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Abstract

A compositional theory of truth with the induction principle extended to sentences containing the truth predicate is not

conservative over the base theory. It is unknown whether compositionality or extended induction contributes more to

the nonconservativity result. This thesis follows Heck [Hec18]’s clarification by studying the strength of compositional

truth, in particular, we study the strength of compositional truth in an induction-free environment.

We establish two conservation results concerning compositional truth without extended induction (whose axioms are

denoted as CT) in an induction-free fragment of Peano Arithmetic PA−
. We denote PA−

with the compositional

truth axioms CT[PA−]. First, generalizing a model-theoretic proof of Enayat and Visser [EV15] for the conservativity

of CT[PA], we show that CT[PA−] is syntactically conservative over PA−
. Second, by generalizing Kaye [Kay91]’s

modification of Lachlan [Lac81]’s proof of Lachlan’s theorem to PA−
, we establish that CT[PA−] is not semantically

conservative over PA−
. Built from a lemma by Mateusz Łełyk, we also show that every computably enumerable

extension of PA−
has a non-recursively saturated model. On the technical side, the landscape regarding conservativity

and recursive saturation for PA−
is very similar to that of PA. On the philosophical side, compositional truth is much

stronger than extended induction — it alone is sufficient to enforce recursive saturation.
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Introduction

This thesis is seated at a juncture of several mathematical-philosophical themes.

Axiomatic Theories of Truth. Tarski’s undefinability theorem (Tarski [Tar56]) states that defining a truth predicate

for any language satisfying reasonable expressive constraints requires resources that exceed those of the language whose

truth predicate is being defined. This should abolish the project of defining truth in formal languages. This thesis

follows an alternative route — the axiomatic route — where truth is assumed to be a primitive, undefined notion. A

theory of truth is thus not a list of necessary and sufficient conditions for a truthbearer to fall under the extension of the

truth predicate, but a set of axioms that describe its content.

One is generally free in laying down axioms of truth. A minimal criterion for axiomatic theories is that they should

derive what is called “the Tarski biconditionals”, theorems of the shape T (⌜φ⌝) ↔ φ, where φ is a schematic variable

for sentences in the language, and “⌜⌝” maps each sentence to its name. Therefore, the minimal truth theory is usually

assumed to be just the set of all Tarski Biconditionals, denoted as TT[B], whereB is the base theory. This thesis focuses

on two further design choices, i.e., compositionality (that truth is compositional with respect to logical connectives,

denoted as CT) and extended induction (that one can reason by mathematical induction on formulas containing the

truth predicate, denoted as superscript
+

). This gives four candidates, whose performance will be evaluated on (i) how

well they model the content of the natural language truth predicate, and (ii) how well they suit the maxim of certain

philosophical positions.

The Conservativeness Argument Against Deflationism. Shapiro [Sha98] and Ketland [Ket99] independently

made what is dubbed “the conservativeness argument” against deflationism. The argument can be framed from the

perspective of axiomatic truth theories as proposing a novel desideratum for any deflationism-friendly truth theory:

conservativity over the base theory. The motivation is as follows. Deflationism, broadly construed, takes truth as a

semantically insubstantial notion that only plays an expressive role in everyday discourses (e.g., it can be used to form

universal generalizations like “All Tarski said about truth is true.”)
1

Therefore, according to deflationism, adding a

theory of truth should not be able to provide more semantic insight into the base theory. In particular, it should not

prove any new theorems that are not originally provable in the theory without the truth predicate. Because if it did,

then one must invoke the truth predicate in explaining the content and the proof of the new theorem. Truth, therefore,

plays an explanatory role that exceeds the expressive role deflationists assign it.

Conservativity does not coordinate well with other general requirements for truth theories. We note two. First, any truth

theory is expected to prove generalizations that one could make with the natural language truth predicate. For example,

if the truth theory proves that for every sentence bivalence holds, i.e., it is true or its negation is true, one would expect it

could also prove the universal generalizations of the bivalence principle. The theory of truth with only the biconditionals

1

The characterization is perhaps too crude. But since deflationism is not the central topic of our thesis, we refer the reader to the SEP page

[ASW23] for a more comprehensive overview.
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has been charged by Tarski [Tar56] and Gupta [Gup93] for its deductive weakness. We dub the requirement “Deductive

strength.” Second, some (e.g. [Fef91], [Sha98]) consider the principle of induction fundamental to our understanding

of numbers — and syntax, since syntax is usually represented in the context of axiomatic theories of truth as numbers,

therefore any truth theory whose base theory contains induction (e.g. Peano Arithmetic PA) should automatically

extended the principle to sentences with truth predicates. This is the requirement of extended induction. One obtains

the following unfortunate survey of theories when combining the three individually justified requirements for truth:

Deductive Strength Extended Induction Conservative

TT[PA] No No Yes

TT+[PA] No Yes Yes

CT[PA] Yes No Yes

CT+[PA] Yes Yes No

Where each theory fails to meet at least one expectation. The non-conservativity of CT+[PA] is worth explaining.

Since PA is known to be able to represent syntactical objects like formulas and proofs as numbers, one can reason by

induction on the length of proofs. Since all PA axioms are true and truth is preserved by modus ponens and universal

generalization, the conclusion of all PA-proofs is true. Since there exists at least one false arithmetical sentence 0 = 1,

PA is consistent. By Gödel’s second incompleteness theorem, PA cannot prove its own consistency, so CT+[PA] is

not a conservative extension over PA. A trilemma is forced upon the deflationist: either one opt with an expressively

adequate truth theory that proves significantly more than what the deflationist agenda allows it to prove, or to maintain

a theory so deductively impoverished that it cannot serve to model the content of a natural language truth predicate, or

to hold a philosophically unnatural view of the induction principle
2
.

The Logical Strength of Compositionality. One can find in the table above that neither the induction principle alone

(TT+[PA]), nor compositionality alone (CT[PA]), can induce non-conservativity. Therefore, the dialogue between

the deflationists and the anti-deflationists moved into a standstill. In general, deflationists wish to blame the non-

conservativity result on extended induction, thus to occupy the position of CT[PA], while their opponents wish to

show the opposite, that extended induction is not the one to blame for non-conservativity.

Heck [Hec18] proposes a way to disentangle the contributions of each theory to the non-conservativity result, namely,

to measure the logical strength of both in isolation. This means comparing the strength of TT+[PA] and CT[PA] with

PA. It turns out that even though the compositional truth theory without extended induction axioms is conservative

over the base theory, the resulting theory is still much stronger, in the sense that it is not interpretable in the base theory.

On the other hand, even if we add induction to the Tarski biconditionals, the resulting truth theory is, in most cases,

interpretable in the base theory, which means that it is not logically stronger.

Plan. This thesis builds on Heck’s project of disentangling the contribution of induction and compositionality to

the non-conservativity result. In particular, we specify the logical strength of compositional truth by proving several

conservativity results of compositional truth without extended induction in an induction-free fragment of Peano

Arithmetic.

To motivate the choice of base and truth theory, we outline a certain technical nuisance surrounding the induction

schema in interaction with truth theories. Recall that the usual setup for axiomatic truth theories assumes the truth

predicate as a predicate on numbers, given a presupposed encoding of syntactical objects. Hence, in any model M
2

Most philosophers go with accepting option 3 and argue that there is nothing unnatural in restricting the induction schema.
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of the base theory T , the truth predicate has the same ontological status as arithmetical predicates like “is prime” or

“is even” — the extensions of both are sets of numbers. Since classical first-order logic cannot distinguish between

different intensions of predicates with the same extension, we therefore operate in a setup that conflates two ontological

categories. It fails to reflect that truth in natural language is a predicate on truth-bearers — usually assumed to be

sentences or propositions, but are never numbers — and “is even” always predicates numbers. More generally, the

equivocation makes one unable to distinguish the object theory whose truth we are reasoning about, and the syntactic

theory in which we reason about the object theory. Consequently, the induction schema plays a double role of both an

arithmetical induction schema on numbers, and a syntactical induction schema on the structure of sentences.

The representation of syntactical objects as numbers is possibly passed down from the age of Gödel’s incompleteness

proofs, where it was necessary and an invention of genius. However, it turns out to be a rather problematic feature for

axiomatic theories of truth, because the entanglement of syntactical induction and arithmetic induction allows us to

prove controversial statements about truth.

Suppose we want to investigate the functioning of syntactical induction in truth theories. We observe that a fixed amount

of syntactic induction is sufficient in showing the consistency of the base theory. Take PA(T), i.e., PA formulated in

LPA ∪ {T} and whose induction schema extends to formulas containing truth, as an example. Recall the inductive

argument that establishes everything provable in PA in x steps is true. Since the inductive hypothesis “if φ is the

conclusion of a proof in PA encoded by a number less than n, then φ is true” can be formalized with only one

unbounded existential quantifier, the proof can be done in a fragment of PA(T) where one restricts the induction

scheme to formulas with at most one unbounded existential quantifier, known as IΣ1(T).

Lemma 1. CT[IΣ1] + T(PA) proves Con(PA).

where T(PA) is the formalization that all axioms of PA are true. Conceptually, in the formulation of Lemma 1, we

restrict the role of the IΣ1-extended induction to be syntactical, as an induction principle on proofs. Hence, CT[IΣ1]

alone only establishes the inductive case of the proof. We still need T(PA) for establishing the base case (which, as we

shall see later, relies on IΣ1 arithmetic induction.) Since the inductive argument is the same for other base theories, IΣ1

is sufficient for proving the consistency of any theory:

Theorem 2. Suppose T ⊇ IΣ1. Then CT[T ] + T(U) proves Con(U).

where U can be seen as the object theory, and T provides a syntactic theory. However, the attempt is futile as the

syntactic and arithmetic induction is manifested in the object language as the same induction schema, so one cannot

forbid the allegedly Σ1 syntactical induction in CT[IΣ1] to function as an Σ1 arithmetical induction. Σ1 arithmetical

induction can prove, among many things, that universal generalization preserves truth. Important for our purpose,

with both Σ1 arithmetical and syntactical induction, we have:

Lemma 3. CT[IΣ1] proves that all axioms of PA are true.

which establishes the base case of the previous syntactical inductive argument. The T(PA) in Lemma 1 is superfluous.

Corollary 4. CT[IΣ1] proves Con(PA).

which is weird in the sense that the compositional truth of a weaker theory proves the consistency of a stronger theory
3
.

Naturally, one would like to study the properties of a logical axiom in a “controlled” environment. Just like conducting

ceteris paribus experiments in the sciences, we wish to avoid the complexities induced by technical features that are highly

specific to induction in the investigation of compositionality by making the contribution of induction “fixed”, and

3

We refer to Heck [Hec18] and Leigh and Nicolai [LN13] for a detailed analysis of the entanglement.
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vice versa. In practice, we follow a method common in the study of “weak arithmetic” — arithmetical systems weaker

than PA — where one examines the logical power of a schematic axiom by restricting it to certain sets of formulas.

Hence, our question “How does compositional truth and induction interact?” is broken down into a series of questions:

“How does compositional truth and induction as restricted to setX interact?
4

”, whereX is some subset of arithmetical

formula. This thesis focuses on the simplest task of investigating the behavior of a compositional truth theory in a base

theory that lacks induction altogether. We follow the arithmetician’s standard choice of induction-free arithmetic —

the theory of the positive part of discretely ordered rings PA−
. We aim to answer the following two questions on the

strength of compositionality:

1. Is compositional truth conservative in PA−
?

2. Are there any other notions of conservativeness? What is the behavior of compositional truth in PA−
with

respect to these other notions?

A Short Answer: The strength of compositional truth does not manifest itself in the sense of being able to prove more

theorems when added to the base theory, but it does have the power of significantly restricting the number of models of

the theory.

The short answer will be elaborated in full detail. The first question will be addressed in Chapter 2 by generalizing the

model-theoretic proof of the conservativeness of the compositional truth for PA by Enayat & Visser [EV15]. Many claim

that the result is generalizable to weaker systems. The thesis vindicates these claims by giving a detailed implementation

of the proof starting from the arithmetization of syntax, which is made possible by Jeřábek [Jeř12]’s result that PA−
is

sequential. In Chapter 3, we will look into the notion of model-theoretic conservativity, which intuitively concerns

the number of models for a theory. The notion has been studied widely in the mathematical literature (e.g., see

[Lac81],[Kay91],[Wci17]) but relatively underdeveloped in the philosophical literature on deflationism
5
. As we will

see, as is the case with PA, compositionality in itself is sufficient to enforce recursive saturation in PA−
. With an extra

insight by Lelyk, we also show that CT[PA−] is not semantically conservative, and any compositional truth to any

computably enumerable (thereafter c.e.) extension of PA−
is not semantically conservative.

For someone interested in seeing a particular theorem, she is suggested to read the following chapters:

• For a proof of the Enayat-Visser result for PA−
, read Chapter 1 and Chapter 2.

• For a proof of Lachlan’s theorem for PA−
, read Chapter 1 and Section 3.2.

4

We only focus on theories weaker than PA. Let T a theory in language L, and T+
a conservative extension of T in language L+

with

L ⊆ L+
. For any theory T + U ⊇ T in L, T+

is a conservative extension over T + U .

Proof. Consider arbitraryL-sentenceφwhereT++(U +T ) ⊢ φ. Since every proof is finite, we may define the finite conjunctionu ofui ∈ U
that occur in the proof of φ. Therefore T+ + u ⊢ φ, T+ + u + T ⊢ φ, so T+ + T ⊢ u → φ. By conservativeness of T+

, T ⊢ u → φ,

T + U ⊢ φ.

In short, conservativity is upwards closed. So for any T ⊇ PA, the conservativity result of TT[T ], TT+[T ], CT[T ], CT+[T ] is exactly like

PA.

5

With the exception of Waxman 2017 [Wax17], but whose focus on the intended model makes the notion of model-theoretic conservativity

trivial because there is by stipulation only one model.
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Chapter 1

Preliminaries

We introduce the varieties of arithmetical theories in Section 1.1, including our theory of interest, PA−
, a subtheory

of Peano Arithmetic that is induction-free but still sequential. Different ways of adding a truth predicate into an

arithmetical theory will be discussed in Section 1.2. Finally, Section 1.3 introduces methods of comparing the logical

strength of theories.

1.1 Fragments of Arithmetic

All theories
1

discussed in this thesis will be formulated in the language of first-order arithmetic LPA.

Definition 5. Thearithmetical languageLPA has logical vocabulary{¬,∨, ∃}andarithmetical vocabulary{0, ′,+,×,=
, <} (where ′ is interpreted as successor).

We assume the underlying logic to be classical first-order logic. We treat ∧,→,↔,∀ as derivative. Therefore the

expressionφ∧ψ is an abbreviation of ¬(¬φ∨¬ψ),φ→ ψ an abbreviation of ¬φ∨ψ,φ↔ ψ is an abbreviation of

(φ→ ψ) ∧ (ψ → φ), and ∀xφ(x) an abbreviation of ¬∃x¬φ(x).

We also assume LPA to be a relational language. It does not have terms except for constant 0 and variables. Therefore

′,+,× are not term-forming operations, as they are usually assumed to be in forming the successor of a number x′, the

sum of numbers x + y and the product of numbers x × y, but are relations. The binary relation
′xy has intended

meaning “y is a successor of x”, and the ternary relation +xyz (×xyz) means “z is the sum (product) of x and y.”

The relational language and the term language for arithmetic are known to be inter-translatable by the term expansion

algorithm. The idea is to replace every occurrence of a term t in the term language in the formula φ(t) with a variable,

and modify φ accordingly into ∃xφ′(x). For example, a claim in the term language a + b = c × d expands into

∃e∃f(+abe ∧ ×cdf ∧ e = f). Axioms are added to stipulate that
′,+,× are bijections, etc. Given the translation,

we still write the axioms in a term language for readability.

Definition 6. AnLPA-theory T is a set ofLPA-formulas closed under logical consequence.

A theory T can be generated by a set of axioms by taking the collection of its logical consequences. Our discussion

is indifferent to the distinction between a theory and the axioms that generate it. We will be concerned with Peano

Arithmetic and its subtheories.

1

For a discussion about whether arithmetical truth is a good starting point for modeling the behavior of the truth predicate in natural language,

see Fujimoto 2019 [Fuj19].
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Definition 7 (Peano Arithmetic PA). We denote Peano ArithmeticPA the universal closure of the followingL-formulas:

x′ ̸= 0(PA1)

x′ = y′ → x = y(PA2)

x+ 0 = x(PA3)

x+ y′ = (x+ y)′(PA4)

x× 0 = 0(PA5)

x× y′ = (x× y) + x(PA6)

x ̸= 0 → ∃y(x = y′)(PA7)

x < y ↔ ∃z(y = z′ + x)(PA8)

And the axiom schema of arithmetical induction:

(IND) [Φ(0) ∧ ∀x(Φ(x) → Φ(x′))] → ∀xΦ(x)

whereΦ(x) is a schematic variable ranging over allLPA-formulas with x free.

The intended model for PA is the natural numbers N. We also occasionally write the set of natural numbers as ω,

especially in contexts where the set of all natural numbers is considered as an ordinal. For all n ∈ N, the numeral for n,

noted as n̄ is the symbol 0 succeeded by n successor symbols. The numeral for number 0 is 0, and the numeral for n is

0 ′ · · · ′︸︷︷︸
n

.

Among the subtheories of PA, the weakest system we will be considering is Q, the induction-free fragment of PA.

Definition 8 (Robinson’s Arithmetic Q). We denote Robinson’s Arithmetic as the universal closures of PA1 to PA8, i.e,.
Peano Arithmetic without the induction schema.

Intermediate between Q and PA, there is a group of theories which can be obtained by restricting the induction schema

to formulas of certain complexities in the arithmetical hierarchy.

Definition 9 (Bounded Quantification). We define bounded quantification ∀x< n φ(x) and ∃x< n φ(x) as
abbreviations of ∀x(x < n→ φ(x)) and ∃x(x < n ∧ φ(x)).

Definition 10 (Arithmetical Hierarchy). The arithmetical hierarchy is a syntactical classification of formulas in prenex
normal form based on the structure of their quantifiers. Σ0 = Π0 = ∆0 formulas are the ones with only bounded
quantifiers. For n ≥ 1,Σn formulas are of the shape ∃xφ(x) where φ(x) is aΠn−1 formula, andΠn formulas are of
the shape ∀xφ(x) where φ(x) is aΣn−1 formula.

A formulaφ is provablyΣn(Πn) in a set of axioms T if there exists aΣn(Πn) formulaψ s.t. T ⊢ φ↔ ψ. φ is probably
∆n in T if it is provablyΣn andΠn in T .

Definition 11 (IΣn, IΠn, I∆n). We define IΣn (or IΠn, I∆n) asQ with the induction schema whereΦ(x) ranges over
LPA-formulas with complexityΣn (orΠn,∆n).

IΣn, IΠn, I∆n are less ideal as starting points for investigating the logical strength of compositional truth, as they

contain certain forms of the induction principle, which might interfere with compositional truth. Q is induction-free,

but for reasons that we will see later, it is too weak in itself to host a truth theory. A subtheory of PA that is both strong

enough for a truth theory and is free of induction is the theory of the positive part of discretely ordered rings.

7



Definition 12 (PA−
). Let PA− be the theory of the positive part of discretely ordered rings with a least element, i.e., PA−

is axiomatized by the followingLPA-formulas:

(x+ y) + z = x+ (y + z)(A1)

x+ y = y + x(A2)

(x× y)× z = x× (y × z)(M1)

x× y = y × x(M2)

x× (y + z) = x× y + x× z(AM)

(x+ 0 = x) ∧ (x× 0 = 0)(Z1)

x× 1 = x(I1)

(x < y ∧ y < z) → x < z(O1)

¬x < x(O2)

x < y ∨ x = y ∨ y < x(O3)

x < y → x+ z < y + z(O4)

0 < z ∧ x < y → x× z < y × z(O5)

x < y → ∃z(x+ z = y)(S1)

0 < 1 ∧ (x > 0 → x ≥ 1)(Z2)

x ≥ 0(Z3)

Where A stands for addition, M for multiplication, Z for Zero, I for identity, O for ordering, and S for subtraction. The
meaning of the axioms should be clear.

The intended model ofPA−
isZ[X]+. Z[X] is the ring of polynomials with one variableX and coefficients fromZ. The

order on Z[X] is the natural ordering obtained by makingX infinitely large. More specifically, if a0, . . . , an ∈ Z\{0}
are coefficients of x = a0 + a1X + a2X

2 + · · · + anX
n ∈ Z[X], x > 0 iff an > 0, and for p, q ∈ Z, p > q iff

p − q > 0. We define Z[X]+ as {p ∈ Z[X] |Z[X]+ ⊨ p > 0}. Since PA−
is a system weaker than PA, N and all

non-standard models of PA are models of PA−2
.

1.1.1 Definability in a Fragment

In adding a truth theory, we will be interested in the arithmetical system’s ability to represent different notions, which is

captured by the formal notion of (provable) definability and expressibility.

Definition 13 (Definability). A set of natural numbers (or sequences of natural numbers)A is defined by a formulaφ(x⃗)
if n ∈ A iffN ⊨ φ(n), i.e., φ(n) is true.

Definition 14 (Provable Definability). If S is a set of sentences ofLPA, and T is a set of expressions, we will say that T is
provably definable from S if for some formula φ(x), φ(⌜ψ⌝) is provable from S if and only if ψ belongs to T .

Definition 15 (Expressible). A propertyφ of natural numbers is expressible iff the set {n : φ(n)} is definable. The notion
of provably expressible is analogous.

Definition 16. A setX ⊆ N is Σn (or Πn) if it is defined by a Σn-formula (or Πn-formula) with exactly one free
variable. An n-ary relation isΣn (orΠn) if it is defined similarly by a formula of the corresponding complexity with n

2

For details of the theory, see Kaye [Kay91], Chapter 2.
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variables free. A function f isΣn (orΠn) if its graph Γ(f) := {(x, y) | f(x) = y} isΣn (orΠn).

Since most syntactical concepts are defined recursively, primitive recursive functions form a class of functions important

for truth theories.

Definition 17 (Primitive Recursion). Given n-ary function g and (n+ 2)-ary function h, we may define (n+ 1)-ary
function f from g and h by primitive recursion:

f(x⃗, 0) = g(x⃗)

f(x⃗, n+ 1) = h(f(x⃗, n), x⃗, n)

where x⃗ = x1 . . . xn. We allow n = 0, where g(x⃗) is a constant.

Definition 18 (Primitive Recursive Functions). Primitive recursive functions are the smallest class of functions with the
following property:

• The 0-ary constant zero function 0 is primitive recursive.

• The unary successor function S(x) = x+ 1 is primitive recursive.

• For any n, i ∈ N, the projection function πin(x1, . . . , xn) = xi is primitive recursive.

• For primitive recursive functions g and h1...hm, the function composition f(x⃗) = g(h1(x⃗), . . . , hm(x⃗)) is
primitive recursive.

• For n-ary function g and n + 2-ary function h that are primitive recursive, f obtained from g, h by primitive
recursion is primitive recursive.

1.1.2 Models of Arithmetic

We will also be concerned with the models, especially non-standard models, of arithmetic. The reader is assumed to be

familiar with general concepts in model theory. We will use M to denote the model, andM to denote the domain of

the model M.

A theorem important for the proof of the syntactic conservativity is Tarski’s elementary chain theorem.

Definition 19 (Expansion, Extension, Elementary extension). LetM andK be models in the same languageL.

• M is an extension ofK iffK ⊆M , and the relations and function ofK are relations and function ofM restricted
toK .

• M is an expansion ofK iffM andK are the same except thatM contains new predicate, relations, functions, or
constant symbols.

• M is an elementary extension of K, denoted as K < M if and only ifM is an extension of K, and for every
formula φ(x1, . . . , xn) ∈ L, for all a1, . . . , an ∈ K K ⊨ φ(a1, . . . , an) iffM ⊨ φ(a1, . . . , an).

• For a class ofL formulas Γ,M is a Γ-elementary extension ofK, denoted asK <Γ M, if for all a1, . . . , an ∈ K

and γ(x1, . . . , xn) ∈ Γ,K ⊨ γ(a1, . . . , an) iffM ⊨ γ(a1, . . . , an).

Definition 20 (Elementary chain). An elementary chain of models is a family of models {Mn : n ∈ N} such that for
every k, n ∈ N, if k < n, thenMk <Mn.
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Definition 21 (Limit Model). The limit model of an elementary chain {Mn : n ∈ N} is defined as the modelM whose
domainM =

⋃
n∈NMn, whose relation and function symbols are the union of all the relation and function symbols of

theMn-s, and has the same constants as in theMn-s.

Theorem 22 (Elementary chain theorem). Given an elementary chain, the limit model of an elementary chain is an
elementary extension of every model in the chain.

We will also be looking into non-standard models of arithmetic. Non-standard models are important because one

cannot single out the natural numbers, even internally in a model, as a predicate. This fact is captured by the following

lemma.

Lemma 23 (Overspill). LetM be a non-standard model of PA and b ∈M , and assume φ(x, y) is a formula with x, y
free. Then, ifM ⊨ φ(n, b) holds for every n ∈ ω , there is a non-standard number c ∈M such that
M ⊨ ∀x≤ c φ(x, b).

Proof. We follow the presentation of Halbach 2010 [Hal10]. Suppose, for a contradiction, that there is no such c.

Consider the formula defined as ψ(x) :↔ ∀y < x (φ(x, b)). Since M ⊨ φ(0, b), M ⊨ ψ(0). Now consider any

a ∈ M . If a is a standard number, then a′ is also standard, so we have M ⊨ ψ(a) → ψ(a′). Suppose a is a non-

standard number, since there is no c such thatψ(c) and the successor of non-standard numbers are always non-standard,

M ⊨ ψ(c) → ψ(c′). So M ⊨ ∀x(ψ(x) → ψ(x′)). By induction, ∀xψ(x), a contradiction.

The induction schema is necessary for the proof, so overspill only holds forT ⊇ PA. For theories without full induction,

one does not have full overspill, but the above argument generalizes to the fragment with induction. For example, IΣn

has overspill for all Σn formulas. Dimitracopoulos [Dim89] shows that Σn-induction is equivalent to Σn-overspill.

Definition 24 (Type). Let T ⊇ PA− be an arithmetical theory, andM ⊨ T . Let p(x⃗) = {φi(x⃗) | i ∈ I} be any set
of formulae sharing common variables x⃗ = x0, . . . , xn.

• p is a type over the theory T if T + {φ(c⃗) |φ(x⃗) ∈ p(x⃗)} is consistent, where c⃗ is a tuple of new constants.

• p is a type over the modelM if for all finite subsets I0 ⊆ I ,M ⊨ ∃x⃗ ∧ i ∈ I0φi(x⃗).

• p is a realized type if p is a type overM, and there exists a⃗ ∈M such that for all φ ∈ p ,M ⊨ φ(⃗a).

• p is a recursive type if p is a type overM and p is recursive.

• p is a complete type if for every φ(x) ∈ Form, either φ ∈ p or¬φ ∈ p, otherwise p is partial.

• Let T be a theory and p be a partial type. Then p(x) is isolated in T if there is a formulaφ(x) such that ∃xφ(x) is
consistent with T and T ⊢ φ(x) → σ(x) for all σ(x) ∈ p(x).

The case where p has parameters v⃗ = v0, . . . , vn p(x⃗, v⃗) is handled similarly.

Theorem 25 (Omitting Types Theorem). Let T be a consistent theory in a countable language. If a partial type p(x) is
not isolated in T , then there is a countable model of T which omits p(x).

Definition 26 (Recursive Saturation). AmodelM is recursively saturated iff every recursive type ofM is realized in
M.

One can replace “recursive” with “primitive recursive” in the definition; the resulting definition is equivalent to recursive

saturation.
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1.2 Theories of Truth

A truth theory is a set of axioms explicating the behavior of a truth predicate, whose intended extension is the set of all

true sentences. To add a truth theory, one usually starts by choosing the theory whose truth predicate one wishes to

investigate, known as the “base theory”. In our case, this is always a first-order arithmetic theory, as introduced above.

One adds the truth predicate by first syntactically expanding the language LPA with a one-place predicate T that does

not belong to LPA. The truth axioms are drafted in L+
PA = LPA ∪ {T}.

Only base theories satisfying certain expressive constraints can hold a truth theory. We note two. First, since truth is

a predicate of syntactical objects
3

but the (intended) domain of arithmetical theories is numbers, defining truth as a

predicate in LPA assumes an encoding of LPA-formulas, an injective function from LPA formulas to natural numbers.

Following Gödel, we denote ⌜φ⌝ as the encoding of φ. T(n) is understood as “the sentence φwith ⌜φ⌝ = n is true.”

A more subtle point originates in the treatment of variables and quantifiers. Tarski, in his influential paper The Concept
of Truth in Formalized Languages, introduced sequences of objects in defining the satisfaction conditions for formulas

with free variables and quantifiers. To illustrate, consider the arithmetical formula

(1) v1 < v2

where v1 and v2 are variables. Being an open formula, (1) does not yet have a truth value. It has truth values once

numbers are assigned to v1 and v2. For example, (1) is true when v1 is assigned 0 and v2 is assigned 1. The order of

assignments is important as (1) is not satisfied by the assignment of v1 with 1 and v2 with 0. Since the variables are

indexed by natural numbers, the information of an assignment can be easily encoded as an ordered string of objects,

where the value on the i-th digit corresponds to the value of variable vi. An ordered string is known as a sequence. Since

the language LPA is compositional, the number of variables in a formula can be any natural number. The sequences

representing variable assignments can also be of arbitrary finite length. Defining a truth theory of arithmetical theory

thus presupposes that the base theory can encode sequences. This requirement is formalized by Pudlák [Pud85].

Definition 27 (Sequential Theory). A theoryT is sequential ifT containsQ relativized some formulaN(x) (interpreted
as natural numbers), and there exists a formula β(x, i, w) such that

(SEQ ) T ⊢ ∀w, x, k ∃w′ ∀i, y [(N(k) ∧ i ≤ k) → [β(y, i, w′) ↔ ((i < k ∧ β(y, i, w) ∨ (i = k ∧ y = x))]].

(SEQ) states that we can always append a further digit to the sequence encoded byw.

Visser [Vis08] and Jeřábek [Jeř12] show that Q is not sequential; therefore Q in itself is too weak for a truth theory. But

since it interprets the sequential theory I∆0, most philosophical literature manually amends Q with the sequentiality

axiom Qseq , and treats it as the minimal base for truth. As Jeřábek [Jeř12] shows that PA−
is sequential, this thesis

assumes PA−
as our base theory. We will show later that PA−

is sufficiently expressive to encode syntax, thus it meets

both conditions for hosting a truth theory.

We consider two kinds of truth theory: a disquotational theory containing only the Tarski biconditionals and a

compositional theory with additional compositional axioms. Their exact implementation will depend on several design

choices of the language and the theory one adopts, including whether the language is relational or a term language,

3

In fact, there is wide disagreement on what kind of objects truth-bearers are. To list a few: declarative sentences, declarative sentences in

contexts, utterances of declarative sentences, propositions, the contents of thoughts, beliefs, judgments. Since the axiomatic approach to truth

(in arithmetical languages) uses the grammatical structure of LPA formulas in defining truth, we assume truth bearers are sentences, or at least

objects with a certain grammatical structure similar to their syntactical structure.
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whether assignments are encoded as finite strings with arbitrary length or of infinite length, the details of numeral

encoding, etc. Therefore different authors usually vary in their formulation of axioms, though the underlying idea is the

same. We thus only present semi-formally the idea in this preliminary chapter, leaving the formal definitions for later in

chapters 3 and 4. We will supplement the semi-formal explanation with occasional remarks on implementation details.

A disquotational theory of truth consists of all instances of the T-schema:

(T-schema) T (⌜φ⌝) ↔ φ

where φ is a schematic variable ranging over LPA-sentences. Since allowing the truth predicate to occur within φ

immediately gives rise to liar-paradoxes, we restrict φ as a schematic variable ranging over LPA-sentences without the

truth predicate. The truth predicate is thus “typed”, as opposed to an untyped one that allows self-application of the

form T(⌜φ⌝), where T occurs inφ. (For a detailed discussion of typed vs. untyped truth, see Halbach [Hal10]). We also

restrict the application of the T-schema to closed formulas only. Some (e.g., Cieśliński [Cie17]’s UTB) allow application

of truth to open formulas by adding universal quantifiers at the front of the biconditional, so the T-schema for the

open formula φ(v⃗) is ∀t⃗(T (⌜φ(⃗t)⌝) ↔ φ(⃗t). Since our focus is on compositionality, we omit the internal variations

on disquotational theories.

A compositional theory of truth consists of axioms for logical connectives:

T(⌜φ⌝) → φ is a sentence(TSent)

R(t0 . . . tn) ↔ T(⌜R(t0 . . . tn)⌝)(TR)

T(⌜¬φ⌝) ↔ ¬T(⌜φ⌝)(T¬)

T(⌜φ ∨ ψ⌝) ↔ T(⌜φ⌝) ∨ T(⌜ψ⌝)(T∨)

T(⌜∃xφ(x)⌝) ↔ ∃zT(⌜φ(z̄)⌝)(T∃)

Both the disquotational and the compositional theories can be supplemented with the principle of extended induction:

(Extended IND) Ψ(0) ∧ ∀x(Ψ(x) → Ψ(x′)) → ∀xΨ(x)

where Ψ ranges over all L+
PA formulas with x free. Combining these design choices gives four truth theories:

Definition 28. Fix an arithmetical base theory T ⊇ Q, where we assume T to be sequential.

• TT[T ] is T with all Tarskian biconditionals for the language of T .

• TT+[T ] isTT[T ] with extended induction to formulas φ(x) possibly containing the truth predicate and with x
free.

• CT[T ] is T with all the axioms for compositional truth as described above.

• CT+[T ] is CT[T ] with extended induction to formulas φ(x) possibly containing the truth predicate and with x
free.

• UTB+[T ] is T with all Tarskian biconditionals with variables for the language of T and extended induction.
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1.2.1 Truth and Satisfaction

Our discussion will also invoke the concept of satisfaction. While truth is a one-place predicate on closed sentences,

satisfaction is a relation between assignments and open formulas (a two-place predicate on assignment-formula pairs).

The conceptual connection between truth and satisfaction is as follows:

(2) An open formula φ(x1, . . . , xn) is satisfied by the variable assignment α iff φ(ā1, . . . , ān) is true,

where α(xi) = ai for each i.

This conceptual relation signals a connection between a theory of satisfaction and a theory of truth. Just like a theory of

truth, a theory of satisfaction is obtained by expanding the language LPA ∪ {S,F}, where S is a two-place satisfaction

predicate on assignment-formula pairs and F is a one-place predicate for formulas. In a term language, another three-

place predicate Den is introduced, where the intended meaning of Den(α, t, x) is that term t denotes object x in

assignmentα. To simplify matters, we follow Heck [Hec18]’s implementation of Tarski [Tar56]’s idea, where we assume

that assignments are infinite sequences of term-object pairs; hence, they not only assign values to variables, but also

to terms like constants and numerals, with the condition that every assignment assigns the constant and numeral the

appropriate elements.

Just like truth, there is a disquotational and a compositional theory of satisfaction. The disquotational theory contains

all axioms of the form

(S-Biconditionals) S(⌜φ(t0, . . . , tn)⌝, α) ↔ φ(a0 . . . an1) ∧
∧
i<n

α(ti) = ai

where φ and t are schematic variables ranging over LPA formulas and its free variables. A compositional theory of
satisfaction consists of axioms

S(⌜R(t0, . . . , tn)⌝, α) ↔ R(a0 . . . an1) ∧
∧
i<n

α(ti) = ai(SR)

S(⌜¬φ⌝, α) ↔ ¬S(⌜φ⌝, α)(S¬)

S(⌜φ ∨ ψ⌝, α) ↔ (S(⌜φ⌝, α) ∨ S(⌜ψ⌝, α)(S∨)

S(⌜∃xφ(x)⌝, α) ↔ ∃α′ x∼ α S(⌜φ(x)⌝, α′)(S∃)

where α′ x∼ α means that α′
differs from α only in its assignment to x. There are further axioms for arithmetical

constants and denotation for a term language:

Den(α, ⌜0⌝, x) ↔ x = 0(0)

Den(α, ⌜t′⌝, x) ↔ ∃y(Den(α, t, y) ∧ x = y′)(’)

Den(α, ⌜t1 + t2⌝, x) ↔ ∃y∃z(Den(α, t1, y) ∧ Den(α, t2, x) ∧ x = y + z)(+)

Den(α, ⌜t1 × t2⌝, x) ↔ ∃y∃z(Den(α, t1, y) ∧ Den(α, t2, x) ∧ x = y × z)(×)

In a relational language where one need not care about the assignment of terms, one can also implement assignments as

sequences of arbitrary finite length that only assign values to the free variables of a formula. In that case, the axioms for
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logical constants need modification. The clauses for disjunction and quantifier become:

S(⌜φ ∨ ψ⌝, α) ↔ (S(⌜φ⌝, α ↾ FV(φ)) ∨ S(⌜ψ⌝, α ↾ FV(ψ))(S∨′
)

S(⌜∃xφ(x)⌝, α) ↔ ∃α′ ⊇ α S(⌜φ(x)⌝, α′)(S∃′)

where α′ ⊇ αmeans that α′
is an extension of α. The two implementations of assignments are equivalent.

Definition 29. Fix an arithmetical base theory T ⊇ Q, where we assume T to be sequential

• TS[T ] is T with all the Tarskian biconditionals and satisfaction biconditionals forLT -formulas.

• CS[T ] is T with all the axioms for compositional satisfaction as described above.

A theory of satisfaction opens up an alternative way of defining truth. Those who consider sentences as a special case of

formulas, i.e., formulas with no free variables, would naturally see truth as a special case of the more general notion of

satisfaction (e.g, see Wolenski [Wol03]). This is supported by the fact that the above satisfaction axioms are well-defined

for cases of S(⌜φ⌝, α) where φ is a sentence. Since all assignments are defined to assign each constant (numeral) the

corresponding element in the domain, a sentence is always either satisfied by all variable assignments or none, unlike a

formula will be satisfied by some variable assignments and unsatisfied by some others. The difference between a sentence

and a formula is reduced to a technical one.

The behavior of sentences also suggests a definition of truth: a sentence is true if it is satisfied by all variable assignments

(or, equivalently, it is satisfied by some assignment). One can thus define a truth theory by first equipping the base

theory with a theory of satisfaction, then defining truth in terms of satisfaction.

(T) T(x) ↔ x is a sentence ∧ ∀αS(x, α).

Remark 30. Truth defined via the compositional theory of truth and truth as defined via the compositional theory of
satisfaction are equivalent. Let T be an arithmetical theory of reasonable strength, letM ⊨ CT[T ] ∪ CS[T ]. For all
LPA-sentences φ,M ⊨ T(⌜φ⌝) iffM ⊨ ∀α(S(⌜φ⌝)).

Proof. We prove the claim by induction. For simplicity, we suppose the only terms are numerals - the treatment of other

terms should be similar. For the base case, letφ = Rt0 . . . tn. SupposeM ⊨ T(φ), which entails that t0 . . . tn are all nu-

merals. Therefore M ⊨ T(φ) iff M ⊨ Rt0 . . . tn iff M ⊨ ∀α(
∧
i<n ti = ai ∧R(a0, . . . , an)) and φ is a sentence.

- since any assignment α by definition assigns any numeral n̄ the corresponding number n.

For the inductive case, we only consider the case where φ = ∃vψ(v). Since φ is a sentence, ψ has no other free

variables other than v. Suppose M ⊨ T(⌜φ⌝) which implies that M ⊨ ∃zT(⌜ψ(z̄)⌝) and M ⊨ ∃z[∀αS(ψ(z̄), α)∧
ψ(z̄) is a sentence.]. Since ψ(z̄) is a sentence, ∃xψ(x) must be. Since M ⊨ ∀αS(ψ(z̄), α), and every variable assign-

ment assigns z̄ the number z, ψ(x) is satisfied by any assignment that assigns x z. Therefore

M ⊨ ∀α∃α′ x∼ α S(ψ, α′), where α′(x) = z. It follows that M ⊨ ∀αS(∃xψ(x), α).

For the other direction, suppose M ⊨ ∀αS(∃xψ(x), α), therefore M ⊨ ∀α∃α′ x∼ α S(ψ(x), α), we denote

α′(x) = z. We must have M ⊨ ∀α(ψ(z̄), α) since the denotation of z̄ is z in each α.

Note that the proof importantly relies on the existence of a numeral for every number n.

This thesis will treat truth not as a generalization of satisfaction but as a different notion, for two reasons. First, as hinted

above, the derivation from satisfaction to truth is developed initially not as a result of philosophical reflection, but due to
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a technical difficulty that truth refuses recursive characterizations. Suppose we want to design the recursive truth clauses

for universally quantified formulas ∀xφ(x). In the standard approach, the truth of ∀xφ(x) should coordinate in some

way with the truth of φ(x) via some use of the universal quantifier in the language where the recursive definition is

given. Yet φ(x), by definition, is an open formula that adopts no truth definition. It only has satisfaction conditions

when paired with some variable assignments. Therefore, a natural response is to first define satisfaction recursively

(which yields the familiar clause ∀xφ(x) is satisfied by assignment α iff φ(x) is satisfied by assignment α′
that differs

from α in x the most), then define truth from satisfaction. However, in the definition of truth axioms, we see that the

problem vanishes once we introduce numerals. In the case of arithmetical truth, we can manually close the formula

φ(x) by replacing xwith numerals, so that the notion of truth applies to it, as illustrated in axiom (T∃). Second, in

defining truth in terms of satisfaction, one risks alluding to a philosophical position that truth is conceptually derivative

from satisfaction. There is a conceptual merit in distancing one’s technical exposition from a debatable philosophical

position, unless one wishes to defend it, which we do not.

In any case, the choice in establishing truth directly or via satisfaction affects the upcoming proofs only in minor

technical details. We will be discussing the conservativity result for both truth and satisfaction. The intuitive conceptual

connection between truth and satisfaction as sketched in (2) will also be preserved in our approach, as we will prove a

theorem expressing exactly that.

1.3 Measurements of Logical Strength

Given theories T and B stated in LT and LB respectively, there are several ways to compare their logical strengths.

When LT = LB , a theory is stronger when it can prove more theorems. The idea generalises smoothly to cases where

one language contains the other. Supposing LT ⊇ LB , T andB can be compared by evaluating their logical strength

in the restricted language LB . If T , despite being in a richer language, proves nothing more thanB, it is, in a sense, not

stronger thanB on the subject matter of LB . This leads to the notion of syntactic conservativity.

Definition 31 (Syntactic Conservativity). Given theories T and T ′ stated in L and L′ respectively, and L ⊆ L′. T ′

conservatively extends T if for any sentenceA inL

• whenever T ⊢ A, then T ′ ⊢ A,

• whenever T ′ ⊢ A andA is formulated inL, then T ⊢ A.

Comparison is more difficult in the case where neitherLT ⊇ LB norLT ⊆ LB . A method is introduced and examined

by Tarski [Tar53], which, intuitively, involves translating one language into the other and comparing what can be proven

modulo the translation.

Definition 32 (Relative Interpretability). Given two theories T (target) andB (base) stated in languagesLB andLT
respectively, T is relatively interpretable inB if there exists a relative interpretation of T , consisting of:

• a translation ofLT intoLB ,

• proofs inB of the translations of the axioms of T .

Both relative interpretability and syntactic conservativity are syntactical notions. There is a semantic measurement of

logical strength measured by the number of models of theories. When we consider the totality of models as exhausting

the logical space, and theories as restrictions on the logical space by singling out the models in which the theory is true,

the logical strength of a theory is naturally correlated with its ability to restrict the totality of models - the fewer models

a theory has, the stronger it is. A tautology is weakest since it casts no restriction whatsoever, and a contradiction is the
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strongest because it eliminates every logical possibility. This basic idea underlies many formal approaches to meaning

and information states (e.g., inquisitive semantics [CGR18]).

Definition 33 (Semantic Conservativity). Let T ⊆ T ′ be two theories and letL be the language of the theory T . T ′ is
semantically conservative over T if for any modelM ⊨ T there exists an expansion (M, P1, . . . , Pα) to a model of the
theory T ′.

Remark 34 (Cieśliński [Cie17]). For theories T1 and T2, if T1 is semantically conservative over T2 then T1 is syntactically
conservative over T2.

Proof. Suppose T1 is not syntactically conservative over T2, i.e. there exists φ where T2 ⊢ φ but T1 ̸⊢ φ. By

completeness of first-order logic there exists M ⊨ T1 ∪ {¬φ}. Suppose that T1 is semantically conservative over T2,

then every model of T1 can be expanded to a model of T2, including that of M. But since T2 ⊢ φ, φ is true in M, a

contradiction.

As we shall see later, the converse does not hold. So semantic conservativity is stronger than syntactic conservativity.

Finally, since semantic conservativity concerns the number of models, it would help sketch a model-theoretic characteri-

zation of syntactic conservativity.

Remark 35 (Model-theoretic characterization of syntactic conservativity (Cieśliński [Cie17], p. 16)). Given theories T1
and T2 stated inLT1 andLT2 respectively, and that T1 ⊆ T2. T2 is syntactically conservative over T1 iff for every model
M of T1, there exists a modelN such that

• For everyLT1 -sentence φ,M ⊨ φ iffN ⊨ φ,

• N ⊨ T2.

Proof. For the left-to-right direction, suppose that T2 is syntactically conservative over T1. Suppose, for a contradiction,

that for every model M of T1, if N ⊨ T2 then there exists some L-sentence φ that is satisfied in only one of N ,M.

Therefore Th(M) ∪ T2 is inconsistent. By compactness, there exists a finite subset A ⊂ Th(M) where A ∪ T2 is

inconsistent. Therefore T2 ⊢ ¬A. However, T1 ̸⊢ ¬A since M is a model of T1. So T2 is not syntactically conservative

over T1, a contradiction.

For the right-to-left direction, suppose that for every model M of T1, there exists a model N satisfying the conditions.

Suppose, for a contradiction, that T2 is not syntactically conservative over T1. Therefore there exists φwhere T2 ⊢ φ
but T1 ̸⊢ φ. Therefore there exists a model M of T1 where M ⊭ φ. Therefore there exists N ⊨ T2 and N ̸⊨ φ. But

this contradicts that T2 ⊢ φ.
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Chapter 2

Compositional Truth for PA− is Syntactically
Conservative.

In this chapter, we tackle the first question sketched in the introduction: Is compositional truth conservative in PA−
?

The answer is positive. We follow Enayat & Visser 2015 [EV15]’s model-theoretic proof that compositional truth without

extended induction for Peano Arithmetic CT[PA] is conservative over PA, and generalise the result to PA−
. Section 2.1

demonstrates that PA−
carries an arithmetisation of syntax. The conservativeness of satisfaction classes is proved in

Section 2.2, and the case of truth will be proved in Section 2.4.

2.1 Some Properties of PA−

We alluded in the preliminary section that arithmetization of syntax requires a base theory to be sequential and be able

to represent the graphs of primitive recursive functions, so that they can capture the recursive definition of syntactical

concepts. This is dealt with in Subsections 2.1.1 and 2.1.2, respectively.

2.1.1 Pairing and Sequence

We use round brackets (x, y) to denote pairs constituting individuals x, y, and sharp brackets ⟨x0, x2, . . . , xn⟩ to

denote the sequence of objects x0, . . . , xn. The conceptual difference between pairs and sequences, being two different

kinds of objects, is reflected in the different arithmetical functions used to encode and decode such objects. For an

arbitrary PA−
-model M we have ⟨x, y⟩ ≠ (x, y) for x, y ∈M in general.

Proposition 36. There is a∆0 pairing and inverse pairing function in PA−.

Proof. Following Jeřábek 2012 [Jeř12], we define (x, y) = (x+ y)2 + x. To define the inverse pairing function, we

aim to define projection functions that project the first and second items in a pair π1((x, y)) = x and π2((x, y)) = y.

Observe that (x + y)2 ≤ (x + y)2 + x = ⟨x, y⟩ < (x + y + 1)2. So n = x + y + 1 is least number such

that n2 > w. We have a ∆0 function f(w) = n whose graph is defined by n2 > w ∧ (n − 1)2 ≤ w. Define

π1(w) = w − (f(w)− 1)2; π2(w) = (f(w)− 1)− π1(w), both are ∆0.

The important result that makes the rest of the chapter possible is from Jeřábek 2012 [Jeř12], which shows that PA−
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is sequential. The proof implements Gödel’s β-function via the Chinese remainder theorem in PA−
.
1

We omit the

proof and refer the readers to [Jeř12]. It suffices for our purpose to show that given a sequence encoding function

β(a, b, i) = (s)i where s is the sequence encoded by a, b, its graph Γ(β) is definable in PA−
.

Proposition 38. There is a formula β′(x, i, w) with x, i, w free expressing the i-th element in sequencew is x in PA−.

Proof. We slightly modify the implementation of the β-function in [Jeř12] with an extra parameter denoting the length

of the sequence. That is,

β(x, i, w) :↔ ∃u, v, q, l [(w = (u, v, l) ∧ i < l) ∧ u = q(1 + (i+ 1)v) + x) ∧ x ≤ (i+ 1)v)]

where (x, y, z) abbreviates ((x, y), z). To ensure that the β-function is total, it is implemented in PA−
as

β′(x, i, w) :↔ [β(x, i, w) ∧ ∀j <π2(w)∃y β(y, j, w)]

Since u, v ≤ w, and q ≤ u ≤ w, β(x, i, w) is equivalent to a ∆0 formula, also observe that y ≤ w. So β′
is ∆0.

This yields a natural characterization of sequence in the language of arithmetic:

Definition 39 (Sequence number). Seq(w) :↔ ∃u, v, l [(w = (u, v, l)) ∧ ∀i< l ∃xβ(x, i, w)].

For readability, we denote ℓ(w) = π2(w) as the length of sequencew, and rewriteβ′(x, i, w) as (w)i = x. Implement-

ing sequences via the β-function allows a sequence α to be encoded by multiple pairs (v0, u0) and (v1, u1). Therefore,

the identity relation in (codes of) sequences should not be treated as extensional identity in standard first-order logic,

but should be understood as forming equivalence classes of numbers that encode the same sequence.

Definition 40 (Identity of Sequences). Two numbers w0, w1 encode the same sequence, denoted as w0 ≈ w1, if
ℓ(w0) = ℓ(w1) and ∀i< ℓ(w0)∃x<w0 (x = (w0)i ∧ x = (w1)i).

This ∆0 definition of w0 ≈ w1 is only possible because for any PA−
-model M and all x, i, w ∈ M such that

M ⊨ (w)i = x, M ⊨ x < w.

PA−
therefore has the machinery to represent proofs as sequences of formulas, and assignments as sequences of variable-

object pairs. However, to develop a theory of truth requires more than representing sequences as numbers. The

functioning of assignments relies on operations like restricting the domain of an assignment and changing the value of

a specific variable, which requires operations on sequences, including concatenation, shortening, splitting, etc. Our

implementation of them uses a trick called “shortening of cuts”, a well-celebrated practice in studying weak theories of

arithmetic due to Robert Solovay. We first introduce the trick in the context of arithmetic.

1

Gödel’s β-function allows one to encode a sequence of natural numbers with arbitrary finite length with a pair of natural numbers. It is

defined as follows:

Definition 37 (Gödel’s β-function).

β : N3 → N(2.1)

β(a, b, i) = rem(1 + (i+ 1)b, a)(2.2)

It is an application of the Chinese remainder theorem, which states that given n0, ...., nk ∈ N pairwise co-prime and a0, ..., ak ∈ N, the

system x ≡ a0 (mod n0), x ≡ a1 (mod n1), ..., x ≡ ak (mod nk) has a solution.
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Shortening of Cuts

Consider an arithmetical theory T ⊇ Q where T does not contain the axiom schema of mathematical induction

φ(0) ∧ ∀x(φ(x) → φ(Sx)) → ∀xφ(x)

where φ is a schematic variable for any LPA-formula with x free. Almost for all theories T there is a formula φwhere

T ⊢ φ(0) and T ⊢ ∀x(φ(x) → φ(x+ 1)), yet T ̸⊢ ∀x(φ(x)) (Hájek and Pudlák [HP93], 1993, p. 172).

A well-known example is Q. Consider the formula x ̸= x′ with x free. Q proves the antecedent of the corresponding

induction principle for x ̸= x′, i.e. Q ⊢ 0 ̸= 0′ and Q ⊢ ∀x(x ̸= x′ → x′ ̸= x′′). Yet it fails to establish the

conclusion. It does not prove that no number is its own successor. Intuitively, the source of failure is that in some

non-standard PA−
-model M, x ̸= x′ holds for all natural numbers 0, 1, 2, etc. But there is one non-standard number

“after” all the standard numbers where x ̸= x′ does not hold. Formulas that have the status of x ̸= x′ in Q, i.e. hold for

0 and are closed under successor, are called “inductive.” Since PA−
does not have axioms for successor, we replace every

occurrence of successor with +1.

Definition 41 (Inductive formula). Consider theory T ⊇ PA−, a formula φ(x) with x free (x is understood as a
number variable) is inductive in T if T ⊢ φ(0), and T ⊢ ∀x(φ(x) → φ(x+ 1)).

Inductive formulas are true for all natural numbers. But their behavior on the non-standard numbers could be erratic.

In a non-standard model M, an inductive formula I(x) could be true for all non-standard numbers, or true for some

non-standard numbers i and j, but there exists some i < k < j where ¬I(k). Shortening of cuts shows that the

behavior of I(x) in the non-standard numbers can be handled in a principled way. For any inductive formula I(x) and

model M, there is always an initial segment of M where I is true. This initial segment is known as a cut.

Definition 42 (Cut). Consider theory T ⊇ PA−, a formula φ(x) with x free is a cut in T if it is inductive in T and in
addition downward closed, i.e. T ⊢ ∀x(φ(x) → ∀y(y < x→ φ(y))). A cut is proper in T if T ̸⊢ ∀xφ(x).

Theorem 43 (Hájek and Pudlák 1993, p. 368). Let I(x) be inductive in T ⊇ PA−. Then there is a cut J(x) in T for
which T ⊢ ∀x(J(x) → I(x)).

Proof. Define J(x) := ∀w<x I(w).

To define concatenation and other operations on sequences, we adapt the shortening of cuts to the context of sequences

and formulas. The usual notion of cut does not apply directly to sequences since not all numbers encode sequences. We

start by reviewing the basic operations on sequences - adjunction, where we append an extra number a to a sequence x,

and concatenation, where we append sequence y to the end of x.

Definition 44 (Adjunction). z ≈ x ◦ a :↔ Seq(z) ∧ Seq(x)∧
∀i≤ ℓ(x) [(i < ℓ(x) → (z)i = (x)i) ∧ (i = ℓ(x) → (z)i = a)].

Definition 45 (Concatenation). z ≈ x ∗ y :↔ Seq(x) ∧ Seq(y) ∧ Seq(z)∧
∀i< (ℓ(x) + ℓ(y)) [(i < ℓ(x) → (z)i = (x)i) ∧ (ℓ(x) ≤ i < ℓ(x) + ℓ(y) → (z)i = (y)i−ℓ(x))].

Note that both ◦ and ∗ are relational. Adjunction is comparable to the successor relation in numbers; we thus define

the notion of Seq-cut accordingly.

Definition 46 (Seq-cut and Seq-inductive formula). Let T ⊇ PA− be a theory inLPA. S is Seq-inductive in T if

• T ⊢ ∀x(S(x) → Seq(x)),
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• T ⊢ ∀x∀a(x ∈ S → ∃y(y = x ◦ a ∧ y ∈ S)).

S is a Seq-cut in T if in addition T ⊢ ∀s∀t (s ∈ S ∧ ℓ(t) < ℓ(s) → t ∈ S).

The relation between Seq-cut and cut is as follows:

Remark 47. Let T ⊇ PA− be a theory inLPA. if S is Seq-inductive in T , then

• If there exists s ∈ S where ℓ(s) = n, then ∀s(ℓ(s) = n→ s ∈ S), and

• ℓ(S) := {n | ∃s ∈ S, ℓ(s) = n} is inductive.

S is an Seq-cut in T if in addition ℓ(S) is downward closed.

Remark 48 (Every Seq-inductive formula can be shortened to a Seq-cut). Let I(x) be Seq-inductive in T ⊇ PA−.
Then there is a Seq-cut J(x) in T for which T ⊢ ∀x(J(x) → I(x)).

Proof. Define J(x) := ∀w(ℓ(w) ≤ ℓ(x) → I(w)).

Remark 49. There is a Seq-cut Seq1 closed under concatenation.

Proof. Define Seq1(x) = Seq(x) ∧ ∀y(Seq(y) → y ∗ x ↓), where y ∗ x ↓ abbreviates ∃z(z = y ∗ x). By the

definition of Seq-inductive formulas, it suffices to show that Seq1 is closed under concatenation, as adjunction is

equivalent to concatenation of sequences with length 1.

Trivially ∅ ∈ Seq1. For all x0, x1 ∈ Seq1, we want to show that x0 ∗ x1 ↓ and x0 ∗ x1 ∈ Seq1, i.e. Seq(x0 ∗ x1) ∧
∀y(Seq(y) → y ∗ (x0 ∗ x1) ↓). For the first conjunct, since x0, x1 ∈ Seq1, Seq(x0) and ∀y(Seq(y) → y ∗ x1 ↓),

so x0 ∗ x1 ↓. For the second conjunct, consider an arbitrary y ∈ Seq, we know that y ∗ (x0 ∗ x1) ≈ (y ∗ x0) ∗ x1.

Therefore y ∗ (x0 ∗ x1)) ↓ iff ((y ∗ x0) ∗ x1) ↓. But we know that (y ∗ x0) ↓ since x0 ∈ Seq1, and ((y ∗ x0) ∗ x1) ↓
since x1 ∈ Seq1.

Before proceeding to prove further results, we define subsequences and segments of a sequence:

• “The sequence encoded by y is a subsequence of the sequence encoded by x”:

x ≼ y := Seq1(x) ∧ Seq1(y) ∧ ℓ(x) ≤ ℓ(y) ∧ (∃n < ℓ(y)− ℓ(x))∀m < ℓ(x)((x)m = (y)n+m)

• “The sequence encoded by y is an initial segment of the sequence encoded by x”

y ≼i x := Seq1(x) ∧ Seq1(y) ∧ ℓ(y) ≤ ℓ(x)∀i < ℓ(y)((y)i = (x)i);

• “The sequence encoded by y is an end segment of the sequence encoded by x”

y ≼e x := Seq1(x) ∧ Seq1(y) ∧ ∀ℓ(x)− ℓ(y) < m < ℓ(x)((x)m = (y)m−(ℓ(x)−ℓ(y)))

• “y occurs before z in a sequence encoded by x”

y <x z := ∃i < ℓ(x)∃j < ℓ(x)((x)i = y ∧ (x)j = z ∧ i < j).

• “x occurs in the sequence encoded by y” as x ∈ y := ∃i < ℓ(y)(x)i = y.

Proposition 50. There exists a Seq-cut Seq2 where for α a sequence with length x and y ≤ x, there are sequences β and
γ where β has length y and γ has length x− y such that α = β ∗ γ.

Proof. Define EndSeg = {((x, k), y) | y ≼E x ∧ ℓ(y) = k}, i.e. EndSeg(x, k) returns the end segment of x of

length k. Similarly, define InitSeg = {((x, k), y) | y ≼I x ∧ ℓ(y) = k}. Let Seq2(x) :↔ Seq1(x)

∧∀k(k ≤ ℓ(x) → ∃y∃z(y = InitSeg(x, k) ∧ z = EndSeg(x, ℓ(x)− k) ∧ x = y ∗ z).
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Seq2 is inductive: vacuously Seq2(∅). For any singletonx = ⟨n⟩, there exists initial segment y = ⟨n⟩ and z = ∅where

x = y ∗ z. To show Seq2 is closed under concatenation, let x, y ∈ Seq2 and k ≤ ℓ(x) + ℓ(y). Note that PA−
proves

that∃w(w+k = ℓ(x)∨ℓ(x)+w = k). If the first case hold, there existsx′, x′′ ≺ xwherex′ = InitSeg(x,w), x′′ =

EndSeg(x, ℓ(x)−w) and x′ ∗x′′ = x. Define x′′′ = x′′ ∗ y. It is easy to see that x ∗ y = x′ ∗ (x′′ ∗ y) = x′ ∗x′′′. If

the second case hold, there exists y′, y′′ ≺ y where y′ = InitSeg(x,w), y′′ = EndSeg(x, ℓ(y)−w) and y′ ∗ y′′ = y.

Define y′′′ = x ∗ y′. It is easy to see that x ∗ y = (x ∗ y′) ∗ y′′ = y′′′ ∗ y′′.

Seq2 is closed under taking end segments of arbitrary length: let x ∈ Seq2 and z = EndSeg(x, y) for arbitrary

y. We observe that all end segments of z are end segments of x. Since ∀y(y ≤ ℓ(x) → Seq1(EndSeg(x, y)), and

∀y(y ≤ ℓ(z) → y ≤ ℓ(x)), ∀y(y ≤ ℓ(z) → Seq1(EndSeg(z, y)). Therefore Seq2(z). The case for initial segments

is similar.

To implement the resetting of a variable in an assignment, we need to implement the subtraction of an element a from a

sequence s. The easiest way is to define it by primitive recursion on sequences. We thus left the discussion of subtraction

after primitive recursion. For readability, we rename Seq2 as Seq.

2.1.2 Primitive Recursion, Other Results Concerning Expressivity.

The usual procedure of arithmetization of syntax first shows that all syntactical expressions can be expressed within

a certain complexity on the arithmetical hierarchy, then proves that all formulas within the complexity are provably

definable in PA−
. To generalize the procedure, we first prove some facts about what is expressible in PA−

. This

subsection aims to prove two results: (i) PA−
is Σ1-complete when we relativize the hierarchy to inductive predicates,

and (ii) any primitive recursive function is provably definable in PA−
. We first make precise the notion of a relativized

arithmetical hierarchy.

Definition 51 (Relativized Arithmetical Hierarchy). LetX be a set definable inL and T be the base theory inL. LetL+

be the languageL plus a new predicateX, and T+ be T plus a defining axiom ∀x(X(x) ↔ X(x)). A formula isΣ0(X)

in T if it isΣ0 in T+, analogously for∆n,Σn andΠn.

The usual notions of Σn-completeness (or Πn-completeness), that if N ⊨ φwhere φ is a Σn formula (or Πn formula)

thenT ⊢ φ, generalize to the relativized hierarchy. A theoryT isΣ1(X)-complete iff for anyΣ1(X)-formulaφ, N ⊨ φ

entails T ⊢ φ.

Lemma 52. Let J be an inductive predicate, φ any formula and φ′ obtained from φ by replacing all occurrences of J(t)
in φ by 0 = 0, thenN ⊨ φ iffN ⊨ φ′.

Proof. By induction on the complexity of formulas. Base case follows since J is inductive, so for all ā ∈ N, N ⊨ J(ā).

Inductive cases for propositional connectives are trivial. Let φ ≡ ∃xψ(x, ā), where a ∈ N is arbitrary. N ⊨ φ iff

there exists x ∈ N where N ⊨ ψ(x, ā), iff (by induction hypothesis) there exists x ∈ N where N ⊨ ψ′(x, ā), iff

N ⊨ ψ′(x, ā), iff N ⊨ ∃xψ(x, ā).

Lemma 53. Let J be an inductive predicate, andφ be∆0(J) andφ′ obtained fromφ by replacing all occurrences of J(t)
in φ by 0 = 0, then PA− ⊢ φ↔ φ′.

Proof. By induction on the complexity of ∆0(J) formulas. Base case: the only non-trivial case is φ ≡ J(n) where

n is a numeral, and φ′ ≡ 0 = 0. Since PA−
proves J inductive, PA− ⊢ J(n). Therefore PA− ⊢ J(n) ↔ 0 = 0.

Inductive case: all cases of propositional connectives are trivial. Let φ = (∀v < k)ψ(v), and φ′ = (∀v < k)ψ′(v).
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Note that by Σ0 completeness of PA−
, PA− ⊢ ∀x(x < k ↔ x = 0 ∨ x = 1 ∨ ... ∨ x = k − 1), therefore

PA− ⊢ (∀v < k)ψ(v) ↔ ψ(0) ∧ ψ(1) ∧ ... ∧ ψ(k − 1) by elementary logic. PA− ⊢ (∀v < k)ψ(v) iff

PA− ⊢ ψ(0) ∨ ψ(1) ∨ ... ∨ ψ(k − 1) iff (by induction hypothesis) PA− ⊢ ψ′(0) ∨ ψ′(1) ∨ ... ∨ ψ′(k − 1) iff

PA− ⊢ (∀v < k)ψ′(v)’.

Theorem 54. PA− isΣ1(J)-complete for any inductive predicate J .

Proof. Consider φ ≡ ∃xψ(x) a Σ1(J)-formula, therefore ψ(x) is ∆0(J). Suppose N ⊨ ∃xψ(x), there is an n ∈ N
where N ⊨ ψ(n), so N ⊨ ψ′(n). By ∆0-completeness of PA−

[Kay91], PA− ⊢ ψ′(n); by Lemma 53 PA− ⊢ ψ(n),

therefore PA− ⊢ ∃xψ(x).

We then show that all primitive recursive functions are expressible in PA−
, i.e., for every primitive recursive function f ,

there exists a ∆1 formula φ(x⃗) such that n ∈ Γ(f) iff N ⊨ φ(n). We adopt a simplification of the proof that general

recursive functions are ∆1-definable, presented in the preface of Hájek & Pudlák 1993 [HP93].

Lemma 55. EveryΣ1(X) function is∆1(X).

Proof. Let f(x⃗) be a Σ1(X) function. Therefore, there exists a Σ1(X)-formula φ(x⃗, y) where (x⃗, y) ∈ Γ(f) iff

N ⊨ φ(x⃗, y). We define the anti-extension of Γ(f) by ∃z(φ(x⃗, z) ∧ y ̸= z).

Lemma 56 (PA−
). The graphs of initial functions are definable byΣ1(Seq)-formulas:

• Constant Zero function is defined by 0.

• Successor function S(x) is defined by φ(x, y) := y = x+ 1.

• Given n, i ∈ N as parameters, projection function πin(x⃗, y) := Seq(x⃗) ∧ ℓ(x) = n ∧ xi = y.

Lemma 57 (PA−
). Functions whose graphs are definable byΣ1(Seq)-formulas are closed under function composition.

Proof. It suffices to consider the function composition of two functions f and g. Suppose they are defined by Σ1(X)

formulas φ and ψ respectively. Define ∃y(φ(x⃗, y) ∧ ψ(y, z)).

Lemma 58 (PA−
). Functions whose graphs are definable byΣ1(Seq)-formulas are closed under primitive recursion.

Proof. The idea is that for any (x⃗, n, y) where f(x⃗, n) = y, there is a corresponding computation tree consisting

f(x⃗, 0), f(x⃗, 1), . . . , f(x⃗, n), since to compute f(x⃗, n) requires computing each of the previous values. Therefore

f(x⃗, n) = y iff there exists a computation sequence terminating at f(x⃗, n) = y.

Consider g whose graph is defined by φ and h defined by ψ. Let

f(x⃗, 0) = g(x⃗)

f(x⃗, n+ 1) = h(f(x⃗, n), x⃗, n)
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We define the computation sequence of f of length nwith input x⃗ as

CompSeqf,n(x⃗, z) :↔Seq(z) ∧ ℓ(z) = n+ 1

∧ ∃ab≤ z (π2(z0) = a ∧ φ(x⃗, a))

∧ ∀i < ℓ(z)∀j < i (i = j + 1 → ψ(π2(zj),π1(π1(zj)), j,π2(zi))))

Therefore f(x⃗, n) = y :↔ ∃z (CompSeqf,n(x⃗, z) ∧ π2(zn) = y) is Σ1(Seq).

Corollary 59. The graphs of primitive recursive functions are∆1(Seq)-definable.

Corollary 60. By Theorem 54, PA− decides every input-output pair (x, f(x)) of every primitive recursive function f .

It is important to bear in mind that Corollary 60 only shows that for every primitive recursive f , there exists some φ

where N ⊨ y = f(x) iff PA− ⊢ φ(x, y). f(x) might be undefined when x is non-standard. Therefore one cannot

assume f , as defined by φ(x, y), is provably total in PA−
. With this in mind, we turn to the definition of subtractive

sequences.

Definition 61 (Subtraction of an element from a sequence). GivenM ⊨ PA− and x ∈M , we define subtraction of x
from a sequence s ∈ SeqM2 , denoted as s \ x, by the following primitive recursive function:

∅ \ x = ∅

⟨y⟩ \ x = ∅ if y = x

⟨y⟩ \ x = ⟨y⟩ if y ̸= x

(s1 ∗ s2) \ x = (s1 \ x) ∗ (s2 \ x)

By Lemma 60, the graph of this function can be defined by some ∆1(Seq2) formula in PA−
.

Proposition 62 (Subtractive Sequences). There exists a cut Seq3 ⊆ Seq closed under subtraction.

Proof. Define Seq3(s) := Seq(s) ∧ ∀s′∀a (ℓ(s′) ≤ ℓ(s) → s′ \ a ↓ ∧Seq(s′ \ a)).

It is easy to see that Seq3(∅). Suppose Seq3(x) and Seq3(y). Let s′ be such that ℓ(s′) < ℓ(x∗y) and a ∈M . Observe

that since Seq is a cut, there must exist sx where ℓ(sx) ≤ ℓ(x) and sy where ℓ(sy) ≤ ℓ(y) such that sx ∗ sy = s′.

Therefore (s′ \ a) = (sx \ a) ∗ (sy \ a). Since Seq3(x) and Seq3(y), sx \ a ↓ and sy \ a ↓. Therefore s′ \ a ↓. Since

sx \ a ∈ Seq and sy \ a ∈ Seq, sy \ a ∈ Seq.

To show Seq3 closed under subtraction, consider Seq3(s) and s \ a for arbitrary a. We wish to show that Seq3(s \ a).

We know that Seq(s) ∧ ∀s′∀a(ℓ(s′) ≤ ℓ(s) → s′ \ a ↓ ∧Seq(s′ \ a)). Since ℓ(s) ≤ ℓ(s), s \ a ↓ and Seq(s \ a).

Consider arbitrary s′ where ℓ(s′) ≤ ℓ(s \ a). Observe that ℓ(s \ a) ≤ ℓ(s), therefore ℓ(s′) ≤ ℓ(s). So by Seq3(s),

s′ \ b ↓ and Seq2(s
′ \ b) for arbitrary b.

We rename Seq3 as Seq.
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2.2 Arithmetisation of Syntax

We start by assigning distinct numbers to each vocabulary in LPA
2
:

0, v, c,A,M,¬,∨,∃

We then follow the convention of Feferman 1991 [Fef91] to encode variables and formulas as pairs. For variables vx, we

encode it as

⌜vx⌝ = (v, x)

where v is a constant number. Atomic formulas are encoded as a predicate-variable pair.

⌜x+ y = z⌝ = (A, (x, y, z)) ⌜x× y = z⌝ = (M, (x, y, z))

Finally, complex formulas are encoded as the pair of their main connective and immediate subformulas:

⌜¬φ⌝ = (¬, φ) ⌜(φ ∨ ψ)⌝ = (∨, (φ,ψ)) ⌜∃vφ⌝ = (∃, (v, φ))

We thus define Var(x), Atom(x), Form(x), x◁ y to be the formulas expressing x is (the code of) a variable, x is (the

code of) an atomic formula, x is (the code of) a formula, x is the code of an immediate subformula of the formula

encoded by y, respectively.

• Var(x) := ∃z <xx = (v, z).

• Atom(x) := ∃a, b, c<x (Var(a) ∧ Var(b) ∧ Var(c) ∧ (x = (A, (a, b, c))) ∨ x = (M, (a, b, c))).

To ensure that the notion of formula is extensionally adequate in PA−
, we use the trick of simultaneously defining the

extension and the anti-extension of the set of all formulas.

• antiAtom(x) := ¬Atom(x) ∧ ¬∃y < x(x = (¬, y))

∧ ¬∃yz < x(x = (∧, (y, z)) ∧ ¬∃vy(Var(v) ∧ (∀, (v, y))))

• FormSeq(x) = Seq(x) ∧ ∀y < x(y ∈ x→Atom(y)

∨∃z(y = (¬, z) ∧ z <x y)

∨∃a∃b(y = (∨, (a, b)) ∧ a <x y ∧ b <x y)

∨∃v∃a(y = (∃, (v, a)) ∧ a <x y ∧ Var(v)))

• antiFormSeq(x) = Seq(x) ∧ ∀y < x(y ∈ x→antiAtom(y)

∨∃z(y = (¬, z) ∧ z <x y)

∨∃a∃b(y = (∨, (a, b)) ∧ a <x y ∧ b <x y)

∨∃v∃a(y = (∃, (v, a)) ∧ a <x y ∧ Var(v)))

• Form(x) = ∃y(FormSeq(y) ∧ x ∈ y).

• antiForm(x) = ∃y(antiFormSeq(y) ∧ x ∈ y).

And finally,

2

We omit “’” since PA−
has no successor axioms.
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• x◁ y := Form(y) ∧ ((y = (¬, x) ∨ ∃z < y(y = (∨, (x, z))) ∨ ∃z < y(y = (∨, (z, x)))

∨ ∃v(Var(v) ∧ y = (∃, (v, x)))).

We then define y ∈ FV(x), Asn(α), Asn(α, x), x ∈ Dom(y), Sent(x) to be the formulas expressing the following

respectively: y is among the free variables of x; α is a code of an assignment; α is the code of an assignment for x; x is

in the domain of the assignment α; and finally, x is a code of an sentence. We follow the natural choice of encoding

assignments as a finite sequence of pairs ⟨v, a⟩ where v ∈ Var and a is any object in the model.

• FVSeq(x) = Seq(x) ∧ ∀i < ℓ(x)(∃y∃v(x)i = (y, v)∧

(Atom(y) ∧ (ℓ(v) = 3 ∧ Var(v1) ∧ Var(v2) ∧ Var(v3))

∨ ∃j < i(π1((x)i) ≈ (¬,π1((x)j)) ∧ π2((x)i) = π2((x)j))

∨ ∃k, j < i(π1((x)i) ≈ (∨, (π1((x)j),π1((x)k))) ∧ π2((x)i) = π2((x)j) ∗ π2((x)k))

∨ ∃j < i∃v(Var(v) ∧ π1((x)i) ≈ (∃, (v,π1((x)j))) ∧ π2((x)i) = π2((x)j) \ v)))

• y ∈ FV(x) := ∃z∃vFVSeq(z) ∧ (x, v) ∈ z ∧ y ∈ v.

• Asn(α) := ∀i< ℓ(α)∃v∃a ((α)i = ⟨v, a⟩ ∧ Var(v)) ∧ ∀v∀a∀b (⟨v, a⟩ ∈α ∧ ⟨v, b⟩ ∈α→ a = b).

• y ∈ Dom(α) := Asn(α) ∧ ∃iπ1((α)i) = x.

• Asn(α, x) := (Form(x) ∧ Asn(α)) ∧ ∀y(y ∈ Dom(α) ↔ y ∈ FV(x)).

• Sent(x) := Form(x) ∧ ∀v <x (Var(v) → v /∈ FV(x)).

It remains to be checked that these definitions of syntactical concepts function as expected. A minimal requirement is

that they should be provably definable in PA−
, i.e., PA−

decides positive and negative instances of it. By Theorem 54

and Theorem 60, it suffices to show that these concepts are primitive recursive, or that their extension and anti-extension

are expressed by aΣ1(X) formula for some inductiveX . We observe thatVar(x),Atom(x),Asn(α) and y ∈ Dom(α)

are all ∆1(Seq).

To show that the extension and anti-extension of Form(x) and y ∈ FV(x) are Σ1(X) for some inductive X , we

first show that for any sequence x, either Form(x) or antiForm(x), but not both. We extend the method of cuts to

formulas.

Definition 63 (Form-cut and Form-inductive formula). Let T ⊇ PA− be a theory in LPA. F ⊆ Form is Form-
inductive in T if

• T ⊢ ∀x(Atom(x) → F (x)),

• T ⊢ ∀x(F (x) → F ((¬, x)),

• T ⊢ ∀x∀y(F (x) ∧ F (y) → F ((∨, (x, y))),

• T ⊢ ∀x∀v(F (x) ∧ Var(v) → F ((∃, (v, x))).

F is a Form-cut in T if in addition F is closed under subformula relation: T ⊢ ∀x(F (x) → ∀y(FormSeq(y) ∧ x ∈
y → ∀z(z ∈ y → F (z))))

Remark 64 (Every Form-inductive formula can be shortened to a Form-cut). Let I(x) be Form-inductive in T ⊇ Q.
Then there is a Form-cut J(x) in T for which T ⊢ ∀x(J(x) → I(x)).

Proposition 65. There exists a cut Form2(x) where all formulas as defined by Form1 are such that either Form(x) or
antiForm(x), and there is no sequence x that is both Form(x) and antiForm(x).
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Proof. Define Form1(x) = Form(x) ∨ antiForm(x). We prove Form2(x) inductive by mimicking the argument on

structural induction on sequences as defined before. For atomic formulax, observe that eitherAtom(x)orantiAtom(x)

by definition. Now suppose we have Form1(y) for some y, we consider x such that y ◁ x. For simplicity we only

consider the case where x = (∃, (a, y)) with Var(a). Since Form1(y), Form(y) ∨ antiForm(y). If Form(y), then

there exists FormSeq(z) where y ∈ z. We define z′ = z ∗ x. It is easy to see that FormSeq(z), so Form(x).

The case for antiForm(y) is similar, so either Form(x) or antiForm(x). We can further shorten the cut to that

Form2 = Form1 ∧ ¬(Form(x) ∧ antiForm(x)) by a similar argument.

Given Form2, we can define Form3(x) :↔ Form2(x)∧ Form(x) and antiForm2(x) :↔ Form2(x)∧ antiForm(x),

which defines a partition of Form2. PA−
thus decides the extension and anti-extension of Form with respect to a cut.

Corollary 66. Form(x) and antiForm(x) are provably definable in PA−.

We then define a complexity measure on formulas:

Definition 67 (Complexity of formulas). We define a complexity measure on formulas c(φ) where

• if φ = (R, (t1, . . . , tn)), c(φ) = 0,

• if φ = (¬, ψ), c(φ) = c(ψ) + 1,

• if φ = (∨, (ψ, χ)), c(φ) = c(ψ) + c(χ) + 1,

• if φ = (∃, (v, ψ)), c(φ) = c(ψ) + 1.

Since c(x) is a primitive recursive definition, its graph is expressible in PA−.

Remark 68. For all x, y ∈ Form3, x◁ y entails c(x) < c(y).

Remark 69. The exists a Form-cut Form4 such that PA− ⊢ ∀x(Form4(x) → c(x) ↓).

Proof. Define Form4(x) :↔ Form3(x) ∧ c(x) ↓. For atomic x, by definition c(x) = 0, so c(x) ↓. Suppose

x, y ∈ Form4, (∨, (x, y)) ∈ Form4 since c((∨, (x, y))) = c(x) + c(y) + 1, and c(x) ↓, c(y) ↓. The other cases are

similar.

For readability, we rename Form4 as Form.

Proposition 70. y ∈ FV(x) is provably definable in PA−.

Proof. y ∈ FV(x) is Σ1(Seq). y ̸∈ FV(x) := ∃z∃v < xFVSeq(z) ∧ (x, v) ∈ z ∧ y ̸∈ v is also Σ1(Seq).

Corollary 71. All concepts above are definable, and their basic properties are verifiable in PA−.

Provable definability in PA−
ensures that the PA−

definitions of expressions are extensionally adequate, and that it

accurately decides which actual sequences of symbols are formulas and which are not. However, extensional adequacy is

insufficient for the proper functioning of these definitions in proving theorems about the expressions they are tailored

to express. An illustration of the problem is in Halbach 2010 [Hal10]. Suppose we have a “natural” definition of closed

terms ClTerm(x) (which roughly says that x is a term and x contains no free variable symbols), from which we define

the “unnatural” definition

ClTerm
∗(x) := ClTerm(x) ∧ ¬B(f(x◦), ⌜0 = 1⌝)
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where f(x◦) returns the n-th proof in PA, and B(x, y) iff x is a proof of y. Therefore ClTerm
∗(x) iff x is a closed

term and x’s proof in PA is not a proof of inconsistency. Since PA is consistent, ClTerm
∗(x) and ClTerm(x) are

extensionally equivalent. Yet PA ⊢ ∀xClTerm(x) and PA ̸⊢ ∀xClTerm
∗(x) for Gödelian reasons. PA’s inability

to prove that ∀xClTerm
∗(x) may have undesirable effects downstream. Thus, we have to check that PA−

proves all

proposed definitions have the desirable “natural” properties of the syntactical expressions they are designed to capture.

Remark 72. Formulas as specified in Form satisfy the usual inductive definition, that if x = ⌜φ⌝ ∈ Form, then

Atom(x) ∨ ∃y ≤ x(Form(y) ∧ x = ⌜¬y⌝)

∨ ∃y ≤ x∃z ≤ x(Form(y) ∧ Form(z) ∧ x = ⌜y → z⌝)

∨ ∃...

∨ ∃y ≤ x∃v ≤ x(Form(y) ∧ Var(v) ∧ x = ⌜∃vy⌝)

One advantage of Feferman’s encoding is that we get the unique reading of formulas for free:

Remark 73. Formulas are uniquely determined by their immediate subformulas and their main connective, i.e., for any
formula x ∈ Form, exactly one of the four cases holds:

1. x is the code of an atomic formula,

2. there exists unique φ whose code ⌜φ⌝ ∈ Form, where x = ⌜¬φ⌝,

3. there exists unique φ,ψ whose codes ⌜φ⌝, ⌜ψ⌝ ∈ Form, where x = ⌜(φ ∨ ψ)⌝,

4. there exists unique φ and v with ⌜φ⌝ ∈ Form and ⌜v⌝ ∈ Var, where x = ⌜∃vφ⌝.

Remark 74. The immediate subformula relation x◁ y is irreflexive and asymmetric.

Proof. It suffices to note thatx◁y entailsx < y by remark 73, and thatPA−
proves that< is irreflexive and asymmetric.

Consequently, there is no loop involving x, y1, ...yn with n ≥ 0 where x◁ y1 ◁ · · ·◁ yn ◁ x.

We also check that the usual operations involved in the semantic definition of quantifiers, i.e., resetting a specific

variable’s value, restricting the variable’s domain, are definable.

Remark 75 (Deleting a variable from an assignment). ConsiderM ⊨ PA−, φ ∈ FormM and α such that Asn(α,φ).
For any v ∈ Dom(α), there exists α′ ⊂ α where Asn(α′), for all t ∈ FV(φ) \ {v} α′(t) = α(t), and v ̸∈ Dom(α′).

Proof. Asn(α,φ) entails Seq(α). By Lemma 62, for any n ∈M there exists s ∈ Seq where s ≈ α \ n. We know that

there exists n ∈M where n ∈ α and π1(t) = a, let α′ = α \ n.

Remark 76 (Resetting a variable in an assignment). ConsiderM ⊨ PA−, φ ∈ FormM and α such thatAsn(α,φ).
For any v ∈ VarM and a ∈M , there exists α[v : a] where Asn(α[v : a], φ) and α[v : a] differs from α only in that
α[v : a](v) = a.

Proof. By Remark 75, there exists α′ ⊂ αwhere v ̸∈ Dom(α). Define α[v : a] as α ∗ (v, a).

Remark 77 (Restricting the domain of an assignment). Consider M ⊨ PA−, φ ∈ FormM and Asn(α) where
Dom(α) ⊇ FV(φ). There existsα ↾ FV(φ) whereDom(α ↾ FV(φ)) = FV(φ) and ∀x ∈ FV(φ),α ↾ FV(φ)(x) =

α(x).
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Proof. Remark 75 implies that Asn is closed under subsets. So α ↾ FV(φ) exists.

2.3 Conservativity of Satisfaction in PA−

The standard model-theoretic treatment of satisfaction for a theoryT formulated inLT is via adding a binary satisfaction

predicate S(x, y) and a unary formula predicate F(x) into the language. Intuitively, S(x, y) says that the formula

coded by x is satisfied by the assignment coded by y, and F(x) says that x encodes a LT -formula. The behavior of

the satisfaction predicate is studied via the theory T FS
(read as “T with full satisfaction”) formulated in the enriched

language LT ∪ {S,F}. We focus on the case where T is PA−
.

Definition 78 (Satisfaction Predicate). PA−FS := PA− ∪ Tarski(S,Form), where Tarski(S,Form) refers to the
universal generalizations of the following formulas in LT ∪ {S,F}. Note that R is a meta-variable that ranges over
relations inLPA, i.e. {A,M}. t0 . . . tn are also meta-variables.

• tarski0(S,F) := (F(x) → Form(x)) ∧ (S(x, α) → (F(x) ∧ Asn(α, x))) ∧ (y ◁ x ∧ F(x) → F(y)).

• tarski1,R(S,F) :=(F(x) ∧ (x = (R, (t0 . . . tn−1))) ∧ Asn(α, x) ∧
∧
i<n

α(ti) = ai)

→ (S(x, α) ↔ R(a0 . . . an1))).

• tarski2(S,F) := (F(x) ∧ x = (¬, y) ∧ Asn(α, x)) → (S(x, α) ↔ ¬S(y, α)).

• tarski3(S,F) :=(F(x) ∧ x = (∨, (y1, y2)) ∧ Asn(α, x))

→ (S(x, α) ↔ (S(y1, α ↾ FV(y1)) ∨ S(y2, α ↾ FV(y2)))).

• tarski4(S,F) := (F(x) ∧ x = (∃, (t, y)) ∧ Asn(α, x)) → (S(x, α) ↔ ∃α′ ⊇ α S(y, α′)).

Moreover, one usually requires that the satisfaction predicate be defined for all formulas in the model.

Definition 79 (Satisfaction Classes and Full Satisfaction Classes). Consider aPA−-modelM,F ⊆M and S a binary
relation onM

1. S is an F -satisfaction class if (M, S, F ) ⊨ Tarski(S,F).

2. S is a full satisfaction class if S is a F -satisfaction class for F = FormM.

In addition, we call a satisfaction class standard if F only contains the codes of formulas encoded by standard numbers.

That is, we consider ωM the well-founded initial segment of M that is isomorphic to the ordinal ω. F is the set of

standard LPA-formula of M if F = FormM ∩ ωM.

With these definitions, we proceed to prove the conservativeness of compositional satisfaction for PA−
. Following

[EV15], this is done by first proving the following lemma.

Lemma 80 (PA−
). LetN0 ⊨ PA−, F1 := FormN0 , F0 ⊆ F1, and suppose S0 is an F0-satisfaction class. Then there

is an elementary extensionN1 ofN0 that carries an F1-satisfaction class S1 ⊇ S0 and (c, α) ∈ S0 whenever c ∈ F0,
α ∈ N0 and (c, α) ∈ S1.

For clarity, we establish the proof in steps. The intuitive idea of the proof is to stipulate a set of axioms for the satisfaction

class for the elementary extension N1 of N0. The content of the set of axioms should exactly match the requirements

for the satisfaction class as stipulated in the lemma. The axioms are formulated in an enriched language:

Definition 81 (L+
PA(N0)). LetL+

PA(N0) asLPA enriched by constant symbols for each member inN0, andUc for each
c ∈ FormN0 .
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The intended interpretations for Uc is {α ∈ Ac : S1(c, α)}, whereAc := {α : N1 ⊨ Asn(α, c)}. That is, Uc(α) iff

α is an assignment of c in N1, and α behaves in a Tarskian way.

Definition 82 (Th+(N0)). LetTh+(N0) := Th(N0, a)a∈N0 ∪Θ ∪ Γ, where

Θ := {θc : c ∈ F1}

with each of θc as follows

• IfR ∈ LPA andN0 ⊨ c = ⌜R(t0, ..., tn−1)⌝, then θc := ∀α(Uc(α) ↔ Asn(α, c) ∧R(α(t0), ...α(tn−1))).

• IfN0 ⊨ c = ⌜¬d⌝, then θc = ∀α(Uc ↔ Asn(α, c) ∧ ¬Ud(α)).

• IfN0 ⊨ c = ⌜d1 ∨ d2⌝, then θc = ∀α(Uc ↔ Asn(α, c) ∧ (Ud1(α ↾ FV(d1)) ∨ Ud2(α ↾ FV(d2)))).

• IfN0 ⊨ c = ⌜∃vab⌝, then θc = ∀α(Uc ↔ Asn(α, c) ∧ ∃α′ ⊇ αUb(α
′) ∧ Asn(α′, b)).

And
Γ := {Uc(α) : c ∈ F0, (c, α) ∈ S0} ∪ {¬Uc(α) : c ∈ F0, (c, α) ̸∈ S0}.

The intuitive interpretation of Θ is that each of Uc contains assignments α for c that follow the Tarskian definitions

for assignments for formulas. And Γ ensures that the other requirement for the F1-satisfaction class S1, namely, that

(c, α) ∈ S0 whenever c ∈ F0, α ∈ N0 and (c, α) ∈ S1, is satisfied.

Remark 83. Th+(N0) is syntactically well-defined in PA−.

Proof. By Remark 77, Ux(α ↾ FV(x)) is well-defined.

Before proving Lemma 80, we first show that Th+(N0) is consistent.

Lemma 84 (PA−
). Th+(N0) has a model.

Proof. By compactness, it suffices to show that arbitrary finite subsets T0 ⊆ Th+(N0) are interpretable in PA−
. Since

Th(N0, a)a∈N0 is known to be consistent, we only have to check the T0s where T0 ∩ (Θ ∪ Γ) ̸= ∅. This is done by

showing that each of the Ucs has an extension that satisfies the axioms stipulated in Θ ∪ Γ.

LetC = c ∈ FormN0
, we aim to construct subsets {Uc : c ∈ C} ofN0, where the following conditions hold when

Uc is interpreted byUc:

1. Uc behaves in a Tarskian way: (N0, Uc)c∈C ⊨ {θc : c ∈ C},

2. The behavior of Uc respects that of N0: for c ∈ C ∩ F0,Uc = {α ∈ N0 : (c, α) ∈ S0}.

The construction ofUc is done by induction on the complexity of formulas. First, define ◁∗
onC where

c◁∗ d iff (c◁ d)N0
and θd ∈ T0 ∩Θ.

SinceC is finite and ◁∗
is loop-free by Remark 74, (C,◁∗) is well-founded. We thus define rankC for c ∈ C as

rankC(c) := sup{rankC(d) + 1 : d ∈ C and d◁∗ c}
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and

Ci := {c ∈ C : rankC(c) ≤ i}.

Observe that rankC(c) = 0 precisely when θc ̸∈ T0 ∩Θ, moreover, if c ∈ Ck, all codes d of immediate subformulas

of the formula coded by c are inCk−1. This allows us to define the extension of Uc for each c ∈ C by the following

recursive definition:

• If c ∈ C0, thenUc :=

{α : (c, α) ∈ S0}, if c ∈ F0;

Uc := ∅ if c ̸∈ F0.

• If c ∈ Ci+1 \ Ci and c = ¬d, thenUc := {α ∈ Ac : α ̸∈ Ud}.

• If c ∈ Ci+1 \ Ci and c = a ∨ b, thenUc := {α ∈ Ac : α ↾ FV(a) ∈ Ua or α ↾ FV(b) ∈ Ub}.

• If c ∈ Ci+1 \ Ci and c = ∃vab, thenUc := {α ∈ Ac : ∃α′ ∈ N(α ⊆ α′
and α′ ∈ Ub)}.

Notice that the last clause is well-defined since by Remark 76, for allα andφ such that Asn(α,φ), for any v ∈ Dom(α)

arbitrary a ∈M , α[v : a] is well-defined.

We prove by induction to show that conditions 1) and 2) are satisfied when Ucs are interpreted byUc. For the base case

c ∈ C0, 1) is vacuously satisfied and 2) is satisfied by definition. For the inductive case, consider for example c = a ∨ b,

and suppose that Ua and Ub satisfies both 1) and 2). Uc := {α ∈ Ac : α ↾ FV(a) ∈ Ua or α ↾ FV(b) ∈ Ub}, so

(N0, Uc)c∈C ⊨ θc. 2) is satisfied because S0 is anN0 satisfaction class. Therefore every finite subset of Th+(N0) has a

model, so Th+(N0) has a model.

We finish the proof of Lemma 80 by showing that the model of Th+(N0) is an elementary extension of N0 with an

F1-satisfaction class S1 with the properties stipulated in Lemma 80.

Proof. Recall that Th+(N0) := Th(N0, a)a∈N0 ∪Θ ∪ Γ. So any model of Th+(N0) is of the shape (N1, Uc)c∈F1 ,

where N1 ⊨ Th(N0, a)a∈N0 . So N1 is an elementary extension of N0. Let S1 be the binary relation defined onN1 via

S1(c, α) iff α ∈ Uc.

Since condition 1) in Lemma 84 is met, S1 is an F1 satisfaction class. Also S1 ⊇ S0 and (c, α) ∈ S0 whenever c ∈ F0,

α ∈ N0 and (c, α) ∈ S1 by condition 2.

Lemma 85. LetM0 be a model of PA− of any cardinality.

1. IfS0 is anF0-satisfaction class onM0, then there is an elementary extensionM ofM0 that carries a full satisfaction
class that extends S0.

2. There is an elementary extensionM ofM0 that carries a full satisfaction class.

Proof. By Lemma 80, there is an elementary extension M1 of M0 that carries a full satisfaction class that extends S0,

where F1 := FormM0
. Carrying out the argument for i : i ∈ ω yields sequences ⟨Mi : i ∈ ω⟩ and ⟨Si : i ∈ ω⟩

where

• Mi+1 elementary extends Mi,

• Si+1 is an Fi+1 satisfaction class on Mi+1 with Fi+1 := FormMi
,

• Si = Si+1 ∩ {(c, α) : c ∈ Fi,Mi ⊨ Asn(α, c)}.
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Let M :=
⋃
i∈ωMi and S :=

⋃
i∈ω Si. By Tarski’s elementary chain theorem, M elementarily extends M0. S is a

full satisfaction class on M.

Corollary 86. PA−FS is a conservative extension of PA−.

Proof. Suppose not, i.e. there exists a formulaφwherePA−FS ⊢ φ butPA− ̸⊢ φ. ThereforePA−∪{¬φ} is consistent,

there exists M0 ⊨ PA− ∪ {¬φ}. By Theorem 85, there is an elementary extension M1 of M0 that carries a full

satisfaction class. Therefore M1 ⊨ φ. Since M1 is an elementary extension of M0, M1 ⊨ φ, contradiction.

2.4 Conservativity of Truth in PA−

We then turn to showing the conservativity of truth in PA−
. As mentioned in the preliminary section, we will define

truth by structural recursion on closed sentences directly, instead of treating it as a special case of satisfaction. The

alleged difficulty that recursion cannot handle the quantifier case ∃xφ(x) — as φ(x), being an open formula, cannot

be true — is resolved by substituting the variables in the sentence φ(x) directly with a numeral:

x = (∃, (v, y)) → (T(x) ↔ ∃zT(y(z̄)))

where z̄ is the numeral for the number z. Numerals are usually implemented as sequences of symbols, where the number

the numeral denotes is usually a function of the length of the sequence, e.g., repeated successor operation on constant 0.

Therefore the numeral for number 0 is 0, and the numeral for n is 0 ′ · · ·′︸︷︷︸
n

.

However, implementing numerals as sequences does not coordinate well with the shortening of cuts. For an arbitrary

model M and a Seq-cut I ⊆M , since the cut sets a constraint on the length of sequences, it is not guaranteed that for

any element x ∈ I , the corresponding numeral x̄ is in I . So the truth clause for quantifiers might miss out on elements

in the domain. So the quantifier cases should be implemented in PA−
in some other ways. A method compatible with

the shortening of cuts is domain constants
3
.

Definition 87. LetM ⊨ PA−. We introduce cx ̸∈ LPA as domain constants forM. The intended interpretation is
that for arbitraryM ⊨ PA− and x ∈ M . (cx)M = x. Define ⌜cx⌝ = (c, x) where c is a constant number distinct
from v, etc.

Substitution of domain constants is equivalent to substitution of numerals: forn ∈ N andφ(v)with v free,M ⊨ φ(n̄)

iff M ⊨ φ(cn). They are also compatible with any cut. Consider a Seq-cut I in PA−
. For any model M and x ∈ IM,

there exists s ∈ I where for some i ≤ ℓ(I), (s)i = cx. We adapt the notion of formula to include domain constants,

which gives

• Const(x) := ∃z <xx = (c, z).

• Term(x) := Var(x) ∨ Const(x).

• Atom(x) := ∃a, b, c<x (Term(a) ∧ Term(b) ∧ Term(c) ∧ (x = (A, (a, b, c))) ∨ x = (M, (a, b, c))).

It is clear that this work, since domain constants are in our treatment of the syntax, is fully analogous to variables.

3

This illuminates another difference between pairs and sequences. The sequences available will be constrained given a cut, but since the

elements of sequences may be anything, we still have access to all the pairs as elements of the sequence.
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Definition 88 (Truth class). PA−T := PA− ∪ Tarski(T), whereTarski(T) refers to the universal generalizations of
the following formulas in LT ∪ {T}, where Sent(x) is defined above as expressing “x is a LPA-formula with no free
variables.”

• tarski0(T) := T(x) → Sent(x).

• tarski1,R(x) := x = (R, (cy0 , . . . , cyn−1)) → (R(y0, . . . , yn−1) ↔ T (x)).

• tarski2(x) := x = (¬, y) → (T(x) ↔ ¬T(y)).

• tarski3(x) := x = (∨, (y1, y2)) → (T(x) ↔ T(y1) ∨ T(y2)).

• tarski4(x) := x = (∃, (v, y)) ∧ Var(v) → (T(x) ↔ ∃zT(y(cz))).

Enayat & Visser do not prove the conservativity of truth classes directly, but rely on an equivalence between truth and

certain satisfaction classes. The idea is as follows. Recall that in the preliminary section, we introduced the conceptual

connection between satisfaction and truth. The pair (φ, α) is in the extension of satisfaction, iff φ, with all its free

variables replaced by the corresponding constants for values they are assigned, is true. Therefore, the information in a

truth class can be represented by a satisfaction class, if whenever the sentence φ is in T , all formula-assignment pairs

ψ, α, where one can obtain φ by a suitable substitution of variables from ψ, α, is in S.

Note the emphasis on “all formula-assignment pairs”. The transformation of replacing variables by constants is not a

bijection: different formulas that are the same except for their free variables (Rvvu and Ruww), when paired with

suitable assignments (α(v) = α(u) = β(u) = β(w) = a), would be mapped to the same closed sentence (Raaa).

Only some well-behaved satisfaction classes represent truth classes, namely, those where either all formula-assignment

pairs mapping to the same sentence all fall into the extension of the satisfaction predicate, or all of them fall into the

anti-extension of the satisfaction predicate. We dub these well-behaved satisfaction classes “extensional” — in the sense

that they ignore the intensional difference that sentences have different free variables, a fortiori, different meanings.

One might wonder why the existing axioms for satisfaction classes are insufficient to enforce extensionality. After all, it

seems that for all atomic formulas (R, (t0, . . . , tn)), the axiom

(F(x) ∧ x = (R, (t0 . . . tn−1)) ∧ Asn(α, x) ∧
∧
i<n

α(ti) = ai) → (S(x, α) ↔ R(a0 . . . an1)))

ensures extensionality for all atomic formulas, and axioms tarski2 to tarski4 carry the property forward to all formulas.

The culprits are non-standard numbers and formulas.

Example 89. LetM be a non-standard model of PA−, and c a non-standard number. Consider the formulas

φ1 = ((((x0 = x0) ∧ x1 = x1) ∧ x2 = x2) ∧ · · · ∧ xc = xc)

φ2 = ((((xc = xc) ∧ xc−1 = xc−1) ∧ xc−2 = xc−2) ∧ · · · ∧ x0 = x0)

where all the xi are variables. Letα be the assignment whereα(xi) = a ∈M for all i. Then there exists a full satisfaction
class S onM where (φ1, α) ∈ S but (φ2, α) ̸∈ S.

Thus, one has to manually restrict attention to extensional satisfaction classes. We start by articulating the idea of

substitution and replacing the free variables in a formula with the corresponding constants.
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Definition 90 (Substitution). A substitution for a formula ψ ofLPA is a function

σ : FV(ψ) → Var

We require σ to preserve substutivity: for x ∈ FV(ψ), x is not in the scope of any quantifier that binds σ(x).

Notation-wise, define ψ ∗ σ as the formula obtained from ψ by applying the substitution σ.

Definition 91 (Replacing variables with domain constants). LetM ⊨ PA−, we define c : m 7→ cm for everym ∈M

as the injection that maps every element in the domain to the corresponding domain constant. For a formula φ ∈ FormM

andM-internal assignment α such thatM ⊨ Asn(α,φ), the LPA-sentence φ(c ◦ α) is obtained by replacing each
occurrence of free variables v ∈ FV(φ) with the domain constant ca where α(v) = a.

Definition 92 (Extensional Satisfaction Classes). To define extensional satisfaction classes, we first define an equivalence
relation on formula-assignment pairs (φ, α) where α is a variable assignment for φ. We define (φ1, α1) ∼ (φ2, α2) iff
there is a formula-assignment pair (ψ, β) and substitutions σ1, σ2, where

φ1 = ψ ∗ σ1, β = α1 ◦ σ1;

φ2 = ψ ∗ σ2, β = α2 ◦ σ2.

where ◦ denotes function composition.

An F -satisfaction class S is extensional if for all φ1 and φ2 in F ,M ⊨ (φ1, α1) ∼ (φ2, α2) implies (φ1, α1) ∈ S iff
(φ2, α2) ∈ S.

Note that PA−
proves that (φ1, α1) ∼ (φ2, α2) is an equivalence relation (in some cut). We also observe that

Remark 93. ∼ has the following property when interpreted in PA−:

• if ((¬, φ0), α0) ∼ ((¬, φ1), α1), then (φ0, α0) ∼ (φ1, α1).

• if (∨, (φ0, φ1)), α) ∼ ((∨, (φ′
0, φ

′
1)), α

′), then (φ0, α ↾ FV(φ0)) ∼ (φ′
0, α

′ ↾ FV(φ′
0)) and

(φ1, α ↾ FV(φ1)) ∼ (φ′
1, α

′ ↾ FV(φ′
1)).

• if φ = (∃, (t, ψ)) and φ′ = (∃, (t′, ψ′)) and (φ, α) ∼ (φ′, α′), then t = t′ and for some e,
(φ, α[t : e]) ∼ (φ′, α′[t : e]).

• if (φ, α) ∼ (ψ, β), then c(φ) = c(ψ). (where c is defined in definition 67)

The full proof of the remark will be left to the appendix. Given the precise definition of extensionality, the idea that

extensional satisfaction classes correspond to truth classes can be made precise as the following proposition:

Proposition 94. SupposeM ⊨ PA−, T is a full truth class onM, and S is an extensional full satisfaction class onM.
Define

• S(T ) is an extensional satisfaction class onM, where S(T ) is defined as the collection of ordered pairs (φ, α) such
that φ(c ◦ α) ∈ T .

• T (S) is a truth class onM, where T (S) is defined as the collection of φ ∈ L+
PA such that for some ψ ∈ L+

PA and
some assignment α for ψ, φ = ψ(c ◦ α) and (ψ, α) ∈ S.

• S(T (S)) = S, and T (S(T )) = T .

33



whose proof is also left to the appendix.

Given Proposition 94, the conservativeness of compositional truth for PA−
follows from the conservativeness of

extensional satisfaction for PA−
. The idea is to extend the proof of Lemma 80 to stipulate the theory constructed to be

extensional by adding a new set of axioms.

Definition 95. Let φ0 and φ1 beLPA formulas. We write φ0 ≈ φ1 if there is a formula ψ, and substitutions σ0 and
σ1 where φi = ψ ∗ σi for i = 0, 1.

Definition 96 (Externally defined subformula-closed set). LetM be a PA−-model. Let c ∈ FormM. LetTCM(c) be
the externally defined subformula-closed set with respect to c, i.e.

TCM(c) :=
⋃
n<ω

TCM(n)

whereTCM(c, 0) := {c} andTCM(c, n+ 1) := {x ∈M : x◁M d for some d ∈ TCM(c, n)}.

Remark 97. The following holds for∼,≈ andTCM:

• (φ0, α0) ∼ (φ1, α1) implies φ0 ≈ φ1.

• if d ∈ TCM(c) and d ̸= c, then c ̸≈ d.

• ≈ preserves principal connectives: (¬, c) ≈ (¬, d) implies c ≈ d, (∨, (c1, c2)) ≈ (∨, (d1, d2)) implies c1 ≈ d1

and c2 ≈ d2, finally (∃, (t, c)) ≈ (∃, (t′, d)) implies t = t′ and c ≈ d.

• if φ ≈ ψ, c(φ) = c(ψ). (where c(φ) is the complexity of formula defined in Definition 67)

Proof. i) is obvious, ii) and iv) follow from trivial inductions. iii) follow from Remark 93 and i).

We then proceed to prove the following important lemma for truth:

Lemma 98. LetN0 ⊨ PA−, F1 := FormN0 , F0 ⊆ F1, and suppose S0 is an extensional F0-satisfaction class. Then
there is an elementary extensionN1 ofN0 that carries an extensional F1-satisfaction class S1 ⊇ S0 and (c, α) ∈ S0

whenever c ∈ F0, α ∈ N0 and (c, α) ∈ S1.

The proof strategy is similar to proving the conservativeness of satisfaction classes, with the extra axioms for stipulating

that the satisfaction class is extensional. Again, we start by defining Th+(N0).

Definition 99. LetTh+(N0) := Th(N0, a)a∈N0 ∪Θ∪Γ, andΘ andΓ be exactly as in Definition 82. Further define
∆ := {δcc′ : c, c′ ∈ F1}, where

δcc′ := ∀α∀α′((c, α) ∼ (c′, α′) → (Uc(α) ↔ Uc′(α
′))).

δcc′ ensures anyM ⊨ Th+(N0) carries a satisfaction classS where if (c, α) ∼ (c′, α′), then (c, α) ∈ S iff (c′, α′) ∈ S.

Lemma 100. Th+(N0) has a model.

Proof. We show that every finite subset of Th+(N0) is interpretable in some N . Let C be the collection of c ∈ F1

such that c appears in T0. We define ◁∗
and rankC(c) exactly as in Lemma 80. We construct models for arbitrary finite

subsets T0 ⊆ Th+(N0). To ensure extensionality, we first extendC to finite C̄ where whenever c ≈ c′ and d ◁∗ c

with c, c′, d ∈ C̄ , then there is some d′ ∈ C̄ where d′ ◁∗ c′ with d′ ≈ d.
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Define d′◁◦ c iff d′◁∗ c′ ≈ c for some c′ ∈ C . Observe that◁◦
is loop-free inPA−

. Suppose, for a contradiction, that

there existsφ,ψwhereφ◁◦ψ andψ◁◦φ. There isφ′, ψ′
whereφ◁∗ψ′

,ψ◁∗φ′
andφ ≈ φ′

andψ ≈ ψ′
. By Remark

97, c(φ) = c(φ′) and c(ψ) = c(ψ′). By Remark 68 and the definition of ◁∗
, c(φ) < c(ψ′) and c(ψ) < c(φ′), a

contradiction. The well-foundedness of (◁◦, C) leads to the definition of rank◦C for c ∈ C as

rank◦C(c) := sup{rank◦C(d) + 1 : d ∈ C and d◁◦ c}

which then allows us to defineDi := {c ∈ C : rank◦C(c) = i}.Letn = max{rank◦C(c) : c ∈ C}; we can recursively

constructEn, En−1, . . . , E0 as follows:

• En := Dn,

• En−(i+1) := Dn−(i+1) ∪ {d : d◁N0 c for some c ∈ En−i}.

Finally, let C̄ := En ∪ · · · ∪ E0. By replacingC with C̄ , we observe that if c and c′ are both inC with c ≈ c′, then

rankC(c) = rankC(c
′).

Similar to the proof of Lemma 80, we construct {Uc : c ∈ C} where the following conditions hold when Uc is

interpreted byUc:

1. Uc behaves in a Tarskian way: (N0, Uc)c∈C ⊨ {θc : c ∈ C},

2. The behavior of Uc respects that of N0: for c ∈ C ∩ F0,Uc = {α ∈ N0 : (c, α) ∈ S0},

3. S is extensional: (N0, Uc)c∈C ⊨ {δcc′ : c, c′ ∈ C}.

The proof that the first two conditions hold is exactly like before. To establish 3), we use induction on rankC(c) to

show that ∀c ∈ C P (c), where

P (c) := ∀c′ ∈ C, (N0, Uc)c∈C ⊨ ∀α∀α′((c, α) ∼ (c′, α′) → (Uc(α) ↔ Uc′(α
′))).

For the base case, consider c such that rankC(c) = 0 and for some c′, α, α′ (c, α) ∼ (c′, α′). By remark 97, c ≈ c′, so

rankC(c) = rankC(c
′) = 0. Recall the definition forUc for c ∈ C0, where if c ∈ F0 thenUc = {α : (c, α) ∈ S0},

andUc = ∅ otherwise. Since S0 is an extensional satisfaction class,(c, α) ∈ S0 iff (c′, α′) ∈ S0, soUc(α) iffUc(α
′).

For the inductive case, suppose P (c) holds for rankC(c) = k. Consider the case of cwhere rankC(c) = k + 1. For

simplicity, we only consider the case where c = (∃, (t, d)). Suppose for some c′, α′
, (c, α) ∼ (c′, α′). Therefore

c ≈ c′, and that c′ must be of the shape (∃, (t, d′)) where d ≈ d′. SinceC is such that for all c, c′ ∈ C where c ≈ c′,

then rankC(c) = rankC(c
′). rankC(d) = rankC(d

′) = k. Applying the inductive hypothesis to d and d′ gives

∀α∀α′((d, α) ∼ (d′, α′) → (Ud(α) ↔ Ud′(α
′))). We also know that if α ∈ Ud, then α[t : e] ∈ Uc for some e. By

Remark 93, (c, α[t : e]) ∼ (c′, α′[t : e]). Since S is extensional, α[t : e] ∈ Uc iff α′[t : e] ∈ Uc′ . The proof of the

other direction is similar.

Therefore, we have a set ofUcs that satisfy all three conditions, so Th+(N0) is consistent.

The rest proceeds exactly as in the proof of Lemma 80.

Theorem 101. LetM0 ⊨ PA−. There is an elementary extensionM ofM0 that carries a full extensional satisfaction
class.

Corollary 102. Every model of PA− has an elementary extension that carries a full truth class.
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Corollary 103. PA−FS is a conservative extension of PA−.

The conservativeness of compositional truth for PA−
should not be surprising, as it is known that compositional truth

without extended induction for PA is conservative over PA.
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Chapter 3

Compositional Truth for PA− is not
Semantically Conservative.

3.1 Motivating Remarks

In the previous chapter, we proved that PA−
with compositional truth CT[PA−] is syntactically conservative over

PA−
, i.e., adding compositional truth does not allow one to prove new theorems in the arithmetical language. This

chapter turns to the second question drafted in the introduction:

Are there any other notions of conservativeness? What is the behavior of compositional truth in PA−
with

respect to these other notions?

A natural counterpart of syntactic conservativity is semantic conservativity — the property that every model of the base

theory can be expanded into a model of the expanded theory. Since semantic conservativity is underdiscussed in the

philosophical literature, we will start by motivating why it is important for axiomatic theories of truth and deflationism,

postponing the formal setup for studying non-standard models of arithmetic to later sections.

The notion of semantic conservativity is related to the existence of non-standard models. By the Löwenheim-Skolem

theorem, any consistent set of first-order axioms with an infinite model has more than one model (modulo isomorphism).

That is, besides the “standard model” that describes the subject matter the axioms intend to capture, there are so-called

“non-standard models” that are not isomorphic to the standard model, but satisfy all axioms in the theory. Non-standard

models usually contain more items than the standard model, known as “non-standard elements”. In arithmetic, the

standard model is N, and all non-standard models contain elements c > N that are, in a sense, larger than all natural

numbers. Observe that semantic conservativity is nontrivial only if we acknowledge the existence of non-standard

models, as every set of axioms consistent with the standard model will automatically be semantically conservative if the

only model we acknowledge as a model of the theory is the standard one.

Motivations for semantic conservativity thus relate to arguments against restricting one’s attention only to the intended

model of a theory. A prominent one is due to Halbach [Hal99] in the context of deflationism, via a two-step argument.

First, Halbach argues that the deflationary understanding of truth is only compatible with the T-schemas being

understood as axioms. The deflationary notion of truth is absolute, meaning that they do not define the notion of truth

of an object language in a meta-language. Therefore, unlike Tarski’s original proposal, the deflationist uses the T-schema

to stipulate the content of truth-in-L in L. By the undefinability theorem, the T-schema cannot form a definition of

truth. Neither can its instances stipulate the extension of the truth predicate in L, since they are not sentences in the
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metalanguage. The only option left, as argued by Halbach, is to treat them as axiomatisations of a primitive notion of

truth.

But then the T-schema in itself cannot fix the standard model, and sentencesφ that are true in the standard modelN ⊨ φ

but are false in some non-standard model cannot be viewed as consequences of deflationary truth. More importantly

for our purpose, Halbach argues that the deflationist cannot restrict their attention to the standard model N in any way.

For example, they cannot say that deflationism is applied to an interpreted language whose intended domain is just

the natural numbers N. This is because outlining the content of N necessarily involves outlining what is true about

it, which then relies on a pre-theoretical notion of truth that the deflationists are trying to explicate, rendering their

justification circular. The point is best illustrated in technical terms. Suppose φ is a theorem of deflationist truth if

and only if (N, T ) ⊨ φ. Here (N, T ) ⊨ φ is a statement in the metalanguage, where T fixes the extension of the truth

predicate in the object language. The problem is that deflationary truth does not allow one to decide the exact content

of T ; therefore, deflationists have no way to decide whether φ is a consequence of arithmetical truth.

Regardless of one’s opinion on the cogency of Halbach’s step 1, Halbach’s step 2 generalises to any axiomatic theory

of truth, whether it is deflationary in spirit or not. Generally, it is a merit for an axiomatic approach of anything to

distance itself from the standard model of that subject matter, because neither the standard model M, nor all of its

logical consequencesTh(M) can be specified by first-order axiomatisations. Therefore, the arithmetical standard model

N, albeit assumed to capture what is the case in the mathematical reality, is in a sense “unknown” from a first-order

axiomatic perspective. The investigations of truth should not depend on the assumption that we have full knowledge

of N or Th(N). The usual approach, as described by Kaye [Kay16], is to stipulate a set of axioms that is reasonably

accepted about N and investigate its consequences, including the non-standard models it gives rise to. In arithmetic,

this is usually PA. A PA−
theoremφ is assertible/true not because it is true in N, but is a proof-theoretical consequence

of PA.

In the case of truth, one should also start by stipulating what is accepted about truth (e.g., T-schema), and investigate

the (possibly non-standard) models this gives rise to. The notion of semantic conservativity seems to be just the right

notion for this occasion. In the rest of the chapter, we will see that CT[PA−] is not semantically conservative over PA−
.

We start by showing the argument for semantic nonconservativity of compositional truth in PA in Section 3.2, which is

generalized to PA−
in Section 3.3.

3.2 Results for PA

Most published arguments for the semantic nonconservativity of CT[PA] (e.g. Halbach [Hal10], Cieśliński [Cie17])

rely on the following theorem:

Theorem 104 (Lachlan’s Theorem). LetM ⊨ PA be non-standard and let S be a partial non-standard satisfaction
class forM, thenM is recursively saturated.

where a partial satisfaction class is defined in Definition 85.
1

On the other hand, some non-standard models of PA are

1

As noted by Kaye [Kay16], Lachlan’s theorem bridges semantic conservativity with syntactic conservativity, albeit in a language different

from LPA. According to Lachlan’s theorem, any non-standard model that carries a satisfaction class is recursively saturated. Therefore, every

model of M ⊨ PAFS
either is standard, or is recursively saturated. Let “if the model is non-standard, then it is recursively saturated” be expressed

by the following statement:

φ :↔ ∀a(
∧
n∈N

∃x
∧
i<n

θi(x, a) → ∀y∃x
∧
i∈N

(i < y → θ0(x, a)))

where (θi)i∈N is a schematic variable over recursive sequences of LPA formulas. Since some models are not recursively saturated, PAFS ⊢ φ but

PA ̸⊢ φ. Thus PAFS
is not conservative over PA in an infinite language. Since there seems to be no reason why one should restrict attention to
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not recursively saturated:

Lemma 105. Any consistent extension of PA carries a model that is not recursively saturated. In particular, there are
non-standard models of Peano arithmetic that are not recursively saturated.

For a proof of the lemma, see Halbach [Hal10], p. 75. Since a non recursively saturated model cannot expand to a

recursively saturated one, we have:

Corollary 106. CS[PA] is not semantically conservative over PA.

Theorem 107 (Cieśliński 2017 [Cie17], Corollary 7.0.6). All non-standardmodels ofPA expandable tomodels ofCT[PA]
are recursively saturated. So CT[PA] is not semantically conservative over PA.

Proof. Recall the definition ofφ(c◦α)which replaces every v ∈ FV(φ)with the domain constant ca whereα(v) = a.

Let M be a non-standard model of PA where (M, T ) ⊨ CT[PA]. To show that M is expandable to a model of PAFS
,

we define a satisfaction class as follows:

S = {(α,φ) |Form(φ) ∧ Asn(α,φ) ∧ φ(c ◦ α) ∈ T}

Which is just S(T) defined above, which is shown to be a satisfaction class by induction. By Lachlan’s theorem, all

non-standard models of CS[PA] are recursively saturated.

To generalise Theorem 107 to PA−
, we note several important lemmas that the proof relies on.

Lemma 108 (Kaye [Kay91], Lemma 11.3). Let f : N → N be recursive, and letM ⊨ PA be non-standard. then there
is a b ∈ M such thatM ⊨ (b)n = f(n) for all n ∈ N. Moreover, if the image of f , Im(f) = {f(n) |n ∈ N} is a
recursive set, then there exists c ∈M such that Im(f) = {n ∈ N |M ⊨ ∃x<c (b)x = n}.

Proof. Suppose f : N → N is a recursive function, then it is Σ1-definable, i.e., there exists a ∆0-formula θ with

three free variables such that for all n,m ∈ N, N ⊨ ∃zθ(n,m, z) iff f(n) = m. Since PA is Σ1-complete and

sequential, for any M ⊨ PA, M ⊨ ∃b∀x, y, z < i(θ(x, y, z) → (b)x = y) for all i ∈ N. By overspill, there

exists b ∈ M and a ∈ M \ N where M ⊨ ∀x, y, z < a(θ(x, y, z) → (b)x = y). Suppose f(n) = m, therefore

∃z ∈ N, M ⊨ θ(m,n, z), so M ⊨ (b)n = m. Conversely, suppose there exists some c such that f(n) = c, and

M ⊨ (b)n = m for somem ∈M . We see that c = m.

Suppose Im(f) is recursive. Then there is a∆0 formulaψ(y, w) such that for alln ∈ N,n ∈ Im(f) iffN ⊨ ∀wψ(n,w).

Therefore clearly for i ∈ N, M ⊨ ∀x < i∀w < iψ((b)i, w). By overspill, there exists c ∈M \ N where M ⊨ ∀x <
c∀w < cψ((b)x, w). Suppose n ∈ Im(f). Then n = (b)i for some i ∈ N. Since c > N, M ⊨ ∃x<c (b)x = n.

Conversely, suppose that M ⊨ ∃x<c (b)x = n. We also know that M ⊨ ∀x < c∀w < cψ((b)x, w), therefore

M ⊨ ∀w < cψ((b)x, w), and in particular M ⊨ ψ(n,w) for allw ∈ N. Since ψ is a ∆0 formula and N <∆0 M,

N ⊨ ∀wψ(n,w), n ∈ Im(f).

Lemma 109. LetM ⊨ PA be non-standard, S be a non-standard satisfaction class, and φ(x0, . . . , xn) be a standard
formula with only x0, . . . , xn free. Then, for all α ∈ AsnM,
(M, S, F ) ⊨ Form(φ) ∧ Asn(φ, α) ∧ S(φ, α) → φ(α(x0), . . . , α(xn)).

syntactic conservativity of the finite language, this adds another reason why one should consider semantic conservativity in evaluating truth

theories.

The philosophical significance of the infinite language is debatable. Those who believe that deflationism cannot use semantic arguments might

reply that in the infinite language, one has all the resources to implement model-theoretical concepts, thus it is incompatible with deflationism.
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Proof. By induction on the complexity of formulas. Base case: φ = (R, (t1, . . . , tn)) where tis are meta-variables

referring to variables in M. Suppose (M,S, F ) ⊨ Form(φ) ∧ Asn(φ, α) ∧ S(φ, α). By definition of satisfaction

class, in particular tarski1,R,R(α(x0), . . . , α(xn)). so M ⊨ φ(α(x0), . . . , α(xn)).

Inductive case: φ = (∃, (x, φ1)). By inductive hypothesis, for allα ∈ AsnM, (M,S, F ) ⊨ Form(φ1)∧Asn(φ1, α)∧
S(φ1, α) → φ1(α(x0), . . . , α(xn)). Suppose (M,S, F ) ⊨ Form(φ) ∧ Asn(φ, α) ∧ S(φ, α), by the definition of

satisfaction classes, (M,S, F ) ⊨ ∃α′ ⊇ αS(φ1, α
′). So (M,S, F ) ⊨ φ1(α

′(x), α′(x0) . . . , α
′(xn)), (M,S, F ) ⊨

∃xφ1(α
′(x0), . . . , α

′(xn)), since α(xi) = α′(xi), (M,S, F ) ⊨ ∃xφ1(α(x0), . . . , α(xn)).

We see the inductive proof easily generalizes to PA−
by applying shortening of cuts to the arithmetized statement of

Lemma 109.

3.3 Lachlan’s Theorem for PA−

This section generalises Lachlan’s theorem to PA−
. The proofs of the supporting lemmas are given in Subsection 3.3.1,

and Lachlan’s theorem in Subsection 3.3.2.

3.3.1 Overspill and Other Lemmas

As illustrated in Lemma 23, overspill describes the behavior of non-standard models. In the context of PA, non-standard

models refer to any models of PA that are not isomorphic to N. But this is less clear in the case of weak arithmetic. For

example, recall that the intended model for PA−
, Z[X]+, is non-standard when we interpret the operations +,×, 0

as arithmetical (i.e. as about N), but standard when the language is interpreted as the language for discretely ordered

commutative rings. Since Lachlan’s theorem is about non-standard models, we shall first fix its definition in the context

of PA−
.

We notice that N is a model of PA−
, and any PA−

model contains the standard natural numbers as an initial segment.

Lemma 110. LetN(x) be such that every x ∈ N is hereditarily either odd or even. That is,
N(x) :↔ ∀y ≤ x[(∃z y = 2× z) ∨ (∃z y = 2× z + 1)] (Here 2 and 1 abbreviate 0′′ and 0′.) ThenN(x) defines a
cut on anyM ⊨ PA−.

Proof. It suffices to prove thatN(x) is inductive: PA− ⊢ N(0) since PA− ⊢ 0× 2 = 0. Suppose PA− ⊢ N(k). If

PA− ⊢ k = 2× z, then PA− ⊢ k′ = 2× z + 1. If PA− ⊢ k = 2× z + 1, then PA− ⊢ k′ = 2× (z + 1).

This means that we can still interpret the connectives and constants as arithmetical.

Definition 111 (Non-standard models for PA−
). AmodelM ⊨ PA− is a weakly non-standard model if all definable

cuts I ⊆M have a non-standard element c > N. The modelM ⊨ PA− is a strongly non-standard model if there exists
an element c > N such that for all definable cuts I ⊆M , c ∈ I . (Any c ∈M is non-standard if c > N.)

The reason for introducing the distinction between weakly and strongly non-standard models is that weakly non-

standard models are insufficient to enforce recursive saturation:

Remark 112. All weakly non-standard but not strongly non-standard models are not recursively saturated.

Proof. Let M be a weakly non-standard but not strongly non-standard model. By definition, the intersection of all

definable cuts in M is N. This is because any cut contains N by definition of cut, and by the fact that M is not strongly

non-standard, no non-standard c is in all cuts. We can enumerate all cuts in M by an effective procedure as follows:
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1. First enumerate all LPA formulas φi(x), i ∈ N with single free variable x.

2. Givenφi(x), we transform it syntactically intoψi :↔ (cut(φi)∧φi(x))∨ (¬cut(φi)∧x = x), where cut(φ)

abbreviates the formula φ(0) ∧ ∀x(φ(x) → φ(x′)) ∧ ∀x∀y(φ(x) ∧ y < x→ φ(y)).

Finally, define recursive type p(x) = {ψn(x) ∧ x ≥ n̄ |n ∈ N, x ∈ In}. Since

⋂
i∈N{x ≥ n̄ |x ∈ In} = ∅, no

element n ∈M instantiates p(x).

The proof also establishes that the distinction is meaningful. There exists a strongly non-standard model. Suppose

there is not. Consider arbitrary M ⊨ PA−
. We denoteXi := {M ⊨ ψi(x), x ∈M}, therefore

⋂
i∈NXi = N. But

then {ψi, i ∈ N} axiomatize N, which is impossible. However, whether there is a weakly non-standard model that is

not strongly non-standard remains unknown.

Lemma 113 (Overspill, PA−
). LetM be a weakly non-standard model of PA− and b ∈M , and assume φ(x, y) is a

formula with x, y free. Then, ifM ⊨ φ(n, b) holds for every n ∈ ω , there is a non-standard number c ∈M such that
M ⊨ ∀x≤ c φ(x, b).

Proof. Suppose, for a contradiction, that there is no such c. Consider the formula defined asψ(x) :↔ ∀y≤ xφ(y, b).

We show thatψ(x) is inductive: since M ⊨ φ(0, b), M ⊨ ψ(0). Now consider any a ∈M . If a is a standard number,

then a′ is also standard, so we have M ⊨ ψ(a) → ψ(a′). If a is a non-standard number, by assumption M ⊭ ψ(a), so

M ⊨ ψ(a) → ψ(a′).We also observe that ψ(x) is downward closed, so ψ(x) is a cut. This contradicts the definition

of a weakly non-standard model, where there must exist a non-standard cwhere ψ(c).

Overspill for strongly non-standard models automatically follows. Moreover, there is a stronger overspill principle for

strongly non-standard models:

Lemma 114 (Overspill for strongly non-standard models, PA−
). LetM be a strongly non-standard model of PA−

and b ∈ M , and assume φ(x, y) is a formula with x, y free. Then, ifM ⊨ φ(n, b) holds for every n ∈ ω , there is a
non-standard number c ∈M such thatM ⊨ ∀x≤ c φ(x, b), and c is such that for all definable cuts I ⊆M , c ∈ I .

Proof. Similar to the proof of Lemma 113.

We then turn to generalizing the lemmas needed to prove Lachlan’s theorem. First, we need to represent the graph of

primitive recursive functions up to non-standard numbers using sequences. We first check that total functions are

defined up to some non-standard number in some non-standard models.

Lemma 115. Let f be a total function inN, andM be a weakly non-standard model of PA−. There is a non-standard
element a ∈M , such that for all b ≤ a, f(b) is defined inM.

Proof. Consider the set X = {x ∈ M,∀y≤x f(y) ↓}. X is either closed under +1 or not. If it is, then X is

inductive, there is a definable cut I in which f is total. Since M is weakly non-standard, pick a to be any non-standard

element in I . If it is not, then there exists a c ∈M where ∀y≤ c f(y) ↓ and F (c+ 1) ↑. We take a := c, note that c

must be non-standard.

Lemma 116 (Encoding of recursive functions, PA−
). Let f : N → N be recursive andM ⊨ PA− be weakly non-

standard. Then there is a b ∈ M such thatM ⊨ (b)n = f(n) for all n ∈ N. Moreover, if the image of f , Im(f) =

{f(n) |n ∈ N} is a recursive set, then there exists c ∈M such that Im(f) = {n ∈ N |M ⊨ ∃x<c (b)x = n}.
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Proof. Note that PA−
is Σ1-complete and sequential. Overspill holds for weakly non-standard models of PA−

. So the

proof is the same as for Lemma 108.

We will also define a new recursive series of formulas from an existing recursive series. The following two lemmas state

that this operation is well-defined.

Lemma 117 (PA−
). LetM ⊨ PA− be a weakly non-standardmodel. Consider recursive function f : i 7→ θi where there

exists b, c ∈ M such thatM ⊨ ∀x < c((b)x = f(x) ∧ Form((b)x)), and formulas ⟨φi⟩i∈N obtained by recursively
defined syntactical operations from ⟨θi⟩i∈N. There exists recursive function g : i 7→ φi where there exists b′, c′ ∈M such
thatM ⊨ ∀x < c′(b′)x = g(x) ∧ Form((b′)x) for all n ∈ N.

Proof. Suppose the syntactical operation is defined by a recursive function h : FormM 7→ FormM
. Since M ⊨

Form((b)n) for all n ∈ N, g = h ◦ f is well-defined. It is also recursive, as recursive functions are closed under

composition. By Lemma 116, there exists c ∈M such that M ⊨ (c)n = h(f(n)) for all n ∈ N. Since h : FormM 7→
FormM

, M ⊨ Form(h(f(n))) for all n ∈ N. By overspill, there exists c′ > N where M ⊨ ∀x ≤ c′((b′)x =

h(f(x)) ∧ Form((b′)x)).

It is worth noting that we have no idea whether c ≤ c′ or the other way round. We have control of the size of c′ in

strongly non-standard models:

Lemma 118 (PA−
). LetM ⊨ PA− be a strongly non-standard model. Consider recursive function f : i 7→ θi where

there exists b, c ∈ M such that M ⊨ ∀x < c((b)x = f(x) ∧ Form((b)x)), and formulas ⟨φi⟩i∈N obtained by
recursively defined syntactical operations from ⟨θi⟩i∈N. There exists recursive function g : i 7→ φi and b′, c′ ∈M such
thatM ⊨ ∀x < c′(b′)x = g(x) ∧ Form((b′)x) andM ⊨ ∀x < c′((b)x = f(x) ∧ Form((b)x)).

Proof. Immediate, given strong overspill.

3.3.2 Lachlan’s Theorem

In this subsection, we give the proof of Lachlan’s theorem in PA−
. We follow Kaye [Kay91]’s proof but focus on full

satisfaction classes only.

Theorem 119 (Lachlan’s Theorem, PA−
). LetM ⊨ PA− be strongly non-standard and let S be a non-standard full

satisfaction class forM , thenM is recursively saturated.

Proof. Suppose, for a contradiction, that M ⊨ PA−
is a strongly non-standard model and not recursively saturated,

i.e., there exists a recursive type p(v) that is not realized in M. Since p(v) is recursive, there exists a primitive recursive

function f : i 7→ φi(v) where p(v) = {φi(v) | i ∈ N}. By Lemma 116, there exists non-standard a, d ∈ M where

M ⊨ ∀x<d (a)x = f(x) = φx. We observe that for all i ∈ N, M ⊨ Form((a)i), therefore we obtain by strong

overspill e ∈M where M ⊨ ∀x<e ((a)x = φx ∧ Form((a)x)). We denoteAi = {x ∈M |M ⊨ φi(x)}.

Ultimately, we want to define a partition using Ai. But we first have to ensure that A0 = M ⊇ A1 ⊇ A2 ⊇ . . .

and Ai ̸= Ai+1. This can be done by defining φ′
0 = (x = x), φ′

i+1 = φi ∧ φ′
i ∧ ∃z <xφ′

i(x), by a primitive

recursive syntactical transformation function s : {φi | i ∈ N} 7→ {φ′
i | i ∈ N}. By Lemma 118, there exists a′, f ∈M

where M ⊨ ∀x< f ((a′)x = ψ′
x ∧ Form((a′)x)). Since in strongly non-standard models, there exists d where d ∈ I

for every I , and we choose exactly such d in the proof of both Lemma 118 and Lemma 114, we thus may assume that

e = f = d. We then replace everyAi, i ∈ N with sets defined by φ′
i, i ∈ N.
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Therefore B0 = ∅ and Bi+1 = Ai \ Ai+1 forms a partition of M . {Bi | i ∈ N} is defined by {θi | i ∈ N} where

θ0 = ¬(x = x) and θi = φi ∧ ¬φi+1. To implement B with the satisfaction predicate, again by Lemma 118 and

Lemma 114, there exists b ∈M where b codes the sequence θ0(v), θ1(v), ..., i.e. for all i ∈ N, (b)i = θi(v). Moreover,

M ⊨ ∀i≤ k′ Form((b)i). This allows us to defineBi by

Bi = {x ∈M | (M, S, F ) ⊨ θi(x)}

for all i. Recall that ⟨v, x⟩ refers to the variable assignment that assigns to the variable v the object x. It is easy to see

that this definition coincides with theBis defined above, so they define a partition ofM .

We then define {Ci, i ∈ N} from {Bi, i ∈ N}. The idea is as follows:

C0 = ∅;

Ci+1 =


B1 ifCi = ∅;

Bj+1 if j is least such thatBj ∩ Ci ̸= ∅;

∅ ifCi ̸= ∅ but no such j exists.

where imight be possibly non-standard. Formally, we define formulas {γi, i ∈ N} with the intention that

Ci = {x ∈ M | (M, S, F ) ⊨ S(γi, ⟨v, x⟩)}. Let γ0(v) = ¬(v = v). Assume we have γi, to define γi+1, we first

define

δ1 = ¬∃yγi(y)

δ2 = ∃y(γi(y) ∧ θ1(y))
.
.
.

δj+1 = ∃y(γi(y) ∧ θj(y))

Intuitively, δ1 expresses thatCi is empty, and each of δi where i > 1 expresses thatCi ∩Bi−1 is nonempty. We then

put

γi+1(v) :↔ (δ1 ∧ θ1(v))∨

(¬δ1 ∧ (δ2 ∧ θ2(v))∨

(¬δ2 ∧ (δ3 ∧ θ3(v))∨
.
.
.

(¬δd−1 ∧ (δd ∧ θd(v)) ∨ (¬δd ∧ ¬(v = v)) . . . )))

Since both syntactical operations F,G : FormM 7→ FormM
corresponding to the formation of γ1 and γi+1 can be

written as primitive recursive functions, by Lemma 118 there exists c such that M ⊨ ∀x < d (c)x = G(i, b, d) ∧
Form((c)x). Moreover, suppose that a is the upper bound on the size of formulas handled by the satisfaction predicate,

i.e., the size of the cut FormM
. Since Form((b)i) ∧ Form(G(i, b, d)) ∧ (b)i < a ∧G(i, b, v) < a is a cut, d is such

that ∀x < d satisfies the condition above.

It remains to be checked that our definitions ofCi are adequate. It is sufficient to check

1. for all i ≤ v,Ci = Bj for some j ∈ N.
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2. ifCi = Bj thenCi+1 = Bj+1.

3. Ci ̸= ∅ for all i > 0.

We prove the three conditions simultaneously by a case distinction on the nature ofCi. The proof in Kaye [Kay91]

involves only principles of elementary logic and definitions of satisfaction class (tarski1,R to tarski4 in Chapter 3),

hence automatically generalizes to PA−
. We present the proof for comprehensiveness.

• Ci = ∅. Ci = B0, we show that Ci+1 = B1. By definition, x ∈ Ci+1 iff (M, S, F ) ⊨ S(γi+1(x), ⟨v, x⟩).

SinceCi = ∅, (M, S, F ) ⊨ ¬∃xS(γi(x), ⟨v, x⟩). By the Tarskian clause for∃, (M, S, F ) ⊨ ∀x¬S(∃yγi(y), ⟨v, x⟩).

By the Tarskian clause for¬, (M, S, F ) ⊨ ∀xS(¬∃yγi(y), ⟨v, x⟩). Recall thatδ1 = ¬∃yγi(y), so (M, S, F ) ⊨

∀xS(δ1, ⟨v, x⟩). (M, S, F ) ⊨ ¬∃xS(γi(x), ⟨v, x⟩) entails (M, S, F ) ⊨ S(δ1, ⟨v, x⟩), for any x ∈M .

This allows us to simplify each of the δk defined above. More specifically, observe that each of δk entails ¬δ1.

Hence (M, S, F ) ⊨ S(γi+1(x), ⟨v, x⟩) iff

(3.1) (M, S, F ) ⊨ S((δ1 ∧ θ1(x)) ∨ (¬δ1 ∧ ψ(x)), ⟨v, x⟩),

where ψ is some subformula of γi+1. By definition of satisfaction class, in particular, Tarskian clauses for ∨,∧
and ¬, we can rewrite 3.1 above as

(M, S, F ) ⊨ (S(δ1, ⟨v, x⟩) ∧ S(θ1(x), ⟨v, x⟩)) ∨ (¬S(δ1, ⟨v, x⟩) ∧ S(ψ(x), ⟨v, x⟩)).

Recall that (M, S, F ) ⊨ ∀xS(δ1, ⟨v, x⟩). So x ∈ Ci+1 iff (M, S, F ) ⊨ S(θ1(x), ⟨v, x⟩), i.e., x ∈ B1.

• Ci ̸= ∅. Since Bi = {x ∈ M | (M, S, F ) ⊨ S(θi(v), ⟨v, x⟩)} defines a partition of M , there exists j ∈ N
such that Ci ∩ Bj ̸= ∅. Choose the least such j. We show that Ci+1 = Bj+1. Since Ci ̸= ∅, (M, S, F ) ⊨

∃xS(γi, ⟨v, x⟩), therefore (M, S, F ) ⊨ S(∃xγi, ⟨v, x⟩) for every x, and (M, S, F ) ⊨ S(¬¬∃xγi, ⟨v, x⟩)
for every x. Therefore (M, S, F ) ⊨ ∀xS(¬δ1, ⟨v, x⟩). Since Ci ∩ Bk = ∅ for all 1 ≤ k < j, we have

(M, S, F ) ⊨ ∀xS(¬δk+1, ⟨v, x⟩) for all k. SinceCi ∩ Bj ̸= ∅, (M, S, F ) ⊨ ∀xS(δj+1, ⟨v, x⟩). Therefore

we observe thatCi+1 is expressed by the following formula:

((δ1 ∧ θ1(v))∨

(¬δ1 ∧ (δ2 ∧ θ2(v))∨

(¬δ2 ∧ (δ3 ∧ θ3(v))∨

(¬δ3 ∧ (. . .

.

.

.

(¬δj ∧ (δj+1 ∧ θj+1(v))∨

(¬δj+1 . . . )))))))

which, by the Tarskian clauses for ∨,∧,¬, is equivalent to that (M, S, F ) ⊨ S(θj1 , ⟨v, x⟩). ThereforeCi+1 =

Bj+1.

The first and second conditions are proved by an inductive argument. The base case is satisfied becauseC0 = B0. For

the inductive case, if Ci = Bj ̸= ∅, then the intersections of Ci with each of B0, . . . , Bj−1 are all empty. Hence

Ci+1 = Bj+1. (Here we need to apply the shortening of cuts again, but i is still bounded by non-standard number

k since it appears in any cut.) To show the third condition holds, consider any Ci+1. Suppose Ci = ∅ = B0, then
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Ci = B1 by the argument above. Suppose otherwise thatCi ̸= ∅. ThereforeCi = Bj+1 where j is the least number

such thatCi−1 ∩Bj ̸= ∅. Since {Bi, i ∈ N} forms a partition ofM andB0 = ∅, {Bi, i ∈ N+} forms a partition of

M . So such positive j must exist, thusCi+1 = Bj+1, which by definition is not empty.

Finally, we define f(i) as the unique j ∈ N whereCi = Bj , we thus obtain an infinite descending sequence of natural

numbers f(i) > f(i− 1) > f(i− 2) > . . ., where i is non-standard. A contradiction.

One extra step is needed to show that CT[PA−] is not semantically conservative to PA−
: we have to show that there is

at least one model of PA−
that cannot be extended to a model of CT[PA−].

Lemma 120 (Łełyk). For each countable sequential theory T , there is a countable model of T which is not recursively
saturated2.

Proof. Suppose otherwise. Consider M a model of T , then every recursive type overM is realized, in particular, the

following type

p(x) := {φ ∈ x↔ φ,∀φ ∈ Sent}

is realised. By the omitting types theorem, p(x) is isolated. There exists a formulaG(x) where T ′ :↔ T + ∃xG(x) is

consistent andT ⊢ G(x) → p(x). This allows one to defineTr(φ) := ∃x(G(x)∧φ ∈ x), which is a truth predicate

for T ′
, contradicting Tarski’s undefinability theorem.

Lemma 121. If Γ is a consistent extension of PA−, then there is a countable strongly non-standard model of Γ that is not
recursively saturated.

Proof. Recall the enumeration of cuts in the proof of Lemma 112, where all cuts are enumerated by {ψi, i ∈ N}. We

stipulate the existence of a non-standard element c that occurs in all cuts by first expanding PA−
with a constant c,

then add the following axioms:

• Ψ = {ψn(c), n ∈ N}.

• Φ = {c > cn, n ∈ N}.

Any finite subsetP ofΨ∪Φ is consistent withPA−
. Suppose k is the largest number such that c > ck ∈ P . Therefore

a PA−
model interpreting c as the standard number k + 1 satisfies P . By Lemma 120, there is a countable model M

of PA− ∪Ψ ∪ Φ that is not recursively saturated. Since M ⊨ Ψ ∪ Φ, cM > N, and is in any cut. So M is strongly

non-standard.

Corollary 122. CT[PA−] is not semantically conservative over PA−.

Besides showing that CT[PA−] is not semantically conservative over PA−
, Lachlan’s theorem outlines a measure of the

strength of compositional truth, that compositionality itself is sufficient to enforce recursive saturation.

Corollary 123. Given base theory PA−, the model-theoretic strength of truth theories CT− is thatPA− ⊃ RS ⊇ CT−,
wherePA− is the class of all models of PA−,RS the class of recursively saturated models of PA and CT− denotes the
class of models that carry a compositional truth without induction.

In fact, with lemma 120, we have a much stronger result.

2

This proof was suggested to us by Mateusz Łełyk in private correspondence.
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Corollary 124. Given T a computably enumerable consistent extension of PA−, we haveT ⊃ RS ⊇ CT−, whereT is
the class of all models of T , andRS,CT− are similar.

This is in line with the results for PA, as summarized in Łełyk and Wcisło [ŁW17]:

Theorem 125. Given base theory PA, the model-theoretic strength of truth theoriesTB,UTB and CT− can be linearly
ordered as:

PA ⊃ TB ⊃ RS ⊃ UTB ⊇ CT−

WherePA is the class of all models of PA, TB denotes the class of all PAmodels that can be expanded toTT+[PA], and
UTB denotes the class of models that carries a uniform biconditional truth class with induction.

where TB and UTB, since they contain induction, are unavailable for PA−
.

3.4 The Strength of Compositional Truth

I close the technical exposition with a short philosophical remark. Besides contributing to the non-conservativity

result, Lachlan’s theorem bounds the strength of compositional satisfaction: compositionality is sufficient to enforce

recursive saturation. By Theorem 125, since compositional truth is recursively saturated but extended induction is not,

recursive saturation is a mathematical concept that draws a line between the strength of two theories. (We are also fairly

confident that some models of TT[PA−] are not recursively saturated, thus in both PA−
and PA recursive saturation

distinguishes compositional from disquotational truth theories. We cannot give the proof due to time constraints, and

refer the readers to the proof for PA in Cieśliński [Cie17], p. 100.)

These mathematical facts nicely accompany some facts about the interpretability of compositional and disquotational

truth, as listed by Heck [Hec18]. To understand these results, we first introduce Heck [Hec18]’s technical setting, which

is slightly different from ours. Recall, in the introduction, that the induction schema in the object theory enables both

syntactical and arithmetical induction. A way to disentangle the two roles is to operate with “disentangled syntax” –

a framework with an object language L and a disjoint language of syntax S , usually treated as a copy of L but in a

different font. The object theory T developed in L and the theory of syntax U in S can be of any strength stronger

than PA−
(or QSeq, depending on one’s taste about minimal theories.) The variables in T and U , and the domains

these variables range over, are also distinct. One thus has a multi-sorted framework with at least three sorts: the first

concerns variables ranging over the domain of the object theory, the second concerns variables ranging over the domain

of the theory of syntax, while the third concerns variables over variable assignments, which map each variable (syntactic

object) and object in the domain of the object theory. We use italic alphabets v, x, y, z... to denote variables in the

syntax theory, upright alphabets v,x,y,z... for variables in the object theory, and α, β... for assignment variables.

The setup leads to the following results:

Base: U + T No Extended Induction Extended Induction

Add Biconditionals Locally Interpretable Locally Interpretable

Add Satisfaction Axioms Locally Interpretable Unclear

Add Compositional Axioms Not Interpretable Not Interpretable

whereU is either IΣn or PA. We see that compositional truth contributes more to the strength of the resulting theory

than extended induction. Heck gives an exact characterisation of the logical strength of compositionality:

46



Fact 126. Let T be a finitely axiomatized theory inL. Then CTL[Q] + T is mutually interpretable withQ+ Con(T ).

Here Q is the theory of syntax, which is as weak as possible, and T the object theory. Therefore, even if the syntactical

and arithmetical roles of the induction principle are disentangled, and the truth theory developed in the syntax theory

has no way to affect the truth theory, compositional truth still has significant logical strength in the sense that it is not

interpretable in T .

The question is whether there is a similar semantic story. We first note that mathematical facts concerning semantic

conservativity provide no insight into whether extended induction or compositional truth is stronger:

Fact 127 (Cieśliński [Cie17] Theorem 6.0.13, Corollary 7.0.6, Wicsło [Wci17] Proposition 89.). LetPA be the base theory,

• TT[PA] is semantically conservative over PA.

• TT+[PA], CT[PA], CT+[PA] are not semantically conservative over PA.

The situation is exactly the opposite of the facts concerning syntactical conservativity, where only the strongest theory is

not syntactically conservative over PA. We need a non-ad-hoc measure of logical strength that distinguishes one from

the other, just like interpretability in the case of syntactical conservativity. The obvious candidate is recursive saturation.

Since this notion is not yet widely known among philosophers, we list several historical remarks to argue briefly that it is

indeed a natural measure of logical strength.

The notion of a recursively saturated model has multiple origins. It originates from the study of admissible sets with

urelements and admissible fragments of Lω,ω (Barwise & Schlipf [BS76], p. 531), but is entangled with questions in

model theory from the early days where the concept was invented. Recursive saturation, and saturation of certain types,

more generally, helps answer questions of the expandability of models of arithmetic to models of the stronger theories.

An early attempt is made by Robinson [Rob63], where he gives a non-diagonal proof of Tarski’s undefinability theorem

using the unrealizability of a partial type in a given model. This is followed by Ehrenfeucht and Kreisel [EK66], where

they

“[...] gave an example of nonexpandability by means of an argument closely allied to that cited above of

Robinson: A truth definition for arithmetic entails the existence of much larger elements than would

necessarily exist in a model not having such a truth definition.” (Smoryński [Smo81], p.259)

Lachlan’s theorem has a similar explanation. In simple terms, recursive saturation stipulates the existence of large

elements — a model is recursively saturated if for every recursive type there is a large element in the model that satisfies

the stipulations of the corresponding recursive type. Therefore, Lachlan’s theorem states that compositional truth

entails the existence of much larger elements than would necessarily exist in models without such a compositional truth

definition. Since recursive saturation is closely connected to the investigations of model-theoretic behavior of truth

definitions, we see no reason for overlooking related mathematical facts. Summarising facts stated in Corollary 124 and

Theorem 125, we have:
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Base: PA No Extended Induction Extended Induction

Add Biconditionals Not Recursively Saturated Not Recursively Saturated

Add Compositional Axioms Recursively Saturated Recursively Saturated

Base: T ⊇ PA−
No Extended Induction Extended Induction

Add Biconditionals Not Recursively Saturated Unclear

Add Compositional Axioms Recursively Saturated Recursively Saturated

Compositional truth still contributes more strength than extended induction viewed from a semantic perspective.

However, unlike Fact 126, which gives a “syntactic” characterization of the strength of CT, we don’t have a parallel

semantic characterization. It is not yet known if every recursively saturated model of PA−
is expandable to a model of

CT[PA−].
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Conclusion, Future Directions

Let’s take stock. In this thesis, we proved two of the main results on the syntactic and semantic conservativity of PA−
.

On the syntactical side, we first show PA−
’s ability to encode syntax. PA−

carries an arithmetization of syntax, with all

the desirable properties provable in a cut. Then we proved that compositional satisfaction and compositional truth

without extended induction CS[PA−], CT[PA−] are both syntactically conservative over PA−
. We also prove, in the

Appendix, that truth is equivalent to extensional satisfaction. On the semantical side, we proved Lachlan’s theorem for

PA−
: every strongly non-standard model of PA−

that carries a compositional satisfaction class is recursively saturated.

Our proof strategy also explicates the landscape of non-standard models for weak arithmetic. Together with Łełyk’s

result that each countable sequential theory has a countable model that is not recursively saturated, CT[PA−] is not

semantically conservative for PA−
. Hence the landscape for PA transfers smoothly to PA−

.

We also make some scattered philosophical remarks on the way. We motivated the importance of model-theoretical

investigations for studying truth theories, which philosophers usually ignore. Our technical results regarding recursive

saturation nicely strengthen Richard Heck’s project of disentangling the contribution of compositional truth and

extended induction.

The following technical questions remain open:

• Is there a semantic characterization of the strength of compositional truth in PA−
? Does every recursively

saturated model of PA−
carry a compositional truth class?

• What is the exact landscape of non-standard models for weak arithmetic? In particular, is there a weakly non-

standard model that is not strongly non-standard?

And, regrettably, we didn’t have time to address the following philosophical question:

• How does semantic conservativity relate to the existing debate on the conservativity argument? In particular,

how can deflationism make sense of the result that TT+[T ] is not semantically conservative?

We hope to address these questions on a future occasion.
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Appendix: Truth is Equivalent to Extensional
Satisfaction

In this appendix, we give full proofs of Remark 93 and Proposition 94, and some other results surrounding the two

remarks.

Truth is Equivalent to Extensional Satisfaction in PA.

Remark 128. PA proves that (φ1, α1) ∼ (φ2, α2) is an equivalence relation.

Proof. Consider an arbitrary model of M ⊨ PA. It is easy to see that (φ1, α1) ∼ (φ2, α2) is reflexive and symmetric.

To see that it is transitive, suppose that M ⊨ (φ1, α1) ∼ (φ2, α2) ∼ (φ3, α3). There exist χ1, γ1, and σ1, σ2 :

FV(χ1) → Var where

φ1 = χ1 ∗ σ1, γ1 = α1 ◦ σ1;(3.2)

φ2 = χ1 ∗ σ2, γ1 = α2 ◦ σ2,(3.3)

and χ2, γ2, σ′2, σ
′
3 : FV(χ2) → Var where

φ2 = χ2 ∗ σ′2, γ2 = α2 ◦ σ′2;(3.4)

φ3 = χ2 ∗ σ′3, γ2 = α3 ◦ σ′3.(3.5)

We show that M ⊨ (χ1, γ1) ∼ (χ2, γ2). First, obtain χ from φ2 by making sure that for any two free occurrences

of variables v1 and v2, v1 ̸= v2. We denote the substitution function as σ. (This is an abuse of notation since we are

substituting occurrences of variables but not variables.) Define τ1 = (σ2 ◦ σ)−1
and τ1 = (σ′2 ◦ σ)−1

. Both are well

defined in M. Modify variable assignments γ of χ from φ2 accordingly. Therefore we have

χ1 = χ ∗ τ1, γ = γ1 ◦ τ1;(3.6)

χ2 = χ ∗ τ2, γ = γ2 ◦ τ2.(3.7)

It is easy to check that χ, γ, (σ1 ◦ τ1), (σ′3 ◦ τ2) are the witnesses of M ⊨ (φ1, α1) ∼ (φ3, α3).

Proposition 129. SupposeM ⊨ PA, T is a full truth class onM, and S is an extensional full satisfaction class onM.
Define
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• S(T ) is an extensional satisfaction class onM, where S(T ) is defined as the collection of ordered pairs (φ, α) such
that φ(c ◦ α) ∈ T .

• T (S) is a truth class onM, where T (S) is defined as the collection of φ ∈ L+
PA such that for some ψ ∈ L+

PA and
some assignment α for ψ, φ = ψ(c ◦ α) and (ψ, α) ∈ S.

• S(T (S)) = S, and T (S(T )) = T .

The routine but laborious proof for PA is omitted in the original paper; we first retrieve it.

Lemma 130 (PA). ConsiderM ⊨ PA. For all φ,ψ ∈ FormM, α, β ∈ AsnM,M ⊨ φ(c ◦ α) = ψ(c ◦ β) if and
only ifM ⊨ (φ, α) ∼ (ψ, β).

Proof. Our proof is by induction on φ. We treat ψ, α, β as parameters. Base case: φ = (R, (t1, . . . , tn)). Here

tis are meta-variables referring to variables in M. Suppose we have ψ ∈ FormM
and β ∈ AsnM where M ⊨

φ(c ◦ α) = ψ(c ◦ β). By unique reading and since substitution preserves the structure of formulas, ψ must be of

the shape (R, (t′1, . . . , t
′
n)). We define χ := (R, (s1, . . . , sn)) where (s1, . . . , sn) are pairwise distinct. Let σφ, σψ :

FV(χ) → Var be such that σφ(si) = ti and σψ(si) = t′i. Let γ(si) = α(ti). Since M ⊨ φ(c ◦ α) = ψ(c ◦ β), for

all i < n, M ⊨ α(ti) = β(t′i). Therefore M ⊨ γ(si) = α(σφ(ti)) = β(σψ(t
′
i)), so γ = α ◦ σφ and γ = β ◦ σψ .

Since everything in the proof concerns objects inside a modelM, in the following cases we omit “M ⊨” before formulas.

For the inductive case:

• φ = (¬, φ1). Suppose there is a ψ ∈ FormM
and β ∈ AsnM where M ⊨ φ(c ◦ α) = ψ(c ◦ β). Again,

ψ must be of the shape (¬, ψ1). So (¬, (φ1(c ◦ α))) = (¬, (ψ1(c ◦ β))), φ1(c ◦ α) = ψ1(c ◦ β). By

the inductive hypothesis, (φ1, α) ∼ (ψ1, β). There exists χ1, γ and σφ, σψ : FV(χ1) → Var such that

φ1 = χ1 ∗ σφ; ψ1 = χ1 ∗ σψ and α = γ ◦ σφ ;β = γ ◦ σψ . We define χ = (¬, χ1). It is easy to see that

φ = (¬, φ1) = (¬, (χ1 ∗σφ)) = (¬, χ1) ∗σφ = χ ∗σφ, and similarly forψ. Since FV((¬, φ1)) = FV(φ1),

α is also an assignment for φ, similarly β is an assignment for ψ. Therefore there exist χ, γ, σφ, σψ witnessing

(φ, α) ∼ (ψ, β).

• φ = (∨, (φ1, φ2)). Suppose there is a ψ ∈ FormM
and β ∈ AsnM where M ⊨ φ(c ◦ α) = ψ(c ◦ β).

(∨, (φ1, φ2))(c ◦ α) = (∨, (ψ1, ψ2))(c ◦ β), thus φ1(c ◦ α) = ψ1(c ◦ β) and

φ2(c ◦ α) = ψ2(c ◦ β). For clarity, we can further restrict α and β to FV(φi) and FV(ψi), i = 1, 2. We know

that (φ1, α ↾ FV(φ1)) ∼ (ψ1, β ↾ FV(ψ1)) and (φ2, α ↾ FV(φ2)) ∼ (ψ2, β ↾ FV(ψ2)). There exist χ1, γ1,

and σφ1 , σψ1 : FV(χ1) → Var where

φ1 = χ1 ∗ σφ1 , γ1 = (α ↾ FV(φ1)) ◦ σφ1 ;(3.8)

ψ1 = χ1 ∗ σψ1 , γ1 = (β ↾ FV(ψ1)) ◦ σψ1 ,(3.9)

and χ2, γ2, σφ2 , σψ2 : FV(χ2) → Var where

φ2 = χ2 ∗ σφ2 , γ2 = (α ↾ FV(φ2)) ◦ σφ2 ;(3.10)

ψ2 = χ2 ∗ σψ2 , γ2 = (β ↾ FV(ψ2)) ◦ σψ2 .(3.11)

There may be overlapping variables inχ1 andχ2 butσφ andσψ map them to different variables. But there always

exists χ′
1, χ′

2, and σ′s with FV(χ1)∩ FV(χ2) = ∅ that satisfy (1.4-7). When v1 ∈ FV(χ1) and v2 ∈ FV(χ2) is

such that v1 = v2, α-convert v2 to fresh v3. Define σ′(v3) = σ(v2) and γ′(v3) = γ(v2) accordingly. It is easy
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to check thatφi = χ′
i∗σ′φi

, γ′i = (α ↾ FV(φ1))◦σ′φ1
, and similarly forψis. Finally, defineχ = (∨, (χ′

1, χ
′
2)),

σφ = σ′φ1
∗ σ′φ2

, σφ = σ′ψ1
∗ σ′ψ2

and γ = γ1 ↾ FV(χ1) ∪ γ2 ↾ FV(χ2).

• φ = (∃, (x, φ1)). Suppose there is a ψ ∈ FormM
and β ∈ AsnM where φ(c ◦ α) = ψ(c ◦ β), i.e,

(∃, (x, φ1(x)))(c ◦ α) = (∃, (x, ψ1(x)))(c ◦ β). To obtain α′
and β′ where Asn(α′, φ1) and Asn(β′, ψ1)

and φ1(c ◦ α′) = ψ1(c ◦ β′), define α′ ⊇ α, β′ ⊇ β, and α′(x) = β′(x). By the inductive hypothesis, there

exist χ1, γ
′, σφ, σψ : FV(χ1) → Var such that

φ1 = χ1 ∗ σφ, ψ1 = χ1 ∗ σψ;(3.12)

γ′ = α′ ◦ σφ, γ′ = β′ ◦ σψ.(3.13)

To prevent undesirable binding, define σφ and σψ such that both map x to itself and nothing else maps to x,

so x ∈ FV(χ1). Define χ = (∃, (x, χ1)), γ = γ′ ↾ FV(χ), σ′φ = σφ ↾ FV(χ), σ′ψ = σψ ↾ FV(χ) (which

removes x from the domain). Observe that (∃, (x, χ1(x))) ∗ σ′φ = (∃, (x, χ1(x) ∗ σ′φ)) and (∃, (x, φ1(x) ∗
σ′φ)) = (∃, (x, φ1(x)))∗σ′φ. (∃, (x, χ1(x)∗σ′φ)) = (∃, (x, φ1(x)∗σ′φ)) sinceφ1 = χ1∗σφ; ψ1 = χ1∗σψ ,

and σφ agrees with σ′φ except for x. Similarly for ψ. Since α′ = γ′ ◦ σφ, α′ ↾ FV(χ) = (γ′ ◦ σφ) ↾ FV(χ),

since σφ(v) = x iff v = x,

(γ′ ◦ σφ) ↾ FV(χ) = (γ′ ↾ FV(χ)) ◦ σ′φ = γ ◦ σ′φ = α. Similarly for β. Therefore (φ, α) ∼ (ψ, β).

This exhausts all cases.

Remark 131. From the proof, we also observe that∼ has the following properties when interpreted in PA:

• if ((¬, φ0), α0) ∼ ((¬, φ1), α1), then (φ0, α0) ∼ (φ1, α1).

• if (∨, (φ0, φ1)), α) ∼ ((∨, (φ′
0, φ

′
1)), α

′), then (φ0, α ↾ FV(φ0)) ∼ (φ′
0, α

′ ↾ FV(φ′
0)) and

(φ1, α ↾ FV(φ1)) ∼ (φ′
1, α

′ ↾ FV(φ′
1)).

• if φ = (∃, (t, ψ)) and φ′ = (∃, (t′, ψ′)) and (φ, α) ∼ (φ′, α′), then t = t′ and for some e,
(φ, α[t : e]) ∼ (φ′, α′[t : e]).

• if (φ, α) ∼ (ψ, β), then c(φ) = c(ψ). (where c is defined as in definition 67)

The proof of the first two items in Proposition 94 is similar. We only present the more complex case of showing T (S)

is a truth class.

Lemma 132 (PA). T (S) is a truth class.

Proof. We check that (M, T (S)) ⊨ PAFS
. There are several cases:

• To show (M, T (S)) ⊨ ∀x(T(x) → Sent(x)), consider arbitrary x ∈ T (S). There exists ψ, α where

φ = ψ(c ◦α) and (ψ, α) ∈ S. Since (ψ, α) ∈ S means Asn(α,ψ), for every v ∈ FV(ψ), exists a ∈M where

α(v) = a. So FV(φ) = FV(ψ(c ◦ α)) = ∅, φ ∈ Sent.

• To show (M, T (S)) ⊨ (x = (R, (cy0 , . . . , cyn−1))) → (R(y0, . . . , yn−1) ↔ T(x)),

let φ = (R, (cy0 , . . . , cyn−1)).

⇒: Suppose φ ∈ T (S), there exist ψ, α where φ = ψ(c ◦ α) and (ψ, α) ∈ S. Therefore ψ is of the shape

Rv0 . . . vn−1, and α(vi)=yi. By definition of a satisfaction class,R(y0, . . . , yn−1).

⇐: SupposeR(y0, . . . , yn−1), let ψ = (R, (v0 . . . vn−1)) and α ∈ Asn(ψ) where α(vi) = yi. By definition

of satisfaction class, (ψ, α) ∈ S. Observe that φ = ψ(c ◦ α), so φ ∈ T (S).
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• To show (M, T (S)) ⊨ ∀x(x = (¬, y) → (T(x) ↔ ¬T(y))), let φ = (¬, φ1).

⇒ Supposeφ ∈ T (S). Then there existψ, αwhereφ = ψ(c◦α), (ψ, α) ∈ S. ψ must be of the shape (¬, ψ1)

whereφ1 = ψ1(c◦α). SinceS is a satisfaction class, (ψ1, α) ̸∈ S. Suppose, for a contradiction, thatφ1 ∈ T (S).

There exist ψ′, α′
where φ1 = ψ′(c ◦ α′) and (ψ′, α′) ∈ S. We observe that ψ1(c ◦ α) = φ1 = ψ′(c ◦ α′).

By lemma 130 and S extensional, (ψ′, α′) ∈ S iff (ψ1, α) ∈ S, but (ψ1, α) ̸∈ S, contradiction.

This is the crucial point where extensionality is used: if S were not extensional, the commutation with negation

would fail.

⇐: Suppose φ1 ̸∈ T (S). Therefore ∀ψ, α(φ1 = ψ(c ◦ α) → (ψ, α) ̸∈ S). It is easy to see that there exists

ψ, αwhereφ = ψ(c◦α). Consider such pair, so (ψ, α) ̸∈ S, by definition of satisfaction class ((¬, ψ), α) ∈ S,

observe that (¬, φ1) = (¬, ψ)(c ◦ α), so (¬, φ1) ≡ φ ∈ T (S).

• To show (M, T (S)) ⊨ ∀x(x = (∨, (y1, y2)) → (T(x) ↔ T(y1) ∨ T(y2))), let φ = (∨, (φ1, φ2)).

⇒: Suppose φ ∈ T (S). There exist ψ, α with φ = ψ(c ◦ α) and ψ, α ∈ S. ψ must be of the shape

(∨, (ψ1, ψ2)), whereφ1 = ψ1(c◦α) = ψ1(c◦ (α ↾ FV(ψ1))) andφ2 = ψ2(c◦α) = ψ2(c◦α ↾ FV(ψ2))).

Since S is a satisfaction class, (ψ, α) ∈ S entails (ψ1, α ↾ FV(ψ1)) ∈ S or (ψ2, α ↾ FV(ψ2)) ∈ S. So

φ1 ∈ T (S) or φ2 ∈ T (S).

⇐: Supposeφ1 ∈ T (S)orφ2 ∈ T (S). W.l.o.g, supposeφ1 ∈ T (S). There existsψ1, α1 withφ1 = ψ1(c◦α1)

and (ψ1, α1) ∈ S. Consider any ψ′, α where φ = ψ′(c ◦ α). Since φ = (∨, (φ1, φ2)), ψ′
must be of the

shape (∨, (ψ′
1, ψ

′
2)). So ψ′(c ◦ α) = (∨, (ψ′

1, ψ
′
2))(c ◦ α) = (∨, (ψ′

1(c ◦ α), ψ′
2(c ◦ α)) = (∨, ψ′

1(c ◦ (α ↾

FV(ψ′
1))), ψ

′
2(c ◦ (α ↾ FV(ψ′

2)))). By unique reading, φ1 = ψ′
1(c ◦ (α ↾ FV(ψ′

1))) and φ2 = ψ′
2(c ◦ (α ↾

FV(ψ′
2))). Therefore ψ′

1(c ◦ (α ↾ FV(ψ′
1))) = ψ1(c ◦ α1), by lemma 130, (ψ′

1, α ↾ FV(ψ′
1)) ∈ S iff

(ψ1, α1) ∈ S. So (ψ′
1, α ↾ FV(ψ′

1)) ∈ S. By definition of a satisfaction class, ((∨, (ψ′
1, ψ

′
2)), α) ∈ S. So

φ ∈ T (S).

• To show (M, T (S)) ⊨ ∀x(x = (∃, (v, y)) → (T(x) ↔ ∃zT(y(cz)))), consider φ = (∃, (v, φ1(v))).

⇒: Supposeφ ∈ T (S). There existψ, αwhereφ = ψ(c◦α) and (ψ, α) ∈ S. ψ is of the shape (∃, (v, ψ1(v))),

so φ1(v) = ψ1(v)(c ◦ α). Since (ψ, α) ∈ S, by definition of satisfaction classes, there exists α′ ⊇ α where

(ψ1(v), α
′) ∈ S. We consider ψ1(c ◦ α′). let cz be that α′(v) = z. Observe that φ1(cz) = ψ1(c ◦ α′).

Therefore φ1(cz) ∈ T (S).

⇐: Suppose (∃, (z, φ1(cz))) ∈ T (S). There existψ1, αwhereφ(cz) = ψ(c ◦ α) and (ψ1, α) ∈ S. Consider

ψ′, α′
where φ = ψ′(c ◦ α′), we show that (ψ′, α′) ∈ S. ψ′

must be of the shape (∃, (v, ψ′
1(v))). Therefore

ψ′(c ◦ α′) = (∃, (v, ψ′
1(v)))(c ◦ α′) = (∃, (v, ψ′

1(v)(c ◦ α′))) = (∃, (v, ψ′
1(c ◦ α′)(v))). Define α′′ =

α′ ∪ {(v, z)}, so φ1(cz) = ψ′
1(c ◦ α′′). So ψ′

1(c ◦ α′′) = φ1(cz) = ψ1(c ◦ α). By lemma 130, (ψ′
1, α

′′) ∈ S

iff (ψ1, α) ∈ S, so (ψ′
1, α

′′) ∈ S. By definition of satisfaction class, ((∃, (v, ψ′
1(v))), α

′) ∈ S. So φ ∈ T (S).

Lemma 133 (PA). Given extensional satisfaction class S and truth class T , S(T (S)) = S and T (S(T )) = T .

Proof. S ⊆ S(T (S)): consider arbitrary (φ, α) ∈ S, by definition (φ, α) ∈ S(T (S)) iff there isψ ∈ L+
PA, β ∈ Asn

where φ(c ◦ α) = ψ(c ◦ β) and (ψ, β) ∈ S. Take ψ = φ and β = α. S(T (S)) ⊆ S: suppose (φ, α) ∈ S(T (S)),

then there exists ψ ∈ L+
PA, β ∈ Asn where φ(c ◦ α) = ψ(c ◦ β) and (ψ, β) ∈ S. We know that (φ, α) ∼ (ψ, β)

and that S is extensional, so (φ, α) ∈ S.

T (S(T )) ⊆ T : supposeφ ∈ T (S(T )). Therefore there existψ ∈ L+
PA, α ∈ Asn(ψ),φ = ψ(c◦α), (ψ, α) ∈ S(T ).

Unpacking S(T )’s definition givesψ(c ◦ α) ∈ T . Butφ = ψ(c ◦ α), soφ ∈ T . T ⊆ T (S(T )): supposeφ ∈ T . We
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want ψ ∈ L+
PA, α ∈ Asn(ψ), φ = ψ(c ◦ α), ψ(c ◦ α) ∈ T . We construct ψ and α by recursion:

• For φ = (R, (cx1 , . . . , cxn)), let ψ = (R, (vx1 , . . . , vxn)) and α(vxi) = xi.

• For φ = (¬, φ′) with ψ′
and α′

such that φ′ = ψ′(c ◦ α′), let ψ = (¬, ψ′) and α = α′
.

• For φ = (∨, (φ1, φ2)) with ψ1, ψ2 and α1, α2 such that φ1 = ψ1(c ◦ α1) and φ2 = ψ2(c ◦ α2). Let

ψ = (∨, (ψ1, ψ2)) and α = α1 ↾ FV(ψ1) ∪ α2 ↾ FV(ψ2).

• For φ = (∃, (v, φ′)) with φ′
and α′

such that φ′ = ψ′(c ◦ α′). Let ψ = (∃, (v, ψ′)) and α = α′ \ {v}.

Checking that the recursive definition is well-formed is similar to the proof of Lemma 130.

Truth is Equivalent to Extensional Satisfaction in PA−

To generalize the result to PA−
, we first have to show that the syntactical concepts required to express extensionality are

expressible in PA−
. This involves the arithmetization of substitution, φ ∗ σ, α ◦ σ, and φ(c ◦ α). By corollary 60, it

suffices to show that these are definable by primitive recursion.

Definition 134 (Substitution for a Formula). We define Subst(σ, φ) as expressing σ : FV(φ) → Var, and that if x is
a free variable of φ, then x is not in the scope of any quantifier that binds σ(x).

Subst(σ, φ) :↔Seq(σ) ∧ Form(φ) ∧ ∀i≤ ℓ(σ) [∃v(v = π1((σ)i) ∧ v ∈ FV(φ)) ∧ ∃v(v = π2((σ)i) ∧ Var(v))]

∧∀v ∈FV(φ) [∃y((v, y) ∈ σ ∧ ∀x, y ((v, x) ∈ σ ∧ (v, y) ∈ σ → x = y))]

∧∀v ∈FV(φ)WellFormed(v, σ(v), φ).

whereWellFormed(v, u, φ) is defined by the following primitive recursive function:

f(v, u, n) : Var × Var × Form 7→ {1, 0}

f(v, u, n) =



1 if n = (R, (t0, ..., tn−1)),

f(v, u, ψ) if n = (¬, ψ),

min(f(v, u, ψ), f(v, u, χ)) if n = (∨, (ψ, χ)),

f(v, u, ψ) if n = (∃, (s, ψ)), s ̸= u,

f(v, u, ψ) if n = (∃, (s, ψ)), s = u, v /∈ ψ,

0 if n = (∃, (s, ψ)), s = u, v ∈ ψ.

where v /∈ ψmeans that v is not a variable of ψ, which can be handled in an analogous way as FV(ψ) by a primitive
recursive function. LetWellFormed(v, u, n) := f(v, u, n).

Definition 135. Suppose φ(v0, . . . , vn−1) is a Feferman-style formula encoding with v0 . . . vn−1 free, and α is an
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assignment for φ. There are primitive recursive functions sα and fF,α with the following property:

fα(t, F ) =

cα(t) if t ∈ F ,

t otherwise.

sα(n, F ) =



(R, (fα(t0, F ), ..., fα(tn−1, F ))) if n = (R, (t0, ..., tn−1)),

(¬, s(ψ, F )) if n = (¬, ψ),

(∨, (s(ψ,F ), s(χ, F ))) if n = (∨, (ψ, χ)),

(∃, (v, s(χ, F ))) if n = (∃, (v, ψ)).

Corollary 136. The graphs of sα and fα are PA− definable.

We then define ψ = φ(c ◦ α) :↔ Form(φ) ∧ Form(ψ) ∧ Asn(α,φ) ∧ (φ,ψ) ∈ sα(φ,FV(φ)). Since both its

extension and anti-extension are Σ1(Seq), ψ = φ(c ◦ α) is expressible in PA−
.

ψ = φ ∗ σ can be treated similarly by functions fσ and sσ(n, F ):

fσ(t, F ) =

σ(t) if t ∈ F ,

t otherwise.

sσ(n, F ) =



(R, (fσ(t0, F ), ..., fσ(tn−1, F ))) if n = (R, (t0, ..., tn−1)),

(¬, s(ψ, F )) if n = (¬, ψ),

(∨, (s(ψ, F ), s(χ, F ))) if n = (∨, (ψ, χ)),

(∃, (v, s(χ, F ))) if n = (∃, (v, ψ)).

Then define ψ = φ ∗ σ :↔ Form(φ) ∧ Form(ψ) ∧ Subst(σ, φ) ∧ (φ,ψ) ∈ sσ(φ,FV(φ))

Remark 137. Substitution preserves the structure of formulas:

• ifφ(x) ≡ (R, (t0, . . . , tn)), thenφ(c◦α) ≡ (R, (t′0, . . . , t
′
n))where for all i ≤ n, either t′i = ti or t′i = cα(ti).

φ ∗ α ≡ (R, (t′0, . . . , t
′
n)) where for all i ≤ n, either t′i = ti or t′i = σ(ti),

• if φ(x) ≡ (¬, ψ), then φ(c ◦ α) ≡ (¬, ψ(c ◦ α)) and φ ∗ σ ≡ (¬, ψ ∗ σ),

• if φ(x) ≡ (∨, (ψ, χ)), then φ(c ◦ α) ≡ (∨, (ψ(c ◦ α), χ(c ◦ α))) and φ ∗ σ ≡ (∨, (ψ ∗ σ, χ ∗ σ)),

• if φ(x) ≡ (∃, (t, ψ)), then φ(c ◦ α) ≡ (∃, (t, ψ(c ◦ α))), and φ ∗ σ ≡ (∃, (t, ψ ∗ σ)).

Finally, we define (φ, α) ∼ (ψ, β) as

(φ, α) ∼ (ψ, β) := ∃χ∃γ∃σ1∃σ2(Asn(γ, χ) ∧ Subst(σ1, χ) ∧ Subst(σ2, χ)

∧ φ = χ ∗ σ1 ∧ ψ = χ ∗ σ2 ∧ γ = α ◦ σ1 ∧ γ = β ◦ σ2)

which is Σ1(Seq), so PA−
decides its extension. For the anti-extension, we wait until a further lemma is established.

Remark 138. We observe that, just as in the case of Remark 75-77, PA− has enough machinery to operate on substitutions.
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For any substitutionσ on formulaφ (or on assignmentα), we can defineσ[v : u] that resets the value ofσ(v) tou (as long as
substitutivity is preserved), and define σ ↾ FV(ψ) (or σ ↾ Dom(β) where FV(ψ) ⊆ FV(φ) (orDom(β) ⊆ Dom(α)).

Lemma 139 (PA−
). There exists a cutΦ(x) such that for any modelM ⊨ PA−, for all φ,ψ ∈ FormM and α, β ∈

AsnM relativized toΦ(x),M ⊨ φ(c ◦ α) = ψ(c ◦ β) impliesM ⊨ (φ, α) ∼ (ψ, β).

Proof. Note that the induction on φ in Lemma 130 is internal to the model M. We therefore apply the shortening

of Form-cuts (as defined in definition 63) to the formula Φ(x) := x(c ◦ α) = y(c ◦ β) → (x, α) ∼ (y, β). The

(arithmetized) proof in Lemma 130 should serve as a proof for Φ being Form-inductive. Suppose Φ(φ) for all φ of

complexity k. We show Φ(φ) for all φwith complexity k + 1. For simplicity, we only consider the most difficult case

φ = (∃, (x, φ1)).

Let M be a PA−
-model. Suppose there is a ψ ∈ FormM

and β ∈ AsnM where M ⊨ φ(c ◦ α) = ψ(c ◦ β), i.e,

M ⊨ (∃, (x, φ1(x)))(c◦α) = (∃, (x, ψ1(x)))(c◦β). By Remark 137, it implies thatφ1(x)(c◦α) = ψ1(x)(c◦β),

where c(φ1(x)) = c(ψ1(x)) = k. Therefore M ⊨ φ1(c ◦ α) = ψ2(c ◦ β) → (φ1, α) ∼ (ψ1, β). Unpacking the

definition of ∼ gives that M sees witnesses χ1 ∈ FormM, γ′ ∈ AsnM(χ1) and σφ, σψ ∈ SubstM(χ1) where

M ⊨ φ1 = χ1 ∗ σφ, M ⊨ ψ1 = χ1 ∗ σψ;(3.14)

M ⊨ γ′ = α′ ◦ σφ, M ⊨ γ′ = β′ ◦ σψ.(3.15)

We wish to construct witnesses for M ⊨ (φ, α) ∼ (ψ, β). First, to prevent undesirable binding, we modify σφ, σψ

such that both map x to itself and nothing else maps to x, so x ∈ FV(χ1). This is possible by Remark 138. Then define

χ = (∃, (x, χ1)), γ = γ′ ↾ FV(χ), σ′φ = σφ ↾ FV(χ), σ′ψ = σψ ↾ FV(χ) (which removes x from the domain).

By Remark 137, (∃, (x, χ1(x)))∗σ′φ = (∃, (x, χ1(x)∗σ′φ)) and (∃, (x, φ1(x)∗σ′φ)) = (∃, (x, φ1(x)))∗σ′φ. Since

M ⊨ φ1 = χ1 ∗ σφ, M ⊨ ψ1 = χ1 ∗ σψ , and M believes that σφ agrees with σ′φ except for x, (∃, (x, χ1 ∗ σ′φ)) =
(∃, (x, φ1 ∗ σ′φ)). Similarly for ψ.

Since M ⊨ α′ = γ′ ◦ σφ, M ⊨ α′ ↾ FV(χ) = (γ′ ◦ σφ) ↾ FV(χ). Since σφ(v) = x iff v = x,

(γ′ ◦ σφ) ↾ FV(χ) = (γ′ ↾ FV(χ)) ◦ σ′φ = γ ◦ σ′φ = α. Similarly for β. Therefore (φ, α) ∼ (ψ, β).

Lemma 140 (PA−
). There exists a cutΦ(x) such that for any modelM ⊨ PA−, for all φ,ψ ∈ FormM and α, β ∈

AsnM relativised toΦ(x),M ⊨ (φ, α) ∼ (ψ, β) impliesM ⊨ φ(c ◦ α) = ψ(c ◦ β).

Proof. Consider the formula Φ(φ) = φ(c ◦ α) = ψ(c ◦ β) → (φ, α) ∼ (ψ, β). We show that Φ(x) is Form-

inductive. Base case: φ = (R, (t1, . . . , tn)). Suppose there exist ψ, α, β where M ⊨ (φ, α) ∼ (ψ, β). Therefore

there exists χ, γ and σφ, σψ : FV(χ) → Var where

φ = χ ∗ σφ, γ = α ◦ σφ;

ψ = χ ∗ σψ, β = α2 ◦ σψ.

Since substitution preserves structure, we know that ψ = (R, (t′1, . . . , t
′
n)) and χ = (R, (s1, . . . , sn)). Suppose, for

a contradiction, that M ⊭ φ(c ◦ α) = ψ(c ◦ β). Therefore there exists i such that α(ti) ̸= β(t′i). Since φ = χ ∗ σφ,

si is such that σφ(si) = ti, similarly σψ(si) = t′i. Since γ = α ◦ σφ, γ(si) = α(σφ(si)) = α(ti), similarly

γ(si) = β(σψ(si)) = β(t′i). But α(ti) ̸= β(t′i), a contradiction.
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Suppose Φ(x) for all x with complexity k. We show Φ(x) for all x with complexity k + 1. Again we only consider

φ = (∃, (v, φ′)). Suppose there exist ψ, α, β where M ⊨ (φ, α) ∼ (ψ, β). Therefore ψ must be of the shape

(∃, (v′, ψ′)) and χ must be of the shape (∃, (u, χ′)). By Remark 93, there exists e ∈ M such that M ⊨ (φ′, α[v :

e]) ∼ (ψ′, β[v : e]), therefore M ⊨ φ′(c ◦ α[v : e]) = ψ′(c ◦ β[v : e]). Since substitution preserves structure,

φ(c ◦ α) = (∃, (v, φ′))(c ◦ α) = (∃, (v, φ′(c ◦ α))), and similarly, ψ(c ◦ α) = (∃, (v, ψ′(c ◦ β))). But it is easy to

see that ψ′(c ◦ β) = φ′(c ◦ α) since otherwise M ⊨ φ′(c ◦ α[v : e]) = ψ′(c ◦ β[v : e]) wouldn’t be true.

Applying the shortening of Form-cuts to Φ leads to the cut in question.

Therefore (φ, α) ∼ (ψ, β) iffφ(c ◦α) = ψ(c ◦β). We know thatφ(c ◦α) is ∆1(Seq) definable. So M ⊨ (φ, α) ̸∼
(ψ, β) iff M ⊨ φ(c ◦ α) ̸= ψ(c ◦ β) iff M ⊨ ∃x∃y(x = φ(c ◦ α) ∧ y = ψ(c ◦ β) ∧ x ̸= y). So PA−

decides the

negative extension by Σ1(Seq) completeness.

Lemma 141 (PA−
). T (S) is a truth class.

Proof. We observe that the original proof only relies on the truth and satisfaction axioms, and lemma 130, which is

known to hold in PA−
by lemma 139.

Proposition 142 (PA−
). S(T (S)) = S, and T (S(T )) = T .

Proof. The proof of Lemma 133 generalises.
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