 993–1002. https://doi.org/10.

1109/12.537122 (cited on page 67).

[CG18] Sagar Chaki and Arie Gurfinkel. “BDD-Based Symbolic Model Checking”. In: Handbook

of Model Checking. Edited by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,

and Roderick Bloem. Cham: Springer International Publishing, 2018, pages 219–245. isbn:

978-3-319-10575-8. https://doi.org/10.1007/978-3-319-10575-8_8 (cited on pages 6,

27, 28, 68).

[DG99] Rolf Drechsler and Wolfgang Günther. “Using lower bounds during dynamic BDD mini-

mization”. In: Proceedings of the 36th annual ACM/IEEE Design Automation Conference.

1999, pages 29–32. https://doi.org/10.1145/309847.309858 (cited on page 67).

[DS01] Rolf Drechsler and Detlef Sieling. “Binary decision diagrams in theory and practice”. In:

International Journal on Software Tools for Technology Transfer 3 (2001), pages 112–136.

https://doi.org/10.1007/s100090100056 (cited on page 15).

[EGD03] Rüdiger Ebendt, Wolfgang Gunther, and Rolf Drechsler. “An improved branch and bound

algorithm for exact BDD minimization”. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 22.12 (2003), pages 1657–1663. https://doi.org/10.

1109/TCAD.2003.819427 (cited on page 67).

[Fel+93] Eric Felt, Gary York, Robert Brayton, and Alberto Sangiovanni-Vincentelli. “Dynamic

variable reordering for bdd minimization”. In: Proceedings of EURO-DAC 93 and EURO-

VHDL 93-European Design Automation Conference. IEEE. 1993, pages 130–135. https:

//doi.org/10.1109/EURDAC.1993.410627 (cited on page 67).

[Gat18] Malvin Gattinger. New directions in model checking dynamic epistemic logic. University of

Amsterdam, 2018. https://malv.in/phdthesis (cited on pages 2, 27, 28).

[HJS10] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. “ManySAT: a parallel SAT solver”. In:

Journal on Satisfiability, Boolean Modelling and Computation 6.4 (2010), pages 245–262.

https://doi.org/10.3233/SAT190070 (cited on page 66).

[Hun97] Ngai Ngai William Hung. “Exploiting symmetry for formal verification”. Master’s thesis.

University of Texas at Austin, 1997. https://web.cecs.pdx.edu/~whung/papers/

thesis.pdf (cited on pages 15, 67).

[Kar88] Kevin Karplus. Representing Boolean functions with if-then-else DAGs. University of

California, Computer Research Laboratory, 1988. https : / / users . soe . ucsc . edu /

~karplus/papers/ucsc-88-28.pdf (cited on page 68).

[Knu09] Donald E. Knuth. The art of computer programming, volume 4, fascicle 1: Bitwise tricks &

techniques; binary decision diagrams. Addison-Wesley Professional, 2009. https://dl.acm.

org/doi/abs/10.5555/1593023 (cited on pages 2, 5, 15, 29, 46, 63, 67, 69).

[Lau+17] Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. “CNFgen: A generator

of crafted benchmarks”. In: Theory and Applications of Satisfiability Testing–SAT 2017:

20th International Conference, Melbourne, VIC, Australia, August 28–September 1, 2017,

Proceedings 20. Springer. 2017, pages 464–473. https://doi.org/10.1007/978-3-319-

66263-3_30 (cited on page 65).

71

https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1145/309847.309858
https://doi.org/10.1007/s100090100056
https://doi.org/10.1109/TCAD.2003.819427
https://doi.org/10.1109/TCAD.2003.819427
https://doi.org/10.1109/EURDAC.1993.410627
https://doi.org/10.1109/EURDAC.1993.410627
https://malv.in/phdthesis
https://doi.org/10.3233/SAT190070
https://web.cecs.pdx.edu/~whung/papers/thesis.pdf
https://web.cecs.pdx.edu/~whung/papers/thesis.pdf
https://users.soe.ucsc.edu/~karplus/papers/ucsc-88-28.pdf
https://users.soe.ucsc.edu/~karplus/papers/ucsc-88-28.pdf
https://dl.acm.org/doi/abs/10.5555/1593023
https://dl.acm.org/doi/abs/10.5555/1593023
https://doi.org/10.1007/978-3-319-66263-3_30
https://doi.org/10.1007/978-3-319-66263-3_30


[LSX13] Guanfeng Lv, Kaile Su, and Yanyan Xu. “CacBDD: A BDD package with dynamic cache

management”. In: Computer Aided Verification: 25th International Conference, CAV 2013,

Saint Petersburg, Russia, July 13-19, 2013. Proceedings 25. Springer. 2013, pages 229–234.

https://doi.org/10.1007/978-3-642-39799-8_15 (cited on pages 2, 42, 68).

[MIY91] Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. “Shared binary decision diagram

with attributed edges for efficient Boolean function manipulation”. In: Proceedings of the

27th ACM/IEEE design automation conference. 1991, pages 52–57. https://doi.org/10.

1145/123186.123225 (cited on pages 2, 68).

[MU21] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 theorem prover and program-

ming language”. In: Automated Deduction–CADE 28: 28th International Conference on

Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings 28. Springer. 2021,

pages 625–635. https://doi.org/10.1007/978-3-030-79876-5_37 (cited on pages 2,

16).

[Onl19] Stanford Online. Stanford Lecture: Donald Knuth - ”Fun With Binary Decision Diagrams

(BDDs)” (June 5, 2008). 2019. https://www.youtube.com/watch?v=SQE21efsf7Y&t=

3878s (cited on page 2).

[Pau15] Christine Paulin-Mohring. “Introduction to the calculus of inductive constructions”. In:

All about Proofs, Proofs for All 55 (2015). https://inria.hal.science/hal-01094195/

(cited on page 16).

[Rud93] Richard Rudell. “Dynamic variable ordering for ordered binary decision diagrams”. In:

Proceedings of 1993 International Conference on Computer Aided Design (ICCAD). IEEE.

1993, pages 42–47. https://doi.org/10.1109/ICCAD.1993.580029 (cited on pages 2,

68).

[Sch+02] Christoph Scholl, D Moller, Paul Molitor, and Rolf Drechsler. “BDD minimization using

symmetries”. In: IEEE transactions on computer-aided design of integrated circuits and

systems 18.2 (2002), pages 81–100. https://doi.org/10.1109/43.743706 (cited on

page 67).

[Sha38] Claude E. Shannon. “A symbolic analysis of relay and switching circuits”. In: Electrical

Engineering 57.12 (1938), pages 713–723. https://doi.org/10.1109/EE.1938.6431064

(cited on page 6).

[Som98] Fabio Somenzi. “CUDD: CU decision diagram package release 2.3. 0”. In: University of

Colorado at Boulder 621 (1998) (cited on pages 2, 42, 68).

[Tri16] Markus Triska. “The boolean constraint solver of SWI-Prolog (system description)”. In:

International Symposium on Functional and Logic Programming. Springer. 2016, pages 45–

61. https://doi.org/10.1007/978-3-319-29604-3_4 (cited on pages 3, 42).

[Ver+00] Kumar Neeraj Verma, Jean Goubault-Larrecq, Sanjiva Prasad, and S Arun-Kumar. “Re-

flecting bdds in coq”. In: Annual Asian Computing Science Conference. Springer. 2000,

pages 162–181. https://doi.org/10.1007/3-540-44464-5_13 (cited on page 3).

72

https://doi.org/10.1007/978-3-642-39799-8_15
https://doi.org/10.1145/123186.123225
https://doi.org/10.1145/123186.123225
https://doi.org/10.1007/978-3-030-79876-5_37
https://www.youtube.com/watch?v=SQE21efsf7Y&t=3878s
https://www.youtube.com/watch?v=SQE21efsf7Y&t=3878s
https://inria.hal.science/hal-01094195/
https://doi.org/10.1109/ICCAD.1993.580029
https://doi.org/10.1109/43.743706
https://doi.org/10.1109/EE.1938.6431064
https://doi.org/10.1007/978-3-319-29604-3_4
https://doi.org/10.1007/3-540-44464-5_13


[Yan+98] Bwolen Yang, Randal E. Bryant, David R. O’Hallaron, Armin Biere, Olivier Coudert,

Geert Janssen, Rajeev K. Ranjan, and Fabio Somenzi. “A performance study of BDD-based

model checking”. In: Formal Methods in Computer-Aided Design: Second International

Conference, FMCAD’98 Palo Alto, CA, USA, November 4–6, 1998 Proceedings 2. Springer.

1998, pages 255–289. https://doi.org/10.1007/3-540-49519-3_18 (cited on pages 27,

68).

73

https://doi.org/10.1007/3-540-49519-3_18

	Introduction
	Boolean Functions
	Binary Decision Diagrams
	Calculus of Inductive Constructions

	Binary Decision Diagrams in Lean
	Interface
	The Abstract BDD Type
	Semantic Equivalence
	Constructing BDDs
	Variable Dependencies
	Finding Solutions

	Implementation and Verification
	Structures
	Properties
	BDD Evaluation
	Semantic Equivalence and Similarity
	BDD Construction Algorithms
	Deciding Variable Dependencies
	Implementation of Choice and Find

	Example Application

	Future Work and Summary
	Directions for Further Development
	Conclusion

	Bibliography

