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Abstract
In dependent type theory with an impredicative universe, the usual encodings for inductive types
borrowed from System F do not satisfy the dependent elimination rule (equivalently, no form of the
𝜂-rule holds). Two refinements of these encodings have been proposed to remedy this. Both apply to
all 𝒲-types. The first is by S. Awodey, J. Frey, and S. Speight [4]. They manage to recover dependent
elimination into 0-types of the impredicative universe by assuming the existence of Σ-types, identity
types, and function extensionality. By also assuming the existence of a natural numbers type, X.
Ripoll Echeveste [21], inspired by the ideas of M. Shulman [23], devises a second, distinct refinement
for 𝒲-types. This time, dependent elimination is possible into the entire impredicative universe.

In this thesis, we show how both encodings can be extended to higher inductive types. While
𝒲-types are a popular choice for a working definition of “inductive types”, there are multiple
competing definitions of “higher inductive types” in the literature. We test our generalisation of
the first refinement on the class of higher inductive types defined by H. Basold, H. Geuvers, and
N. van der Weide [7], and our generalisation of the second on the 𝒲-suspensions by K. Sojakova
[24]. Finally, we fully formalise the first refined encoding of higher inductive types in the Agda proof
assistant [1].
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Chapter 1.

Background
This thesis is on impredicative encodings of higher inductive types. As such, we assume very

basic knowledge in category theory, and in particular functors and limits. An introductory account
of the discipline is provided by T. Leinster [16]. Similarly, we expect the reader to be familiar
with some foundational notions from homotopy type theory, namely function extensionality and
homotopy levels. E. Rijke [20] offers a good text for beginners on this regard. Knowledge of proof
assistants is only required when inspecting the Agda [1] formalisation of our work. The parts relevant
to the text currently being read can be consulted by clicking on the cogwheel icon (⚙) accompanying
our definitions, statements, examples, and listings. Some links actually point to the code from the
Cubical Agda Library [3], on which our work depends. In case of network problems, the repository
is also available as a compressed archive embedded within this PDF document.

All other background material necessary to understand our work is covered in this chapter. In
particular, we introduce our working definition(s) of higher inductive types in Section 1.1, and the
general idea behind impredicative encodings in Section 1.2. We only get into the details of the type
theory we are working with in Section 1.3. Finally, our contributions are described in Section 1.4.

1.1. Higher Inductive Types
In homotopy type theory, higher inductive types (HITs) extend the notion of inductive types by
allowing for path (or “higher”) constructors. These generate paths for the type being defined. To
avoid confusion, we refer to traditional constructors as point constructors. If an inductive type is
freely generated by some collection of point constructors, a higher inductive type is freely generated
by some collection of point and path constructors¹. To date, there is no consensus on a single,
general definition for HIT schemas. In this thesis, we test our encoding techniques on two different
definitions:

1. Van der Weide’s HITs as defined in H. Basold, H. Geuvers, and N. van der Weide [7]². We use them
to generalise the set-truncated impredicative encodings by S. Awodey, J. Frey, and S. Speight [4];

2. 𝒲-suspensions by K. Sojakova [24]. We use them in the generalisation of the impredicative
encodings by X. Ripoll Echeveste [21].

Both definitions are described in the following.

¹Throughout this work, all unqualified uses of the word “constructor” refer to point and path constructors
collectively.

²This definition has seen adaptations in subsequent papers also by Van der Weide, so our appellation choice is for
lack of a better name.
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1.1.1. Van der Weide’s Higher Inductive Types
These schemas will be our working definitions when giving impredicative encodings of set-truncated
higher inductive types. Hence, we deviate from the original definition in that we assume the constants
in the polynomial type constructors to belong to some fixed homotopy level. As per usual, polynomial
type constructors are used as a grammar for constructor argument types. We use 𝐹 , 𝐺, 𝐻… to refer
to them. For the rest of this section, we fix a universe level ℓ and a homotopy level ℎ.

Definition 1.1. ⚙ The type PolyTypeConstr ℓ ℎ of polynomial type constructors of universe levels
ℓ and homotopy level ℎ, or simply “polynomials of level ℎ”, is defined as

𝑭 ⩴ Const 𝑨 | 𝕏 | 𝑭 ⊗ 𝑭 | 𝑭 ⊕ 𝑭

where 𝑨 : ℎ– Typeℓ :≡ ∑𝑋:𝒰ℓ
is– ℎ– Type 𝑋.

By substituting an actual ℎ-type 𝐵 for the 0-ary constructor 𝕏 in a polynomial 𝐹  and interpreting
⊗ (⊕) into × (+), we can evaluate such polynomial at 𝐵. We write this as “𝐹[𝐵]”, where the binary
⋅ [⋅] operator has higher precedence than function application, so 𝑓𝐹 [𝐵] is to be read as 𝑓(𝐹 [𝐵]),
and not as (𝑓𝐹)[𝐵]. In practice, we are only ever interested in homotopy sets (level 0) and higher
homotopy levels, as mere propositions are not closed under finite sums, so we need to work with
𝑆(𝑆ℎ), where 𝑆 is the “successor” constructor for homotopy levels.

Definition 1.2. ⚙ Let 𝐹  be a polynomial type constructor of universe level ℓ and homotopy
level 𝑆(𝑆ℎ). We define the following evaluation map on types for 𝐹  recursively, where
isOfHLevel× (𝑆(𝑆ℎ)) and isOfHLevel+ ℎ witness is– (𝑆(𝑆ℎ))– Typeℓ being closed under binary
products and sums respectively.

𝐹[⋅] : (𝑆(𝑆ℎ))– Typeℓ → (𝑆(𝑆ℎ))– Typeℓ

(Const 𝐴)[𝐵] :≡ 𝐴

𝕏[𝐵] :≡ 𝐵

(𝐺 ⊗ 𝐻)[𝐵] :≡ (pr1𝐺[𝐵] × pr1𝐻[𝐵], isOfHLevel× (𝑆(𝑆ℎ))(pr2𝐺[𝐵])(pr2𝐻[𝐵]))

(𝐺 ⊕ 𝐻)[𝐵] :≡ (pr1𝐺[𝐵] + pr1𝐻[𝐵], isOfHLevel+ ℎ(pr2𝐺[𝐵])(pr2𝐻[𝐵]))

Similarly, we can lift a function 𝑓 : 𝐵 → 𝐶 between types of some homotopy level to a polynomial
𝐹  whose constants belong to the same level (write “𝐹[[𝑓]]”, where again ⋅ [[⋅]] has higher precedence
than function application).

Definition 1.3. ⚙ Let 𝐹  be a polynomial type constructor of universe level ℓ and homotopy level
𝑆(𝑆ℎ). Let (𝐵, 𝑘), (𝐶, 𝑙) : (𝑆(𝑆ℎ))– Type. We define the following evaluation map on functions from
(𝐵, 𝑘) to (𝐶, 𝑙) for 𝐹  recursively.

𝐹[[⋅]] : (𝐵 → 𝐶) → pr1𝐹[(𝐵, 𝑘)] → pr1𝐹[(𝐶, 𝑙)]

(Const (𝐴, 𝑚))[[𝑓]] :≡ id𝐴

𝕏[[𝑓]] :≡ 𝑓

(𝐺 ⊗ 𝐻)[[𝑓]] :≡ map× 𝐺[[𝑓]]𝐻[[𝑓]]

(𝐺 ⊕ 𝐻)[[𝑓]] :≡ map+ 𝐺[[𝑓]]𝐻[[𝑓]]
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At the set level (i.e., for ℎ ≡ −2 and hence 𝑆(𝑆ℎ) ≡ 0), which will be our setting, this extends to
a functor on Setℓ, the precategory (i.e., non-univalent category with set-truncated hom-types) of
homotopy sets in 𝒰ℓ and functions between them, in the obvious way. While we could generalise this
observation to higher homotopy levels, we would need to lift the restriction of hom-types between
any two objects being set-truncated, and this would result in working with wild³ precategories (P.
Capriotti and N. Kraus [10]), rather than precategories. As this generalisation is not necessary, we
just stick to the set level when working with endofunctors in this subsection.

Proposition 1.4. ⚙ Let 𝐹  be a polynomial type constructor of universe level ℓ and homotopy level
0. Then 𝐹[⋅] and 𝐹[[⋅]] are the actions on objects and maps respectively of an endofunctor on Setℓ

that we denote by polyFuncOnSet 𝐹 .

Proof. The identity and composition conditions for functors hold definitionally if 𝐹  is a constant or
variable 𝕏. For 𝐹 ≡ 𝐺 ⊗ 𝐻, (𝐴, 𝑘) : 0– Typeℓ, we have

(𝐺 ⊗ 𝐻)[id𝐴] ≡ map× 𝐺[[id𝐴]]𝐻[[id𝐴]]

=IH map× idpr1𝐺[(𝐴,𝑘)]idpr1𝐻[(𝐴,𝑘)]

≡ idpr1(𝐺[(𝐴,𝑘)]×𝐻[(𝐴,𝑘)])

≡ idpr1(𝐺⊗𝐻)[(𝐴,𝑘)]

and

(𝐺 ⊗ 𝐻)[[𝑔⚬𝑓]] ≡ map× 𝐺[[𝑔⚬𝑓]]𝐻[[𝑔⚬𝑓]]

=IH map× (𝐺[[𝑔]]⚬𝐺[[𝑓]])(𝐻[[𝑔]]⚬𝐻[[𝑓]])

≡ map× 𝐺[[𝑔]]𝐻[[𝑔]]⚬ map× 𝐺[[𝑓]]𝐻[[𝑓]]

≡ (𝐺 ⊗ 𝐻)[[𝑔]]⚬(𝐺 ⊗ 𝐻)[[𝑓]].

The case where 𝐹 ≡ 𝐺 ⊕ 𝐻 is quite similar. □

Now, initial semantics for inductive types usually deals with all (point) constructors at the same time
using a single endofunctor. We will do the same: consider a family (𝐻𝑖)𝑖: Fin 𝑘, of 𝑘 : ℕ polynomials
of universe level ℓ and homotopy level 0. Each of its members induces an endofunctor on Setℓ as
constructed in Proposition 1.4. We can easily define a new endofunctor ⨁ 𝐻 on Setℓ by pointwise
taking the 𝑘-ary coproduct as the action on objects. Such evaluation map can always be converted
back to a family of 𝑘 separate functions, one for each point constructor. This can be thought of as
deconstructing an universal arrow for a 𝑘-ary coproduct diagram.

Definition 1.5. ⚙ Let 𝐵 : ℎ– Typeℓ. Given a family (𝐻𝑖)𝑖: Fin 𝑘 of 𝑘 : ℕ polynomials of universe level
ℓ and homotopy level ℎ, we define a helper function

scatter : (pr1(⨁ 𝐻)𝐵 → pr1𝐵) → ∏
𝑖: Fin 𝑘

pr1𝐻𝑖[𝐵] → pr1𝐵

scatter 𝛼 𝑖 :≡ 𝛼 ⚬ in𝑖

where in𝑖 is the 𝑖-th constructor of 𝑘-ary sums.

³Recall that “wild” stands for “whose type of morphisms between any two fixed objects needs not be a homotopy set”.
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The inverse operation, which we will call cluster, will also be helpful: it is simply the map function for
𝑘-ary sums (i.e., the function computing the universal arrow for 𝑘-ary coproducts), with signature

( ∏
𝑖: Fin 𝑘

pr1𝐻𝑖[𝐵] → pr1𝐵) → pr1(⨁ 𝐻)[𝐵] → pr1𝐵.

Of course, these two functions are each other’s inverses. Covered polynomial type constructors, we
move to endpoints of path constructors (for which we use symbols 𝑡, 𝑟, 𝑠, …). These also follow a
specific grammar.

Definition 1.6. ⚙ Let (𝐻𝑖)𝑖: Fin 𝑘 be a finite family4 of 𝑘 : ℕ of polynomials of universe level ℓ and
homotopy level ℎ. Let 𝐹  be a polynomial of universe level ℓ and homotopy level ℎ. The type family

PathConstructorTerm 𝐻𝐹 : PolyTypeConstr ℓ ℎ → 𝒰𝑆ℓ

is inductively defined by the following introduction rules. We read type PathConstructorTerm 𝐻𝐹𝐺
as “path constructor term over 𝐻 from 𝐹  to 𝐺”.

⊢ 𝑡 : 𝐴
⊢ ConstTerm 𝑡 : PathConstructorTerm 𝐻𝐹𝐴 ⊢ 𝕩 : PathConstructorTerm 𝐻𝐹𝐹

⊢ 𝑠 : PathConstructorTerm 𝐻𝐹𝐻𝑖

⊢ 𝑐𝑖𝑠 : PathConstructorTerm 𝐻𝐹𝕏
⊢ 𝑠 : PathConstructorTerm 𝐻𝐹(𝐺1 ⊗ 𝐺2) 𝑗 ∈ {1, 2}

⊢ 𝜋𝑗𝑠 : PathConstructorTerm 𝐻𝐹𝐺𝑗

⊢ 𝑠1 : PathConstructorTerm 𝐻𝐹𝐺1 ⊢ 𝑠2 : PathConstructorTerm 𝐻𝐹𝐺2

⊢ (𝑠1, 𝑠2) : PathConstructorTerm 𝐻𝐹(𝐺1 ⊗ 𝐺2)
⊢ 𝑠 : PathConstructorTerm 𝐻𝐹𝐺𝑗 𝑗 ∈ {1, 2}

⊢ in𝑗𝑠 : PathConstructorTerm 𝐻𝐹(𝐺1 ⊕ 𝐺2)

Much like for polynomials, we can also evaluate constructor terms for a type 𝐵 : ℎ– Typeℓ. This
time, however, we also need to specify that we are interpreting our 𝑘 point constructors using some
evaluation map pr1((⨁ 𝐻)𝐵) → pr1𝐵. We also need some constant 𝑦 : pr1𝐹[𝐵] to evaluate the path
argument 𝑥, so we write 𝑟 【𝐵, 𝑑, 𝑦】 . We adopt the convention that 𝑓𝑟 【𝐵, 𝑑𝑖, 𝑦】  is to be read
as 𝑓(𝑟 【𝐵, 𝑑𝑖, 𝑦】 ), rather than (𝑓𝑟) 【𝐵, 𝑑𝑖, 𝑦】 .

Definition 1.7. ⚙ Let (𝐻𝑖)𝑖: Fin 𝑘 𝑘 : ℕ be a family of polynomials of universe level ℓ and
homotopy level 0. Let 𝐹, 𝐺 : PolyTypeConstr ℓℎ, 𝑟 : PathConstructorTerm 𝐻𝐹𝐺, 𝐵 : ℎ– Typeℓ, 𝑑 :
pr1((⨁ 𝐻)𝐵) → pr1𝐵, 𝑦 : pr1𝐹[𝐵]. We define 𝑟 【𝐵, 𝑑, 𝑦】 , the value of path constructor term 𝑟
at 𝐵-𝑑-𝑦, via structural recursion on 𝑟.

4We use 1, 2, …, 𝑘 to denote the terms of type Fin 𝑘.
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𝑟 【𝐵, 𝑑, 𝑦】 : pr1𝐺[𝐵]

(ConstTerm 𝑎) 【𝐵, 𝑑, 𝑦】 :≡ 𝑎

𝕩 【𝐵, 𝑑, 𝑦】 :≡ 𝑦

(𝑐𝑖𝑠) 【𝐵, 𝑑, 𝑦】 :≡ scatter 𝑑 𝑖 (𝑠  【𝐵, 𝑑, 𝑦】 )

(𝜋1𝑠) 【𝐵, 𝑑, 𝑦】 :≡ pr1𝑠  【𝐵, 𝑑, 𝑦】 

(𝜋2𝑠) 【𝐵, 𝑑, 𝑦】 :≡ pr2𝑠  【𝐵, 𝑑, 𝑦】 

(𝑠, 𝑡) 【𝐵, 𝑑, 𝑦】 :≡ (𝑠  【𝐵, 𝑑, 𝑦】 , 𝑡  【𝐵, 𝑑, 𝑦】 )

(in1𝑠) 【𝐵, 𝑑, 𝑦】 :≡ inl 𝑠  【𝐵, 𝑑, 𝑦】 

(in2𝑠) 【𝐵, 𝑑, 𝑦】 :≡ inr 𝑠  【𝐵, 𝑑, 𝑦】 

Now, with both polynomial type constructors and constructor terms in place, we can define HIT
signatures.

Definition 1.8. ⚙ A Van der Weide HIT signature of homotopy level 𝑆(𝑆ℎ) consists of:
• a finite collection (𝐻𝑖)𝑖: Fin 𝑘 of 𝑘 polynomials of universe level ℓ and homotopy level ℎ (the point

constructor argument types);
• a finite collection (𝐴𝑗, 𝑡𝑗, 𝑟𝑗)𝑗: Fin 𝑛

 of 𝑛 path constructors, all being such that:
‣ 𝐴𝑗 is a polynomial of universe level ℓ and homotopy level ℎ (the argument type);
‣ 𝑡𝑗 and 𝑟𝑗 (the endpoints) are path constructor terms from 𝐴𝑗 to 𝕏 over (𝐻𝑖)𝑖: Fin 𝑘.

In other words, a signature stores the information needed for an instance of the following HIT schema.

Let 𝑇 : ℎ– Type be the HIT generated by:

• 𝑐1 : pr1𝐻1[𝑇 ] → pr1𝑇

…

• 𝑐𝑘 : pr1𝐻𝑘[𝑇 ] → pr1𝑇

• 𝑝1 : Π𝑥:pr1𝐴1[𝑇 ] 𝑡1 【𝑇 , cluster 𝑐, 𝑥】 =𝑇 𝑟1  【𝑇 , cluster 𝑐, 𝑥】 

…

• 𝑝𝑛 : Π𝑥:pr1𝐴𝑛[𝑇 ] 𝑡𝑛 【𝑇 , cluster 𝑐, 𝑥】 =𝑇 𝑟𝑛  【𝑇 , cluster 𝑐, 𝑥】 

Note that general constructors for higher paths are not available in this schema out-of-the-box.

1.1.2. W-Suspensions
While Van der Weide’s higher inductive types manage to satisfy real-world common use cases in
algebra and programming, they suffer from the theoretical shortcoming of not naturally arising as
a generalisation of Martin-Löf’s well-founded trees, commonly referred to as “𝒲-types” (P. Martin-
Löf [18]). They also depend on ad-hoc grammars, which will make our proofs sometimes depend
on ad-hoc inductions. Neither of these observations applies to our second working definition, 𝒲
-suspensions by K. Sojakova [24], which subsume both 𝒲-types and suspensions (The Univalent
Foundations Program [27]) by design. This second working definition will be our starting point in
the study of non-truncated higher inductive types. As before, we fix a universe level ℓ.
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Definition 1.9. ⚙ A 𝒲-suspension signature of universe level ℓ is a tuple 𝑆 :≡ (𝐴, 𝐵, 𝐶, 𝑙, 𝑟), with
• 𝐴, 𝐶 : 𝒰𝑖,
• 𝐵 : 𝐴 → 𝒰𝑖, and
• 𝑙, 𝑟 : 𝐶 → 𝐴.

As our name choices suggest, this object is meant to extend a commonplace 𝒲-type signature (𝐴, 𝐵)
with three new members. For starters, 𝐶 : 𝒰𝑖 indexes our path constructors, much like 𝐴 indexes
the point constructors. We can also talk about 𝐶 being the type of “labels” for paths between
points, much like 𝐴 is the type of “labels” for points. Finally, 𝑙 : 𝐶 → 𝐴 (𝑟 : 𝐶 → 𝐴) maps each path
constructor to its left (right) endpoint. If we name the type induced by this signature 𝑊 , then a
path constructor takes as its two arguments terms 𝑡 : 𝐵(𝑙𝑐) → 𝑊  and 𝑠 : 𝐵(𝑟𝑐) → 𝑊 . These are fed
to the two point constructors labeled by 𝑙𝑐 and 𝑟𝑐 respectively. The two resulting terms of type 𝑊
are the endpoints of the constructed path.

Unlike Van der Weide’s HITs, 𝒲-suspensions can therefore be infinitary, but only allow for a
more restrictive form of path constructors.

1.1.3. Examples
A selection of examples of higher inductive types follows. The first one is can be seen as an instance
of both our working definitions.

Example 1.10. ⚙ A textbook example of higher inductive type is the circle 𝑆1. It is defined as the
HIT generated by:
• base : 𝑆1;
• loop : base =𝑆1 base.

Even when sticking to homotopy sets alone, higher inductive types can be very useful. They allow
us to construct arbitrary free algebraic structures on a given homotopy set without coming up with
an explicit construction.

Example 1.11. ⚙ Given a homotopy set (𝐴, 𝑘) : 0– Typeℓ, we can construct the free semigroup on
it by simply “writing down” the semigroup operation and axiom. The free semigroup on 𝐴 can be
defined as the HIT generated by:
• 𝜂 : 𝐴 → FreeSemigroup (𝐴, 𝑘);
• ⋆ : FreeSemigroup (𝐴, 𝑘) → FreeSemigroup (𝐴, 𝑘) → FreeSemigroup (𝐴, 𝑘);
• associative : ∏𝑎,𝑏,𝑐: FreeSemigroup (𝐴,𝑘)(𝑎 ⋆ 𝑏) ⋆ 𝑐 =FreeSemigroup (𝐴,𝑘) 𝑎 ⋆ (𝑏 ⋆ 𝑐);
• truncated : isSet (FreeSemigroup (𝐴, 𝑘)).

Note that the associative path constructor cannot be expressed directly in a 𝒲-suspension signature.
The same phenomenon will also occur multiple times in the next example.

Real world programming can also benefit from higher inductive types, as explored by H. Basold, H.
Geuvers, and N. van der Weide [7]. In this context, HITs are used as “data types with laws”.

Example 1.12. ⚙ Finite sets over a type 𝐴 (à-la-Kuratowski) are defined by D. Frumin, H. Geuvers,
L. Gondelman, and N. van der Weide [12] as the HIT 𝒦𝐴 generated by:
• ∅ : 𝒦𝐴;
• {⋅} : 𝐴 → 𝒦𝐴;
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• ∪ : 𝒦𝐴 → 𝒦𝐴 → 𝒦𝐴;
• nl : ∏𝑥:𝒦𝐴 ∅ ∪ 𝑥 =𝒦𝐴 𝑥;
• nr : ∏𝑥:𝒦𝐴 𝑥 ∪ ∅ =𝒦𝐴 𝑥;
• idem : ∏𝑎:𝐴{𝑎} ∪ {𝑎} =𝒦𝐴 {𝑎};
• assoc : ∏𝑥,𝑦,𝑧:𝒦𝐴 𝑥 ∪ (𝑦 ∪ 𝑧) =𝒦𝐴 (𝑥 ∪ 𝑦) ∪ 𝑧;
• com : ∏𝑥,𝑦:𝒦𝐴 𝑥 ∪ 𝑦 =𝒦𝐴 𝑦 ∪ 𝑥;
• trunc : isSet (𝒦𝐴).

1.2. Impredicative Encodings
System F, the polymorphic lambda calculus, is expressive enough to allow for (finitary) inductive
data types to be encoded in it, as illustrated by M. H. Sørensen and P. Urzyczyn [26]. The encodings
are strictly guided by the elimination principle of the type we are trying to emulate. They are said
to be “impredicative” because of the essential role played by the impredicative ∀ of System F, which
quantifies over the type being encoded, too.

Example 1.13. The impredicative encoding for the type of natural numbers ℕ in System F follows
from its elimination principle.

ℕ𝐹 ≔ ∀𝑋.(𝑋 → 𝑋) → 𝑋 → 𝑋

It comes with constructors and a recursor:

𝟘𝐹 : ℕ𝐹

𝟘𝐹 ≔ Λ𝑋.𝜆𝑓.id𝑋

𝕊𝐹 : ℕ𝐹 → ℕ𝐹

𝕊𝐹 ≔ 𝜆𝑛.Λ𝑋.𝜆𝑓𝑥.𝑓(𝑛𝑋𝑓𝑥)

recℕ𝐹
: ∀𝑋.(𝑋 → 𝑋) → 𝑋 → ℕ𝐹 → ℕ𝐹

recℕ𝐹
≔ Λ𝑋.𝜆𝑓𝑥𝑛.𝑛𝑋𝑓𝑥

In a version of homotopy type theory with a bottom, impredicative universe, this kind of encoding
does not fully work out: the 𝜂-equality is not satisfied, not even propositionally. As 𝜂-rules are
unicity principles, their failure can be seen as a signal that the encoding features some non-standard
terms (at least in some models). In this setting, this is equivalent to dependent elimination not
being available. This was discussed by S. Awodey, N. Gambino, and K. Sojakova [5], [6]. “Large”
elimination (i.e., elimination into types of higher universes) is not possible, either. S. Speight [25],
and later S. Awodey, J. Frey, and S. Speight [4] propose a refinement to encode all set-level 𝒲-types
while retaining 𝜂-equality/dependent elimination into 0-types (thus, throwing the non-standard
terms away). The actual construction for a generic 𝒲-type is only spelled out by X. Ripoll Echeveste
[21], S. Bronsveld [9] (both unpublished), and S. Bronsveld, H. Geuvers, and N. van der Weide [8].
X. Ripoll Echeveste [21], starting from ideas by M. Shulman [23], constructs a separate refinement,
where dependent elimination spans the whole impredicative universe. None of these encodings allow
for large elimination.

1.3. The System
Our base dependent type theory features dependent functions, strong sums, intensional identity,
and function extensionality. The bottom universe 𝒰0 is assumed to be impredicative. So we have
a predicative formation rule for successor universes, but an impredicative formation rule for the
bottom universe.
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Γ ⊢ 𝐴 : 𝒰𝑆𝑖 Γ, 𝑎 : 𝐴 ⊢ 𝐵 : 𝒰𝑆𝑖

Γ ⊢ ∏𝑥:𝐴 𝐵 : 𝒰𝑆𝑖

Γ, 𝑎 : 𝐴 ⊢ 𝐵 : 𝒰0

Γ ⊢ ∏𝑥:𝐴 𝐵 : 𝒰0

The latter does not pose size restrictions on the index type when we are forming a product in the
impredicative universe.

To be able to state Van der Weide’s HIT schemas and rules only, we of course need to assume
the relevant inductive types. These are of course not needed when working with 𝒲-suspensions.
Our untruncated encodings will also assume the existence of a natural numbers type. This is not
assumed by our set-truncated encodings.

A few observations: although we invoke functional extensionality regularly, we never make use
of the univalence axiom itself. So our results already hold within the intensional type theory by P.
Martin-Löf [17], as long as we add function extensionality as an axiom. Still, homotopy levels, which
we make use of in the next chapter alone, historically originate in homotopy type theory. On top of
that, many of our examples are motivated by the “types-as-spaces” interpretation.

Precisely because we will not concern ourselves with univalence, from now on we use the word
“category” to refer to HoTT book precategories. Additionally, because of impredicativity, in the
following we can afford to work inside 𝒰0, rather than make our constructions parametric on a generic
universe level ℓ like we have done so far. Because of this, we will even avoid explicitly mentioning
universe level 0. For example, we will use ℎ– Type in place of ℎ– Type0, and Set in place of Set0.
Similarly, arguments declared in between braces when writing a subscript for a product type, and
some arguments implicitly declared in English prose, will be considered to be “implicit”. That is, they
will not be explicitly declared in the corresponding lambda abstractions, nor they will be explicitly
passed in the corresponding function applications. We only ever declare implicit arguments when
their value is guaranteed to be inferable.

1.4. Contributions
This thesis consists of two main contributions:

1. a construction of Van der Weide’s HITs defined in H. Basold, H. Geuvers, and N. van der Weide
[7] as an impredicative encoding that eliminates into set-truncated types of the impredicative
universe. This is fully formalised in Agda;

2. a construction of 𝒲-suspensions as an impredicative encoding that eliminates into the impred-
icative universe.

The next chapter covers the former, while the chapter after that covers the latter. Finally, we dedicate
one more chapter to a brief description of our formalisation.
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Chapter 2

Set-Truncated Higher Inductive
Types

In this chapter, we encode Van der Weide’s higher inductive types as defined by H. Basold, H.
Geuvers, and N. van der Weide [7] within the subuniverse of homotopy sets. That is, we start from
HIT signatures that use 0-level polynomial type constructors, and we construct the corresponding
0-truncated higher inductive types. N. van der Weide and H. Geuvers [29] already developed initial
semantics. Like them, we refer to homotopy initiality, i.e. hom-types being contractible, as simply
“initiality”, as this is the only notion of initiality we are interested in. We define the category of lawful
set algebras for a given HIT signature in Section 2.1. In Section 2.2, we exploit impredicativity to
conclude that this category has arbitrary limits. We use this fact in section Section 2.3 to construct
the desired initial object in our category. Finally, Section 2.4 shows that initiality implies the desired
𝛽-rule and 𝜂-rule.

Example 2.1. ⚙ The exposition will be accompanied by a working example: natural numbers
modulo 3 as a set-truncated higher inductive type ℕ/3ℕ, generated by the constructors:

• 0 : ℕ/3ℕ;
• 𝑆 : ℕ/3ℕ → ℕ/3ℕ;
• mod : 0 =ℕ/3ℕ 𝑆(𝑆0).

A definition using normal inductive types would enumerate 0, 1, and 2 as three distinct constructors.
As a consequence, the usual operations on such a type (e.g., addition, multiplication, …) would either
require hard-coding or mappings to and from ℕ.

2.1. Lawful Set Algebras
We start from the usual notion of algebra over an endofunctor, which provides categorical semantics
for 𝒲-types.

Definition 2.2. ⚙ Given a category 𝐶, the type of algebras over an endofunctor 𝐹 : 𝐶 → 𝐶 is

𝐹– Algebra ≔ ∑
𝑋: Ob(𝐶)

Hom𝐶(𝐹𝐶, 𝐶).

We sometimes shorten “algebra over 𝐹” as “𝐹 -algebra”. We refer to the first and second element of
this dependent pair as algebra carrier and algebra map respectively.

Example 2.3. ℕ/3ℕ has a 0-ary point constructor (or, equivalently, a point constructor with a single
argument of the unit type) and a point constructor with a recursive argument. If we work in Set,
the endofunctor bundling these point constructor arguments together is
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𝐹 : Set → Set
𝐹𝑋 ≔ 1 + 𝑋.

An 𝐹 -algebra would consist of a set 𝐴 equipped with a function 1 + 𝐴 → 𝐴 designating a “zero”
element in 𝐴 as well as a “successor” function on 𝐴.

These algebras have their own notion of morphism, which ensures the structure picked by the starting
algebra map is preserved.

Definition 2.4. ⚙ Given a category 𝐶 and an endofunctor 𝐹 : 𝐶 → 𝐶, an 𝐹 -algebra morphism
between 𝐹 -algebras (𝑋, 𝛼) and (𝑌 , 𝛽) is a map 𝑓 : Hom𝐶(𝑋, 𝑌 ) equipped with a witness for the
commutative diagram

↑

𝛼

↑

𝛽
↑𝐹𝑓

↑𝑓

⇑=

𝐹𝑋 𝐹𝑌

𝑋 𝑌
.

Because hom-sets are homotopy sets in our working definition of category, the type of the witness
mentioned in this definition is a mere proposition. So, when checking two algebra morphisms for
equality, it is always enough to check for equality of the two underlying functions.

Example 2.5. In our previous example, algebra morphisms would be maps between carriers that
preserve the “zero” element and commute with the “successor” function.

As it is to be expected, algebras over an endofunctor form a category.

Proposition 2.6. ⚙ If 𝐹 : 𝐶 → 𝐶 is an endofunctor over a category 𝐶, then 𝐹 -algebras and 𝐹 -
algebra morphisms among them form a category, that we name 𝐹 -Alg.

Since we are dealing with 0-truncated types, we focus on endofunctors on the Set category5, and thus
talk of set algebras and 𝐹– SetAlg. Because algebra morphisms preserve the structure of algebras,
they commute with the evaluation of a path constructor term.

Proposition 2.7. ⚙ Let (𝐻𝑖)𝑖: Fin 𝑘 be a family of polynomials for homotopy sets. We set 𝐹 :≡ ⨁ 𝐻.
Let (𝑓, ℎ) : Hom𝐹–SetAlg((𝐴, 𝛼), (𝐵, 𝛽)). Give polynomials for homotopy sets 𝐺 and 𝑃 , for any 𝑟 :
PathConstructorTerm 𝐻𝐺𝑃  and 𝑥 : pr1𝐺[𝐴], we have

𝑃 [[𝑓]]𝑟 【𝐴, 𝛼, 𝑥】 =pr1𝑃[𝐵] 𝑟 【𝐵, 𝛽, 𝐺[[𝑓]]𝑥】 .

Proof. By induction on 𝑟:
• if 𝑟 is a constant or variable 𝕩, the statement holds definitionally;
• if 𝑟 is an applied binary projection or sum constructor, we can apply the relevant action on paths

to our induction hypothesis;

5This is the category of terms of type 0– Type and functions between their first components.

10

https://agda.github.io/cubical/Cubical.Categories.Instances.FunctorAlgebras#949
https://agda.github.io/cubical/Cubical.Categories.Instances.FunctorAlgebras#3850
https://foxy.codeberg.page/impredicative-encodings-of-hits/ImprHIT.SetTruncated.LawfulSetAlgebra#841


• if 𝑟 is a fully applied pair constructor, we check for component-wise equality, which holds due to
the induction hypothesis;

• if 𝑟 ≡ 𝑐𝑖𝑠 for some 𝑖 : Fin 𝑘 and 𝑠 : PathConstructorTerm 𝐻𝐺𝐻ℎ, we have

scatter 𝛼𝑖𝑠 【 𝐴, 𝛼, 𝑥 】 =𝐵 𝛽(𝐹 [[𝑓]](in𝑖𝑠 【𝐴, 𝛼, 𝑥】 )) ⟨ℎ⟩

≡ 𝛽(in𝑖(𝐻𝑖[[𝑓]]𝑠 【𝐴, 𝛼, 𝑥】 ))

=IH𝐵 scatter 𝛽𝑖𝑠 【𝐵, 𝛽, 𝐺[[𝑓]]𝑥】 .

□

To provide semantic counterparts to path constructors, we equip set algebras with appropriate
families of paths, thus getting to the notion of lawful algebras over a HIT signature.

Definition 2.8. ⚙ Let 𝑆 ≔ ((𝑘, (𝐻𝑖)𝑖: Fin 𝑘), (𝑛, (𝐴𝑗, 𝑡𝑗, 𝑟𝑗)𝑗: Fin 𝑛
)) be a HIT signature for homo-

topy sets. The type of lawful set algebras over HIT signature 𝑆 is

𝑆– LawfulAlgebra ≔ ∑
𝒜:(polyFuncOnSet (⨁ 𝐻))–Algebra

isLawful 𝒜

where

isLawful (𝑋, 𝛼) ≔ ∏
𝑗: Fin 𝑛

∏
𝑥: fst (𝐴𝑗[𝑋])

𝑡𝑗 【𝑋, 𝛼, 𝑥】 =fst 𝑋 𝑟𝑗 【𝑋, 𝛼, 𝑥】 .

The lawfulness condition is a mere proposition, so lawful set algebras form the full subcategory
LawSetAlg of set algebras.

Proposition 2.9. ⚙ The lawfulness condition for set algebras is a mere proposition.

Proof. Obvious, as the carrier of a set algebra is a homotopy set. □

Corollary 2.10. ⚙ Let 𝑆 be a HIT signature for homotopy sets, and 𝐹  the polynomial induced by
the ⊕-fold over the path constructor arguments of 𝑆. Then, the lawful set algebras induced by 𝑆
form a full subcategory of the set algebras over 𝐹 .

Not requiring any additional conditions from our morphisms is only natural: since we are working
with homotopy sets, all paths are trivially preserved. This is also reflected by the “set-truncated” 𝜂
-rule we state and prove at the end of the chapter. In the next section, we investigate limits within
the category of lawful set algebras.

2.2. Limits in the Lawful Set Algebras Category
In an impredicative setting, Set, the category of small homotopy sets and functions between them,
is not just complete: it has limits of arbitrary shapes, which need not be small, unlike the objects
of this category. This is because the usual construction of a limit by products and equalisers is not
limited by the products’ predicativity any more.

Definition 2.11. ⚙ Given a category 𝕁 of any size and a functor 𝐷 : 𝕁 → Set, we define the limit
encoding for 𝐷 as
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lim
←
𝑖

𝐷𝑖 : 0– Type

lim
←
𝑖

𝐷𝑖 :≡ (∑
𝜙:𝐷∗

Nat 𝜙, ℎ)

where

𝐷∗ :≡ ∏
𝑖:𝕁0

𝐷𝑖

and Nat is the naturality condition

Nat 𝜙 :≡ ∏
{𝑖,𝑗:𝕁0}

∏
𝑢:Hom𝕁(𝑖,𝑗)

𝐷𝑢(𝜙𝑖) =𝐷𝑗 𝜙𝑗.

As a proof ℎ witnessing the set-truncation for the first projection, we observe that 𝐷∗ is a set (it is a
product of sets) and, fixed 𝜙 : 𝐷∗, Nat 𝜙 is a proposition (it is a product of products of propositions).

To give our limit encodings the structure of cones, we equip them with the obvious projections,
which are just the ones from the underlying product.

Definition 2.12. ⚙ Let 𝐷 : 𝕁 → Set be a functor. We define 𝜇𝐷, the limit encoding cone on lim
←
𝑖

𝐷𝑖,

as the following 𝐷-cone with vertex lim
←
𝑖

𝐷𝑖.

𝜇𝐷 : Cone 𝐷 lim
←
𝑖

𝐷𝑖

𝜇𝐷 :≡ (𝜋𝑗⚬pr1⚬pr1, 𝑘)

where 𝑘, our proof of the cone commutativity condition, is

𝜆𝑖, 𝑗 : 𝕁0, 𝑢 : Hom𝕁(𝑖, 𝑗). funExt 𝜆(𝜙, 𝜗) : lim
←
𝑖

𝐷𝑖.𝜗𝑖𝑗𝑢.

We now proceed to prove that our cone is, in fact, limiting.

Theorem 2.13. ⚙ The cone 𝜇𝐷 described above for a generic category 𝐽  of arbitrary size and any
functor 𝐷 : 𝐽 → Set𝒰0

 is always terminal.

Proof. Given a 𝐷-cone with a set 𝑉  (equipped with a proof of is– 0– Type 𝑉 ) as vertex and a family
of projections 𝜈, we need to define a map 𝑓 : 𝑉 → pr1lim←

𝑖

𝐷𝑖. We also need to prove that it is a cone

morphism, and that it is the only cone morphism with such source and target. Such a universal map
is constructed using the projections of the source cone.

𝑓 : 𝑉 → pr1lim←
𝑖

𝐷𝑖

𝑓𝑣 :≡ ((𝜆𝑗 : 𝕁0.𝜈𝑗𝑣), ℎ)

As a proof ℎ for naturality, let 𝑢 : Hom𝕁(𝑖, 𝑗). We are to show 𝑢(𝜈𝑖𝑣) =pr1(𝐷𝑗) 𝜈𝑗𝑣. By definition of
cone, we already have 𝑢⚬𝜈𝑖 =𝑉 →𝐷𝑗 𝜈𝑗. We turn this to a homotopy and apply it to 𝑣. Of course, 𝑓 is
a cone morphism, as the relevant equalities all hold definitionally. In Set, “being a cone morphism”
is a mere proposition, so when proving unicity of our construction, it is enough to check for equality
between 𝑓 and the underlying function 𝑔 : 𝑉 → pr1lim←

𝑖

𝐷𝑖 of some other parallel cone morphism. We
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prove this by function extensionality, fixing 𝑣 : 𝑉 . As already observed in Definition 2.11, naturality
in Set is always a proposition, so we can use function extensionality again fixing 𝑗 : 𝕁0. Now we
only need to check 𝜈𝑗𝑣 =pr1𝐷𝑗 pr1(𝑔𝑣)𝑗. Because 𝑔 is a cone morphism, we can just take the relevant
commutativity condition for 𝑗, turn it into a homotopy and apply it to 𝑣. □

Corollary 2.14. ⚙ Set has limits of any shape, regardless of size, constructed as above.

Proof. This follows immediately from our previous proof of terminality and the definition of limit.
□

It is a known fact that the category of set algebras over an endofunctor inherits all limits from Set.
This is shown by observing that it is possible to compute each limit pointwise. To prove the same
result for the category of lawful set algebras induced by a HIT signature, we’ll need an appropriate
forgetful functor.

Definition 2.15. ⚙ Let 𝑆 be a HIT signature for homotopy sets, and 𝐹  the polynomial induced by
the ⊕-fold over the path constructor arguments of 𝑆. We define ForgetLawSetAlg as the forgetful
functor from 𝑆– LawSetAlg to Set obtained by composing the forgetful functor 𝕌 : 𝐹– SetAlg → Set
after the inclusion functor 𝜄 : 𝑆– LawSetAlg → 𝐹– SetAlg.

We are now ready to prove the main theorem of this section. The proof strategy, similar to what is
done for regular algebras, is to use our forgetful functor so that we can build our limit starting from
the corresponding one in Set.

Theorem 2.16. ⚙ Let 𝑆 be a HIT signature for homotopy sets. Then 𝑆– LawSetAlg has limits of
any shape.

Proof. We work with lawful algebras on HIT signature 𝑆 :≡ ((𝐻𝑖)𝑖: Fin 𝑘, (𝐴𝑗, 𝑡𝑗, 𝑟𝑗)𝑗: Fin 𝑛
). Much

like before, fixed a category 𝐽  of arbitrary size and a functor 𝐷 : 𝐽 → Set, we shall construct a
lawful set algebra over 𝑆 as a vertex of a 𝐷-cone. After doing that, we will be left with proving
terminality of such a cone. Note that composing ForgetLawSetAlg after 𝐷 yields a functor 𝐷′ : 𝐽 →
Set. Consider 𝑉 :≡ lim

←
𝑖

𝐷′
𝑖 , the limit encoding for 𝐷′, and the corresponding limit encoding cone

𝑀 . By Theorem 2.13, we have a proof for its terminality as a 𝐷′-cone. We denote the family of
projections from 𝑉  by 𝜇, and use 𝐻𝜇 to refer to the evidence for the cone condition on 𝑀 . Finally,
we use 𝐹 : Set → Set for the endofunctor induced by ⨁ 𝐻.

Now, observe that any 𝐷′-cone with vertex 𝐴 : 0– Type and projections 𝜈 can be turned into a
𝐷′-cone with vertex 𝐹𝐴, as shown in the following diagram. In it, the top triangle commutes since
(𝐴, 𝜈) is a cone, and the bottom square commutes because 𝐷′𝑢 is an 𝐹 -algebra morphism.
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↑

𝐹𝜈𝑖

↑

𝐹𝜈𝑗

↑

str (𝐷𝑖)

↑

str (𝐷𝑗)

↑𝐹 (𝐷′𝑢)

↑𝐷′𝑢

⇑=

⇑=

𝐹𝐴

𝐹(𝐷′𝑖) 𝐹(𝐷′𝑗)

𝐷′𝑖 𝐷′𝑗

We make use of this trick immediately to construct a vertex for the 𝐷-cone. We select 𝑉  as
the carrier. As a map for the 𝐹 -algebra, we choose the function 𝛼 : pr1𝐹𝑉 → pr1𝑉  underlying the
universal cone morphism from the 𝐷′-cone constructed as above (set 𝐴 to 𝑉 ) to the terminal cone 𝑀 .
To check (𝑉 , 𝛼)’s lawfulness for fixed values of 𝑗 : Fin 𝑘 and 𝑥 : 𝐴𝑗[𝑉 ], we use function extensionality,
since we already stated that naturality is a mere proposition in this context. Then, let 𝑖 : 𝕁0. If 𝐷𝑖
is a lawful algebra with carrier 𝐵 and map 𝛽 : 𝐹𝐵 → 𝐵, the desired equality holds.

pr1𝑡𝑗  【 𝑉 , 𝛼, 𝑥 】 𝑖 =𝐵 𝑡𝑗  【 𝐵, 𝛽, 𝐴𝑗[[(𝜆𝑞.pr1𝑞𝑖)]]𝑥 】 ⟨distributivity⟩

=𝐵 𝑟𝑗  【 𝐵, 𝛽, 𝐴𝑗[[(𝜆𝑞.pr1𝑞𝑖)]]𝑥 】 ⟨𝐷𝑖's lawfulness⟩

=𝐵 pr1𝑟𝑗  【 𝑉 , 𝛼, 𝑥 】 𝑖 ⟨distributivity⟩

The distributivity property mentioned in this equality chain is just an instance of Proposition 2.7.
Indeed, 𝜆𝑞 : pr1𝑉 .pr1𝑞𝑖 is an 𝐹 -algebra morphism from, due to 𝛼 being a cone morphism.

So our vertex is actually ((𝑉 , 𝛼), ℎ), where ℎ is the lawfulness proof just provided. As projection
to 𝐷′𝑖, with 𝑖 : 𝕁0, we reuse 𝜇𝑖. Again, this is surely an algebra morphism, because 𝛼 being a cone
morphism ensures that the following diagram commutes, where 𝛽 is the map of lawful algebra 𝐷𝑖.

↑

𝛼

↑

𝛽

↑𝐹𝜇𝑖

↑𝜇𝑖

⇑=

𝐹𝑉 𝐹(𝐷′𝑖)

𝑉 𝐷′𝑖

Equipped with 𝜇, ((𝑉 , 𝛼), ℎ) is indeed a cone: because “being an algebra morphism” is a mere
proposition as observed above, 𝐻𝜇 is already evidence of this. So we are left with proving terminality.
Let 𝔹 be a lawful algebra with carrier 𝐵 : 0– Type and algebra map 𝛽 : 𝐹𝐵 → 𝐵. We fix a 𝐷-cone
with 𝔹 as its vertex given by a family 𝜈 of projections. The desired universal arrow is a cone morphism
from this generic cone to the one we defined earlier. We can turn the 𝐷-cone with vertex 𝔹 into a 𝐷′

-cone with vertex 𝐵 using ForgetLawSetAlg. We denote the family of projections for the latter 𝜈′.
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There’s a unique 𝐷′-cone morphism to the terminal 𝐷′-cone with vertex 𝑉  and projections family
𝜇. We denote the underlying function by 𝑔 : 𝐵 → 𝑉 . Again, algebras morphisms form a subtype of
functions, so if we can manage to reuse 𝑔 as a 𝐷-cone morphism, too, we would get the uniqueness
and cone morphism commutativity conditions for free. All that is really left to do is proving that 𝑔
actually behaves like an algebra morphism. We do so by using the following diagram family, which
is indexed by 𝑗 : 𝕁0.

↑𝐹 𝑔

↑

𝐹(pr1𝜈𝑗) ↑ 𝐹𝜇𝑗
↑𝑔

↑
pr1𝜈𝑗

↑
𝜇𝑗

↑

𝛽

↑

𝛼

↑

pr2(𝐷𝑗)

𝐹𝐵 𝐹𝑉

𝐹(𝐷′𝑗)

𝐵 𝑉

𝐷′𝑗

In the diagram:
• the bottom triangle commutes due to 𝑔 being a 𝐷′-cone morphism;
• the top triangle commutes because of 𝐹 ’s action on the bottom triangle;
• the left trapezoid commutes as witnessed by pr2𝜈𝑗;
• the right trapezoid commutes since 𝜇𝑗 is an algebra morphism, as illustrated by the second

diagram.

Our goal is making the external rectangle commute though. To do so, it is enough to observe that
both 𝑔⚬𝛽 and 𝛼⚬𝐹𝑔 can be shown to be cone morphisms to the terminal 𝐷′-cone. The source cone,
in this case, has vertex 𝐹𝐵 and is constructed from cone (𝐵, 𝜈′) using the trick illustrated by the
first diagram of this proof. The cone morphism commutativity condition for both 𝑔⚬𝛽 and 𝛼⚬𝐹𝑔 is
easily checked via diagram chasing on the last diagram. This concludes the proof of terminality. □

Next, we shall make use of one particular limit, the one of the identity functor, to construct the
initial lawful set algebra.

2.3. Initial Lawful Set Algebra
To construct the initial lawful set algebra, we make use of the following well-known characterisation
result for the initial object of a generic category.

Theorem 2.17. ⚙ ⚙ Let 𝐼 be an object in some category 𝒞. Then, 𝐼 is initial if and only if it is the
limit of id𝒞, the identity functor on 𝒞.

Proof. From left to right: given an object 𝑋, we can take the universal map from 𝑝𝑋 : 𝐼 → 𝑋 as the
corresponding projection. Given a second object 𝑌  and a morphism 𝑓 : Hom𝒞(𝑋, 𝑌 ), we are assured
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𝑓⚬𝑝𝑋 =Hom𝒞(𝐼,𝑌 ) 𝑝𝑌  by the uniqueness of universal map 𝑝𝑌 . Then, (𝐼, 𝑝) behaves as a cone. Given
a second id𝒞-cone (𝐽, 𝑞), we consider 𝑞𝐼 : Hom𝒞(𝐽, 𝐼). This is a cone morphism between (𝐽, 𝑞) and
(𝐼, 𝑝): fixed an object 𝑋, 𝑝𝑋⚬𝑞𝐼 =Hom𝒞(𝐽,𝑋) 𝑞𝑋 holds since (𝐽, 𝑞) is a cone. Such a cone morphism is
necessarily unique: if there were a second cone morphism 𝑦 : 𝐽 → 𝐼 , it would satisfy

𝑦 =Hom𝒞(𝐽,𝐼) 1𝐼⚬𝑦 =Hom𝒞(𝐽,𝐼) 𝑝𝐼⚬𝑦 =Hom𝒞(𝐽,𝐼) 𝑞𝐼 .

From right to left: let 𝑥 : Ob(𝒞). If 𝐼 is the limit of the identity functor, it comes equipped with
a projection 𝑝𝑋 : 𝐼 → 𝑋. To show uniqueness of such a map, observe that 𝑝𝐼 : 𝐼 → 𝐼 is a cone
endomorphism. That’s because 𝑝𝑌 ⚬𝑝𝐼 =Hom𝒞(𝐼,𝑌 )

𝑝𝑌  holds for a generic 𝑌 : Ob(𝒞), as (𝐼, 𝑝) is a cone.
Furthermore, (𝐼, 𝑝) is terminal, so 𝑝𝐼 must coincide with the endomorphism underlying the identity
cone morphism on (𝐼, 𝑝), and that’s just 1𝐼 . Now then, let 𝑦 : 𝐼 → 𝑋. We have

𝑦 =Hom𝒞(𝐼,𝑋) 𝑦⚬1𝐼 =Hom𝒞(𝐼,𝑋) 𝑦⚬𝑝𝐼 =Hom𝒞(𝐼,𝑋) 𝑝𝑋

as desired. □

This means that the work carried on in the previous section was enough to obtain the initial lawful
set algebra.

Corollary 2.18. ⚙ Let 𝑆 be a HIT signature for homotopy sets. Then 𝑆– LawSetAlg has an initial
object.

Proof. Follows immediately from Theorem 2.16 and Theorem 2.17. □

In the next section, we show that the initial lawful set algebra indeed satisfies the desired rules.

2.4. Rules
In this section, we work with a generic HIT signature 𝑆 ≔ ((𝑘, (𝐻𝑖)𝑖: Fin 𝑘), (𝑛, (𝐴𝑗, 𝑡𝑗, 𝑟𝑗)𝑗: Fin 𝑛

)).

As before, we use 𝐹  for the endofunctor on Set induced by ⨁ 𝐻. To even be able to state the rules
whose validity we wish to prove, we must first explain how to recover the encoding of our higher
inductive type, as well as those for the corresponding constructors. As it is usual for initial algebra
semantics, the encoding of the type is provided by the carrier.

Definition 2.19. ⚙ The encoding of the set-truncated higher inductive type given by 𝑆, denoted
by 𝑇𝑆 : 0– Type, is defined as the carrier of the initial lawful set algebra over 𝑆 as constructed in
Corollary 2.18. Written explicitly, 𝑇𝑆 :≡ (∑𝜙: ∏((𝐴,𝛼),ℎ):𝑆–LawSetAlg 𝐴 Nat 𝜙, 𝑘)

where 𝑘 is the proof of the first member being a homotopy set as constructed in Definition 2.11.

Point constructors also follow the usual pattern, i.e. they are trivially derived from the algebra map.

Definition 2.20. ⚙ The encodings of the point constructors given by 𝑆, or 𝑐𝑆, are defined by
composing scatter after the algebra map of the initial lawful set algebra as defined in Corollary 2.18.
Explicitly, this can be written as
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𝑐𝑆 : ∏
𝑖: Fin 𝑘

pr1𝐻𝑖[𝑇𝑆] → pr1𝑇𝑆

𝑐𝑆 :≡ scatter 𝜆𝑥 : pr1(𝐹𝑇𝑆).(

𝜆((𝐴, 𝛼), ℎ) : 𝑆– LawSetAlg0.𝛼(𝐹(𝜆𝑦 : pr1𝑇𝑆.pr1𝑦((𝐴, 𝛼), ℎ))𝑥),

𝜆(𝑓, 𝑝) : Hom𝑆–LawSetAlg0
(((𝐴, 𝛼), ℎ), ((𝐵, 𝛽), 𝑘)). happly (…𝑓)𝑥

).

The ellipsis (“…”) replaces the proof for the commutativity condition of the cone

(𝐹𝑇𝑆, 𝜆((𝐴, 𝛼), ℎ).𝛼⚬𝐹(𝜆𝑥 : pr1𝑇𝑆.pr1𝑥((𝐴, 𝛼), ℎ))

as described in Theorem 2.16.

The real novelty are the encodings for the path constructors. These are of course implemented using
the lawfulness proof.

Definition 2.21. ⚙ The encodings of the path constructors given by 𝑆, or

𝑝𝑆 : ∏𝑗: Fin 𝑛 ∏𝑥:pr1𝐴𝑗[𝑇𝑆] 𝑡𝑗  【 𝑇𝑆, cluster 𝑐𝑆, 𝑥】 =pr1𝑇𝑆
𝑟𝑗  【 𝑇𝑆, cluster 𝑐𝑆, 𝑥 】 ,

are defined as the transport of the lawfulness proof for the initial lawful set algebra from
Corollary 2.18 along the proof of cluster being a retract of scatter.

Explicitly writing down this term is not really important, as lawfulness at the set level is a mere
proposition.

Finally, a recursor is defined.

Definition 2.22. ⚙ The encoding of the recursor given by 𝑆 is

rec𝑆 : ∏
𝑋:0–Type

∏
𝑑: ∏𝑖: Fin 𝑘 𝐻𝑖[𝑋]→pr1𝑋(

(( ∏
𝑗: Fin 𝑛

∏
𝑥:pr1𝐴𝑗[𝑋]

𝑡𝑗  【 𝑋, cluster 𝑑, 𝑥】 =pr1𝑋 𝑟𝑗  【 𝑋, cluster 𝑑, 𝑥 】 
)
))

→ 𝑇𝑆 → pr1𝑋

rec𝑆 :≡ 𝜆𝑋𝑑𝑞𝑡.pr1𝑡((𝑋, cluster 𝑑), 𝑞).

As expected, the recursor is nothing but a curried version of the family of projections from the
vertex of our limiting cone. So, even if not under this name, it has already appeared over and over
in our exposition. Now, all the elements needed to state the 𝛽-rules are in place.

Proposition 2.23. ⚙ The following point constructor 𝛽-rule for
the higher inductive type induced by signature 𝑆 holds defini-
tionally, for any 𝑋 : 0– Type, 𝑥 : pr1𝐻𝑖[𝑇𝑆], (𝑑 : ∏𝑖: Fin 𝑘 pr1𝐻𝑖[𝑋] → pr1𝑋)

𝑖: Fin 𝑘
,

(𝑞 : ∏𝑗: Fin 𝑛 ∏𝑥:pr1𝐴𝑗[𝑋] 𝑡𝑗  【 𝑋, cluster 𝑑, 𝑥 】 =pr1𝑋 𝑟𝑗  【𝑋, cluster 𝑑, 𝑥】 )
𝑗: Fin 𝑛

.

rec𝑆𝑋𝑑𝑞(𝑐𝑆,𝑖𝑥) ≡ 𝑑𝑖(𝐻𝑖[[rec𝑆𝑋𝑑𝑞]]𝑥)

Proof.
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rec𝑆𝑋𝑑𝑞(𝑐𝑆,𝑖𝑥) ≡ pr1(𝑐𝑆,𝑖𝑥)((𝑋, cluster 𝑑), 𝑞) ⟨unfold rec𝑆⟩

≡ cluster 𝑑(𝐹(𝜆𝑦 : 𝑇𝑆.pr1𝑦((𝑋, cluster 𝑑), 𝑞))(in𝑖𝑥)) ⟨unfold 𝑐𝑆,𝑖⟩

≡ cluster 𝑑(in𝑖(𝐻𝑖[[𝜆𝑦 : 𝑇𝑆.pr1𝑦((𝑋, cluster 𝑑), 𝑞)]]𝑥)) ⟨𝑘-ary sums' 𝛽-rule⟩

≡ cluster 𝑑(in𝑖(𝐻𝑖[[rec𝑆𝑋𝑑𝑞]]𝑥)) ⟨fold rec𝑆⟩

≡ 𝑑𝑖(𝐻𝑖[[rec𝑆𝑋𝑑𝑞]]𝑥). ⟨fold cluster⟩

□

Because 𝑇𝑆 is a homotopy set, the corresponding rule for path constructors automatically holds
propositionally, which is usually the desired kind of equality in this case, as argued by the The
Univalent Foundations Program [27].

Remark. The following path constructor 𝛽-rule for the higher inductive type induced by
signature 𝑆 holds propositionally, for any 𝑋 : 0– Type, 𝑥 : pr1𝐴𝑗[(𝑇𝑆, ℎ)] (ℎ being proof of 𝑇𝑆

being a homotopy set as constructed in Definition 2.11), (𝑑 : ∏𝑖: Fin 𝑘 pr1𝐻𝑖[𝑋] → pr1𝑋)
𝑖: Fin 𝑘

,
(𝑞 : ∏𝑗: Fin 𝑛 ∏𝑥:pr1𝐴𝑗[𝑋] 𝑡𝑗  【 𝑋, cluster 𝑑, 𝑥 】 =pr1𝑋 𝑟𝑗  【𝑋, cluster 𝑑, 𝑥】 )

𝑗: Fin 𝑛
.

aprec𝑆𝑋𝑑𝑞(𝑝𝑆,𝑗𝑥) =pr1𝑋 𝑞𝑗(𝐴𝑗[[rec𝑆𝑋𝑑𝑞]]𝑥)

As for the 𝜂-rule, we use its instance corresponding to the identity function on our higher inductive
type as a lemma which we will later invoke to prove the full-fledged rule.

Lemma 2.24. ⚙ The following weak 𝜂-rule for the higher inductive type induced by signature 𝑆
holds propositionally.

rec𝑆𝑇𝑆𝑐𝑆𝑝 =pr1𝑇𝑆→pr1𝑇𝑆
idpr1𝑇𝑆

Proof. By function extensionality. When building the desired homotopy between the two sides of the
equality, we destruct the input as (𝜙, 𝜑) via Σ-induction. However, since naturality is a proposition
at the set level, we just need to check

pr1(rec𝑆𝑇𝑆𝑐𝑆𝑝(𝜙, 𝜑)) =∏((𝐴,𝛼),ℎ):𝑆–LawSetAlg 𝐴 𝜙

for any 𝜑. We now use function extensionality (and Σ-induction) again, fixing ((𝐵, 𝛽), ℎ) :
𝑆– LawSetAlg and proving

pr1(rec𝑆𝑇𝑆𝑐𝑆𝑝(𝜙, 𝜑))((𝐵, 𝛽), ℎ) =pr1𝐵 𝜙((𝐵, 𝛽), ℎ)

Recall from the construction of the projections in Theorem 2.16 that 𝜆𝑥 :
𝑇𝑆.pr1𝑥((𝐵, cluster (scatter 𝛽)), ℎ′) ≡ rec𝑆𝐵(scatter 𝛽)ℎ′ (where ℎ′ is ℎ transported appropriately)
is an 𝐹 -algebra morphism. So by 𝜑 we have:
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pr1(rec𝑆𝑇𝑆𝑐𝑆𝑝𝑆(𝜙, 𝜑))((𝐵, 𝛽), ℎ) =pr1𝐵 pr1(rec𝑆𝑇𝑆𝑐𝑆𝑝𝑆(𝜙, 𝜑))((𝐵, cluster (scatter 𝛽)), ℎ′)

≡ pr1(𝜙((𝑇𝑆, cluster 𝑐𝑆), 𝑝𝑆))((𝐵, cluster (scatter 𝛽)), ℎ′)

=pr1𝐵 pr1(𝜙((𝑇𝑆, cluster 𝑐𝑆), 𝑝𝑆))((𝐵, cluster (scatter 𝛽)), ℎ′)

=pr1𝐵 pr1(𝜙𝐼)((𝐵, cluster (scatter 𝛽)), ℎ′)

=pr1𝐵 pr1(𝜙𝐼)(𝐵, 𝛽), ℎ)

=pr1𝐵 𝜙((𝐵, 𝛽), ℎ) ⟨𝜑⟩

where 𝐼 is the initial lawful set algebra. □

Generalising to an arbitrary (non-dependent) function from id𝑇𝑆
 is now very easy. Note how the

premise can be read as stating that 𝑓 behaves like an algebra morphism from our initial lawful set
algebra to (𝑋, cluster 𝑑). Indeed, this premise shall motivate our use of naturality.

Proposition 2.25. ⚙ The following 𝜂-rule for the higher inductive type induced by signature 𝑆
holds propositionally, for any 𝑋 : 0– Type, 𝑓 : pr1𝑇𝑆 → pr1𝑋, (𝑑 : ∏𝑖: Fin 𝑘 pr1𝐻𝑖[𝑋] → pr1𝑋)

𝑖: Fin 𝑘
,

(𝑞 : ∏𝑗: Fin 𝑛 ∏𝑥:pr1𝐴𝑗[𝑋] 𝑡𝑗  【 𝑋, cluster 𝑑, 𝑥 】 =pr1𝑋 𝑟𝑗  【𝑋, cluster 𝑑, 𝑥】 )
𝑗: Fin 𝑛

.

(𝑓⚬ cluster 𝑐𝑆 =pr1𝐹[𝑇𝑆]→pr1𝑋 cluster 𝑑⚬𝐹𝑓) → rec𝑆𝑋𝑑𝑞 =pr1𝑇𝑆→pr1𝑋 𝑓.

Proof. By function extensionality. Let 𝑥 : pr1𝑇𝑆. We have:

rec𝑆𝑋𝑑𝑞𝑥 ≡ pr1𝑥((𝑋, cluster 𝑑), 𝑞) ⟨unfold rec𝑆⟩

=pr1𝑋 𝑓(pr1𝑥((𝑇𝑆, cluster 𝑐𝑆), 𝑝𝑆)) ⟨pr1𝑥 is natural⟩

≡ 𝑓(rec𝑆𝑇𝑆𝑐𝑆𝑝𝑆𝑥) ⟨fold rec𝑆⟩

=pr1𝑋 𝑓𝑥. ⟨Lemma 2.24⟩

□

As shown by S. Awodey, N. Gambino, and K. Sojakova [5], [6], this result is enough to derive the
desired dependent eliminator.
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Chapter 3

General Higher Inductive Types
In this chapter, inspired by the work of X. Ripoll Echeveste [21], we assume the existence of

a natural numbers type ℕ within our type system with the aim of dropping the homotopy level
restrictions. This time around, we work with 𝒲-suspensions by K. Sojakova [24]. Much like we have
been doing insofar, we leave the word “homotopy” implicit when talking about homotopy initiality:
this is because we will not need any other notion of initiality.

In Section 3.1, we develop the path algebra constructions needed for our work. Then, in
Section 3.2, we recall the initial semantics for 𝒲-suspensions. Section 3.3 shows how the naïve
encoding can be refined to recover the same naturality property described in the previous chapter.
Because we are not working with homotopy sets alone, naturality is not enough to obtain initiality
any more. Hence, we reiterate our refinement in Section 3.4 and conclude showing initiality in
Section 3.5.

3.1 Path Algebra Tools
In this chapter, all path algebra notation which is not explicitly introduced is borrowed from The
Univalent Foundations Program [27]. Our path composition operator ( ▪ ) will be right-associative,
but we will sometimes still use unnecessary parenthesis to help the reader. The functoriality of
the action of a map on a path is left as an exercise for the reader in the HoTT book. We “solve”
such exercise by providing explicit proof terms for it, so that we can use the induced definitional
computation rules (without even stating the most obvious).

Lemma 3.1. (Lemma 2.2.2 from The Univalent Foundations Program [27].) For functions 𝑓 : 𝐴 →
𝐵 and 𝑔 : 𝐵 → 𝐶 and paths 𝑝 : 𝑥 =𝐴 𝑦 and 𝑞 : 𝑦 =𝐴 𝑧, we have:

1. ap-trans 𝑓𝑝𝑞 : ap𝑓(𝑝 ▪ 𝑞) = ap𝑓𝑝 ▪ ap𝑓𝑞;
2. ap-inv 𝑓𝑝 : ap𝑓𝑝−1 = (ap𝑓𝑝)−1;
3. ap-comp 𝑔𝑓𝑝 : ap𝑔(ap𝑓𝑝) = ap𝑔⚬𝑓𝑝;
4. ap-id 𝑝 : apid𝐴

𝑝 = 𝑝.

Proof.
1. By based path induction on 𝑝 and 𝑞. We set ap-trans 𝑓refl𝑦refl𝑦 :≡ reflrefl𝑓𝑦

;
2. by path induction on 𝑝. We set ap-inv 𝑓refl𝑥 :≡ reflrefl𝑓𝑥

;
3. by path induction on 𝑝. We set ap-comp 𝑓refl𝑥 :≡ reflrefl𝑔(𝑓𝑥)

;
4. by path induction on 𝑝. We set ap-id refl𝑥 :≡ reflrefl𝑥 .

□

Similarly, we will also regularly invoke the following transport lemmas. In order to use these results
within proof terms, we choose names for them.
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Lemma 3.2. (Lemma 2.3.9 from The Univalent Foundations Program [27].) Given 𝑃 : 𝐴 → 𝒰0 with
𝑝 : 𝑥 =𝐴 𝑦 and 𝑞 : 𝑦 =𝐴 𝑧 while 𝑢 : 𝑃𝑥, we have

tr-trans 𝑞𝑝𝑢 : 𝑞∗(𝑝∗𝑢) =𝑃𝑧 (𝑝 ▪ 𝑞)∗𝑢.

Lemma 3.3. (Lemma 2.3.10 from The Univalent Foundations Program [27].) For a function 𝑓 :
𝐴 → 𝐵 and a type family 𝑃 : 𝐵 → 𝒰0, and any 𝑝 : 𝑥 =𝐴 𝑦 and 𝑢 : 𝑃 (𝑓𝑥), we have

tr-comp 𝑓𝑝𝑢 : transport𝑃⚬𝑓𝑝𝑢 =𝑃(𝑓𝑦) transport𝑃 (ap𝑓𝑝)𝑢.

Lemma 3.4. (Lemma 2.3.11 from The Univalent Foundations Program [27].) For 𝑃 , 𝑄 : 𝐴 → 𝒰0

and a family of functions 𝑓 : ∏𝑥:𝐴 𝑃𝑥 → 𝑄𝑥, and any 𝑝 : 𝑥 =𝐴 𝑦 and 𝑢 : 𝑃𝑥, we have

tr-fun 𝑓𝑝𝑢 : transport𝑄𝑝(𝑓𝑥𝑢) =𝑄𝑦 𝑓𝑦(transport𝑃 𝑝𝑢).

The next properties, on the other hand, are new. We define them for convenience.

Lemma 3.5. For parallel functions 𝑓, 𝑔 : 𝐴 → 𝐵, a homotopy ℎ : 𝑓 ∼ 𝑔 between them, function 𝑒 :
𝑍 → 𝐴, and consecutive paths 𝑝 : 𝑢 =𝐴 𝑣, 𝑞 : 𝑣 =𝐴 𝑤, 𝑟 : 𝑤 =𝐴 𝑥, 𝑠 : 𝑥 =𝐴 𝑦, 𝑡 : 𝑦 =𝐴 𝑧, we have:

1. surr-refl 𝑝 : refl𝑢 ▪ 𝑝 ▪ refl𝑣 = 𝑝;
2. ap-trans3 𝑓𝑝𝑞𝑟 : ap𝑓(𝑝 ▪ 𝑞 ▪ 𝑟) = ap𝑓𝑝 ▪ ap𝑓𝑞 ▪ ap𝑓𝑟;
3. assoc5 𝑝𝑞𝑟𝑠𝑡 : 𝑝 ▪ (𝑞 ▪ 𝑟 ▪ 𝑠) ▪ 𝑡 = (𝑝 ▪ 𝑞) ▪ 𝑟 ▪ (𝑠 ▪ 𝑡);
4. inv-trans 𝑝𝑞 : (𝑝 ▪ 𝑞)−1 = 𝑞−1 ▪ 𝑝−1;
5. ap-funext 𝑥ℎ : ap(−)𝑥(funext ℎ) = ℎ𝑥;

Proof.
1. By lemma 2.1.4 of the HoTT book, we have: refl𝑢 ▪ 𝑝 ▪ refl𝑣 = 𝑝 ▪ refl𝑣 = 𝑝. Because lemma is

defined using path induction, we get surr-refl refl𝑥 ≡ reflrefl𝑥 ;
2. by based path induction on 𝑝 and 𝑟, we just need to define ap-trans3 𝑓refl𝑣 𝑞 refl𝑤. We use

transitivity.

ap𝑓(refl𝑣 ▪ 𝑞 ▪ refl𝑤) = ap𝑓𝑞 ⟨ap𝑓(surr-refl 𝑞)⟩

= refl𝑓𝑣 ▪ ap𝑓𝑞 ▪ refl𝑓𝑤 ⟨(surr-refl (ap𝑓𝑞))−1⟩

We get the computation rule ap-trans3 𝑓 refl𝑥refl𝑥refl𝑥 ≡ reflrefl𝑓𝑥
.

3. by based path induction on 𝑝 and 𝑡, we just need to define assoc5 𝑓 refl𝑣 𝑞 𝑟 𝑠 refl𝑦. We again use
transitivity.

refl𝑣 ▪ (𝑞 ▪ 𝑟 ▪ 𝑠) ▪ refl𝑦 = 𝑞 ▪ 𝑟 ▪ 𝑠 ⟨surr-refl (𝑞 ▪ 𝑟 ▪ 𝑠)⟩

= (refl𝑣 ▪ 𝑞) ▪ 𝑟 ▪ 𝑠 ⟨ap(−) ▪ 𝑟 ▪ 𝑠  on HoTT 2.1.4⟩

= (refl𝑣 ▪ 𝑞) ▪ 𝑟 ▪ (𝑠 ▪ refl𝑦) ⟨ap(refl𝑣 ▪ 𝑞) ▪ 𝑟 ▪ (−)  on HoTT 2.1.4⟩

The computation rules of each rewrite step ensure assoc5 𝑓 refl𝑥refl𝑥refl𝑥refl𝑥refl𝑥 ≡ reflrefl𝑥 .
4. by based path induction on 𝑝 and 𝑞. We set inv-trans refl𝑣refl𝑣 :≡ reflrefl𝑣 ;
5. Recall that happly = 𝜆𝑝, 𝑥.ap(−)𝑥𝑝 ([21], lemma 3.11). So the statement is just an alternative

form of propositional computation rule for identity types between functions.

□

These lemmas will work as a toolbox for the hairy path algebra lying ahead.

21



3.2 W-Suspension Algebras
For the rest of this chapter, we work with fixed 𝒲-suspension signature 𝒮 :≡ (𝐴, 𝐵, 𝐶, 𝑙, 𝑟). Our
starting point are the initial semantics for 𝒲-suspensions. We refer to them as “𝒲-suspension
algebras” to remark the difference from the lawful algebras we dealt with in the previous chapter.

Definition 3.6. A 𝒲-suspension algebra over 𝒲-suspension signature 𝒮 and on universe 𝒰𝑗 is a
triple consisting of:
• a carrier 𝐷 : 𝑈𝑗;
• a point algebra map 𝑑 : ∏𝑎:𝐴(𝐵𝑎 → 𝐷) → 𝐷;
• a path algebra map 𝑝 : ∏𝑐:𝐶 ∏𝑢:𝐵(𝑙𝑐)→𝐷 ∏𝑣:𝐵(𝑟𝑐)→𝐷(𝑑(𝑙𝑐)𝑢 =𝐷 𝑑(𝑟𝑐)𝑣).

We use 𝒮– WSusAlgebra𝒰𝑗
 to denote the type of 𝒲-suspension algebras over 𝒮 and on 𝒰𝑗.

These algebras come with their own notion of homomorphism.

Definition 3.7. A 𝒲-suspension algebra homomorphism between two 𝒲-suspension algebras
(𝐷, 𝑑, 𝑝) and (𝐸, 𝑒, 𝑞) over signature 𝒮 and on universe 𝒰𝑗 is a triple (𝑓, 𝛽, 𝜃) where:
• 𝑓 : 𝐷 → 𝐸;
• 𝛽 : ∏𝑎:𝐴 ∏𝑡:𝐵𝑎→𝐷(𝑓(𝑑𝑎𝑡) =𝐸 𝑒𝑎(𝑓⚬𝑡))
• 𝜃 : ∏𝑐:𝐶 ∏𝑡:𝐵(𝑙𝑐)→𝐷 ∏𝑠:𝐵(𝑟𝑐)→𝐷(ap𝑓(𝑝𝑐𝑡𝑠) = 𝛽(𝑙𝑐)𝑡 ▪ 𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠) ▪ (𝛽(𝑟𝑐)𝑠)−1).

We use 𝒮– WSusAlgHomomorphism𝒰𝑗
(𝐷, 𝑑, 𝑝)(𝐸, 𝑒, 𝑞) to denote the type of 𝒲-suspension algebras

homomorphisms between (𝐷, 𝑑, 𝑝) and (𝐸, 𝑒, 𝑞).

In the definition above, 𝛽 is the usual witness for algebra homomorphisms. Fixed 𝑎 : 𝐴, we can see
𝛽𝑎 as a commutativity proof for the following diagram.

↑

𝑑

↑

𝑒

↑𝑓⚬(−)

↑𝑓

⇑𝛽𝑎

𝐷𝐵𝑎 𝐸𝐵𝑎

𝐷 𝐸

Similarly, 𝜃 ensures the structure given by the path algebra map is also preserved.

ap𝑓(𝑝𝑐𝑡𝑠)

𝛽(𝑟𝑐)𝑠

𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠)

𝛽(𝑙𝑐)𝑡

𝑓(𝑑(𝑙𝑐)𝑡) 𝑓(𝑑(𝑟𝑐)𝑠)

𝑒(𝑟𝑐)(𝑓⚬𝑠)𝑒(𝑙𝑐)(𝑓⚬𝑡)

As per usual, algebras in initial semantics model recursive definitions. Similarly, an inductive
construction/proof is represented using fibered algebras.
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Definition 3.8. Let (𝐷, 𝑑, 𝑝) be a 𝒲-suspension algebra over 𝒲-suspension signature 𝒮 on universe
𝒰𝑗. A fibered 𝒲-suspension algebra over (𝐷, 𝑑, 𝑝) is a triple consisting of:
• a fibered carrier 𝐸 : 𝐷 → 𝑈𝑗;
• a fibered point algebra map 𝑒 : ∏𝑎:𝐴 ∏𝑡:𝐵𝑎→𝐷(∏𝑏:𝐵𝑎 𝐸(𝑡𝑏)) → 𝐸(𝑑𝑎𝑡);
• a fibered path algebra map

𝑞 : ∏𝑐:𝐶 ∏𝑡:𝐵(𝑙𝑐)→𝐷 ∏𝑠:𝐵(𝑟𝑐)→𝐷 ∏𝑢: ∏𝑏:𝐵(𝑙𝑐) 𝐸(𝑡𝑏) ∏𝑣: ∏𝑏:𝐵(𝑟𝑐) 𝐸(𝑠𝑏)(transport𝐸(𝑝𝑐𝑡𝑠)(𝑒(𝑙𝑐)𝑡𝑢) =𝐸(𝑑(𝑟𝑐)𝑠)𝑒(𝑟𝑐)𝑠𝑣.

We use 𝒮– FibWSusAlgebra(𝐷,𝑑,𝑝)
𝒰𝑗

 to denote the type of fibered 𝒲-suspension algebras over 𝒮 and
on 𝒰𝑗.

The corresponding notion of homomorphism is the following.

Definition 3.9. A fibered 𝒲-suspension algebra homomorphism from 𝒲-suspension algebra (𝐷, 𝑑, 𝑝)
over 𝒮 and on 𝒰𝑗 to fibered 𝒲-suspension algebra (𝐸, 𝑒, 𝑞) over (𝐷, 𝑑, 𝑝) is a triple (𝑓, 𝛽, 𝜃) where:
• 𝑓 : ∏𝑥:𝐷 𝐸;
• 𝛽 : ∏𝑎:𝐴 ∏𝑡:𝐵𝑎→𝐷(𝑓(𝑑𝑎𝑡) =𝐸 𝑒𝑎(𝑓⚬𝑡))
• 𝜃 :

∏𝑐:𝐶 ∏𝑡:𝐵(𝑙𝑐)→𝐷 ∏𝑠:𝐵(𝑟𝑐)→𝐷(apd𝑓(𝑝𝑐𝑡𝑠) = aptransport𝐸(𝑝𝑐𝑡𝑠)(𝛽(𝑙𝑐)𝑡) ▪ 𝑞𝑐𝑡𝑠(𝑓⚬𝑡)(𝑓⚬𝑠) ▪ (𝛽(𝑟𝑐)𝑠)−1).

We use 𝒮– WSusAlgHomomorphism𝒰𝑗
(𝐷, 𝑑, 𝑝)(𝐸, 𝑒, 𝑞) to denote the type of 𝒲-suspension algebras

homomorphisms between (𝐷, 𝑑, 𝑝) and (𝐸, 𝑒, 𝑞).

The diagram for 𝛽 is unchanged, while the one for 𝜃 is slightly modified.

apd𝑓(𝑝𝑐𝑡𝑠)

𝛽(𝑟𝑐)𝑠

𝑞𝑐𝑡𝑠(𝑓⚬𝑡)(𝑓⚬𝑠)

aptransport𝐸(𝑝𝑐𝑡𝑠)𝛽(𝑙𝑐)𝑡

transport𝐸(𝑝𝑐𝑡𝑠)(𝑓(𝑑(𝑙𝑐)𝑡)) 𝑓(𝑑(𝑟𝑐)𝑠)

𝑒(𝑟𝑐)𝑠(𝑓⚬𝑠)transport𝐸(𝑝𝑐𝑡𝑠)(𝑒(𝑙𝑐)𝑡(𝑓⚬𝑡))

If we fix a universe 𝒰𝑗 to work in, homotopy initiality in 𝒰𝑗 is equivalent to satisfying the
induction principle for 𝒲-suspensions, as shown by K. Sojakova [24]6.

Theorem 3.10. Let 𝒳 be a 𝒲-suspension algebra on some universe 𝒰𝑗. Then

∏
𝒴:𝒮–FibWSusAlgebra𝒰𝑗

𝒮– FibWSusAlgHomomorphism𝒰𝑗
𝒳𝒴

(which is to say, the induction principle for 𝒳) is type-theoretically equivalent to “𝒳 is homotopy
initial among 𝒲-suspension algebras”.

6This result was originally used to identify a universal property characterising a propositional variant of 𝒲-
suspensions. We, on the other hand, are encoding “proper” 𝒲-suspensions, and will only use this equivalence to ensure
the 𝜂-principle holds for said encodings.
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As anticipated, we will leave “homotopy” implicit when talking about (weak) initiality. Next, we
give the type of our (non-fibered) algebras the structure of a wild category.

Theorem 3.11. 𝒲-suspension algebras on some universe 𝒰𝑗 and the 𝒲-suspension algebra homo-
morphisms between them form a wild category, 𝒮– WSusAlg𝒰𝑗

.

Proof. We start by defining the identity morphism.
1(𝐷,𝑑,𝑝) :≡ (id𝐷,

𝜆𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝐷.refl𝑑𝑎𝑡,

𝜆𝑐 : 𝐶, 𝑡 : 𝐵(𝑙𝑐) → 𝐷, 𝑠 : 𝐵(𝑟𝑐) → 𝐷. ap-id (𝑝𝑐𝑡𝑠) ▪ (surr-refl (𝑝𝑐𝑡𝑠))−1)

Pictorially, the third component would be

apid𝐷
(𝑝𝑐𝑡𝑠) ⸻ap-id (𝑝𝑐𝑡𝑠)

𝑝𝑐𝑡𝑠 ⸻(surr-refl (𝑝𝑐𝑡𝑠))−1

refl𝑑(𝑙𝑐)𝑡 ▪ 𝑝𝑐𝑡𝑠 ▪ refl𝑑(𝑟𝑐)𝑠

Morphism composition is more complex. Given

(𝐷, 𝑑, 𝑝) ⟶
𝑓,𝛽,𝜃

(𝐸, 𝑒, 𝑞) ⟶
𝑔,𝛾,𝜄

(𝐻, ℎ, 𝑜)

we define
(𝑔, 𝛾, 𝜄)⚬(𝑓, 𝛽, 𝜃) :≡ (𝑔⚬𝑓,

𝜆𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝐷.ap𝑔(𝛽𝑎𝑡) ▪ 𝛾𝑎(𝑓⚬𝑡),

…)

The second component arises from the following diagram.

↑

𝑑

↑𝑓⚬(−) ↑𝑔⚬(−)

↑

𝑒

↑

ℎ

↑𝑓 ↑𝑔

𝐷𝐵𝑎

𝐷

𝐸𝐵𝑎

𝐸

𝐻𝐵𝑎

𝐻

𝛽𝑎 𝛾𝑎

We present the third component of the composition as the following chain of equalities

ap𝑔⚬𝑓(𝑝𝑐𝑡𝑠) = ⟨(ap-comp 𝑔𝑓(𝑝𝑐𝑡𝑠))−1⟩

ap𝑔(ap𝑓(𝑝𝑐𝑡𝑠)) = ⟨apap𝑔
(𝜃𝑐𝑡𝑠)⟩

ap𝑔(𝛽(𝑙𝑐)𝑡 ▪ 𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠) ▪ (𝛽(𝑟𝑐)𝑠)−1) = ⟨ap-trans3 𝑔(𝛽(𝑙𝑐)𝑡)(𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠))(𝛽(𝑟𝑐)𝑠)−1⟩

ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ ap𝑔(𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠)) ▪ ap𝑔(𝛽(𝑟𝑐)𝑠)−1 = ⟨apap𝑔(𝛽(𝑙𝑐)𝑡) ▪ (−) ▪ ap𝑔(𝛽(𝑟𝑐)𝑠)−1(𝜄𝑐(𝑓⚬𝑡)(𝑓⚬𝑠))⟩

ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ (𝛾(𝑙𝑐)(𝑓⚬𝑡)⚬𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠)⚬(𝛾(𝑟𝑐)(𝑓⚬𝑠))−1) ▪ ap𝑔(𝛽(𝑟𝑐)𝑠)−1 = ⟨help (𝑓, 𝛽)(𝑔, 𝛾)𝑡𝑠⟩

(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ 𝛾(𝑙𝑐)(𝑓⚬𝑡))⚬𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠)⚬(ap𝑔(𝛽(𝑟𝑐)𝑠) ▪ 𝛾(𝑟𝑐)(𝑓⚬𝑠))−1,

where
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help (𝑓, 𝛽)(𝑔, 𝛾)𝑡𝑠 :≡ assoc5 (ap𝑔(𝛽(𝑙𝑐)𝑡))(𝛾(𝑙𝑐)(𝑓⚬𝑡))(𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠))(𝛾(𝑟𝑐)(𝑓⚬𝑠))−1(ap𝑔(𝛽(𝑟𝑐)𝑠)−1)

▪ ap(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ 𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ (𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠)) ▪ ((𝛾(𝑟𝑐)(𝑓⚬𝑠))−1 ▪ (−))(ap-inv 𝑔(𝛽(𝑟𝑐)𝑠))

▪ ap(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ 𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ (𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠)) ▪ (−)(inv-trans (ap𝑔(𝛽(𝑟𝑐)𝑠))(𝛾(𝑟𝑐)(𝑓⚬𝑠)))−1.

This concludes the constructions of the identity and composition operations. We will sometimes use
(𝛾⚬𝛽) or (𝜄⚬𝜃) to refer to the second and third component of (𝑔, 𝛾, 𝜄)⚬(𝑓, 𝛽, 𝜃) respectively, when the
rest of the data is clear from the context. We now prove the axioms of a (non-univalent) category,
starting from left unitality, i.e. 1(𝐸,𝑒,𝑞)⚬(𝑓, 𝛽, 𝜃) = (𝑓, 𝛽, 𝜃) for any (𝑓, 𝛽, 𝜃) : (𝐷, 𝑑, 𝑝) → (𝐸, 𝑒, 𝑞). We
do this componentwise, using pair= twice. Since id𝐸⚬𝑓 ≡ 𝑓 , we can ignore transport when comparing
the second components. We show they are equal by applying function extensionality twice and
introducing 𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝐷. We get

apid𝐸
(𝛽𝑎𝑡) ▪ refl𝑒𝑎(𝑓⚬𝑡) ⸻

reflR (apid𝐸𝛽𝑎𝑡)
apid𝐸

(𝛽𝑎𝑡) ⸻ap-id (𝛽𝑎𝑡)
𝛽𝑎𝑡

where reflR witnesses unitality of refl on the right. To compare the third components, we need to
transfer along this proof obtained by double function extensionality. We use function extensionality
three times, fixing 𝑐 : 𝐶, 𝑡 : 𝐵(𝑙𝑐) → 𝐷, 𝑠 : 𝐵(𝑟𝑐) → 𝐷. We can use tr-fun ((−)𝑐𝑡𝑠) to bring 𝑐, 𝑡, and
𝑠 inside the transport, and theorem 2.11.3 from the HoTT book to get rid of the latter. Unfolding
our definition of composition (help included) we get a sequence of 11 paths that we need to show to
be equal to 𝜃𝑐𝑡𝑠. The first is equal to reflap𝑓(𝑝𝑐𝑡𝑠), because it is the action of a constant function on a
path. The last 6 can also be shown to be equal to reflexivity. This is done by generalising 𝛽(𝑙𝑐)𝑡 and
𝛽(𝑟𝑐)𝑠 to arbitrary based paths, and then performing based paths induction on the latter. All the
remaining paths can be rewritten as ap𝑥(funext ap − id) for some 𝑥 (with the help of ap-funext), or
the inverse of something in this form, so by using theorem 2.11.3 again (twice), we get to

(funext ap-id)∗((funext ap-id)−1
∗ (𝜃𝑐𝑡𝑠))

which simplifies to the desired result. We now move to right unitality, by showing (𝑓, 𝛽, 𝜃)⚬1(𝐷,𝑑,𝑝) =
(𝑓, 𝛽, 𝜃). Again, we do this componentwise, using pair= twice. Since 𝑓⚬id𝐷 ≡ 𝑓 , we ignore transport
when comparing the second components. We apply function extensionality twice introducing 𝑎 :
𝐴, 𝑡 : 𝐵𝑎 → 𝐷. We get

ap𝑓(refl𝑑𝑎𝑡) ▪ 𝛽𝑎𝑡 ≡ refl𝑓(𝑑𝑎𝑡) ▪ 𝛽𝑎𝑡 ⸻reflL (𝛽𝑎𝑡)
𝛽𝑎𝑡

where reflL witnesses unitality of refl on the left. To compare the third components, we need to
transfer along this proof obtained by double function extensionality. We use function extensionality
three times, fixing 𝑐 : 𝐶, 𝑡 : 𝐵(𝑙𝑐) → 𝐷, 𝑠 : 𝐵(𝑟𝑐) → 𝐷. Again, we use tr-fun ((−)𝑐𝑡𝑠) to bring 𝑐, 𝑡,
and 𝑠 inside the transport, and theorem 2.11.3 of the HoTT book to get rid of said transport. This
time, we unfold our definitions of morphism composition, help, ap-trans3, and assoc5. Much like
before, the first path of the resulting sequence is equal to reflexivity, since it is the action of a
constant function on a path. After that, all the paths up to halwfay through the unfolded definition
of ap-trans3 form a loop on ap𝑓(𝑝𝑐𝑡𝑠). This can also be easily shown to be equal to reflexivity.
Similarly, the end of the chain is also a loop on 𝛽(𝑙𝑐)𝑡 ▪ 𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠) ▪ (𝛽(𝑟𝑐)𝑠)−1. It is again shown
to be equal to reflexivity by generalising 𝛽(𝑙𝑐)𝑡 and (𝛽(𝑟𝑐)𝑠)−1 to generic based paths and then

25



performing double based path induction on both. What’s left of the original chain is propositionally
equal to

(funext surr-refl)∗((funext surr-refl)−1
∗ (𝜃𝑐𝑡𝑠))

and this is just 𝜃𝑐𝑡𝑠 as desired. Only associativity is now left to prove. We consider a sequence of
morphisms like the following

(𝐷, 𝑑, 𝑝) ⟶
(𝑓,𝛽,𝜃)

(𝐸, 𝑒, 𝑞) ⟶
(𝑔,𝛾,𝜄)

(𝐼, 𝑖, 𝑜) ⟶
(ℎ,𝜆,𝜅)

(𝐽, 𝑗, 𝑛)

and prove

(ℎ, 𝜆, 𝜅)⚬((𝑔, 𝛾, 𝜄)⚬(𝑓, 𝛽, 𝜃)) = ((ℎ, 𝜆, 𝜅)⚬(𝑔, 𝛾, 𝜄))⚬(𝑓, 𝛽, 𝜃).

We need to use pair= twice again to compare the two morphisms componentwise. The equality
between the first components holds definitionally, so we ignore transport when comparing the second
ones. By function extensionality, let 𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝐷.

apℎ(ap𝑔(𝛽𝑎𝑡)⚬𝛾𝑎𝑡)⚬𝜆𝑎𝑡 = (apℎ(ap𝑔(𝛽𝑎𝑡))⚬apℎ(𝛾𝑎𝑡))⚬𝜆𝑎𝑡 ⟨ap(−)⚬𝜆𝑎𝑡(ap-trans ℎ(ap𝑔(𝛽𝑎𝑡))(𝛾𝑎𝑡))⟩

= (apℎ⚬𝑔(𝛽𝑎𝑡)⚬apℎ(𝛾𝑎𝑡))⚬𝜆𝑎𝑡 ⟨ap((−)⚬apℎ(𝛾𝑎𝑡))⚬𝜆𝑎𝑡(ap-comp ℎ𝑔(𝛽𝑎𝑡))⟩

= apℎ⚬𝑔(𝛽𝑎𝑡)⚬(apℎ(𝛾𝑎𝑡)⚬𝜆𝑎𝑡) ⟨trans-assoc (apℎ⚬𝑔(𝛽𝑎𝑡))(apℎ(𝛾𝑎𝑡))(𝜆𝑎𝑡)⟩

Above, trans-assoc is just associativity of paths composition. The only remaining equality check to
do is the one between the third components, and we need transport along the proof just shown to
make this typecheck. As per usual, we employ function extensionality to fix 𝑐 : 𝐶, 𝑡 : 𝐵(𝑙𝑐) → 𝐷, 𝑠 :
𝐵(𝑟𝑐) → 𝐷. Then, we take advantage of tr-fun ((−)𝑐𝑡𝑠) to bring these three variables inside the
transport, which can then be rewritten using theorem 2.11.3. By using ap-funext, we can cancel
out the resulting ap operator and the funext from the original equality proof between the second
components. The resulting is the following diagram. The top and bottom side are the result of
eliminating transport using theorem 2.11.3 from the HoTT book. The left (right) side is obtained
by unfolding the left (right) side of the equation. Our goal is hence commutativity for the outer
perimeter. This is shown by breaking it down in much smaller polygons, each of which commutes.
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↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

↑

apℎ⚬𝑔⚬𝑓(𝑝𝑐𝑡𝑠)

apℎ⚬𝑔(ap𝑓(𝑝𝑐𝑡𝑠))

apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡 ▪ 𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠) ▪ (𝛽(𝑟𝑐)𝑠)−1)

apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡) ▪ apℎ⚬𝑔(𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠)) ▪ apℎ⚬𝑔(𝛽(𝑟𝑐)𝑠)−1

apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡) ▪ apℎ(ap𝑔(𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠))) ▪ apℎ⚬𝑔(𝛽(𝑟𝑐)𝑠)−1

apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡) ▪ apℎ(𝛾(𝑙𝑐)(𝑓⚬𝑡) ▪ 𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠) ▪ (𝛾(𝑟𝑐)(𝑓⚬𝑠))−1) ▪ apℎ⚬𝑔(𝛽(𝑟𝑐)𝑠)−1

apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡) ▪ (apℎ(𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ apℎ(𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠)) ▪ apℎ(𝛾(𝑟𝑐)(𝑓⚬𝑠))−1) ▪ apℎ⚬𝑔(𝛽(𝑟𝑐)𝑠)−1

apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡) ▪ (apℎ(𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ (𝜆(𝑙𝑐)(𝑔⚬𝑓⚬𝑡) ▪ 𝑛𝑐(ℎ⚬𝑔⚬𝑓⚬𝑡)(ℎ⚬𝑔⚬𝑓⚬𝑠) ▪ (𝜆(𝑟𝑐)(𝑔⚬𝑓⚬𝑠))−1) ▪ apℎ(𝛾(𝑟𝑐)(𝑓⚬𝑠))−1) ▪ apℎ⚬𝑔(𝛽(𝑟𝑐)𝑠)−1

apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡) ▪ ((apℎ(𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ 𝜆(𝑙𝑐)(𝑔⚬𝑓⚬𝑡)) ▪ 𝑛𝑐(ℎ⚬𝑔⚬𝑓⚬𝑡)(ℎ⚬𝑔⚬𝑓⚬𝑠) ▪ (apℎ(𝛾(𝑟𝑐)(𝑓⚬𝑠)) ▪ 𝜆(𝑟𝑐)(𝑔⚬𝑓⚬𝑠))−1) ▪ apℎ⚬𝑔(𝛽(𝑟𝑐)𝑠)−1

(apℎ⚬𝑔(𝛽(𝑙𝑐)𝑡) ▪ (apℎ(𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ 𝜆(𝑙𝑐)(𝑔⚬𝑓⚬𝑡))) ▪ 𝑛𝑐(ℎ⚬𝑔⚬𝑓⚬𝑡)(ℎ⚬𝑔⚬𝑓⚬𝑠) ▪ (apℎ⚬𝑔(𝛽(𝑟𝑐)𝑠) ▪ (apℎ(𝛾(𝑟𝑐)(𝑓⚬𝑠)) ▪ 𝜆(𝑟𝑐)(𝑔⚬𝑓⚬𝑠)))−1

apℎ⚬𝑔⚬𝑓(𝑝𝑐𝑡𝑠)

apℎ(ap𝑔⚬𝑓(𝑝𝑐𝑡𝑠))

apℎ(ap𝑔(ap𝑓(𝑝𝑐𝑡𝑠)))

apℎ(ap𝑔(𝛽(𝑙𝑐)𝑡 ▪ 𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠) ▪ (𝛽(𝑟𝑐)𝑠)−1))

apℎ(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ ap𝑔(𝑞𝑐(𝑓⚬𝑡)(𝑓⚬𝑠)) ▪ ap𝑔(𝛽(𝑟𝑐)𝑠)−1)

apℎ(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ (𝛾(𝑙𝑐)(𝑓⚬𝑡) ▪ 𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠) ▪ (𝛾(𝑟𝑐)(𝑓⚬𝑠))−1) ▪ ap𝑔(𝛽(𝑟𝑐)𝑠)−1)

apℎ((ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ 𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ 𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠) ▪ (ap𝑔(𝛽(𝑟𝑐)𝑠) ▪ (𝛾(𝑟𝑐)(𝑓⚬𝑠)))−1)

apℎ(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ 𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ apℎ(𝑜𝑐(𝑔⚬𝑓⚬𝑡)(𝑔⚬𝑓⚬𝑠)) ▪ apℎ(ap𝑔(𝛽(𝑟𝑐)𝑠) ▪ (𝛾(𝑟𝑐)(𝑓⚬𝑠)))−1

apℎ(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ 𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ (𝜆(𝑙𝑐)(𝑔⚬𝑓⚬𝑡) ▪ 𝑛𝑐(ℎ⚬𝑔⚬𝑓⚬𝑡)(ℎ⚬𝑔⚬𝑓⚬𝑠) ▪ (𝜆(𝑟𝑐)(𝑔⚬𝑓⚬𝑠))−1) ▪ apℎ(ap𝑔(𝛽(𝑟𝑐)𝑠) ▪ (𝛾(𝑟𝑐)(𝑓⚬𝑠)))−1

(apℎ(ap𝑔(𝛽(𝑙𝑐)𝑡) ▪ 𝛾(𝑙𝑐)(𝑓⚬𝑡)) ▪ 𝜆(𝑙𝑐)(𝑔⚬𝑓⚬𝑡)) ▪ 𝑛𝑐(ℎ⚬𝑔⚬𝑓⚬𝑡)(ℎ⚬𝑔⚬𝑓⚬𝑠) ▪ (apℎ(ap𝑔(𝛽(𝑟𝑐)𝑠) ▪ 𝛾(𝑟𝑐)(𝑓⚬𝑠)) ▪ 𝜆(𝑟𝑐)(𝑔⚬𝑓⚬𝑠))−1

So all the category axioms hold. □

27



Because of the impredicativity of our bottom universe 𝒰0, achieving weak initiality is very easy.
From now on, we don’t need to specify the universe we work in any more, as it is always 𝒰0.

Proposition 3.12. The wild category 𝒮– WSusAlg has a weakly initial object (𝑊0, sup0, eq0).

Proof. We define:

𝑊0 :≡ ∏
(𝐷,𝑑,𝑝):𝒮–WSusAlgebra

𝐷

sup0 :≡ 𝜆𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊0, (𝐷, 𝑑, 𝑝) : 𝒮– WSusAlgebra .𝑑𝑎(((−)(𝐷, 𝑑, 𝑝))⚬𝑡)

eq0 :≡ 𝜆𝑐 : 𝐶, 𝑢 : 𝐵(𝑙𝑐) → 𝑊0, 𝑣 : 𝐵(𝑟𝑐) → 𝑊0. funext

𝜆(𝐷, 𝑑, 𝑝).𝑝𝑐((−)(𝐷, 𝑑, 𝑝))⚬𝑢)(((−)(𝐷, 𝑑, 𝑝))⚬𝑣)

Given a second 𝒲-suspension algebra over 𝒮, say (𝐷, 𝑑, 𝑝), we have a function

rec0(𝐷, 𝑑, 𝑝) : 𝑊0 → 𝐷

rec0(𝐷, 𝑑, 𝑝)𝛼 :≡ 𝛼(𝐷, 𝑑, 𝑝)

between the two carriers. This extends to a proper algebra morpishm as witnessed by

𝜆𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊0.refl𝑑𝑎(((−)(𝐷,𝑑,𝑝))⚬𝑡).

Finally, we add the 𝒲-suspension algebra homomorphism structure by proving:

ap(−)(𝐷,𝑑,𝑝)(eq0𝑐𝑡𝑠)

≡ ap(−)(𝐷,𝑑,𝑝)(funext 𝜆𝒳.𝑞𝑐(((−)𝒳)⚬𝑡)(((−)𝒳)⚬𝑠))

= 𝑝𝑐((−)(𝐷, 𝑑, 𝑝))⚬𝑡)(((−)(𝐷, 𝑑, 𝑝))⚬𝑠) ⟨ap-funext (𝐷, 𝑑, 𝑝)(𝜆𝒳.𝑞𝑐(((−)𝒳)⚬𝑡)(((−)𝒳)⚬𝑠))⟩

= refl ▪ 𝑝𝑐((−)(𝐷, 𝑑, 𝑝))⚬𝑡)(((−)(𝐷, 𝑑, 𝑝))⚬𝑠) ▪ refl ⟨surr-refl (𝑝𝑐((−)(𝐷, 𝑑, 𝑝))⚬𝑡)(((−)(𝐷, 𝑑, 𝑝))⚬𝑠))⟩

□

3.3 Naturality
The first attempt at a proposed refinement simply encodes the induction property we would like our
encodings to satisfy.

Definition 3.13. Let (𝐷, 𝑑, 𝑝) be a 𝒲-suspension algebra over 𝒲-suspension signature 𝒮. The
inductivity of (𝐷, 𝑑, 𝑝), or Ind(𝐷,𝑑,𝑝), is defined as the following type family over 𝐷.

Ind(𝐷,𝑑,𝑝) : 𝐷 → 𝒰0

Ind(𝐷,𝑑,𝑝)𝛼 :≡ ∏
(𝐸,𝑒,𝑞):𝒮–FibWSusAlgebra(𝐷,𝑑,𝑝)

𝐸𝛼

The definition above is expressing the idea that proofs by induction performed on our signature 𝒮
can be used to instance a concrete proof of the predicate in question for 𝛼. So the obvious next step
will be restricting our naïve encoding to terms equipped with an inductivity proof. For starters, we
observe that the 𝒲-suspension algebra structure is always preserved when refining the carrier of an
arbitrary 𝒲-suspension algebra structure this way.
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Proposition 3.14. Let (𝐷, 𝑑, 𝑝) be a 𝒲-suspension algebra over 𝒲-suspension algebra signature
𝒮. Then, ∑𝛼:𝐷 Ind(𝐷,𝑑,𝑝)𝛼 can be given the structure of a 𝒲-suspension algebra over 𝒲-suspension
signature 𝒮, too.

Proof. As a point algebra map, we take

𝑑′ : ∏
𝑎:𝐴

(𝐵𝑎 → ∑
𝛼:𝐷

Ind(𝐷,𝑑,𝑝)𝛼) → ∑
𝛼:𝐷

Ind(𝐷,𝑑,𝑝)𝛼

𝑑′𝑎𝑡 :≡ (𝑑𝑎𝑡, 𝜆(𝐸, 𝑒, 𝑞) : 𝒮– FibWSusAlgebra(𝐷,𝑑,𝑝).𝑒𝑎(pr1⚬𝑡)((−)(𝐸, 𝑒, 𝑞)⚬pr2⚬𝑡)).

As a path algebra map, we take

𝑝′ : ∏
𝑐:𝐶

∏
𝑢:𝐵(𝑙𝑐)→ ∑𝛼:𝐷 Ind(𝐷,𝑑,𝑝)𝛼

∏
𝑣:𝐵(𝑟𝑐)→ ∑𝛼:𝐷 Ind(𝐷,𝑑,𝑝)𝛼

(𝑑(𝑙𝑐)𝑢 =∑𝛼:𝐷 Ind(𝐷,𝑑,𝑝)𝛼 𝑑(𝑟𝑐)𝑣)

𝑝′𝑐𝑢𝑣 :≡ pair=(𝑝𝑐(pr1⚬𝑢)(pr1⚬𝑣))(𝜆(𝐸, 𝑒, 𝑞) : 𝒮– FibWSusAlgebra(𝐷,𝑑,𝑝).

tr-fun (_ ↦ (−)(𝐸, 𝑒, 𝑞))(𝑝𝑐(pr1⚬𝑢)(pr1⚬𝑣))(…) ▪

𝑞𝑐(pr1⚬𝑢)(pr1⚬𝑣)(((−)(𝐸, 𝑒, 𝑞))⚬pr2⚬𝑢)(((−)(𝐸, 𝑒, 𝑞))⚬pr2⚬𝑣)).

where we use the underscore character (_) to bind unused variables. The ellipsis (“…”) replaces the
term we are transporting. □

We denote the 𝑛-th iterated refinement7 of (𝑊0, sup0, eq0) via Proposition 3.14 using the tuple
(𝑊𝑛, sup𝑛, eq𝑛).

Proposition 3.15. Fixed 𝑛 : ℕ, the two inclusion maps 𝜋𝑛 : 𝑊𝑆𝑛 → 𝑊𝑛 and 𝜌𝑛 : 𝑊𝑛 → 𝑊0 can
be given a 𝒲-suspension algebra homomorphism structure between the respective 𝒲-suspension
algebras.

Proof. To show that the point constructors are preserved, we can use pointwise reflexivity in both
cases. So we only need to show that the path constructors are preserved. For 𝜋𝑛:

ap𝜋𝑛
(eq𝑆𝑛𝑐𝑡𝑠) ≡ appr1

(pair=(eq𝑛𝑐(pr1⚬𝑡)(pr1⚬𝑠))(…))

= eq𝑛𝑐(pr1⚬𝑡)(pr1⚬𝑠) ⟨HoTT book, 2.7.2⟩

= reflsup𝑛(𝑙𝑐)(pr1⚬𝑡) ▪ eq𝑛𝑐(pr1⚬𝑡)(pr1⚬𝑠) ▪ reflsup𝑛(𝑟𝑐)(pr1⚬𝑠) ⟨(surr-refl (eq𝑛𝑐(pr1⚬𝑡)(pr1⚬𝑠)))−1⟩

≡ reflsup𝑛(𝑙𝑐)(𝜋1⚬𝑡) ▪ eq𝑛𝑐(𝜋1⚬𝑡)(𝜋1⚬𝑠) ▪ reflsup𝑛(𝑟𝑐)(𝜋1⚬𝑠).

For 𝜌𝑛, by induction:
• if 𝑛 = 0, then 𝜌𝑛 can be extended to the identity morphism;
• if 𝑛 = 𝑚 + 1, then we can define 𝜌𝑛 as the morphism obtained composing 𝜌𝑚 after 𝜋𝑚.

□

Corollary 3.16. Given 𝑛 : ℕ and a 𝒲-suspension algebra (𝐷, 𝑑, 𝑝) over 𝒲-suspension signature 𝒮,
we have a 𝒲-suspension algebra homomorphism rec𝑆𝑛(𝐷, 𝑑, 𝑝) from (𝑊𝑆𝑛, sup𝑆𝑛, eq𝑆𝑛) to (𝐷, 𝑑, 𝑝)

7We are making use of the newly assumed natural numbers type here just for ease of exposition. In fact, we will
never need anything more than the two-iterations refinement. Assuming ℕ will actually be made necessary by the
next section.
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defined by composing rec0(𝐷, 𝑑, 𝑝) after 𝜌𝑆𝑛 in 𝒮– WSusAlg, where 𝑆 is the “successor” constructor
for ℕ. So (𝑊1, sup1, eq1) is weakly initial.

The first layer of inductivity is already enough to recover a condition that corresponds to the
naturality property from the previous chapter. Of course, in contrast with the set-truncated setting,
in general we are not dealing with a mere proposition any more.

Lemma 3.17. For all (𝑓, 𝛽, 𝜃) : 𝒮– WSusAlgHomomorphism (𝐷, 𝑑, 𝑝)(𝐸, 𝑒, 𝑞), we have

(𝑓, 𝛽, 𝜃)⚬(rec1(𝐷, 𝑑, 𝑝), (_ ↦ _ ↦ refl), …) = (rec1(𝐸, 𝑒, 𝑞), (_ ↦ _ ↦ refl), …)

where the two ellipses replace the proof (found in Proposition 3.12) that rec0(𝐷, 𝑑, 𝑝) (rec0(𝐸, 𝑒, 𝑞))
extends from an algebra morphism to a 𝒲-suspension algebra morphism.

Proof. We use pair= twice to compare the two morphisms componentwise. To check the underlying
functions for equality, we use function extensionality. Let 𝛼 : 𝑊1. We have to show 𝐶(pr1𝛼), with

𝐶𝑥 :≡ 𝑓(𝑥(𝐷, 𝑑, 𝑝)) =𝐸 𝑥(𝐸, 𝑒, 𝑞),

which pr2𝛼 allows us to prove by induction. We set 𝒹 :≡ rec0(𝐷, 𝑑, 𝑝) and ℯ :≡ rec0(𝐸, 𝑒, 𝑞):
• for the point constructors, let 𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊0, 𝑔 : ∏𝑏:𝐵𝑎 𝐶(𝑡𝑏). We have:

𝑓(sup0𝑎𝑡(𝐷, 𝑑, 𝑝)) ≡ 𝑓(𝑑𝑎(𝒹⚬𝑡))

= 𝑒𝑎(𝑓⚬𝒹⚬𝑡) ⟨𝛽𝑎(𝒹⚬𝑡)⟩

= 𝑒𝑎(ℯ⚬𝑡) ⟨ap𝑒𝑎((−)⚬𝑡)(funext 𝑔)⟩

≡ sup0𝑎𝑡(𝐸, 𝑒, 𝑞)

• for the path constructors, let 𝑐 : 𝐶, 𝑡 : 𝐵(𝑙𝑐) → 𝑊0, 𝑠 : 𝐵(𝑟𝑐) → 𝑊0, 𝑢 : ∏𝑏:𝐵(𝑙𝑐) 𝐶(𝑡𝑏), 𝑣 :
∏𝑏:𝐵(𝑟𝑐) 𝐶(𝑠𝑏).

transport𝐶(eq0𝑐𝑡𝑠)(𝛽(𝑙𝑐)(𝒹⚬𝑡) ▪ ap𝑒(𝑙𝑐)((−)⚬𝑡)(funext 𝑢))

= ap𝑓⚬𝒹(eq0𝑐𝑡𝑠)
−1 ▪ 𝛽(𝑙𝑐)(𝒹⚬𝑡) ▪ ap𝑒(𝑙𝑐)((−)⚬𝑡)(funext 𝑢) ▪ apℯ(eq0𝑐𝑡𝑠) ⟨HoTT book, 2.11.3⟩

= 𝛽(𝑟𝑐)(𝒹⚬𝑠) ▪ (𝑞𝑐(𝑓⚬𝒹⚬𝑡)(𝑓⚬𝒹⚬𝑠))−1 ▪ ap𝑒(𝑙𝑐)((−)⚬𝑡)(funext 𝑢) ▪ apℯ(eq0𝑐𝑡𝑠) ⟨morphism⟩

= 𝛽(𝑟𝑐)(𝒹⚬𝑠) ▪ (𝑞𝑐(𝑓⚬𝒹⚬𝑡)(𝑓⚬𝒹⚬𝑠))−1 ▪ ap𝑒(𝑙𝑐)((−)⚬𝑡)(funext 𝑢) ▪ 𝑞𝑐(ℯ⚬𝑡)(ℯ⚬𝑠) ⟨morphism⟩

= 𝛽(𝑟𝑐)(𝒹⚬𝑠) ▪ (𝑞𝑐(ℯ⚬𝑡)(𝑓⚬𝒹⚬𝑠))−1 ▪ 𝑞𝑐(ℯ⚬𝑡)(ℯ⚬𝑠) ⟨apd⟩

= 𝛽(𝑟𝑐)(𝒹⚬𝑠) ▪ ap𝑒𝑎(𝑟𝑐)(funext 𝑣). ⟨apd⟩

So our proof by induction is complete. We name the corresponding fibered W-suspenison algebra 𝒞
and set 𝒸 :≡ (−)𝒞. We now transport along this prior proof term, that we call ❦, obtained using
function extensionality and an inductivity witness, to be able to state the equality between the
second components. We use function extensionality again, fixing 𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊1, so that we only
have to prove

❦∗(𝜆𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊1.refl𝑓(𝑑𝑎(𝒹⚬𝑡))⚬𝛽𝑎(𝒹⚬𝑡))𝑎𝑡 = refl𝑒𝑎(ℯ⚬𝑡).

Indeed, the following equalities hold.
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❦∗(𝜆𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊1.refl𝑓(𝑑𝑎(𝒹⚬𝑡))⚬𝛽𝑎(𝒹⚬𝑡))𝑎𝑡

= ❦∗(𝜆𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊1.𝛽𝑎(𝒹⚬𝑡))𝑎𝑡 ⟨ap❦∗(𝜆𝑎,𝑡.(−))𝑎𝑡(reflL (𝛽𝑎(𝒹⚬𝑡)))⟩

= ❦∗(𝛽𝑎(𝒹⚬𝑡)) ⟨tr-fun ((−)𝑎𝑡)❦𝜆𝑎, 𝑡.𝛽𝑎(𝒹⚬𝑡)⟩

= (ap(−)(sup1𝑎𝑡)❦)
−1

▪ 𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎((−)⚬𝑡)❦ ⟨HotTT book, 2.11.3⟩

= (𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎(funext (𝒸⚬pr2⚬𝑡)))−1 ▪ 𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎((−)⚬𝑡)❦ ⟨ap(−)−1 ▪ 𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎((−)⚬𝑡)❦(ap-funext (sup1𝑎𝑡)(…))⟩

= (𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎(funext (𝒸⚬pr2⚬𝑡)))−1 ▪ 𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎(ap(−)⚬𝑡❦) ⟨ap… ▪ (−)(ap-comp (𝑒𝑎)((−)⚬𝑡)❦)−1⟩

= (𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎(funext (𝒸⚬pr2⚬𝑡)))−1 ▪ 𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎(funext (𝒸⚬pr2⚬𝑡)) ⟨ap… ▪ ap𝑒𝑎(−)(ap-funext-precomp 𝑡(𝒸⚬pr2))⟩

= refl𝑒𝑎(ℯ⚬𝑡) ⟨trans-invL (𝛽𝑎(𝒹⚬𝑡) ▪ ap𝑒𝑎(funext (𝒸⚬pr2⚬𝑡)))⟩

where ap-funext-precomp 𝑒ℎ : ap(−)⚬𝑒(funext ℎ) = funext (ℎ⚬𝑒) is easily proven and trans-invL is
the left inverse path property. We denote this proof of equality between the second components,
that we have constructed by function extensionality, ♭. We are now left with comparing the third
components. To state their equality, we need to transport along pair=❦♭. As many times before,
we can use function extensionality to append some fixed 𝑐 : 𝐶, 𝑡 : 𝐵(𝑙𝑐) → 𝑊1, 𝑠 : 𝐵(𝑟𝑐) → 𝑊1 to
both sides of the equation. Then, tr-fun ((−)𝑐𝑡𝑠) allows us to bring these three newly introduced
variables inside the transport on the left side. This time around, to characterise transport we need
the dependent version of theorem 2.11.3 of the HoTT book, i.e. theorem 2.11.4. Our goal is now
making the following diagram commmute, where 𝜔𝑓  stands for the third component of the 𝒲-
suspension algebra homomorpism constructed from 𝑓 .

ap(pair=❦♭)∗
((𝜃⚬𝜔rec1(𝐷,𝑑,𝑝))𝑐𝑡𝑠)

apd(𝑥,𝑦)↦𝑦(𝑙𝑐)𝑡 ▪ 𝑒𝑎(𝑥⚬𝑡)(𝑥⚬𝑠) ▪ (𝑦(𝑟𝑐)𝑠)−1(pair=❦♭)

𝜔rec1(𝐸,𝑒,𝑞)𝑐𝑡𝑠

apd(𝑥,_)↦ap𝑥(eq1𝑐𝑡𝑠)(pair=❦♭)−1

(pair=❦♭)∗(ap𝑓⚬rec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠)) (pair=❦♭)∗((refl ▪ 𝛽(𝑙𝑐)(rec1(𝐷, 𝑑, 𝑝)⚬𝑡)) ▪ 𝑞𝑐(𝑓⚬rec1(𝐷, 𝑑, 𝑝)⚬𝑡)(𝑓⚬rec1(𝐷, 𝑑, 𝑝)⚬𝑠) ▪ (refl ▪ 𝛽(𝑟𝑐)(rec1(𝐷, 𝑑, 𝑝)⚬𝑠))−1)

refl ▪ 𝑞𝑐(rec1(𝐸, 𝑒, 𝑞)⚬𝑡)(rec1(𝐸, 𝑒, 𝑞)⚬𝑠) ▪ reflaprec1(𝐸,𝑒,𝑞)(eq1𝑐𝑡𝑠)

We only show how to simplify each side of the square until commutativity becomes a simple
(although very tedious) exercise. By construction of the morphism on rec1(𝐸, 𝑒, 𝑞), it can be shown
that the bottom side simplifies to the following chain of equalities:

aprec1(𝐸,𝑒,𝑞)(eq1𝑐𝑡𝑠)

= apℯ(appr1
(eq1𝑐𝑡𝑠)) ⟨(ap-comp ℯpr1(eq1𝑐𝑡𝑠))

−1⟩

= apℯ(eq0𝑐(pr1⚬𝑡)(pr1⚬𝑠)) ⟨apℯ(HoTT book, 2.6.2)⟩

= 𝑝𝑐(ℯ⚬pr1⚬𝑡)(ℯ⚬pr1⚬𝑠) ⟨ap-funext (𝐸, 𝑒, 𝑞)𝜆𝒳.𝑝𝑐(((−)𝒳)⚬pr1⚬𝑡)(((−)𝒳)⚬pr1⚬𝑠)⟩

= refl ▪ 𝑝𝑐(ℯ⚬pr1⚬𝑡)(ℯ⚬pr1⚬𝑠) ▪ refl ⟨(surr-refl (𝑝𝑐(ℯ⚬pr1⚬𝑡)(ℯ⚬pr1⚬𝑠))−1⟩.

The exact same reasoning applies to rec1(𝐷, 𝑑, 𝑝) and 𝜔rec1(𝐷,𝑑,𝑝) on the top side, of course. Then,
the argument of the transport can be simplified to:
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ap𝑓⚬rec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠)

= ap𝑓(aprec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠)) ⟨(ap-comp 𝑓(rec1(𝐷, 𝑑, 𝑝))(eq1𝑐𝑡𝑠)
−1⟩

= ap𝑓(ap𝒹(appr1
(eq1𝑐𝑡𝑠))) ⟨apap𝑓

(ap-comp 𝒹pr1(eq1𝑐𝑡𝑠)
−1)⟩

= ap𝑓(ap𝒹(eq0𝑐(pr1⚬𝑡)(pr1⚬𝑠))) ⟨apap𝑓⚬ap𝒹
(HoTT book, 2.6.2)⟩

= ap𝑓(𝑝𝑐(𝒹⚬pr1⚬𝑡)(𝒹⚬pr1⚬𝑠)) ⟨apap𝑓
(ap-funext (𝐷, 𝑑, 𝑝)𝜆𝒳.𝑝𝑐(((−)𝒳)⚬pr1⚬𝑡)((−)𝒳)⚬pr1⚬𝑡))⟩

= 𝛽(𝑙𝑐)(𝒹⚬pr1⚬𝑡) ▪ 𝑞𝑐(𝑓⚬𝒹⚬pr1⚬𝑡)(𝑓⚬𝒹⚬pr1⚬𝑠) ▪ (𝛽(𝑟𝑐)(𝒹⚬pr1⚬𝑠))−1 ⟨𝜃𝑐(𝒹⚬pr1⚬𝑡)(𝒹⚬pr1⚬𝑠)⟩

= (refl ▪ 𝛽(𝑙𝑐)(𝒹⚬pr1⚬𝑡)) ▪ 𝑞𝑐(𝑓⚬𝒹⚬pr1⚬𝑡)(𝑓⚬𝒹⚬pr1⚬𝑠) ▪ (𝛽(𝑟𝑐)(𝒹⚬pr1⚬𝑠))−1 ⟨ap(−) ▪ …(reflL (𝛽(𝑙𝑐)(𝒹⚬pr1⚬𝑡)))−1⟩

= (refl ▪ 𝛽(𝑙𝑐)(𝒹⚬pr1⚬𝑡)) ▪ 𝑞𝑐(𝑓⚬𝒹⚬pr1⚬𝑡)(𝑓⚬𝒹⚬pr1⚬𝑠) ▪ (refl ▪ 𝛽(𝑟𝑐)(𝒹⚬pr1⚬𝑠))−1 ⟨ap… ▪ (−)−1(reflL (𝛽(𝑟𝑐)(𝒹⚬pr1⚬𝑠)))−1⟩

As for the left side, we observe that the second component of the equality is currently unused. We
can get relegate it to the first step of an equality chain by rewriting the left side to what follows:

transport(𝑥,_)↦ap𝑥(eq1𝑐𝑡𝑠)(pair=❦♭)(ap𝑓⚬rec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠))

= transportap(−)(eq1𝑐𝑡𝑠)(appr1
(pair=❦♭))(ap𝑓⚬rec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠)) ⟨tr-comp pr1(pair=❦♭)(ap𝑓⚬rec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠))⟩

= transportap(−)(eq1𝑐𝑡𝑠)❦(ap𝑓⚬rec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠)) ⟨ap𝑎↦transportap(−)(eq1𝑐𝑡𝑠)𝑎(…)(HoTT book, 2.6.2)⟩

= transport(−)(eq1𝑐𝑡𝑠)(apap❦)(ap𝑓⚬rec1(𝐷,𝑑,𝑝)(eq1𝑐𝑡𝑠)) ⟨HoTT book, 2.3.10⟩

= aprec1(𝐸,𝑒,𝑞)(eq1𝑐𝑡𝑠). ⟨apd(−)(eq1𝑐𝑡𝑠)(apap❦)⟩

Finally, for the right side, we observe that the following diagram commutes for any generic path
pair=𝑝𝑞 : (𝑎1, 𝑏1) =∑𝑎:𝐴 𝐵𝑎 (𝑎2, 𝑏2) constructed using pair=. This is shown by induction on 𝑝 alone
(because, if we choose the obvious proof for tr-fun, then the computation rules will do the rest).

transportconst∑𝑎:𝐴 𝐵𝑎
𝑝 (𝑎1, 𝑏1)

tr-fun (𝑎 ↦ (𝑎, (−)))𝑝(𝑎1, 𝑏1)
ap(𝑎2,(−))𝑞

pair=𝑝𝑞

(𝑎1, 𝑏1) transport_↦ ∑𝑎:𝐴 𝐵𝑎𝑝(𝑎1, 𝑏1)

ap(𝑎2,(−))𝑞(𝑎2, 𝑏2)

□

As already observed by S. Awodey, J. Frey, and S. Speight [4], naturality alone in not enough to
obtain the initial algebra in our new setting. While Theorem 2.17 also extends to wild categories,
as we can’t prove that rec1(𝑊1, sup1, eq1) is the identity on (𝑊1, sup1, eq1), we cannot regard out
construction as the limit of the identity functor to begin with. All that Lemma 3.17 shows, when
setting 𝑓 to rec1(𝑊1, sup1, eq1), is that such a homomorphism is an idempotent in 𝒮– WSusAlg. If
what we are after is, instead, the identity, we should try to split it. We take care of it in the next
section.

3.4 W-Suspension Algebras and Quasi-Idempotents
To split a 𝒲-suspension algebra morphism, it is only reasonable to start from the underlying function
on the 𝒲-suspension algebra carrier, which is an idempotent in the wild category built on our type
universe. We call these pre-idempotents.

Definition 3.18. A pre-idempotent on 𝑋 is an endofunction 𝑓 : 𝑋 → 𝑋 equipped with a homotopy
𝐼 : 𝑓⚬𝑓 ∼ 𝑓 .
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PIdem 𝑋 :≡ ∑
𝑓:𝑋→𝑋

(𝑓⚬𝑓 ∼ 𝑓)

Note that pre-idempotents and all their derived notions are only defined within the wild category
build on our type universe. Neither M. Shulman [22], who first introduced them, nor us (need
to) extend these notions to other categories. Now then, a splitting operation would result in the
following, with 𝑓 ∼ 𝑠⚬𝑟.

Definition 3.19. A retraction on 𝑋 : 𝒰 is a type 𝐴 : 𝒰 equipped with two functions 𝑟 : 𝑋 → 𝐴, 𝑠 :
𝐴 → 𝑋 and a homotopy 𝑟⚬𝑠 ∼ id𝐴.

Retr 𝑋 :≡ ∑
𝐴:𝒰

∑
𝑟:𝑋→𝐴

∑
𝑠:𝐴→𝑋

(𝑟⚬𝑠 ∼ id𝐴)

By assuming a natural numbers type, M. Shulman [22] identifies a sufficient condition for a pre-
idempotent to split: being a quasi-idempotent.

Definition 3.20. A quasi-idempotent on 𝑋 : 𝒰 is a pre-idempotent such that ap𝑓𝐼 ∼ 𝐼⚬𝑓 .

QIdem 𝑋 :≡ ∑
(𝑓,𝐼): PIdem 𝑋

(ap𝑓𝐼 ∼ 𝐼⚬𝑓)

To obtain a quasi-idempotent, we just need to climb one more step of our refinement hierarchy. By
doing so, we don’t lose any of the properties proven insofar.

Remark. Via the inclusion map 𝜋1, Lemma 3.17 still holds if we replace the 𝒲-suspension algebra
morphism on rec1 with the one on rec2. In the following diagram, the left and the right triangles
commute definitionally, while the bottom one does so by Lemma 3.17.

↑

𝜋1

↑

rec2(𝐷, 𝑑, 𝑝)

↑ rec1(𝐷, 𝑑, 𝑝)

↑(𝑓, 𝛽, 𝜃)

↑rec1(𝐸, 𝑒, 𝑞) ↑

rec2(𝐸, 𝑒, 𝑞)

(𝑊2, sup2, eq2)

(𝑊1, sup1, eq1)

(𝐷, 𝑑, 𝑝) (𝐸, 𝑒, 𝑞)

In particular, the 𝒲-suspension algebra morphism given by

rec2(𝑊2, sup2, eq2) ≡ rec1(𝑊2, sup2, eq2)⚬𝜋1 : 𝑊2 → 𝑊2

is, again, an idempotent in 𝒮– WSusAlg. This also entails that the rec2(𝑊2, sup2, eq2) as a function
is a pre-idempotent.

Lemma 3.21. The pre-idempotent on rec2(𝑊2, sup2, eq2) : 𝑊2 → 𝑊2 identified by the previous
Remark extends to a quasi-idempotent.
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Proof. We shall abbreviate (𝑊2, sup2, eq2) as 𝕎. For starters, let’s spell out the witness of idempo-
tency given by the previous proof. It is

𝐼 : rec2𝕎⚬rec2𝕎 ∼ rec2𝕎

𝐼 :≡ 𝜆(𝑥, 𝑖, 𝑗) : 𝑊2.𝑖𝒟

where 𝒟 :≡ (𝐷, 𝑑, 𝑝) is a fibered 𝒲-suspension algebra on (𝑊0, sup0, eq0). Its algebra structure is
the following.

𝐷 : 𝑊0 → 𝒰

𝐷𝛼 :≡ rec2𝕎(𝛼𝕎) =𝑊2
𝛼𝕎

𝑑 : ∏
𝑎:𝐴

∏
𝑡:𝐵𝑎→𝑊0

( ∏
𝑏:𝐵𝑎

𝐷(𝑡𝑏)) → 𝐷(sup2𝑎𝑡)

𝑑𝑎𝑡𝑔 :≡ reflrec2𝕎(sup2𝑎𝑡𝕎) ▪ apsup2𝑎(funext 𝑔)

During the proof, we will never need to use our previous construction for 𝑝, but recalling its type is
at least useful to ensure everything typechecks.

𝑝 : ∏
𝑐:𝐶

∏
𝑡:𝐵(𝑙𝑐)→𝑊0

∏
𝑠:𝐵(𝑟𝑐)→𝑊0

∏
𝑢: ∏𝑏:𝐵(𝑙𝑐) 𝐷(𝑡𝑏)

∏
𝑣: ∏𝑏:𝐵(𝑟𝑐) 𝐷(𝑠𝑏)

(transport𝐷(eq0𝑐𝑡𝑠)(𝑑(𝑙𝑐)𝑡𝑢) =𝐷(sup0(𝑟𝑐)𝑠) 𝑑(𝑟𝑐)𝑠𝑣)

We are looking for a term

𝐽 : aprec2𝕎⚬𝐼 ∼ 𝐼⚬rec2𝕎.

Let (𝑥, 𝑗) : 𝑊2, with 𝑥 : 𝑊1. We need to show

(aprec2𝕎⚬𝐼)(𝑥, 𝑗) = (𝐼⚬(rec2𝕎))(𝑥, 𝑗).

Our goal type reduces to

(aprec2𝕎⚬(−)𝒟⚬pr2⚬pr1)(𝑥, 𝑗) = ((−)𝒟⚬pr2⚬pr1⚬(−)𝕎⚬𝜌2)(𝑥, 𝑗)

and then

𝐸𝑥 :≡ (aprec2𝕎⚬(−)𝒟⚬pr2)𝑥 = ((−)𝒟⚬pr2⚬pr1⚬(−)𝕎⚬pr1)𝑥.

This can be seen as a type family 𝐸 : 𝑊1 → 𝒰 in the variable 𝑥 : 𝑊1, so 𝑗 allows us to prove the
statement inductively. For the point constructors, let 𝑎 : 𝐴, 𝑡 : 𝐵𝑎 → 𝑊1, 𝑔 : ∏𝑏:𝐵𝑎 𝐸(𝑡𝑏). We have:

34



(aprec2𝕎⚬(−)𝒟⚬pr2)(sup1𝑎𝑡)

≡ aprec2𝕎(𝑑𝑎(pr1⚬𝑡)((−)𝒟⚬pr2⚬𝑡))

≡ aprec2𝕎(refl ⚬apsup2𝑎(funext ((−)𝒟⚬pr2⚬𝑡)))

= aprec2𝕎(apsup2𝑎(funext ((−)𝒟⚬pr2⚬𝑡))) ⟨apaprec2𝕎
(reflL (apsup2𝑎(funext ((−)𝒟⚬pr2⚬𝑡))))⟩

= aprec2𝕎⚬sup2𝑎(funext ((−)𝒟⚬pr2⚬𝑡)) ⟨ap-comp (rec2𝕎)(sup2𝑎)(funext ((−)𝒟⚬pr2⚬𝑡))⟩

≡ apsup2𝑎(rec2𝕎⚬(−))(funext ((−)𝒟⚬pr2⚬𝑡))

= apsup2𝑎(aprec2𝕎⚬(−)(funext ((−)𝒟⚬pr2⚬𝑡))) ⟨(ap-comp (sup2𝑎)(rec2𝕎⚬(−))(funext ((−)𝒟⚬pr2⚬𝑡)))−1⟩

= apsup2𝑎(funext (rec2𝕎⚬(−)𝒟⚬pr2⚬𝑡)) ⟨apapsup2𝑎
(X. Ripoll Echeveste [21], lemma 3.12)⟩

= apsup2𝑎(funext ((−)𝒟⚬pr2⚬pr1⚬(−)𝕎⚬pr1⚬𝑡)) ⟨apapsup2𝑎⚬ funext(funext 𝑔)⟩

= refl ▪ apsup2𝑎(funext ((−)𝒟⚬pr2⚬pr1⚬(−)𝕎⚬pr1⚬𝑡)) ⟨(reflL (apsup2𝑎(funext ((−)𝒟⚬pr2⚬pr1⚬(−)𝕎⚬pr1⚬𝑡))))
−1

⟩

≡ 𝑑𝑎(𝜌2⚬(−)𝕎⚬pr1⚬𝑡)((−)𝒟⚬pr2⚬pr1⚬(−)𝕎⚬pr1⚬𝑡)

≡ ((−)𝒟⚬pr2)(sup1𝑎(pr1⚬(−)𝕎⚬pr1⚬𝑡))

≡ ((−)𝒟⚬pr2⚬pr1⚬(−)𝕎⚬pr1)(sup1𝑎𝑡)

For the path constructors, let 𝑐 : 𝐶, 𝑡 : 𝐵(𝑙𝑐) → 𝑊1, 𝑠 : 𝐵(𝑟𝑐) → 𝑊1, 𝑢 : ∏𝑏:𝐵(𝑙𝑐) 𝐸(𝑡𝑏), 𝑣 :
∏𝑏:𝐵(𝑟𝑐) 𝐸(𝑠𝑏). If we name the proof term for out induction step on point constructors 𝛾, we have
to show

transport𝐷(eq1𝑐𝑡𝑠)(𝛾(𝑙𝑐)𝑡𝑢) =𝐷(𝑟𝑐)𝑠 𝛾(𝑟𝑐)𝑠𝑣.

The trick is to rewrite the path we are transporting along, eq1𝑐𝑡𝑠, in a different form:

𝑧 : eq1𝑐𝑡𝑠 =sup1(𝑙𝑐)𝑡=𝑊1sup1(𝑟𝑐)𝑠 ap(−)(𝑡,𝑠)(funext (uncurry (eq1𝑐))

eq1𝑐𝑡𝑠 ≡ (uncurry eq1𝑐)(𝑡, 𝑠) ⸻(ap-funext (𝑡,𝑠)(uncurry (eq1𝑐)))−1

ap(−)(𝑡,𝑠)(funext (uncurry (eq1𝑐)))

The next commutative diagram proves our goal. The central square commutes because of the
dependent action of tr-comp on the path 𝛾(𝑙𝑐)𝑡𝑢. The right trapezoid because its two bases can be
seen as the application of the same function to sup1(𝑙𝑐)⚬pr1) and sup1(𝑟𝑐)⚬pr2 respectively, ando
so we can use the dependent action of such a function on path funext (uncurry (eq1𝑐)). The left
trapezoid commutes because of the dependent action of ap(−)∗

(𝛾𝑎(𝑙𝑐)𝑢) on 𝑧. Both triangles on the
left (top and bottom) can be seen to commute after generalising the statement until we can perform
path induction on the variable generalising 𝑧. Similarly, both triangles on the right (top and bottom)
also commute, but this time we need to generalise until we can make path induction on the variable
generalsing (funext (uncurry(eq1𝑐))).
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apd
(−

)𝒟
⚬pr2 ⚬pr1 ⚬rec0 𝕎

⚬pr1 (eq
1 𝑐𝑡𝑠)

𝛾(𝑟𝑐)𝑠𝑣

apd
ap

rec2
𝕎

⚬(−
)𝒟

⚬pr2 (eq
1 𝑐𝑡𝑠)

ap
(eq

1 𝑐𝑡𝑠)∗ (𝛾(𝑙𝑐)𝑡𝑢)

tr-com
p

ap
(funext

(uncurry
(eq

1 𝑐)))∗ (𝛾(𝑙𝑐)𝑡𝑢)

tr-com
p

ap
(ap

(−
)(𝑡,𝑠) (funext

(uncurry
(eq

1 𝑐))))
∗ (𝛾(𝑙𝑐)𝑡𝑢)

ap𝑥↦(𝑥)∗(((−)𝒟⚬pr2⚬pr1⚬rec0𝕎⚬pr1)(sup1(𝑙𝑐)𝑡))𝑧

apd
((−)𝒟⚬pr2 ⚬pr1 ⚬rec0 𝕎⚬pr1 )⚬((−)(𝑠,𝑡)) (funext(uncurry(eq

1 𝑐))))

ap
𝑥↦(𝑥)∗ ((ap

rec2 𝕎 ⚬(−)𝒟⚬pr2 )(sup
1 (𝑙𝑐)𝑡)) 𝑧

apd(aprec2
𝕎
⚬(−)𝒟⚬pr2)⚬((−)(𝑠,𝑡))(funext(uncurry(eq1𝑐))))

apd
(−

)𝒟
⚬pr2 ⚬pr1 ⚬rec

0 𝕎
⚬pr1 (ap

(−
)(𝑡,𝑠) (funext(uncurry(eq

1 𝑐))))

apdaprec2
𝕎

⚬(−
)𝒟

⚬pr1(ap(−
)(𝑡,𝑠)(funext(uncurry(eq1𝑐))))

(eq
1 𝑐𝑡𝑠)∗ (((−

)𝒟
⚬pr2 ⚬pr1 ⚬rec0 𝕎

⚬pr1 )(sup
1 (𝑙𝑐)𝑡))

(((−
)𝒟

⚬pr2 ⚬pr1 ⚬rec0 𝕎
⚬pr1 )(sup

1 (𝑟𝑐)𝑠))

(ap
rec2 𝕎

⚬(−
)𝒟

⚬pr2 )(sup
1 (𝑟𝑐)𝑠)

(eq
1 𝑐𝑡𝑠)∗ ((ap

rec2 𝕎
⚬(−

)𝒟
⚬pr2 )(sup

1 (𝑙𝑐)𝑡))

(ap
(−

)(𝑡,𝑠) (funext
(uncurry

(eq
1 𝑐))))

∗ (((−
)𝒟

⚬pr2 ⚬pr1 ⚬rec0 𝕎
⚬pr1 )(sup

1 (𝑙𝑐)𝑡))
(funext

(uncurry
(eq

1 𝑐)))∗ (((−
)𝒟

⚬pr2 ⚬pr1 ⚬rec0 𝕎
⚬pr1 )(sup

1 (𝑙𝑐)𝑡))

(funext
(uncurry

(eq
1 𝑐)))∗ ((ap

rec2 𝕎
⚬(−

)𝒟
⚬pr2 )(sup

1 (𝑙𝑐)𝑡))
(ap

(−
)(𝑡,𝑠) (funext(uncurry(eq

1 𝑐))))
∗ ((ap

rec2 𝕎
⚬(−

)𝒟
⚬pr2 )(sup

1 (𝑙𝑐)𝑡))
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This concludes the proof. □

While having a quasi-idempotent in the wild category of types and functions gives us a splitting for
free in such a wild category, we still need to reconstruct the splitting in 𝒮– WSusAlg.

Proposition 3.22. The idempotent in 𝒮– WSusAlg given by the previous Remark splits.

Proof. We sometimes work with propositional equalities between functions, as opposed to homo-
topies, for convenience. Because we are already assuming function extensionality, this is not a
problem.

We set 𝑓 :≡ rec2(𝑊2, sup2, eq2), and (𝐷, 𝑑, 𝑝) :≡ (𝑊2, sup2, eq2). We refer to its witness of
pre-idempotency as 𝐼 : 𝑓⚬𝑓 = 𝑓 . Theorem 5.3 of M. Shulman [22] gives a splitting of our quasi-idem-
potent on (𝑓, 𝐼). We use the variables 𝐸 : 𝒰, 𝓇 : 𝐷 → 𝐸, 𝓈 : 𝐸 → 𝐷, 𝐾 : 𝓇⚬𝓈 = 1𝐸 for the splitting,
and name 𝐻 : 𝓈⚬𝓇 = 𝑓 its “reconstruction”.

The proof takes place in two stages. First, we lift the splitting to the category of regular 𝒲-
algebras for signature (𝐴, 𝐵). Only then we move to the lifting to 𝒮– WSusAlg.

First, we show that we can give 𝐸 the structure of a 𝒲-algebra. As a point constructor map,
we choose

𝑒 : ∏
𝑎:𝐴

(𝐵𝑎 → 𝐸) → 𝐸

𝑒𝑎 :≡ 𝓇⚬𝑑𝑎(𝓈⚬(−)).

Similarly, 𝓇 and 𝓈 can be given the structure of algebra moprhisms. The are extended to (𝓇, 𝜌) and
(𝓈, 𝜎) respectively.

𝜌𝑎 : 𝓇⚬𝑑𝑎 ∼ 𝑒𝑎(ρ⚬(−))

𝜌𝑎𝑡 :≡

𝓇(𝑑𝑎𝑡) = (𝓇⚬𝓈⚬𝓇)(𝑑𝑎𝑡) ⟨ap((−)⚬𝓇)(𝑑𝑎𝑡)𝐾−1⟩

= (𝓇⚬𝑓)(𝑑𝑎𝑡) ⟨ap(𝓇⚬(−))⚬(𝑑𝑎𝑡)𝐻⟩

= (𝓇⚬𝑑𝑎)(𝑓⚬𝑡) ⟨ap𝓇(𝛽𝑎𝑡)⟩

= (𝓇⚬𝑑𝑎)(𝓈⚬𝓇⚬𝑡) ⟨ap(𝓇⚬𝑑𝑎)((−)⚬𝑡)𝐻−1⟩

𝜎𝑎 : 𝓈⚬𝑒𝑎 ∼ 𝑑𝑎(𝓈⚬(−))

𝜎𝑎𝑡 :≡
(𝓈⚬𝓇⚬𝑑𝑎)(𝓈⚬𝑡) = (𝑓⚬𝑑𝑎)(𝓈⚬𝑡) ⟨ap((−)⚬𝑑𝑎)(𝓈⚬𝑡)𝐻⟩

= 𝑑𝑎(𝑓⚬𝓈⚬𝑡) ⟨𝛽𝑎(𝓈⚬𝑡)⟩

= 𝑑𝑎(𝓈⚬𝓇⚬𝓈⚬𝑡) ⟨ap𝑑𝑎((−)⚬𝓈⚬𝓉)𝐻−1⟩

= 𝑑𝑎(𝓈⚬𝑡) ⟨ap𝑑𝑎(𝓈⚬(−)⚬𝑡)𝐾⟩

We now use pair= to lift 𝐻 and 𝐾. We need 𝐻′ : 𝐻∗(𝜎⚬𝜌) = 𝛽 and 𝐾′ : 𝐾∗(𝜌⚬𝜎) = 𝜆𝑎𝑡.refl𝑒𝑎𝑡. For
both, we use function extensionality to fix 𝑎 : 𝐴 and 𝑡 : 𝐵𝑎 → 𝐷 (or 𝑡 : 𝐵𝑎 → 𝐸) and check that
the following two diagrams commute. As per usual, theorem 2.11.3 from the HoTT book helps us
get rid of the transport operator. The higher order paths in the diagrams are not labelled, as they
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coincide with the definitions of 𝜌 and 𝜎 that we have just given, plus the paths we got in exchange
for eliminating transport.

↑ ↑ ↑ ↑

↑

↑

↑↑↑↑

↑

↑ ↑ ↑

↑

↑↑

↑

↑

↑

↑ ↑

𝑓(𝑑𝑎𝑡) (𝓈⚬𝓇)(𝑑𝑎𝑡) (𝓈⚬𝓇⚬𝓈⚬𝓇)(𝑑𝑎𝑡) (𝓈⚬𝓇⚬𝑓)(𝑑𝑎𝑡) (𝓈⚬𝓇)(𝑑𝑎(𝑓⚬𝑡))

(𝓈⚬𝓇)(𝑑𝑎(𝓈⚬𝓇⚬𝑡))

(𝑓⚬𝑑𝑎)(𝓈⚬𝓇⚬𝑡)𝑑𝑎(𝑓⚬𝓈⚬𝓇⚬𝑡)𝑑𝑎(𝓈⚬𝓇⚬𝓈⚬𝓇⚬𝑡)𝑑𝑎(𝓈⚬𝓇⚬𝑡)𝑑𝑎(𝑓⚬𝑡)

(𝑓⚬𝑓)(𝑑𝑎𝑡)

𝑑𝑎(𝑓⚬𝑓⚬𝑡)

𝑓(𝑑𝑎(𝑓⚬𝑡))

The only polygons which do not commute due to simple path algebra properties are:
• the left trapezoid, which commutes due to the algebra morphism on 𝑓 being an idempotent;
• the center triangle, which is just our definition of morphism composition;
• the triangles at the top left and bottom left. These commute since 𝐻∗(ap𝓇⚬(−)⚬𝓈𝐾) = 𝐼 , as stated

in theorem 7.1 of M. Shulman [22].

We now proceed to the diagram for the second equality.

↑ ↑ ↑

↑

↑

↑

↑

↑ ↑ ↑

↑ ↑

(𝓇⚬𝓈⚬𝓇⚬𝑑𝑎)(𝓈⚬𝑡) (𝓇⚬𝑓⚬𝑑𝑎)(𝓈⚬𝑡) (𝓇⚬𝑑𝑎)(𝑓⚬𝓈⚬𝑡) (𝓇⚬𝑑𝑎)(𝓈⚬𝓇⚬𝓈⚬𝑡)

(𝓇⚬𝑑𝑎)(𝓈⚬𝑡)

(𝓇⚬𝓈⚬𝓇⚬𝑑𝑎)(𝓈⚬𝑡)(𝓇⚬𝑓⚬𝑑𝑎)(𝓈⚬𝑡)(𝓇⚬𝑑𝑎)(𝑓⚬𝓈⚬𝑡)(𝓇⚬𝑑𝑎)(𝓈⚬𝓇⚬𝓈⚬𝑡)

(𝓇⚬𝑑𝑎)(𝓈⚬𝑡)

The right square is the same as the left one, but rotated by 180 degrees. Observe that the proof
that 𝑓 is an algebra morphism is, for our particular choice of 𝑓 ≡ rec2(𝑊2, sup2, eq2), pointwise
defined using path reflexivity. The center square indeed definitionally degenerates into a point (for
a generic algebra morphism, if would still be propositionally equal to refl, as the symmetric paths
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would cancel each other out). The left (right) square can be made to commute by being rephrased
as a single transport of refl (not along refl) using tr-comp and tr-trans.

This concludes the lifting to regular 𝒲-algebras. Now, as a path constructor map for (𝐸, 𝑒),
we have

𝑞 : ∏
𝑐:𝐶

∏
𝑡:𝐵(𝑙𝑐)→𝐸

∏
𝑠:𝐵(𝑟𝑐)→𝐸

(𝑒(𝑙𝑐)𝑡 =𝐸 𝑒(𝑟𝑐)𝑠)

𝑞𝑐𝑡𝑠 :≡ transport𝑥↦(𝑒(𝑙𝑐)(𝑥⚬𝑡)=𝐸𝑒(𝑟𝑐)(𝑥⚬𝑠))𝐾(𝜌(𝑙𝑐)(𝓈⚬𝑡) ▪ ap𝓇(𝑝𝑐(𝓈⚬𝑡)(𝓈⚬𝑠)) ▪ 𝜌(𝑟𝑐)(𝓈⚬𝑠))

The extensions of (𝑠, 𝜎) and (𝑟, 𝜌) to 𝒲-suspension algebra morphisms is quite long an not partic-
ularly interesting (chains of 8 and 10 propositional equalities respectively). The path algebra toolkit
we have been using so far is adequate for the job. What is important to remember is that the proof
that 𝑓 is a 𝒲-suspension algebra morphism is, of course, needed, and that pair=𝐻𝐻′ and pair=𝐾𝐾′

must also be extended accordingly. □

The previous lemma does not lift an arbitrary splitting for a generic quasi-idempotent. It is leveraging
our particular construction for rec2(𝑊2, sup2, eq2).

3.5 Initiality
We are now able to prove initiality of the 𝒲-suspension algebra (𝑊𝒮, sup𝒮, eq𝒮) obtained during
the previous splitting in the wild category 𝒮– WSusAlg.

Lemma 3.23. Theorem 2.17 can be extended (also in wild categories) with this third, equivalent
condition: “𝐼 is the vertex of a cone for the identity functor and the projection from 𝐼 to 𝐼 itself is
1𝐼”.

Proof. It is obvious to see that this property is implied by initiality. To see the converse, consider a
generic projection 𝜇𝑋 : 𝐼 → 𝑋. Because 𝐼 is the vertex of a cone on the identity functor, any other
map 𝑓 : 𝐼 → 𝑋 satisfies

𝑓 = 𝑓⚬1𝐼 = 𝑓⚬𝜇𝐼 = 𝜇𝑋.

□

The 𝒲-suspension algebra that is the result of our splitting certainly enjoys these two conditions.

Theorem 3.24. There is an initial object (𝑊𝒮, sup𝒮, eq𝒮) in 𝒮– WSusAlg.

Proof. We use Lemma 3.23. As a candidate for the initial object, we choose 𝐼 :≡ (𝑊𝒮, sup𝒮, eq𝒮),
which we obtained via the splitting in Proposition 3.22. Fixed a 𝒲-suspension algebra 𝒟, we have
projection 𝜋𝒟 from 𝐼 to 𝒟 which is obtained by composing the morphism extending rec2𝒟 after 𝔖,
the section obtained from the splitting. This choice ensures that we get a cone on the identity functor,
since 𝑓⚬rec2𝒟 = rec2ℰ holds from naturality of (𝑊2, sup2, eq2), and hence 𝑓⚬𝜋𝒟 ≡ 𝑓⚬rec2𝒟⚬𝔖 =
rec2ℰ⚬𝔖 = 𝜋ℰ. So all that is left to show is that 𝜋𝐼 =≡ rec2𝐼⚬𝔖 = 1𝐼 . Let ℜ be the retraction
obtained from the splitting. Because ℜ⚬𝔖 = 1𝐼 , it is enough to show that ℜ = rec2𝐼 . Indeed, we have
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ℜ = 1𝐼⚬ℜ

= ℜ⚬𝔖⚬ℜ
= ℜ⚬rec2(𝑊2, sup2, eq2)

= rec2𝐼. ⟨naturality⟩

□

Corollary 3.25. By Theorem 3.10, the 𝒲-suspension algebra (𝑊 2, sup2, eq2) satisfies the induction
principle for 𝒲-suspension algebras over 𝒮.

Similarly to what we have done in the previous chapter, the encoding of the 𝒲-suspension is given
by 𝑊𝒮. The encoding of the point constructor with label 𝑎 : 𝐴 is given by sup𝒮𝑎. The encoding of
the path constructor with label 𝑐 : 𝐶 is given by eq𝒮𝑐.
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Chapter 4

Formalisation
Both the code used to typeset this thesis and the formalisation itself are available at the following

repository.

https://codeberg.org/foxy/impredicative-encodings-of-hits

The offline reader may instead consult the compressed archive embedded within this PDF
document. While the markup code for the thesis consists of a Typst project released under Creative
Commons Attribution-NoDerivatives 4.0 International, the formalisation is distributed as a self-
contained Agda library under the GNU Affero General Public License. This setup makes it fairly
easy to build upon our formalisation.

The project is built against Agda v2.8.0, the latest stable release at the time of writing. The
following sections touch upon more technical design choices.

4.1 Project Structure
The following tree omits markup code and assets for the thesis, as well as licences, git-related files,
CI/CD pipelines, and README.md.

/

├─ impredicative-encodings-of-hits.agda-lib (library file)
└─ src/

├─ ImprHIT.agda
├─ Background.agda
├─ Background/
│ ├─ Weide.agda (Section 1.1.1)
│ ├─ WSuspensions.agda (Section 1.1.2)
│ ├─ Examples.agda (Section 1.1.3)
│ └─ Impredicativity.agda (Section 1.3)
├─ SetTruncated.agda
├─ SetTruncated/
│ ├─ LawfulSetAlgebra.agda (Section 2.1)
│ ├─ Limits.agda (Section 2.2)
│ ├─ Initial.agda (Section 2.3)
│ └─ Rules.agda (Section 2.4)
└─ General.agda
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4.2 Cubical Mode
As already stated, univalence is not assumed anywhere in our work. All the formalised results
already hold in Martin-Löf’s intensional type theory enriched with function extensionality. However,
because homotopy levels and their theory historically originate in homotopy type theory, vanilla,
non-univalent Agda does not feature those in its standard library. Instead, these are part of Agda’s
Cubical library [3]. Cubical mode (--cubical) is how Agda approaches homotopy type theory and
univalent foundations, as described by A. Vezzosi, A. Mörtberg, and A. Abel [28]. With the goal of
not reinventing the wheel in mind, our set-truncated encodings are therefore formalised in Cubical
Agda. Of course, the added definitional equalities also make the formalisation work itself easier. At
the time of writing, the agda/cubical library has yet to see its first stable release, so expect the build
to fail if you upgrade it without adapting the codebase. Much like this library, we also make use of
the --no-import-sorts flag. This ensures we consistently use the Type nomenclature introduced by
agda/cubical for type universes, rather than the misleading Set. Because the library makes project-
wide use of --guardedness, we have to use such an option, too. The last flag our project shares
with the standard library is -WnoUnsupportedIndexedMatch. This ignores warnings about pattern-
matching features that are safe, but whose computational behaviour in presence of transports has
not been implemented by Cubical Agda yet.

From a stylistic point of view, we try to avoid any explicit mention of interval variables in our
proofs. Instead, we work at a higher abstraction level by making use of well-known lemmas already
defined in agda/cubical, such as congruence, symmetry, and function extensionality. This makes our
work fully understandable to people with experience in homotopy type theory, but not in cubical
type theory.

In a way, because the literature on dependent type theory is lacking rigorous conservativity
results between the different type theories that extend our basic system, rewriting our proof in this
specific flavour of Cubical Type Theory could even be seen as its own result.

4.3 Extensibility
A possible future formalisation of the non-truncated encodings would not require any theory about
homotopy levels. Hence, it might be sensible not to use Cubical Agda for it. Our setup takes this
into account by marking the project as --cubical-compatible, rather than --cubical, and using --
cubical only in the modules in which it is actually required. The necessary scaffolding for the future
work, as well as a definition of 𝒲-suspension signature inspired by the Containers found in the Agda
standard library [2], are already in place.

4.4 Impredicativity
Agda’s bottom universe is predicative, while our work necessitates impredicative products. We could,
of course, recreate our variant of homotopy type theory within Agda’s type system, using the latter
as our meta-theory, and then working in our object theory. This, however, would prove to be too
cumbersome. Instead, we just axiomatise impredicative products as their own, separate types next to
Agda’s predicative ones. That is to say, we postulate the types of a type former Π, a term constructor
Λ, an eliminator ev.
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11 postulate
12   Π : (A : Type ℓ) (B : A → Type₀) → Type₀ -- formation
13   Λ : (∀ x → B x) → Π A B                  -- introduction

Listing 1: Background.Impredicativity.agda, lines 11-14 ⚙

The 𝛽-rule Π-β and the 𝜂-rule Π-η look like the following:

16 postulate
17   Π-β : (f : ∀ x → B x) → ev (Λ f) ≡ f
18   Π-η : (f : Π A B) → Λ (ev f) ≡ f
19

20 {-# BUILTIN REWRITE _≡_ #-}

Listing 2: Background.Impredicativity.agda, lines 16-21 ⚙

The last two lines state that Agda’s evaluation relation should be extended with these two new
computation rules. The code snippet for non-Cubical Agda is equivalent. These postulates, next to
the use of REWRITE, are the only reason our project cannot qualify as --safe. People not familiar
with Agda syntax might be surprised at ≡ being used as a binary dependent type. Confusingly,
this symbol is used by Agda to denote propositional equality. So what we are actually doing here is
writing down propositional versions of our rules inside the system first, and only later turning them
into rewrite rules.
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Chapter 5

Conclusions
We have extended the set-truncated impredicative encodings given by S. Awodey, J. Frey, and

S. Speight [4] from 𝒲-types to Van der Weide HITs, formalising our work in Cubical Agda. We
have extended the impredicative encodings given by X. Ripoll Echeveste [21] from 𝒲-types to 𝒲-
suspensions.

5.1 Related Work
The seminal paper by S. Awodey, J. Frey, and S. Speight [4] already describes the encoding of the
circle and of 1-truncations, without generalising to any class of higher inductive types. The encodings
for the regular inductive types are adapted to quotients and M-types by S. Bronsveld, H. Geuvers,
and N. van der Weide [8], who base their work on S. Bronsveld [9]. While their paper assumes
uniqueness of identity proofs, one could in principle port their results to a system without UIP, by
working within the impredicative subuniverse of set-truncated types.

If we move to encodings of HITs that reduce them to simpler ones, rather than employing
impredicativity, the literature becomes much richer. F. van Doorn [11] and N. Kraus [15] use non-
recursive higher inductive types to construct propositional truncation. E. Rijke [19] starts from
the join construction to encode 𝑛-truncations, the Rezk completion, and set quotients. A. Kaposi,
A. Kovács, and T. Altenkirch [14] show that all finitary quotient inductive-inductive types can be
reconstructed starting from one particular member of such a class and uniqueness of identity proofs.
N. van der Weide and H. Geuvers [29], working with the same Van der Weide higher inductive types
we also used, reduce all set-truncated HITs to quotients and propositional truncations. Finally, N.
van der Weide [30], with a more general class that also allows for homotopy constructors, encodes
all 1-truncated HITs from the groupoid quotient. All these methods take place entirely within the
chosen type theory, whatever that may be.

5.2 Limitations
While our work does not necessitate any additional assumptions when compared to its counterparts
for 𝒲-types, it certainly suffers from the same limitation: the obtained encodings do not allow for
large elimination, i.e. elimination into higher universes.

5.3 Future Work
The most immediate path of work is adapting our non-truncated encodings to classes of higher
inductive types that are more and more general. A. Kaposi and A. Kovács [13] list several candidates.
However, not much work has been done to relate different classes of higher inductive types in terms
of expressivity. Secondly, reworking our proof with an exposition informed by 2-category theory
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would be able to give more insight on why two layers of inductivity suffice. Finally, our setup for
impredicativity in Agda can easily be reused as-is for our non-truncated impredicative encodings of
𝒲-suspensions.
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GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

                            Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of works, specifically designed to ensure cooperation with the community in the case of network server software.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works.  By contrast, our General Public Licenses are intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users.

When we speak of free software, we are referring to freedom, not price.  Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License which gives you legal permission to copy, distribute and/or modify the software.

A secondary benefit of defending all users' freedom is that improvements made in alternate versions of the program, if they receive widespread use, become available for other developers to incorporate.  Many developers of free software are heartened and encouraged by the resulting cooperation.  However, in the case of software used on network servers, this result may fail to come about. The GNU General Public License permits making a modified version and letting the public access it on a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the modified source code becomes available to the community.  It requires the operator of a network server to provide the source code of the modified version running there to the users of that server.  Therefore, public use of a modified version, on a publicly accessible server, gives the public access to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was designed to accomplish similar goals.  This is a different license, not a version of the Affero GPL, but Affero has released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

                       TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU Affero General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License.  Each licensee is addressed as "you".  "Licensees" and "recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy.  The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the Program.

To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.  Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to make or receive copies.  Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License.  If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.
The "source code" for a work means the preferred form of the work for making modifications to it.  "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form.  A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities.  However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work.  For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met.  This License explicitly affirms your unlimited permission to run the unmodified Program.  The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work.  This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force.  You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright.  Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.  Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

    a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

    b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7.  This requirement modifies the requirement in section 4 to "keep intact all notices".

    c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.  This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.  This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.

    d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit.  Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

    a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.

    b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

    c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.  This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.

    d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge.  You need not require recipients to copy the Corresponding Source along with the object code.  If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source.  Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

    e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.  In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage.  For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product.  A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source.  The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information.  But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed.  Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law.  If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it.  (Additional permissions may be written to require their own removal in certain cases when you modify the work.)  You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

    a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

    b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or

    c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or

    d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

    e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

    f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10.  If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term.  If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License.  Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License.  If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.  Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance.  However, nothing other than this License grants you permission to propagate or modify any covered work.  These actions infringe copyright if you do not accept this License.  Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License.  You are not responsible for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations.  If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License.  For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based.  The work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version.  For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement).  To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent
license to downstream recipients.  "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.  You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License.  If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may
not convey it at all.  For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program, your modified version must prominently offer all users interacting with it remotely through a computer network (if your version supports such interaction) an opportunity to receive the Corresponding Source of your version by providing access to the Corresponding Source from a network server at no charge, through some standard or customary means of facilitating copying of software.  This Corresponding Source shall include the Corresponding Source for any work covered by version 3 of the GNU General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU General Public License into a single combined work, and to convey the resulting work.  The terms of this License will continue to apply to the part which is the covered work, but the work with which it is combined will remain governed by version 3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU Affero General Public License from time to time.  Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number.  If the Program specifies that a certain numbered version of the GNU Affero General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation.  If the Program does not specify a version number of the GNU Affero General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Affero General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions.  However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

            How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program.  It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

     impredicative-encodings-of-hits
     Copyright (C) 2025  foxy

     This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

     This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Affero General Public License for more details.

     You should have received a copy of the GNU Affero General Public License along with this program.  If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a computer network, you should also make sure that it provides a way for users to get its source.  For example, if your program is a web application, its interface could display a "Source" link that leads users to an archive of the code.  There are many ways you could offer source, and different solutions will be better for different programs; see section 13 for the specific requirements.

You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU AGPL, see <http://www.gnu.org/licenses/>.
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Attribution-NoDerivatives 4.0 International

=======================================================================

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

     Considerations for licensors: Our public licenses are
     intended for use by those authorized to give the public
     permission to use material in ways otherwise restricted by
     copyright and certain other rights. Our licenses are
     irrevocable. Licensors should read and understand the terms
     and conditions of the license they choose before applying it.
     Licensors should also secure all rights necessary before
     applying our licenses so that the public can reuse the
     material as expected. Licensors should clearly mark any
     material not subject to the license. This includes other CC-
     licensed material, or material used under an exception or
     limitation to copyright. More considerations for licensors:
    wiki.creativecommons.org/Considerations_for_licensors

     Considerations for the public: By using one of our public
     licenses, a licensor grants the public permission to use the
     licensed material under specified terms and conditions. If
     the licensor's permission is not necessary for any reason--for
     example, because of any applicable exception or limitation to
     copyright--then that use is not regulated by the license. Our
     licenses grant only permissions under copyright and certain
     other rights that a licensor has authority to grant. Use of
     the licensed material may still be restricted for other
     reasons, including because others have copyright or other
     rights in the material. A licensor may make special requests,
     such as asking that all changes be marked or described.
     Although not required by our licenses, you are encouraged to
     respect those requests where reasonable. More considerations
     for the public:
    wiki.creativecommons.org/Considerations_for_licensees


=======================================================================

Creative Commons Attribution-NoDerivatives 4.0 International Public
License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-NoDerivatives 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.


Section 1 -- Definitions.

  a. Adapted Material means material subject to Copyright and Similar
     Rights that is derived from or based upon the Licensed Material
     and in which the Licensed Material is translated, altered,
     arranged, transformed, or otherwise modified in a manner requiring
     permission under the Copyright and Similar Rights held by the
     Licensor. For purposes of this Public License, where the Licensed
     Material is a musical work, performance, or sound recording,
     Adapted Material is always produced where the Licensed Material is
     synched in timed relation with a moving image.

  b. Copyright and Similar Rights means copyright and/or similar rights
     closely related to copyright including, without limitation,
     performance, broadcast, sound recording, and Sui Generis Database
     Rights, without regard to how the rights are labeled or
     categorized. For purposes of this Public License, the rights
     specified in Section 2(b)(1)-(2) are not Copyright and Similar
     Rights.

  c. Effective Technological Measures means those measures that, in the
     absence of proper authority, may not be circumvented under laws
     fulfilling obligations under Article 11 of the WIPO Copyright
     Treaty adopted on December 20, 1996, and/or similar international
     agreements.

  d. Exceptions and Limitations means fair use, fair dealing, and/or
     any other exception or limitation to Copyright and Similar Rights
     that applies to Your use of the Licensed Material.

  e. Licensed Material means the artistic or literary work, database,
     or other material to which the Licensor applied this Public
     License.

  f. Licensed Rights means the rights granted to You subject to the
     terms and conditions of this Public License, which are limited to
     all Copyright and Similar Rights that apply to Your use of the
     Licensed Material and that the Licensor has authority to license.

  g. Licensor means the individual(s) or entity(ies) granting rights
     under this Public License.

  h. Share means to provide material to the public by any means or
     process that requires permission under the Licensed Rights, such
     as reproduction, public display, public performance, distribution,
     dissemination, communication, or importation, and to make material
     available to the public including in ways that members of the
     public may access the material from a place and at a time
     individually chosen by them.

  i. Sui Generis Database Rights means rights other than copyright
     resulting from Directive 96/9/EC of the European Parliament and of
     the Council of 11 March 1996 on the legal protection of databases,
     as amended and/or succeeded, as well as other essentially
     equivalent rights anywhere in the world.

  j. You means the individual or entity exercising the Licensed Rights
     under this Public License. Your has a corresponding meaning.


Section 2 -- Scope.

  a. License grant.

       1. Subject to the terms and conditions of this Public License,
          the Licensor hereby grants You a worldwide, royalty-free,
          non-sublicensable, non-exclusive, irrevocable license to
          exercise the Licensed Rights in the Licensed Material to:

            a. reproduce and Share the Licensed Material, in whole or
               in part; and

            b. produce and reproduce, but not Share, Adapted Material.

       2. Exceptions and Limitations. For the avoidance of doubt, where
          Exceptions and Limitations apply to Your use, this Public
          License does not apply, and You do not need to comply with
          its terms and conditions.

       3. Term. The term of this Public License is specified in Section
          6(a).

       4. Media and formats; technical modifications allowed. The
          Licensor authorizes You to exercise the Licensed Rights in
          all media and formats whether now known or hereafter created,
          and to make technical modifications necessary to do so. The
          Licensor waives and/or agrees not to assert any right or
          authority to forbid You from making technical modifications
          necessary to exercise the Licensed Rights, including
          technical modifications necessary to circumvent Effective
          Technological Measures. For purposes of this Public License,
          simply making modifications authorized by this Section 2(a)
          (4) never produces Adapted Material.

       5. Downstream recipients.

            a. Offer from the Licensor -- Licensed Material. Every
               recipient of the Licensed Material automatically
               receives an offer from the Licensor to exercise the
               Licensed Rights under the terms and conditions of this
               Public License.

            b. No downstream restrictions. You may not offer or impose
               any additional or different terms or conditions on, or
               apply any Effective Technological Measures to, the
               Licensed Material if doing so restricts exercise of the
               Licensed Rights by any recipient of the Licensed
               Material.

       6. No endorsement. Nothing in this Public License constitutes or
          may be construed as permission to assert or imply that You
          are, or that Your use of the Licensed Material is, connected
          with, or sponsored, endorsed, or granted official status by,
          the Licensor or others designated to receive attribution as
          provided in Section 3(a)(1)(A)(i).

  b. Other rights.

       1. Moral rights, such as the right of integrity, are not
          licensed under this Public License, nor are publicity,
          privacy, and/or other similar personality rights; however, to
          the extent possible, the Licensor waives and/or agrees not to
          assert any such rights held by the Licensor to the limited
          extent necessary to allow You to exercise the Licensed
          Rights, but not otherwise.

       2. Patent and trademark rights are not licensed under this
          Public License.

       3. To the extent possible, the Licensor waives any right to
          collect royalties from You for the exercise of the Licensed
          Rights, whether directly or through a collecting society
          under any voluntary or waivable statutory or compulsory
          licensing scheme. In all other cases the Licensor expressly
          reserves any right to collect such royalties.


Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

  a. Attribution.

       1. If You Share the Licensed Material, You must:

            a. retain the following if it is supplied by the Licensor
               with the Licensed Material:

                 i. identification of the creator(s) of the Licensed
                    Material and any others designated to receive
                    attribution, in any reasonable manner requested by
                    the Licensor (including by pseudonym if
                    designated);

                ii. a copyright notice;

               iii. a notice that refers to this Public License;

                iv. a notice that refers to the disclaimer of
                    warranties;

                 v. a URI or hyperlink to the Licensed Material to the
                    extent reasonably practicable;

            b. indicate if You modified the Licensed Material and
               retain an indication of any previous modifications; and

            c. indicate the Licensed Material is licensed under this
               Public License, and include the text of, or the URI or
               hyperlink to, this Public License.

          For the avoidance of doubt, You do not have permission under
          this Public License to Share Adapted Material.

       2. You may satisfy the conditions in Section 3(a)(1) in any
          reasonable manner based on the medium, means, and context in
          which You Share the Licensed Material. For example, it may be
          reasonable to satisfy the conditions by providing a URI or
          hyperlink to a resource that includes the required
          information.

       3. If requested by the Licensor, You must remove any of the
          information required by Section 3(a)(1)(A) to the extent
          reasonably practicable.


Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

  a. for the avoidance of doubt, Section 2(a)(1) grants You the right
     to extract, reuse, reproduce, and Share all or a substantial
     portion of the contents of the database, provided You do not Share
     Adapted Material;

  b. if You include all or a substantial portion of the database
     contents in a database in which You have Sui Generis Database
     Rights, then the database in which You have Sui Generis Database
     Rights (but not its individual contents) is Adapted Material; and

  c. You must comply with the conditions in Section 3(a) if You Share
     all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.


Section 5 -- Disclaimer of Warranties and Limitation of Liability.

  a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
     EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
     AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
     ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
     IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
     WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
     PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
     ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
     KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
     ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

  b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
     TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
     NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
     INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
     COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
     USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
     ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
     DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
     IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

  c. The disclaimer of warranties and limitation of liability provided
     above shall be interpreted in a manner that, to the extent
     possible, most closely approximates an absolute disclaimer and
     waiver of all liability.


Section 6 -- Term and Termination.

  a. This Public License applies for the term of the Copyright and
     Similar Rights licensed here. However, if You fail to comply with
     this Public License, then Your rights under this Public License
     terminate automatically.

  b. Where Your right to use the Licensed Material has terminated under
     Section 6(a), it reinstates:

       1. automatically as of the date the violation is cured, provided
          it is cured within 30 days of Your discovery of the
          violation; or

       2. upon express reinstatement by the Licensor.

     For the avoidance of doubt, this Section 6(b) does not affect any
     right the Licensor may have to seek remedies for Your violations
     of this Public License.

  c. For the avoidance of doubt, the Licensor may also offer the
     Licensed Material under separate terms or conditions or stop
     distributing the Licensed Material at any time; however, doing so
     will not terminate this Public License.

  d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
     License.


Section 7 -- Other Terms and Conditions.

  a. The Licensor shall not be bound by any additional or different
     terms or conditions communicated by You unless expressly agreed.

  b. Any arrangements, understandings, or agreements regarding the
     Licensed Material not stated herein are separate from and
     independent of the terms and conditions of this Public License.


Section 8 -- Interpretation.

  a. For the avoidance of doubt, this Public License does not, and
     shall not be interpreted to, reduce, limit, restrict, or impose
     conditions on any use of the Licensed Material that could lawfully
     be made without permission under this Public License.

  b. To the extent possible, if any provision of this Public License is
     deemed unenforceable, it shall be automatically reformed to the
     minimum extent necessary to make it enforceable. If the provision
     cannot be reformed, it shall be severed from this Public License
     without affecting the enforceability of the remaining terms and
     conditions.

  c. No term or condition of this Public License will be waived and no
     failure to comply consented to unless expressly agreed to by the
     Licensor.

  d. Nothing in this Public License constitutes or may be interpreted
     as a limitation upon, or waiver of, any privileges and immunities
     that apply to the Licensor or You, including from the legal
     processes of any jurisdiction or authority.

=======================================================================

Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the â��Licensor.â�� The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.
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Copyright 2018 The Noto Project Authors (github.com/googlei18n/noto-fonts)

This Font Software is licensed under the SIL Open Font License,
Version 1.1.

This license is copied below, and is also available with a FAQ at:
http://scripts.sil.org/OFL

-----------------------------------------------------------
SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007
-----------------------------------------------------------

PREAMBLE
The goals of the Open Font License (OFL) are to stimulate worldwide
development of collaborative font projects, to support the font
creation efforts of academic and linguistic communities, and to
provide a free and open framework in which fonts may be shared and
improved in partnership with others.

The OFL allows the licensed fonts to be used, studied, modified and
redistributed freely as long as they are not sold by themselves. The
fonts, including any derivative works, can be bundled, embedded,
redistributed and/or sold with any software provided that any reserved
names are not used by derivative works. The fonts and derivatives,
however, cannot be released under any other type of license. The
requirement for fonts to remain under this license does not apply to
any document created using the fonts or their derivatives.

DEFINITIONS
"Font Software" refers to the set of files released by the Copyright
Holder(s) under this license and clearly marked as such. This may
include source files, build scripts and documentation.

"Reserved Font Name" refers to any names specified as such after the
copyright statement(s).

"Original Version" refers to the collection of Font Software
components as distributed by the Copyright Holder(s).

"Modified Version" refers to any derivative made by adding to,
deleting, or substituting -- in part or in whole -- any of the
components of the Original Version, by changing formats or by porting
the Font Software to a new environment.

"Author" refers to any designer, engineer, programmer, technical
writer or other person who contributed to the Font Software.

PERMISSION & CONDITIONS
Permission is hereby granted, free of charge, to any person obtaining
a copy of the Font Software, to use, study, copy, merge, embed,
modify, redistribute, and sell modified and unmodified copies of the
Font Software, subject to the following conditions:

1) Neither the Font Software nor any of its individual components, in
Original or Modified Versions, may be sold by itself.

2) Original or Modified Versions of the Font Software may be bundled,
redistributed and/or sold with any software, provided that each copy
contains the above copyright notice and this license. These can be
included either as stand-alone text files, human-readable headers or
in the appropriate machine-readable metadata fields within text or
binary files as long as those fields can be easily viewed by the user.

3) No Modified Version of the Font Software may use the Reserved Font
Name(s) unless explicit written permission is granted by the
corresponding Copyright Holder. This restriction only applies to the
primary font name as presented to the users.

4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font
Software shall not be used to promote, endorse or advertise any
Modified Version, except to acknowledge the contribution(s) of the
Copyright Holder(s) and the Author(s) or with their explicit written
permission.

5) The Font Software, modified or unmodified, in part or in whole,
must be distributed entirely under this license, and must not be
distributed under any other license. The requirement for fonts to
remain under this license does not apply to any document created using
the Font Software.

TERMINATION
This license becomes null and void if any of the above conditions are
not met.

DISCLAIMER
THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM
OTHER DEALINGS IN THE FONT SOFTWARE.
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# Higher Inductive Types Via Impredicative Encodings

[![status-badge](https://ci.codeberg.org/api/badges/14083/status.svg)](https://ci.codeberg.org/repos/14083)

My master's thesis for the Master of Logic at the [Institute for Logic,
Language, and Computation](https://www.illc.uva.nl/) ([University of
Amsterdam](https://www.uva.nl/)). The following resources are available online:

- [`Thesis.pdf`, the full text thesis](https://foxy.codeberg.page/impredicative-encodings-of-hits/Thesis.pdf);
- [the formalisation (as a hypertext)](https://foxy.codeberg.page/impredicative-encodings-of-hits/ImprHIT);
- [`Presentation.pdf`, the slides introducing the topic](https://foxy.codeberg.page/impredicative-encodings-of-hits/Presentation.lagda.pdf);
- [`Project.pdf`, the project description](https://foxy.codeberg.page/impredicative-encodings-of-hits/Project.pdf).

## Checking the program

Assuming the dependencies declared in `impredicative-encodings-of-hits.agda-lib`
are on your system, you may check the Agda formalisation using:

```bash
agda $DOCUMENT
```

where `$DOCUMENT` can be:

- `src/ImprHIT.agda` (the main projects);
- `doc/Presentation.lagda.typ`.

The current versions of Agda and this project is built against is documented at
`.woodpecker.yaml`.

## Generating a document

To generate the PDF documents linked above yourself, you may use:

```bash
typst compile --root=. doc/$DOCUMENT
```

where `$DOCUMENT` can be:

- `Thesis.typ`;
- `Presentation.lagda.typ`;
- `Project.typ`.

The current version of Typst this project is built against is documented at
`.woodpecker/typst.yaml`.

## Licences

- `.agda` and `.agda-lib` files are released under the GNU Affero General Public
  License 3.0 or later
- `.typ` files are released under the Creative Commons Attribution-NoDerivatives
  4.0 International licence
- the fonts are redistributed under the SIL Open Font License Version 1.1
- the ILLC logo is public domain
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/* Tweaked from https://github.com/agda/agda/blob/e4342775741d7a48644b68b0209bdb84444e294f/src/data/html/Agda.css */

/* Aspects. */
.Agda .Comment       { color: #B22222 }
.Agda .Background    {}
.Agda .Markup        { color: #000000 }
.Agda .Keyword       { color: #CD6600 }
.Agda .String        { color: #B22222 }
.Agda .Number        { color: #A020F0 }
.Agda .Symbol        { color: #404040 }
.Agda .PrimitiveType { color: #0000CD }
.Agda .Pragma        { color: black   }
.Agda .Operator      {}
.Agda .Hole          { background: #B4EEB4 }

/* NameKinds. */
.Agda .Bound                  { color: black   }
.Agda .Generalizable          { color: black   }
.Agda .InductiveConstructor   { color: #008B00 }
.Agda .CoinductiveConstructor { color: #8B7500 }
.Agda .Datatype               { color: #0000CD }
.Agda .Field                  { color: #EE1289 }
.Agda .Function               { color: #0000CD }
.Agda .Macro                  { color: #0000CD }
.Agda .Module                 { color: #A020F0 }
.Agda .Postulate              { color: #0000CD }
.Agda .Primitive              { color: #0000CD }
.Agda .Record                 { color: #0000CD }

/* OtherAspects. */
.Agda .DottedPattern        {}
.Agda .UnsolvedMeta         { color: black; background: yellow         }
.Agda .UnsolvedConstraint   { color: black; background: yellow         }
.Agda .TerminationProblem   { color: black; background: #FFA07A        }
.Agda .IncompletePattern    { color: black; background: #F5DEB3        }
.Agda .Error                { color: red;   text-decoration: underline }
.Agda .TypeChecks           { color: black; background: #ADD8E6        }
.Agda .Deadcode             { color: black; background: #808080        }
.Agda .ShadowingInTelescope { color: black; background: #808080        }

/* Standard attributes. */
body { font-size: 20pt }
.Agda a { text-decoration: none }
.Agda a[href]:hover { background-color: #B4EEB4 }
.Agda [href].hover-highlight { background-color: #B4EEB4; }
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#import "@preview/illc-mol-thesis:0.2.0": load-bib

#include "Titlepage.typ"

#pagebreak(to: "odd")

#align(center+horizon, heading("Abstract", numbering: none, outlined: false))

In dependent type theory with an impredicative universe, the usual encodings for
inductive types borrowed from System F do not satisfy the dependent elimination
rule (equivalently, no form of the $eta$-rule holds). Two refinements of these
encodings have been proposed to remedy this. Both apply to all W-types. The
first is by @Awodey_2018. They manage to recover dependent elimination into
0-types of the impredicative universe by assuming the existence of
$Sigma$-types, identity types, and function extensionality. By also assuming
the existence of a natural numbers type, @RipollEcheveste_2023, inspired by the
ideas of @Shulman_2018, devises a second, distinct refinement for W-types. This
time, dependent elimination is possible into the entire impredicative universe.

In this thesis, we show how both encodings can be extended to higher inductive
types. While W-types are a popular choice for a working definition of "inductive
types", there are multiple competing definitions of "higher inductive types" in
the literature. We test our generalisation of the first refinement on the class
of higher inductive types defined by @Basold_2017, and our generalisation of the
second on the W-suspensions by @Sojakova_2015. Finally, we fully formalise the
first refined encoding of higher inductive types in the Agda proof assistant
#cite(<Agda>, form: "normal").

#load-bib(read("../Util/works.yml"))
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#include "Abstract.typ"

#align(bottom)[
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This thesis is on impredicative encodings of higher inductive types. As such, we
assume very basic knowledge in category theory, and in particular functors and
limits. An introductory account of the discipline is provided by @Leinster_2014.
Similarly, we expect the reader to be familiar with some foundational
notions from homotopy type theory, namely function extensionality and homotopy
levels. @Rijke_2025 offers a good text for beginners on this regard. Knowledge
of proof assistants is only required when inspecting the Agda #cite(<Agda>, form: "normal") formalisation of our work. The parts relevant to the text
currently being read can be consulted by clicking on the cogwheel icon
(#gear("html")) accompanying our definitions, statements, examples, and
listings. Some links actually point to the code from the Cubical
Agda Library #cite(<Agda_Cubical>, form: "normal"), on which our work depends.
In case of network problems, the repository is also available as a compressed
archive embedded within this PDF document.

All other background material necessary to understand our work is covered in
this chapter. In particular, we introduce our working definition(s) of
higher inductive types in @higher-inductive-types, and the general idea behind
impredicative encodings in @impredicative-encodings. We only get into the
details of the type theory we are working with in @the-system. Finally, our
contributions are described in @contributions.

== Higher Inductive Types <higher-inductive-types>

In homotopy type theory, higher inductive types (HITs) extend the notion of
inductive types by allowing for _path (or "higher") constructors_. These
generate paths for the type being defined. To avoid confusion, we refer to
traditional constructors as _point constructors_. If an inductive type is freely
generated by some collection of point constructors, a higher inductive type is
freely generated by some collection of point and path
constructors#footnote[Throughout this work, all unqualified uses of the word
  "constructor" refer to point and path constructors collectively.].
To date, there is no consensus on a single, general definition for HIT schemas.
In this thesis, we test our encoding techniques on two different definitions:

1. Van der Weide's HITs as defined in @Basold_2017#footnote[This definition has
    seen adaptations in subsequent papers also by Van der Weide, so our
    appellation choice is for lack of a better name.]. We use them to generalise
  the set-truncated impredicative encodings by @Awodey_2018;
2. W-suspensions by @Sojakova_2015. We use them in the generalisation of the
  impredicative encodings by @RipollEcheveste_2023.

Both definitions are described in the following.

=== Van der Weide's Higher Inductive Types <van-der-weide>

These schemas will be our working definitions when giving impredicative
encodings of set-truncated higher inductive types. Hence, we deviate from the
original definition in that we assume the constants in the polynomial type
constructors to belong to some fixed homotopy level. As per usual, polynomial
type constructors are used as a grammar for constructor argument types. We use
$F$, $G$, $H$... to refer to them. For the rest of this section, we fix a
universe level $ell$ and a homotopy level $h$.

#definition[#gear("Background.Weide#625") The type $"PolyTypeConstr" ell med h$
  of _polynomial type constructors of universe levels $ell$ and homotopy level
    $h$_, or simply "polynomials of level $h$", is defined as

  $
    bold(F) ::= "Const" bold(A) | XX | bold(F) times.circle bold(F) |
    bold(F) plus.circle bold(F)
  $
  where $bold(A) : h dash.en"Type"_ell def sum_(X : cal(U)_ell) "is" dash.en h
  dash.en"Type" X$.
]

By substituting an actual $h$-type $B$ for the 0-ary constructor $𝕏$ in a
polynomial $F$ and interpreting $⊗$ ($⊕$) into $×$ ($+$), we can evaluate such
polynomial at $B$. We write this as "$F[B]$", where the binary $dot [dot]$
operator has higher precedence than function application, so $f F [B]$ is to be
read as $f (F [B])$, and not as $(f F)[B]$. In practice, we are only ever
interested in homotopy sets (level 0) and higher homotopy levels, as mere
propositions are not closed under finite sums, so we need to work with $S (S
  h)$, where $S$ is the "successor" constructor for homotopy levels.

#definition[#gear("Background.Weide#914") Let $F$ be a polynomial type
  constructor of universe level $ell$ and homotopy level $S (S h)$. We define the
  following _evaluation map on types for $F$_ recursively, where $"isOfHLevel×" (S
    (S h))$ and $"isOfHLevel+" h$ witness $"is" dash.en (S (S h)) dash.en
  "Type"_ell$ being closed under binary products and sums respectively.
  $
    F[ dot ] & : (S (S h)) dash.en"Type"_ell -> (S (S h)) dash.en"Type"_ell \
    ("Const" A)[B] & def A \
    XX[ B ] & def B \
    (G times.circle H)[B] & def (pr1 G[B] times pr1 H[B] , "isOfHLevel×" (S (S
          h)) (pr2 G[B]) (pr2 H[B])) \
    (G plus.circle H)[B] & def (pr1 G[B] + pr1 H[B] , "isOfHLevel+" h
      (pr2 G[B]) (pr2 H[B]))
  $
]

Similarly, we can lift a function $f : B -> C$ between
types of some homotopy level to a polynomial $F$ whose constants belong to the
same level (write "$F[[f]]$", where again $dot[[dot]]$ has higher precedence
than function application).

#definition[#gear("Background.Weide#1332") Let $F$ be a polynomial type
  constructor of universe level $ell$ and homotopy level $S (S h)$. Let $(B, k),
  (C, l) : (S (S h)) dash.en"Type"$. We define the following _evaluation map on
    functions from $(B, k)$ to $(C, l)$ for $F$_ recursively.
  $
                   F[[dot]] & : (B -> C) -> pr1 F[(B, k)] -> pr1 F[(C, l)] \
      ("Const" (A, m))[[f]] & def id_A \
                    XX[[f]] & def f \
    (G times.circle H)[[f]] & def "map×" G[[f]] H[[f]] \
     (G plus.circle H)[[f]] & def "map+" G[[f]] H[[f]]
  $
]

At the set level (i.e., for $h equiv -2$ and hence $S (S h) equiv 0$), which
will be our setting, this extends to a functor on $Set_ell$, the precategory
(i.e., non-univalent category with set-truncated hom-types) of homotopy sets in
$cal(U)_ell$ and functions between them, in the obvious way.
While we could generalise this observation to higher homotopy levels, we would
need to lift the restriction of hom-types between any two objects being
set-truncated, and this would result in working with wild#footnote[Recall that
  "wild" stands for "whose type of morphisms between any two fixed objects needs
  not be a homotopy set".]
precategories (@Capriotti_2017), rather than precategories. As this
generalisation is not necessary, we just stick to the set level when working
with endofunctors in this subsection.

#proposition[#gear("Background.Weide#1608") Let $F$ be a polynomial type
  constructor of universe level $ell$ and homotopy level $0$. Then $F[dot]$ and
  $F[[dot]]$ are the actions on objects and maps respectively of an endofunctor on
  $Set_ell$ that we denote by $"polyFuncOnSet" F$.
]<endofunctor>
#proof[The identity and composition conditions for functors hold definitionally
  if $F$ is a constant or variable $XX$. For $F equiv G times.circle H$, $(A, k) :
  0 dash.en"Type"_ell$, we have
  $
    (G times.circle H)[id_A] & equiv "map×" G[[id_A]] H[[id_A]] \
                             & eqIH "map×" id_(pr1 G[(A, k)]) id_(pr1 H[(A, k)]) \
                             & equiv id_(pr1 (G[(A, k)] times H[(A, k)])) \
                             & equiv id_(pr1 (G times.circle H)[(A, k)])
  $
  and
  $
    (G times.circle H)[[g comp f]]
    & equiv "map×" G[[g comp f]] H[[g comp f]] \
    & eqIH "map×" (G[[g]] comp G[[f]]) (H[[g]] comp H[[f]]) \
    & equiv "map×" G[[g]] H[[g]] comp "map×" G[[f]] H[[f]] \
    & equiv (G times.circle H)[[g]] comp (G times.circle H)[[f]].
  $
  The case where $F equiv G plus.circle H$ is quite similar.
]

Now, initial semantics for inductive types usually deals with all
(point) constructors at the same time using a single endofunctor. We will do the
same: consider a family $(H_i)_(i : Fin k)$, of $k : NN$ polynomials of universe
level $ell$ and homotopy level $0$. Each of its members induces an endofunctor
on $Set_ell$ as constructed in @endofunctor. We can easily define a new
endofunctor $plus.circle.big H$ on $Set_ell$ by pointwise taking the $k$-ary
coproduct as the action on objects. Such evaluation map can always be converted
back to a family of $k$ separate functions, one for each point constructor. This
can be thought of as deconstructing an universal arrow for a $k$-ary coproduct
diagram.

#definition[#gear("Background.Weide#5553") Let $B : h dash.en"Type"_ell$. Given
  a family $(H_i)_(i : Fin k)$ of $k : NN$ polynomials of universe level $ell$ and
  homotopy level $h$, we define a helper function
  $ & "scatter" : (pr1 (plus.circle.big H) B -> pr1 B) -> product_(i : Fin k)
    pr1 H_i [B] -> pr1 B \
  & "scatter" alpha med i def alpha med comp med "in"_i $ where $"in"_i$ is the $i$-th constructor of $k$-ary sums.
]

The inverse operation, which we will call $"cluster"$, will also be helpful: it
is simply the $"map"$ function for $k$-ary sums (i.e., the function computing
the universal arrow for $k$-ary coproducts), with signature

$
  (product_(i : Fin k) pr1 H_i [B] -> pr1 B) -> pr1 (plus.circle.big H) [B] ->
  pr1 B.
$

Of course, these two functions are each other's inverses.
/*
In order to eventually state the premises of the $eta$-equality for a higher
inductive types, we now observe that polynomials can also be lifted to type
families and maps between them. So we are just restating the previous
definitions in the dependent setting.

#definition[Let $F$ be a polynomial type constructor of universe level $ell$ and
homotopy level $S(S h)$. If $U : B -> cal(U)_ell$ is a type family, with $(B,
p) : h dash.en"Type"_ell$, the _lifting of polynomial type constructor $F$ to
type family $U$_, or $overline(F)(U)$, is given by the following induction.

$ overline(F)(U) &: pr1 F[(B, p)] -> cal(U)_ell \
  overline("Const" A)(U) &def lambda x . A \
  overline(XX)(U) &def U \
  overline(G times.circle H)(U) &def lambda x . overline(G)(U)(pr1 x) times
                                                overline(H)(U)(pr2 x) \
  overline(G plus.circle H)(U) ("inl" x) &def overline(G)(U)x \
  overline(G plus.circle H)(U) ("inr" x) &def overline(H)(U)x
$]

We overload this notation for the lifting to maps between type families.

#definition[Let $F$ be a polynomial type constructor of universe level $ell$ and
homotopy level $S(S h)$. If $f : product_(b : B) U b -> V b$ is a map between
type families, with $(B, p) : h dash.en"Type"_ell$, the _lifting of polynomial
type constructor $F$ to the map between type families $f$_, or $overline(F)(f)$,
is given by the following induction.

$ overline(F)(f) &: product_(x : pr1 F[(B, p)]) overline(F)(U)x ->
  overline(F)(V)x \
  overline("Const" A)(f) &def lambda x . "id"_A \
  overline(XX)(f) &def f \
  overline(G times.circle H)(f) &def lambda b . overline(G)(f)(pr1 b) times
                                                overline(H)(f)(pr2 b) \
  overline(G plus.circle H)(f) ("inl" x) &def overline(G)(f)x \
  overline(G plus.circle H)(f) ("inr" x) &def overline(H)(f)x
$
]
*/
Covered polynomial type constructors, we move to endpoints of path constructors
(for which we use symbols $t$, $r$, $s$, ...). These also follow a specific
grammar.

#definition[#gear("Background.Weide#6329") Let $(H_i)_(i : Fin k)$ be a finite
  family#footnote[We use $1, 2, ..., k$ to denote the terms of type $Fin k$.] of
  $k : NN$ of polynomials of universe level $ell$ and homotopy level $h$. Let $F$
  be a polynomial of universe level $ell$ and homotopy level $h$. The type family

  $ "PathConstructorTerm" H F: "PolyTypeConstr" ell med h -> cal(U)_(S ell) $

  is inductively defined by the following introduction rules. We read type
  $"PathConstructorTerm" H F G$ as _"path constructor term over $H$ from $F$ to
    $G$"_.

  $
    #prooftree(rule(
      $tack "ConstTerm" t : "PathConstructorTerm" H F A$,
      $tack t : A$,
    ))
    wide
    #prooftree(rule($tack 𝕩 : "PathConstructorTerm" H F F$))
    \
    #prooftree(rule(
      $tack c_i s : "PathConstructorTerm" H F XX$,
      $tack s : "PathConstructorTerm" H F H_i$,
    ))
    wide
    #prooftree(rule(
      $tack pi_j s : "PathConstructorTerm" H F G_j$,
      name: $j in {1,2}$,
      $tack s : "PathConstructorTerm" H F (G_1 ⊗ G_2)$,
    ))
    \
    #prooftree(rule(
      $tack (s_1,s_2) : "PathConstructorTerm" H F (G_1 ⊗ G_2)$,
      $tack s_1 : "PathConstructorTerm" H F G_1$,
      $tack s_2 : "PathConstructorTerm" H F G_2$,
    ))
    \
    #prooftree(rule(
      $tack "in"_j s : "PathConstructorTerm" H F (G_1 ⊕ G_2)$,
      name: $j in {1,2}$,
      $tack s : "PathConstructorTerm" H F G_j$,
    ))
  $
]

Much like for polynomials, we can also evaluate constructor terms for a type
$B : h dash.en"Type"_ell$. This time, however, we also need to specify that we
are interpreting our $k$ point constructors using some evaluation map
$pr1 ((plus.circle.big H) B) -> pr1 B$. We also need some constant $y : pr1
F[B]$ to evaluate the path argument $x$, so we write $r【B, d, y】$. We adopt
the convention that $f r【B, d_i, y】$ is to be read as $f (r【B, d_i, y】)$,
rather than $(f r)【B, d_i, y】$.

#definition[#gear("Background.Weide#7182") Let $(H_i)_(i : Fin k)$ $k : NN$ be a
  family of polynomials of universe level $ell$ and homotopy level $0$. Let $F, G
  : "PolyTypeConstr" ell h$, $r : "PathConstructorTerm" H F G$, $B : h dash.en
  "Type"_ell$, $d : pr1 ((plus.circle.big H) B) -> pr1 B$, $y : pr1 F[B]$. We
  define $r【B, d, y】$, the _value of path constructor term $r$ at
    $B$-$d$-$y$_, via structural recursion on $r$.
  $
                  r【B, d, y】 & : pr1 G[B] \
    ("ConstTerm" a)【B, d, y】 & def a \
                  𝕩【B, d, y】 & def y \
            (c_i s)【B, d, y】 & def "scatter" d med i med (s 【B, d, y】) \
           (pi_1 s)【B, d, y】 & def pr1 s 【B, d, y】 \
           (pi_2 s)【B, d, y】 & def pr2 s 【B, d, y】 \
             (s, t)【B, d, y】 & def (s 【B, d, y】, t 【B, d, y】) \
         ("in"_1 s)【B, d, y】 & def "inl" s 【B, d, y】 \
         ("in"_2 s)【B, d, y】 & def "inr" s 【B, d, y】 \
  $
]

/*To prove that the value of a path constructor term satisfies (the lifting of a
polynomial to) a predicate, we only need a proof for the path argument used to
evaluate it, together with "induction steps" that specify how to behave when
encountering constructors. This is the idea behind the following construction,
which will later be needed when specifying the $eta$-rule for higher inductive
types.

#definition[Let $(H_i)_(i : Fin k)$ $k : NN$ be a
family of polynomials of universe level $ell$ and homotopy level $h$. Let $F, G
: "PolyTypeConstr" ell h$, $r : "PathConstructorTerm" H F G$, $T : h dash.en
"Type"_ell$, $d : pr1 (plus.circle.big H) [T] -> pr1 T$, $x : pr1 F[T]$.
Consider a type family $U : pr1 T -> cal(U)_ell$. Given a proof $h_x :
overline(F)(U)x$, together with a family $f : product_(i : Fin k) product_(x :
pr1 H_i [T]) overline(H_i)(x) -> U (d ("in"_i x))$, we define the _automatic
proof of predicate $U$ for the value of path constructor term $r$_.
$ hat(r) &: overline(G)(U) r【T, d, x】 \
  hat("ConstTerm" a) &def a \
  hat(𝕩) &def h_x \
  hat(x_i s) &def f_i s hat(s) \
  hat(pi_1 s) &def pi_1 hat(s) \
  hat(pi_2 s) &def pi_2 hat(s) \
  hat((s_1, s_2)) &def (hat(s_1), hat(s_2)) \
  hat("in"_1 s) &def hat(s) \
  hat("in"_2 s) &def hat(s)
  $
]*/

Now, with both polynomial type constructors and constructor terms in place, we
can define HIT signatures.

#definition[#gear("Background.Weide#8210") A _Van der Weide HIT signature of
    homotopy level $S(S h)$_ consists of:
  - a finite collection $(H_i)_(i : Fin k)$ of $k$ polynomials of universe level
    $ell$ and homotopy level $h$ (the point constructor argument types);
  - a finite collection $(A_j, t_j, r_j)_(j : Fin n)$ of $n$ path constructors,
    all being such that:
    - $A_j$ is a polynomial of universe level $ell$ and homotopy level $h$ (the
      argument type);
    - $t_j$ and $r_j$ (the endpoints) are path constructor terms from $A_j$ to $𝕏$
      over $(H_i)_(i : Fin k)$.
]

In other words, a signature stores the information needed for an instance of the
following HIT schema.

#schema[
  Let $T : h dash.en"Type"$ be the HIT generated by:
  - $c_1 : pr1 H_1 [T] → pr1 T$

    ...

  - $c_k : pr1 H_k [T] → pr1 T$
  - $p_1 : Pi_(x : pr1 A_1 [T]) quad t_1【T, "cluster" c, x】=_T
    r_1 【T, "cluster" c, x】$

    ...

  - $p_n : Pi_(x : pr1 A_n [T]) quad t_n【T, "cluster" c, x】=_T
    r_n 【T, "cluster" c, x】$
]

Note that general constructors for higher paths are not available in this
schema out-of-the-box.

=== W-Suspensions <w-suspensions>

While Van der Weide's higher inductive types manage to satisfy real-world
common use cases in algebra and programming, they suffer from the theoretical
shortcoming of not naturally arising as a generalisation of Martin-Löf's
well-founded trees, commonly referred to as "W-types" (@Martin_Löf_1982). They
also depend on ad-hoc grammars, which will make our proofs sometimes depend on
ad-hoc inductions. Neither of these observations applies to our second working
definition, W-suspensions by @Sojakova_2015, which subsume both W-types and
suspensions (@HoTT_book) by design. This second working definition will be our
starting point in the study of non-truncated higher inductive types. As before,
we fix a universe level $ell$.

#definition[#gear("Background.WSuspension#205") A _W-suspension signature_ of
  universe level $ell$ is a tuple $S def (A, B, C, l, r)$, with
  - $A, C : cal(U)_i$,
  - $B : A -> cal(U)_i$, and
  - $l, r : C -> A$.
]

As our name choices suggest, this object is meant to extend a commonplace W-type
signature $(A, B)$ with three new members. For starters, $C: cal(U)_i$ indexes
our path constructors, much like $A$ indexes the point constructors. We can also
talk about $C$ being the type of "labels" for paths between points, much like
$A$ is the type of "labels" for points. Finally, $l: C -> A$ ($r: C -> A$) maps
each path constructor to its left (right) endpoint. If we name the type induced
by this signature $W$, then a path constructor takes as
its two arguments terms $t : B (l c) -> W$ and $s : B (r c) -> W$. These are fed
to the two point constructors labeled by $l c$ and $r c$ respectively. The two
resulting terms of type $W$ are the endpoints of the constructed path.

Unlike Van der Weide's HITs, W-suspensions can therefore be infinitary, but
only allow for a more restrictive form of path constructors.

=== Examples <examples>

A selection of examples of higher inductive types follows. The first one is
can be seen as an instance of both our working definitions.

#example[#gear("Background.Examples#129") A textbook example of higher inductive
  type is the circle $S^1$. It is defined as the HIT generated by:
  - $"base" : S^1$;
  - $"loop" : "base" =_(S^1) "base"$.
]

Even when sticking to homotopy sets alone, higher inductive types can be very
useful. They allow us to construct arbitrary free algebraic structures on a
given homotopy set without coming up with an explicit construction.

#example[#gear("Background.Examples#232") Given a homotopy set $(A, k) : 0
  dash.en"Type"_ell$, we can construct the free semigroup on it by simply
  "writing down" the semigroup operation and axiom. The free semigroup on $A$ can
  be defined as the HIT generated by:
  - $eta : A -> "FreeSemigroup" (A, k)$;
  - $star : "FreeSemigroup" (A, k) -> "FreeSemigroup" (A, k) -> "FreeSemigroup"
    (A, k)$;
  - $"associative" : product_(a, b, c : "FreeSemigroup" (A, k))
    (a star b) star c =_("FreeSemigroup" (A, k)) a star (b star c)$;
  - $"truncated" : "isSet" ("FreeSemigroup" (A, k))$.
  Note that the $"associative"$ path constructor cannot be expressed directly in
  a W-suspension signature. The same phenomenon will also occur multiple times
  in the next example.
]

Real world programming can also benefit from higher inductive types, as explored
by @Basold_2017. In this context, HITs are used as "data types with laws".

#example[#gear("Background.Examples#490") Finite sets over a type $A$
  (à-la-Kuratowski) are defined by @Frumin_2018 as the HIT $cal(K) A$ generated
  by:
  - $emptyset : cal(K) A$;
  - ${dot} : A -> cal(K) A$;
  - $union : cal(K) A -> cal(K) A -> cal(K) A$;
  - $"nl" : product_(x : cal(K) A) emptyset union x =_(cal(K)A) x$;
  - $"nr" : product_(x : cal(K) A) x union emptyset =_(cal(K)A) x$;
  - $"idem" : product_(a : A) {a} union {a} =_(cal(K)A) {a}$;
  - $"assoc" : product_(x, y, z : cal(K) A) x union (y union z)
    =_(cal(K)A) (x union y) union z$;
  - $"com" : product_(x, y : cal(K) A) x union y =_(cal(K)A) y union x$;
  - $"trunc" : "isSet" (cal(K) A)$.
]

== Impredicative Encodings <impredicative-encodings>

System F, the polymorphic lambda calculus, is expressive enough to allow for
(finitary) inductive data types to be encoded in it, as illustrated by
@Sørensen_2006. The encodings are strictly guided by the elimination principle
of the type we are trying to emulate. They are said to be "impredicative"
because of the essential role played by the impredicative $∀$ of System F, which
quantifies over the type being encoded, too.

#example[
  The impredicative encoding for the type of natural numbers $NN$ in System F
  follows from its elimination principle.

  $ NN_F := forall X . (X -> X) -> X -> X $

  It comes with constructors and a recursor:

  #columns(2)[
    #columns(2)[
      $
        bb(0)_F & : NN_F \
        bb(0)_F & := Lambda X . lambda f . "id"_X
      $
      #colbreak()
      $
        bb(S)_F & : NN_F -> NN_F \
        bb(S)_F & := lambda n . Lambda X . lambda f x . f (n X f x)
      $
    ]
    #colbreak()
    $
      "rec"_(NN_F) & : forall X . (X -> X) -> X -> NN_F -> NN_F \
      "rec"_(NN_F) & := Lambda X . lambda f x n . n X f x
    $]
]

In a version of homotopy type theory with a bottom, impredicative universe, this
kind of encoding does not fully work out: the $eta$-equality is not satisfied,
not even propositionally. As $eta$-rules are unicity principles, their failure
can be seen as a signal that the encoding features some non-standard terms (at
least in some models). In this setting, this is equivalent to dependent
elimination not being available. This was discussed by @Awodey_2012,
#cite(<Awodey_2017>, form: "normal"). "Large" elimination (i.e.,
elimination into types of higher universes) is not possible, either.
@Speight_2018, and later @Awodey_2018 propose a refinement to encode all
set-level W-types while retaining $eta$-equality/dependent elimination
into 0-types (thus, throwing the non-standard terms away). The actual
construction for a generic W-type is only spelled out by @RipollEcheveste_2023,
@Bronsveld_2024 (both unpublished), and @Bronsveld_2025.
@RipollEcheveste_2023, starting from ideas by @Shulman_2018, constructs a
separate refinement, where dependent elimination spans the whole impredicative
universe. None of these encodings allow for large elimination.

== The System <the-system>

Our base dependent type theory features dependent functions, strong sums,
intensional identity, and function extensionality. The bottom universe
$cal(U)_0$ is assumed to be impredicative. So we have a predicative
formation rule for successor universes, but an impredicative formation rule for
the bottom universe.

#align(center)[$
  #prooftree(rule(
    $Gamma tack product_(x : A) B : cal(U)_(S i)$,
    $Gamma tack A : cal(U)_(S i)$,
    $Gamma, a : A tack B : cal(U)_(S i)$,
  ))
  wide
  #prooftree(rule(
    $Gamma tack product_(x : A) B : cal(U)_0$,
    $Gamma, a : A tack B : cal(U)_0$,
  ))
$]

The latter does not pose size restrictions on the index type when we are forming
a product in the impredicative universe.

To be able to state Van der Weide's HIT schemas and rules only, we of course
need to assume the relevant inductive types. These are of course not needed when
working with W-suspensions. Our untruncated encodings will also assume the
existence of a natural numbers type. This is not assumed by our set-truncated
encodings.

A few observations: although we invoke
functional extensionality regularly, we never make use of the univalence axiom
itself. So our results already hold within the intensional type theory by
@Martin_Löf_1975, as long as we add function extensionality as an axiom. Still,
homotopy levels, which we make use of in the next chapter alone, historically
originate in homotopy type theory. On top of that, many of our examples are
motivated by the "types-as-spaces" interpretation.

Precisely because we will not concern ourselves with univalence, from now on we
use the word "category" to refer to HoTT book precategories. Additionally,
because of impredicativity, in the following we can
afford to work inside $cal(U)_0$, rather than make our constructions parametric
on a generic universe level $ell$ like we have done so far. Because of this,
we will even avoid explicitly mentioning universe level $0$. For example, we
will use $h dash.en"Type"$ in place of $h dash.en"Type"_0$, and $Set$ in place
of $Set_0$. Similarly, arguments declared in between braces when writing a
subscript for a product type, and some arguments implicitly declared in English
prose, will be considered to be "implicit". That is, they will not be explicitly
declared in the corresponding lambda abstractions, nor they will be explicitly
passed in the corresponding function applications. We only ever declare implicit
arguments when their value is guaranteed to be inferable.

== Contributions <contributions>

This thesis consists of two main contributions:

+ a construction of Van der Weide's HITs defined in @Basold_2017 as an
  impredicative encoding that eliminates into set-truncated types
  of the impredicative universe. This is fully formalised in Agda;
+ a construction of W-suspensions as an impredicative encoding that eliminates
  into the impredicative universe.

The next chapter covers the former, while the chapter after that covers the
latter. Finally, we dedicate one more chapter to a brief description of our
formalisation.
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We have extended the set-truncated impredicative encodings given by @Awodey_2018
from W-types to Van der Weide HITs, formalising our work in Cubical Agda. We
have extended the impredicative encodings given by @RipollEcheveste_2023 from
W-types to W-suspensions.

== Related Work

The seminal paper by @Awodey_2018 already describes the encoding of the circle
and of $1$-truncations, without generalising to any class of higher inductive
types. The encodings for the regular inductive types are adapted to quotients
and M-types by @Bronsveld_2025, who base their work on @Bronsveld_2024. While
their paper assumes uniqueness of identity proofs, one could in principle
port their results to a system without UIP, by working within the impredicative
subuniverse of set-truncated types.

If we move to encodings of HITs that reduce them to simpler ones, rather than
employing impredicativity, the literature becomes much richer. @Doorn_2016 and
@Kraus_2016 use non-recursive higher inductive types to construct propositional
truncation. @Rijke_2017 starts from the join construction to encode
$n$-truncations, the Rezk completion, and set quotients. @Kaposi_2019 show that
all finitary quotient inductive-inductive types can be reconstructed starting
from one particular member of such a class and uniqueness of identity proofs.
@Weide_2019, working with the same Van der Weide higher inductive types we also
used, reduce all set-truncated HITs to quotients and propositional truncations.
Finally, @Weide_2020, with a more general class that also allows for homotopy
constructors, encodes all $1$-truncated HITs from the groupoid quotient.
All these methods take place entirely within the chosen type theory, whatever
that may be.

== Limitations

While our work does not necessitate any additional assumptions when compared
to its counterparts for W-types, it certainly suffers from the same limitation:
the obtained encodings do not allow for large elimination, i.e. elimination
into higher universes.

== Future Work

The most immediate path of work is adapting our non-truncated encodings to 
classes of higher inductive types that are more and more general. @Kaposi_2020
list several candidates. However, not much work has been done to relate
different classes of higher inductive types in terms of expressivity.
Secondly, reworking our proof with an exposition informed by 2-category theory
would be able to give more insight on _why_ two layers of inductivity
suffice. Finally, our setup for impredicativity in Agda can easily be reused
as-is for our non-truncated impredicative encodings of W-suspensions.
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Both the code used to typeset this thesis and the formalisation itself are
available at the following repository.

#align(center, link(
  "https://codeberg.org/foxy/impredicative-encodings-of-hits",
)[`https://codeberg.org/foxy/impredicative-encodings-of-hits`])

The offline reader may instead consult the compressed archive embedded within
this PDF document.
While the markup code for the thesis consists of a Typst project released under
Creative Commons Attribution-NoDerivatives 4.0 International, the formalisation
is distributed as a self-contained Agda library under the GNU Affero General
Public License. This setup makes it fairly easy to build upon our formalisation.

The project is built against Agda v2.8.0, the latest stable release at the time
of writing. The following sections touch upon more technical design choices.

== Project Structure

The following tree omits markup code and assets for the thesis, as well as
licences, `git`-related files, CI/CD pipelines, and `README.md`.

#[
  #show list: tree-list
  #set par(first-line-indent: 0em)

  `/`\
  - `impredicative-encodings-of-hits.agda-lib` (library file)
  - `src/`
    - `ImprHIT.agda`
    - `Background.agda`
    - `Background/`
      - `Weide.agda` (@van-der-weide)
      - `WSuspensions.agda` (@w-suspensions)
      - `Examples.agda` (@examples)
      - `Impredicativity.agda` (@the-system)
    - `SetTruncated.agda`
    - `SetTruncated/`
      - `LawfulSetAlgebra.agda` (@lawful-algebras)
      - `Limits.agda` (@limits-lawful-set-algebras-category)
      - `Initial.agda` (@initial-lawful-set-algebra)
      - `Rules.agda` (@rules)
    - `General.agda`
]

== Cubical Mode

As already stated, univalence is not assumed anywhere in our work. All the
formalised results already hold in Martin-Löf's intensional type theory enriched
with function extensionality. However, because homotopy levels and their theory
historically originate in homotopy type theory, vanilla, non-univalent Agda does
not feature those in its standard library. Instead, these are part of
Agda's Cubical library #cite(<Agda_Cubical>, form: "normal"). Cubical mode
(`--cubical`) is how Agda approaches homotopy type theory and univalent
foundations, as described by @Vezzosi_2021. With the goal of not reinventing the
wheel in mind, our set-truncated encodings are therefore formalised in
Cubical Agda. Of course, the added definitional equalities also make the
formalisation work itself easier. At the time of writing, the `agda/cubical`
library has yet to see its first stable release, so expect the build to fail if
you upgrade it without adapting the codebase. Much like this library, we also
make use of the `--no-import-sorts` flag. This ensures we consistently use the
`Type` nomenclature introduced by `agda/cubical` for type universes, rather than
the misleading `Set`. Because the library makes project-wide use of
`--guardedness`, we have to use such an option, too. The last flag our project
shares with the standard library is `-WnoUnsupportedIndexedMatch`. This ignores
warnings about pattern-matching features that are safe, but whose computational
behaviour in presence of transports has not been implemented by Cubical Agda
yet.

From a stylistic point of view, we try to avoid any explicit mention of interval
variables in our proofs. Instead, we work at a higher abstraction level by
making use of well-known lemmas already defined in `agda/cubical`, such as
congruence, symmetry, and function extensionality. This makes our work fully
understandable to people with experience in homotopy type theory, but not in
cubical type theory.

In a way, because the literature on dependent type theory is lacking
rigorous conservativity results between the different type theories that extend
our basic system, rewriting our proof in this specific flavour of Cubical Type
Theory could even be seen as its own result.

== Extensibility

A possible future formalisation of the non-truncated encodings would not require
any theory about homotopy levels. Hence, it might be sensible not to use Cubical
Agda for it. Our setup takes this into account by marking the project as
`--cubical-compatible`, rather than `--cubical`, and using `--cubical` only in
the modules in which it is actually required. The necessary scaffolding for the
future work, as well as a definition of W-suspension signature inspired by the
`Containers` found in the Agda standard library #cite(<Agda_Standard>, form: "normal"), are already in place.

== Impredicativity <impredicativity>

Agda's bottom universe is predicative, while our work necessitates impredicative
products. We could, of course, recreate our variant of homotopy type theory
within Agda's type system, using the latter as our meta-theory, and then working
in our object theory. This, however, would prove to be too cumbersome. Instead,
we just axiomatise impredicative products as their own, separate types next to
Agda's predicative ones. That is to say, we postulate the types of a type former
`Π`, a term constructor `Λ`, an eliminator `ev`.

#agda("Background.Impredicativity", 11, 14, 200)

The $beta$-rule `Π-β` and the $eta$-rule `Π-η` look like the following:

#agda("Background.Impredicativity", 16, 21, 279)

The last two lines state that Agda's evaluation relation should be extended with
these two new computation rules. The code snippet for non-Cubical Agda is
equivalent. These postulates, next to the use of `REWRITE`, are the only
reason our project cannot qualify as `--safe`.
People not familiar with Agda syntax
might be surprised at $equiv$ being used as a binary dependent type.
Confusingly, this symbol is used by Agda to denote _propositional_ equality.
So what we are actually doing here is writing down propositional versions of our
rules inside the system first, and only later turning them into rewrite rules.
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In this chapter, inspired by the work of @RipollEcheveste_2023, we assume the
existence of a natural numbers type $NN$ within our type system with the aim of
dropping the homotopy level restrictions. This time around, we work with
W-suspensions by @Sojakova_2015. Much like we have been doing insofar, we leave
the word "homotopy" implicit when talking about homotopy initiality: this is
because we will not need any other notion of initiality.

In @path-algebra-tools, we develop the path algebra constructions needed for
our work. Then, in @w-suspension-algebras, we recall the initial semantics for
W-suspensions. @naturality shows how the naïve encoding can be refined to
recover the same naturality property described in the previous chapter. Because
we are not working with homotopy sets alone, naturality is not enough to obtain
initiality any more. Hence, we reiterate our refinement in
@w-suspension-algebras-and-quasi-idempotents and conclude showing initiality in
@initiality.

== Path Algebra Tools <path-algebra-tools>

In this chapter, all path algebra notation which is not explicitly introduced is
borrowed from @HoTT_book.
Our path composition operator ($trans$) will be right-associative, but we will
sometimes still use unnecessary parenthesis to help the reader.
The functoriality of the action of a map on a path is left as an exercise for
the reader in the HoTT book. We "solve" such exercise by providing explicit
proof terms for it, so that we can use the induced definitional computation
rules (without even stating the most obvious).

#lemma[(Lemma 2.2.2 from @HoTT_book.) For functions $f : A -> B$ and $g : B ->
  C$ and paths $p : x =_A y$ and $q : y =_A z$, we have:

  1. $aptrans f p q : ap_f (p trans q) = ap_f p trans ap_f q$;
  2. $apinv f p: ap_f p^(-1) = (ap_f p)^(-1)$;
  3. $apcomp g f p : ap_g (ap_f p) = ap_(g comp f) p$;
  4. $apid p : ap_(id_A) p = p$.
]
#proof[
  1. By based path induction on $p$ and $q$. We set $aptrans f refl_y refl_y def
    refl_(refl_(f y))$;
  2. by path induction on $p$. We set $apinv f refl_x def refl_(refl_(f x))$;
  3. by path induction on $p$. We set $apcomp f refl_x def refl_(refl_(g(f x)))$;
  4. by path induction on $p$. We set $apid refl_x def refl_(refl_x)$.
]

Similarly, we will also regularly invoke the following transport lemmas. In
order to use these results within proof terms, we choose names for them.

#lemma[(Lemma 2.3.9 from @HoTT_book.) Given $P : A -> cal(U)_0$ with $p : x =_A
  y$ and $q : y =_A z$ while $u : P x$, we have

  $ trtrans q p u : q_* (p_* u) =_(P z) (p trans q)_* u. $
]

#lemma[(Lemma 2.3.10 from @HoTT_book.) For a function $f : A -> B$ and a type
  family $P : B -> cal(U)_0$, and any $p : x =_A y$ and $u : P (f x)$, we have
  $ trcomp f p u : tr^(P comp f) p u =_(P (f y)) tr^P (ap_f p) u. $
]

#lemma[(Lemma 2.3.11 from @HoTT_book.) For $P, Q : A -> cal(U)_0$ and a family
  of functions $f : product_(x : A) P x -> Q x$, and any $p : x =_A y$ and $u :
  P x$, we have

  $ trfun f p u : tr^Q p (f_x u) =_(Q y) f_y (tr^P p u). $
]

The next properties, on the other hand, are new. We define them for convenience.

#lemma[For parallel functions $f, g: A -> B$, a homotopy $h : f ~ g$ between them,
  function $e : Z -> A$, and consecutive paths $p : u =_A
  v$, $q : v =_A w$, $r : w =_A x$, $s : x =_A y$, $t : y =_A z$, we have:

  + $surrrefl p : refl_u trans p trans refl_v = p$;
  + $aptrans3 f p q r : ap_f (p trans q trans r) = ap_f p trans ap_f q trans ap_f
    r$;
  + $assoc5 p q r s t : p trans (q trans r trans s) trans t = (p trans q) trans r
    trans (s trans t)$;
  + $invtrans p q : (p trans q)^(-1) = q^(-1) trans p^(-1)$;
  + $apfunext x h : ap_((-) x) (funext h) = h x$;
]
#proof[
  + By lemma 2.1.4 of the HoTT book, we have:
    $refl_u trans p trans refl_v = p trans refl_v = p$. Because lemma is
    defined using path induction, we get $surrrefl refl_x equiv refl_(refl_x)$;
  + by based path induction on $p$ and $r$, we just need to define $aptrans3 f
    refl_v med q med refl_w$. We use transitivity.
    $
      ap_f (refl_v trans q trans refl_w)
      &= ap_f q
      &wide angle.l ap_f (surrrefl q) angle.r \
      &= refl_(f v) trans ap_f q trans refl_(f w)
      &wide angle.l (surrrefl (ap_f q))^(-1) angle.r \
    $
    We get the computation rule $aptrans3 f med refl_x refl_x refl_x equiv
    refl_(refl_(f x))$.
  + by based path induction on $p$ and $t$, we just need to define $assoc5 f med
    refl_v med q med r med s med refl_y$. We again use transitivity.

    $
      refl_v trans (q trans r trans s) trans refl_y
      &= q trans r trans s
      &wide angle.l surrrefl (q trans r trans s) angle.r \
      &= (refl_v trans q) trans r trans s
      &wide angle.l ap_((-) trans r trans s) " on HoTT 2.1.4" angle.r \
      &= (refl_v trans q) trans r trans (s trans refl_y)
      &wide angle.l ap_((refl_v trans q) trans r trans (-)) " on HoTT 2.1.4" angle.r \
    $
    The computation rules of each rewrite step ensure $assoc5 f med refl_x refl_x
    refl_x refl_x refl_x equiv refl_(refl_x)$.
  + by based path induction on $p$ and $q$. We set $invtrans refl_v refl_v def
    refl_(refl_v)$;
  + Recall that $happly = lambda p, x . ap_((-)x) p$ (#cite(<RipollEcheveste_2023>, form: "normal"), lemma 3.11). So the statement is just an alternative form of
    propositional computation rule for identity types between functions.
]

These lemmas will work as a toolbox for the hairy path algebra lying ahead.

== W-Suspension Algebras <w-suspension-algebras>

For the rest of this chapter, we work with fixed W-suspension signature $cal(S)
def (A, B, C, l, r)$. Our starting point are the initial semantics for
W-suspensions. We refer to them as "W-suspension algebras" to
remark the difference from the lawful algebras we dealt with in the previous
chapter.

#definition[A _W-suspension algebra_ over W-suspension signature $cal(S)$ and on
  universe $cal(U)_j$ is a triple consisting of:
  - a carrier $D : U_j$;
  - a point algebra map $d : product_(a : A) (B a -> D) -> D$;
  - a path algebra map $p : product_(c : C) product_(u : B(l c) -> D) product_(v :
    B (r c) -> D) (d (l c) u =_D d (r c) v)$.
  We use $cal(S) dash.en"WSusAlgebra"_(cal(U)_j)$ to denote the type of W-suspension
  algebras over $cal(S)$ and on $cal(U)_j$.
]

These algebras come with their own notion of homomorphism.

#definition[A _W-suspension algebra homomorphism_ between two W-suspension algebras
  $(D, d, p)$ and $(E, e, q)$ over signature $cal(S)$ and on universe $cal(U)_j$ is a
  triple $(f, beta, theta)$ where:
  - $f : D -> E$;
  - $beta : product_(a : A) product_(t : B a -> D) (f (d a t) =_E e a (f comp t))$
  - $theta: product_(c : C) product_(t : B (l c) -> D) product_(s : B (r c) -> D)
    (ap_f (p c t s) = beta (l c) t trans q c (f comp t) (f comp s) trans (beta (r
          c) s)^(-1)).$
  We use $cal(S) dash.en"WSusAlgHomomorphism"_(cal(U)_j) (D, d, p) (E, e, q)$ to denote the
  type of W-suspension algebras homomorphisms between $(D, d, p)$ and $(E, e, q)$.
]

In the definition above, $beta$ is the usual witness for algebra homomorphisms.
Fixed $a : A$, we can see $beta a$ as a commutativity proof for the following
diagram.

#align(center)[#commutative-diagram(
  nod((0, 0), $D^(B a)$),
  nod((0, 1), $E^(B a)$),
  nod((1, 0), $D$),
  nod((1, 1), $E$),
  arr($D^(B a)$, $D$, $d$),
  arr($E^(B a)$, $E$, $e$),
  arr($D^(B a)$, $E^(B a)$, $f comp (-)$),
  arr($D$, $E$, $f$),
  arr($D$, $E^(B a)$, $beta a$, start-space: 4.5em, end-space: 4.5em, "nat"),
)]

Similarly, $theta$ ensures the structure given by the path algebra map is also
preserved.

#align(center, diagram(
  cell-size: 50pt,
  node((0, 0), $f (d (l c) t)$),
  edge($ap_f (p c t s)$),
  node((1, 0), $f(d (r c) s)$),
  edge($beta (r c) s$),
  node((1, 1), $e (r c) (f comp s)$),
  edge($q c (f comp t) (f comp s)$),
  node((0, 1), $e (l c) (f comp t)$),
  edge("u", $beta (l c) t$),
))

As per usual, algebras in initial semantics model recursive definitions.
Similarly, an inductive construction/proof is represented using fibered
algebras.

#definition[Let $(D, d, p)$ be a W-suspension algebra over W-suspension
  signature $cal(S)$ on universe $cal(U)_j$. A _fibered W-suspension algebra_ over
  $(D, d, p)$ is a triple consisting of:
  - a fibered carrier $E : D -> U_j$;
  - a fibered point algebra map $e : product_(a : A) product_(t : B a -> D)
    (product_(b : B a) E (t b)) -> E (d a t)$;
  - a fibered path algebra map \ $q : product_(c : C) product_(t : B(l c) -> D)
    product_(s : B (r c) -> D) product_(u : product_(b : B (l c)) E (t b))
    product_(v : product_(b : B (r c)) E (s b)) (tr^E (p c t s) (e (l c) t u)
    =_(E (d (r c) s) e (r c) s v)$.
  We use $cal(S) dash.en"FibWSusAlgebra"^((D, d, p))_(cal(U)_j)$ to denote the type of
  fibered W-suspension algebras over $cal(S)$ and on $cal(U)_j$.
]

The corresponding notion of homomorphism is the following.

#definition[A _fibered W-suspension algebra homomorphism_ from W-suspension algebra
  $(D, d, p)$ over $cal(S)$ and on $cal(U)_j$ to fibered W-suspension algebra $(E, e,
    q)$ over $(D, d, p)$ is a triple $(f, beta, theta)$ where:
  - $f : product_(x : D) E$;
  - $beta : product_(a : A) product_(t : B a -> D) (f (d a t) =_E e a (f comp t))$
  - $theta: product_(c : C) product_(t : B (l c) -> D) product_(s : B (r c) -> D)
    (apd_f (p c t s) = ap_(tr^E (p c t s)) (beta (l c) t) trans q c t s (f comp t)
      (f comp s) trans (beta (r c) s)^(-1)).$
  We use $cal(S) dash.en"WSusAlgHomomorphism"_(cal(U)_j) (D, d, p) (E, e, q)$ to denote the
  type of W-suspension algebras homomorphisms between $(D, d, p)$ and $(E, e, q)$.
]

The diagram for $beta$ is unchanged, while the one for $theta$ is slightly
modified.

#align(center, diagram(
  cell-size: 100pt,
  node((0, 0), $tr^E (p c t s) (f (d (l c) t))$),
  edge($apd_f (p c t s)$),
  node((1, 0), $f(d (r c) s)$),
  edge($beta (r c) s$),
  node((1, 1), $e (r c) s (f comp s)$),
  edge($q c t s (f comp t) (f comp s)$),
  node((0, 1), $tr^E (p c t s) (e (l c) t (f comp t))$),
  edge("u", $ap_(tr^E (p c t s)) beta (l c) t$),
))

If we fix a universe $cal(U)_j$ to work in, homotopy initiality in $cal(U)_j$ is
equivalent to satisfying the induction principle for W-suspensions, as shown by
@Sojakova_2015#footnote[This result was originally used to identify a
  universal property characterising a propositional variant of W-suspensions. We,
  on the other hand, are encoding "proper" W-suspensions, and will only use this
  equivalence to ensure the $eta$-principle holds for said encodings.].

#theorem[Let $cal(X)$ be a W-suspension algebra on some universe $cal(U)_j$.
  Then

  $
    product_(cal(Y) : cal(S) dash.en"FibWSusAlgebra"_(cal(U)_j)) cal(S) dash.en
    "FibWSusAlgHomomorphism"_(cal(U)_j)
    cal(X) cal(Y)
  $

  (which is to say, the induction principle for $cal(X)$) is type-theoretically
  equivalent to "$cal(X)$ is homotopy initial among W-suspension
  algebras".]<induction-initiality>

As anticipated, we will leave "homotopy" implicit when talking about (weak)
initiality. Next, we give the type of our (non-fibered) algebras the structure
of a wild category.

#theorem[W-suspension algebras on some universe $cal(U)_j$ and the W-suspension
  algebra homomorphisms between them form a wild category, $cal(S) dash.en
  "WSusAlg"_(cal(U)_j)$.
]
#proof[
  We start by defining the identity morphism.

  $1_((D, d, p)) def (& id_D, \
    &lambda a : A, t : B a -> D. refl_(d a t), \
    &lambda c : C, t : B (l c) -> D, s : B (r c) -> D . apid (p c t s) trans
    (surrrefl (p c t s))^(-1))$

  Pictorially, the third component would be

  $
    ap_(id_D) (p c t s) path^(apid (p c t s)) p c t s path^(surrrefl (p c t
        s))^(-1) refl_(d (l c) t) trans p c t s trans refl_(d (r c) s)
  $

  Morphism composition is more complex. Given

  $ (D, d, p) -->^(f, beta, theta) (E, e, q) -->^(g, gamma, iota) (H, h, o) $

  we define

  $(g, gamma, iota) comp (f, beta, theta) def (& g comp f, \
    &lambda a : A, t : B a -> D. ap_g (beta a t) trans gamma a (f comp t), \
    &...)$

  The second component arises from the following diagram.

  #align(center, commutative-diagram(
    node-padding: (35pt, 35pt),
    nod((0, 0), $D^(B a)$),
    nod((2, 0), $D$),
    nod((0, 2), $E^(B a)$),
    nod((2, 2), $E$),
    nod((0, 4), $H^(B a)$),
    nod((2, 4), $H$),
    nod((1, 1), $beta a$),
    nod((1, 3), $gamma a$),
    arr((0, 0), (2, 0), $d$),
    arr((0, 0), (0, 2), $f comp (-)$),
    arr((0, 2), (0, 4), $g comp (-)$),
    arr((0, 2), (2, 2), $e$),
    arr((0, 4), (2, 4), $h$),
    arr((2, 0), (2, 2), $f$),
    arr((2, 2), (2, 4), $g$),
  ))

  We present the third component of the composition as the following chain of
  equalities

  #[
    #set text(size: 8.5pt)
    #math.equation[$ap_(g comp f) (p c t s) &= wide & angle.l (apcomp g f (p c t
        s))^(-1) angle.r \
    ap_g (ap_f (p c t s)) &= & angle.l ap_(ap_g) (theta c t s) angle.r \
    ap_g (beta (l c) t trans q c (f comp t) (f comp s) trans (beta (r c) s)^(-1)) &=
    & angle.l aptrans3 g (beta (l c) t) (q c (f comp t) (f comp s)) (beta (r c)
      s)^(-1) angle.r \
    ap_g (beta (l c) t) trans ap_g (q c (f comp t) (f comp s)) trans ap_g (beta (r c) s)^(-1) &=
    & angle.l ap_(ap_g (beta (l c) t) trans (-) trans ap_g (beta (r c) s)^(-1)) (iota c (f comp t) (f comp s)) angle.r \
    ap_g (beta (l c) t) trans (gamma (l c) (f comp t) comp o c (g comp f comp t) (g
        comp f comp s) comp (gamma (r c) (f comp s))^(-1)) trans ap_g (beta (r c) s)^(-1) &=
    & angle.l help (f, beta) (g, gamma) t s angle.r \
    (ap_g (beta (l c) t) trans gamma (l c) (f comp t)) comp o c (g comp f comp t) (g
      comp f comp s) comp (ap_g (beta (r c) s) trans gamma (r c) (f comp s))^(-1),$]
  ]
  where
  $
    help (f, beta) (g, gamma) t s def& assoc5
    (ap_g (beta (l c) t)) (gamma (l c) (f comp t)) (o c (g comp f comp t) (g
        comp f comp s)) (gamma (r c) (f comp s))^(-1) (ap_g (beta (r c) s)^(-1)) \
    & trans ap_((ap_g (beta (l c) t) trans gamma (l c) (f comp t)) trans (o c (g comp f
        comp t) (g comp f comp s)) trans ((gamma (r c) (f comp s))^(-1) trans (-)))
    (apinv g (beta (r c) s)) \
    & trans ap_((ap_g (beta (l c) t) trans gamma (l c) (f comp t)) trans (o c (g comp f
        comp t) (g comp f comp s)) trans (-)) (invtrans (ap_g (beta (r c) s)) (gamma (r c) (f comp
          s)))^(-1).
  $

  This concludes the constructions of the identity and composition operations.
  We will sometimes use $(gamma comp beta)$ or $(iota comp theta)$ to refer to the
  second and third component of $(g, gamma, iota) comp (f, beta, theta)$
  respectively, when the rest of the data is clear from the context.
  We now prove the axioms of a (non-univalent) category, starting from left
  unitality, i.e. $1_((E, e, q)) comp (f, beta, theta) = (f, beta, theta)$ for any
  $(f, beta, theta) : (D, d, p) -> (E, e, q)$. We do this componentwise, using
  $paireq$ twice. Since $id_E comp f equiv f$, we can ignore transport when
  comparing the second components. We show they are equal by applying function
  extensionality twice and introducing $a : A, t : B a -> D$. We get
  $
    ap_(id_E) (beta a t) trans refl_(e a (f comp t)) path^(reflr (ap_(id_E) beta a
      t)) ap_(id_E) (beta a t) path^(apid (beta a t)) beta a t
  $

  where $reflr$ witnesses unitality of $refl$ on the right. To compare the
  third components, we need to transfer along this proof obtained by double
  function extensionality. We use function extensionality three times, fixing $c :
  C, t : B (l c) -> D, s : B (r c) -> D$. We can use $trfun ((-) c t s)$ to bring
  $c$, $t$, and $s$ inside the transport, and theorem 2.11.3 from the HoTT book to
  get rid of the latter. Unfolding our definition of composition ($help$ included)
  we get a sequence of 11 paths that we need to show to be equal to $theta c t s$.
  The first is equal to $refl_(ap_f (p c t s))$, because it is the action of a constant
  function on a path. The last 6 can also be shown to be equal to reflexivity.
  This is done by generalising $beta (l c) t$ and $beta (r c) s$ to arbitrary
  based paths, and then performing based paths induction on the latter. All the
  remaining paths can be rewritten as $ap_x (funext ap-id)$ for some $x$
  (with the help of $apfunext$), or the inverse of something in this form, so by
  using theorem 2.11.3 again (twice), we get to
  $ (funext apid)_* ((funext apid)^(-1)_* (theta c t s)) $
  which simplifies to the desired result. We now move to right unitality, by
  showing $(f, beta, theta) comp 1_((D, d, p)) = (f, beta, theta)$. Again, we do
  this componentwise, using $paireq$ twice. Since $f comp id_D equiv f$, we ignore
  transport when comparing the second components. We apply function extensionality
  twice introducing $a : A, t : B a -> D$. We get
  $
    ap_f (refl_(d a t)) trans beta a t equiv refl_(f (d a t)) trans beta a t
    path^(refll (beta a t)) beta a t
  $
  where $refll$ witnesses unitality of $refl$ on the left. To compare the third
  components, we need to transfer along this proof obtained by double function
  extensionality. We use function extensionality three times, fixing $c : C, t : B
  (l c) -> D, s : B (r c) -> D$. Again, we use $trfun ((-)c t s)$ to bring $c$,
  $t$, and $s$ inside the transport, and theorem 2.11.3 of the HoTT book to get
  rid of said transport. This time, we unfold our definitions of morphism
  composition, $help$, $aptrans3$, and $assoc5$. Much like
  before, the first path of the resulting sequence is equal to reflexivity, since
  it is the action of a constant function on a path. After that, all the paths up
  to halwfay through the unfolded definition of $aptrans3$ form a loop on $ap_f (p
    c t s)$. This can also be easily shown to be equal to reflexivity. Similarly,
  the end of the chain is also a loop on $beta (l c) t trans q c (f comp t) (f
    comp s) trans (beta (r c) s)^(-1)$. It is again shown to be equal to
  reflexivity by generalising $beta (l c) t$ and $(beta (r c) s)^(-1)$ to generic
  based paths and then performing double based path induction on both. What's
  left of the original chain is propositionally equal to
  $ (funext surrrefl)_* ((funext surrrefl)^(-1)_* (theta c t s)) $
  and this is just $theta c t s$ as desired. Only associativity is now left to
  prove. We consider a sequence of morphisms like the following
  $
    (D, d, p) -->^((f, beta, theta)) (E, e, q) -->^((g, gamma, iota)) (I, i, o)
    -->^((h, lambda, kappa)) (J, j, n)
  $
  and prove
  $
    (h, lambda, kappa) comp ((g, gamma, iota) comp (f, beta, theta)) =
    ((h, lambda, kappa) comp (g, gamma, iota)) comp (f, beta, theta).
  $
  We need to use $paireq$ twice again to compare the two morphisms componentwise.
  The equality between the first components holds definitionally, so we ignore
  transport when comparing the second ones. By function extensionality, let $a :
  A, t : B a -> D$.
  $
    ap_h (ap_g (beta a t) comp gamma a t) comp lambda a t &=
    (ap_h (ap_g (beta a t)) comp ap_h (gamma a t)) comp lambda a t
    & wide angle.l ap_((-) comp lambda a t) (aptrans h (ap_g (beta a t))
      (gamma a t)) angle.r \
    &=(ap_(h comp g) (beta a t) comp ap_h (gamma a t)) comp lambda a t
    & wide angle.l ap_(((-) comp ap_h (gamma a t)) comp lambda a t) (apcomp h g
      (beta a t)) angle.r \
    &=ap_(h comp g) (beta a t) comp (ap_h (gamma a t) comp lambda a t)
    & wide angle.l "trans-assoc" (ap_(h comp g) (beta a t)) (ap_h (gamma a t))
    (lambda a t) angle.r \
  $
  Above, $"trans-assoc"$ is just associativity of paths composition. The only
  remaining equality check to do is the one between the third components, and we
  need transport along the proof just shown to make this typecheck. As per usual,
  we employ function extensionality to fix $c : C, t : B (l c) -> D, s : B (r c)
  -> D$. Then, we take advantage of $trfun ((-) c t s)$ to bring these three
  variables inside the transport, which can then be rewritten using theorem
  2.11.3. By using $apfunext$, we can cancel out the resulting $ap$ operator and
  the $funext$ from the original equality proof between the second components.
  The resulting is the following diagram. The top and bottom side are the result
  of eliminating transport using theorem 2.11.3 from the HoTT book. The left
  (right) side is obtained by unfolding the left (right) side of the equation. Our
  goal is hence commutativity for the outer perimeter. This is shown by breaking
  it down in much smaller polygons, each of which commutes.

  #align(center)[
    #set text(size: 5pt)
    #commutative-diagram(
      node-padding: (30pt, 70pt),
      nod((0, 1), $ap_(h comp g comp f) (p c t s)$),
      nod((1, 1), $ap_(h comp g) (ap_f (p c t s))$),
      nod((2, 1), [$ap_(h comp g) (beta (l c) t trans q c (f comp t) (f comp s)
        trans (beta (r c) s)^(-1))$]),
      nod(
        (3, 1),
        [$ap_(h comp g) (beta (l c) t) trans ap_(h comp g) (q c (f comp t) (f comp s))
        trans ap_(h comp g) (beta (r c) s)^(-1)$],
      ),
      nod(
        (4, 1),
        [$ap_(h comp g) (beta (l c) t) trans ap_h (ap_g (q c (f comp t) (f
              comp s))) trans ap_(h comp g) (beta (r c) s)^(-1)$],
      ),
      nod(
        (5, 1),
        [$ap_(h comp g) (beta (l c) t) trans ap_h (gamma (l c) (f comp t)
          trans o c (g comp f comp t) (g
            comp f comp s) trans (gamma (r c) (f comp s))^(-1)) trans ap_(h comp g) (beta (r c) s)^(-1)$],
      ),
      nod(
        (6, 1),
        [$ap_(h comp g) (beta (l c) t) trans (ap_h (gamma (l c) (f comp t))
          trans ap_h (o c (g comp f comp t) (g
              comp f comp s)) trans ap_h (gamma (r c) (f comp s))^(-1)) trans ap_(h comp g) (beta (r c) s)^(-1)$],
      ),
      nod(
        (7, 1),
        [$ap_(h comp g) (beta (l c) t) trans (ap_h (gamma (l c) (f comp t))
          trans (lambda (l c) (g comp f comp t) trans n c (h comp g comp f comp t) (h comp g
              comp f comp s) trans (lambda (r c) (g comp f comp s))^(-1)) trans ap_h (gamma (r c) (f comp s))^(-1)) trans ap_(h comp g) (beta (r c) s)^(-1)$],
      ),
      nod(
        (8, 1),
        [$ap_(h comp g) (beta (l c) t) trans ((ap_h (gamma (l c) (f comp t))
            trans lambda (l c) (g comp f comp t)) trans n c (h comp g comp f comp t) (h comp g
            comp f comp s) trans (ap_h (gamma (r c) (f comp s)) trans lambda (r c) (g comp f comp s))^(-1)) trans ap_(h comp g) (beta (r c) s)^(-1)$],
      ),
      nod(
        (9, 1),
        [$(ap_(h comp g) (beta (l c) t) trans (ap_h (gamma (l c) (f comp
                t)) trans lambda (l c) (g comp f comp t))) trans n c (h comp g comp f comp t) (h comp g
          comp f comp s) trans (ap_(h comp g) (beta (r c) s) trans (ap_h (gamma (r
                c) (f comp s)) trans lambda (r c) (g comp f comp s)))^(-1)$],
      ),
      nod((0, 0), [$ap_(h comp g comp f) (p c t s)$]),
      nod((1, 0), [$ap_h (ap_(g comp f) (p c t s))$]),
      nod((2, 0), [$ap_h (ap_g (ap_f (p c t s)))$]),
      nod(
        (3, 0),
        [$ap_h (ap_g (beta (l c) t trans q c (f comp t) (f comp s) trans
            (beta (r c) s)^(-1)))$],
      ),
      nod(
        (4, 0),
        [$ap_h (ap_g (beta (l c) t) trans ap_g (q c (f comp t) (f comp s))
          trans ap_g (beta (r c) s)^(-1))$],
      ),
      nod(
        (5, 0),
        [$ap_h (ap_g (beta (l c) t) trans (gamma (l c) (f comp t) trans o c (g comp f comp t) (g
              comp f comp s) trans (gamma (r c) (f comp s))^(-1)) trans ap_g (beta (r c) s)^(-1))$],
      ),
      nod(
        (6, 0),
        [$ap_h ((ap_g (beta (l c) t) trans gamma (l c) (f comp t)) trans o c (g comp f comp t) (g
            comp f comp s) trans (ap_g (beta (r c) s) trans (gamma (r c) (f comp s)))^(-1))$],
      ),
      nod(
        (7, 0),
        [$ap_h (ap_g (beta (l c) t) trans gamma (l c) (f comp t)) trans
        ap_h (o c (g comp f comp t) (g comp f comp s)) trans ap_h (ap_g (beta (r c) s) trans (gamma (r c) (f comp s)))^(-1)$],
      ),
      nod(
        (8, 0),
        [$ap_h (ap_g (beta (l c) t) trans gamma (l c) (f comp t)) trans
        (lambda (l c) (g comp f comp t) trans n c (h comp g comp f comp t) (h
            comp g comp f comp s) trans (lambda (r c) (g comp f comp s))^(-1)) trans ap_h (ap_g (beta (r c) s) trans (gamma (r c) (f comp s)))^(-1)$],
      ),
      nod(
        (9, 0),
        [$(ap_h (ap_g (beta (l c) t) trans gamma (l c) (f comp t)) trans
          lambda (l c) (g comp f comp t)) trans n c (h comp g comp f comp t) (h
          comp g comp f comp s) trans (ap_h (ap_g (beta (r c) s) trans
            gamma (r c) (f comp s)) trans lambda (r c) (g comp f comp s))^(-1)$],
      ),
      arr((0, 0), (2, 1), []),
      arr((2, 0), (3, 1), []),
      arr((4, 0), (4, 1), []),
      arr((5, 0), (5, 1), []),
      arr((6, 0), (6, 1), []),
      arr((7, 0), (7, 1), []),
      arr((0, 0), (0, 1), []),
      arr((0, 0), (1, 0), []),
      arr((1, 0), (2, 0), []),
      arr((2, 0), (3, 0), []),
      arr((3, 0), (4, 0), []),
      arr((4, 0), (5, 0), []),
      arr((5, 0), (6, 0), []),
      arr((0, 1), (1, 1), []),
      arr((1, 1), (2, 1), []),
      arr((2, 1), (3, 1), []),
      arr((3, 1), (4, 1), []),
      arr((4, 1), (5, 1), []),
      arr((5, 1), (6, 1), []),
      arr((6, 0), (7, 0), []),
      arr((7, 0), (8, 0), []),
      arr((8, 0), (9, 0), []),
      arr((9, 0), (9, 1), []),
      arr((6, 1), (7, 1), []),
      arr((7, 1), (8, 1), []),
      arr((8, 1), (9, 1), []),
    )
  ]
  So all the category axioms hold.
]

Because of the impredicativity of our bottom universe $cal(U)_0$, achieving
weak initiality is very easy. From now on, we don't need to specify the
universe we work in any more, as it is always $cal(U)_0$.

#proposition[The wild category $cal(S) dash.en"WSusAlg"$ has a weakly initial
  object $(W_0, sup_0, eq_0)$.]<weakly-initial-object>
#proof[
  We define:
  $
    W_0 def& product_((D, d, p) : cal(S) dash.en"WSusAlgebra") D\
    sup_0 def& lambda a : A, t : B a -> W_0, (D, d, p) : cal(S) dash.en"WSusAlgebra" .
    d a (((-) (D, d, p)) comp t)\
    eq_0 def& lambda c : C, u : B (l c) -> W_0, v : B (r c) -> W_0 . funext \
    &lambda (D, d, p) . p c ((-)(D, d, p)) comp u) (((-)(D, d, p)) comp v)
  $
  Given a second W-suspension algebra over $cal(S)$, say $(D, d, p)$, we have a
  function
  $
          rec_0 (D, d, p) & : W_0 -> D \
    rec_0 (D, d, p) alpha & def alpha (D, d, p) \
  $
  between the two carriers. This extends to a proper algebra morpishm as witnessed
  by
  $ lambda a : A, t : B a -> W_0 . refl_(d a(((-)(D, d, p)) comp t)). $
  Finally, we add the W-suspension algebra homomorphism structure by proving:
  $
    &ap_((-)(D,d,p)) (eq_0 c t s) \
    &equiv ap_((-)(D,d,p)) (funext
      lambda cal(X) . q c (((-)cal(X)) comp t) (((-)cal(X)) comp s)) \
    & = p c ((-)(D, d, p)) comp t) (((-)(D, d, p)) comp s) &quad angle.l apfunext (D, d,
      p) (lambda cal(X) . q c (((-)cal(X)) comp t) (((-)cal(X)) comp s) \)
      angle.r\
      & = refl trans p c ((-)(D, d, p)) comp t) (((-)(D, d, p)) comp s) trans refl &
    angle.l surrrefl (p c ((-)(D, d, p)) comp t) (((-)(D, d, p)) comp s) ) angle.r\
  $
]

== Naturality <naturality>

The first attempt at a proposed refinement simply encodes the induction property
we would like our encodings to satisfy.

#definition[Let $(D, d, p)$ be a W-suspension algebra over W-suspension
  signature $cal(S)$. The _inductivity of $(D, d, p)$_, or $Ind((D, d, p))$, is
  defined as the following type family over $D$.
  $
          Ind((D, d, p)) & : D -> cal(U)_0 \
    Ind((D, d, p)) alpha & def product_((E, e, q) : cal(S) dash.en"FibWSusAlgebra"^((D,
                             d, p))) E alpha
  $
]

The definition above is expressing the idea that proofs by induction performed
on our signature $cal(S)$ can be used to instance a concrete proof of the predicate
in question for $alpha$. So the obvious next step will be restricting our naïve
encoding to terms equipped with an inductivity proof. For starters, we observe
that the W-suspension algebra structure is always preserved when refining the
carrier of an arbitrary W-suspension algebra structure this way.

#proposition[Let $(D, d, p)$ be a W-suspension algebra over W-suspension algebra
  signature $cal(S)$. Then, $sum_(alpha : D) Ind((D, d, p)) alpha$ can be given the
  structure of a W-suspension algebra over W-suspension signature $cal(S)$,
  too.]<inductivity-preserves-w-suspension-algebra-structure>
#proof[
  As a point algebra map, we take
  $
        d' & : product_(a : A) (B a -> sum_(alpha : D) Ind((D, d, p)) alpha) ->
             sum_(alpha : D) Ind((D, d, p)) alpha \
    d' a t & def (d a t , lambda (E, e, q) : cal(S) dash.en"FibWSusAlgebra"^((D, d, p))
               . e a (pr1 comp t) ((-)(E, e, q) comp pr2 comp t)) .
  $
  As a path algebra map, we take
  $
          p' & : product_(c : C) wide product_(u : B (l c) -> sum_(alpha : D) Ind(
                 (D, d,
                   p)
               ) alpha) wide product_(v : B (r c) -> sum_(alpha : D) Ind((D, d, p)) alpha)
               (d (l c) u =_(sum_(alpha : D) Ind((D, d, p)) alpha) d (r c) v) \
    p' c u v & def paireq (p c (pr1 comp u) (pr1 comp v)) (lambda (E, e, q) :
               cal(S) dash.en"FibWSusAlgebra"^((D, d, p)) . \
             & trfun (\_ |-> (-)(E,e,q)) (p c
                 (pr1 comp u) (pr1 comp v)) (...) trans \
             & q c (pr1 comp u) (pr1 comp v)
               (((-)(E, e, q)) comp pr2 comp u) (((-)(E, e, q)) comp pr2 comp v)).
  $
  where we use the underscore character $(\_)$ to bind unused variables.
  The ellipsis ("$...$") replaces the term we are transporting.
]

We denote the $n$-th iterated refinement#footnote[We are making use of the newly
  assumed natural numbers type here just for ease of exposition. In fact, we will
  never need anything more than the two-iterations refinement. Assuming $NN$ will
  actually be made necessary by the next section.]
of $(W_0, sup_0, eq_0)$ via
@inductivity-preserves-w-suspension-algebra-structure using the tuple $(W_n,
  sup_n, eq_n)$.

#proposition[
  Fixed $n : NN$, the two inclusion maps $pi_n : W_(S n) -> W_n$ and $rho_n :
  W_n -> W_0$ can be given a W-suspension algebra homomorphism
  structure between the respective W-suspension algebras.]
#proof[
  To show that the point constructors are preserved, we can use pointwise
  reflexivity in both cases. So we only need to show that the path constructors
  are preserved. For $pi_n$:
  $
    ap_(pi_n) (eq_(S n) c t s) &equiv ap_pr1 (paireq (eq_n c (pr1 comp t) (pr1 comp
          s))(...)) \
    &= eq_n c (pr1 comp t) (pr1 comp s) &wide angle.l "HoTT book, 2.7.2" angle.r \
    &= refl_(sup_n (l c) (pr1 comp t)) trans eq_n c (pr1 comp t) (pr1 comp s)
    trans refl_(sup_n (r c) (pr1 comp s))
    &wide angle.l (surrrefl (eq_n c (pr1 comp t)(pr1 comp s)))^(-1) angle.r \
    &equiv refl_(sup_n (l c) (pi_1 comp t)) trans eq_n c (pi_1 comp t) (pi_1 comp s)
    trans refl_(sup_n (r c) (pi_1 comp s)).
  $
  For $rho_n$, by induction:
  - if $n = 0$, then $rho_n$ can be extended to the identity morphism;
  - if $n = m + 1$, then we can define $rho_n$ as the morphism obtained composing
    $rho_m$ after $pi_m$.
]

#corollary[Given $n : NN$ and a W-suspension algebra $(D, d, p)$ over
  W-suspension signature $cal(S)$, we have a W-suspension algebra homomorphism
  $rec_(S n) (D, d, p)$ from $(W_(S n), sup_(S n), eq_(S n))$ to $(D, d, p)$
  defined by composing $rec_0 (D, d, p)$ after $rho_(S n)$ in $cal(S)
  dash.en"WSusAlg"$, where $S$ is the "successor" constructor for $NN$. So
  $(W_1, sup_1, eq_1)$ is weakly initial.
]

The first layer of inductivity is already enough to recover a
condition that corresponds to the naturality property from the previous chapter.
Of course, in contrast with the set-truncated setting, in general we are not
dealing with a mere proposition any more.

#lemma[For all $(f, beta, theta) : cal(S) dash.en"WSusAlgHomomorphism" (D, d,
    p) (E, e, q)$, we have
  $
    (f, beta, theta) comp (rec_1 (D, d, p), (\_ |-> \_ |-> refl), ...)
    =_()
    (rec_1 (E, e, q), (\_ |-> \_ |-> refl) , ...)
  $
  where the two ellipses replace the proof (found in @weakly-initial-object) that
  $rec_0 (D, d, p)$ ($rec_0 (E, e, q)$) extends from an algebra morphism to a
  W-suspension algebra morphism.]<inductivity-implies-naturality>
#proof[
  We use $paireq$ twice to compare the two morphisms componentwise. To check the
  underlying functions for equality, we use function extensionality. Let $alpha
  : W_1$. We have to show $C(pr1 alpha)$, with
  $ C x def f (x (D, d, p)) =_E x (E, e, q), $
  which $pr2 alpha$ allows us to prove by induction. We set $cal(d) def rec_0 (D,
    d, p)$ and $cal(e) def rec_0 (E, e, q)$:
  - for the point constructors, let $a : A, t : B a -> W_0, g : product_(b : B a)
    C (t b)$. We have:
    $
      f (sup_0 a t (D, d, p)) & equiv f(d a (cal(d) comp t)) \
                              & = e a (f comp cal(d) comp t) & wide angle.l beta a (cal(d) comp t)
                                                               angle.r \
                              & = e a (cal(e) comp t)        & wide angle.l ap_(e a ((-) comp t)) (funext g)
                                                               angle.r \
                              & equiv sup_0 a t (E, e, q)
    $
  - for the path constructors, let $c : C, t : B (l c) -> W_0, s : B (r c) -> W_0,
    u : product_(b : B (l c)) C (t b), v : product_(b : B (r c)) C (s b)$.
    $
      &tr^C (eq_0 c t s) (beta (l c) (cal(d) comp t) trans ap_(e (l c) ((-) comp
          t)) (funext u)) \
      &= ap_(f comp cal(d)) (eq_0 c t s)^(-1) trans beta (l c) (cal(d) comp t) trans
      ap_(e (l c) ((-) comp t)) (funext u) trans ap_cal(e) (eq_0 c t s) &wide
      angle.l "HoTT book, 2.11.3" angle.r \
      &= beta (r c) (cal(d) comp s) trans (q c (f comp cal(d) comp t) (f comp cal(d)
          comp s))^(-1) trans ap_(e (l c) ((-) comp t)) (funext u) trans ap_cal(e)
      (eq_0 c t s) & angle.l "morphism" angle.r \
      &= beta (r c) (cal(d) comp s) trans (q c (f comp cal(d) comp t) (f comp cal(d)
          comp s))^(-1) trans ap_(e (l c) ((-) comp t)) (funext u) trans q c (cal(e)
        comp t) (cal(e) comp s) & angle.l "morphism" angle.r \
      &= beta (r c) (cal(d) comp s) trans (q c (cal(e) comp t) (f comp cal(d) comp
          s))^(-1) trans q c (cal(e) comp t)(cal(e) comp s) & angle.l apd angle.r \
      &= beta (r c) (cal(d) comp s) trans ap_(e a (r c))(funext v). & angle.l
      apd angle.r
    $
  So our proof by induction is complete. We name the corresponding fibered
  W-suspenison algebra $cal(C)$ and set $cal(c) def (-)
  cal(C)$.
  We now transport along this prior proof term, that we call $floral$, obtained
  using function extensionality and an inductivity witness, to be able to state
  the equality between the second components. We use function extensionality
  again, fixing $a : A, t : B a -> W_1$, so that we only have to prove
  $
    floral_* (lambda a : A, t : B a -> W_1 . refl_(f (d a (cal(d) comp t))) comp
      beta a (cal(d) comp t)) a t =
    refl_(e a (cal(e) comp t)).
  $
  Indeed, the following equalities hold.
  #[#set text(size: 9pt)
    $
      &floral_* (lambda a : A, t : B a -> W_1 . refl_(f (d a (cal(d) comp t))) comp
        beta a (cal(d) comp t)) a t \
      &= floral_* (lambda a : A, t : B a -> W_1 . beta a (cal(d) comp t)) a t
      & wide angle.l ap_(floral_* (lambda a, t . (-)) a t) (refll (beta a (cal(d) comp
            t))) angle.r \
      &= floral_* (beta a (cal(d) comp t)) &angle.l trfun ((-)a t) floral lambda a, t
      . beta a (cal(d) comp t) angle.r \
      &= (ap_((-)(sup_1 a t)) floral)^(-1) trans beta a (cal(d) comp t)
      trans ap_(e a ((-) comp t)) floral & angle.l "HotTT book, 2.11.3" angle.r \
      &= (beta a (cal(d) comp t) trans ap_(e a) (funext (cal(c) comp pr2 comp t)))^(-1) trans beta a (cal(d) comp t)
      trans ap_(e a ((-) comp t)) floral & quad angle.l ap_((-)^(-1) trans beta a (cal(d)
        comp t) trans ap_(e a ((-) comp t)) floral) (apfunext (sup_1 a t) (...)) angle.r \
      &= (beta a (cal(d) comp t) trans ap_(e a) (funext (cal(c) comp pr2 comp t)))^(-1) trans beta a (cal(d) comp t)
      trans ap_(e a) (ap_((-) comp t) floral) & quad angle.l ap_(... trans (-)) (apcomp (e a)
        ((-) comp t) floral)^(-1) angle.r \
      &= (beta a (cal(d) comp t) trans ap_(e a) (funext (cal(c) comp pr2 comp t)))^(-1) trans beta a (cal(d) comp t)
      trans ap_(e a) (funext (cal(c) comp pr2 comp t)) & quad angle.l ap_(... trans
      ap_(e a) (-)) (apfunextprecomp t (cal(c) comp pr2)) angle.r \
      &= refl_(e a (cal(e) comp t)) & angle.l transinvl (beta a (cal(d) comp t) trans ap_(e a) (funext (cal(c) comp pr2 comp t))) angle.r
    $
  ]

  where $apfunextprecomp e h : ap_((-) comp e) (funext h) = funext (h comp e)$
  is easily proven and $transinvl$ is the left inverse path property. We denote
  this proof of equality between the second components, that we have constructed
  by function extensionality, $flat$. We are now left with comparing the third
  components. To state their equality, we need to transport along $paireq floral
  flat$. As many times before, we can use function extensionality to append some
  fixed $c: C, t : B (l c) -> W_1, s : B (r c) -> W_1$ to both sides of the
  equation. Then, $trfun ((-) c t s)$ allows us to bring these three newly
  introduced variables inside the transport on the left side. This time around, to
  characterise transport we need the dependent version of theorem 2.11.3 of the
  HoTT book, i.e. theorem 2.11.4. Our goal is now making the following diagram
  commmute, where $omega_f$ stands for the third component of the W-suspension
  algebra homomorpism constructed from $f$.

  #align(center)[
    #set text(size: 7pt)
    #diagram(
      cell-size: 50pt,
      node(
        (0, 0),
        $(paireq floral flat)_* (ap_(f comp rec_1 (D, d, p)) (eq_1 c t s))$,
      ),
      edge(
        $ap_((paireq floral flat)_*) ((theta comp omega_(rec_1 (D, d, p))) c t s)$,
      ),
      node(
        (1, 0),
        $(paireq floral flat)_* ((refl trans beta (l c) (rec_1 (D, d, p)
              comp t)) trans q c (f comp rec_1 (D, d, p) comp
            t) (f comp rec_1 (D, d, p) comp s) trans (refl trans beta (r c) (rec_1 (D,
                d, p) comp s))^(-1))$,
      ),
      edge(
        $apd_((x, y) |-> y (l c) t trans e a (x comp t) (x comp s) trans (y (r c)
          s)^(-1)) (paireq floral flat)$,
        label-side: left,
      ),
      node(
        (1, 1),
        $refl trans q c (rec_1 (E, e, q) comp t)(rec_1 (E, e, q) comp s) trans refl$,
      ),
      edge($omega_(rec_1 (E, e, q)) c t s$),
      node((0, 1), $ap_(rec_1 (E, e, q)) (eq_1 c t s)$),
      edge(
        "u",
        $apd_((x, \_) |-> ap_x (eq_1 c t s)) (paireq floral flat)^(-1)$,
        label-side: left,
      ),
    )]

  We only show how to simplify each side of the square until commutativity becomes
  a simple (although very tedious) exercise. By construction of the morphism on
  $rec_1 (E, e, q)$, it can be shown that the bottom side simplifies to the
  following chain of equalities:
  $
    &ap_(rec_1 (E, e, q) (eq_1 c t s)) \
    &= ap_cal(e) (ap_pr1 (eq_1 c t s)) &wide angle.l (apcomp cal(e) pr1 (eq_1 c t
        s))^(-1) angle.r \
    &= ap_cal(e) (eq_0 c (pr1 comp t) (pr1 comp s)) &wide angle.l ap_cal(e)
    ("HoTT book, 2.6.2") angle.r \
    &= p c (cal(e) comp pr1 comp t) (cal(e) comp pr1 comp s) & angle.l apfunext
    (E, e, q) lambda cal(X) . p c (((-) cal(X)) comp pr1 comp t) (((-) cal(X)) comp pr1 comp
      s) angle.r \
    &= refl trans p c (cal(e) comp pr1 comp t) (cal(e) comp pr1 comp s) trans refl
    & angle.l (surrrefl (p c (cal(e) comp pr1 comp t) (cal(e) comp pr1 comp s))^(-1)
    angle.r.
  $

  The exact same reasoning applies to $rec_1 (D, d, p)$ and $omega_(rec_1 (D, d,
    p))$ on the top side, of course. Then, the argument of the transport can be
  simplified to:
  #[
    #set text(size: 7.5pt)
    $
      &ap_(f comp rec_1 (D, d, p)) (eq_1 c t s) \
      &= ap_f (ap_(rec_1 (D, d, p)) (eq_1 c t s)) &wide angle.l (apcomp f (rec_1 (D,
            d, p)) (eq_1 c t s)^(-1) angle.r \
        &= ap_f (ap_cal(d) (ap_pr1 (eq_1 c t s))) &wide angle.l ap_(ap_f) (apcomp
          cal(d) pr1 (eq_1 c t s)^(-1)) angle.r \
        &= ap_f (ap_cal(d) (eq_0 c (pr1 comp t) (pr1 comp s))) &wide angle.l ap_(ap_f
        comp ap_cal(d)) ("HoTT book, 2.6.2") angle.r \
        &= ap_f (p c (cal(d) comp pr1 comp t) (cal(d) comp pr1 comp s)) &wide angle.l ap_(ap_f
        ) (apfunext (D, d, p) lambda cal(X) . p c (((-) cal(X)) comp pr1 comp t) ((-)
            cal(X)) comp pr1 comp t)) angle.r \
      &= beta (l c) (cal(d) comp pr1 comp t) trans q c (f comp cal(d) comp pr1 comp
        t) (f comp cal(d) comp pr1 comp s) trans (beta (r c) (cal(d) comp pr1 comp
          s))^(-1) &wide angle.l theta c (cal(d) comp pr1 comp t) (cal(d) comp pr1 comp
        s) angle.r \
      &= (refl trans beta (l c) (cal(d) comp pr1 comp t)) trans q c (f comp cal(d) comp pr1 comp
        t) (f comp cal(d) comp pr1 comp s) trans (beta (r c) (cal(d) comp pr1 comp
          s))^(-1) &wide angle.l ap_((-) trans ...) (refll (beta (l c) (cal(d) comp pr1 comp t)))^(-1) angle.r \
      &= (refl trans beta (l c) (cal(d) comp pr1 comp t)) trans q c (f comp cal(d) comp pr1 comp
        t) (f comp cal(d) comp pr1 comp s) trans (refl trans beta (r c) (cal(d) comp pr1 comp
          s))^(-1) &wide angle.l ap_(... trans (-)^(-1)) (refll (beta (r c) (cal(d) comp pr1 comp s)))^(-1) angle.r \
    $]
  As for the left side, we observe that the second component of the equality is
  currently unused. We can get relegate it to the first step of an equality chain
  by rewriting the left side to what follows:
  #[
    #set text(size: 9.5pt)
    $
      &tr^((x,\_)|->ap_x (eq_1 c t s)) (paireq floral flat) (ap_(f comp rec_1 (D, d,
          p)) (eq_1 c t s)) \
      &=tr^(ap_((-)) (eq_1 c t s)) (ap_pr1 (paireq floral flat)) (ap_(f comp rec_1 (D, d,
          p)) (eq_1 c t s)) &wide angle.l trcomp pr1 (paireq floral flat) (ap_(f comp
        rec_1 (D, d, p)) (eq_1 c t
          s)) angle.r \
      &=tr^(ap_((-)) (eq_1 c t s)) floral (ap_(f comp rec_1 (D, d,
          p)) (eq_1 c t s)) &wide angle.l ap_(a |-> tr^(ap_((-)) (eq_1 c t s)) a (...)) ("HoTT book, 2.6.2") angle.r \
      &=tr^((-) (eq_1 c t s)) (ap_ap floral) (ap_(f comp rec_1 (D, d,
          p)) (eq_1 c t s)) &wide angle.l "HoTT book, 2.3.10" angle.r \
      &= ap_(rec_1 (E, e, q)) (eq_1 c t s). & angle.l apd_((-) (eq_1 c t s)) (ap_ap floral) angle.r
    $
  ]
  Finally, for the right side, we observe that the following diagram commutes for
  any generic path $paireq p q : (a_1, b_1) =_(sum_(a : A) B a) (a_2, b_2)$
  constructed using $paireq$. This is shown by induction on $p$ alone (because, if
  we choose the obvious proof for $trfun$, then the computation rules will do the
  rest).
  #align(center)[
    #diagram(
      node((0, 0), $(a_1, b_1)$),
      edge($trconst^(sum_(a : A) B a)_p (a_1, b_1)$),
      node((5, 0), $tr^(\_ |-> sum_(a : A) B a) p (a_1, b_1)$),
      edge($trfun (a |-> (a, (-))) p (a_1, b_1)$, label-side: left),
      node((5, 1), $ap_((a_2, (-))) q$),
      edge($ap_((a_2, (-))) q$),
      node((0, 1), $(a_2, b_2)$),
      edge("u", $paireq p q$, label-side: left),
    )]
]

As already observed by @Awodey_2018, naturality alone in not enough to obtain
the initial algebra in our new setting. While @initiality-characterisation also
extends to wild categories, as we can't prove that $rec_1 (W_1, sup_1, eq_1)$
is the identity on $(W_1, sup_1, eq_1)$, we cannot regard out construction as
the limit of the identity functor to begin with. All that
@inductivity-implies-naturality shows, when setting $f$ to $rec_1 (W_1, sup_1,
  eq_1)$, is that such a homomorphism is an idempotent in $cal(S) dash.en"WSusAlg"$. If
what we are after is, instead, the identity, we should try to split it. We take
care of it in the next section.

== W-Suspension Algebras and Quasi-Idempotents <w-suspension-algebras-and-quasi-idempotents>

To split a W-suspension algebra morphism, it is only reasonable to start from
the underlying function on the W-suspension algebra carrier, which is an
idempotent in the wild category built on our type universe. We call these
_pre-idempotents_.

#definition[A _pre-idempotent on $X$_ is an endofunction $f: X -> X$ equipped
  with a homotopy $I : f comp f ~ f$.
  $ "PIdem" X def sum_(f : X -> X) (f comp f ~ f) $
]

Note that pre-idempotents and all their derived notions are only defined within
the wild category build on our type universe. Neither @Shulman_2017, who first
introduced them, nor us (need to) extend these notions to other categories.
Now then, a splitting operation would result in the following, with $f ~ s comp
r$.

#definition[A _retraction on $X : cal(U)$_ is a type $A : cal(U)$ equipped with
  two functions $r : X -> A, s : A -> X$ and a homotopy $r comp s ~ id_A$.
  $
    "Retr" X def sum_(A : cal(U)) quad sum_(r : X -> A) quad sum_(s : A -> X)
    (r comp s ~ id_A)
  $
]

By assuming a natural numbers type, @Shulman_2017 identifies a sufficient
condition for a pre-idempotent to split: being a quasi-idempotent.

#definition[A _quasi-idempotent on $X : cal(U)$_ is a pre-idempotent such that
  $ap_f I ~ I comp f$.
  $ "QIdem" X def sum_((f, I) : "PIdem" X) (ap_f I ~ I comp f) $
]

To obtain a quasi-idempotent, we just need to climb one more step of our
refinement hierarchy. By doing so, we don't lose any of the properties proven
insofar.

#remark[Via the inclusion map $pi_1$, @inductivity-implies-naturality still
  holds if we replace the W-suspension algebra morphism on $rec_1$ with the one on
  $rec_2$. In the following diagram, the left and the right triangles commute
  definitionally, while the bottom one does so by @inductivity-implies-naturality.

  #align(center, commutative-diagram(
    nod((0, 1), [$(W_2, sup_2, eq_2)$]),
    nod((1, 1), [$(W_1, sup_1, eq_1)$]),
    nod((2, 0), [$(D, d, p)$]),
    nod((2, 2), [$(E, e, q)$]),
    arr((0, 1), (1, 1), $pi_1$),
    arr((0, 1), (2, 0), $rec_2 (D, d, p)$, label-pos: right),
    arr((1, 1), (2, 0), $rec_1 (D,d,p)$),
    arr((2, 0), (2, 2), $(f, beta, theta)$),
    arr((1, 1), (2, 2), $rec_1 (E,e,q)$, label-pos: right),
    arr((0, 1), (2, 2), $rec_2 (E, e, q)$),
  ))

  In particular, the W-suspension algebra morphism given by
  $
    rec_2 (W_2, sup_2, eq_2) equiv rec_1 (W_2, sup_2, eq_2) comp pi_1 :
    W_2 -> W_2
  $
  is, again, an idempotent in $cal(S) dash.en"WSusAlg"$. This also entails that
  the $rec_2 (W_2, sup_2, eq_2)$ as a function is a
  pre-idempotent.]<rec-2-idempotent>

#lemma[The pre-idempotent on $rec_2 (W_2, sup_2, eq_2) : W_2 -> W_2$ identified
  by the previous @rec-2-idempotent extends to a quasi-idempotent.]
#proof[
  We shall abbreviate $(W_2, sup_2, eq_2)$ as $WW$.
  For starters, let's spell out the witness of idempotency given by the previous
  proof. It is
  $ I & : rec_2 WW comp rec_2 WW tilde rec_2 WW \
  I & def lambda (x, i, j) : W_2 . i cal(D) $ where $cal(D) def (D, d, p)$ is a fibered W-suspension algebra
  on $(W_0, sup_0, eq_0)$. Its algebra structure is the following.
  $
    D &: W_0 -> cal(U) \
    D alpha &def rec_2 WW (alpha WW) =_(W_2) alpha WW \
    d &: product_(a : A) product_(t : B a -> W_0) (product_(b : B a) D (t b)) -> D (sup_2 a t) \
    d a t g &def refl_(rec_2 WW (sup_2 a t WW)) trans ap_(sup_2 a) (funext g) \
  $
  During the proof, we will never need to use our previous construction for $p$,
  but recalling its type is at least useful to ensure everything typechecks.
  $
    p & : product_(c : C) product_(t : B (l c) -> W_0) product_(s : B (r c) -> W_0)
        product_(u : product_(b : B (l c)) D (t b))
        product_(v : product_(b : B (r c)) D (s b))
        (tr^D (eq_0 c t s) (d (l c) t u) =_(D (sup_0 (r c) s)) d (r c) s v) \
  $
  We are looking for a term
  $ J : ap_(rec_2 WW) comp I ~ I comp rec_2 WW. $
  Let $(x, j) : W_2$, with $x : W_1$. We need to show
  $ (ap_(rec_2 WW) comp I) (x, j) = (I comp (rec_2 WW)) (x, j). $
  Our goal type reduces to
  $
    (ap_(rec_2 WW) comp (-)cal(D) comp pr2 comp pr1)(x, j) =
    ((-)cal(D) comp pr2 comp pr1 comp (-)WW comp rho_2)(x, j)
  $
  and then
  $
    E x def (ap_(rec_2 WW) comp (-)cal(D) comp pr2)x = ((-)cal(D) comp pr2 comp
      pr1 comp (-)WW comp pr1)x.
  $
  This can be seen as a type family $E : W_1 -> cal(U)$ in the variable $x : W_1$,
  so $j$ allows us to prove the statement inductively. For the point constructors,
  let $a : A, t : B a -> W_1, g : product_(b : B a) E (t b)$. We have:
  #[
    #set text(size: 9.5pt)
    $
      &(ap_(rec_2 WW) comp (-) cal(D) comp pr2)(sup_1 a t) \
      &equiv ap_(rec_2 WW) (d a (pr1 comp t)((-)cal(D) comp pr2 comp t)) \
      &equiv ap_(rec_2 WW) (refl comp ap_(sup_2 a) (funext ((-)cal(D) comp pr2 comp
            t))) \
      &= ap_(rec_2 WW) (ap_(sup_2 a) (funext ((-)cal(D) comp pr2 comp t)))
      &wide angle.l ap_(ap_(rec_2 WW)) (refll (ap_(sup_2 a) (funext ((-)cal(D) comp
              pr2 comp t)))) angle.r \
      &= ap_(rec_2 WW comp sup_2 a) (funext ((-)cal(D) comp pr2 comp t))
      &angle.l apcomp (rec_2 WW) (sup_2 a) (funext ((-)cal(D) comp pr2 comp t))
      angle.r \
      &equiv ap_(sup_2 a (rec_2 WW comp (-))) (funext ((-)cal(D) comp pr2 comp t)) \
      &= ap_(sup_2 a) (ap_(rec_2 WW comp (-)) (funext ((-)cal(D) comp pr2 comp
            t))) &angle.l (apcomp (sup_2 a) (rec_2 WW comp (-)) (funext ((-)cal(D) comp pr2 comp
            t)) )^(-1) angle.r \
      &= ap_(sup_2 a) (funext (rec_2 WW comp (-)cal(D) comp pr2 comp
          t)) &angle.l ap_(ap_(sup_2 a)) (#text[@RipollEcheveste_2023, lemma 3.12])
      angle.r \
      &= ap_(sup_2 a) (funext ((-) cal(D) comp pr2 comp pr1 comp (-) WW comp pr1 comp
          t)) &angle.l ap_(ap_(sup_2 a) comp funext) (funext g) angle.r \
      &= refl trans ap_(sup_2 a) (funext ((-) cal(D) comp pr2 comp pr1 comp (-) WW comp pr1 comp
          t)) &quad angle.l (refll (ap_(sup_2 a) (funext ((-) cal(D) comp pr2 comp pr1 comp (-)
              WW comp pr1 comp t)) ))^(-1) angle.r \
      &equiv d a (rho_2 comp (-) WW comp pr1 comp t) ((-) cal(D) comp pr2 comp pr1 comp
        (-) WW comp pr1 comp t) \
      &equiv ((-) cal(D) comp pr2) (sup_1 a (pr1 comp (-) WW comp pr1 comp t)) \
      &equiv ((-) cal(D) comp pr2 comp pr1 comp (-) WW comp pr1)(sup_1 a t)
    $
  ]
  For the path constructors, let $c : C, t : B (l c) -> W_1, s : B (r c) -> W_1,
  u : product_(b : B (l c)) E(t b), v: product_(b : B (r c)) E (s b)$. If we name
  the proof term for out induction step on point constructors $gamma$, we have
  to show
  $ tr^D (eq_1 c t s) (gamma (l c) t u) =_(D (r c) s) gamma (r c) s v. $
  The trick is to rewrite the path we are transporting along, $eq_1 c t s$, in a
  different form:
  $
    z : eq_1 c t s =_(sup_1 (l c) t =_W_1 sup_1 (r c) s) ap_((-)(t,s)) (funext
    (uncurry (eq_1 c)) \
    eq_1 c t s equiv (uncurry eq_1 c) (t, s) path^(apfunext (t, s) (uncurry (eq_1
          c)))^(-1) ap_((-)(t,s)) (funext (uncurry (eq_1 c)))
  $
  The next commutative diagram proves our goal. The central square commutes
  because of the dependent action of $trcomp$ on the path $gamma (l c) t u$.
  The right trapezoid because its two bases can be seen as the application of the
  same function to $sup_1 (l c) comp pr1)$ and $sup_1 (r c) comp pr2$
  respectively, ando so we can use the dependent action of such a function on
  path $funext (uncurry (eq_1 c))$. The left trapezoid commutes because of the
  dependent action of $ap_((-)_*) (gamma a (l c) u)$ on $z$. Both triangles on
  the left (top and bottom) can be seen to commute after generalising the
  statement until we can perform path induction on the variable generalising
  $z$. Similarly, both triangles on the right (top and bottom) also commute, but
  this time we need to generalise until we can make path induction on the
  variable generalsing $(funext (uncurry(eq_1 c)))$.
  #align(center, rotate(90deg, reflow: true)[
    #set text(size: 6pt)
    #diagram(
      cell-size: 130pt,
      node(
        (0, 0),
        $(eq_1 c t s)_* (((-)cal(D) comp pr2 comp pr1 comp rec_0 WW comp
            pr1)(sup_1 (l c) t))$,
      ),
      edge(
        $apd_((-)cal(D) comp pr2 comp pr1 comp rec_0 WW comp pr1) (eq_1 c t s)$,
      ),
      node(
        (3, 0),
        $(((-)cal(D) comp pr2 comp pr1 comp rec_0 WW comp
            pr1)(sup_1 (r c) s))$,
      ),
      edge($gamma (r c) s v$),
      node((3, 3), $(ap_(rec_2 WW) comp (-)cal(D) comp pr2)(sup_1 (r c) s)$),
      edge($apd_(ap_(rec_2 WW comp (-) cal(D) comp pr2)) (eq_1 c t s)$),
      node(
        (0, 3),
        $(eq_1 c t s)_* ((ap_(rec_2 WW) comp (-) cal(D) comp pr2)(sup_1 (l
              c) t))$,
      ),
      edge("uuu", $ap_((eq_1 c t s)_*) (gamma (l c) t u)$),
      node(
        (1, 1),
        $(ap_((-)(t,s)) (funext (uncurry (eq_1 c))))_* (((-) cal(D) comp
            pr2 comp pr1 comp rec_0 WW comp pr1)(sup_1 (l c) t))$,
      ),
      edge($trcomp$),
      node(
        (2, 1),
        $(funext (uncurry (eq_1 c)))_* (((-) cal(D) comp
            pr2 comp pr1 comp rec_0 WW comp pr1)(sup_1 (l c) t))$,
      ),
      edge($ap_(funext (uncurry (eq_1 c)))_* (gamma (l c) t u)$),
      node(
        (2, 2),
        $(funext (uncurry (eq_1 c)))_* ((ap_(rec_2 WW) comp (-) cal(D)
            comp pr2)(sup_1 (l c) t))$,
      ),
      edge($trcomp$),
      node(
        (1, 2),
        $(ap_((-)(t,s))(funext(uncurry(eq_1 c))))_* ((ap_(rec_2 WW) comp
            (-) cal(D) comp pr2)(sup_1 (l c) t))$,
      ),
      edge(
        "u",
        $ap_((ap_((-)(t,s)) (funext (uncurry (eq_1 c))))_*) (gamma (l c) t u)$,
      ),
      edge(
        (0, 0),
        (1, 1),
        $ap_(x |-> (x)_* (((-)cal(D) comp pr2 comp pr1 comp rec_0 WW
            comp pr1)(sup_1 (l c) t))) z$,
        label-angle: -50deg,
      ),
      edge(
        (3, 0),
        (2, 1),
        $apd_(((-)cal(D) comp pr2 comp pr1 comp rec_0 WW comp
          pr1)comp((-)(s,t)))
        (funext(uncurry(eq_1 c))))$,
        label-angle: 51deg,
      ),
      edge(
        (0, 3),
        (1, 2),
        $ap_(x |-> (x)_* ((ap_(rec_2 WW) comp (-) cal(D) comp
            pr2)(sup_1 (l c) t))) z$,
        label-angle: 49deg,
      ),
      edge(
        (3, 3),
        (2, 2),
        $apd_((ap_(rec_2 WW) comp (-)cal(D) comp pr2)comp((-)(s,t)))
        (funext(uncurry(eq_1 c))))$,
        label-angle: -49deg,
      ),
      edge(
        (3, 0),
        (1, 1),
        $apd_((-)cal(D) comp pr2 comp pr1 comp rec_0 WW comp pr1)
        (ap_((-)(t,s))(funext(uncurry(eq_1 c))))$,
        label-angle: 25deg,
      ),
      edge(
        (3, 3),
        (1, 2),
        $apd_(ap_(rec_2 WW) comp (-) cal(D) comp pr1)
        (ap_((-)(t,s))(funext(uncurry(eq_1 c))))$,
        label-angle: -25deg,
      ),
    )
  ])
  This concludes the proof.
]

While having a quasi-idempotent in the wild category of types and functions
gives us a splitting for free in such a wild category, we still need to
reconstruct the splitting in $cal(S) dash.en"WSusAlg"$.

#proposition[The idempotent in $cal(S) dash.en"WSusAlg"$ given by the previous
  @rec-2-idempotent splits.]<idempotent-split-in-wsusalg>
#proof[
  We sometimes work with propositional equalities between functions, as opposed to
  homotopies, for convenience. Because we are already assuming function
  extensionality, this is not a problem.

  We set $f def rec_2 (W_2, sup_2, eq_2)$, and $(D, d, p) def (W_2, sup_2, eq_2)$.
  We refer to its witness of
  pre-idempotency as $I : f comp f = f$. Theorem 5.3 of
  @Shulman_2017 gives a splitting of our quasi-idempotent on $(f, I)$. We use the
  variables $E : cal(U), cal(r) : D -> E, cal(s) : E -> D, K : cal(r) comp cal(s)
  = 1_E$ for the splitting, and name $H : cal(s) comp cal(r) = f$ its
  "reconstruction".

  The proof takes place in two stages. First, we lift the splitting to the
  category of regular $cal(W)$-algebras for signature $(A, B)$. Only then we move
  to the lifting to $cal(S) dash.en"WSusAlg"$.

  First, we show that we can give $E$ the structure of a $cal(W)$-algebra.
  As a point constructor map, we choose
  $
      e & : product_(a : A) (B a -> E) -> E \
    e a & def cal(r) comp d a (cal(s) comp (-)).
  $

  Similarly, $cal(r)$ and $cal(s)$ can be given the structure of algebra
  moprhisms. The are extended to $(cal(r), rho)$ and $(cal(s), sigma)$
  respectively.

  $
    rho a &: cal(r) comp d a ~ e a (cal(rho) comp (-)) \
    rho a t &def \
    cal(r) (d a t) &= (cal(r) comp cal(s) comp cal(r))(d a t) &angle.l
    ap_(((-) comp cal(r))(d a t)) K^(-1) angle.r \
    &= (cal(r) comp f)(d a t) &angle.l ap_((cal(r) comp (-))comp (d a t)) H angle.r \
    &= (cal(r) comp d a)(f comp t) &angle.l ap_cal(r) (beta a t) angle.r \
    &= (cal(r) comp d a)(cal(s) comp cal(r) comp t) &wide angle.l ap_((cal(r) comp d
      a)((-) comp t)) H^(-1) angle.r \
    sigma a &: cal(s) comp e a ~ d a (cal(s) comp (-)) \
    sigma a t &def \
    (cal(s) comp cal(r) comp d a)(cal(s) comp t) &= (f comp d a)(cal(s) comp t)
    & angle.l ap_(((-) comp d a)(cal(s) comp t)) H angle.r \
    &= d a (f comp cal(s) comp t) & angle.l beta a (cal(s) comp t) angle.r \
    &= d a (cal(s) comp cal(r) comp cal(s) comp t) &angle.l ap_(d a ((-) comp cal(s)
      comp cal(t))) H^(-1) angle.r \
    &= d a (cal(s) comp t) &angle.l ap_(d a (cal(s) comp (-) comp t)) K
    angle.r
  $

  We now use $paireq$ to lift $H$ and $K$. We need
  $H' : H_* (sigma comp rho) = beta$
  and
  $K' : K_* (rho comp sigma) = lambda a t . refl_(e a t)$. For both, we use
  function extensionality to fix $a : A$ and $t : B a -> D$ (or $t : B a -> E$)
  and check that the following two diagrams commute. As per usual, theorem 2.11.3
  from the HoTT book helps us get rid of the transport operator. The higher order
  paths in the diagrams are not labelled, as they coincide with the definitions of
  $rho$ and $sigma$ that we have just given, plus the paths we got in exchange for
  eliminating transport.

  #align(center, commutative-diagram(
    node-padding: (50pt, 50pt),
    nod((0, 0), [$f (d a t)$]),
    nod((0, 1), [$(cal(s) comp cal(r))(d a t)$]),
    nod((0, 2), [$(cal(s) comp cal(r) comp cal(s) comp cal(r))(d a t)$]),
    nod((0, 3), [$(cal(s) comp cal(r) comp f)(d a t)$]),
    nod((0, 4), [$(cal(s) comp cal(r))(d a (f comp t))$]),
    nod((2, 4), [$(cal(s) comp cal(r))(d a (cal(s) comp cal(r) comp t))$]),
    nod((4, 4), [$(f comp d a)(cal(s) comp cal(r) comp t)$]),
    nod((4, 3), [$d a (f comp cal(s) comp cal(r) comp t)$]),
    nod((4, 2), [$d a (cal(s) comp cal(r) comp cal(s) comp cal(r) comp t)$]),
    nod((4, 1), [$d a (cal(s) comp cal(r) comp t)$]),
    nod((4, 0), [$d a (f comp t)$]),
    nod((1, 1), [$(f comp f)(d a t)$]),
    nod((3, 1), [$d a (f comp f comp t)$]),
    nod((2, 2), [$f (d a (f comp t))$]),
    arr((0, 0), (0, 1), []),
    arr((0, 1), (0, 2), []),
    arr((0, 2), (0, 3), []),
    arr((0, 3), (0, 4), []),
    arr((0, 4), (2, 4), []),
    arr((2, 4), (4, 4), []),
    arr((4, 4), (4, 3), []),
    arr((4, 3), (4, 2), []),
    arr((4, 2), (4, 1), []),
    arr((4, 1), (4, 0), []),
    arr((4, 0), (0, 0), []),
    arr((0, 0), (1, 1), []),
    arr((0, 2), (1, 1), []),
    arr((0, 3), (1, 1), []),
    arr((0, 4), (2, 2), []),
    arr((2, 2), (4, 4), []),
    arr((3, 1), (4, 2), []),
    arr((2, 2), (3, 1), []),
    arr((1, 1), (2, 2), []),
    arr((1, 1), (3, 1), []),
    arr((3, 1), (4, 0), []),
    arr((3, 1), (4, 3), []),
  ))
  The only polygons which do not commute due to simple path algebra properties
  are:
  - the left trapezoid, which commutes due to the algebra morphism on $f$ being an
    idempotent;
  - the center triangle, which is just our definition of morphism composition;
  - the triangles at the top left and bottom left. These commute since
    $H_* (ap_(cal(r) comp (-) comp cal(s)) K) = I$, as stated in theorem 7.1 of
    @Shulman_2017.

  We now proceed to the diagram for the second equality.

  #align(center, commutative-diagram(
    nod((0, 0), [$(cal(r) comp cal(s) comp cal(r) comp d a)(cal(s) comp t)$]),
    nod((0, 1), [$(cal(r) comp f comp d a)(cal(s) comp t)$]),
    nod((0, 2), [$(cal(r) comp d a)(f comp cal(s) comp t)$]),
    nod((0, 3), [$(cal(r) comp d a)(cal(s) comp cal(r) comp cal(s) comp t)$]),
    nod((1, 3), [$(cal(r) comp d a)(cal(s) comp t)$]),
    nod((2, 3), [$(cal(r) comp cal(s) comp cal(r) comp d a)(cal(s) comp t)$]),
    nod((2, 2), [$(cal(r) comp f comp d a)(cal(s) comp t)$]),
    nod((2, 1), [$(cal(r) comp d a)(f comp cal(s) comp t)$]),
    nod((2, 0), [$(cal(r) comp d a)(cal(s) comp cal(r) comp cal(s) comp t)$]),
    nod((1, 0), [$(cal(r) comp d a)(cal(s) comp t)$]),
    arr((0, 0), (0, 1), []),
    arr((0, 1), (0, 2), []),
    arr((0, 2), (0, 3), []),
    arr((0, 3), (1, 3), []),
    arr((1, 3), (2, 3), []),
    arr((0, 0), (1, 0), []),
    arr((1, 0), (2, 0), []),
    arr((2, 0), (2, 1), []),
    arr((2, 1), (2, 2), []),
    arr((2, 2), (2, 3), []),
    arr((0, 1), (2, 1), []),
    arr((0, 2), (2, 2), []),
  ))

  The right square is the same as the left one, but rotated by 180 degrees.
  Observe that the proof that $f$ is an algebra morphism is, for our particular
  choice of $f equiv rec_2 (W_2, sup_2, eq_2)$, pointwise defined using path
  reflexivity. The center square indeed definitionally degenerates into a point
  (for a generic algebra morphism, if would still be propositionally equal to
  $refl$, as the symmetric paths would cancel each other out).
  The left (right) square can be made to commute by being rephrased as a
  single transport of $refl$ (not along $refl$) using $trcomp$ and $trtrans$.

  This concludes the lifting to regular
  $cal(W)$-algebras. Now, as a path constructor map for $(E, e)$, we have
  $
          q & : product_(c : C) quad product_(t : B (l c) -> E) quad product_(s : B (r c)
              -> E) (e (l c) t =_E e (r c) s) \
    q c t s & def tr^(x |->(e (l c) (x comp t) =_E e (r c) (x comp s))) K (rho (l c) (cal(s) comp t) trans ap_cal(r) (p c (cal(s)
                    comp t) (cal(s) comp s) ) trans rho (r c) (cal(s) comp s))
  $
  The extensions of $(s, sigma)$ and $(r, rho)$ to W-suspension algebra morphisms
  is quite long an not particularly interesting (chains of 8 and 10 propositional
  equalities respectively). The path algebra toolkit we have been using so far is
  adequate for the job. What is important to remember is that the proof that $f$
  is a W-suspension algebra morphism is, of course, needed, and that $paireq H
  H'$ and $paireq K K'$ must also be extended accordingly.
]

The previous lemma does not lift an arbitrary splitting for a generic
quasi-idempotent. It is leveraging our particular construction for $rec_2 (W_2,
  sup_2, eq_2)$.

== Initiality <initiality>

We are now able to prove initiality of the W-suspension algebra $(W^cal(S),
  sup^cal(S), eq^cal(S))$ obtained during the previous splitting in
the wild category $cal(S) dash.en"WSusAlg"$.

#lemma[@initiality-characterisation can be extended (also in wild categories)
  with this third, equivalent condition:
  "$I$ is the vertex of a cone for the identity functor and the projection from
  $I$ to $I$ itself is $1_I$".
]<initiality-characterisation-2>
#proof[It is obvious to see that this property is implied by initiality. To see
  the converse, consider a generic projection
  $mu_X : I -> X$. Because $I$ is the vertex of a cone on the identity functor,
  any other map $f : I -> X$ satisfies
  $ f = f comp 1_I = f comp mu_I = mu_X. $
]

The W-suspension algebra that is the result of our splitting certainly enjoys
these two conditions.

#theorem[There is an initial object $(W^cal(S), sup^cal(S), eq^cal(S))$ in
  $cal(S)dash.en"WSusAlg"$.]
#proof[We use @initiality-characterisation-2. As a candidate for the initial
  object, we choose $I def (W^cal(S), sup^cal(S), eq^cal(S))$, which we obtained
  via the splitting in @idempotent-split-in-wsusalg. Fixed a W-suspension
  algebra $cal(D)$, we have projection $pi_cal(D)$ from $I$ to $cal(D)$ which is
  obtained by composing the morphism extending $rec_2 cal(D)$ after $frak(S)$,
  the section obtained from the splitting. This choice ensures that we get a
  cone on the identity functor, since $f comp rec_2 cal(D) = rec_2 cal(E)$ holds
  from naturality of $(W_2, sup_2, eq_2)$, and hence $f comp pi_cal(D) equiv f
  comp rec_2 cal(D) comp frak(S) = rec_2 cal(E) comp frak(S) = pi_cal(E)$. So
  all that is left to show is that $pi_I = equiv rec_2 I comp frak(S) = 1_I$.
  Let $frak(R)$ be the retraction obtained from the splitting. Because $frak(R)
  comp frak(S) = 1_I$, it is enough to show that $frak(R) = rec_2 I$. Indeed, we
  have
  $
    frak(R) &= 1_I comp frak(R) \
    &= frak(R) comp frak(S) comp frak(R) \
    &= frak(R) comp rec_2 (W_2, sup_2, eq_2) \
    &= rec_2 I. &wide angle.l "naturality" angle.r
  $
]

#corollary[By @induction-initiality, the W-suspension algebra $(W^2, sup^2,
    eq^2)$ satisfies the induction principle for W-suspension algebras over
  $cal(S)$.]

Similarly to what we have done in the previous chapter, the encoding of the
W-suspension is given by $W^cal(S)$. The encoding of the point constructor with
label $a: A$ is given by $sup^cal(S) a$. The encoding of the path constructor
with label $c: C$ is given by $eq^cal(S) c$.
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#set heading(numbering: "1.1.1.")

In this chapter, we encode Van der Weide's higher inductive types as defined by
@Basold_2017 within the subuniverse of homotopy sets. That is, we start from HIT
signatures that use 0-level polynomial type constructors, and we construct the
corresponding $0$-truncated higher inductive types. @Weide_2019 already
developed initial semantics. Like them, we refer to _homotopy initiality_, i.e.
hom-types being contractible, as simply "initiality", as this is the only notion
of initiality we are interested in. We define the category of _lawful set
algebras_ for a given HIT signature in @lawful-algebras. In
@limits-lawful-set-algebras-category, we exploit impredicativity to conclude
that this category has arbitrary limits. We use this fact in section
@initial-lawful-set-algebra to construct the desired initial object in our
category. Finally, @rules shows that initiality implies the desired $beta$-rule
and $eta$-rule.

#example[#gear("SetTruncated.LawfulSetAlgebra#762") The exposition will be
accompanied by a working example: natural numbers modulo 3 as a set-truncated
higher inductive type $N3N$, generated by the constructors:

- $0 : N3N$;
- $S : N3N -> N3N$;
- $"mod" : 0 =_N3N S (S 0)$.

A definition using normal inductive types would enumerate $0$, $1$, and $2$ as
three distinct constructors. As a consequence, the usual operations on such a
type (e.g., addition, multiplication, ...) would either require hard-coding or
mappings to and from $NN$.
]

== Lawful Set Algebras <lawful-algebras>

We start from the usual notion of algebra over an endofunctor, which provides
categorical semantics for W-types.

#definition[#gear-lib("Categories.Instances.FunctorAlgebras#637") Given a
category $C$, the type of _algebras over an endofunctor $F:
C -> C$_ is
$ F dash.en"Algebra" := sum_(X : "Ob"(C)) "Hom"_C (F C, C). $
]

We sometimes shorten "algebra over $F$" as "$F$-algebra". We refer to the first
and second element of this dependent pair as _algebra carrier_ and _algebra map_
respectively.

#example[`ℕ/3ℕ` has a 0-ary point constructor (or, equivalently, a point
constructor with a single argument of the unit type) and a point constructor
with a recursive argument. If we work in $Set$, the endofunctor bundling these
point constructor arguments together is
$ F : Set -> Set \
  F X := 1 + X. $
An $F$-algebra would consist of a set $A$ equipped with a function $1 + A -> A$
designating a "zero" element in $A$ as well as a "successor" function on $A$.
]

These algebras have their own notion of morphism, which ensures
the structure picked by the starting algebra map is preserved.

#definition[#gear-lib("Categories.Instances.FunctorAlgebras#949") Given a
category $C$ and an endofunctor $F: C -> C$, an
_$F$-algebra morphism_ between $F$-algebras $(X, alpha)$ and $(Y, beta)$ is a
map $f: "Hom"_C (X, Y)$ equipped with a witness for the commutative diagram

#align(center)[#commutative-diagram(
  node((0, 0), $F X$),
  node((0, 1), $F Y$),
  node((1, 0), $X$),
  node((1, 1), $Y$),
  arr($F X$, $X$, $alpha$),
  arr($F Y$, $Y$, $beta$),
  arr($F X$, $F Y$, $F f$),
  arr($X$, $Y$, $f$),
  arr($X$, $F Y$, $=$, start-space: 4.5em, end-space: 4.5em, "nat")
).]
]

Because hom-sets are homotopy sets in our working definition of category, the
type of the witness mentioned in this definition is a mere proposition. So, when
checking two algebra morphisms for equality, it is always enough to check for
equality of the two underlying functions.

#example[In our previous example, algebra morphisms would be maps between
carriers that preserve the "zero" element and commute with the "successor"
function.]

As it is to be expected, algebras over an endofunctor form a category.

#proposition[#gear-lib("Categories.Instances.FunctorAlgebras#3850") If $F: C ->
C$ is an endofunctor over a category $C$, then $F$-algebras and $F$-algebra
morphisms among them form a category, that we name $F$-Alg.]

Since we are dealing with $0$-truncated types, we focus on endofunctors on the
$Set$ category#footnote[This is the category of terms of type $0 dash.en"Type"$
and functions between their first components.], and thus talk of _set algebras_
and $F dash.en"SetAlg"$. Because algebra morphisms preserve the structure of
algebras, they commute with the evaluation of a path constructor term.

#proposition[#gear("SetTruncated.LawfulSetAlgebra#841") Let $(H_i)_(i : Fin k)$
be a family of polynomials for homotopy sets. We set $F def plus.circle.big H$.
Let $(f, h) : "Hom"_(F dash.en"SetAlg") ((A, alpha), (B, beta))$. Give
polynomials for homotopy sets $G$ and $P$, for any $r : "PathConstructorTerm" H
G P$ and $x : pr1 G [A]$, we have

$ P [[ f ]] r【A , alpha , x】=_(pr1 P[ B ]) r【B , beta , G [[ f ]] x】. $
]<algebra-morphism-commutes-evaluation>
#proof[
By induction on $r$:
- if $r$ is a constant or variable $𝕩$, the statement holds definitionally;
- if $r$ is an applied binary projection or sum constructor, we can apply the
  relevant action on paths to our induction hypothesis;
- if $r$ is a fully applied pair constructor, we check for component-wise
  equality, which holds due to the induction hypothesis;
- if $r equiv c_i s$ for some $i : Fin k$ and $s : "PathConstructorTerm" H G
  H_h$, we have

$
"scatter" alpha i s【 A , alpha , x 】
&=_B beta (F [[ f ]]
  ("in"_i s【A , alpha , x】))
  & wide angle.l h angle.r \
&equiv beta ("in"_i (H_i [[f]] s【A , alpha , x】)) \
&eqIH_B "scatter" beta i s【B , beta , G [[f]] x】. \
$
]

To provide semantic counterparts to path constructors, we equip set algebras
with appropriate families of paths, thus getting to the notion of _lawful
algebras over a HIT signature_.

#definition[#gear("SetTruncated.LawfulSetAlgebra#2103")
Let $S := ((k, (H_i)_(i : Fin k)), (n, (A_j,t_j,r_j)_(j : Fin n)))$
be a HIT signature for homotopy sets. The type of _lawful set algebras over HIT
signature_ $S$ is
$ S dash.en"LawfulAlgebra" :=
  sum_(cal(A) : ("polyFuncOnSet" (plus.circle.big H)) dash.en"Algebra")
  "isLawful" cal(A) $
where
$ "isLawful" (X, alpha) := product_(j : Fin n) quad
  product_(x : "fst" (A_j [X]))
  t_j【X,alpha,x】 =_("fst" X) r_j【X,alpha,x】. $
]

The lawfulness condition is a mere proposition, so lawful set algebras form the
full subcategory $"LawSetAlg"$ of set algebras.

#proposition[#gear("SetTruncated.LawfulSetAlgebra#2186") The lawfulness
condition for set algebras is a mere proposition.]
#proof[Obvious, as the carrier of a set algebra is a homotopy set.]

#corollary[#gear("SetTruncated.LawfulSetAlgebra#2635") Let $S$ be a HIT
signature for homotopy sets, and $F$ the polynomial induced by the
$plus.circle$-fold over the path constructor arguments of $S$. Then, the lawful
set algebras induced by $S$ form a full subcategory of the set algebras over
$F$.]

Not requiring any additional conditions from our morphisms is only natural:
since we are working with homotopy sets, all paths are trivially preserved.
This is also reflected by the "set-truncated" $eta$-rule we state and prove at
the end of the chapter. In the next section, we investigate limits within the
category of lawful set algebras.

== Limits in the Lawful Set Algebras Category <limits-lawful-set-algebras-category>

In an impredicative setting, $Set$, the category of small homotopy sets and
functions between them, is not just complete: it has limits of arbitrary shapes,
which need not be small, unlike the objects of this category. This is because
the usual construction of a limit by products and equalisers is not limited by
the products' predicativity any more.

#definition[#gear("SetTruncated.Limits#1679") Given a category $JJ$ of any size
and a functor $D : JJ -> Set$, we define the _limit encoding for $D$_ as
$
  lim D_i &: 0 dash.en"Type" \
  lim D_i & def (sum_(phi.alt : D^*) "Nat" phi.alt, h)
$ where $
  D^* &def product_(i : JJ_0) D i\
$ and $"Nat"$ is the naturality condition $
  "Nat" phi.alt &def product_({i, j : JJ_0}) product_(u : "Hom"_JJ (i, j)) D u
  (phi.alt i)
  =_(D j) phi.alt j.
$
As a proof $h$ witnessing the set-truncation for the first projection, we
observe that $D^*$ is a set (it is a product of sets) and, fixed $phi.alt :
D^*$, $"Nat" phi.alt$ is a proposition (it is a product of products of
propositions).
]<limit-encoding>

To give our limit encodings the structure of cones, we equip them with the
obvious projections, which are just the ones from the underlying product.

#definition[#gear("SetTruncated.Limits#1885") Let $D : JJ -> Set$ be a functor.
We define $mu_D$, the _limit encoding cone on $lim D_i$_, as the following
$D$-cone with vertex $lim D_i$.
$ mu_D &: "Cone" quad D quad lim D_i \
  mu_D &def (pi_j comp pr1 comp pr1, k) $
where $k$, our proof of the cone commutativity condition, is
$ lambda i, j : JJ_0, u : "Hom"_JJ (i, j) . "funExt" lambda
  (phi.alt, theta.alt) : lim D_i . theta.alt i j u. 
$
]

We now proceed to prove that our cone is, in fact, limiting.

#theorem[#gear("SetTruncated.Limits#2187") The cone $mu_D$ described above for a
generic category $J$ of arbitrary size and any functor $D : J -> Set_(cal(U)_0)$
is always terminal.
]<lIsTerminal>
#proof[
Given a $D$-cone with a set $V$ (equipped with a proof of $"is" dash.en 0
dash.en"Type" V$) as vertex and a family of projections $nu$, we
need to define a map $f : V -> pr1 lim D_i$. We also need to prove that it
is a cone morphism, and that it is the only cone morphism with such source and
target. Such a universal map is constructed using the projections of the source
cone.

$ f &: V -> pr1 lim D_i \
  f v &def ((lambda j : JJ_0 . nu_j v), h)
$

As a proof $h$ for naturality, let $u : "Hom"_JJ (i , j)$. We are to show $u
(nu_i v) =_(pr1 (D j)) nu_j v$. By definition of cone, we already have
$u comp nu_i =_(V -> D j) nu_j$. We turn this to a homotopy and
apply it to $v$. Of course, $f$ is a cone morphism, as the relevant equalities
all hold definitionally. In $Set$, "being a cone morphism" is a mere
proposition, so when proving unicity of our construction, it is enough to check
for equality between $f$ and the underlying function $g: V -> pr1 lim D_i$ of
some other parallel cone morphism. We prove this by function extensionality,
fixing $v : V$. As already observed in @limit-encoding, naturality in
$Set$ is always a proposition, so we can use function extensionality again
fixing $j : JJ_0$. Now we only need to check $nu_j v =_(pr1 D j) pr1 (g
v) j$. Because $g$ is a cone morphism, we can just take the relevant
  commutativity condition for $j$, turn it into a homotopy and apply it to $v$.
]

#corollary[#gear("SetTruncated.Limits#3203")
$Set$ has limits of any shape, regardless of size, constructed as above.
]
#proof[
This follows immediately from our previous proof of terminality and the
definition of limit.
]

It is a known fact that the category of set algebras over an endofunctor
inherits all limits from $Set$. This is shown by observing that it
is possible to compute each limit pointwise. To prove the same result for the
category of lawful set algebras induced by a HIT signature, we'll need an
appropriate forgetful functor.

#definition[#gear("SetTruncated.Limits#3327") Let $S$ be a HIT signature for
homotopy sets, and $F$ the polynomial induced by the $plus.circle$-fold over the
path constructor arguments of $S$. We define $"ForgetLawSetAlg"$ as the
forgetful functor from $S dash.en"LawSetAlg"$ to $Set$ obtained by
composing the forgetful functor $UU : F dash.en"SetAlg" -> Set$
after the inclusion functor $iota : S dash.en"LawSetAlg" -> F dash.en
"SetAlg"$.
]

We are now ready to prove the main theorem of this section. The proof strategy,
similar to what is done for regular algebras, is to use our forgetful functor
so that we can build our limit starting from the corresponding one in $Set$.

#theorem[#gear("SetTruncated.Limits#3516") Let $S$ be a HIT signature for
homotopy sets. Then $S dash.en"LawSetAlg"$ has limits of any shape.
]<lawsetalg-has-all-limits>
#proof[
We work with lawful algebras on HIT signature $S def ((H_i)_(i : Fin k), (A_j,
t_j, r_j)_(j : Fin n))$.
Much like before, fixed a category $J$ of arbitrary size and a functor $D : J ->
Set$, we shall construct a lawful set algebra over $S$ as a vertex
of a $D$-cone. After doing that, we will be left with proving terminality of
such a cone. Note that composing $"ForgetLawSetAlg"$ after $D$ yields a functor
$D': J -> Set$. Consider $V def lim D'_i$, the limit encoding for
$D'$, and the corresponding limit encoding cone $M$. By @lIsTerminal, we have a
proof for its terminality as a $D'$-cone. We denote the family of
projections from $V$ by $mu$, and use $H_mu$ to refer to the evidence for the
cone condition on $M$. Finally, we use $F : Set -> Set$ for the endofunctor
induced by $plus.circle.big H$.

Now, observe that any $D'$-cone with vertex $A : 0 dash.en"Type"$ and
projections $nu$ can be turned into a $D'$-cone with vertex $F A$, as shown in
the following diagram. In it, the top triangle commutes since $(A, nu)$ is a
cone, and the bottom square commutes because $D' u$ is an $F$-algebra morphism.

#align(center)[#commutative-diagram(
  node((0, 1), $F A$),
  node((1, 0), $F (D' i)$),
  node((1, 2), $F (D' j)$),
  node((2, 0), $D' i$),
  node((2, 2), $D' j$),
  arr($F A$, $F (D' i)$, $F nu_i$, label-pos: right),
  arr($F A$, $F (D' j)$, $F nu_j$),
  arr($F (D' i)$, $D' i$, $"str" (D i)$),
  arr($F (D' j)$, $D' j$, $"str" (D j)$),
  arr($F (D' i)$, $F (D' j)$, $F (D' u)$),
  arr($D' i$, $D' j$, $D' u$),
  arr($F (D' i)$, (0, 2), $=$, start-space: 6.5em, end-space: 8.5em, "nat"),
  arr($D' i$, $F (D' j)$, $=$, start-space: 6.5em, end-space: 6.5em, "nat")
)]

We make use of this trick immediately to construct a vertex for the $D$-cone.
We select $V$ as the carrier. As a map for the $F$-algebra, we choose the
function $alpha : pr1 F V -> pr1 V$ underlying the universal cone morphism from
the $D'$-cone constructed as above (set $A$ to $V$) to the terminal cone $M$. To
check $(V, alpha)$'s lawfulness for fixed values of $j : Fin k$ and $x : A_j
[V]$, we use function extensionality, since we already stated that naturality is
a mere proposition in this context. Then, let $i : JJ_0$. If $D i$ is a lawful
algebra with carrier $B$ and map $beta : F B -> B$, the desired equality holds.

$
pr1 t_j 【 V , alpha , x 】 i
&=_B t_j 【 B , beta , A_j [[ (lambda q . pr1 q i) ]] x 】
  & wide angle.l "distributivity" angle.r \
&=_B r_j 【 B , beta , A_j [[ (lambda q . pr1 q i) ]] x 】
  & wide angle.l D i"'s lawfulness" angle.r \
&=_B pr1 r_j 【 V , alpha , x 】i
  & wide angle.l "distributivity" angle.r
$

The distributivity property mentioned in this equality chain is just an instance
of @algebra-morphism-commutes-evaluation. Indeed, $lambda q : pr1 V. pr1 q i$ is
an $F$-algebra morphism from, due to $alpha$ being a cone morphism.

So our vertex is actually $((V, alpha), h)$, where $h$ is the lawfulness proof
just provided. As projection to $D' i$, with $i : JJ_0$, we reuse $mu_i$. Again,
this is surely an algebra morphism, because $alpha$ being a cone morphism
ensures that the following diagram commutes, where $beta$ is the map of lawful
algebra $D i$.

#align(center)[#commutative-diagram(
  node((0, 0), $F V$),
  node((0, 1), $F (D' i)$),
  node((1, 0), $V$),
  node((1, 1), $D' i$),
  arr($F V$, $V$, $alpha$),
  arr($F (D' i)$, $D' i$, $beta$),
  arr($F V$, $F (D' i)$, $F mu_i$),
  arr($V$, $D' i$, $mu_i$),
  arr($V$, $F (D' i)$, $=$, start-space: 4.5em, end-space: 4.5em, "nat")
)]

Equipped with $mu$, $((V, alpha), h)$ is indeed a cone: because "being an
algebra morphism" is a mere proposition as observed above, $H_mu$ is already
evidence of this. So we are left with proving terminality. Let $BB$ be a lawful
algebra with carrier $B : 0 dash.en"Type"$ and algebra map $beta : F B -> B$.
We fix a $D$-cone with $BB$ as its vertex given by a family $nu$ of projections.
The desired universal arrow is a cone morphism from this generic cone to the one
we defined earlier. We can turn the $D$-cone with vertex $BB$ into a $D'$-cone
with vertex $B$ using $"ForgetLawSetAlg"$. We denote the family of projections
for the latter $nu'$. There's a unique $D'$-cone morphism to the terminal
$D'$-cone with vertex $V$ and projections family $mu$. We denote the underlying
function by $g: B -> V$. Again, algebras morphisms form a subtype of functions,
so if we can manage to reuse $g$ as a $D$-cone morphism, too, we would get
the uniqueness and cone morphism commutativity conditions for free. All that is
really left to do is proving that $g$ actually behaves like an algebra morphism.
We do so by using the following diagram family, which is indexed by $j : JJ_0$.

#align(center)[#commutative-diagram(
  node((0,0), $F B$),
  node((0,2), $F V$),
  node((1,1), $F (D' j)$),
  node((3,0), $B$),
  node((3,2), $V$),
  node((2,1), $D' j$),
  arr($F B$, $F V$, $F g$),
  arr($F B$, $F (D' j)$, $F (pr1 nu_j)$, label-pos: right),
  arr($F V$, $F (D' j)$, $F mu_j$),
  arr($B$, $V$, $g$),
  arr($B$, $D' j$, $pr1 nu_j$),
  arr($V$, $D' j$, $mu_j$, label-pos: right),
  arr($F B$, $B$, $beta$),
  arr($F V$, $V$, $alpha$),
  arr($F (D' j)$, $D' j$, $pr2 (D j)$),
  node-padding: (50pt, 50pt)
)]

In the diagram:
- the bottom triangle commutes due to $g$ being a $D'$-cone morphism;
- the top triangle commutes because of $F$'s action on the bottom triangle;
- the left trapezoid commutes as witnessed by $pr2 nu_j$;
- the right trapezoid commutes since $mu_j$ is an algebra morphism, as
  illustrated by the second diagram.
Our goal is making the external rectangle commute though. To do so, it is enough
to observe that both $g comp beta$ and $alpha comp F g$ can be
shown to be cone morphisms to the terminal $D'$-cone. The source cone, in this
case, has vertex $F B$ and is constructed from cone $(B, nu')$ using the
trick illustrated by the first diagram of this proof. The cone morphism
commutativity condition for both $g comp beta$ and $alpha comp F
g$ is easily checked via diagram chasing on the last diagram. This concludes the
proof of terminality.
]

Next, we shall make use of one particular limit, the one of the identity
functor, to construct the initial lawful set algebra.

== Initial Lawful Set Algebra <initial-lawful-set-algebra>

To construct the initial lawful set algebra, we make use of the following
well-known characterisation result for the initial object of a generic category.

#theorem[#gear("SetTruncated.Initial#809") #gear("SetTruncated.Initial#1393")
Let $I$ be an object in some category $cal(C)$. Then, $I$ is initial if and only
if it is the limit of $"id"_cal(C)$, the identity functor on
$cal(C)$.]<initiality-characterisation>
#proof[
From left to right: given an object $X$, we can take the universal map from $p_X
: I -> X$ as the corresponding projection. Given a second object $Y$ and a
  morphism $f : "Hom"_cal(C) (X, Y)$, we are assured $f comp p_X
=_("Hom"_cal(C) (I, Y)) p_Y$ by the uniqueness of universal map $p_Y$.
Then, $(I, p)$ behaves as a cone. Given a second $"id"_cal(C)$-cone $(J, q)$,
we consider $q_I : "Hom"_cal(C) (J, I)$. This is a cone morphism between $(J,
q)$ and $(I, p)$: fixed an object $X$, $p_X comp q_I
=_("Hom"_cal(C) (J, X)) q_X$ holds since $(J, q)$ is a cone. Such a
cone morphism is necessarily unique: if there were a second cone morphism $y :
J -> I$, it would satisfy

$ y =_("Hom"_cal(C) (J, I)) 1_I comp y =_("Hom"_cal(C) (J, I)) p_I comp y
  =_("Hom"_cal(C) (J, I)) q_I. $

From right to left: let $x : "Ob"(cal(C))$. If $I$ is the limit of the identity
functor, it comes equipped with a projection $p_X : I -> X$. To show uniqueness
of such a map, observe that $p_I : I -> I$ is a cone endomorphism. That's
because $p_Y comp p_I =_("Hom"_(cal(C) (I, Y))) p_Y$ holds for a generic $Y :
"Ob"(cal(C))$, as $(I, p)$ is a cone. Furthermore, $(I, p)$ is terminal, so
$p_I$ must coincide with the endomorphism underlying the identity cone morphism
on $(I, p)$, and that's just $1_I$. Now then, let $y : I -> X$. We have

$ y =_("Hom"_cal(C) (I, X)) y comp 1_I =_("Hom"_cal(C) (I, X)) y comp p_I
  =_("Hom"_cal(C) (I, X)) p_X $

as desired.
]

This means that the work carried on in the previous section was enough to obtain
the initial lawful set algebra.

#corollary[#gear("SetTruncated.Initial#2039") Let $S$ be a HIT
signature for homotopy sets. Then $S dash.en"LawSetAlg"$ has an initial
object.]<lawsetalg-initial-object>
#proof[Follows immediately from @lawsetalg-has-all-limits and
@initiality-characterisation.]

In the next section, we show that the initial lawful set algebra indeed
satisfies the desired rules.

== Rules <rules>

In this section, we work with a generic HIT signature $S := ((k, (H_i)_(i : Fin
k)), (n, (A_j,t_j,r_j)_(j : Fin n)))$. As before, we use $F$ for the endofunctor
on $Set$ induced by $plus.circle.big H$. To even be able to state the rules
whose validity we wish to prove, we must first explain how to recover the
encoding of our higher inductive type, as well as those for the corresponding
constructors. As it is usual for initial algebra semantics, the encoding of the
type is provided by the carrier.

#definition[#gear("SetTruncated.Rules#795") The _encoding of the set-truncated
higher inductive type given by $S$_, denoted by $T_S : 0 dash.en"Type"$, is
defined as the carrier of the initial lawful set algebra over $S$ as constructed
in @lawsetalg-initial-object. Written explicitly,
$ T_S def (sum_(phi.alt : product_(((A, alpha), h) : S dash.en"LawSetAlg") A)
  "Nat" phi.alt, k)$

where $k$ is the proof of the first member being a homotopy set as constructed
in @limit-encoding.
]

Point constructors also follow the usual pattern, i.e. they are trivially
derived from the algebra map.

#definition[#gear("SetTruncated.Rules#978") The _encodings of the point
constructors given by $S$_, or $c_S$, are defined by composing $"scatter"$ after
the algebra map of the initial lawful set algebra as defined in
@lawsetalg-initial-object. Explicitly, this can be written as
$ c_S : &product_(i : Fin k) pr1 H_i [T_S] -> pr1 T_S \
  c_S def "scatter" &λ x : pr1 (F T_S) . (\
    &wide lambda ((A, alpha), h) : S dash.en"LawSetAlg"_0 . alpha (F(lambda y
     : pr1 T_S. pr1 y ((A, alpha), h)) x), \
    &wide lambda (f, p) : "Hom"_(S dash.en"LawSetAlg"_0) (((A, alpha), h),
    ((B, beta), k))
     . "happly" (... f) x \
 &). $

The ellipsis ("$...$") replaces the proof for the commutativity
condition of the cone

$ (F T_S, lambda ((A, alpha), h) . alpha circle.small F (lambda x : pr1 T_S .
  pr1 x ((A, alpha), h)) $

as described in @lawsetalg-has-all-limits.
]

The real novelty are the encodings for the path constructors. These are of
course implemented using the lawfulness proof.

#definition[#gear("SetTruncated.Rules#1667") The _encodings of the path
constructors given by $S$_, or

$p_S : product_(j : Fin n) product_(x : pr1 A_j [T_S])
  t_j 【 T_S , "cluster" c_S , x】=_(pr1 T_S)
  r_j 【 T_S , "cluster" c_S , x 】, $

are defined as the transport of the lawfulness proof for the
initial lawful set algebra from @lawsetalg-initial-object along
the proof of $"cluster"$ being a retract of $"scatter"$.]

Explicitly writing down this term is not really important, as lawfulness at the
set level is a mere proposition.

Finally, a _recursor_ is defined.

#definition[#gear("SetTruncated.Rules#2217") The _encoding of the recursor given
by $S$_ is

$ "rec"_S &: product_(X : 0 dash.en"Type") quad product_(d : product_(i : Fin
k) H_i [X] -> pr1 X) (product_(j : Fin n) product_(x : pr1 A_j [X]) t_j 【 X ,
  "cluster" d , x】=_(pr1 X) r_j 【 X , "cluster" d , x 】) \
  &-> T_S -> pr1 X\
  "rec"_S &def lambda X d q t . pr1 t ((X, "cluster" d), q).
$
]

As expected, the recursor is nothing but a curried version of the family of
projections from the vertex of our limiting cone. So, even if not under this
name, it has already appeared over and over in our exposition. Now, all the
elements needed to state the $beta$-rules are in place.

#proposition[#gear("SetTruncated.Rules#2602") The following _point constructor
$beta$-rule for the higher inductive type induced by signature $S$_ holds
definitionally, for any $X : 0 dash.en"Type"$, $x : pr1 H_i [T_S]$, $(d :
product_(i : Fin k) pr1 H_i [X] -> pr1 X)_(i : Fin k)$, $(q : product_(j : Fin
n) product_(x : pr1 A_j [X]) t_j 【 X , "cluster" d , x 】 =_(pr1 X) r_j 【X ,
"cluster" d , x】)_(j : Fin n)$.

$ "rec"_S X d q (c_(S,i) x) equiv d_i (H_i [["rec"_S X d q]] x) $
]
#proof[
$ "rec"_S X d q (c_(S,i) x)
  &equiv pr1 (c_(S,i) x) ((X, "cluster" d), q) &wide angle.l "unfold rec"_S
  angle.r\
  &equiv "cluster" d (F(lambda y : T_S . pr1 y ((X, "cluster" d), q)) ("in"_i
   x)) &wide angle.l "unfold" c_(S,i) angle.r\
  &equiv "cluster" d ("in"_i (H_i [[lambda y : T_S . pr1 y ((X, "cluster" d),
   q)]] x)) &wide angle.l k"-ary sums' "beta"-rule" angle.r\
  &equiv "cluster" d ("in"_i (H_i [["rec"_S X d q]] x)) &wide angle.l
  "fold rec"_S angle.r\
  &equiv d_i (H_i [["rec"_S X d q]] x). &wide angle.l "fold cluster" angle.r
$
]

Because $T_S$ is a homotopy set, the corresponding rule for path constructors
automatically holds propositionally, which is usually the desired kind of
equality in this case, as argued by the @HoTT_book.

#remark[The following _path constructor $beta$-rule for the higher inductive
type induced by signature $S$_ holds propositionally, for any $X : 0 dash.en
"Type"$, $x : pr1 A_j [(T_S, h)]$ ($h$ being proof of $T_S$ being a homotopy set
as constructed in @limit-encoding), $(d : product_(i : Fin k) pr1 H_i [X] -> pr1
X)_(i : Fin k)$, $(q : product_(j : Fin n) product_(x : pr1 A_j [X]) t_j 【 X ,
"cluster" d , x 】 =_(pr1 X) r_j 【X , "cluster" d , x】)_(j : Fin n)$.

$ "ap"_("rec"_S X d q) (p_(S,j) x) =_(pr1 X) q_j (A_j [["rec"_S X d q]] x) $]

As for the $eta$-rule, we use its instance corresponding to the identity
function on our higher inductive type as a lemma which we will later invoke to
prove the full-fledged rule.

#lemma[#gear("SetTruncated.Rules#3154") The following _weak $eta$-rule for the
higher inductive type induced by signature $S$_ holds propositionally.

$ "rec"_S T_S c_S p =_(pr1 T_S -> pr1 T_S) "id"_(pr1 T_S) $]<weak-eta-rule>
#proof[By function extensionality. When building the desired homotopy between
the two sides of the equality, we destruct the input as $(phi.alt, phi)$ via
$Sigma$-induction. However, since naturality is a proposition at the set level,
we just need to check

$ pr1 ("rec"_S T_S c_S p (phi.alt, phi))
  =_(product_(((A, alpha), h): S dash.en"LawSetAlg") A)
  phi.alt $

for any $phi$. We now use function extensionality (and $Sigma$-induction) again,
fixing $((B, beta), h) : S dash.en"LawSetAlg"$ and proving

$ pr1 ("rec"_S T_S c_S p (phi.alt, phi)) ((B, beta), h)
  =_(pr1 B)
  phi.alt ((B, beta), h) $

Recall from the construction of the projections in @lawsetalg-has-all-limits
that $lambda x : T_S . pr1 x ((B, "cluster" ("scatter" beta)), h') equiv
"rec"_S B ("scatter" beta) h'$ (where $h'$ is $h$ transported appropriately) is
an $F$-algebra morphism. So by $phi$ we have:

$
pr1 ("rec"_S T_S c_S p_S (phi.alt, phi)) ((B, beta), h)
  &=_(pr1 B)
pr1 ("rec"_S T_S c_S p_S (phi.alt, phi)) ((B, "cluster" ("scatter" beta)), h') \
  &equiv
pr1 (phi.alt ((T_S, "cluster" c_S), p_S)) ((B, "cluster" ("scatter" beta)), h') \
  &=_(pr1 B)
pr1 (phi.alt ((T_S, "cluster" c_S), p_S)) ((B, "cluster" ("scatter" beta)), h') \
  &=_(pr1 B)
pr1 (phi.alt I) ((B, "cluster" ("scatter" beta)), h') \
  &=_(pr1 B)
pr1 (phi.alt I) (B, beta), h) \
  &=_(pr1 B)
phi.alt ((B, beta), h) & angle.l phi angle.r\

$

where $I$ is the initial lawful set algebra.
]

Generalising to an arbitrary (non-dependent) function from $"id"_(T_S)$ is now
very easy. Note how the premise can be read as stating that $f$ behaves like an
algebra morphism from our initial lawful set algebra to $(X, "cluster" d)$.
Indeed, this premise shall motivate our use of naturality.

#proposition[#gear("SetTruncated.Rules#4786") The following _$eta$-rule for the
higher inductive type induced by signature $S$_ holds propositionally, for any
$X : 0 dash.en"Type"$, $f: pr1 T_S -> pr1 X$, $(d : product_(i : Fin k) pr1 H_i
[X] -> pr1 X)_(i : Fin k)$, $(q : product_(j : Fin n) product_(x : pr1 A_j [X])
t_j 【 X , "cluster" d , x 】 =_(pr1 X) r_j 【X , "cluster" d , x】)_(j : Fin
n)$.

$
  (f circle.small "cluster" c_S =_(pr1 F [T_S] ->
  pr1 X) "cluster" d circle.small F f) ->
  "rec"_S X d q =_(pr1 T_S -> pr1 X) f.
$]
#proof[By function extensionality. Let $x : pr1 T_S$. We have:
$
  "rec"_S X d q x &equiv pr1 x ((X, "cluster" d), q)
    &wide angle.l "unfold rec"_S angle.r \
  &=_(pr1 X) f (pr1 x ((T_S, "cluster" c_S), p_S))
    &wide angle.l pr1 x "is natural" angle.r \
  &equiv f ("rec"_S T_S c_S p_S x)
    &wide angle.l "fold rec"_S angle.r \
  &=_(pr1 X) f x.
    &wide angle.l #text[@weak-eta-rule] angle.r \
$
]

As shown by @Awodey_2012, #cite(<Awodey_2017>, form: "normal"), this result is
enough to derive the desired dependent eliminator.
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  From the *type theory/FP/LoVe* course:
  - inductive types;
  - dependent types.
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= Higher Inductive Types

== Intuition

#align(center,
table(columns: 3)[*dependent type theory*][type][term][*homotopy
theory*][space][point])

#pause

An inductive type is freely generated by the *(point) constructors* in its
*signature*.

```agda
  data ℕ : Type where
    𝟘 : ℕ
    𝕊 : ℕ → ℕ
```

#pause

#align(center,
table(columns: 3)[*dependent type theory*][identity type][identity proof][*homotopy
theory*][path space][path])

#pause

*Higher* inductive types are freely generated by point and *path constructors*.

== Homotopy Theory via HITs

```agda
  data 𝕀 : Type where -- 𝕀₀ ∘──────∘ 𝕀₁
    𝕀₀ : 𝕀            --      seg
    𝕀₁ : 𝕀
    seg : 𝕀₀ ≡ 𝕀₁
```

#pause

#[#set par(leading: 7.1pt)

```agda
  data S¹ : Type where --  ╭───╮ loop
    base : S¹          --  ╰─∘─╯
    loop : base ≡ base --    base
```

]

== Algebra via HITs

If a free algebraic object has no computable forms for its terms, how do we
construct it?

```agda
  data FreeSemigroup (A : Type) {h : isSet A} : Type where
    η : A → FreeSemigroup A
    _∘_ : FreeSemigroup A {h} → FreeSemigroup A {h} → FreeSemigroup A
    associative : (a b c : FreeSemigroup A {h}) → (a ∘ b) ∘ c ≡ a ∘ (b ∘ c)
    truncated : isSet (FreeSemigroup A)
```

== Programming via HITs

#[#set text(size: 17pt)
```agda
  data ℕ/3ℕ : Type where
    𝟘 : ℕ/3ℕ
    𝕊 : ℕ/3ℕ → ℕ/3ℕ
    mod : 𝟘 ≡ 𝕊 (𝕊 (𝕊 𝟘))
    truncated : isSet ℕ/3ℕ
```
#pause
```agda
  data Fin (A : Type) : Type where
    ∅ : Fin A
    L : A → Fin A
    _∪_ : Fin A  → Fin A → Fin A
    assoc : (x y z : Fin A) → x ∪ (y ∪ z) ≡ (x ∪ y) ∪ z
    identityᵣ : (x : Fin A) → x ∪ ∅ ≡ x
    identityₗ : (x : Fin A) → ∅ ∪ x ≡ x
    commutativity : (x y : Fin A) → x ∪ y ≡ y ∪ x
    idempotence : (x : A) → L x ∪ L x ≡ L x
    truncated : isSet (Fin A)
```
]

= Impredicative encodings

== Encodings?

#let Alg = $"Alg"$
#let rec = $"rec"$

Rather than assuming its existence, can we *encode* a generic HIT, together with
its point and path constructors, as #pause
- an algebra $(D, c, p) : Alg$ within our theory and, #pause
- for all $(E, d, q) : Alg$, a function $"rec"_((E, d, q)) : D -> E$?

---

*$beta$-rules* $<->$ "$rec_((E, d, q))$ is an algebra
morphism for any algebra $(E, d, q)$"

#pause

*$eta$-rule* $<->$ "$rec_((E, d, q))$ is the *only* algebra
morphism for any algebra $(E, d, q)$"

== Impredicative?

A construction is called *"impredicative"* if it quantifies over a type universe
including the type being defined.

= My thesis

== The System

A dependent type theory with

- $Pi$-types,
- $Sigma$-types,
- intensional identity, and
- function extensionality

whose bottom universe is impredicative:

#align(center)[$
  #prooftree(rule(
    $Gamma tack product_(x : A) B : cal(U)_0$,
    $Gamma, a : A tack B : cal(U)_0$
  )).
$]

== Working Definition of HIT

To date, there is no agreement on a general signature definition for HITs. We
encode two:

- Van der Weide's HITs;
- W-suspensions.

== Set-Truncated Van der Weide HITs

#tblock(title: "Set-truncated type")[
Type $A$ is set-truncated $def product_(x, y : A) quad (quote.l.double x =_A y
quote.r.double$ is proof-irrelevant)
]

---

Encoding idea:

+ naïve encoding: $D def product_((E, e, q) : Alg) E$ #pause
+ \+ naturality, i.e. equipping $x : D$ with a witness of

  $ f (x (E, e, q)) =_E' x (E', e', q') $

  for any morphism $f : (E, e, q) -> (E', e', q')$.

== General W-Suspensions

*Algebras* can encode *recursive definitions*, i.e. eliminations into a type.
#pause

*Fibered algebras* can encode *inductive proofs*, i.e. eliminations into a type
family.

---

Encoding idea:

+ naïve encoding: $D def product_((E, e, q) : Alg) E$ #pause
+ \+ inductivity, i.e. equipping $x : D$ with a witness of

  $ product_((E', e', q') : "FibAlg") E' x $

  #pause
+ \+ inductivity (again)

== Contributions

+ encodings of *Van der Weide’s HITs* that
   eliminate into *set-truncated* types of the impr. universe; #pause
+ *full formalisation* of (1) in Agda; #pause
+ encodings of *W-suspensions* that eliminate into the impr. universe.

== Limitations

As per usual: no big elimination. Even if you omit higher universes, our
encodings still cannot index type families.

#focus-slide[
  Thank you!
]

#show: appendix
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module ImprHIT where

import ImprHIT.Background
import ImprHIT.SetTruncated
import ImprHIT.General
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module ImprHIT.Background where

import ImprHIT.Background.Examples
import ImprHIT.Background.Weide
import ImprHIT.Background.WSuspension
import ImprHIT.Background.Impredicativity
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module ImprHIT.Background.Examples where

open import Cubical.Foundations.Prelude

data S¹ : Type₀ where --  ╭───╮ loop
  base : S¹           --  ╰─∘─╯
  loop : base ≡ base  --    base

data FreeSemigroup (A : Type₀) {h : isSet A} : Type₀ where
  η : A → FreeSemigroup A
  _⋆_ : FreeSemigroup A {h} → FreeSemigroup A → FreeSemigroup A
  associative : {a b c : FreeSemigroup A} → (a ⋆ b) ⋆ c ≡ a ⋆ (b ⋆ c)
  truncated : isSet (FreeSemigroup A)

data K (A : Type₀) : Type₀ where
  ∅   : K A
  ⟨_⟩ : A → K A
  _∪_ : K A → K A → K A
  identityₗ     : (x : K A) → ∅ ∪ x ≡ x
  identityᵣ     : (x : K A) → x ∪ ∅ ≡ x
  idempotence   : (x : A) → ⟨ x ⟩ ∪ ⟨ x ⟩ ≡ ⟨ x ⟩
  associativity : (x  y z : K A) → x ∪ (y ∪ z) ≡ (x ∪ y) ∪ z
  commutativity : (x y : K A) → x ∪ y ≡ y ∪ x
  truncated     : isSet (K A)
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module ImprHIT.Background.Impredicativity where

open import Cubical.Foundations.Prelude
open import Agda.Primitive using (Level) renaming (Set to Type)

private
  variable
    ℓ : Level
    A : Type ℓ
    B : A → Type ℓ

postulate
  Π : (A : Type ℓ) (B : A → Type₀) → Type₀ -- formation
  Λ : (∀ x → B x) → Π A B                  -- introduction
  ev : Π A B → ∀ x → B x                   -- elimination

postulate
  Π-β : (f : ∀ x → B x) → ev (Λ f) ≡ f
  Π-η : (f : Π A B) → Λ (ev f) ≡ f

{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE Π-β Π-η #-}
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module ImprHIT.Background.WSuspension where

open import Agda.Primitive renaming (Set to Type)

record WSusSig {ℓ ℓ' ℓ''} : Type (lsuc ((lsuc (ℓ ⊔ ℓ')) ⊔ ℓ'')) where
  constructor wSusSig
  field
    Shape    : Type ℓ
    Position : Shape → Type ℓ'
    paths : Type ℓ''
    leftE, rightE : paths -> Shape
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module ImprHIT.Background.Weide where

open import Agda.Builtin.Cubical.Equiv
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Sets
open import Cubical.Data.Empty
open import Cubical.Data.FinData
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude

open Functor

private
  variable
    ℓ : Level
    h : HLevel
    A : Type ℓ
    B : A → Type ℓ

data PolyTypeConstr (ℓ : Level) (h : HLevel) : Type (ℓ-suc ℓ) where
  Const : TypeOfHLevel ℓ (2 + h) → PolyTypeConstr ℓ h
  𝕏     : PolyTypeConstr ℓ h
  _⊗_   : PolyTypeConstr ℓ h → PolyTypeConstr ℓ h → PolyTypeConstr ℓ h
  _⊕_   : PolyTypeConstr ℓ h → PolyTypeConstr ℓ h → PolyTypeConstr ℓ h

_[_] : PolyTypeConstr ℓ h →
       TypeOfHLevel ℓ (2 + h) → TypeOfHLevel ℓ (2 + h)
Const A [ _ ] = A
𝕏 [ B ] = B
_[_] {h = h} (F ⊗ G) B = let (X , k) = F [ B ]
                             (Y , l) = G [ B ]
                         in X × Y , isOfHLevel× (2 + h) k l
_[_] {h = h} (F ⊕ G) B = let (X , k) = F [ B ]
                             (Y , l) = G [ B ]
                         in (X ⊎ Y) , isOfHLevel⊎ h k l

_[[_]] : {(B , k) (C , l) : TypeOfHLevel ℓ (2 + h)}
  (F : PolyTypeConstr ℓ h) → (B → C) → fst (F [ B , k ]) → fst (F [ C , l ])
Const (A , _) [[ _ ]] = idfun A
𝕏 [[ f ]]       = f
(F ⊗ G) [[ f ]] = map-× (F [[ f ]]) (G [[ f ]])
(F ⊕ G) [[ f ]] = map (F [[ f ]]) (G [[ f ]])

polyFuncOnSet : PolyTypeConstr ℓ 0 → Functor (SET ℓ) (SET ℓ)
polyFuncOnSet F = record {
  F-ob = F [_] ;
  F-hom = F [[_]] ;
  F-id = eval-id F ;
  F-seq = eval-seq F }
  where 
  eval-id : (F : PolyTypeConstr ℓ h) {(X , k) : TypeOfHLevel ℓ (2 + h)} →
    F [[ idfun X ]] ≡ idfun (fst (F [ X , k ]))
  eval-id (Const _) = refl
  eval-id 𝕏         = refl
  eval-id (F ⊗ G)   = cong₂ map-× (eval-id F) (eval-id G)
  eval-id (F ⊕ G)   = funExt λ {
    (inl z) → cong inl $ funExt⁻ (eval-id F) z ;
    (inr z) → cong inr $ funExt⁻ (eval-id G) z }
  eval-seq : (F : PolyTypeConstr ℓ h)
    {(X , k) (Y , l) (Z , m) : TypeOfHLevel ℓ (2 + h)}
    (f : X → Y) (g : Y → Z) →
    _[[_]] {ℓ} {h} {_} {(Z , m)} F (g ∘ f) ≡
    F [[ g ]] ∘ (_[[_]] {ℓ} {h} {(X , k)} {(Y , l)} F f) 
  eval-seq (Const x) _ _ = refl
  eval-seq 𝕏 _ _ = refl
  eval-seq (F ⊗ G) f g = cong₂ map-× (eval-seq F f g) (eval-seq G f g)
  eval-seq (F ⊕ G) f g = funExt λ {
    (inl a) → cong inl $ funExt⁻ (eval-seq F f g) a ;
    (inr a) → cong inr $ funExt⁻ (eval-seq G f g) a }

private
  variable
    k : ℕ

module FinSum where

  private
    variable
      H : Fin k → Type ℓ

  data FinSum (H : Fin k → Type ℓ) : Type ℓ where
    ink : (i : Fin k) → H i → FinSum H

  FinSumFst : {H : Fin k → Type ℓ} (x : FinSum H) → Fin k
  FinSumFst (ink i _) = i

  FinSumSnd : (x : FinSum H) → H (FinSumFst x)
  FinSumSnd (ink _ x) = x

  ≡FinSum : {x y : FinSum H} (p : x ≡ y) →
          Σ (FinSumFst x ≡ FinSumFst y)
          λ q → PathP (λ i → congS H q i) (FinSumSnd x) (FinSumSnd y)
  ≡FinSum {x = ink i a} {y = ink j b} p = cong FinSumFst p , cong FinSumSnd p
   
  isOfHLevelSuc⊥ : ∀ h → isOfHLevel {ℓ} (suc h) ⊥*
  isOfHLevelSuc⊥ h = isProp→isOfHLevelSuc h isProp⊥*

  FinSum' : (Fin k → Type ℓ) → Type ℓ
  FinSum' {ℓ} {h} = foldrFin (_⊎_) ⊥*

  isOfHLevelFinSum' : ∀ h (H : Fin k → TypeOfHLevel ℓ (2 + h)) →
                   isOfHLevel (2 + h) (FinSum' (fst ∘ H))
  isOfHLevelFinSum' {0} h H = isOfHLevelSuc⊥ (suc h)
  isOfHLevelFinSum' {suc n} h H = isOfHLevel⊎ h (snd $ H zero)
                                  (isOfHLevelFinSum' h $ H ∘ suc)

  FinSumToFinSum' : (H : Fin k → Type ℓ) → FinSum H → FinSum' H
  FinSumToFinSum' H (ink zero x) = inl x
  FinSumToFinSum' H (ink (suc i) x) = inr $ FinSumToFinSum' (H ∘ suc) $ ink i x

  FinSum'ToFinSum : (H : Fin k → Type ℓ) → FinSum' H → FinSum H
  FinSum'ToFinSum {k = 0} _ ()
  FinSum'ToFinSum {k = suc i} H (inl x) = ink Fin.zero x
  FinSum'ToFinSum {k = suc i} H (inr x) with FinSum'ToFinSum (H ∘ suc) x
  ...                                      | ink j y = ink (Fin.suc j) y

  FinSum'ToFinSumIsRetract : (H : Fin k → Type ℓ) → (x : FinSum H) →
                         FinSum'ToFinSum H (FinSumToFinSum' H x) ≡ x
  FinSum'ToFinSumIsRetract {k = 0} _ (ink i _) =
    Cubical.Data.Empty.rec (¬Fin0 i)
  FinSum'ToFinSumIsRetract {k = suc _} _ (ink zero _) = refl
  FinSum'ToFinSumIsRetract {k = suc i} H (ink (suc j) x)
    with FinSum'ToFinSumIsRetract (H ∘ suc) (ink j x)
  ...  | p with FinSum'ToFinSum (H ∘ suc) $ FinSumToFinSum' (H ∘ suc) (ink j x)
  ...         | ink h y =
                  let (α , β) = ≡FinSum p
                  in cong₂ ink (cong Fin.suc α) β

  isOfHLevelFinSum : ∀ h (H : Fin k → TypeOfHLevel ℓ (2 + h)) →
                   isOfHLevel (2 + h) (FinSum (fst ∘ H))
  isOfHLevelFinSum h H = isOfHLevelRetract (2 + h)
    (FinSumToFinSum' $ fst ∘ H)
    (FinSum'ToFinSum $ fst ∘ H)
    (FinSum'ToFinSumIsRetract $ fst ∘ H)
    (isOfHLevelFinSum' h H)

open FinSum

⨁ : (H : Fin k → PolyTypeConstr ℓ 0) → Functor (SET ℓ) (SET ℓ)
⨁ H = record {
  F-ob = λ X → FinSum (fst ∘ ((_[ X ]) ∘ H)) , isOfHLevelFinSum 0 (_[ X ] ∘ H) ;
  F-hom = λ f → λ { (ink i x) → ink i ((H i [[ f ]]) x) } ;
  F-id = funExt λ { (ink i x) →
         cong (ink i) $ funExt⁻ (F-id (polyFuncOnSet (H i))) x } ;
  F-seq = λ f g → funExt λ { (ink i x) →
          cong (ink i) $ funExt⁻ (F-seq (polyFuncOnSet (H i)) f g) x } }

scatter : ∀ X (H : Fin k → PolyTypeConstr ℓ 0) →
          (fst (F-ob (⨁ H) X) → fst X) → (i : Fin k) → fst (H i [ X ]) → fst X
scatter _ _ α i = α ∘ ink i

cluster : ∀ X (H : Fin k → PolyTypeConstr ℓ 0) →
          ((i : Fin k) → fst (H i [ X ]) → fst X) → fst (F-ob (⨁ H) X) → fst X
cluster _ _ d (ink i x) = d i x

scatterIso : ∀ X (H : Fin k → PolyTypeConstr ℓ 0) →
           Iso (fst (F-ob (⨁ H) X) → fst X) ((i : Fin k) → fst (H i [ X ]) → fst X)
scatterIso X H = iso (scatter X H) (cluster X H)
  (λ _ → funExt λ _ → funExt λ _ → refl )
  (λ _ → funExt λ { (ink _ _) → refl } )

scatterEquiv : ∀ X (H : Fin k → PolyTypeConstr ℓ 0) →
           (fst (F-ob (⨁ H) X) → fst X) ≃ ((i : Fin k) → fst (H i [ X ]) → fst X)
scatterEquiv X H = isoToEquiv (scatterIso X H)

data PathConstructorTerm
  (H : Fin k → PolyTypeConstr ℓ h) (F : PolyTypeConstr ℓ h) :
  PolyTypeConstr ℓ h → Type (ℓ-suc ℓ) where
  ConstTerm : ∀ {A} → fst A → PathConstructorTerm H F (Const A)
  𝕩         : PathConstructorTerm H F F
  c         : ∀ i → PathConstructorTerm H F (H i) → PathConstructorTerm H F 𝕏
  π₁        : ∀ {G₁ G₂} → PathConstructorTerm H F (G₁ ⊗ G₂) →
              PathConstructorTerm H F G₁
  π₂        : ∀ {G₁ G₂} → PathConstructorTerm H F (G₁ ⊗ G₂) →
              PathConstructorTerm H F G₂
  _,_       : ∀ {G₁ G₂} → PathConstructorTerm H F G₁ →
              PathConstructorTerm H F G₂ → PathConstructorTerm H F (G₁ ⊗ G₂)
  in₁       : ∀ {G₁ G₂} → PathConstructorTerm H F G₁ →
              PathConstructorTerm H F (G₁ ⊕ G₂)
  in₂       : ∀ {G₁ G₂} → PathConstructorTerm H F G₂ →
              PathConstructorTerm H F (G₁ ⊕ G₂)

_【_,_,_】 : ∀ {H : Fin k → PolyTypeConstr ℓ 0}
       {F G} → PathConstructorTerm H F G → (B : TypeOfHLevel ℓ 2)
       (d : fst (F-ob (⨁ H) B) → fst B) → fst (F [ B ]) → fst (G [ B ])
ConstTerm a 【 _ , _ , _ 】 = a
_【_,_,_】 𝕩 B _ = idfun _
_【_,_,_】 {H = H} (c i s) B d y = scatter B H d i (s 【 B , d , y 】)
π₁ s 【 B , d , y 】 = fst (s 【 B , d , y 】)
π₂ s 【 B , d , y 】 = snd (s 【 B , d , y 】)
(s , t) 【 B , d , y 】 = s 【 B , d , y 】 , t 【 B , d , y 】
in₁ s 【 B , d , y 】 = inl (s 【 B , d , y 】)
in₂ s 【 B , d , y 】 = inr (s 【 B , d , y 】)

PointConstructors : HLevel → Type (ℓ-suc ℓ)
PointConstructors {ℓ} h = Σ ℕ λ k → Fin k → PolyTypeConstr ℓ h

PathConstructors : PointConstructors h → Type (ℓ-suc ℓ)
PathConstructors {h} {ℓ} (k , H) =
  Σ ℕ λ n →                                     -- number of path constructors
  Σ (Fin n → PolyTypeConstr ℓ h) λ A →          -- polynomial path arguments
  Σ (∀ j → PathConstructorTerm H (A j) 𝕏) λ t → -- left endpoints
     ∀ j → PathConstructorTerm H (A j) 𝕏        -- right endpoints

Sig : HLevel → Type (ℓ-suc ℓ)
Sig h = Σ (PointConstructors h) PathConstructors
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module ImprHIT.General where

open import ImprHIT.Background.Impredicativity
open import ImprHIT.Background.WSuspension










impredicative-encodings-of-hits/src/ImprHIT/SetTruncated.agda


module ImprHIT.SetTruncated where

import ImprHIT.SetTruncated.LawfulSetAlgebra
import ImprHIT.SetTruncated.Limits
import ImprHIT.SetTruncated.Initial
import ImprHIT.SetTruncated.Rules
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module ImprHIT.SetTruncated.Initial where

open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.FunctorAlgebras
open import Cubical.Categories.Limits.Initial
open import Cubical.Categories.Limits.Limits
open import Cubical.Data.Sigma.Properties
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude

open import ImprHIT.Background.Impredicativity
open import ImprHIT.Background.Weide
open import ImprHIT.SetTruncated.LawfulSetAlgebra
open import ImprHIT.SetTruncated.Limits

open Algebra
open Category hiding (_∘_)
open Cone
open Functor
open LimCone
open PolyTypeConstr
open FinSum

private
  variable
    ℓ ℓ' : Level

isInitial→isLimIdCone : ∀ (C : Category ℓ ℓ') I ->
                       isInitial C I → Σ (Cone 𝟙⟨ C ⟩ I) (isLimCone 𝟙⟨ C ⟩ I)
isInitial→isLimIdCone C I h =
  let p = fst ∘ h
      γ = cone p (λ {v = X} _ → isContr→isProp (h X) _ _)
  in γ , -- cone
     λ J (cone q Hq) → -- second cone
       uniqueExists (q I) (Hq ∘ p)
       (isPropIsConeMor (cone q Hq) γ)
       λ y Hy →
         q I
           ≡⟨ sym (Hy I) ⟩
         y ⋆⟨ C ⟩ p I
           ≡⟨ cong (seq' C y) $
              initialEndoIsId C (I , h) (p I) ⟩
         y ⋆⟨ C ⟩ id C
           ≡⟨ ⋆IdR C y ⟩
         y ∎

isLimIdCone→isInitial : ∀ (C : Category ℓ ℓ') X ->
                       Σ (Cone 𝟙⟨ C ⟩ X) (isLimCone 𝟙⟨ C ⟩ X) -> isInitial C X
isLimIdCone→isInitial C I (cone p Hp , H) X = p X , λ y →
  p X
    ≡⟨ sym (Hp y) ⟩
  p I ⋆⟨ C ⟩ y
    ≡⟨ cong (λ x → x ⋆⟨ C ⟩ y) pIIsIdentity ⟩
  id C ⋆⟨ C ⟩ y
    ≡⟨ ⋆IdL C y ⟩ y ∎
  where -- There's only one endomorphism on the terminal cone, so p I ≡ id C
  pIConeEndomorphism = p I , Hp ∘ p
  idCConeEndomorphism = id C , isConeMorId {D = 𝟙⟨ C ⟩} (cone p Hp)
  pIIsIdentity : p I ≡ id C
  pIIsIdentity = fst $ PathPΣ $ (isContr→isProp $ H I $ cone p Hp)
                 pIConeEndomorphism idCConeEndomorphism

InitialLawSetAlg : ∀ S → Initial (LawSetAlg S)
InitialLawSetAlg S using
  F ← polyFuncOnSet' S |
  climCone I γ Hγ ← lawSetAlgHasAllLimits S (LawSetAlg S) (𝟙⟨ LawSetAlg S ⟩)
  = I , isLimIdCone→isInitial (LawSetAlg S) I (γ , Hγ)

InitialLawSetAlgebraCarrier : Sig 0 → hSet ℓ-zero
InitialLawSetAlgebraCarrier = carrier ∘ fst ∘ fst ∘ InitialLawSetAlg
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module ImprHIT.SetTruncated.LawfulSetAlgebra where

open import Cubical.Categories.Category.Base
open import Cubical.Categories.Constructions.FullSubcategory
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.FunctorAlgebras
open import Cubical.Categories.Instances.Sets
open import Cubical.Data.FinData.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.Sum.Base
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude hiding (J)
open import Cubical.Functions.Embedding

open import ImprHIT.Background.Impredicativity
open import ImprHIT.Background.Weide

open Functor
open FinSum

private
  data ℕ/3ℕ : Type₀ where
    𝟘 : ℕ/3ℕ
    𝕊 : ℕ/3ℕ → ℕ/3ℕ
    mod : 𝟘 ≡ 𝕊 (𝕊 (𝕊 𝟘))

algHom【】 : ∀ {k} {H : Fin k → PolyTypeConstr ℓ-zero 0} {G P}
          {𝔸@(algebra A α) 𝔹@(algebra B β) : Algebra (⨁ H)}
          {x} ((algebraHom f h) : AlgebraHom _ 𝔸 𝔹)
          (r : PathConstructorTerm H G P) →
          (P [[ f ]]) (r 【 A , α , x 】) ≡ r 【 B , β , (G [[ f ]]) x 】
algHom【】 _ (ConstTerm x) = refl
algHom【】 _ 𝕩 = refl
algHom【】 {_} {H} {G} {_} {algebra A α} {algebra B β} {x} (algebraHom f h)
  (c i s) =
  (f $ scatter A H α i $ s 【 A , α , x 】)
    ≡⟨ funExt⁻ h (ink i $ s 【 A , α , x 】) ⟩
  β (( F-hom (⨁ H) f) (ink i (s 【 A , α , x 】)))
    ≡⟨ refl ⟩
  β (ink i ((H i [[ f ]]) (s 【 A , α , x 】)))
    ≡⟨ cong (scatter B H β i) (algHom【】 (algebraHom f h) s) ⟩
  scatter B H β i (s 【 B , β , (G [[ f ]]) x 】) ∎
algHom【】 f (π₁ r) = cong fst (algHom【】 f r)
algHom【】 f (π₂ r) = cong snd (algHom【】 f r)
algHom【】 f (r₁ , r₂) = ≡-× (algHom【】 f r₁) (algHom【】 f r₂)
algHom【】 f (in₁ r) = cong inl (algHom【】 f r)
algHom【】 f (in₂ r) = cong inr (algHom【】 f r)

polyFuncOnSet' : Sig 0 → Functor (SET ℓ-zero) (SET ℓ-zero)
polyFuncOnSet' = ⨁ ∘ snd ∘ fst 

Algebra' : Sig 0 → Type₁
Algebra' = Algebra ∘ polyFuncOnSet'

isLawful : ∀ S → Algebra' S → Type₀
isLawful ((k , H) , n , A , t , r) (algebra X α) =
   ∀ j x → t j 【 X , α , x 】 ≡ r j 【 X , α , x 】

LawfulSetAlgebra : Sig 0 → Type₁
LawfulSetAlgebra S = Σ (Algebra' S) (isLawful S)

isLawfulIsProp : ∀ S → (A : Algebra' S) → isProp (isLawful S A)
isLawfulIsProp _ (algebra (_ , k) _) = isOfHLevelΠ 1 λ _ →
                                       isOfHLevelΠ 1 λ _ → k _ _
AlgebrasCategory' : Sig 0 → Category (ℓ-suc ℓ-zero) ℓ-zero
AlgebrasCategory' = AlgebrasCategory ∘ polyFuncOnSet'

{-
Cubical Agda's standard library's "full subcategories" do not require
injectivity on objects, so we prove it separately as LawSetAlgIsInjOb.
-}
LawSetAlg : Sig 0 → Category (ℓ-suc ℓ-zero) ℓ-zero
LawSetAlg S = FullSubcategory (AlgebrasCategory' S) (isLawful S)

LawSetAlgIsInjOb : ∀ S → isEmbedding $ F-ob $
                         FullInclusion (AlgebrasCategory' S) (isLawful S)
LawSetAlgIsInjOb S = isEmbdIncl-ob (AlgebrasCategory' S) (isLawfulIsProp S)
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module ImprHIT.SetTruncated.Limits where

open import Cubical.Categories.Category.Base
open import Cubical.Categories.Constructions.FullSubcategory
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.FunctorAlgebras
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Limits.Limits
open import Cubical.Data.Sigma.Properties
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude hiding (J)

open import ImprHIT.Background.Impredicativity
open import ImprHIT.Background.Weide
open import ImprHIT.SetTruncated.LawfulSetAlgebra

open Algebra
open AlgebraHom
open Category hiding (_∘_)
open Cone
open Functor
open Iso
open LimCone
open PolyTypeConstr
open FinSum

private
  variable
    ℓ ℓ' : Level
    A : Type ℓ
    B : A → Type ℓ
    J : Category ℓ ℓ'
    D : Functor J (SET ℓ-zero)

funToImpr : (∀ x → B x) ≃ Π A B
funToImpr = isoToEquiv $ iso Λ ev Π-η Π-β

isOfHLevelΠimpr : ∀ h → (∀ x → isOfHLevel h (B x)) → isOfHLevel h (Π A B)
isOfHLevelΠimpr h = isOfHLevelRespectEquiv h funToImpr ∘ isOfHLevelΠ h

_* : ∀ {J} → (Functor {ℓ} {ℓ'} J (SET ℓ-zero)) → Type₀
_* {J = J} D = Π (ob J) (fst ∘ F-ob D)

Nat : ∀ D → _* {J = J} D → Type₀
Nat {J = record { ob = J₀ ; Hom[_,_] = J₁[_,_] }} D ϕ =
  Π J₀ λ i → Π J₀ λ j → Π J₁[ i , j ] λ u → F-hom D u (ev ϕ i) ≡ ev ϕ j

natIsProp : (D : Functor J _) → ∀ ϕ → isProp (Nat D ϕ)
natIsProp D ϕ =
  isOfHLevelΠimpr 1 λ _ → isOfHLevelΠimpr 1 λ j → isOfHLevelΠimpr 1 λ _ →
  snd (F-ob D j) _ _

l : (D : Functor J (SET _)) →  Type₀
l D = Σ (D *) (Nat D)

lIsSet : (D : Functor J (SET _)) → isSet (l D)
lIsSet D = isSetΣ (isOfHLevelΠimpr 2 $ snd ∘ F-ob D)
                (isProp→isSet ∘ natIsProp D)

lIsCone : (D : Functor J (SET _)) → Cone D (l D , lIsSet D)
lIsCone _ = cone (λ i x → ev (fst x) i) λ {i j} u → funExt λ (ϕ , ϑ) →
            ev (ev (ev ϑ i) j) u

funExtImpr : {f g : Π A B} → ((x : A) → ev f x ≡ ev g x) → f ≡ g
funExtImpr {f = f} {g = g} h = sym (Π-η f) ∙ cong Λ (funExt h) ∙ Π-η g

lIsTerminal : (D : Functor J (SET _)) → isLimCone D (l D , lIsSet D) (lIsCone D)
lIsTerminal D V M@(cone μ Hμ) =
  (mapToL , mapToLIsConeMorphism) , univConeMorphismIsUnique
  where
  mapToL : fst V → l D
  mapToL v =
    Λ ((_$ v) ∘ μ) ,
    Λ λ i → Λ λ j → Λ λ u →
      F-hom D u (ev (Λ ((_$ v) ∘ μ)) i)
        ≡⟨ refl ⟩
      F-hom D u (μ i v)
        ≡⟨ cong (_$ v) (Hμ u) ⟩
      μ j v
        ≡⟨ refl ⟩
      ev (Λ ((_$ v) ∘ μ)) j ∎
  mapToLIsConeMorphism : isConeMor M (lIsCone D) mapToL
  mapToLIsConeMorphism i = refl
  univConeMorphismIsUnique : (Y : Σ (fst V → l D) (isConeMor M $ lIsCone D)) →
                             (mapToL , mapToLIsConeMorphism) ≡ Y
  univConeMorphismIsUnique (y , k)  = ΣPathPProp
    (λ _ _ _ → isPropΠ (λ i → isSetΠ (λ _ → snd $ F-ob D i) _ _ ) _ _ )
    (funExt λ v → ΣPathPProp
      (natIsProp D) $
      funExtImpr $ funExt⁻ (
        ev (Λ $ (_$ v) ∘ μ) ≡⟨ refl ⟩
        (_$ v) ∘ μ ≡⟨ funExt (λ i → cong (_$ v) $ sym $ k i) ⟩
        ev (fst $ y v) ∎
      )
    ) 

setHasAllLimits : Limits {ℓ} {ℓ'} (SET ℓ-zero)
setHasAllLimits _ D = climCone (l D , lIsSet D) (lIsCone D) (lIsTerminal D)

ForgetLawSetAlg : ∀ S → Functor (LawSetAlg S) (SET ℓ-zero)
ForgetLawSetAlg S = 𝕌 ∘F ι
  where
  𝕌 = ForgetAlgebra (polyFuncOnSet' S)
  ι = FullInclusion (AlgebrasCategory' S) (isLawful S)

lawSetAlgHasAllLimits : ∀ S → Limits {ℓ} {ℓ'} (LawSetAlg S)
lawSetAlgHasAllLimits
  S@((k , H) , n , A , t , r)
  J@(record { ob = J₀ ; Hom[_,_] = J₁[_,_] })
  D using
    D' ← ForgetLawSetAlg S ∘F D |
    V ← (l D' , lIsSet D') |
    M@(cone μ Hμ) ← lIsCone D' |
    γ ← lIsTerminal D' |
    F ← polyFuncOnSet' S
  = climCone (𝕀 , 𝕀IsLawful) 𝕀IsCone 𝕀IsTerminal
  where
  algebraMapCone : ∀ {A} → Cone D' A → Cone D' (F-ob F A)
  algebraMapCone {A} (cone ν Hν) = cone
      (λ i → str (fst $ F-ob D i) ∘ F-hom F (ν i)) λ {i j} u →
      F-hom D' u ∘ str (fst $ F-ob D i) ∘ (F-hom F $ ν i)
        ≡⟨ cong (_∘ F-hom F {A} (ν i)) (strHom $ F-hom D u) ⟩
      str (fst $ F-ob D j) ∘ F-hom F (F-hom D' u) ∘ (F-hom F $ ν i)
        ≡⟨ cong (str (fst $ F-ob D j) ∘_) $ sym $ F-seq F (ν i) (F-hom D' u) ⟩
      str (fst $ F-ob D j) ∘ F-hom F (F-hom D' u ∘ ν i)
        ≡⟨ cong (λ f → str (fst $ F-ob D j) ∘ F-hom F {A} f) (Hν u) ⟩
      str (fst $ F-ob D j) ∘ F-hom F (ν j) ∎
  𝕀 : Algebra F
  𝕀 = algebra V $ fst $ fst $ γ (F-ob F V) $ algebraMapCone M
  α = str 𝕀 
  𝕀IsLawful : isLawful S 𝕀
  𝕀IsLawful j x =
    ΣPathPProp (natIsProp D') $ funExtImpr $ funExt⁻ $ funExt λ i →
    let
      (algebra B β) , HB = F-ob D i
      f = algebraHom _ $ (snd $ fst $ γ (F-ob F V) $ algebraMapCone M) i
    in
    ev (fst $ t j 【 V , α , x 】) i
      ≡⟨ algHom【】 f (t j) ⟩
    t j 【 B , β , (A j [[ (λ q → ev (fst q) i) ]]) x 】
      ≡⟨ HB _ _ ⟩
    r j 【 B , β , (A j [[ (λ q → ev (fst q) i) ]]) x 】
      ≡⟨ sym $ algHom【】 f (r j) ⟩
    ev (fst $ r j 【 V , α , x 】) i ∎
  𝕀IsCone : Cone D (𝕀 , 𝕀IsLawful)
  𝕀IsCone = cone
    (λ j → let (algebra B β) , HB = F-ob D j in
      algebraHom (μ j) ((snd $ fst $ γ (F-ob F V) $ algebraMapCone M) j))
    (AlgebraHom≡ F ∘ Hμ)
  𝕀IsTerminal : isLimCone D (𝕀 , 𝕀IsLawful) 𝕀IsCone
  𝕀IsTerminal 𝔹@(algebra B β , _) Bcone@(cone ν _) using
    Bcone'@(cone ν' _) ← F-cone (ForgetLawSetAlg S) Bcone |
    ((g , Hg) , Kg) ← γ _ Bcone' =
    (algebraHom g (fst $ PathPΣ $ isContr→isProp -- Existence
      (γ (F-ob F B) $ algebraMapCone Bcone')
      (g ∘ β , λ j →
        μ j ∘ g ∘ β
          ≡⟨ cong (_∘ β) (Hg j) ⟩
        ν' j ∘ β
          ≡⟨ strHom (ν j) ⟩
        str (fst $ F-ob D j) ∘ (F-hom F $ ν' j) ∎
      ) $
      α ∘ F-hom F g , λ j →
        μ j ∘ α ∘ F-hom F g
          ≡⟨ cong (_∘ F-hom F {B} g) (strHom $ coneOut 𝕀IsCone j)  ⟩
        str (fst $ F-ob D j) ∘ F-hom F {V} (μ j) ∘ F-hom F g
          ≡⟨ cong (str (fst $ F-ob D j) ∘_) (sym $ F-seq F g $ μ j) ⟩
        str (fst $ F-ob D j) ∘ F-hom F (μ j ∘ g)
          ≡⟨ cong ((str (fst $ F-ob D j) ∘_) ∘ F-hom F) (Hg j) ⟩
        str (fst $ F-ob D j) ∘ (F-hom F $ ν' j) ∎
      ) , AlgebraHom≡ F ∘ Hg) ,
    λ (y , l) → -- Unicity
      ΣPathPProp
        (λ _ → isPropΠ λ j →
          isSetHom (LawSetAlg (_ , n , A , t , r)) {𝔹} {F-ob D j} _ _)
        -- would look nicer is we had F-coneMor in Limits/Limits.agda
        $ AlgebraHom≡ F $ fst $ PathPΣ $ Kg $ carrierHom y , cong carrierHom ∘ l
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module ImprHIT.SetTruncated.Rules where

open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.FunctorAlgebras
open import Cubical.Data.FinData.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Prelude

open import ImprHIT.Background.Impredicativity
open import ImprHIT.Background.Weide
open import ImprHIT.SetTruncated.LawfulSetAlgebra
open import ImprHIT.SetTruncated.Limits
open import ImprHIT.SetTruncated.Initial

open Algebra
open AlgebraHom
open Functor
open Iso
open FinSum

TypeEncoding : Sig 0 → Type₀
TypeEncoding = fst ∘ InitialLawSetAlgebraCarrier

TypeIsSetEncoding : ∀ S → isSet (TypeEncoding S)
TypeIsSetEncoding = snd ∘ InitialLawSetAlgebraCarrier

PointConstrEncoding : (S@((k , H) , _ ) : Sig 0) → (i : Fin k) →
                      fst ((H i) [ InitialLawSetAlgebraCarrier S ]) →
                      TypeEncoding S
PointConstrEncoding S@((_ , H) , _) = scatter (InitialLawSetAlgebraCarrier S) H
  $ str $ fst $ fst $ InitialLawSetAlg S

ClusterScatterPointConstrEncoding : (S@((_ , H) , _ , _ , t , r) : Sig 0) →
  let X = InitialLawSetAlgebraCarrier S
  in cluster (InitialLawSetAlgebraCarrier S) H (PointConstrEncoding S)
     ≡ (str $ fst $ fst $ InitialLawSetAlg S)
ClusterScatterPointConstrEncoding S@((_ , H) , _) =
  let X = InitialLawSetAlgebraCarrier S
  in leftInv (scatterIso X H) $ str $ fst $ fst $ InitialLawSetAlg S

PathConstrEncoding : (S@((_ , H) , _ , _ , t , r) : Sig 0) →
  let X = InitialLawSetAlgebraCarrier S
      α = cluster (InitialLawSetAlgebraCarrier S) H (PointConstrEncoding S)
  in ∀ j x → t j 【 X , α , x 】 ≡ r j 【 X , α , x 】
PathConstrEncoding S@((_ , H) , _ , _ , t , r) =
  let X = InitialLawSetAlgebraCarrier S
      α = cluster (InitialLawSetAlgebraCarrier S) H (PointConstrEncoding S)
  in subst (λ α → ∀ j x → (t j 【 X , α , x 】) ≡ (r j 【 X , α , x 】))
     (sym $ ClusterScatterPointConstrEncoding S)
     $ snd $ fst $ InitialLawSetAlg S

RecEncoding : (S@((_ , H) , _ , _ , t , r) : Sig 0) →
              (X@(X₀ , hX) : hSet ℓ-zero) →
              (d : ∀ i → fst (H i [ X ]) → X₀) →
              (∀ j x →
                (t j)【 X , cluster X H d , x 】 ≡
                (r j)【 X , cluster X H d , x 】) →
              TypeEncoding S → X₀
RecEncoding ((_ , H) , _) X d q s =
  ev (fst s) $ algebra X (cluster X H d) , q

βEncoding : (S@((_ , H) , _ , _ , t , r) : Sig 0) →
              (X@(X₀ , hX) : hSet ℓ-zero) →
              (d : ∀ i → fst (H i [ X ]) → X₀) →
              (q : ∀ j x →
                (t j)【 X , cluster X H d , x 】 ≡
                (r j)【 X , cluster X H d , x 】) →
            ∀ i x →
            RecEncoding S X d q (PointConstrEncoding S i x) ≡
            d i ((H i [[ RecEncoding S X d q ]]) x)
βEncoding S@((_ , H) , _) X d q i x =
  RecEncoding S X d q (PointConstrEncoding S i x)
    ≡⟨ refl ⟩
  d i ((H i [[ RecEncoding S X d q ]]) x) ∎

weakηEncoding : ∀ S → RecEncoding S (InitialLawSetAlgebraCarrier S)
                (PointConstrEncoding S) (PathConstrEncoding S) ≡ idfun _
weakηEncoding S@((_ , H) , _) = funExt λ x@(ϕ , φ) →
  ΣPathPProp (natIsProp $ ForgetLawSetAlg S ∘F 𝟙⟨ LawSetAlg S ⟩) $
  funExtImpr λ 𝔹@(algebra B β , h) →
  let I@((algebra I₀ α₀) , p₀) = fst (InitialLawSetAlg S)
      clusterScatterβ = leftInv (scatterIso B H) β
      𝔹' = algebra B (cluster B H $ scatter B H β) ,
           subst (isLawful S ∘ algebra B) (sym clusterScatterβ) h
      𝔹'is𝔹 : 𝔹' ≡ 𝔹
      𝔹'is𝔹 = ΣPathP $ cong (λ x → algebra {F = ⨁ H} B x) clusterScatterβ ,
              λ i → subst-filler (isLawful S ∘ algebra B)
              (λ i → clusterScatterβ (~ i)) h (~ i)
  in
    ev (fst $ RecEncoding S I₀ (PointConstrEncoding S)
    (PathConstrEncoding S) x) 𝔹
      ≡⟨ cong (ev (fst $ RecEncoding S I₀ (PointConstrEncoding S)
         (PathConstrEncoding S) x)) (sym 𝔹'is𝔹) ⟩
    ev (fst $ RecEncoding S I₀ (PointConstrEncoding S)
    (PathConstrEncoding S) x) 𝔹'
      ≡⟨ refl ⟩
    ev (fst $ ev ϕ $ algebra I₀ (cluster I₀ H $ PointConstrEncoding S) ,
    PathConstrEncoding S) 𝔹'
      ≡⟨ cong₂ (λ x y → ev (fst $ ev ϕ $ algebra I₀ x , y) 𝔹')
         (ClusterScatterPointConstrEncoding S)
         $ fst $ isProp→isContrPathP
           (λ i → isLawfulIsProp S $ algebra I₀ $
           ClusterScatterPointConstrEncoding S i) _ _ ⟩
    ev (fst $ ev ϕ $ algebra I₀ α₀ , p₀) 𝔹'
      ≡⟨ refl ⟩
    ev (fst $ ev ϕ I) 𝔹'
      ≡⟨ cong (ev $ fst $ ev ϕ I) 𝔹'is𝔹 ⟩
    ev (fst $ ev ϕ I) 𝔹
      ≡⟨ ev (ev (ev φ I) 𝔹) $ fst $ (snd $ InitialLawSetAlg S) 𝔹 ⟩
    ev ϕ 𝔹 ∎

ηEncoding : ∀ (S@((_ , H) , _ , _ , t , r) : Sig 0)
              (X@(X₀ , hX) : hSet ℓ-zero)
              (d : ∀ i → fst (H i [ X ]) → X₀)
              (q : ∀ j x → (t j)【 X , cluster X H d , x 】 ≡
                           (r j)【 X , cluster X H d , x 】)
              (f : TypeEncoding S → X₀) →
              f ∘ (cluster _ H $ PointConstrEncoding S) ≡
              cluster X H d ∘ F-hom (⨁ H) f → RecEncoding S X d q ≡ f
ηEncoding S@((_ , H) , _) X d q f h = funExt λ x →
  let I@((algebra I₀ α₀) , p₀) = fst (InitialLawSetAlg S) in
    RecEncoding S X d q x
      ≡⟨ refl ⟩
    ev (fst x) (algebra X (cluster X H d) , q)
      ≡⟨ sym $ ev (ev (ev (snd x) $ algebra I₀ (cluster I₀ H $
         PointConstrEncoding S) , PathConstrEncoding S) $ algebra X
         (cluster X H d) , q) $ algebraHom f h ⟩
    f (ev (fst x) $
      algebra I₀ (cluster I₀ H $ PointConstrEncoding S) , PathConstrEncoding S)
      ≡⟨ refl ⟩
    f (RecEncoding S I₀ (PointConstrEncoding S) (PathConstrEncoding S) x)
      ≡⟨ cong f $ funExt⁻ (weakηEncoding S) x ⟩
    f x ∎









