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Abstract

In recent years, breakthroughs in model architecture and training, large availability of data, and increased

computing power, conjunctively allowed AI models not only to improve performance on previous research tasks,

but also to be useful in everyday life: from translation to image and text generation, the new models are now

used in the daily workflow of million of users. With this widespread adoption, it is paramount to understand the

model’s workings and behaviour.

While in the eXplainable Artificial Intelligence field there are already tools to tackle this problem, some of

the most often used ones rely on local explanations, evaluating the dependence of the model’s outputs on one

or more features of the input, data point by data point. Similar methods are especially problematic whenever

explanations of single features are grouped together and used to make analogies with human concepts, in order

to infer the general behaviour of the model. In turn, similar generalizations can lead to erroneous conclusions

about model’s behaviour and to confirmation bias.

The semantic match framework attempts to address the issue of generalization of local explanation methods

by constructing global hypotheses on model’s behaviour and verifying that the evidence provided by local

explanations is consistent with the considered hypothesis. If that is the case, the hypothesis matches the

behaviour of the model, and it can be used for an account of the model workings.

In this thesis, on one hand, we conduct an experiment to verify if it is possible to use semantic match to

discover a known bias of a model; on the other, we assess the metrics of the framework, and compare them to

alternatives inspired by previous work.

More specifically, we start by training a biased and unbiased model on the SQuAD dataset, and check different

hypotheses on their functioning against their actual behaviour. We measure the match between a hypothesis

and model behaviour with two metrics, median distance and area under the curve.

After reviewing the experiment results, we examine general trends of the used metrics, propose further evaluations

based on them, and also apply alternative metrics. We close by discussing the advantages and disadvantages of

each measure.
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Introduction

In recent years, three key factors aligned to greatly boost the progress and success of Machine Learning and

Deep Learning: firstly, the availability of captioned images and videos, audio feeds and human conversations

on widely used social media platforms allowed to build large datasets for a wide variety of tasks1 (Big Data);

secondly, technological advancement in chip manufacturing increased compute power and efficiency of modern

computers, boosting them to boundaries unimaginable just few decades ago (Big Compute). Finally, the gradual

development of new AI architectures based on more complex modules (such as convolutions and transformers),

and the almost exponential increases in the number of parameters of AI models led to relevant improvements in

their performance and capabilities (Big Models).2

Together, these three factors brought a new spring in the whole AI field, stimulating further research. The

development of generative models and the great potential of their applications catalysed the attention of the

public and of multiple investors, generating a new multi-billion industry in just few months [3], and resulting in

a blossoming of tools to help with the most disparate daily chores. Previous discussions over applicability and

usefulness of ML and DL approaches,3 now closed by the evident practical advantages of using such models,

shifted focus, centring on the problem of improving model’s performance and tackling more and more tasks.

While those developments were happening, Big Data and Big Compute were the magical answers to any issue,

and the motto ‘give me a big enough dataset and a powerful enough computer and I shall lift the world’ (to echo

the old Archimedean adage) well summarizes the feverish excitement, still common across AI enthusiasts, about

the prosperous promises of the new blooming technologies.

Nowadays, AI models are used in low-stake environments, to enhance image capturing and processing, make

better recommendations and improve user experience,4 as well as in high-stake tasks to aid decision-makers in

healthcare [48], military [32], and finance [61].5 With all these advances, authors began to speak about big leaps

in model accuracy and an exponential growth in investments, in what can be properly called a new Golden Age

of AI [26].

Yet, in this modern land of milk and honey, few perils still persist, and major questions are left unanswered:

crucial for the high-stake environment and important in the low-stake applications as well, are concerns over the

risks and safety of AI tools, together with inquiries on privacy and transparency of data and model use. These

problems contributed to foster the development of new techniques to assess and control the model’s behaviour,

leading to the growth of eXplainable Artificial Intelligence (XAI).

One of the main task of XAI is to build tools to understand the inner workings of black-box models, usually

with the objective of verifying that the model is following a specific behaviour, is robust and reliable, or has no

1We use task as a technical term, close to the definition provided in [51], by which we mean a problem with an initial state, some
desired (goal) and undesired (failure) states and an agent (model), which by interacting with the initial state can reach one or more
goal or failure states.

2For transformers, see [54]. Convolutions were introduced by [12], but raised to prominence only later with [29]. For the increase
in the number of parameters, see for instance Figure 1 of [55].

3Firstly prompted by the Perceptron [44], and partially contained by [37], the development of the AI field has seen cyclical spikes
in attention and expectations.

4Think of your smartphone: it includes a smart assistant, AI models for taking pictures, and one or more services to suggest and
recommend products, filter advertisements and rank contents; chatbots recently came to prominence thanks to the improvements in
their performance, and are now integrated in the workflow of many. To mention only one example, the active user base of chatGPT
grew to around 100 million in just two months after its release [24].

5Transformers have been recently applied successfully even to predict life events [46].
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bias.

Lately, feature attribution methods, such as SHAP values, [35], emerged as a popular approach to solve this

problem. The idea is to see how small changes in the inputs determine changes in the outputs, and to represent

the relevance of each feature of the input for the model’s prediction with a score. Features with highly positive

or negative scores will be more important for the model, and influence in a more relevant way its output, thus

giving insights into what the model considers more significant, see Section 1.2. Such methods are very intuitive,

as they associate to each feature of the input a positive (negative) value if the feature increased (decreased) the

probability of that prediction. With SHAP values, troubleshooting prediction errors is facilitated, as they enable

users to look into the features considered important for the prediction, and highlight if the model is attending

too much to the wrong information.

These methods, however, suffer from a major problem: when they are used to ascertain that the model is

following a specific and wanted heuristic, they can very easily lead to confirmation bias. This happens when,

while analysing model’s behaviour, we fail to collect and properly analyse counterexamples, while assigning high

importance to any evidence aligned with our pre-exiting expectations. As Cinà et al. [10] argue, this error is less

common on tabular datasets, since each low-level feature is by default endowed with a meaning.6 In images or

text, where low-level features (as pixels or syllables) are fed to the model, but only high-level features (as objects

or sentences) are meaningful for the user, confirmation bias is more dangerous, and common, as experimentally

shown by Wan, Belo, and Zejnilović [56] and Bauer, Von Zahn, and Hinz [8].

The semantic match framework, proposed in [10] and [11], was developed to contain exactly that problem:

instead of manually inspecting single instances of input-output pairs, together with their explanations, in this

framework one can formulate a hypothesis on how the model is generally behaving, and then measure how well

the hypothesis matches the explanations. Checking one hypothesis after the other, it becomes possible to verify

if the model is following specific patterns, in an exchange that resembles a series of yes or no questions (‘Are you

behaving in this way?’, ‘Are you behaving in that other way?’, . . . ).

With this machinery, we can go fishing for biases, progressively testing, and hopefully discarding, the possible

prejudices that a model might suffer from. The goal of the thesis is to probe the fishing pole: we will purposefully

train two model so that the first should be biased, while the second should not. Then we will formulate different

hypotheses, to see if we can catch the bias of the first model, and to verify that the second model is not suffering

from it.

While the goal of semantic match is to be applied in scenarios where no a priori knowledge of the dataset or

model is assumed, as the framework is still under development, the experiment here presented is a needed step

towards that objective. Continuing the analogy, we will conduct our test in a small lake, where we already put a

big tuna, before our fishing trip in the oceans. Nonetheless, as we are using BERT, a state of the art black-box

model, there might be unforeseen difficulties: we might incur into bigger or smaller fishes, and we cannot be sure

that our tuna is still there when we will throw our hook in the lake.

Our main research question is therefore: is it possible to spot and describe a specific bias that a model is

suffering from, using hypotheses of the semantic match framework? And does that machinery allow to also check

if another model is not suffering from that same bias?

Collaterally, we will also probe the powers of semantic match, by using its metrics with different goals in mind,

and by showing how to interpret their results.

Structure This work is divided in three: the introductory part, composed by Chapter 1 and Section 2.1

provides the reader with the general background and concepts needed to understand the goals and workings of

the semantic match framework.

The experimental part starts in Section 2.2, where we describe the setup of the experiment, showing some

preliminary results which confirm our expectations; in Chapter 3 we define the hypotheses of model’s behaviour

6Note that high-level features can also be defined for tabular datasets, and might lead to confirmation biases.
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that we will test, and present the results, discussing each of their implications on the way in which our models

predict. Here we will also introduce additional metrics from Zhou, Ribeiro, and Shah [59], and comment the

obtained results.

Finally, some more theoretical aspects are discussed in Chapter 4, where we will describe and interpret the

typical trends of the semantic match metrics, we will re-evaluate them showing how changing the sets on which

they depend can provide further evidence to support the results, and compare our metrics to those of Zhou,

Ribeiro, and Shah [59].

In the Conclusion we are going to sum up the results and contributions of this work, briefly exploring some

future directions of research on semantic match.

Related work While in recent years a plethora of studies highlighted limitations of feature attribution methods,

to our knowledge, not a lot of work has been focused on the specific dangers of confirmation bias that they

might rise. Zhou, Ribeiro, and Shah [59] introduce a general framework to explain model’s behaviours with

human-readable hypotheses, but their approach is limited in two ways: firstly, their tools were developed for text

modality only, and are not straightforward to apply to other types of datasets; secondly, their hypotheses are

concerned only with low-level features, which, according to Cinà et al. [10], are less prone to cause confirmation

bias, as they are usually equipped with an interpretable semantic (in [59], features are single words, while in

[10] the columns of a tabular dataset are used as an example). While the authors of Zhou, Ribeiro, and Shah

[59] introduce compositional rules to capture some high-level features emerging from input’s features, those are

unable to capture other, very natural features, such as sentences of a text, or sections of an image containing a

specific object.

Cinà et al. [10] and [11] propose a similar framework, applicable to any modality and agnostic to the choice

of model and feature attribution method. As we shall see in Chapter 2, semantic match in principle allows the

definition of features with an arbitrary level of abstraction, enabling to test the consistency of model’s behaviours

on any group of data points and on any feature of interest.

Zooming out from our specific research questions, this work is linked with major trends in XAI by multiple

threads: the first is the search and documentation of dataset’s and model’s biases, which has sprung a lot of

literature; for the design and setting of our experiment, we relied on the results shown by Ko et al. [27], which

proved how it is possible to bias a BERT-based model by training it on a purposefully manipulated dataset.

Other work on biases in visual datasets has been conducted, among others, by Tommasi et al. [52] and Fabbrizzi

et al. [16]. Garrido-Muñoz et al. [17] survey biases in NLP, while frameworks to individuate biases in textual

datasets were introduced in Raza, Reji, and Ding [41] and Raza et al. [42]. Gender biases are very frequent in

such datasets and more work on this matter is referenced in Doughman and Khreich [15].

Development of feature attribution methods and inquiries in their limitations are also blooming in the late

years, and linked to our research. While the current work focuses on SHAP values, introduced in Lundberg and

Lee [35], the same experiment could be reproduced for any other feature attribution method. For a detailed

overview of the available methods in computer vision we refer to Abhishek and Kamath [1], while an overview of

tools for healthcare can be found in Singh, Sengupta, and Lakshminarayanan [50]; Ghassemi, Oakden-Rayner,

and Beam [19] is a survey on some problems of current explanatory methods.

SHAP values rose to prominence in the last years due to their innate intuitiveness and some of their theoretical

properties, together with a ready-to-use implementation in a well documented package, see Section 1.2; nonetheless,

they were criticized for multiple reasons, one being their complexity: based on an iterative evaluation over all

possible combinations of input features, the complexity of their evaluation can be exponential in the number of

features, and thus it scales badly for datasets based on images, texts, videos and the like: SHAP values have also

been proven to be #P-complete for simple AI models such as logistic regressions [9].7 While in some cases exact

computations can be conducted (as proved in [5, 6, 7]), they are often only estimated. Huang and Marques-Silva

7This complexity class is composed by counting problems associated with decision problems of NP; in simple terms, problems in
#P are at least as difficult as those in NP, [53].
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[25] conducted an experiment to investigate how good such estimates are, by comparing the exact values and

the estimations, finding not only that the latter do not match the former, but also that the relative order of

relevance of the features can differ.

Finally, the study of human biases in the interpretation of model’s predictions and explanations has risen

to prominence in the last years. Insights from philosophy and psychology inspired a theoretical framework by

Wang et al. [57], made to improve explanations techniques and avoid common cognitive biases. The interaction

between human decision-makers, the predictions of a model and the SHAP values related to it has also proven

problematic, and Wan, Belo, and Zejnilović [56] empirically showed that, when humans are given both the

prediction of a model and the corresponding SHAP values, users will increase their confidence in the choices they

make, whenever the explanations align with their own motivations for taking those decisions. Other experiments

by Bauer, Von Zahn, and Hinz [8] showed that feature attribution methods can influence and modify both the

user’s processing of the information received to make the decision, and their underlying mental model, with

risks of manipulation and spillover to similar decision tasks, even for expert decision-makers. Importantly, they

find asymmetries in the way the mental models are adjusted, leading to confirmation bias: if the explanations

corroborate user’s beliefs, those ideas are strongly reinforced, while if the explanations are not in line with the

mental model, the latter is only slightly modified.

Contribution This work contributes to the development of the semantic match framework by applying it in a

controlled experiment. It is the first experiment employing that framework in the textual modality with the goal

of capturing the behaviour of two transformer-based models, proving that one is biased while the other is not.

The framework was firstly proposed in [10], and fully formalized as we present it in Section 2.1 in [11].

Previous experiments on images are also included in Cinà et al. [11], and the way in which the context was split

into sentences in our experiment is reminiscent of the bounding boxes used for image experiments. The design of

the experiment here discussed was a collaboration between the author and the collaborators in Cinà et al. [11].

The MD and AUC results presented in this work have been obtained by the author and are featured in [11]; the

discussion of their meaning is influenced by [11]. The comparison with the metrics of Zhou, Ribeiro, and Shah

[59] is original and unpublished at the time of writing.

In Chapter 3 we apply the metrics of [59] to our model, showing that the rules introduced in that paper are

translatable into the semantic match framework, while the converse is not always possible.

For training, we followed the strategy of [27]: while that work focuses on how to mitigate dataset’s biases

with specific techniques of dataset manipulation, in our work the training was used to generate the two models

whose behaviour is studied here.
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Chapter 1

Background

The goal of this introductory chapter is to equip the reader with the basics needed to understand the rest of the

work. We are firstly going to define very generally what a model is, and then we will delve deeper into the inner

workings of BERT, which we later use for the experiment.

We are also going to define feature attribution methods, focusing on the intuitions and theory behind SHAP

values. Finally, we will discuss how biases can arise when using such tools, presenting semantic match as a

possible solution.

Notational conventions followed in the work close the chapter.

1.1 What is a model?

The first concept we need to get acquainted with is that of artificial intelligence model. That is typically an

algorithm, implemented as a software program, which can learn how to match patterns and correlation in a

given dataset.

With patterns and correlations we informally mean any relation or connection that incurs between parts of the

input given to the model, while a dataset, D is defined as a set of data points, each being an input-label pair

⟨x, y⟩, where x is the input (for instance an image, some text or a vector of numbers), and y is the label, which

is the correct answer the model should predict. An input will generally be a vector of different features, which

are parts or properties of the input; for example, a text input will have words or syllables as feature, an image

the RGB values of its pixels, and a tabular input such as an inventory will have columns as features. Formally,

an input x is defined as x = (x1, x2, . . . xn) where x1, x2, . . . xn are its features.

Definition 1.1 (Model). Given a dataset D with data points d = ⟨x, y⟩, let X and Y be the set of inputs and

labels respectively, then an (AI) model f is a function X → Y with parameters w1, . . . , wM that takes an input

x ∈ X and returns a prediction p ∈ Y.

If the prediction p is equal to the label y of the data point ⟨x, y⟩ we say that the model’s prediction is correct. 1

To better understand the inner workings of a model we have to know what architecture it features and how

it is trained. The architecture of a model refers to the underlying structure of the model, the types of modules it

is composed of, how they are connected, how many parameters they have and which are trainable, and finally,

how the prediction is made. Hence, it specifies the algorithm used to obtain the prediction from the input and

the model parameters. Training, on the other hand, refers to the algorithm which optimizes model’s parameters

usually starting from a random initialization; algorithmically, it is a process that starts with an architecture, its

parameters and a dataset, and returns new values for the trainable parameters, optimized on the dataset.

As anticipated, we are going to detail the workings of BERT in the next section.

1Notice that generative models can be captured by the above definition as well, if we expand Y to be the set of all possible
predictions the model can make. In non-generative models, the set of labels and the set of possible predictions do coincide, while in
generative models the former is a subset of the latter.
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BERT

Introduced by Devlin et al. [14] in 2019, BERT was developed to solve a plethora of tasks related to understanding,

generation and manipulation of text. It had an enormous impact on the Natural Language Processing (NLP)

field due to its performance: with a two-step training algorithm the proposed architecture was able to achieve

top performance across multiple tasks, often beating models with ad hoc architecture optimized for one specific

task.2

BERT’s architecture is based on transformers, by Vaswani et al. [54], which are modules tailored to sequences of

inputs (as text or time-series), composed by an encoder and a decoder, conjunctively creating a representation

of the input sequence that is used by the model to make predictions.

Both submodules of a transformer are constituted by multiple attention heads; as tokens of the sequence are

fed to the transformer, they are encoded keeping information on their relative position; those embeddings are

then modified by attention heads to incorporate information from previous inputs. Each attention head has

its own trainable parameters in order to attend to different types of contextual information (like grammatical,

semantic, emotional, locational, . . . ), so, by stacking multiple attention heads, transformers are able to compute

representations of the input sequence without loosing information of the positions and context in the sequence.3

The resulting representations are then concatenated, and passed onto the next submodules of the transformer,

which will use the encoded sequence and its contextual information to predict the next token.

Example 1.2 (Attention-head workings). To make things clearer, we provide a visualization of the workings

of one attention head for the sequence ‘red lobate leaf’ in Figure 1.1. The image is not derived from an

actual run of a transformer, and the 3D space where embedding are visualized is purely illustratory. Intuitively,

information from the context is represented as a vector in the space of word embeddings, which is added to the

original embedding to obtain an updated vector enriched with context. In the visualization, the head matches

adjectives to their nouns, so the corrections from adjectives referring to leaf have higher magnitude than those

coming from adjectives not related to the word, or from other grammatical constructs.

BERT is composed by 12 transformer’s encoders stacked one on top of the other, each with a hidden

dimensionality of 768 and 12 attention heads for a total of 110 million parameters, see Figure 1.2. The original

model from [14] had two versions, we will always refer to the base version. The textual input x is firstly passed

through a tokenizer, which transforms the word-sequence into a token-sequence according to a predetermined

vocabulary, and also embeds each token in a 768 dimensional vector representing it.4 Supplementary information

on the relative and absolute position of the token in the sequence is added at this stage. Afterwards, the embedded

sequence is passed progressively throughout all the layers of transformers, where contextual information is added,

and finally it reaches the output layer, which is chosen based on the specific task BERT is applied to.

What makes BERT so flexible, is the fact that it can be trained for a specific task by only changing the

parameters of its last output layer. In fact, BERT’s training is a two-step process: during the first phase,

pre-training, the model is trained on two tasks: Masked LM (MLM), i.e. predicting a masked word in a sequence,

and Next Sentence Prediction (NSP), a binary classification task which involves predicting if two sentences are

one after the other or not.5 Throughout pre-training, the parameters of the tokenizer and of the transformer’s

encoders are adjusted; according to Devlin et al. [14] the model develops a general understanding of syntactical

concepts as well as semantic relationships between words from the first task, while the second adds understanding

2At the time, that was particularly surprising, as a common assumption in the AI field was that specific tasks required specialized
models.

3Notably, transformers achieve this without needing backward or recurrent connections, which were assumed to be fundamental
for storing information on sequential inputs. Avoiding similar connection makes computing the error of the model’s predictions and
the training mathematically easier and computationally faster.

4The model is able to inspect the input sequence from left-to-right, as a human English reader and as most other NLP models,
and also from right-to-left.

5Note that large datasets for the two tasks can be created cheaply and automatically, as labels are extracted directly from the
inputs.
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Figure 1.1: Visualization of the action of one attention head. In the first row, photos to visualize how a
human would ideally internalize and represent the words; on the second row, an idealized visualization of the
multidimensional space of the model’s embeddings, as progressively modified by the attention head. The blue
vector is the initial embedding, which is firstly projected into a subspace, and then adjusted by the attention
head through the context. The first orange adjustment represents the addition of the information contained
in lobate, while the red vector represents the addition of red. At each step, the green vector is the final
representation formed by the attention head.
The representations of each head are concatenated and expanded back in the initial dimensionality.

of relationships between sentences and different contexts, which cannot be directly assimilated with MLM. The

authors also note that including NSP improves the performance of the model on multiple tasks based on sentence

to sentence relations, like question answering (which will be address with more detail in Chapter 2) and Natural

Language Inference (where the model has to indicate if a sentence follows from another).

Later, begins fine-tuning, an additional training phase tailored at the specific task the model should solve

(downstream task). The dataset of that task is now used, and the input and output layers are adjusted accordingly.

In this phase, only the parameters of the output layer are modified, with an extremely low computational cost.

Intuitively, during fine-tuning the model should calibrate the general representations learned in pre-training to

the downstream task, similarly to a human agent, which, to become an expert, firstly learns general knowledge

about the world, and then specializes in a subfield.

In Section 2.2 we are going to provide further details on how we fine-tuned BERT for our experiment, which

greatly showcases both the importance of a good dataset for this phase, and the overall flexibility of the training

method.

1.2 Why did the model predict that?

Given the recent growth in tools and technologies based on AI models, and the almost exponential increase in

parameters and complexity, understanding how and why a model generates one specific output given an input

has become more and more challenging. While with simple models such as perceptrons [44] or shallow neural

networks with few parameters [4], it is in principle possible to understand why the inference was drawn by

10



Figure 1.2: Above, the scheme of a transformer from [54] and [58]. The encoder (top, left) is a neural network
made of N layers of sub-layers (highlighted in light-blue) constituted by a multi-head self-attention layer and
a fully-connected layer (feed forward). The input sequence is firstly embedded, then it is passed through the
first attention layer. Before the output is passed to the next sub-layer, the original input of the sub-layer is
added (residual connection) and the result is normalized (with layer normalization). The decoder has a similar
structure, with an added multi-head self-attention layer before the fully-connected one, which takes as input the
output signal of the encoder.
Every multi-head attention is a stack of h scaled dot-product attention modules, each with its own parameters,
attending to different kinds of contextual information.
Below, the architecture of BERT base model, from [14]. The input passes in an embedding layer, where words are
translated into tokens, and additional information on their position is added (segment and position embeddings).
Then, the embedded input is passed through 12 transformer’s encoders, one on top of the other, each with 12
attention heads in the multi-head attention module (hence, N = 12 and h = 12 in the first image). The final
output layer, trained in the fine-tuning step, is related to the downstream task the model should solve: for a
classification problem it is a softmax, as in the picture, while for question answering there are two parallel output
layers, one for the starting and one for the ending index of the answer, each composed by a linear layer and a
softmax.
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directly analysing the magnitude and sign of the model’s parameters, this is impossible once the number of

parameters reaches the thousands, not to mention the billions of current state-of-the-art models; thus, there

seems to be a still unresolved trade-off between accuracy and interpretability.6

With application comes regulation, and multiple entities, from industry [2], academia [18] and legislative bodies

[20], have called for new regulations, to ensure that AI models and the resulting tools are tested for privacy,

fairness, robustness and interpretability. This has sprung new effort in the field of explainable artificial intelligence

(XAI), which we briefly comment in this section.

The current directions of research in XAI can be divided into two branches: the first has grown from the idea

of solving the accuracy-interpretability trade-off by developing new architectures that make decisions following

algorithms which are understandable and explicable by design [45]. These models are called white-boxes, as they

are purposefully designed so that developers and users can inspect how the model predicts. In contrast, most

state-of-the-art models are called black-boxes, as they are composed of millions or billions of parameters, each

only partially responsible for the final output of the model; thus, by design, their complexity prevents grasping

the reasons behind their predictions.7

On contrary, the intuition behind the second branch is that the current black-box models, having high

accuracy, should not just be thrown away because they are difficult to understand and troubleshoot. Instead,

new techniques must be developed on top of them, to help us analyse their behaviours.

Among those, feature attribution methods were designed to highlight the relative importance of input features for

the prediction of the model. In the Introduction, we anticipated how intuitive and helpful those explanations can

be, and we are going to discuss some of their shortcomings and risks one might run into in the next paragraph.

Since in what follows we are going to test a framework developed to solve one major problem of these methods,

we define explanations as they are generated by feature attribution methods.

Definition 1.3 (Explanation). Given a model f and a dataset D with data points d = ⟨x, y⟩, we define the

(feature-attribution) explanation e of d to be

e = e(f, d) = e(f,x, y),

with e a feature attribution method.

We say that such explanation is local, as it is a function of one data point only.

While multiple feature attribution methods were proposed [43, 13, 49], SHAP values have emerged as one of

the most widely used solution, and have been employed to test robustness and fairness of the most disparate

model architectures.

SHAP values

Inspired by the prolific game theoretic concept of Shapley values [47], Lundberg and Lee [35] defined a local

feature attribution method with similar foundational intuitions and axiomatic motivations, SHAP values.

The original game theoretic formulation was created to solve the problem of how to calculate the importance of

each player in coalition games from an axiomatic perspective: Shapley defined some axioms that a fair evaluation

of player’s contribution should respect, and found that there was only one equation that satisfied them all

conjunctively, which is the one used to define Shapley values.

Similarly, authors of [35] noticed that most local feature attribution methods satisfied the additivity axiom.

After formulating three other axioms which should reasonably hold for an explanatory method that seeks to

find how much each input feature contributed to the final prediction of the model, similarly to Shapley, they

6Proposers of white-box models have argued that this trade-off, far from being actual, is only perceived [45]; note however, that
while white-box models nowadays match the accuracy of state-of-the-art models for structured dataset, this is not the case for
unstructured datasets such as images or text.

7For a survey on white- and black-box models see [31].
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found a unique solution that respected all the axioms, and studied its computational complexity as well as its

explanatory power, proving that it performed better than previous solutions.

We list the axioms and an intuitive explanation of what they assure next.

Definition 1.4 (SHAP axioms). Given a model f, and datapoint with input x, with a total of n features, we

indicate with x′ the simplified version of x, i.e. x′ ≈ x, with a mapping function hx : {0, 1}n → X , such that

x = hx(x
′) and x′ ∈ {0, 1}n. We also use v′ to refer to any vector in {0, 1}n whose 1 entries are a subset of the

1 entries of x′, whereas v′ \ j is the vector equal to v′ in all entries, except the jth, which is set to 0.

Then, according to [35], the explanation of the jth feature, ϕj should satisfy the following axioms:

Additivity The sum of the contribution values of all the feature generated by the explanation method approximates

the output of the explained model; this amounts to require that SHAP values are linear functions of binary

variables, which are obtained by mapping the original features of the input, x, to a simplified input, x′.8

e(f,x′) =

n∑
j=0

ϕjx
′
j

Local Acc The prediction of the explained model on input x are approximated by the explanation model on its

simplified version x′ (x = hx(x
′)).

f(x) = e(f,x′)

Missingness Features that are not present in the original input have no impact; therefore their contribution value equals

to 0.

xj = 0 ⇒ ϕj(f,x) = 0

Consistency Comparing two explained model, f and f′, if the contribution of a specific feature to the prediction of the

f is bigger or equal then the contribution of the same feature for f′, then the contribution value of that

feature for f should be bigger or equal to the contribution value of the same feature for f′.

if fx(v
′)− fx(v

′ \ j) ≥ f′x(v
′)− f′x(v

′ \ j), for all v′ ∈ {0, 1}n, then ϕj(f
′,x) ≥ ϕj(f,x)

Definition 1.5 (SHAP values). Given a model f, an input x with its simplified version, x′, as before, the SHAP

value of feature j, ϕj , is obtained as:

ϕj(f,x) =
∑

v′⊆x′

|v′|!(n− |v′| − 1)!

n!

[
fx(v

′)− fx(v
′ \ j)

]
where n is the total number of features of x′, v′ ∈ {0, 1}n, |v′| is the number of 1s in v′, and we use v′ ⊆ x′ to

indicate the set of all v′ vectors for which all the entries with 1 are a subset of the 1-entries of x′.

Intuitively, v′ indicates which features are masked (0) and which aren’t (1). The sum ranges over all possible

combinations of masks, while the fraction before the square brackets is a weighting factor. The term in square

brackets is the contribution of the jth feature for a specific masking v′, calculated as the difference between the

model output when j is present, fx(v
′), and when it is not, fx(v

′ \ j). The SHAP value of jth feature is thus

calculated as the weighted average contribution of j for the model output across all possible masks.

As anticipated in the Introduction, the definition of SHAP values has quite bad computational complexity:

the exact calculation requires the analysis and comparison of all possible subsets of input features (analogously

to the original Shapley values). Nonetheless, [35] provides various alternative algorithms that are more efficient,

although only approximating the correct values.9

8This axiom formalizes the summation aspect, while Local Accuracy expresses the approximation part.
9Similar to other local feature attribution methods [43, 13, 49], for the approximation authors assume feature independence,

which is reasonable for (some) tabular domains, and at least debatable for text or image based tasks.
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Example 1.6 (SHAP values). In Figure 1.3, we showcase SHAP values of a linear regression model of a tabular

dataset for predicting housing prices. The visualization is very intuitive and provides a clear overview of the

features that mostly contributed to the model’s prediction.

Figure 1.3: An example of SHAP values of a linear regression model for predicting housing prices. Features that
contributed positively are plotted in red, while those that have a negative contribution are coloured in blue.
Image is taken from [33].

In Figure 2.2 we visualize SHAP values of BERT-based models solving question answering task. As the number

of features in NLP tasks is very high, it is hard to track and understand why certain words or punctuation signs

have higher values then others.

Despite their intuitiveness and applicability, multiple concerns were raised about the correctness of the

approximation and of the underlying assumptions, as well as on the methods and practices where SHAP values

are employed. While discussing each problem specific to SHAP values is outside the scope of this work, we detail

in the next paragraph some of the most relevant critiques of local feature attribution methods as explanatory

methods.

Issues of local feature attribution methods

A first attack to feature attribution methods in general is posed from the perspective of consistency : different

explanatory methods, if they do not agree on the relative importance of each feature, should at least agree on

the importance based ordering.

Yet, Neely et al. [39], while investigating the correlations between feature attribution methods (SHAP and

LIME) and other attention-based explanatory methods in NLP, found not only that across multiple models and

tasks the former correlate poorly with the latter, but also that different feature attribution methods generate

explanations which are very weakly correlated.10 Further experiments by Krishna et al. [28] and by Zhou et al.

[60] corroborated these results, showing that also in tabular and image modalities such inconsistencies persist.

Another concern is that of fidelity : while feature attribution methods are defined so that they closely match

the predictions of the model that is being explained (additivity and local accuracy axioms of Definition 1.4), at

times they do not [45]. As such, explanations are just approximations of the inference process of the model, and

thus, they can be a further source of errors when interpreting the model’s predictions [19].

Nonetheless, we argue that the above critiques, while being applicable generally to feature attribution

methods, fundamentally depend on the choices of definition and implementation of singular methods. To be

clearer, while the feature attribution methods developed so far suffer, at times, of infidelity to the model we want

to explain, and, at times, of inconsistencies with other explanations, this does not rule out that, in future, better

10The results are particularly relevant for transformers, and for specific tasks solved by LSTMs.
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explanatory methods will be less effected by those problems. Furthermore, even if current methods are only

approximations of the decision process of the explained model, they can still be useful to gain insights about

what parts of the input are more relevant for the model, if approximation errors in explanations are limited to

small subsets of the dataset.

However, a major difficulty remains, and it is congenital to the basic assumptions on which feature attribution

methods rely. Suppose we have a model that solves a binary classification task; the explanations obtained for

the model consist of a list of positive or negative numbers that quantify the relevance of each feature for the

model’s prediction. Inspecting those values we can only infer whether the model saw that feature as contributing

positively or negatively towards the output. However, we have no information on how that feature was used in

the decision process, nor we can understand if for those features the model has developed inner representations

that correspond to concepts we would use to make the decision.

Even assuming that the explanations are faithful to the model, there is still an interpretability gap between the

explanations and the concepts we would use to solve the task [19, 45]. In other words, even if the model and the

explanation are correct, and the most relevant features align with our intuitions about how the task should be

solved, we have no guarantee that the model is assigning relevance to those features for the same reasons we do:

we solved the task relying on a conceptual framework that we have no justification to project on the model, even

if the obtained explanations and our intuition align on some datapoints.

What is worse is that, as feature attribution methods are very intuitive and easy to visualize across all modalities,

we tend to unconsciously fill the gap by assuming that the model is behaving as we would. Be it by cherry-picking

examples that confirm our expectations, or by positively and optimistically interpreting few explanations as

corroborating evidence for our desiderata, the risk of confirmation bias is high and documented [45, 57, 56, 8].

And because this problem is tightly rooted in the foundations behind the definition of feature attribution

methods, it seems a better reason to argue against their use. Yet, as we will see in the next section, something

can still be done to rescue them.

1.3 How to explain better?

While Cinà et al. [10] agree that the gap between explanations generated by feature attribution methods is the

most problematic cause of errors when they are used to understand model’s behaviour, they argue that those

risks can be mitigated by a more careful study of the congruence between the explanations and our beliefs on

the workings of the model and on the ways in which one should solve the downstream task.

The main contention of the authors is that there is a substantial difference between structured and unstructured

datasets, and that the interpretability gap is present most often in the latter.

Example 1.7 (Structured and unstructured datasets). Structured datasets are, for instance, tabular datasets:

here, each input feature comes already endowed with an understandable semantic, which can be interpreted

independently of all the others. Hence, in a tabular dataset containing results of blood exams, very high levels of

sugar can be interpreted by doctors as hyperglycaemia, independently of other features (as white blood cells, red

blood cells, . . . ). Sugar levels preserve their specific meaning when considered together with the other features

for the final diagnosis.

On the other hand, typical examples of unstructured datasets are those of images and texts. In the latter, tokens

consists of single worlds or syllables, which taken alone might offer multiple interpretative alternatives, while the

actual meaning of each excerpt emerges only when considering all the features together. Similarly, in image

datasets the input usually consists of RGB values of the image’s pixels, each being a feature. Here too, focusing

on just one individual pixel would be meaningless and pointless, and it is possible to interpret the features only

by aggregating pixels into bigger portions of the image.

In structured datasets, the sub-symbolic representation of the input that is fed to the model is equal to the

human representation: the level of sugar in blood is both an input feature for the model and something that we
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can interpret. On the other hand, in unstructured datasets, the sub-symbolic representations given to the model

(pixels of images, tokens corresponding to words or syllables) are different from the representations we build at

higher levels of abstraction (parts of an image, words and general meaning of a text).

While for the first type of dataset there is no actual interpretability gap for low-level features, and thus, the

previously discussed risks are mitigated, it is usually for the second type of dataset, that confirmation biases

and projections of human beliefs can, and do, happen, as we understand the input and solve the task through

high-level features which the model might not recognize.

Yet the presence of that gap is not sufficient to throw completely away feature attribution methods when

the dataset is unstructured. On contrary, the idea is to fill that gap with a proper translation, to convert

sub-symbolic features whose meaning is hard to grasp into human representations that are understandable.

Whenever such translation exists, there is semantic match between the two, and we avoid the risk of projecting

our knowledge onto the model, as our higher-level representations have a correspondence to the representations

of the sub-symbolic features that the model receives and uses. In those cases risks of confirmation bias are

also reduced: it is no longer possible to cherry-pick the data points and explanations that better suit our prior

expectations, as either the translation of the obtained explanations align with our expectations, or they do not.

But how can we build a similar translation? And how can we test it to be sure that it holds? In [10, 11]

authors propose a framework to formally define semantic match, and a procedure to test it in practice, agnostic

to the choice of model and of feature attribution method. In the next chapter we are going to present the

framework in full detail, while here we provide the basic intuitions behind it.

In a nutshell, we want to structure the high-level representations we understand and the intuitions about how

the task should be solved so that it becomes possible to compare them with the obtained explanations: firstly,

we make a hypothesis in natural language, and then we define a process to map low-level features into high-level

ones; as we shall see, this enables us to measure how well the hypothesis aligns with the explanations of the

model’s behaviour.

Still, in order to properly fill the interpretability gap, we have to ensure that the overall translation from

hypotheses to explanations is correct. To this end, two fundamental questions have to be tested, taking as

reference a data point where the high-level feature of the hypothesis is present and the explanation e matches

the behaviour specified in the hypothesis:

• Is it true that if a data point satisfies the hypothesis then it also has an explanation similar to e?

• Is it true that the data points with explanations similar to e also have the high-level feature of interest

and follow the defined behaviour?

Note that, to answer these questions, we also need a notion of similarity between explanations, which follows

directly, once we define a distance.11 Intuitively, the two queries investigate respectively how necessary and how

sufficient the hypothesis is to assure explanations’ similarity. A positive answer to both is required for semantic

match, as, otherwise, the interpretability gap is not filled: a negative response to the second question would be

detrimental, because it leads to confirmation bias and knowledge projection, while a negative answer to the first

is equally dangerous, as it implies that the model is not coherent in the way in which it considers the high-level

feature of interest, possibly being unreliable.

Example 1.8. To see this, consider a binary image classification with classes {cow, bicycle}. We would assume

that a good high-level feature to solve the task is the presence of wheels, i.e. one or more circularly shaped areas

in the image. Inspecting the explanations we find that when there are wheels the model is considering them

important.

The first question would have a negative answer, when, for instance, the wheels’ area in actual images of

bicycles has at times positive, and at times negative contribution; in turn, this means that, while the model is

11We provide formal definitions of explanation, hypothesis and distance in Section 2.1.1 and 2.1.2; the procedure to test semantic
match is detailed in Section 2.1.3.
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focusing on that high-level feature as expected, sometimes it interprets it as positive evidence for the bicycle

class, sometimes as a negative signal.

On the other hand, if we observe similar circular patterns on cow images, then our interpretation of those

patterns as wheels is possibly wrong. Here the major risk for confirmation bias arises, as if we do not discover or

test that the circular areas appear also on objects that are not wheels, we might conclude that the model is

correctly recognizing wheels, whereas, in fact, it is not.

Another way to visualize semantic match is to think of explanations and human representations as sets of

states (data points): if the two sets coincide, we have semantic match, otherwise, if the former is a subset of the

latter, the first answer is negative, while if the latter is a subset of the former, the second answer is negative. In

practice, the two sets will almost never fully coincide, as other high- or low-level features that also affect the final

prediction might increase or decrease the relative importance of the hypothesis’ feature. Even if semantic match

is not exact, it is still important to test, as its lack could increase awareness of possible confirmation biases, and

its presence could add insights in the model’s behaviour and evidence of the correctness of its interpretation.

The translation between sub-symbolic features and hypotheses will rely on a mapping and a composition: the

first aggregates all the sub-symbolic features of the input in the high-level features considered in the hypothesis;

for instance, in Example 1.8 the mapping will segment the image and, if a wheel is present, associate to it all the

pixels it is made of.

Next, with the second, we compute a statistic of the explanations of the sub-symbolic features returned by

the mapping, based on the way we defined the hypothesis. So in Example 1.8, as the area where a wheel is

present should have positive contribution towards predicting bicycle class, and negative contribution for cow,

we could simply use the sum of the explanations of all the pixels composing it, and check if the result is positive

or negative when bicycles or cows appear. Instead, if we are interested in knowing if the model attends to wheels

at all, we could take the absolute sum, as a pixel with high contribution, be it positive or negative, is important

for the model’s prediction.

Concatenating the mapping and the composition, we have a way to obtain explanations for high-level, human

understandable features from the low-level sub-symbolic input features.

1.4 Notational conventions

We will use italics to denote data points and numbers such as thresholds or constants, bold for vectors, and

latex’s mathfrak font for functions. We use latex’s mathcal font to denote sets, mathsf for complexity classes

and texttt for names of variables in the codebase and code snippets.

We use the subscript i to indicate the ith data point di of a dataset with N elements, and j to denote the jth

feature of a data point input vector with n entries. The two exceptions to our notation used for functions are

median distance and area under the curve, which, as metrics, are indicated with MD and AUC in formulas, and

abbreviated as MD and AUC in the text.
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Chapter 2

Methodology

This chapter is divided into two parts: in the first, we provide a detailed account of the semantic match framework,

define its key concepts and metrics, and expand the previous discussion on the intuitions and objectives that

motivated the framework. We additionally include a procedure to apply it to any case-study.

In the second part, we present the setup of the experiment, with details about the dataset and the task which

the model should solve, the training procedure and the most important aspects of the implementation of the

experiment.

2.1 Semantic match

Here we provide a more detailed account of the semantic match framework, its key-concepts and metrics, and

close by outlining the steps needed to apply the framework on any model we want to study.

2.1.1 The framework

As seen in Section 1.3, the goal of semantic match is to avoid confirmation bias and to develop a more reliable

and robust understanding of model’s behaviour by checking how well explanations of the model obtained from

feature attribution methods comply with human-friendly hypotheses.

The key components of the semantic match framework are the model, the explanation method, the hypotheses

and distances used, and finally the evaluation metrics. We already defined a model (Definition 1.1) and an

explanation (Definition 1.3) in Chapter 1, and in this section we lay out the remaining definitions and showcase

how they integrate together.

As previously, we indicate with D the dataset, with ⟨x, y⟩ any of its data points, as an input-label pair, with

xi,1, . . . , xi,n the n features of the input xi of data point di ∈ D, with f the model, with pi = f(xi) the model

prediction for xi, and with ei the explanation obtained from the explanation method e when given f and di, i.e.

ei = e(f, di) = e(f,xi, yi). Finally, the explanation for the jth feature of the ith data point is written as ei,j .

As the hypotheses for semantic match will concern the model, the input and the label, we define tuples

ui = ⟨f,xi, yi⟩, and sometimes use those tuples as inputs for the explanation method, i.e. ei = e(ui) .
1 The set

of all u tuples is U = {u = ⟨f,x, y⟩ | (x, y) ∈ D}, while the set of all explanations is E = {e = e(u) | u ∈ U},
and by definition |D| = |U| = N ≥ |E|. As we use feature attribution methods, each explanation is a vector of

n entries. When we are talking about any data point in general and when is otherwise clear, we omit the i

subscript.

1Note that explanations generally do not require the label yi, and we include it in the explanation method input both because we
allow the hypotheses to refer to the label, and for ease of notation.
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Definition 2.1 (Hypothesis). A hypothesis, θ, is a logical statement structured as

if A then B,

with A being a constraint on the data points, the model or its prediction, i.e. on u, and B expressing a behaviour

of the model in terms of an explanation, i.e. a condition on e(u).

Example 2.2 (Housing prices). Suppose we are studying a model that predicts housing prices.2 We might

suppose that the number of rooms or the total area of the dwelling correlate positively with the price, but we

might have fewer clues about how exactly and how deeply the pupil-teacher ratio or the nitric oxides concentration

influence the price, or if they are relevant at all for the model’s predictions. Furthermore, we might assume that

the first two features will have a stronger influence on the price, and should thus have a more profound influence

on the prediction. To evaluate this supposition, we could formulate the hypothesis: θ1 =‘for the prediction the

number of rooms is very important’, and also θ2 =‘the influence of the number of rooms on the prediction is

greater than that of the pupil-teacher ratio and that of nitric oxides together’.

Formalizing the two hypotheses, as per Definition 2.1, can be done as follows: firstly, we should identify a specific

set of data points, and then quantify some difference in the explanation that relates to that behaviour: for both

θ1 and θ2 the behaviour we want to ascertain is the model’s attribution of importance to features. As such, the

behaviour is not influenced under any specific condition, so for both hypotheses, the antecedent A will be an

empty requirement (i.e. the always true condition, ⊤). Assuming that for each feature the explanation method

always gives us a positive contribution value in [0, 1], which reflects how much influence the feature had in the

prediction, relatively to the importance of the other features,3 the behaviour we want to quantify will be that

the contribution of the first feature is bigger than the sum of the contributions of the other two for θ2, and that

the first feature has high contribution when compared to the others for θ1.

Formally then:

θ1 = ⊤ ⇒ ei,1 ≥ z

θ1 = ⊤ ⇒ ei,1 ≥ ei,3 + ei,4

with xi,1 being the number of rooms, xi,3 and xi,4 the pupil-teacher ratio and the nitric oxides of data point di,

and z being a threshold in [0, 1] for which different values can be tested.

Intuitively, A puts some constraint on the data points we want the hypothesis to apply to. If we want θ to

apply to the whole dataset, we don’t put any constraint: instead, when we want to check the behaviour of the

model only on specific inputs, we define a related constraint which A enforces. For instance, in the above example,

if we think that high levels of nitric oxides (associated with acid rains) should strongly decrease the predicted

price, we could check if whenever the levels are high, the model considers very important the corresponding

feature. The constraint on high levels of nitric oxides could be added by defining A as the condition xi,4 ≥ 3.4

Then we could check if in those cases the explanation of that feature, ei,4 is higher than the other features.

On the other hand, the consequent B has the role of quantifying the behaviour we want to test, and does so

using the statistics provided by the explanation.

In contrast to Zhou, Ribeiro, and Shah [59], where hypotheses are formulated on low-level features, our framework

allows for hypotheses on arbitrary sets of features, that is, high-level features. Thus, not only we can check which

are the low-level features that the model deems more significant, but we can also evaluate model’s behaviour on

agglomerates of low-level features, from shapes, colours and parts of an image (at different compositional levels,

2For example a simple linear regression model trained on the Boston Housing Dataset of [21].
3While SHAP values can be negative, we will consider their magnitude, as we are interested in the overall influence of each

feature on the prediction, be it positive or negative.
4According to a document by the New Jersey Department of Health, [22], the level at which it is possible to smell the gas is

between 3 and 10 parts per 10 million.
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i.e. from the single parts to the object as a whole), to entities’ names, locutions, sentences, and even entire

sections of a text.

Definition 2.3 (Hypothesis’ satisfaction). Given a tuple u = ⟨f,x, y⟩ with f the model and a data point

d = ⟨x, y⟩, and given a hypothesis θ, if u satisfies the constraint imposed by A and e(u) satisfies the condition

of B, we say that u satisfies (complies with) θ, and we write

u ⊨ θ.

We also use u ⊨A θ and e ⊨B θ with e = e(u) to indicate that the model and data point satisfy the constraint A

or the behaviour B of θ. Finally, with CA and CB we indicate respectively the set of u tuples that satisfies the

A- or the B-part of θ, and with Cθ the set of tuples that satisfies the hypothesis. Then, Cθ = CA ∩ CB .

We close this section by noting that the framework is based on the assumption that the explanations of

a model faithfully capture the model’s behaviour.5 We chose SHAP values for their widespread use, but in

principle any feature attribution method could be chosen instead.

2.1.2 The metrics

In order to evaluate how well a defined hypothesis matches the behaviour of the model, we use two metrics:

median distance (MD) and area under the curve (AUC).

Intuitively, the former is a measure of how similar or dissimilar the obtained explanations are: the more similar

they get, the more coherent the behaviour of the model is. The latter, on the other hand, is a way to assess how

well data points that satisfy the hypothesis can be distinguished from those which do not satisfy it; as such, it

can be used to check whether the model has learned to behave in a specific way on a specific group of data point.

Both metrics presuppose a notion of similarity of behaviours, which, in turn, hinges on a definition of

similarity between explanations, as we assume that the explanations obtained from the explanation method, e,

faithfully reflect the way in which the model makes predictions. This introduces an important relation between

the definition of that distance, the hypothesis, and the final assessment of semantic match.6 Once the hypothesis

is defined, one must choose a distance accordingly: if θ specifies a behaviour over the explanation of one feature

only, ej , any distance that depends on explanations of any other feature will scatter explanations with similar j

contributions, when they have very different values on the other features considered by the distance. Conversely,

explanations might get clustered together if the definition of distance does not include one of the features of the

hypothesis. Both cases are undesired, as the AUC obtained will be lower, or higher than the one obtained with a

correct definition of distance, in turn leading to wrong conclusions about the experiment.

Definition 2.4 (Distance). Given two explanations ei = e(ui) and ei′ = e(ui′), we define the distance between

them as a function d : E × E → R s.t. d(ei, ei′) = 0 iff ei = ei′ , and d satisfies positivity, symmetry and the

triangle inequality.

Usually d is normalized, thus restricting the codomain to [0, 1].

Median distance

Median distance is used to assess the coherence of the model’s behaviour, and relies on the definition of a distance

d between explanations.7 It also depends on the specification of two sets: the reference set, which we fix to be

the set of u tuples that satisfy the hypothesis, Cθ, and the sample set, the set of tuples selected to evaluate the

median distance from. For the latter, we pick the set of all u that satisfy that A-part of the hypothesis, CA.
5Indeed, this should be the main goal of any explanation method; yet, the discussion on the reliability and fidelity of explanation

is still open. We cited some pointers from that debate in the Related Work paragraph of Chapter 1.
6We will further discuss the interaction between the hypothesis’ definition and the results of the metrics in Appendix F.
7In the following, we use coherent and consistent as interchangeable terms, to indicate that a model behaves in a peculiar and

common matter on a given subset of data points.
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Then, MD will give an indication of how consistently the model behaves according to B across all the tuples

characterized by A. Ideally, the lower the median distance, the better, as this indicates that the behaviour of the

model across the tuples that satisfy A is consistent. In Section 4.2 and Appendix E we will additionally evaluate

MD using as sample set the set of all u tuples, U , and choosing as reference Cθ and then CA. The first will clarify

how often the model follows the hypothesis’ behaviour across all U . In this case, if that median distance is low,

the model behaves according to B regardless of the satisfaction of constraint A, while high MD signals that the

model has very different behaviours across the dataset. The second evaluation will provide a measure of how

separable CA is from the set of tuples that do not satisfy A.

Definition 2.5 (Median distance). Given a hypothesis θ, a fixed explanation er, called reference point, and a

set of u tuples S, called the sample set, the median distance of S from er is defined as

MD(θ, er) = median{d
(
e(u), er

)
|u ∈ S},

with d the distance between explanations and u = ⟨f,x, y⟩ tuples as previously defined. The reference explanation,

er = e(ur), is s.t. ur ⊨ θ.

Since this metric depends on the choice of reference point, we are going to evaluate it on all the possible choices

of reference points, and name that group reference set, R. As anticipated, in the next chapter we present results

for S = CA and R = Cθ.
We use MD to check for specific patterns in explanations: for example, if the hypothesis’ behaviour B is

parameterized, we could check how median distance evolves with changes in the parameters of B. This analysis

will be conducted for our experiment in Chapter 3, while in Chapter 4 we will discuss in more detail how to

interpret similar results.

As a coherence measure, MD is useful, but it does not give a complete picture: ideally we would like to test also

how discriminative the hypothesis is, i.e. how distinguishable are, in explanation space, the tuples that satisfy θ

from those which do not.

Area under the curve

Contrary to MD, the goal of AUC is to measure how distinct is the behaviour of the model when presented with

a data point which satisfies θ, compared to data points which do not satisfy θ.

This metric, together with the receiver operating characteristic curve (ROC), is usually chosen to evaluate the

performance of a classifier. In our setting, this is relevant as the question on whether a tuple satisfies θ or not

can be viewed as a binary classification problem, with positive labels for all u s.t. u ⊨ θ, and negative labels

otherwise. Then, given a ui, the distance of its explanation from the explanation of a θ-compliant tuples is

interpreted as a score: the lower, the more probable it is that ui ⊨ θ. We use AUC rather than ROC because,

unlike the second, AUC is cumulative and does not depend on the choice of classification threshold.

Notice that, as we are using distances instead of probabilities, increasing the classification threshold has the

effect of increasing the true and false positives, while, normally, it decreases them. Thus, low classification

thresholds will have low true positive rate and low false positive rates, while high thresholds will have high true

positive rates and high false positive rate.

Definition 2.6 (AUC). The area under the curve metric is defined as the area under the ROC curve.

Alternatively, for our case, given a set S, it can be defined as the probability that the distance between the

explanation of a tuple in S that satisfies θ and the reference explanation is smaller than the distance between

the explanation of a tuple in S that does not satisfy θ and the reference explanation, i.e. d(er, ei) < d(er, ei′),

with ei the explanation of the tuple which satisfies θ, ei = e(ui) and ui ⊨ θ, and ei′ the explanation of the tuple

which does not, ei′ = e(ui′) and ui′ ̸⊨ θ. Thus,

AUC = P
(
d(er, ei) < d(er, ei′)

∣∣∣ui ∈ Cθ,ui′ ∈ S \ Cθ
)
.
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As usual, the more the ROC curve is distant from the diagonal, the better the model, and the bigger the area

under it. For us, high AUC indicates that the distance between explanations is a good indicator of whether a

tuple satisfies θ.8 As for the median distance, we are firstly going to evaluate AUC for the tuples in CA, using as

reference the explanations of u ∈ Cθ. This will highlight if the model is following a specific behaviour on some

A-compliant tuples, or if it is not.

In Section 4.2 we will also evaluate AUC on all U ; this will tell us if the explanations of the tuples that comply

with the hypothesis are well distinguished from those that do not. A high AUC will then mean that the hypothesis

characterizes a precise behaviour that the model follows when predicting all the θ-satisfying data points.

2.1.3 Step-by-step application procedure

Here we provide a step-by-step application procedure, showing how to apply semantic match, and outlining the

key passages of the experiment in the next section.

Setup Firstly, one must have a (black-box) model f which is already trained on some dataset D for solving a

task.

Then, among feature-attribution methods, one explanation method e needs to be chosen, based on the model

architecture and the task for which the model was trained.

Once model and explanation method are fixed, the setup is complete. The explanations for each data point in

the dataset are computed, and it is possible to start developing hypotheses and evaluating them against the

explanations.

Hypotheses and distances The next step is to define some hypotheses, and an associated distance to check

them against the obtained explanations. As we exemplify in the next section, both the hypothesis and the

distance can be specified not only on the raw explanations obtained from e, but also on arbitrary functions of

them, which enables us to define hypothesis on higher-level features. Indeed, in our experiment we will process

the SHAP values of each token of the context to obtain a number proportional to the amount of contribution

that a whole sentence has for the model’s prediction.

Evaluation Then the set of u tuples satisfying the hypothesis must be individuated, to evaluate the match

between the hypothesis and the explanations obtained from the model. As seen, the idea for median distance is

to check how close to the explanation of a reference point in Cθ are the explanations of tuples in CA. For AUC
the intuition is to get a measure of how distinct the explanations of the data points that comply with θ are from

those which do comply with the A-part, but do not satisfy B. Since the choice of reference can influence the

results, we evaluate both metrics on each data point that satisfies the hypothesis. The result we obtain are thus

box plots, which showcase how the score of each metric changes with the choice of reference point. The same

process is iterated over all hypothesis and distances defined in the previous step.

Results Finally, comes the interpretation of the metrics and the assessment of the match between the hypothesis

and the model’s behaviour, as represented by the explanations.

The interpretation of MD and AUC scores can be quite different based on the way the hypothesis, the distance

and the explanations are defined, and we address the interpretation of the metrics in Section 4.1.

2.2 Experimental setup

In this section we will provide an introduction to the experiment of the thesis, as well as some technical details

on its setup and implementation.

8AUC has been criticized for multiple reasons, for an overview of some of its problems see [30] and for a discussion on the
problems of AUC implementation and the relation between ROC and AUC see [38].
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The main objective of the experiment is to verify if it is possible to apply the semantic match framework to

successfully distinguish between a model that might be suffering from a specific bias, fb, and a model which

should not, fu. After a first, general hypothesis, we formulate θ2, to describe the bias we expect, and evaluate

how well it aligns with the behaviours of fb and fu. We hope to see a good semantic match for fb, while fu would

not match that hypothesis. We will also formulate θ4, describing how we think a good model should behave and

see if any of the models matches the idealized behaviour.

In order to do this, we are going to choose a dataset, and we are going to fine-tune two models on two different

subsets of the original dataset, one without any apparent bias, the other with a bias. Then, we are going to

formulate our hypotheses, evaluate how well each matches the behaviours of the models, and, finally, see if we

can actually distinguish between the two models based on how well they match different hypotheses.

We opted for dataset with known and documented biases, hence, we operate in an ‘idealized’ environment

where the biased and unbiased behaviours are manufactured and known a priori. This is due, in part, to the fact

that the framework we employ is still in development, in part because the experiment is one of the firsts of this

kind, and thus we preferred a controlled scenario where we already have clear expectations.

While previous experiments in Cinà et al. [11], tested semantic match on a tabular dataset and on different

image datasets, here we focus on the text modality.

We rely on the results for the SQuAD dataset from Ko et al. [27], where the authors describe how it is possible to

fine-tune different multipurpose NLP models to exhibit a bias. While in that article the main question is if it is

possible to compensate those biases, and which techniques can achieve said goal, here we will use a biased model

to see if it is possible to find hypotheses that describe and match its biased behaviour. This is as important as

tools for debiasing: indeed, one needs firstly to individuate and know that there is a bias, to then act against it.

In the following sections we specify the task, detailing how the datasets were generated and how the training

was conducted. We also describe how we processed SHAP values, and briefly comment on the implementation

and complexity of explanation’s distance, d.

2.2.1 Original dataset and Task

The SQuAD dataset, presented in [40], is centred around the question answering task (which is one of the main

tasks of NLP). In particular, the task of SQuAD is extractive, as the challenge of the dataset is to answer a

given question by correctly indicating the position of the answer in the context paragraph. The dataset is split

in a training and a validation set, with around 88k and 10k entries respectively.

Each data point is constituted by an id, a title, a context, a question and the answers. The id and title

fields are used to identify the data point and the general topic of the question. The context field contains the

reference text, where the answer is located, while the question stores the open question that the model should

answer. The label of each data point, contained in the answers field, is a dictionary consisting of a text key,

with the text of the answer, and of a answer start key, which is the index of the first character of the answer as

it appears in the context. Extracts in the context field are passages of Wikipedia articles, while questions and

labels were generated by humans reading them. The same context was reused to generate multiple questions.

Data points in the validation set have multiple correct answers, the entries at each of the dictionary’s keys being

substituted by lists.

Example 2.7. We display here a data point from the validation set of SQuAD.

id: 56be4db0acb8001400a502f0

title: Super Bowl 50

context: Super Bowl 50 was an American football game to determine the champion of the National Football League

(NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated

the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super
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Bowl title. The game was played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at

Santa Clara, California. As this was the 50th Super Bowl, the league emphasized the “golden anniversary”

with various gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super

Bowl game with Roman numerals (under which the game would have been known as “Super Bowl L”), so

that the logo could prominently feature the Arabic numerals 50.

question: What colour was used to emphasize the 50th anniversary of the Super Bowl?

answers: {text: [‘gold’, ‘gold’, ‘gold’], answer start: [488, 488, 521]}

The input of the model x is composed of the question and the context, which are passed through a tokenizer

separated by the [SEP] token. The model bases its prediction on the list of tokens thus obtained.

The standard metrics of the dataset are f1 score and exact match. The latter is the percentage of predictions that

is exactly equal to the (or one of the) provided answer(s). The former “measures the average overlap between

the prediction and ground truth answer”,9 both taken as bags of tokens (i.e. treated as sets of tokens). When

multiple answers are present, the maximum is taken, and then the average is computed across the dataset.

Since our objective is to train a biased and an unbiased model, instead of using the whole training set we

generated two subsets to fine-tune our models on.

Dataset generation

Ko et al. [27] already provide a division of the original SQuAD training dataset into five groups based on answer’s

position: the first four sets have data points containing respectively only answers in the first, in the second, in

the third or in the fourth sentence, while the fifth set has data points which have answers in the fifth sentence or

later. These subsets were generated automatically by splitting the context into sentences with spaCy Sentencizer,

[23].10 The biggest set is the one with data points having answers in the first sentence of the context, containing

approximately one third of the original SQuAD training set (precisely 28,263 data points).11 Therefore, we use

the first group for training the biased model, and will refer to it as Db.

In order to train a comparable unbiased model, we opted to generate a new dataset, of size similar to Db, but

without its bias. Hence, we randomly sampled one data point from each of the five groups repeatedly, obtaining

a dataset, Du, with a total of 28,260 data points, with an equal number of data points with answer in each

sentence. We decided not to use the original SQuAD training set as, employing a dataset three times bigger as

Db, might have given an unfair advantage to the resulting model.

2.2.2 Training

We fine-tune two BERT base uncased models on Db and Du respectively, in order to imitate the results from

[27], and we fix the parameters of both models as follows: the maximum input length is 384 tokens and the

stride is 128. The question and context joined by the [SEP] token are passed as a single string through the

tokenizer of the model before the prediction begins. Then, the output of the tokenizer is split in the tokenized

question and the tokenized context, which are fed to the model and result in an input with n features (each

token is a feature). Since the question is the first part of the input, we allow truncation only in the second part

(the context), as arbitrarily truncating the question might confuse the model, in turn leading to an incorrect

prediction due to an incomplete question. Thus, if the context is too long, it is split into multiple inputs, each

consisting of the full question and a part of the context.

The training is repeated for two epochs and the best model saved. On each epoch, the whole training dataset is

9See [40], p. 7.
10For further details, see [27], Section 2.1.
11The same bias is reflected in the validation set, which is also composed for one third of data points with answers in the first

sentence.
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consumed in batches of size 16, and we employ Adam optimizer with a learning rate of 0.00003.

We will refer to the model trained on Db as biased model, fb, and to the model trained on Du as unbiased model,

fu.

Once the training is finished, we evaluate both models on the biased training dataset Db and on the original

SQuAD validation set, Dv, consisting of 10,570 data points. The results are plotted in Figure 2.1. As expected

from our setup, the biased model exhibits signs of a bias: on the training set, Db, the performance of fb is high,

with exact match at 82.1 and f1 score of 91.5, while the performance of fu is slightly lower, loosing 3 points in

both metrics. The high performance of fb is expected, as Db was the dataset on which the model was trained. On

the other hand, the good performance of fu suggests that it has learned to correctly focus on the first sentence if

the answer is there.

The right plot shows that the biased model performs very poorly on the SQuAD validation set, Dv. Exact
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Figure 2.1: Evaluation results of the two models. On the right plot, exact match and f1 score on Db, in blue and
orange respectively, for the biased model on the left and for the unbiased model on the right. On the left plot,
exact match and f1 score on Dv, on the left for fb and on the right for fu.

match is now 32.6, while f1 score is just 38.8. On contrary, the performance of fu is comparable to the left plot,

with exact match of 78.4 and f1 score of 86.5 (only one point less than on Db), which again is a good sign for

the unbiased model, since, due to its high performance, we are prone to think that it has correctly learned to

focus on the answer’ sentence for its prediction. Oppositely, the poor performance of the biased model on the

validation set, in conjunction with its good performance on the biased dataset, leads us to conclude that the

model has not learned to generalize, and might always rely mostly on the first sentence for its predictions.

At this stage, the above conclusions are pure conjectures, and constitute a first intuition on how the two models

are behaving. In the next chapter we will formalize these ideas in proper hypotheses and test them with the

semantic match metrics.

2.2.3 SHAP values and sentence contribution

For the hypotheses of our experiment, rather than using the raw SHAP values, we will rely on sentence

contribution, which we derive from SHAP values.

This is motivated, on one side, by the fact that the SHAP values library calculates the SHAP values not only for

the actual prediction the model made, but also for all other possible predictions it could have made. This is out

of the scope of our experiment, as at the current stage we are only trying to assess and evaluate the model’s

behaviour based on the prediction it produces.

On the other side, and more importantly, we are interested in hypotheses that talk about the relevance of each

sentence of the context for the predictions of the two models, while SHAP values refer to each of the question’s

and context’s tokens for every possible prediction.
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In this section we detail how contribution is extrapolated from SHAP values. Intuitively, a high-level feature

such as sentence contribution is worked out from explanations of single low-level feature by a mapping, which

retrieves all the low-level features composing the high-level one, and some function which takes the mapped

features as input and outputs a statistic based on those.

We calculate the SHAP values following the standard procedure reported in the documentation [34]. Accord-

ingly, we pass each data point of Dv to the shap.Explainer that we initialize by inputting the tokenizer of the

model and a function that specifies if to generate the starting or ending SHAP values. This difference is due to

the fact that extractive question answering tasks require the model to evaluate both the starting and ending

position of the answer, thus we obtain SHAP values for each of the two independent output distributions of the

BERT model.

For each model we calculate both the starting and ending SHAP values. Since the number of tokens in each

context is high, the evaluation of the SHAP values of a single data point is relatively slow; therefore, to save

time and speed up the process, rather than generating the starting and ending SHAP values of both models for

all the data points in Dv directly, we form batches of 500 data points and run the calculation of starting and

ending SHAP values of each model on each batch in parallel.

We find a bug in the SHAP library, which throws a length mismatch error for some of the data points that

contain a proper name in the question. Further investigation leads us to believe that it is caused by the masking

function used to calculate SHAP values. As the causes of the problem are unclear, and the number of data

points affected is minor, we decided to eliminate those points from the dataset. The full list of data points ids

can be found in Appendix B. In the following, we will use Dv to refer to the set of data points from the SQuAD

validation for which we obtained SHAP values correctly.

Once the SHAP values of all data points are generated, for each model, we obtain two dictionaries, one for the

distribution of the starting index, one for the ending index. Both dictionaries contain id, values, base values

and data keys. The first provides the id of the data point as present in the SQuAD dataset, while the last is a

list of n+ 1 words corresponding to the tokens of the question and the context, separated by a [SEP] token, and

translated according to the model’s tokenizer.

base values, contains a NumPy array with n+1 entries, one for each token plus the separator between question

and context. Each entry contains the SHAP value that would be assigned to each token in the input, assuming

the model did not know any token of x, see [35] and [34]. Intuitively, these values are a baseline to explain model

predictions: the tokens which have greater base values (both highly positive or negative), will be those that

the model attends the most on average and a priori. In other words, base values is a prior on model outputs,

taken as single tokens before assimilating the information in the question and context.12

values is a (n+ 1)× (n+ 1) NumPy array, containing the list of SHAP values for each token in the input. The

jth list contains at the j′th entry the contribution that the j′th token of the input has on the output if the

model were to output the jth token as the starting (ending) token.

Summing all the entries of the jth list in values, (that is
∑n

j′=0 valuesj,j′) one obtains the total SHAP values

of the context, assuming the jth token as the starting (ending) token of the model’s prediction.

As anticipated, in our calculation of the contribution we are only going to consider the SHAP values of the

tokens that are part of the prediction. To better illustrate the procedure, we consider the data point of Example

2.7, where both fb and fu give a single token answer. The prediction of the former is incorrect, while the latter is

correct. We plot in Figure 2.2 the unprocessed SHAP values, as obtained from the library.

We can already see that the highest SHAP values for fb come from tokens in the question and first sentence,

12We could also have studied if the two models consistently have high base values on specific tokens: in our case, it is possible
that the tokens which most often appear in the first sentence will have higher base values for the biased model, compared to the
unbiased one.
We decided not to inquiry in this direction as we suppose that this effect should be minimal, if the SQuAD dataset has no bias in
terms of specific words always appearing in the first positions of the context. Such assumption is corroborated by the fact that
contexts are typically long and usually contain multiple times, and in different positions, words important for the answer, or also
contained in the question.
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Figure 2.2: Visualization of starting (top row) and ending (bottom row) SHAP values for a single token prediction
of the biased (left column) and unbiased (right column) models. The biased model predicts ‘50’ while the
unbiased model correctly predicts ‘gold’. On the x-axes SHAP values are displayed in red if they are positive
and in blue otherwise. On the y-axis the tokens (as translated by each model’s tokenizer) are displayed in light
gray, the black label indicates whether the token belongs to the question (q) or the ith sentence (si). The base
value, E[f(X)] and final value, f(x) are also displayed on the x-axis.

while for fu the tokens are in the question and in the fourth sentence. We assume that for both models the

question is going to be important for the prediction, and therefore we do not include it in the calculation of

the contribution.13 Furthermore, we assume that a positive as well as a negative SHAP value indicates that

the model is attributing importance to that token, and, consequently, we consider the absolute value in our

calculations.

Intuitively, sentence contribution is the sum of the absolute SHAP values of all the tokens in that sentence

with respect to the answer. We thus need a mapping from tokens to sentences, which we obtain by splitting the

context with spaCy Sentencizer, then joining the question and the obtained list of sentences with a [SEP], and

finally tokenizing the obtained string, with the model’s tokenizer. Then, with the tokenized string we generate

the mapping, which is a list of integers, with 0 for tokens in the question, l for tokens in the lth sentence and -1

for [SEP]. After, we remove all the added [SEP] except the one between question and context and the one after

the last token.14 Notice that a naive approach that checks, with a recursion on the sentences, if any of the words

in the context occurs, and labels it accordingly would not work for two reasons: firstly, the same word might

appear in different sentences, secondly, as not all words are present in the tokenizer dictionary, the number of

tokens will not match the length of the mapping so produced. To define sentence contribution formally, we

introduce a mapping function m(l) s.t. N → {0, 1} that, for each token in the input x outputs 1 if that token is

in the lth sentence and 0 otherwise.15

13We tested the first hypothesis by also including the question’s tokens in the calculation of the contribution and found similar
results, which we report in Appendix D.

14The separator between question and context and the one at the end are considered by default by the SHAP library, which
removes automatically the latter.

15We very generally took N as our domain, however NLP models have usually a finite vocabulary to translate words into tokens,
using only positive integers for the latter. For instance, BERT’s dictionary has 30,522 entries.
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Definition 2.8 (sentence contribution). Given a mapping from tokens to sentences m(l), the lth sentence

contribution to the single token prediction of model f for data point d with explanation e = e(u), and u = ⟨f,x, y⟩
is defined as:

cl(e) =
(∑

k m(l)|estartk |∑
k |estartk |

+

∑
k m(l)|eendk |∑

k |eendk |

)/
2

if the prediction only has one token, with k ranging over {1, . . . ,K}, K being the total number of tokens in the

tokenized context, and with estart and eend the lists of SHAP values with respect to the answer’s token.16 The

formula is an average of two terms, representing respectively the starting and ending normalized contribution

of the lth sentence. In both terms the norm is at the denominator, and is expressed as a sum of the absolute

(starting or ending) SHAP values of all tokens in the context. The numerators are also sums ranging over all the

tokens, but each |ek| term is multiplied by m(l) which is 1 if the token k is in the lth sentence, and 0 otherwise,

representing the total contribution of the lth sentence.

If the prediction has multiple tokens:

cl(e) = avg
a∈A

{(∑
k m(l)|estarta,k |∑

k |estarta,k |
+

∑
k m(l)|eenda,k |∑

k |eenda,k |

)/
2

}

with avg the average function across A, which is the list of all tokens of the prediction, and with estarta and eenda

the lists of SHAP values with respect to the ath answer’s token.17

The lth sentence contribution is by definition in [0, 1]. To see this, notice that the two summands are

normalized each by its own divisor, and are then averaged. The edge cases cl(e) = 0 and cl(e) = 1 are reached,

respectively, when the model ignores the whole lth sentence for its prediction, and when the model only relies on

the lth sentence for its prediction, while ignoring the rest of the context.

The two summands correspond to the percentage of contribution that the lth sentence has with respect to the

starting and ending positions of the prediction, while cl(e) is the average of the two, thus giving a quantitative

estimation of how important that sentence is for the model’s prediction.18 We close this section off by adding a

plot similar to Figure 2.2, this time containing the contribution for each sentence of the context for that same

data point.

2.2.4 Distance definition and implementation

We choose as distance for our hypotheses the absolute difference of sentence contribution between two points.

Definition 2.9 (Distance). Given a sentence position l and two explanations ei and ei′ , the distance between

the explanations (thought of as contribution values) is

d(ei, ei′) = |cl(ei)− cl(ei′)|.

It is straightforward to check that this distance satisfies all the properties in Definition 2.4.

The above is motivated by the fact that we want to test the behaviour of the two models on sentences, which

are high-level features. Since the number of tokens in different inputs can change, defining a distance that uses

as inputs the raw SHAP values becomes not only troublesome, but also incorrect, as the differences between

SHAP values vectors might introduce confounding factors, and score as more distant two explanations for which

a model is placing similar contribution on the same sentence.

16We exclude the tokens of the question as both model consider it important, see Appendix D.
17Here, A is an ordered list rather than a set, as the same token might appear multiple times in the answer. Generally, the SHAP

values of two different occurrences of the same token are different.
18In the codebase we include also another way to evaluate sentence contribution, namely, by finding the maximum of the two

summands in the first equation. If the answer has multiple tokens, we then take the average, similar to the second equation of
Definition 2.8.
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Figure 2.3: Contribution of each sentence towards the prediction, the biased model is on the right, while the
unbiased on the left. Sentences are on the y-axis, while on the x-axis we plot the contribution of each sentence
to the final prediction.
For the biased model the first sentence has half of the total contribution, while the same sentence for the
unbiased model contributes less than 10%, and the fourth sentence, in which the answer is located has around
80% contribution.
The distance between the explanations of the biased (eb) and unbiased (eu) model, which we formalize in
Definition 2.9, is for the first sentence d(c1(eb), c1(eu)) = |0.5− 0.06| = 0.44.

As noted in Section 2.1.3, we need to evaluate d by averaging over all possible reference points, that is, across

all the data points which satisfy the hypothesis.

This means that computing all the distances needed for the evaluation of semantic match of any hypothesis, once

each sentence contribution is calculated, is at least in O(|S| · |R|) and, at worse, O(|D|2), with |S| the number

of points in the sample set, |R| the number of points in the reference set and |D| the number of points in the

dataset. When large datasets are used, or computational resources are scarce, one could avoid this problem by

randomly sampling a subset of R and only averaging across it.

However, when using SHAP values with BERT model, this is less concerning, as the main computational

bottleneck is the evaluation of the explanations themselves: although Lundberg et al. [36] show that there is an

algorithm to efficiently compute exact SHAP values for models based on decision trees, in general, the exact

computation of SHAP values is #P-complete, [9]. The algorithm implemented in the SHAP library avoids this

simply by sampling only some subsets of features and skipping others, thus producing an approximation of the

true value. Even so, due to the high number of features in NLP tasks, we estimated that calculating starting

and ending SHAP values for both models on all data points of Dv would have taken several days in practice, if

not ran in parallel; on the other hand, the computational overhead of evaluating the distances over all reference

points amounts to just over an hour.
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Chapter 3

Results

In this chapter we are going to illustrate and interpret the results of the experiment. In the first section we

report the hypotheses we formulated and explain how to formalize them according to Definition 2.1, while in the

second section we report median distance and AUC scores of each hypothesis and interpret the results.

Finally, we are going to introduce three further metrics, taken from Zhou, Ribeiro, and Shah [59], commenting

on their evaluations and the additional information they provide.

3.1 Hypotheses definition

We set up the two datasets, Db and Du, and fine-tuned the models fb and fu so that the first should exhibit a

bias on the first sentence, while the second should not. After the training phase, we obtained a first confirmation

of our expectations by evaluating the two models on the validation set of SQuAD, Dv, see Figure 2.1. The

generation of SHAP values for the predictions of both models on Dv and the inspection of those values for a

specific data point, where fb is wrong while fu is correct, in Figure 2.2, provided further evidence of the suspected

bias. However, this evidence is insufficient in two ways: firstly, it is based on the SHAP values of the tokens,

which are low-level features, while the bias we are investigating concerns sentences, which are high-level features.

This is problematic as it is possible that the observed bias concerns the specific tokens rather than their position

in the context or their belonging to one sentence or another.

Secondly, and more importantly, our examination was restricted only to one data point, and indeed a very specific

one, as it was chosen purposefully so that the predictions of both model were a single token, the unbiased model

was correct and the biased model was incorrect. Thus, this analysis, though encouraging, is still incomplete.

The semantic match framework provides a fix to both limitations, allowing the description of behaviours

concerning high-level features, and the possibility to test how common such behaviours are for a model. The

goal of this section is to formulate different hypotheses that will help us distinguish fb from fu: with the first two

hypotheses we will try to capture the behaviour of the biased model, while to test our idea that a model should

consider the answer’ sentence important we define two additional hypotheses. Therefore, we expect fb to match

the first two, and fu to only match the last two.

As noted, we expect fb to often rely a lot on the first sentence for its prediction, while we suppose fu not to

do that. In general, we presume that an ideal model would rely more on the sentence where the correct answer

is located and less on other sentences, rather than the opposite.

To make things clearer, we start with the following very general hypothesis:

θ1 = ‘The contribution of the first sentence is ≥ z% of the total contribution.’

For a threshold z that could be tested at different values, and with total contribution intended as the sum of

the contribution of each sentence of the context. We believe that this hypothesis will be matched by both
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models for low z, while the higher z becomes, the less we expect fu to match it. However, θ1 might introduce a

confounding factor: data points which actually have the answer in the first sentence of the context will have

high contributions on the first sentence for both models, and, indeed, we would hope that a model has high

contribution there in similar cases.

Therefore, we formulate two additional hypotheses:

θ2 =‘If the answer is not in the first sentence, and the model is incorrect, then

the contribution of the first sentence is ≥ z% of the total contribution.’

θ3 =‘If the answer is in the first sentence, and the model is correct, then

the contribution of the first sentence is ≥ z% of the total contribution.’

If the biased model matches θ2 for high z, then we could explain fb scarce performance on Dv with the fact that,

when wrong, this model focuses a lot on the first sentence, instead of basing its prediction on the sentence where

the correct answer is located.1

The unbiased model might also be wrong for the same fundamental reason, attributing too much importance to

the wrong sentence, but we expect that it mistakes the first sentence for the answer’s sentence less frequently.

On the other hand, θ3 should be matched by both models for high z on all tuples as the A-part requires that

the model is correct and the answer is in the first sentence. While helping us to understand if those tuples were

confounding the results of θ1, this hypothesis also provides further evidence to our initial assumption, namely,

that an ideal model, when correct, should focus on the sentence of the answer.

Finally, to formalize our belief that reliable models should consider the answer’s sentence very important for

their prediction, we introduce our last hypothesis:

θ4 =‘If the model is correct, the contribution of answer’ sentence is ≥ z%

of the total contribution.’

For this hypothesis, we will redefine the distance as the absolute difference between the contribution of the

answer’ sentence of the u tuple considered, and the reference point’s contribution of the answer’ sentence.

To formalize the above hypotheses, we need to distinguish between the constraints on the data point, model

and prediction (i.e. those on u), from the description of the behaviour based on the explanations (i.e. the

conditions on e). The first will be formalized in the antecedent of the hypothesis, A, while the second will

form the consequent B. We list in the next definition all the hypotheses discussed above, together with their

formalization.

Definition 3.1 (Experiment’s hypotheses). Let f be either the biased or the unbiased model, and d = ⟨x, y⟩ a
data point from Dv, with p = f(x) the prediction of the model, y the correct answer,2 and u = ⟨ f,x, y⟩ ∈ U ;
let e = e(u) be the SHAP values obtained for p of f on d, and cl(e) the contribution of the lth sentence to the

model’s prediction, as per Definition 2.8. We will use y ∈ sl to denote the fact that the answer y is located in

the lth sentence of the context, and p = y to say that the model’s prediction is correct. We list the hypotheses

introduced above here, both in natural language and logically formalized.

θ1 := ‘The contribution of the first sentence is ≥ z% of the total contribution.’

θ1 := ⊤ ⇒ c1(e) ≥ z

1This might also indicate that often the model predicts that the answer is part of the first sentence.
2The SQuAD validation has multiple correct answers, but in our algorithm we always refer to the first of the list. Thus, y refers

here to the first answer, and not to the vector of accepted answers.
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θ2 :=‘If the answer is not in the first sentence, and the model is incorrect, then,

the contribution of first the sentence is ≥ z% of the total contribution.’

θ2 :=
(
y ̸∈ s1 ∧ p ̸= y

)
⇒ c1(e) ≥ z

θ3 :=‘If the answer is in the first sentence, and the model is correct, then

the contribution of first the sentence is ≥ z% of the total contribution.’

θ3 :=
(
y ∈ s1 ∧ p = y

)
⇒ c1(e) ≥ z

θ4 :=‘If the model is correct, the contribution of answer’ sentence is ≥ z%

of the total contribution.’

θ4 :=
(
p = y

)
⇒ cs∗(e) ≥ z

with s∗ the sentence where the answer is found.

In synthesis, we expect the biased model to match θ1, θ3 for those u tuples which have the answer in the first

sentence, θ2 for most of the other tuples and to not match θ4. On the other hand, we hope that the unbiased

model matches θ4 at high thresholds, and we expect also that θ3 will exhibit a good match. We think that fu

will not match θ2, and that θ1 might be matched for tuples which have the answer in the first sentence; if fu has

learned to generalize, we also expect high MD for θ1, reflecting the fact that sometimes the first sentence is very

important, sometimes it is barely considered.

3.2 Hypotheses’ results

In this section we analyse the box plots of MD and AUC for each of the hypotheses defined above.

3.2.1 Hypothesis 1

In Figure 3.1 we plot the median distance results of the two models for θ1. Overall, both exhibit an increasing

trend, which, is expected from a normal distribution of the first sentence contribution: the higher the threshold

for contribution, the more specific the behaviour interval, [z, 1], becomes; on one hand, this decreases the number

of explanations that comply with it, and, on the other, it increases the distance between those and the ones

which do not comply with θ1.

However, notice two facts: (a) the biased model has the lowest median for z = 50%; before that point the trend

is actually slightly decreasing, and, only after, it turns upwards; (b) the unbiased model exhibits large variance

except for the last two thresholds, which also have a very high distance.

The first fact suggests that the first sentence has always high contribution for the biased model. Indeed,

while there are few outliers, more than half of the distances calculated when z = 50% are between 0.1 and

0.2, which means that for most explanations c1(e) ∈ [0.3, 0.7], and often in [0.4, 0.6]. The highest extreme, at

z = 100%, further confirms this: the explanations with maximum contribution are, on average, just 0.4 away

from the others, implying that a lot of fb’s predictions receive around 60% of contribution from the first sentence.

Furthermore, on low thresholds (i.e. between 10% and 50%), the distance between two explanations is also very

low (frequently being between 0.1 and 0.2), suggesting that explanations of fb are clustered.

In addition, (b) suggests that the amount of contribution that the first sentence has for the unbiased model’s

prediction changes a lot, and ranges from low to high levels: at low thresholds, MD is low (though still higher

than that of fb), while at high thresholds (above 80%) MD is also high, meaning that most tuples have lower
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Figure 3.1: Median distance for θ1. Results for the biased model are displayed in red on the left, while those for
the unbiased one are on the right in blue.

contribution.

The unbiased model shows an upward trend, with the minimum MD reached at the lowest threshold. The

average distance between two explanations is here around one fourth of the total contribution. Furthermore, the

variance is very high, meaning that among the θ1-compliant points, some explanations have contribution close to

10% while others reach contributions near to 100%. The upper whiskers are due to the latter group, and stay at

the same level, as they satisfy B for all z. The lower whiskers show a linear upward trend, signalling that at

each progression of z, some data points that were previously satisfying θ1 are now not complying with it, thus

supporting the idea that fu is giving varying amount of importance to the first sentence. A similar trend is also

present in fb’s plot, albeit starting much later.

In the next plot, we present the results for the AUC of both models. We expect very high AUC across all
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Figure 3.2: Area under the ROC curve for θ1. Results for the biased model are displayed in red on the left, while
those for fu are on the right, in blue.

choices of threshold: as hypothesis compliance and distance only depend on the amount of contribution the first

sentence has, we expect the latter to be a good indicator of the former. Indeed, this is what we observe for both

models.

However, there are important differences between fb and fu: the variance of the unbiased model is very

high, in particular for the lower thresholds. This is explained by the previous plot: since fu attributes at times

a lot of contribution to the first sentence, and at times lower contribution, when an explanation with low

contribution is chosen as reference, there will be explanations which have even lower contribution that are very
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close to it, without satisfying θ1; at the same time, there will be explanations with very high contribution on the

first sentence, thus satisfying the hypothesis, that also have high distance from the reference. For that same

threshold, when the reference point has a very high explanation value, there will be data points with much lower

contribution from the first sentence at similar distances, some of which will comply with θ1, while some others

will not. This confounds the distance-based prediction, and lowers AUC.

On the contrary, fb reaches minimum AUC at z = 60%; this is explained by the fact that most explanations

carry approximately that amount of contribution (as concluded from MD), and therefore, an explanation with

contribution just above 60% and one with contribution just below 60% will have very low distance, lowering

AUC.

For both models and metrics, high z have low variance. This indicates that few tuples satisfy the hypothesis

at those thresholds, as box plots exhibits how the change in reference explanation influences MD and AUC.3

In conclusion, θ1 highlights a substantial difference between the two models: the contribution of the first

sentence is often high for fb, while, for fu, it is sometimes very high and sometimes very low. Ideally, we hope

that an optimal model would focus the most on the sentence where the answer is located, and therefore, the

results above provide evidence in favour of our expectations: the unbiased model resembles, in its behaviour on

the first sentence, the results we would hope from an optimal model, while fb seems to always rely a lot on the

first sentence for its prediction, showcasing a bias. Of course, θ1 alone does not prove that fu focuses on the first

sentence exactly when the answer is there, and we will ascertain this only with the third hypothesis. For now,

we focus on the bias and with the next hypothesis we are going to check if fb focuses on the first sentence even

when it does not contain the answer.

3.2.2 Hypothesis 2

Median distance for θ2 is shown in Figure 3.3. The plots are similar to those of the first hypothesis (Figure 3.1),

however, there is no data point that satisfies θ2 with thresholds above 80%. Thus, the bars for higher thresholds

in the previous hypothesis originated from u tuples that either contained the answer in the first sentence or

where the prediction was correct.4 With respect to the previous hypothesis, both models have lower medians

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

biased model

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n 

di
st

an
ce

s

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

unbiased model

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n 

di
st

an
ce

s

Figure 3.3: MD for θ2. As previously, results for the biased model are displayed in red on the left, while those
for the unbiased are on the right in blue.

and tighter quartiles, the latter indicating that Cθ is smaller.

These results suggest that the unbiased model could match θ2 at most at low thresholds (contrary to the

previous hypothesis, which had higher median and very high variance on those zs), implying that if the answer is

3We conjecture that those data points are the ones where the answer is in the first sentence, and where the model is correct.
Indeed, the second hypothesis will not showcase them, providing evidence to this intuition.

4While this does not imply that both disjuncts are true, we conjecture that it is indeed the case.
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not in the first sentence and if the model is incorrect, then the importance that fu attributes to the first sentence

is low. Thus, for the tuples that satisfy the hypothesis, the unbiased model is incorrect, but not because it is

focusing systematically and too much on the first sentence.

On the other hand, the biased model has median distances slightly lower compared to θ1, and shows the

same trend, confirming our worries: often, if the answer is not in the first sentence and if the model is incorrect,

fb focuses a lot on the first sentence, thus showcasing a biased behaviour. The rise in MD for higher thresholds

(60% onwards) is very low compared to the increase of MD for the unbiased model, further corroborating our

conclusions.

The results for AUC of the second hypothesis are shown in Figure 3.4. Both plots have similar scores then

those of the first hypothesis.
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Figure 3.4: AUC for θ2. As previously, results for the biased model are displayed in red on the left, while those
for the unbiased are on the right in blue.

The unbiased model has median AUC always above 0.7, though with high variance for the lower thresholds.

This can be explained by the fact that median distance is always pretty low for low zs, which in turn means that

a hypothesis compliant data point might be very close to one which does not satisfy θ2, while also being further

from one that is compliant, thus lowering AUC.

For all thresholds above 30%, fu has almost perfect AUC, showing that, among the tuples that satisfy the A-part

of θ2, that is, tuples where the answer is not in the first sentence and the prediction is incorrect, contribution on

the first sentence is a good predictor of θ2-compliance. Then, the θ2-compliant tuples stand out from those that

only satisfy the A-part of the hypothesis, thus signalling that fu only rarely focuses a lot on the first sentence.5

On contrary, the biased model has high variance for z = 40% and z = 50%, with high AUC for very low

and very high thresholds (similarly to Figure 3.2). If for θ1 this showed that the first sentence contribution to

fb’s prediction was often around half of the total contribution, the same result for θ2 highlights that the biased

model follows that behaviour even on tuples where it should focus on some other part of the context.

In conclusion, θ2 is matched by the biased model, optimally for z ∈ {60%, 70%, 80%}, as, for those thresholds

we have both high AUC and reasonably low median distance. Conversely, the unbiased model does not match

θ2, as whenever the AUC is high, we also obtain high median distance, while at thresholds with low median

distance the AUC score is also low.

The results confirm that the biased model is indeed following a biased behaviour, focusing too much and too

often on the first sentence, and, in turn, making incorrect predictions.

5This will be confirmed from the perspective of other metrics in Section 3.3.2.
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3.2.3 Hypothesis 3

The objective of the third hypothesis is to verify that a model attributes high contribution to the first sentence

when the answer is located there and the prediction is correct. Semantic match with θ3 (or lack thereof) will

provide evidence for (or against) our idea that whenever the model is predicting correctly, it should focus

primarily on the sentence that contains the answer.

Figure 3.5 illustrates the median distance for θ3. The biased model exhibits the same trend of the previous
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Figure 3.5: Median distance for θ3

two hypotheses, albeit, now, the increase in median distance starts only later, at z = 80%. The unbiased model

also exhibits this behaviour, in contrast with the previous plots. This means that both models, when correct,

attribute a lot of importance to the first sentence if the answer is there.

While we expected this from the biased model (due to the results for θ1), the fact that also fb shows the same

trend confirms our intuitions: when correct, a model should receive very high contribution from the sentence of

the answer.

AUC, shown in Figure 3.6, is for both models similar, and resembles the plot of θ1 for fb (Figure 3.2). Starting

at maximum, the score reaches its minimum at z = 70% for both models, after which it recovers, again hitting

1.0 for z ∈ {90%, 100%}. The dip in AUC indicates that for both models the first sentence often has between
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Figure 3.6: AUC for θ3.

60% and 80% of contribution for the prediction, when the answer is in that sentence and the model is correct.

Even if the AUC dips, for all zs and for both models it always remains above 0.8. Since median distance is

also low, we can conclude that θ3 matches the behaviour of both models at high thresholds.
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3.2.4 Hypothesis 4

Our final hypothesis is a generalization of θ3: it checks whether the model focuses on the answer’ sentence when

its prediction is correct. As previously discussed, we expect this strategy to be the behaviour a good model

should exhibit, and assessing semantic match with θ4 is a way to test this assumption empirically for our two

models.

For θ4 we redefined distance as the absolute difference between the contribution of the answer’ sentence (rather

than between the first sentence contribution).
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Figure 3.7: Median distance (first row) and AUC (second row) for θ4.

The median distance and AUC plots, in Figure 3.7, are almost indistinguishable from the ones for θ3 (Figure

3.6).

For the biased model, such result might at first look counterintuitive. However, the result is probably caused

by θ4 requiring the model prediction to be correct: in fb’s case this almost always happens when the answer is in

the first sentence. On those tuples the contribution of the first sentence is also very high (as we saw with θ3),

making distances and AUC higher.6

The fact that the unbiased model also shows the resemblance is more relevant: as fu is often correct when

the answer is in other sentences,7 low MD and high AUC provide confirmation to our intuitions about the way

in which a good model should focus.

Both models have an almost flat median distance trend, slowly decreasing until the minimum, at z = 60%; in

turn, indicating that, when models are correct, the contribution of the answer’s sentence is usually 60% or more.

The highest threshold has distance 0.4, further confirming this. The plots for AUC reach minimum at 70%,

6The biased model is correct on 3,095 out of the 9,379 tuples in U . Of those, 2,536 have answer in the first sentence, or 81.9%.
7The unbiased model is correct on 7,361 out of the 9,379 tuples in U . Of those, 2,662 have answer in the first sentence, or 36.1%.
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signalling that there are many tuples with contribution from the answer’ sentence just between 60% and 70%.

To sum up, while for the biased model the fourth hypothesis is almost identical to the third, due to the

fact that fb is almost never correct if the answer is not in the first sentence, the results for the unbiased model,

together with its good performance, prove that it is behaving following the strategy we expected, i.e. focusing

mostly on the sentence where the answer located in order to make the correct prediction.

As median distances are low and AUCs are high for both models, we can say that there is semantic match at high

thresholds between the fourth hypothesis and the models. However, our metrics on θ4 cannot alone distinguish

the two models, because they do not provide insight on how many tuples actually satisfy the hypothesis, which

is here key to make the distinction between biased and unbiased. In Section 3.3 we will introduce other three

metrics, that will fill this gap.

3.2.5 Contribution histogram

Before closing the chapter, we provide the histogram of the first sentence contribution for the two models in

Figure 3.8.

In accordance with the conclusions of our hypotheses, we find that the contribution of the first sentence for the
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Figure 3.8: Frequency histogram for the first sentence contribution of biased (left, red) and unbiased (right, blue)
models. Each column represents the number of data points in which the contribution of the first sentence is
between z and the next threshold.

biased model is often between 40% and 80%, peaking between 50% and 60%. On contrary, for the unbiased

model, the contribution of the same sentence is usually between 0% and 20%, with a smaller peak between 50%

and 80%, which should correspond to the tuples that actually have the answer in the first sentence (the number

of data points with answer in the first sentence is around 3,000, while the number of data points having at least

50% of contribution on that same sentence for fu is 2,625).

3.3 Other metrics: Coverage, Validity and Sharpness

In Zhou, Ribeiro, and Shah [59], authors measure the congruence of rules (hypotheses) with model’s behaviours

using three metrics: coverage, validity and sharpness. The way we defined hypotheses allows us to also apply

those measures to our experiment directly.

In fact, we can translate their rules into hypotheses of the semantic match framework, but it is not always

possible to translate our hypotheses into rules, as the following theorem demonstrates.

Proposition 1. Given a rule ρ as defined in [59], we can construct a hypothesis θ in our framework with the

same semantics. The converse is not true.
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Proof. The first direction follows directly by Definition 2.1 and by the definition of ρ: indeed, we use their

applicability function as our constraint A, and their behaviour function as the B-part of θ. Rule composed of

other rules are also recovered straightforwardly.

Translating in the other direction is not possible as rules of [59] can be defined only on low-level features, while

we allow arbitrary functions to be applied to the explanations of low-level features to obtain explanations for

high-level features. For a concrete counterexample, any of the hypotheses in Section 3.1 is not definable in

the framework of [59]: sentences, which we are able to retrieve, are impossible to define only looking at their

low-level constituents one by one.

After defining the metrics from [59], we are going to comment the results obtained for our hypotheses.

Later, in Section 4.3, we will compare them to MD and AUC of the semantic match framework highlighting the

advantages and insights that each metric provides.

3.3.1 The metrics

Here we define the three metrics of Zhou, Ribeiro, and Shah [59]. As previously, we use CA to indicate the set of

tuples u = ⟨f,x, y⟩ that satisfy the constraint A of a hypothesis θ, CB for the set of tuples that have explanations

e = e(u) that comply with the behaviour B described by θ and Cθ for the set of tuples that comply with the

hypothesis, see Definition 2.3.

Definition 3.2 (Coverage). Given a hypothesis θ, a dataset D and a model f, coverage is defined as the portion

of u = ⟨f,x, y⟩ tuples that satisfies the A-part of θ. Formally:

cov =
|CA|
|D|

= P (u ⊨A θ)

with |D| the total number of data points of D, and CA the set of tuples satisfying A. This also means that we

can think of coverage as the probability that a data point (x, y) ∈ D will form with f a tuple u = ⟨f,x, y⟩ s.t. u
satisfies the A-part of θ.

Coverage measures the amount of data points that are characterized by the constraint A. In [59], it is used to

establish how many data points the rule should explain. In our case it can be interpreted as a measure of how

big the set of data points that we are characterizing with the antecedent of our hypothesis is.

Validity measures the fraction of A-compliant tuples where the model behaves as specified by B, therefore

quantifying how often, on the tuples characterized by A, the model behaves according to the hypothesis.

Definition 3.3 (Validity). Given a hypothesis θ, a dataset D, a model f, an explanation method e, validity is

defined as the probability that the explanation of a tuple u = ⟨f,x, y⟩ satisfies the B-part of θ, given that u

satisfies the A-part,

val =
|Cθ|
|CA|

= P
(
e(u) ⊨B θ

∣∣ u ⊨A θ
)

with CA and Cθ, respectively, the set of tuples that satisfy the A-part of θ and the set of tuples that satisfy the

hypothesis.

A low validity indicates that the behaviour specified by B is not common across the set of A-compliant tuples,

which in turn implies that either the model is behaving coherently, but in some other way, or that on CA the

model does not behave coherently at all. On the other hand, high validity implies that on the A-compliant

tuples the model follows consistently the behaviour described in the hypothesis.

Similarly to validity, sharpness depends on the threshold chosen, and is a way to measure how necessary

A-compliance is for B-compliance; in other terms, it tells us how often it is the case that when a tuple u has

explanation that comply with B, then u also satisfies the constraint A.
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Definition 3.4 (Sharpness). Given a hypothesis θ, a dataset D and a model f, sharpness is defined as the

probability that u satisfies the constraint imposed by A of θ, given that the explanation e = e(u) satisfies B.

sharp =
|Cθ|
|CB |

= P (u ⊨A θ | e(u) ⊨B θ
)

3.3.2 Evaluation and insights

For each hypothesis, the results on the coverage metric are reported in Table 3.1, while in Figure 3.9, we include

the results for validity and sharpness at different thresholds. As previously, we use Dv as dataset, restricting it

by discarding all the data points for which we did not obtain valid SHAP values.

Hypothesis
Coverage

Biased Unbiased
θ1 1.0 1.0
θ2 0.58 0.14
θ3 0.27 0.28
θ4 0.33 0.78

Table 3.1: Coverage of each hypothesis for biased and unbiased model.

As coverage depends only on the A-part of the hypothesis, it is not influenced by the choice of threshold. It

has values in [0, 1] reaching its maximum when every tuple in U satisfies A. In our case, this happens for θ1 as it

imposes no constraint on u.

For the second hypothesis, the coverage of the biased model is almost 60%, suggesting that on more than

half of the data points of Dv, the answer is not in the first sentence, and the model is incorrect. As about 36%

of data points in Dv have answers in the first sentence,8 coverage can reach at most 0.64. Thus, fb is almost

always incorrect when the answer is not in the first sentence. On contrary, the unbiased model has coverage of

14%, indicating that on that same portion of data points, it is less often wrong.

The third hypothesis has very similar coverage for both model. As A imposes that the data point has the

answer in the first sentence, it cannot be higher than 36%, for the same reasons we gave for θ2. Since A of θ3

also requires the model to be correct (the prediction must match the answer exactly), the fact that coverage is

very close to that threshold shows that both models are usually correct if the answer is in the first sentence.

Finally, θ4 highlights the difference between the two models in terms of correctness: while fb prediction is

correct about 1/3 of the times, the unbiased model has a much better performance, predicting the correct answer

almost 80% of the times. For the fourth hypothesis, coverage provides the same information as the evaluation

plots of Figure 2.1.

Validity and coverage, as explained in Zhou, Ribeiro, and Shah [59], should have an opposite trend: as z

increases, the range of behaviours that satisfy the B-part of the hypothesis decreases; then, while the set of u

tuples satisfying A, CA, stays fixed, CB , the set of tuples that has explanations that comply with B, decreases.

Hence, validity, i.e. |CA∩CB |/|CA|, is diminished, and sharpness, i.e. |CA∩CB |/|CB |, increases.9

Hypothesis 1 For both models sharpness has a flat trend, which is always at its maximum, 1.0. As A of

θ1 does not impose any constraint, every u satisfies it, and therefore, CA = Dv, CA ∩ CB = Dv ∩ CB = CB, as
CB ⊆ Dv, hence sharp = 1.0.

Validity on the other hand, decreases as z increases, as expected. The biased model has a steep decrease for

z between 40% and 70%, meaning that for most tuples, the first sentence has 40% to 70% of contribution to fb’s

8Precisely, of the 9,379 data points for which we obtained SHAP values correctly, 3,359 (35.8%) have the answer in the first
sentence of the context.

9If the hypothesis has a ≤ instead of a ≥, increasing z also increases the range of behaviours, leading to opposite trends: as the
threshold increases, we expect validity to increase and sharpness to decrease, see Appendix F.
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Figure 3.9: Validity (left column) and sharpness (right column) of the biased and unbiased model for θ1, θ2, θ3
and θ4, each in its respective row. We report thresholds for the B-part of each hypothesis on the x-axis and
scores on the y-axis.

prediction.

The unbiased model has a strong decrease in validity between 0% and 30%, followed by a second gradual decline
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between 50% and 80%. For fu then, most tuples have contribution of the first sentence between 0% and 30%,

while a small group has first sentence contribution between 50% and 80%.

These results align with those of MD and AUC (see Section 3.2.1); however, for fu the second decline was less

evident in the MD plot, and was signalled only by a small dip in the AUC between 50% and 80%.

Additionally, validity, gives us the percentage of data points that have first sentence contribution between

two thresholds, by calculating the difference between validity at the first threshold and validity at the second

threshold: for example, for the unbiased model, valz=0.5 − valz=0.8 ≈ 0.3, meaning that for around 30% of the

tuples the first sentence contributes between 50% and 80% to the prediction of fu.

Hypothesis 2 The plots for θ2 exhibit trends for validity similar to those of θ1, while sharpness decreases

with increase in z, contrary to the expected trade-off. This time, the biased model has an even stronger decrease

between 40% and 70%, while, contrary to θ1, the unbiased model has only one, sharper decrease between 0%

and 20%. The first difference implies that if we only consider data points where the model is incorrect and the

answer is not in the first sentence, for fb, more tuples have first sentence contribution between 40% and 70%,

rather than having it above 70%. The second difference, on the other hand, implies that, when the answer is not

in the first sentence, and the model is wrong, fu considers the first sentence less important for its predictions.

Sharpness decreases for both models: while the biased model stays at 0.6 with a slightly increasing trend

until 40%, where it begins to linearly decrease with z, the unbiased model starts at almost 0.2 decreasing to

almost 0 before z = 30%. Since θ2 requires the model to be wrong (according to the exact match metric),

sharpness at z = 0% is determined by the performance of each model on Dv: from Figure 2.1 we know that

the biased model is correct 32.6% of the times, while the unbiased model is correct 78.4% of the times, thus,

even if B holds for all the tuples’ explanations, CB = Dv, we will have that sharpness is equal at most to
|CA∩CB |

|CB | = |CA∩Dv|
|Dv| = |CA|

|Dv| ≈ 1− em(f) with em(f) the model’s exact match score on Dv. The last equation is an

approximation as 1− em(f) is bigger than sharpness, since the model might be wrong also on data points with

answer in the first sentence, which are excluded by the A part of θ2.
10

The fact that sharpness decreases strongly for the biased model between 40% and 90% indicates that, if the

contribution of the first sentence is very high (above 80%), it is rarely the case that the model is wrong and the

answer is not in that sentence. Even so, the fact that the decline happens after 40% implies that a relevant

portion of tuples where the model is incorrect has high first sentence contribution even if the answer is not there,

in accordance with validity.

For fu, the trend is also decreasing, starting from just below 0.2 and approaching 0.0 as z increases, showing

that, when wrong, the unbiased model focuses less on the first sentence when answer is not there.

This analysis reinforces the conclusions of Section 3.2.2, adding details on the ratios of tuples that satisfy A and

B at different thresholds.

Hypothesis 3 For the third hypothesis, the validity and sharpness exemplify the trade-off discussed in [59]:

by increasing z, we make the behaviour more specific (as the contribution range [z, 100], becomes smaller),

decreasing validity and increasing sharpness. Since the A condition of θ3 requires the answer to be in the first

sentence and the model to be correct, this hypothesis is a control, and it should be matched by both models, as

found in Section 3.2.3.

Both the biased and the unbiased models have similar trends for validity, starting high and relatively flat for

low z, then falling steeply between 50% and 90%. This means that for both model the first sentence has often

high contribution values if the answer is there and the model is correct.

The sharpness plot, however, highlights the difference between the two models: when it is high for a specific

threshold z, it means that there are very few tuples that have ≥ z amount of first sentence contribution and

10Indeed, we find that fb is wrong on 823 data points, and fu is wrong on 697 data points out of the 3,359 data points of Dv

having the answer in the first sentence.
The approximation is also due to the fact that sharpness is calculated among the tuples for which we obtained the SHAP values,
while the model performance is checked on all Dv .
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that do not satisfy A. For fu, the fact that the increase in sharpness is very sharp at low zs can be seen as

further proof that, when either fu is incorrect or the answer is not in the first sentence, there are few tuples

that receive very high (i.e. ≥ 40%) contribution from the first sentence. In other words, the unbiased model

gives a lot of importance to the first sentence only for tuples that have the answer there. However, the fact that

sharpness doesn’t reach 1.0 also implies that there are few tuples that satisfy B at high thresholds, thus having

high contribution on the first sentence, without satisfying A, or, in other words, that fu might be wrong because,

sometimes, it looks too much at the first sentence, similarly, though less frequently, to fb.

In contrast, the increase in sharpness for the biased model happens at much higher thresholds, confirming

once again that it attributes a lot of importance to the first sentence regardless of the answer position or the

correctness of its predictions.

Hypothesis 4 The results for validity are very similar to θ3, even when generalizing the position of the answer.

The sharpness plot for fb starts low, just above 0.3, and increases until 40% to over 0.7; then, it slowly increases

until its maximum at 80%, after which it decreases again. For the unbiased model it is almost flat, starting just

below 0.8, and slowly increasing to hit the maximum at z = 80%.

The validity plot suggests that both model focus on the answer’ sentence when they are correct. Sharpness for

the unbiased model indicates that there are only few tuples where the model is incorrect and the sentence of the

answer has high contribution. On contrary, for fb, the low scores at low thresholds are evidence that there are a

lot of tuples where the model is incorrect and the contribution of the answer sentence is low (≤ 30%).
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Chapter 4

Discussion

In this chapter we are going to discuss in more detail how to interpret the metrics introduced in Section 2.1.2

and see what they imply in some limit cases. Then, we are going to report the additional results of MD and

AUC when evaluated on specific subsets of Dv. Finally, we are going to compare the coverage, validity and

sharpness metrics of Zhou, Ribeiro, and Shah [59] introduced in the previous chapter with ours.

4.1 Metrics interpretation

In general, from MD and AUC, we would like to draw insights on how the explanations are distributed, what

is the relative frequency of explanations complying with B, and what kind of explanations are generated for

tuples satisfying A. However, both metrics condense all that information in only one number per threshold and

per reference point. Thus, we interpret here some common box plots trends they can form, and discuss their

implications on the distribution of explanations.

To ease the task of understanding the metrics, our analysis will be conducted as a thought experiment, by

assuming that the distribution of the explanations is uniform, and seeing how this reflects onto MD and AUC

measures. For simplicity, we also assume that each explanation consists of a single number.1

The results obtained with this analysis can be compared with the trends of the experiment, to gain insights in

the actual distributions of the experiment’s explanations by highlighting similarities and differences between

scores. We are also going to exemplify the discussed trends pointing at the results of the previous chapter.

Before we start, note that the expected plots will vary also based on how the threshold changes the behaviour

range specified by θ: in our hypotheses we followed the schema ‘contrib ≥ z’ with contrib the relative

contribution of some sentence (usually the first) and z the threshold; this scheme implicitly fixes the behaviour

range at [z, 1], and increasing z has the effect of restricting the range, making the behaviour more specific.2

Many more schemes could be envisioned, such as ‘max(0, c− z) ≤ contrib ≤ min(1, c+ z)’, with c, z ∈ [0, 1],

defining a progressively larger range of behaviours centred on c,3 but they fall outside the scope of this work.

4.1.1 Median distance trends

Single box plot As we are evaluating the distances of tuples that comply with A from those that satisfy θ, at

any fixed threshold, higher distances will generally indicate that the behaviour of the model is not consistent

among the sample set, CA. This means either that the θ-compliant points are clustered and far away from the

points which only satisfy the A-part of the hypothesis, or that the Cθ points are far away from each other. The

1The restriction to a single number does not prevent us to investigate complex behaviours or biases, and indeed, in the experiment
we captured the relative contribution of the first sentence with just one number.

2Defining hypothesis based on the scheme ‘contrib ≤ z’, with opposite sign, will have the opposite effect, increasing the range
and making the behaviour less specific as z increases. We exemplify this in Appendix F.

3In the scheme, max and min are there to enforce the range being a subset of [0, 1].
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two cases can be distinguished by looking at the heights of the box plots: the former will have low variance, as

Cθ is clustered, and is exemplified in Figure 3.3, right, by the unbiased plot for z = 70% or z = 80% of θ2; the

latter will have wider quartiles and whiskers, and can be observed for z = 10% and z = 20% in the unbiased plot

of θ1 in Figure 3.1, right.

On contrary, if MD is low, points in CA are all near each other, regardless of their B-compliance. The biased

model exemplifies this in all the hypotheses and for most thresholds, as reported in Chapter 3. Low MD can

be both positive and negative for assessing semantic match. On the negative side, having all the points in

CA clustered together might indicate that the hypothesis’ behaviour is not distinctive enough, and refining B

further might increase the distances. For instance, increasing z above 50% for the biased model in the first

hypothesis, Figure 3.1 left, has the effect of restricting the range of behaviours and increases MD, leading to

a clearer distinction between θ-compliant points and A-compliant-only points. But it is also possible that the

distance chosen is not correct for the hypothesis we are testing.

On the positive side, a clustered CA set is a good indicator of a possible semantic match, as it means that the

explanations of the tuples in CA are similar, and so, that the model is behaving consistently on that set. Points

in CA could then be well distinguished from tuples which do not comply with A, and this is indeed what is

needed. If one wants to link specific features of the input data point (described by A) to peculiar behaviours of

the model, one could make the behaviour more general, making CA and Cθ coincide.4

Trends As increases in z restrict the behaviour, explanations satisfying θ at high zs will be further away from

those that satisfy the hypothesis only at lower thresholds. Hence, we expect MD to increase with z.

More precisely, assume that the distribution of explanations is uniform and has median m at 50%. Then, at

threshold z = 0%, all the tuples that comply with A will have explanations that satisfy B, and will be in the

reference set. If we order the explanations in ascending order, m will be in the middle by definition, and the

distances of CA from Cθ will be symmetric:

• tuples with lower explanations will have very few explanations close by, and thus few very low distances, a

lot of explanations further away with higher distances (those around m), and finally some even higher

distances, due to the reference points with higher explanations;

• tuples with higher explanations will generate distances similarly;

• tuples around m will have mostly lower distances, with higher ones due to the tuples with very low or very

high explanations.

This is visualized in Figure 4.1. The medians will start high and decrease while approaching m to then grow

again afterwards (keeping the ascending order of before). If we reorder the medians of distances in ascending

order, as in Figure 4.2, increases in the threshold have the effect of eliminating the reference points with low

explanations, in turn removing some higher medians of distances, at the right of the median of medians. This

moves the median of medians leftwards, either decreasing it or keeping it equal.

Once z becomes bigger than m, more than half of the initial reference points are excluded; the remaining will

have higher explanations values and higher distances from points in CA, so the median of medians will increase,

reaching its maximum for the highest z.

Normal distributions also cause the same symmetry, making flat or slightly decreasing trends a good indicator of

either normal or uniform distributions.

Hence, generally, MD can exhibit the following trends:

• Linear increases of MD after a specific z signal that the median of the explanation’s distribution was

located just before that threshold. For example, in the case of the first and second hypothesis, (Figure

4A clustered CA is particularly useful when still in the process of generating a hypothesis and formalizing a behaviour. We are
going to discuss and expand the comparison of CA and the set of tuples which do not satisfy A in Section 4.2, by resampling MD
and AUC using different S and R.
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Figure 4.1: Box plots describing the distances of all the tuples in S = CA (y-axis) from each of the tuples in
R = Cθ (x-axis). For z = 0, S = R; the box plots are symmetric and centred around the median, highlighted in
light green and marked with a light green circle on top of the box plot. Gradients of colours at the left and right
of the median showcase the order in which reference points in Cθ will be excluded from the set as z increases:
the leftmost, in red, will be the first to go while the rightmost, in blue, will remain in Cθ even for z = 1.

3.1 and 3.3, left) the unbiased model showcases a linear trend across all thresholds, suggesting that the

median is very low.

• Flat or slightly decreasing trends, indicate that the median of the explanations’ distribution is not yet

reached and indicate that the explanations’ distribution is either uniform or normal, peaking at some

higher threshold (the latter can be observed for fb in θ1 and θ2, Figure 3.1 and 3.3).

• Decreasing trends are not observable with our hypotheses. In general, the more S and R coincide, the

more MD decreases. The scheme we used, however, restricts the behaviour as z increases, so the bigger

z is, the less R = Cθ overlaps with S = CA; in Appendix F we include an additional scheme, obtaining

decreasing trends, which can be interpreted in a similar but mirrored manner as the first case above.

Whiskers and outliers can also provide useful insights: the reference point which is the furthest away will

mark the upper whisker or the highest outlier, and, in our experiment, it is the one satisfying θ at the highest

threshold. On contrary, the lowest outlier or the lower whisker comes from the reference point which is closest to

the tuples of CA.
With a uniform distribution of explanations we expect the upper whiskers to be constant with respect to the
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Figure 4.2: To find the median of medians, (marked as before with a light green circle), we rearranged the
distances of Figure 4.1 in ascending order. As z increases, reference points in red will be removed. Because the
median of distances is at the left of those points, once they are removed, it will move leftwards (light green
arrow), forming a plateau or a further decreasing trend in the box plots for MD and AUC.

threshold, and the lower whiskers to increase linearly.5

A linear upward trend in the lower whiskers indicates that there are tuples that satisfy the B-part of θ at each

specific threshold: this trend is exhibited by the unbiased model in Figure 3.1, right, implying that the model

receives varying amounts of contribution from the first sentence. The biased model, instead, has a flat trend for

the lower whiskers: increasing the threshold does not exclude points from Cθ, signalling that tuples in Cθ always

have high contribution from the first sentence.

In addition, asymmetries in quartiles and whiskers reveal that the explanations are amassed on a specific side of

the median, and can be used to infer the shape of the explanations’ distribution: if the first quartiles decreases

while the second increases, as z increases, the explanations’ distribution will be negatively skewed, with a quartile

of the explanations concentrated just above the median, and the other quartile spread between a larger interval,

with values lower than the median;6 instead, if we observe the opposite, the distribution of explanations is

positively skewed.7

5Changing the sign of the hypothesis’ scheme inverts this, as shown in Appendix F.
6For instance, the biased model in Figure 3.1.
7This can be observed in the first few thresholds of fu in θ1, Figure 3.1. Note that afterwards, at z = 70% and 80% the quartiles

signal instead a negative skew, highlighting a second peak in the explanations’ distribution, as can be further verified in the
contribution histogram, Figure 3.8.
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4.1.2 AUC trends

As described after Definition 2.6, AUC evaluates how distinguishable the set of tuples that comply with the

hypothesis, Cθ, is from the set of tuples that comply only with the A-part of the hypothesis. Formally, we are

interested in distinguishing Cθ = CA ∩ CB from CA ∩ ¬CB .

Single box plot For a fixed z threshold, high AUC will mean that the distance between any given tuple u

and a θ-compliant tuple is a good predictor of whether u is in Cθ or not: if the distance is low, u ∈ Cθ, otherwise
u ̸∈ Cθ. Thus, Cθ is clustered, and the distance between tuples in Cθ is low, while the distances between tuples in

CA ∩ ¬CB and in Cθ is high. This is showcased by the AUC plot of the unbiased model for the fourth hypothesis

at threshold z = 80%, in Figure 3.7, bottom right.

On contrary, low AUC implies that the two sets are not well distinguishable: the explanations of tuples that

comply with θ are similar to those of tuples that only satisfy the A-part of the hypothesis, and the distance

between the two is small. Hence, predicting θ-compliance based on the distance alone will fail; the unbiased

model exemplifies this for z = 10% in θ1 (Figure 3.2, right), as most tuples contribute between 0% and 20%.

For a good semantic match we require high AUC, as this indicates that the θ-compliant tuples have similar

explanations. Together with low MD, high AUC implies that across CA, only few tuples do not satisfy B, so CA
and Cθ almost fully coincide.

Ideally, the smaller are quartiles and whiskers, the better, as we have a further indication that the explanations

(and thus the model’s behaviour) are consistent. Oppositely, if quartiles and whiskers are high, variance is

high; if this happens, or if there are a lot of outliers (like in the biased model’s plot of Figure 3.2 and 3.4) the

behaviour described in B might be under specified and Cθ might not be well clustered, implying that the model

has an inconsistent behaviour. In similar cases, restricting B should reduce the number of θ-compliant tuples

and return a Cθ which is more clustered around a specific behaviour.

Trends In general, increases in z have the effect of shrinking Cθ, reducing the variance and the number of

outliers. At higher thresholds, the distances between tuples in Cθ and those not in Cθ is higher, while the smaller

range of behaviours allowed by B entails that the distances between data points in the reference set are smaller.

As for MD, assuming a uniform distribution of explanations with median m at 50%, we have Cθ = CA if z = 0%,

and AUC trivially at 1.0. Instead, for z = 10% AUC has great variance:

• for tuples in Cθ with very high contribution, AUC is very high: having high distances from the tuples that

only satisfy the constraint A, which have contribution lower than 10%, distance becomes a good predictor

of membership in Cθ;

• tuples with very low contribution, but still in Cθ will have low AUC, as they are very close to tuples that

do not satisfy B, and very far from some tuples in Cθ;

• finally, tuples with contribution near to m will have AUC higher than 0.5, but lower than the tuples of the

first case, as, by the symmetry of the distribution, they will have similar distances both from tuples in Cθ
with very high contribution, and from tuples not in Cθ with very low contribution.

As z increases, tuples with very low contribution are excluded from Cθ. On one hand, this reduces the tuples

falling in the second case above, and tightens lower whisker and quartile, decreasing the number of lower outliers

too. On the other, while this improves AUC for tuples in Cθ with very high contribution, it decreases AUC of

those with lower contribution: with respect to each of those reference points, a bigger number of tuples with

lower contribution, that now fall outside Cθ, will have similar distances to tuples with higher contribution still in

Cθ.
Once z = m, tuples with contribution near m have the lowest AUC score, around 0.5. This is because, when

calculating distances from those tuples, the number of tuples not in Cθ at a fixed distance from the reference

point is almost equal to the number of tuples in Cθ at the same distance from that same reference point, by
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the symmetry of the explanations’ distribution. Thus, predicting based on the distance from those tuples will

perform as well as randomly classifying tuples. The effect described in the previous paragraph is here maximum,

and the median of AUC is at its lowest.

Further increases in z recover AUC, as the tuples with the highest contribution and almost perfect AUC are the

majority of the reference points left in Cθ.
The above holds also for normal distribution and other symmetric distributions, so in such cases we can find

the median by inspecting the median of AUC, together with its lower outliers/whiskers: if the median dips,

while the whisker linearly increases with z, and for the deepest point in the dip the lower whisker or the lowest

outlier is close to 0.5, then we have a strong indication that the median of the distribution of explanations is

around that z. Note that the above is valid even for multimodal distributions, as shown by the small dip of

AUC for fu in θ1 for thresholds between 60% and 80% in Figure 3.2, right.

In summary, AUC can form the following trends relatively to increases in the threshold:

• typically, AUC increases with z. Indeed, since our hypotheses force higher and higher levels of sentence

contribution as the threshold increases, Cθ will become smaller and smaller, with tuples in it being further

away from those only in CA. In turn, this eases the task of distinguishing θ-compliant tuples from those

that only comply with A. Variance should also decrease, on one side because there are fewer tuples in Cθ,
on the other, because the behaviour range is smaller, meaning that the reference explanations are clustered

more closely.

• Dips signal that the distribution of the explanations peaks around the threshold at the lowest point of the

dip: intuitively, when the explanation’s distribution peaks around a threshold, there are a lot of tuples

with explanations very close to tuples in Cθ, yet with contribution not high enough to satisfy B; then,

predictions of θ-compliance based on the distance will be confounded, resulting in decreased AUC. As z

increases, the peak is passed, and almost all tuples will fall outside Cθ; the remaining will have higher

distances from the peak, making predictions of compliance easier, increasing AUC again, and drawing the

end of the dip. This can be observed in Figure 3.6, left, for the AUC of fb in θ3 between z = 50% and 80%.

• As with MD, linear decreases in AUC are harder to observe, but, contrary to the previous metric, this does

not happen because of the way in which the hypothesis is specified: AUC is high both when the behaviour

is very general or very restricted, albeit with different variance; hence a linearly decreasing AUC indicates

that there might be some confounding factors in the chosen distance.

4.1.3 Limit cases

We discuss here the possible limit cases that can rise from our measures.

High MD, low AUC This is the worst scenario, as it implies that the distance is a very poor indicator of

θ-compliance and that the tuples in Cθ are mixed together with tuples that only satisfy A. It also means that in

terms of the defined distance and hypothesis, the model is not following the described behaviour. In similar

cases, revising the definition of distance, or strengthening the constraints of A and B might improve the results.

High MD, high AUC Here explanations from Cθ are well clustered and, in explanation space, located quite

far from the tuples that only satisfy A. High AUC indicates that the model is behaving in a peculiar and uniform

way on the tuples in Cθ, but the fact that MD is high also signals that the model is not consistently behaving as

specified by B on all the tuples that satisfy A. If the desideratum is that the model follows a specific behaviour

on a specific set of tuples, high MD signals that this is not happening. One could then try to characterize A

more specifically, in order to exclude the tuples of CA that did not comply with B.

As we shall see in Section 4.2, if we change the sample set to include all the tuples, and use as reference CA, this
scenario indicates a good separability between CA and all the tuples which do not satisfy the A-part of θ. The
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model is thus sensitive to CA-membership, showcasing a different behaviour if a tuple complies with A or not.

This situation can be leveraged by fine-tuning the B-part of the hypothesis to achieve a full semantic match

between the model’s behaviour and a user-interpretable hypothesis.

Low MD, low AUC Cases of low scores for both metrics signal that the CA set is clustered, but predicting

only based on the distance is challenging. This might be due to the fact that some explanations that comply

with B are very close to explanations which do not. In turn, this is possibly caused by a too restrictive

hypothesis’ behaviour, but it might as well be that the chosen distance is not sensitive enough to differences in

the explanations, or that it includes confounding factors.

Low MD, high AUC These results are exactly what we require for a semantic match between θ and the

behaviour of the model: the former guarantees that all the explanations of tuples in CA are similar (i.e. that CA is

clustered), while under this condition the latter assures that CA and Cθ overlap. Then, it is possible to conclude

that the model is behaving uniformly as specified by the hypothesis on the set of tuples that the constraint A

characterizes.

4.2 Same metrics, different sets

As anticipated in Section 2.1.2 we are going to provide further evaluations of MD and AUC. Recall from Definition

2.5 and 2.6, that both metrics are calculated by working out the distance of all the tuples in a set S with respect

to a reference point chosen from the reference set R. Previously, we set S = CA and R = Cθ to check how

consistent was the behaviour expressed by a hypothesis θ across the set of tuples characterized by the constraint

A. Instead, we are now going to evaluate MD and AUC by fixing S = U and R = CA. As we shall see, this will

provide a behaviour-independent measure of the separability of the A-compliant tuples from those which do not

satisfy A. This can be useful as a preliminary study of the model’s workings, before defining a specific B.

Furthermore, evaluating the metrics with S = U and R = Cθ, should give us more information about how the

model behaves on tuples that do not satisfy A, and if there is a distinction between the behaviour applied to

tuples in Cθ and the one applied to tuples that do not comply with θ. The results we obtain for each of the for

hypotheses of Definition 3.1 are added in Appendix E, as they confirm and substantially overlap with those

presented in Chapter 3.

Note that, whenever the constraint A is empty, as in the first hypothesis, recalculating the metrics with

S = U and R = Cθ does not change the results, as U = CA, while, for the same equivalence, evaluating AUC and

MD with S = U and R = CA is not informative.

U from CA
So far, we applied semantic match in a controlled setting, using it to distinguish between two models that

were purposefully trained, one to incorporate a specific bias, and the other, hopefully, to not showcase it. This

confined environment was chosen first and foremost to prove that the framework could be successfully applied

on a state-of-the-art model trained on a real world dataset.

However, in less controlled settings, with less information about possible biases and problems of the model,

coming up with a specification of the hypothesis and the right distance to test it might be significantly more

challenging. In such cases, knowing if a group of tuples with some common characteristics gives rise to similar

explanations according to the defined distance is very useful.

We can inquire this by employing the semantic match metrics and evaluating them with a different reference

set. We will use the A-part of the hypothesis to properly characterize the set of tuples we are interested in, and

then, we check with MD and AUC how well it is possible to distinguish that group from all the other tuples (as

usual based on the relative distance of the obtained explanations). If all tuples in CA are close to each other
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and far from the tuples which do not satisfy A, then we have evidence that the model is recognizing CA and is

behaving on it in a specific way. Instead, if we obtain similar explanations from both sets, we have grounds to

believe that either the distance is not defined correctly, or the model is not distinguishing the CA set from the

other tuples.

Example 4.1 (Weapon discriminator). For instance, suppose we have a model to predict if one luggage

contains forbidden articles, based on the x-ray images of an airport scanner. Among all prohibited items, we are

particularly concerned that the model might not recognize weapons correctly. Then, we can define the A-part of

our hypothesis as ‘the luggage contains a weapon’, leaving the specification of the exact behaviour of the model

empty (i.e. B := ⊤).8 Finally, we need to define a distance, which could be a function measuring the amount of

contribution that the pixels of the weapon have (if there is no weapon it will be 0). Once this is set up, we can

evaluate MD and AUC using as sample set all the tuples and as reference set CA.
If the model actually treats the images containing weapons in a specific way, then the distance between those

and the other images should be larger, leading both to higher MD and AUC. Furthermore, if the model behaves

coherently on CA, we should also observe low variance, with thigh quartiles and whiskers.

In our setting, we suspect that one model has a bias on the first sentence while the other does not. Under

this conjecture, we could use the simple distance of Definition 2.9 to see if it is possible to distinguish the tuples

which have the answer in the first sentence from those which do not, based on the difference in contribution

that said sentence provides. For an unbiased model, those tuples should be distinguishable, as the model should

consider the first sentence very important for its predictions. A model biased on the first sentence, instead, will

not be able to distinguish CA, as it would always focus on that sentence. To this end, we define a fifth hypothesis:

θ5 := ‘The answer is in the first sentence.’

θ5 := y ∈ s1 ⇒ ⊤

Where, as previously y ∈ s1 denotes the answer y being in the first sentence, s1.

In Figure 4.3 we provide the plots of MD and AUC, with the addition of a distance density plot in Figure 4.4.

The median distance of the biased model is low, with few outliers, tight quartiles and median below 0.2, implying

that this model is treating all the tuples similarly, regardless of their membership to CA. Additionally, AUC is

low when compared to the unbiased model, further confirming that it is hard to classify A-compliance based on

the distance of the explanations obtained for fb; the fact that AUC has a skewed distribution and very wide

lower quartile and whisker further highlights that some tuples which do not have the answer in the first sentence

receive the same amount of contribution from that sentence as some reference points.

Oppositely, the unbiased model has quite high median distance, with median of medians around 0.5 and

symmetric quartiles and whiskers, indicating that the behaviour of fu on U varies. The AUC is very high, with

median of medians almost at 1.0, and a negative skew, with a long tail of outliers. This implies that CA is easily

distinguishable if we base our predictions on the amount of contribution that the first sentence provides.

In figure 4.4 we add the distance density plots, which showcase the measured distances on the x-axis and the

frequency on the y-axis. Tuples which satisfy A are labelled in blue, while tuples that do not are labelled in

orange. The difference is very clear: while the two sets are almost fully overlapped for the biased model, the

unbiased model has two distinct peaks, with far less overlap between the two groups. Notice also that the tuples

not satisfying A have usually larger distances from tuples in CA. This suggests that if the answer is in the first

sentence, the model is attributing a lot of importance to that sentence, while if the answer is not there fu is

attending some other sentence.

To conclude, re-evaluating the semantic match metrics with S = U and R = CA, we can check if the model is

behaving on tuples of CA in a peculiar manner. Such analysis requires no specific definition of B, and thus, two

8Note that in this case CA = Cθ, hence R = CA = Cθ.
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Figure 4.3: MD (first row) and AUC (second row) plots for θ5, for the biased (left column, red) and unbiased
(right column, blue) models.

very different distributions of explanations could lead to the same MD and AUC scores. This happens because

for the separability of the A-compliant and not A-compliant tuples what matters is only that the explanations

of the former set are different from those of the latter. Nonetheless, this can prove very useful as an a priori

investigation to check if the model recognizes a particular set of the inputs and treats it differently.

In general, having MD around 0.5, with wide whiskers and quartiles, and AUC close to 1.0, with low variance

are promising signs of a well separable CA set.

4.3 Comparing MD and AUC to Coverage, Validity and Sharpness

As we discussed in Section 3.3, the three metrics of Zhou, Ribeiro, and Shah [59] complement the picture drawn

by MD and AUC.

Coverage provides further insights on how many u tuples satisfy the constraint A of a hypothesis. Hence, it

is very useful as MD and AUC do not provide a way to quantify the portion of tuples that satisfy the antecedent

of θ. In addition, some distances and hypothesis allow for multiple interpretations of the MD and AUC results;

coverage, in conjunction with other statistics of the dataset (as, for example, proportions of data points that

have answer in the lth sentence, correctness of models and frequency of errors), can in those cases provide further

and useful elements to cross out some possibilities and corroborate some available options.

Validity is precious as it gives a quantitative estimation of the percentage of u tuples that satisfy A and

have contributions between two given thresholds (as exemplified in the paragraph for θ1). Thus, validity can

be thought of as a measure of how sufficient it is for a tuple to satisfy A, in order for the model to exhibit the

behaviour B. Additionally, it is also a very intuitive metric and can be used, in parallel to MD and AUC, to

validate the conclusions about the model predictions.
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Figure 4.4: Distance density plots for θ5, for the biased and unbiased models. In blue, tuples that satisfy A, in
orange tuples which do not satisfy A. Results for the biased model are on the left, while results for the unbiased
model are on the right. The y-axis is for the frequency at which the value of the distance occurs, while on the
x-axis we plot the value.

Sharpness, similarly to validity gives a more quantitative overview on hypothesis compliance than MD and

AUC. It also allows us to calculate the percentage of tuples that, while satisfying B, are not complying with

A. Intuitively, this can be used to ascertain how necessary complying with A is to have the model behave as

described by B.

To sum up, the main advantages of coverage, validity and sharpness, are two. Firstly, they do not require

defining a distance or choosing a reference point. Secondly, they provide further insights on the percentages of

tuples that comply with the A part and the fraction of tuples that has contribution between two thresholds.

Similar quantitative information is lost when using median distance and AUC: both hide the information about

the specific amounts of tuples that satisfy θ at specific thresholds in one single number, as the first measure is a

median, while the second is cumulative.

However, the main shortcoming of validity and sharpness is that they do not provide information about the

relative distance or the distribution of explanations: in explanation space, regardless of whether tuples in Cθ are

very close to those in CA, or are very far from them, scores for validity and sharpness will be unchanged, as they

are not sensitive of such differences.

If we want a measure of how well a hypothesis is matched by the behaviour of a model, the metrics of Zhou,

Ribeiro, and Shah [59] are insufficient: firstly, we need a way to compare the behaviours of the model on different

data points, and to quantify how similar is one behaviour to another; exactly for that purpose we introduced

a distance in Definition 2.4 and 2.9. After having a way to compare behaviours, we want to know if a given

behaviour, B, is specific of a particular group of data points (characterized by A), or if it is not. We also want to

know if the model behaves coherently across that group, or if it follows that behaviour only occasionally. To the

latter end, we must have a cumulative measure of the similarity of the behaviours of the model across the group

of data points selected with A, which is exactly what MD provides; for the former goal we want a measure of how

distinguishable are data points of the group of interest from the others, and that is indeed what AUC gives us.
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In Table 4.1, we provide a summary showcasing the dependencies and interpretations of all the metrics

discussed in this chapter. In the Dep columns one can check the dependencies of each metric, i.e. if it depends

on the definition of distance (D) or threshold (T ), while in the Interpretation columns the meaning of each

metric is summarized, together with its general implications when high or low, and what we would ideally want

for a good semantic match; ‘Nan’ is used to indicate that, based on the hypothesis and the objectives one might

desire a high or low score in different scenarios.
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Conclusion

The objective of this thesis was to verify that the semantic match framework can be fruitfully applied to find

and characterize biases in trained models. Having defined the main concepts of the framework, as well as the

tools it relies on in Chapter 1 and 2, we set up an experiment to test if it is possible to formalize hypotheses to

differentiate between two models, based on their behaviours.

The experiment was conducted in a controlled setting, adopting a specific training policy, inspired by Ko

et al. [27], in order to obtain a model which was possibly biased on the first sentence of the context, fb, and a

second model which should not have that bias, fu. An initial evaluation of the two corroborated those beliefs,

displaying a relevant difference in the accuracy of the models, Figure 2.1.

Afterwards, we defined four hypotheses in order to match the bias of the first model, and to further check that

the second model had indeed learned to generalize properly. Employing MD and AUC we were able to measure

the match between the hypotheses and behaviours of the models, highlighting a substantial difference between

the two: while fb always relied on the first sentence to make its predictions, regardless of the answer’s location,

fu was rarely considering that sentence significant, and was doing so often only when the answer was there. With

θ4 we tested that the behaviour of fu was general: when the prediction is correct, the model is considering the

answer’s sentence important. This also confirmed our a priori intuition on where a model should focus to solve

the question answering task correctly, thus verifying that our expectations of what a good model ought to do

were indeed what fu was doing.

Finally, we analysed the metrics used, explaining the significance and implications of common trends

encountered in the experimental results. We commented on the major limit cases for the metrics’ scores and

discussed how to assess semantic match, providing suggestions on how to redefine distance and hypotheses to

improve the scores.

As both metrics depend on the choice of a sample set and a reference set, we showed how changing those sets

and re-evaluating the metrics can give further insight on the coherence of the behaviour described by θ, and also

on how well the model can distinguish data points with specific characteristics (defined in A) from all the others.

To broaden our discussion we included alternative metrics, introduced in Zhou, Ribeiro, and Shah [59], that

immediately apply to the semantic match framework, and showed how they can help to confirm the results of

MD and AUC from a more quantitative perspective. We considered advantages and disadvantages of each metric

and summarized them in Table 4.1.

The main contribution of this work is thus twofold: on one side, we successfully applied semantic match

with an experiment in the text modality, on a real-world dataset, albeit in a controlled setting. This provided

evidence of the utility and applicability of the framework to complex models solving non-trivial real-world tasks.

With the experiment we also showed that it is indeed possible to characterize and match both undesired biased

behaviours and desired strategies. While the former is useful to check for fairness and robustness of trained

models, the latter is valuable, as it can inform users about the inner workings of black-box or gray-box models,

providing a statistically-sound way to verify if human expectations on how the model should behave align with

the actual explanations drawn from the model in action.

On the other side, we discussed how to interpret MD and AUC comparing them to other metrics; we

highlighted advantages and disadvantages of each, showing also how evaluating MD and AUC on different sets
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can be helpful not only to further corroborate previous results, but also to explore the space of possibilities for

hypothesis-definition, in a scenario where no a priori knowledge of the model and possible biases of the dataset

is given.

As the semantic match framework is yet under development, there is still much work to do, in the experimental

and in the theoretical directions alike.

In the experimental branch, while there is already work on images in Cinà et al. [11], applying semantic

match to tabular and medical datasets could really showcase its power, and possibly help in the discovery of

unbalances in datasets and of confirmation biases in the analysis of trained model. Besides adding modalities,

an experiment in less-controlled scenario, where there is no previous knowledge of the dataset and of the trained

model is primary, as this would further prove the effectiveness of the framework.

Employing a white-box model and testing different hypotheses, comparing the ones for which there is semantic

match with the knowledge we have of its inner working would also be important, as it is yet another way to test

the effectiveness of the framework.

Trials with other feature attribution methods, besides highlighting the applicability of semantic match, could be

interesting under another perspective: do different explanatory methods bring to the same conclusions? That

is, are the results regarding a hypothesis and a model invariant under changes of explanatory method? And if

they are not, is this generally true? If so, the framework itself might not be reliable enough; conversely, if this

happens only for some feature attribution methods, while most of the other agree, we might have reasons to rely

less on the explanatory methods that have divergent results.

There are also many improvements which could be implemented in the codebase: a low-hanging fruit in that

direction is the refactoring of the loops for testing hypotheses at different thresholds; currently, operations to

calculate distances are superfluously repeated, and re-implementing some list comprehensions with numpy should

further speed up the process. While the repetitions were noted only later in development, list comprehensions

were chosen to make code more readable and understandable, which was deemed more valuable at this stage.

Furthermore, hypotheses generation and automatic hypotheses testing are also important upgrades; they would

not only provide a semi-automatic framework to make and test hypotheses on model’s behaviours, but might

also further reduce the risk of confirmation bias, as human intervention in the explanatory process is reduced.

In the theoretical realm, one of the main future objectives is the formalization of hypotheses in logical

language, which should provide structure to the space of hypotheses, in turn enabling automated generation and

search. This should also allow an analysis of the dependence of the results to the specification of hypothesis: for

instance, how does adding logical connectives or changing signs of the mathematical expressions reflect on the

results of the metrics? Are there some patterns and relations in such changes?

In addition, fine-tuning the metrics and studying in more detail how their scores link back to the distribution of

explanations, albeit not an easy task, could make these cumulative measures even more informative, providing a

better picture of what the model is doing.

A broader inquiry on the relation between hypotheses and distances is also needed, as both MD and AUC

rely on the definition of the latter. While for simple hypothesis like θ1 finding the right distance can be

straightforward, for more complex conjectures multiple options seem natural, and choosing between them is

not always immediate.9 After defining a logical language to formalize the hypotheses, one could also create

algorithms to automatically specify the distance.

Finally, one could define counterfactual hypotheses by adding new data points that differ in specific features,

compute their predictions and explanations, and re-evaluate the hypotheses on them. This is a way to investigate

some specific virtual scenarios related to the actual use cases of the model. For example, one could generate new

data points near the outliers (by regenerating some features with a re-sampling from the dataset distribution),

9For instance, in θ4 we used the absolute difference between the contribution of the answer’s sentence, but we could have used
also the absolute difference between the contribution of the sentence with the highest contribution, or, even, the absolute difference
between, on one side, the absolute difference between the contributions of sentence with the highest contribution and the answer’
sentence of the examined tuple, and on the other, the same statistic for the reference point.
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and compare the explanations obtained for the new points with the ones of the outliers. In principle, if the

median distance is small, it will imply that the behaviour of the model over similar outliers will at least be

coherent, and therefore we expect the model to behave as observed during training for similar and unseen critical

points.
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[30] Jorge M. Lobo, Alberto Jiménez-Valverde, and Raimundo Real. “AUC: A Misleading Measure of the

Performance of Predictive Distribution Models”. In: Global Ecology and Biogeography 17.2 (Mar. 2008),

pp. 145–151. doi: 10.1111/j.1466-8238.2007.00358.x. (Visited on 02/21/2024).

[31] Octavio Loyola-Gonzalez. “Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses

From a Practical Point of View”. In: IEEE Access 7 (2019), pp. 154096–154113. doi: 10.1109/ACCESS.20

19.2949286. (Visited on 04/16/2024).

60

https://arxiv.org/abs/2201.08675
https://doi.org/10.1016/j.cviu.2022.103552
https://doi.org/10.3390/app11073184
https://arxiv.org/abs/2012.01007
https://doi.org/10.1016/S2589-7500(21)00208-9
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1016/0095-0696(78)90006-2
https://www.nj.gov/health/eoh/rtkweb/documents/fs/1357.pdf
https://www.nj.gov/health/eoh/rtkweb/documents/fs/1357.pdf
https://spacy.io/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://arxiv.org/abs/2302.08160
https://doi.org/10.1007/s44163-021-00009-x
https://doi.org/10.18653/v1/2020.emnlp-main.84
https://arxiv.org/abs/2202.01602
https://doi.org/10.1145/3065386
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1109/ACCESS.2019.2949286
https://doi.org/10.1109/ACCESS.2019.2949286


[32] W Lu et al. “Deep Learning for HRRP-based Satellite Recognition”. In: Journal of Physics: Conference

Series 1267.1 (July 2019), p. 012002. doi: 10.1088/1742-6596/1267/1/012002. (Visited on 04/10/2024).

[33] Scott Lundberg. An Introduction to Explainable AI with Shapley Values. 2018. url: https://shap.readt

hedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20

AI%20with%20Shapley%20values.html (visited on 05/27/2024).

[34] Scott Lundberg. Explaining a Question Answering Transformers Model. 2018. url: https://shap.readt

hedocs.io/en/latest/example_notebooks/text_examples/question_answering/Explaining%20a%2

0Question%20Answering%20Transformers%20Model.html (visited on 05/27/2024).

[35] Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. Nov. 2017. arXiv:

1705.07874 [cs, stat]. (Visited on 02/21/2024).

[36] Scott M. Lundberg et al. “From Local Explanations to Global Understanding with Explainable AI for

Trees”. In: Nature Machine Intelligence 2.1 (Jan. 2020), pp. 56–67. doi: 10.1038/s42256-019-0138-9.

(Visited on 02/21/2024).

[37] Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry. The

MIT Press, 2017. doi: 10.7551/mitpress/11301.001.0001. (Visited on 05/27/2024).

[38] John Muschelli. “ROC and AUC with a Binary Predictor: A Potentially Misleading Metric”. In: Journal of

Classification 37.3 (Dec. 2019), pp. 696–708. doi: 10.1007/s00357-019-09345-1. (Visited on 05/27/2024).

[39] Michael Neely et al. A Song of (Dis)Agreement: Evaluating the Evaluation of Explainable Artificial

Intelligence in Natural Language Processing. 2022. arXiv: 2205.04559 [cs.CL]. (Visited on 05/27/2024).

[40] Pranav Rajpurkar et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text. Oct. 2016.

arXiv: 1606.05250 [cs]. (Visited on 02/21/2024).

[41] Shaina Raza, Deepak John Reji, and Chen Ding. “Dbias: Detecting Biases and Ensuring Fairness in

News Articles”. In: International Journal of Data Science and Analytics (Sept. 2022), pp. 1–21. doi:

10.1007/s41060-022-00359-4. (Visited on 05/27/2024).

[42] Shaina Raza et al. NBIAS: A Natural Language Processing Framework for Bias Identification in Text. Aug.

2023. arXiv: 2308.01681 [cs]. (Visited on 04/12/2024).

[43] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”: Explaining the

Predictions of Any Classifier. Aug. 2016. arXiv: 1602.04938 [cs, stat]. (Visited on 04/14/2024).

[44] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and Organization in

the Brain.” In: Psychological Review 65.6 (1958), pp. 386–408. doi: 10.1037/h0042519. (Visited on

04/12/2024).

[45] Cynthia Rudin. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use

Interpretable Models Instead. 2019. arXiv: 1811.10154 [stat.ML]. (Visited on 05/27/2024).

[46] Germans Savcisens et al. “Using Sequences of Life-events to Predict Human Lives”. In: Nature Computa-

tional Science 4.1 (Dec. 2023), pp. 43–56. doi: 10.1038/s43588-023-00573-5. (Visited on 04/11/2024).

[47] Lloyd S. Shapley. Notes on the N-person Game - II: The Value of an N-person Game. Santa Monica, CA:

RAND Corporation, 1951. doi: 10.7249/RM0670. (Visited on 05/27/2024).

[48] Benjamin Shickel et al. “Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for

Electronic Health Record (EHR) Analysis”. In: IEEE Journal of Biomedical and Health Informatics 22.5

(Sept. 2018), pp. 1589–1604. doi: 10.1109/JBHI.2017.2767063. (Visited on 04/10/2024).

[49] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features through Propa-

gating Activation Differences. 2019. arXiv: 1704.02685 [cs.CV]. (Visited on 05/27/2024).

[50] Amitojdeep Singh, Sourya Sengupta, and Vasudevan Lakshminarayanan. Explainable Deep Learning Models

in Medical Image Analysis. May 2020. arXiv: 2005.13799 [cs, eess]. (Visited on 04/10/2024).

61

https://doi.org/10.1088/1742-6596/1267/1/012002
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/text_examples/question_answering/Explaining%20a%20Question%20Answering%20Transformers%20Model.html
https://shap.readthedocs.io/en/latest/example_notebooks/text_examples/question_answering/Explaining%20a%20Question%20Answering%20Transformers%20Model.html
https://shap.readthedocs.io/en/latest/example_notebooks/text_examples/question_answering/Explaining%20a%20Question%20Answering%20Transformers%20Model.html
https://arxiv.org/abs/1705.07874
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.1007/s00357-019-09345-1
https://arxiv.org/abs/2205.04559
https://arxiv.org/abs/1606.05250
https://doi.org/10.1007/s41060-022-00359-4
https://arxiv.org/abs/2308.01681
https://arxiv.org/abs/1602.04938
https://doi.org/10.1037/h0042519
https://arxiv.org/abs/1811.10154
https://doi.org/10.1038/s43588-023-00573-5
https://doi.org/10.7249/RM0670
https://doi.org/10.1109/JBHI.2017.2767063
https://arxiv.org/abs/1704.02685
https://arxiv.org/abs/2005.13799
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Appendix A

Details on the implementation of

hypotheses

In this appendix, we delve in the most important aspects and features of the implementation of hypotheses in

the codebase.

Since hypotheses are logical statements, we modelled them as functions that return either true or false.

We define an ad hoc class, with name, description, condition, A and B attributes by default, together with the

additional split idx, theta and aux attributes. The first two default attributes are used during the experiment

for logging and feedback, the third acts as a switch, choosing if the average or max contribution should be used,

while the A and B attributes are functions, implementing the constraint A and describing the behaviour B of

the hypothesis. Their input is a dictionary with two keys for the explanation ei = c1(e(ui)), average, which

is a vector of the sentence contributions (Definition 2.8), and max, which is a vector of sentence contributions

as defined in Footnote 18 of Chapter 2. Additionally, there are keys to specify characteristics of the ui tuple:

pos, max split, max att, em score and f1 score. The last two are used to pass the scores of the model’s

prediction on that data point, while the first is used to pass the location of the sentence in which the correct

answer is located. max split and max att contain respectively the location of the sentence which has maximum

contribution and the amount of contribution of that sentence. With this information it is possible to add

constraints on properties of u, such as answer position or model correctness.

The additional attributes of the Hypothesis class are used as follows: split idx chooses a specific sentence

for the hypothesis (for example in θ1, θ2 and θ3 this equals 0, as in those hypotheses we are interested in the

contribution of the first sentence), theta sets a specific z threshold for the hypothesis, and aux is a dictionary

providing any further information needed for the hypothesis or evaluation of the metrics (for instance labels or

colours for the graphs).

To implement a hypothesis one must define the A and B functions, which, together with the inputs and additional

attributes, should make coding a hypothesis simple and general enough to express very diverse statements about

contributions.

After the hypothesis is defined, the hypothesis compliance function applies it to a Pandas-

Dataframe storing the processed contributions of each data point in Dv. This returns a list with one entry per

data point, 0 if the A-part hypothesis is not satisfied, 1 if the hypothesis is satisfied and 2 if the A-part is satisfied

but the B-part is not. When the A-part returns None, signalling an error, −1 is added. A −2 is added if the

B-part of the hypothesis returns None, while −3 is used if the value returned by A is not in {true, false, None},
and −4 is used in the same case for B. These signals should ease the troubleshooting when the hypothesis is

producing unexpected outputs, and checking if errors occurred just amounts to search if −1, −2, −3 or −4

appear in the list. Furthermore, with a simple list comprehension it is possible to obtain the set of data points

which satisfy the hypothesis, the set of those that only satisfy A, and the set of those that do not satisfy the
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hypothesis (either because they do not comply with its A- or B-part).

Note that the mapping process, the post-processing of SHAP values, the hypothesis and distance are all

independent of the way in which the input is divided into sentences. Any other splitting function could be

employed, thus the number of possible hypotheses is further broadened: while it is reasonable for the dataset

we used to split the context based on sentences, an alternative choice could have been that of splitting the

context into groups of c-many tokens. This is motivated by the fact that, in principle, while the model could

use punctuation to develop the idea of a sentence, dots are often used in English for abbreviations, and might

confuse the model.1 Therefore, one could also investigate if a hypothesis holds on subordinate clauses, or specific

fractions of the context.

1While running the experiment, we actually observed that the spaCy sentencizer we employ is susceptible of such errors.
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Appendix B

List of data points throwing errors for

SHAP values

In the next pages we list all the ids of the original SQuAD validation set that threw an error while calculating

SHAP values. For this reason they were not included in the calculations of MD and AUC.

The error is likely caused by the masking function of the SHAP library. This function is used to generate

the subsets on which the contribution of each feature is calculated, as specified in Definition 1.5. Sometimes,

when proper names are present in the question, an inconsistent tokenization is produced, which in turn throws a

length mismatch error, preventing the calculation of SHAP values. As this does not happen every time a proper

name is in the question, it is hard to find a working patch, and we opted to simply exclude the data points with

this problem.

Out of the 10,570 data points of Dv, a total of 1,191 threw the error, or around 11.3%.
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Table B.1: List of all the ids of data points from the SQuAD validation set that threw errors while calculating SHAP values.

56be53b8acb8001400a50316 56d6edd00d65d21400198251 56be53b8acb8001400a50314 56beb4343aeaaa14008c925d

56bebad93aeaaa14008c92fa 56d70daa0d65d21400198336 56bf3fd53aeaaa14008c9591 56bf6b303aeaaa14008c960e

56d99da8dc89441400fdb5ff 56d9a7addc89441400fdb6a8 56d70daa0d65d21400198334 56bf3e803aeaaa14008c9588

56bf38383aeaaa14008c956f 56beb86b3aeaaa14008c92c1 56bebd713aeaaa14008c932f 56d9a7addc89441400fdb6ab

56beaf5e3aeaaa14008c91ff 56bf48cc3aeaaa14008c95ac 56be53b8acb8001400a50315 57340a094776f4190066177f

5737a9afc3c5551400e51f61 5730ec85e6313a140071cabb 5733d5704776f41900661310 573403394776f419006616df

573403394776f419006616e0 5730c52fb54a4f140068cc47 57373a9fc3c5551400e51e7f 5737a84dc3c5551400e51f5b

573735e8c3c5551400e51e75 5733fd66d058e614000b6735 573749741c45671900574460 5737a9afc3c5551400e51f62

57379a4b1c456719005744cd 573407d7d058e614000b6813 5734025d4776f419006616c4 573796edc3c5551400e51f35

573796edc3c5551400e51f33 57309a6c2461fd1900a9cf03 57340111d058e614000b677d 573796edc3c5551400e51f37

57378862c3c5551400e51f21 5733fe73d058e614000b673f 57377aac1c45671900574479 5730e936aca1c71400fe5b63

5737821cc3c5551400e51f19 5737a9afc3c5551400e51f64 5737a9afc3c5551400e51f63 5730aaa88ab72b1400f9c64f

57378862c3c5551400e51f22 5737432bc3c5551400e51e9c 573750f61c45671900574468 573403394776f419006616de

573735e8c3c5551400e51e73 5737a5931c456719005744e8 5737a5931c456719005744ea 5730ac6b8ab72b1400f9c671

5733fe73d058e614000b673d 5733f9fa4776f41900661620 5737958ac3c5551400e51f2a 5730ac6b8ab72b1400f9c672

573406d1d058e614000b6801 5733f5264776f419006615a5 57377aac1c4567190057447a 5730bf03069b5314008322ed

5733db8dd058e614000b642a 5730ac6b8ab72b1400f9c673 5730c6d3b54a4f140068cc4e 5737a9afc3c5551400e51f65

5730afed069b53140083225f 57378862c3c5551400e51f23 5737a0acc3c5551400e51f48 5737958b1c456719005744c4

573796edc3c5551400e51f34 573403394776f419006616dd 5733fb7bd058e614000b66ff 57379a4b1c456719005744cf

5730b9852461fd1900a9cffb 5730b5cc396df919000962d4 5730ac6b8ab72b1400f9c670 5730b07c8ab72b1400f9c696

5733e5a14776f4190066145c 56dfb6d17aa994140058e056 56de3ebc4396321400ee26e7 56e10179cd28a01900c67415

56de0ed14396321400ee257a 56de148dcffd8e1900b4b5bc 56df9ee138dc421700152108 56e0ccaa7aa994140058e71a

573368e54776f41900660a54 56dfb5777aa994140058e025 56de4a89cffd8e1900b4b7bd 56de0ed14396321400ee2579

56de15104396321400ee25b9 57337f6ad058e614000b5bcd 56e10179cd28a01900c67414 57337f6ad058e614000b5bce

56dfa2c54a1a83140091ebf3 56de4a474396321400ee2787 56de49564396321400ee277a 56de52614396321400ee27fd

573383d0d058e614000b5c39 56de148dcffd8e1900b4b5bd 56de3e414396321400ee26d9 56e74d1f00c9c71400d76f70

56e1e9dfe3433e14004231fd 56e1c2eee3433e1400423138 56e74d1f00c9c71400d76f71 56e11a73e3433e1400422bf3

56e10325cd28a01900c67438 56e1127bcd28a01900c6754a 56e74faf00c9c71400d76f98 56e1b62ecd28a01900c67aa5

56e11d8ecd28a01900c675f3 56e200e4cd28a01900c67c18 56e11d8ecd28a01900c675f5 56e12005cd28a01900c67617

Continued on next page

66



Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

56e1b355e3433e14004230b2 56e7535037bdd419002c3e73 56e1e9dfe3433e14004231fe 56e75b8237bdd419002c3ed4

56e11f05e3433e1400422c31 56e127bccd28a01900c6765e 56e1b8f3e3433e14004230e9 56e1b169cd28a01900c67a75

56e10e73cd28a01900c674ec 56e748a200c9c71400d76f37 56e748a200c9c71400d76f3a 56e120a1e3433e1400422c38

56e1b355e3433e14004230b0 56e1b8f3e3433e14004230e7 56e1ee4de3433e1400423210 56e74d1f00c9c71400d76f6f

56e1aff7cd28a01900c67a6a 56e1b62ecd28a01900c67aa4 56e2042ecd28a01900c67c1f 56e74d1f00c9c71400d76f6e

56e1fc57e3433e140042322f 56e1c720e3433e140042316b 56e1febfe3433e1400423238 56e748a200c9c71400d76f38

56e1c2eee3433e1400423137 56e748a200c9c71400d76f39 56e1b62ecd28a01900c67aa3 56e111e5e3433e1400422b90

56e74af500c9c71400d76f65 56e10f14e3433e1400422b5e 56e111e5e3433e1400422b91 56e1ded7cd28a01900c67bd5

56e1dc62cd28a01900c67bcc 56e20a3ae3433e140042324a 56e10f14e3433e1400422b5f 56e1ec83cd28a01900c67c0a

56e1e9dfe3433e14004231fc 56f852fba6d7ea1400e1756e 56f8907faef23719006261b6 56f86d30a6d7ea1400e17606

56f826a7a6d7ea1400e1742a 56f81537aef2371900625db5 56f84b68aef2371900625fa9 56e77da237bdd419002c403d

56f88c37aef2371900626178 56f86d30a6d7ea1400e17607 56e77b8c00c9c71400d77196 56f8907faef23719006261b5

56f81537aef2371900625db4 56f86680a6d7ea1400e175d1 56f86b44a6d7ea1400e175f9 56f86966aef2371900626056

56e772bf37bdd419002c3fbe 56f8046faef2371900625d73 56f87392aef237190062609a 56e7788200c9c71400d77183

56f8575aaef2371900626001 56e769dc00c9c71400d770ea 56f81393aef2371900625dac 56f897059b226e1400dd0c5d

56f80143aef2371900625d68 56f84760aef2371900625f84 56f80604a6d7ea1400e17388 56f7fde8a6d7ea1400e1736b

56f86680a6d7ea1400e175ce 56f86966aef2371900626055 56f851b1a6d7ea1400e1755e 56f8907faef23719006261b3

56f84d33aef2371900625fb2 56f88025aef2371900626120 56f84760aef2371900625f81 56e772bf37bdd419002c3fbf

56f848e0a6d7ea1400e1752f 56f86680a6d7ea1400e175cf 56f81393aef2371900625da9 56f81537aef2371900625db7

56f80604a6d7ea1400e1738b 56f86d30a6d7ea1400e17609 56e772bf37bdd419002c3fbc 56f879bdaef23719006260e0

56f7e9caaef2371900625c57 56f855caaef2371900625ff7 56f82989aef2371900625e6d 56f84760aef2371900625f82

56f86d30a6d7ea1400e17608 56f867e3a6d7ea1400e175d7 56f87760aef23719006260d0 56e7673a37bdd419002c3f56

56e77e4a00c9c71400d771b3 56f8837aa6d7ea1400e176fe 56f7fde8a6d7ea1400e17367 56f855caaef2371900625ff5

56e763e800c9c71400d77087 56f7ef96aef2371900625c78 56f86966aef2371900626054 56f8907faef23719006261b2

56f867e3a6d7ea1400e175da 56f85bb8aef2371900626013 56f80143aef2371900625d6b 56f8094aa6d7ea1400e17392

56f88690a6d7ea1400e17724 56f7fde8a6d7ea1400e17368 56f7e9caaef2371900625c56 56f80604a6d7ea1400e17387

56f80604a6d7ea1400e17389 56f86d30a6d7ea1400e17605 56e772bf37bdd419002c3fbb 56f851b1a6d7ea1400e1755f

56f88025aef237190062611f 56f81537aef2371900625db3 56f7f15aa6d7ea1400e172ec 56f80604a6d7ea1400e1738a

56f8575aaef2371900625ffe 56f82549a6d7ea1400e17418 56f8c7029e9bad19000a04a4 56f8c7029e9bad19000a04a3

Continued on next page
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

5705fb7f52bb891400689750 56f8a4e99e9bad19000a0254 5706094b52bb8914006897de 56f8a2969e9bad19000a022b

57094a79efce8f15003a7dc6 570960cf200fba1400367f03 56f8a6969e9bad19000a025b 5705e33f52bb89140068964d

56f8b2499b226e1400dd0e3c 57097141200fba1400367ff9 57096c95200fba1400367fbc 5705ec1675f01819005e7770

570d35b7b3d812140066d54f 57096c95200fba1400367fbb 570d2556fed7b91900d45c4a 5705f09e75f01819005e77a4

56f8cc399e9bad19000a0518 56f89a959b226e1400dd0c9f 56f8b2499b226e1400dd0e3d 56f8c5909b226e1400dd0f80

56f8c0cd9b226e1400dd0f38 570d3468b3d812140066d547 56f8aa749b226e1400dd0da8 56f8a4e99e9bad19000a0251

56f8c0cd9b226e1400dd0f35 56f8aa749b226e1400dd0da7 5706143575f01819005e7951 570960cf200fba1400367f04

56f8cc399e9bad19000a0516 571a484210f8ca1400304fc0 5710e8c8a58dae1900cd6b29 57106644b654c5140001f8e5

57107a3ea58dae1900cd69e1 57115b8b50c2381900b54a8b 5710f114a58dae1900cd6b64 57111713a58dae1900cd6c02

57107d73b654c5140001f920 571077ecb654c5140001f90a 5710f114a58dae1900cd6b61 57115c7450c2381900b54aa0

57115ff82419e314009555c6 571094b7a58dae1900cd6a68 57108c95b654c5140001f97d 570d4c3bfed7b91900d45e33

571077ecb654c5140001f90c 57111ab8a58dae1900cd6c3e 571c3c47dd7acb1400e4c09f 57111b95a58dae1900cd6c51

571127a5a58dae1900cd6cc7 571114cfb654c5140001fb0a 571a4b0f10f8ca1400304fd7 5710f2e2a58dae1900cd6b75

571090abb654c5140001f998 57115f652419e314009555ba 571135b8a58dae1900cd6d12 571114cfb654c5140001fb0b

57111428b654c5140001fb00 571135b8a58dae1900cd6d11 5711163bb654c5140001fb14 5711163bb654c5140001fb15

5710eca0a58dae1900cd6b3c 5710eb6fb654c5140001fa1a 571117d4a58dae1900cd6c0a 5711119cb654c5140001fae6

57108198b654c5140001f93b 57106644b654c5140001f8e8 57115f0a50c2381900b54aa7 571077ecb654c5140001f909

57107e6ca58dae1900cd69f5 57107c24a58dae1900cd69eb 571163172419e314009555e7 57114e8d50c2381900b54a5e

57107e6ca58dae1900cd69f2 57111b95a58dae1900cd6c54 57108d69b654c5140001f987 57106185b654c5140001f8db

571126dfa58dae1900cd6cb6 5710f2e2a58dae1900cd6b76 571155ae2419e31400955591 57111428b654c5140001fb01

571117d4a58dae1900cd6c0e 571090abb654c5140001f995 570d4c3bfed7b91900d45e34 571135b8a58dae1900cd6d10

57107a3ea58dae1900cd69e0 57111713a58dae1900cd6c00 57113c6da58dae1900cd6d33 570d4c3bfed7b91900d45e32

571094b7a58dae1900cd6a67 57108073b654c5140001f929 57107e6ca58dae1900cd69f3 571094b7a58dae1900cd6a69

57106d2fb654c5140001f8ef 5710f4b8b654c5140001fa48 571093aba58dae1900cd6a5f 57115dbe2419e314009555a7

571153422419e3140095557e 57109180a58dae1900cd6a44 57111380a58dae1900cd6bd9 57107d73b654c5140001f91d

57111b95a58dae1900cd6c50 571099b2b654c5140001f9b5 5710eb6fb654c5140001fa1b 57109180a58dae1900cd6a42

570d4c3bfed7b91900d45e31 57107a3ea58dae1900cd69de 571090abb654c5140001f997 5710f2e2a58dae1900cd6b73

57112686b654c5140001fbd4 57109180a58dae1900cd6a43 571099b2b654c5140001f9b3 57115ff82419e314009555c5

57114b1a2419e31400955576 57108c95b654c5140001f97a 57108073b654c5140001f925 571c83f3dd7acb1400e4c0dc

Continued on next page
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

5725c604271a42140099d189 5725c604271a42140099d188 571a4ead10f8ca1400304fdd 57265526708984140094c2bd

571a4ead10f8ca1400304fde 5725c604271a42140099d186 571c96095efbb31900334dbd 571cbe35dd7acb1400e4c13e

571c7abfdd7acb1400e4c0bc 571ccc00dd7acb1400e4c15e 571ccfbadd7acb1400e4c165 571ccfbadd7acb1400e4c167

571cca4add7acb1400e4c150 571ce7f25efbb31900334e40 5725b5a689a1e219009abd29 571cd703dd7acb1400e4c184

57261dab38643c19005ad037 571c8198dd7acb1400e4c0cf 5725b76389a1e219009abd4c 57265a58dd62a815002e8271

571cd5b1dd7acb1400e4c179 571cbe35dd7acb1400e4c13d 5725c7f5271a42140099d1a2 5725c604271a42140099d187

571ce6655efbb31900334e36 571cd11add7acb1400e4c16e 571c7d55dd7acb1400e4c0c6 5725cda338643c19005acd40

571cc6f85efbb31900334de4 571a53d410f8ca1400304fe5 5726241189a1e219009ac2e0 571cbe35dd7acb1400e4c13c

571cbe35dd7acb1400e4c140 571cd88ddd7acb1400e4c18d 571a4d1a4faf5e1900b8a95a 5725c604271a42140099d185

571cbe35dd7acb1400e4c13f 571ccfbadd7acb1400e4c166 571caac55efbb31900334dc7 5725bb34271a42140099d0cb

5725c6dcec44d21400f3d532 5726975c708984140094cb21 5726975c708984140094cb20 5726b929f1498d1400e8e8ea

57269bb8708984140094cb95 5726975c708984140094cb1f 5726bc1add62a815002e8ea7 57263eaa38643c19005ad372

5725b9db38643c19005acbe1 5725be0f271a42140099d11a 57269e3bf1498d1400e8e519 57269e3bf1498d1400e8e517

5726a09f708984140094cc39 5729edd56aef051400155115 5726bc1add62a815002e8ea8 5729e6313f37b319004785a9

5725c0f289a1e219009abdf6 5726c5a9f1498d1400e8eac7 5729f3831d0469140077967f 57263eaa38643c19005ad371

57268e2bf1498d1400e8e3b1 5726926a5951b619008f7709 5725c0f289a1e219009abdf4 57265e455951b619008f70bc

5729eb34af94a219006aa6cb 5726bc1add62a815002e8ea6 5726b718dd62a815002e8dc1 5725c071271a42140099d127

5726b929f1498d1400e8e8eb 5726c3da708984140094d0db 5729ea263f37b319004785bf 5725c0f289a1e219009abdf2

5725b9db38643c19005acbe2 5726c3da708984140094d0d9 5726926a5951b619008f770a 572847dd4b864d19001648bf

572651f9f1498d1400e8dbf0 57263eaa38643c19005ad373 57269e3bf1498d1400e8e518 5726938af1498d1400e8e448

5726c5a9f1498d1400e8eac8 5726bc1add62a815002e8eaa 5726c3da708984140094d0da 572651f9f1498d1400e8dbf1

572847dd4b864d19001648bd 5725c0f289a1e219009abdf5 57265e455951b619008f70bd 572651f9f1498d1400e8dbef

57264e455951b619008f6f65 5726b718dd62a815002e8dc2 5726b718dd62a815002e8dbe 572651f9f1498d1400e8dbf2

5729e500af94a219006aa6b7 5726c002708984140094d074 5726938af1498d1400e8e449 5726c3da708984140094d0dc

572a020f6aef051400155199 572651f9f1498d1400e8dbee 5726b929f1498d1400e8e8e8 5726bc1add62a815002e8ea9

5726c5a9f1498d1400e8eac5 5726938af1498d1400e8e446 5726b929f1498d1400e8e8e9 5725c0f289a1e219009abdf3

5726c5a9f1498d1400e8eac4 5726b929f1498d1400e8e8ec 572a020f6aef05140015519a 5726b718dd62a815002e8dbf

5726ba2c708984140094cf59 5726938af1498d1400e8e447 57269e3bf1498d1400e8e51a 5726c5a9f1498d1400e8eac6

5725c95f38643c19005accf3 5726ba2c708984140094cf5b 57265e455951b619008f70bb 5726b718dd62a815002e8dc0
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

5726a09f708984140094cc3a 57269f3ef1498d1400e8e537 5725cbb289a1e219009abed5 57269e3bf1498d1400e8e516

5725be0f271a42140099d118 572a020f6aef051400155198 5725b9db38643c19005acbe3 5726938af1498d1400e8e44a

57268f05dd62a815002e8994 572658daf1498d1400e8dcb0 57263b1638643c19005ad333 572683075951b619008f7517

57265d86f1498d1400e8dd54 572647d0708984140094c14e 57268a37f1498d1400e8e33f 57268c01dd62a815002e8913

572691bedd62a815002e89dd 5725bdbe38643c19005acc39 5726516a708984140094c226 57264cc6dd62a815002e80e7

5725fcbe271a42140099d3af 5725bae289a1e219009abd90 5725bae289a1e219009abd91 57264cc6dd62a815002e80e6

572658daf1498d1400e8dcae 57265746dd62a815002e8219 5726431d271a42140099d7f9 57265746dd62a815002e821c

5725cb33271a42140099d1de 57265746dd62a815002e821b 5726415bec44d21400f3dcd1 5725bdbe38643c19005acc3a

572686fc708984140094c8e6 5726887e708984140094c918 5725e1c4271a42140099d2db 57263eaa38643c19005ad374

57265c10f1498d1400e8dd37 5725bc0338643c19005acc11 5726887e708984140094c91a 572658daf1498d1400e8dcad

5725cb33271a42140099d1dc 5725d34aec44d21400f3d63d 5725c337271a42140099d163 5725c69738643c19005accbc

5725cb33271a42140099d1db 5726431d271a42140099d7f8 5725c69738643c19005accbb 57265746dd62a815002e8218

57268da7f1498d1400e8e39c 572691bedd62a815002e89dc 57264cc6dd62a815002e80e4 5725d662ec44d21400f3d689

5725cb33271a42140099d1df 5725d662ec44d21400f3d688 57263b1638643c19005ad335 57265aaf5951b619008f706f

572683075951b619008f7515 57264845f1498d1400e8db0d 572655e5f1498d1400e8dc60 57268a37f1498d1400e8e33e

572646655951b619008f6ebf 57268f05dd62a815002e8992 57265e97708984140094c3c6 57264e66dd62a815002e811b

57264228ec44d21400f3dcf5 5725ce4d38643c19005acd51 5725fabc89a1e219009ac12b 5726431d271a42140099d7f7

57264e66dd62a815002e811a 57264d58f1498d1400e8db7c 5725e1c4271a42140099d2da 57264a0ef1498d1400e8db43

5725c69738643c19005accb9 5726446a89cfff1900a8404e 5726398589a1e219009ac589 5726400589a1e219009ac5ee

57263eaa38643c19005ad375 5726431d271a42140099d7f5 572655e5f1498d1400e8dc61 5725d34089a1e219009abf52

57264cfa708984140094c1c6 5725f00938643c19005aced7 57265e97708984140094c3c4 57268a37f1498d1400e8e33d

572658daf1498d1400e8dcaf 57264b1ddd62a815002e80a1 5725c57a89a1e219009abe61 572655e5f1498d1400e8dc5f

57265e97708984140094c3c5 572634a789a1e219009ac56e 57264fe65951b619008f6fa1 57263b1638643c19005ad336

5726415bec44d21400f3dcd2 57265c10f1498d1400e8dd36 572658daf1498d1400e8dcac 57263b1638643c19005ad334

5726400589a1e219009ac5f2 572647d0708984140094c14b 5725d34aec44d21400f3d63b 57265d86f1498d1400e8dd50

57264a0ef1498d1400e8db40 572655e5f1498d1400e8dc62 5726398589a1e219009ac58a 5725db98ec44d21400f3d6c7

572647935951b619008f6ec9 572646655951b619008f6ec1 572691bedd62a815002e89de 57266193dd62a815002e832a

57265d08708984140094c39b 57268d1b708984140094c9cf 57265d08708984140094c398 57267383dd62a815002e8554

5726800add62a815002e8754 572671165951b619008f72b8 57267f695951b619008f74bf 57267de1f1498d1400e8e196
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

57266ab3dd62a815002e8437 57269698dd62a815002e8a70 57266e72f1498d1400e8df8c 572673f5708984140094c69c

572673f5708984140094c69b 57265f605951b619008f70dc 57266e72f1498d1400e8df8e 5726a0205951b619008f781f

57266ec2dd62a815002e84a3 5726769c708984140094c715 572679c35951b619008f73df 57267947f1498d1400e8e0ec

572678c0dd62a815002e8641 57269120708984140094ca5c 572673f5708984140094c69f 57269fab5951b619008f7809

572657d9dd62a815002e8230 57268d1b708984140094c9ce 5726a9ff708984140094cd4d 57269fab5951b619008f7808

572671165951b619008f72ba 57269698dd62a815002e8a6f 5726769c708984140094c712 57269698dd62a815002e8a6e

57265f605951b619008f70df 5726847f708984140094c8ab 572686ac5951b619008f75ac 57266193dd62a815002e832e

57269e80f1498d1400e8e520 57267383dd62a815002e8553 57267947f1498d1400e8e0ed 572677e7708984140094c724

572677e7708984140094c723 57269698dd62a815002e8a6d 56d9c3a6dc89441400fdb7b5 5733638fd058e614000b59e8

57335fcad058e614000b5971 5733a2a9d058e614000b5f28 5733a2a9d058e614000b5f2a 5733a32bd058e614000b5f34

57332562d058e614000b5734 56bec8a13aeaaa14008c9437 573362b94776f41900660975 56bec9133aeaaa14008c9445

56bec9133aeaaa14008c9446 5733a5f54776f41900660f46 5733638fd058e614000b59ea 57332c1e4776f4190066073d

57339dd94776f41900660ecf 56d9c79edc89441400fdb805 56bec2013aeaaa14008c9372 56d7253b0d65d214001983d5

5733314e4776f4190066076c 56d9b7dcdc89441400fdb744 5733a32bd058e614000b5f36 57332442d058e614000b5722

57336755d058e614000b5a3f 57335c20d058e614000b58fa 57339c16d058e614000b5ec6 57332442d058e614000b5723

5733a2a9d058e614000b5f2b 57332562d058e614000b5731 56d71d150d65d2140019836f 57335c20d058e614000b58f9

57339dd94776f41900660ecd 57339a554776f41900660e77 56d9bdc1dc89441400fdb76a 57339ad74776f41900660e89

57332442d058e614000b5721 56becb823aeaaa14008c948d 5733a32bd058e614000b5f32 57339c16d058e614000b5ec9

57339902d058e614000b5e72 5733a32bd058e614000b5f33 57335c20d058e614000b58fd 56bec4343aeaaa14008c93ac

5726e06df1498d1400e8ee55 5726cc11dd62a815002e9089 5726f755708984140094d738 5726e4eedd62a815002e943a

57275273dd62a815002e9b19 5727387b5951b619008f86ea 5726e834dd62a815002e94a7 5726dba1dd62a815002e92e6

5726fc63dd62a815002e9707 57275e125951b619008f88d8 5726f90b708984140094d760 57273d19708984140094db41

5726e4eedd62a815002e943b 5726f90b708984140094d75d 5726cfa3708984140094d20a 572747dd5951b619008f87a9

57275573708984140094dc45 57273d19708984140094db3e 5726c9a4708984140094d172 5727387b5951b619008f86eb

5726dba1dd62a815002e92e5 5726d4a45951b619008f7f6a 572747dd5951b619008f87ac 5726c9a4708984140094d171

5726e834dd62a815002e94a6 572747dd5951b619008f87ab 5726e4eedd62a815002e9439 5726d4a45951b619008f7f69

57267b755951b619008f7434 5726e4eedd62a815002e9438 5726af765951b619008f7a52 5726ddf6f1498d1400e8ee06

572732f8f1498d1400e8f475 5726e313f1498d1400e8eeb4 5726ddf6f1498d1400e8ee05 5727580bf1498d1400e8f69b

5726f2375951b619008f8313 5726e3c4dd62a815002e9408 572739a75951b619008f86f9 57277632f1498d1400e8f8c7
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

5726eb4b5951b619008f826d 572776e85951b619008f8a81 572a135daf94a219006aa7a0 5726e08e5951b619008f810f

5726ddf6f1498d1400e8ee04 572758c3dd62a815002e9b78 5726edecdd62a815002e957e 57275250708984140094dc27

5726dcbddd62a815002e9321 5726f2375951b619008f8311 5726ed6cf1498d1400e8f00f 5726e3c4dd62a815002e9404

5726f2375951b619008f830f 57269e8a5951b619008f77f5 5728eff82ca10214002daadf 57273887dd62a815002e99a3

5726ed6cf1498d1400e8f00c 5726f36cdd62a815002e9601 5726ea985951b619008f8265 5726f868dd62a815002e9685

5726c20fdd62a815002e8fa7 572756715951b619008f8879 5726eb4b5951b619008f826c 5726e313f1498d1400e8eeb6

572758c3dd62a815002e9b7b 5726ddf6f1498d1400e8ee08 572771a5f1498d1400e8f841 5726a21bf1498d1400e8e57b

5726d9935951b619008f7ff0 5726ed6cf1498d1400e8f010 5727580bf1498d1400e8f69d 5726c20fdd62a815002e8fa6

5727515af1498d1400e8f63c 5726a00d708984140094cc26 5726d9935951b619008f7fee 5726fa525951b619008f83f7

5726e985dd62a815002e94dc 5726ab47f1498d1400e8e6a4 5726ddf6f1498d1400e8ee07 5727515af1498d1400e8f63d

5726a00d708984140094cc29 5726f36cdd62a815002e9602 5726a21bf1498d1400e8e579 5726e179dd62a815002e93af

5726e313f1498d1400e8eeb2 5726eb4b5951b619008f826b 5726f2375951b619008f8310 5726e65e708984140094d540

5726db5add62a815002e92d5 57275250708984140094dc29 5726db5add62a815002e92d7 5726ef73f1498d1400e8f05e

5726a784708984140094cd01 5726ed6cf1498d1400e8f00e 5728d5793acd2414000dffb7 572908c13f37b31900477fbf

572908c13f37b31900477fbe 5728fb6a1d04691400778ef9 5729efab3f37b319004785cf 5728d6f02ca10214002da912

572a0b0b6aef0514001551f8 5728dddc2ca10214002da9d5 5729081d3f37b31900477faf 5729f39a6aef051400155150

57280f974b864d1900164374 5728fc2eaf94a219006a9ec7 5729081d3f37b31900477fab 5728f2e26aef051400154898

572a142e3f37b319004786bb 57274f67708984140094dbf8 572a0bf96aef051400155206 572a12386aef051400155236

572a03086aef0514001551a4 5728202c4b864d19001644ee 572a07fc6aef0514001551de 5729f8516aef05140015516d

5728dafe3acd2414000e0060 572905ce1d04691400778f84 5728d9403acd2414000e001d 57271f125951b619008f8639

57282dfb4b864d1900164669 5728d5793acd2414000dffb4 5728fc2eaf94a219006a9eca 572753335951b619008f8856

572900f73f37b31900477f6c 5728151b4b864d1900164428 5728d5793acd2414000dffb3 5729f9953f37b31900478620

572822233acd2414000df557 5728dafe3acd2414000e005e 57274e0d708984140094dbe8 572754fff1498d1400e8f661

5729f9953f37b31900478621 572812e74b864d19001643cf 57273f27dd62a815002e9a0a 5729f799af94a219006aa709

572a02483f37b3190047864b 5726eb8bf1498d1400e8efe3 572a07fc6aef0514001551dd 5728fb6a1d04691400778ef8

5728fd206aef05140015494e 5728fb6a1d04691400778ef7 5726eb8bf1498d1400e8efe6 5729fa40af94a219006aa70f

572a06af3f37b31900478668 572900f73f37b31900477f6b 5728fb6a1d04691400778ef5 5729efab3f37b319004785d0

572742bd5951b619008f8786 5729f06f1d04691400779675 5726eb8bf1498d1400e8efe5 572a0ce11d04691400779700

572a10cd6aef051400155223 5728ebcb3acd2414000e01db 5729f39a6aef05140015514f 572900f73f37b31900477f6d
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5729efab3f37b319004785d2 572a142e3f37b319004786b9 57280f974b864d1900164373 572a0ce11d04691400779701

5728fc2eaf94a219006a9ec8 5728dc2d3acd2414000e007f 5728d6f02ca10214002da911 572908c13f37b31900477fc0

57274971708984140094dbbd 5729d609af94a219006aa665 5727ff083acd2414000df1ab 5727ee372ca10214002d99ee

57274f49f1498d1400e8f620 5727ec062ca10214002d99b8 5727cd0f4b864d1900163d72 572757bef1498d1400e8f690

5729e1101d04691400779645 572756fe708984140094dc74 5727c3b02ca10214002d95bb 5727b0892ca10214002d93e8

5727e8424b864d1900163fc1 5729f1283f37b319004785d7 572750df5951b619008f8830 572756fe708984140094dc73

5729e4291d04691400779654 57274a1edd62a815002e9a9a 5727ee372ca10214002d99ef 5727d0f73acd2414000ded13

5727c0402ca10214002d9565 5729e1e36aef0514001550be 572759665951b619008f8887 572a1fe16aef0514001552d0

57281f203acd2414000df4f6 5729f4e46aef051400155156 5727ffb5ff5b5019007d9a8e 572a11663f37b31900478697

572a20816aef0514001552e8 572a1046af94a219006aa78f 572a05eb3f37b31900478653 572a20816aef0514001552e7

572a13841d0469140077973e 572813b52ca10214002d9d68 572a0bafaf94a219006aa765 572a1046af94a219006aa78d

572a1a5c6aef051400155285 5727ffb5ff5b5019007d9a8d 572847ff3acd2414000df86d 57283e652ca10214002da16a

57284b904b864d19001648e3 57282036ff5b5019007d9d9f 572a0d21af94a219006aa783 572a1dbb3f37b319004786f8

572825714b864d1900164591 572a1ba46aef051400155290 572a13841d0469140077973d 57283e652ca10214002da167

5728710c3acd2414000df9f1 57287338ff5b5019007da236 5729046aaf94a219006a9f4d 5728705c2ca10214002da35b

572909406aef0514001549dd 572913626aef051400154a33 57284d484b864d1900164904 57287c142ca10214002da3d0

57286b003acd2414000df9c3 57287338ff5b5019007da232 572918bd3f37b31900478015 57286fa83acd2414000df9e9

572914441d04691400779025 57291b461d04691400779049 57287e512ca10214002da3f8 5728809f2ca10214002da40c

572867543acd2414000df9a1 5728f9342ca10214002dab52 5728759cff5b5019007da25e 57286c8cff5b5019007da21c

57287fec4b864d1900164a3c 57290b21af94a219006a9fd2 572867543acd2414000df9a5 572883153acd2414000dfa71

5728661e2ca10214002da2ea 57290d811d04691400778fd1 5728683b3acd2414000df9b1 572882242ca10214002da422

5728742cff5b5019007da246 5728742cff5b5019007da248 5728683b3acd2414000df9b0 57286ead2ca10214002da349

572863c72ca10214002da2d5 5728683b3acd2414000df9af 572867543acd2414000df9a4 572864542ca10214002da2e1

572883153acd2414000dfa72 57286ead2ca10214002da34a 57287ee3ff5b5019007da275 57287c142ca10214002da3d1

572881022ca10214002da419 5728855d3acd2414000dfa90 57286192ff5b5019007da1df 572867543acd2414000df9a2

57291beb1d04691400779054 57287e512ca10214002da3fb 572881022ca10214002da416 5729046aaf94a219006a9f4f

572909406aef0514001549dc 5728742cff5b5019007da249 572881d34b864d1900164a5e 57287e512ca10214002da3f9

57286d4f2ca10214002da329 57286951ff5b5019007da212 5728fea1af94a219006a9ef6 572871bd3acd2414000dfa04

572963221d04691400779386 572975073f37b31900478415 57296c5c3f37b31900478381 572956c86aef051400154d1d

Continued on next page
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

57293bc91d0469140077919f 57296c5c3f37b3190047837f 57296e43af94a219006aa3e8 5729645b3f37b31900478322

572957361d046914007792d1 5729582b1d046914007792e7 572926086aef051400154ac4 57296eee6aef051400154e91

57296fd71d04691400779440 57296f85af94a219006aa406 572973ccaf94a219006aa44a 5729645b3f37b31900478321

572957ad1d046914007792da 57297427af94a219006aa453 57296fd71d04691400779443 572975073f37b31900478418

57296de03f37b3190047839b 572963876aef051400154dd3 572970916aef051400154ebe 572968cf1d046914007793cd

572970916aef051400154ebc 57296f293f37b319004783a4 572975511d046914007794a8 572958cc6aef051400154d2c

5729582b1d046914007792e4 572957361d046914007792d0 572963876aef051400154dd5 572965e73f37b3190047832b

572927d06aef051400154adf 5729686d1d046914007793c5 572974923f37b3190047840e 57296eee6aef051400154e90

57297725af94a219006aa49b 5729582b1d046914007792e3 57296eee6aef051400154e92 572965566aef051400154e03

572966ebaf94a219006aa395 57296eb01d04691400779437 572968cf1d046914007793ce 57294baaaf94a219006aa26d

57296d1b1d0469140077940d 57296de03f37b3190047839d 5729703d3f37b319004783bb 572967e31d046914007793b3

572970916aef051400154eba 57296f85af94a219006aa403 572963221d04691400779385 572963221d04691400779389

57297427af94a219006aa456 57295b5b1d04691400779316 572976cfaf94a219006aa496 57296f85af94a219006aa404

57296f85af94a219006aa407 57296de03f37b3190047839e 572974923f37b3190047840f 572962953f37b319004782f8

572956c86aef051400154d1e 57292046af94a219006aa0bb 5729789b6aef051400154f6f 57296eb01d04691400779439

5729544c3f37b31900478259 5729779b6aef051400154f63 5729506d6aef051400154cad 572925491d046914007790c3

57296eb01d04691400779436 572970916aef051400154ebb 5729789b6aef051400154f6e 572957361d046914007792d3

572968cf1d046914007793cf 572978e66aef051400154f77 572975511d046914007794aa 5729686d1d046914007793c4

57293f353f37b3190047819c 572975511d046914007794a7 572963221d04691400779387 572956c86aef051400154d1c

572956c86aef051400154d1b 572958cc6aef051400154d2d 57296d8d1d04691400779421 572962953f37b319004782f7

5729723c6aef051400154eeb 57296d8d1d0469140077941e 572975511d046914007794a9 57297103af94a219006aa424

572967e31d046914007793b1 572924b53f37b31900478067 5729582b1d046914007792e6 572965566aef051400154e01

57296bf96aef051400154e52 57293bc91d0469140077919c 57294e6b1d04691400779275 572958cc6aef051400154d2b

572970916aef051400154ebd 572976791d046914007794b0 5729703d3f37b319004783bc 57293f8a6aef051400154bdf

57296de03f37b3190047839c 572963876aef051400154dd2 57296eee6aef051400154e8f 57296a65af94a219006aa3c4

57296d1b1d0469140077940f 5729735c3f37b319004783ff 5729686d1d046914007793c2 572963876aef051400154dd6

5729686d1d046914007793c1 572976cfaf94a219006aa493 5729703d3f37b319004783bf 572967e31d046914007793b5

572973ccaf94a219006aa44d 57296b151d046914007793f4 5729582b1d046914007792e5 57296eb01d04691400779435

572957ad1d046914007792dd 57297103af94a219006aa426 5729789b6aef051400154f70 572961f61d0469140077935b
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

57294baaaf94a219006aa26b 57296d8d1d0469140077941f 57297427af94a219006aa454 57297991af94a219006aa4ba

5729784b1d046914007794c9 572962953f37b319004782f6 572928bf6aef051400154af2 57295a116aef051400154d48

5729729a1d0469140077948f 5729686d1d046914007793c3 572957361d046914007792cf 57296eee6aef051400154e8e

572965566aef051400154e02 57300a9a04bcaa1900d77067 57297bc9af94a219006aa4cb 57298ef11d0469140077952d

572996c73f37b319004784b4 572ff56304bcaa1900d76f2e 572f6ec7a23a5019007fc624 572fbfa504bcaa1900d76c74

57300580b2c2fd1400568750 572faf74b2c2fd1400568348 572989846aef051400154fc3 5730042804bcaa1900d77013

5729a03f1d04691400779595 57299ec43f37b3190047850e 57299c2c6aef051400155020 57297bc9af94a219006aa4c7

572996c73f37b319004784b6 57299c2c6aef051400155022 572fb059947a6a140053cb83 57299ec43f37b31900478510

572f6c85947a6a140053c943 572ff56304bcaa1900d76f30 57299d1c1d04691400779582 572faec7b2c2fd1400568335

57299d1c1d04691400779581 572f58d9a23a5019007fc580 57297d421d046914007794e5 572fadcbb2c2fd140056832b

57299021af94a219006aa50f 572ff430a23a5019007fcbaa 57299021af94a219006aa50b 572ff56304bcaa1900d76f31

57299326af94a219006aa518 57297ed93f37b31900478460 5730042804bcaa1900d77011 572fbb04a23a5019007fc8f8

572f7b33947a6a140053c9a4 572985011d04691400779502 5730069004bcaa1900d7702f 572f7588947a6a140053c988

572ffb02b2c2fd14005686b7 57300888b2c2fd1400568778 572faf74b2c2fd140056834b 5729a03f1d04691400779594

572ff4ca04bcaa1900d76f27 572facb0a23a5019007fc867 57299c2c6aef051400155021 572fad30a23a5019007fc86e

572985011d04691400779503 572fe288a23a5019007fcad9 572f6ec7a23a5019007fc623 572f59b4a23a5019007fc587

573003dd947a6a140053cf43 572fbfa504bcaa1900d76c77 572f58d9a23a5019007fc57f 572ff293947a6a140053ce56

57299c2c6aef051400155024 57300bf504bcaa1900d7708a 572ff935b2c2fd140056869c 572ff5fcb2c2fd140056865b

5730042804bcaa1900d77012 572ffb02b2c2fd14005686b8 57298ef11d0469140077952f 573009a004bcaa1900d77051

5729a03f1d04691400779596 572fff45947a6a140053cf2a 572fe92204bcaa1900d76e98 572faf74b2c2fd140056834a

5730042804bcaa1900d77014 572996c73f37b319004784b3 57300888b2c2fd1400568779 572ff56304bcaa1900d76f2f

572973f76aef051400154f0b 572faf74b2c2fd1400568347 57297a276aef051400154f89 572facb0a23a5019007fc865

57300911947a6a140053cfb9 57308f6b8ab72b1400f9c580 57309446396df919000961bc 5730909d8ab72b1400f9c58e

573092088ab72b1400f9c596 573088da069b53140083216e 57300137b2c2fd140056871a 57309ef18ab72b1400f9c603

573083dc2461fd1900a9ce6e 572fffb1b2c2fd14005686fd 572ff932a23a5019007fcbd6 573099ee8ab72b1400f9c5de

573027d6a23a5019007fcea1 573011de04bcaa1900d770fa 573010fab2c2fd14005687d7 572fdc34a23a5019007fca97

57309ef18ab72b1400f9c601 572ffabf04bcaa1900d76fa1 573088da069b53140083216b 572fda6fb2c2fd140056850f

572ff932a23a5019007fcbd7 572ff86004bcaa1900d76f67 57300200b2c2fd1400568729 5730005db2c2fd1400568706

573010fab2c2fd14005687db 573083dc2461fd1900a9ce71 57308ddc396df919000961a5 572ff626947a6a140053ce92

Continued on next page
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Table B.1 : List of data points throwing errors when calculating SHAP values. (Continued)

572fd73e947a6a140053cd32 57309ef18ab72b1400f9c604 5730b255396df919000962b1 572ffd9e04bcaa1900d76fc7

57300200b2c2fd140056872a 5730b8ca8ab72b1400f9c705 573010fab2c2fd14005687d9 573083dc2461fd1900a9ce70

5730005db2c2fd1400568705 5730bb522461fd1900a9d011 5730131c947a6a140053d055 573020f7b2c2fd14005688f7

573085ea8ab72b1400f9c550 5730876a396df9190009617c 5730bb522461fd1900a9d012 5730b6592461fd1900a9cfd0

57309446396df919000961ba 572ffd9e04bcaa1900d76fc8 57309bfb8ab72b1400f9c5e8 5730b8ca8ab72b1400f9c708

5730088e947a6a140053cfac 572ff932a23a5019007fcbd5 573011de04bcaa1900d770fd 57308ddc396df919000961a7

572ff86004bcaa1900d76f68 572ff626947a6a140053ce8f 5730b6592461fd1900a9cfd2 573088da069b53140083216c

572ff626947a6a140053ce90 5730876a396df9190009617d 572fc5a1947a6a140053cc8b
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Appendix C

Distance densities

In the next pages, we showcase the plots of distance densities of each of the four hypotheses of Chapter 3, at

different thresholds. The x-axis is for the distance value, while the y-axis is used to display the frequency of that

value.

Results for the biased and the unbiased model are presented side by side; the tuples that satisfy the hypothesis

are coloured in blue, while those that only satisfy the A-part of the hypothesis are coloured in orange. On the

top of each couple of plots, the threshold is specified together with the condition, which is always average, as

for sentence contribution we averaged between starting and ending values (see Definition 2.8 and Footnote 18 of

Chapter 2).

These plots help us to visualize the difference between Cθ and CA in an intuitive way: if the two colours are

well separated, AUC will be high, whereas, if the two have a lot of overlap, AUC will be low.
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Appendix D

Additional results considering the

question

In the main text we had only short space to discuss the inclusion of the question in the processed contribution,

so we provide more detail here.

Previously, we excluded the question from the calculation of sentence contribution as we assumed that

both model should focus on it equally. Inspecting the raw SHAP values 2.2 we had evidence to support this

assumption, as, for both models, the top three tokens by SHAP values were all part of the question.

To be sure, we reprocessed SHAP values following Definition 2.8, this time extending the mapping m so that

it includes the question as the first sentence. Evaluating once again θ1 with the new contribution vectors we

obtained the plots of Figure D.1.

Firstly, we observe that now thresholds higher than 70% are not present in the plot, so the first sentence

contribution is at most < 80%, which in turn means that the question always contributes, and for both models,

at least 20% to the prediction, in line with our expectations.

Furthermore, MD and AUC of both models closely resemble the trends exposed in Section 3.2.1: MD of the

biased model has a flat trend until 40%, and afterwards it increases linearly, signalling that often the model

attributes around 40% of contribution to that sentence. AUC is in line with this, dipping at the same threshold

because there are data points with close to 40% contribution, and that for z = 40% do not satisfy the B-part

of θ1. Considering that the question has contribution of at least 20%, the contribution that the first sentence

receives relative to the other sentences is still very high.

The unbiased model also exhibits trends comparable to Figure 3.1 and 3.2: MD linearly increases with z, and

AUC is high across all thresholds. The minimum MD is reached at 10%, where we also have a highly negatively

skewed distribution for AUC, indicating that a lot of tuples have contribution close to 10%. The small variance

at higher thresholds, as well as the linear increases in MD are evidence that at times fu’s predictions receive a

lot of contribution from the first sentence.

In summary, including the question does not change in any significant way the results and conclusions of

Section 3.2.1. Furthermore, as the question contributes consistently (at least 20%) to the predictions of both

models, it constitutes a confounding factor, if the goal is to analyse how the model’s predictions are influenced

by the context.
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Figure D.1: MD and AUC for θ1 with question. Results for the biased model are displayed in red on the left,
while those for the unbiased are on the right in blue.
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Appendix E

Further evaluations of MD and AUC

In this appendix we provide all the results obtained by choosing the sample and reference set for MD and AUC

differently, as discussed at the beginning of Section 4.2. In the first section we fixed S = U and R = Cθ. In the

second section we add the results for the hypothesis not covered in Section 4.2 for S = U and R = CA.

E.1 U from Cθ
For the first hypothesis, we obtain the same plots of Figure 3.1 and 3.2, as the constraint of θ1 is A := ⊤, and

does not impose any condition on the tuples, we have U = CA, so this evaluation coincides with the previous.

Hypothesis 2 We plot the obtained median distance and AUC in Figure E.1. In comparison to the previous

images (Figure 3.3 and 3.4), MD plots look almost identical, with only a small, but relevant difference for fb.

At z = 50%, adding to S the tuples where either the model is correct or the answer is in the first sentence

further reduces the median and the quartiles, providing another perspective on the previous results: fb behaves

coherently, attributing a lot of importance to the first sentence both on tuples that have the answer in that

sentence and on those which do not; in other words, is not making any distinction based on the location of the

answer.

AUC is here lower for both models: thus, using only the difference of contribution of the first sentence, it

is harder to distinguish among all the tuples in U , those where the models are incorrect and the answer is in

the first sentence from the rest. Notice that at high thresholds, the AUC reaches nearly 1.0, which can be

interpreted as evidence that, when contribution is really high, either the models are rarely wrong or they are

mostly wrong. Inspecting the validity plot for this hypothesis (Figure 3.9, second row, on the left) confirms that

the first alternative is the true one, for both models.

The fact that AUC increases steadily for the unbiased model is further evidence that the more fu focuses on a

sentence, the less likely it is to be wrong, while we cannot say the same for fb: the AUC trend is lower than the

previous evaluation for all thresholds except z ≥ 80%, meaning that based on the amount of contribution that

the first sentence receives, it is hard to predict on which tuples fb will answer correctly.

Hypothesis 3 Median distance and AUC for θ3 are displayed in Figure E.2.

For the biased model, results are similar to the previous paragraph (Figure E.1). Flat AUC around 0.8 for

all the thresholds before 70% and median distance also flat and around 0.2 until that same z, signal that only

at very high thresholds first sentence contribution is a good predictor of Cθ; in turn, this means that also on

tuples not in Cθ the model is regarding the first sentence as very important (50% to 70%). Notice also that in

comparison to Figure 3.5, the median distance is almost equal: adding all the tuples does not change the results,

so the behaviour that the model displays on Cθ and CA is also common on the tuples which do not satisfy A.
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Figure E.1: Median distance (first row) and AUC (second row) for θ2 calculated with S = U and R = Cθ. As
usual, results for the biased model are displayed in red on the left, while those for the unbiased one are on the
right in blue.

For fu median distance exhibit a trend similar to the one of fb, though centred above 0.5. This means, on one

side, that the unbiased model does not always attribute a lot of importance to the first sentence (MD is high),

on the other, that the fb receives a lot of contribution from the first sentence when the answer is there and fu is

correct (MD is flat for the first thresholds). The fact that AUC is high suggests that for fu the first sentence

contribution is a good indicator if we want to predict whether a tuple is in Cθ or not; in other words, if the

contribution is high, the tuple will probably be in Cθ, whereas if the contribution is low, u ̸∈ Cθ. This confirms

our expectations about fu: it has learned to focus a lot on the first sentence only when the answer is there.

Hypothesis 4 In Figure E.3 we plot the semantic match metrics for the fourth hypothesis.

The median distance plots of θ3 in the previous paragraph seem now inverted: the unbiased model has scores

below 0.2 and an increase only after z = 70%, while fb has a trend centred around 0.4. Then, fu is attributing a

lot of contribution to the answer’ sentence both when it is correct and when not. The biased model, on contrary,

focuses a lot on the answer’s sentence when it is correct, which, by all the previous results, only happens regularly

when the answer is in the first sentence. It follows that when the unbiased model is wrong, it might not be due

to the fact that it is looking for the answer in the wrong place, but because of other factors.

AUC of fb is high as the amount of contribution for the answer sentence is a good indicator of model

correctness regardless of the threshold. This is because the biased model focuses consistently on the first sentence

(50%), and thus, somewhat counter-intuitively, whenever the contribution of a sentence which is not the first is

very high (70% or above), it is almost always the answer’ sentence and the model is correct in its predictions.

For the unbiased model, AUC has a linear trend with respect to z. The fact that AUC decreases for the lower
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Figure E.2: Median distance and AUC for θ3 calculated with S = U and R = Cθ.

thresholds when compared to the previous evaluation (Figure 3.7) suggests that when we add all the tuples of U ,
distinguishing where fu is correct based on the contribution of the answer sentence becomes harder. Hence, at

times, and as indicated by the high number of outliers for smaller z of AUC of fu in Figure 3.7, the unbiased

model is making the correct predictions even if it is focusing less prominently on the answer’ sentence. Therefore,

while it is important that the model looks for the answer in the right sentence, it is not always necessary.

E.2 U from CA
We report here the evaluations of MD and AUC for the four hypothesis of Definition 3.1, with CA as reference

set and U as sample set. As for the previous section, θ1 imposes no constraints in A, and thus re-evaluating MD

and AUC using CA is meaningless.

Hypothesis 2 Results for θ2 are shown in Figure E.4. Interestingly both models have very low MD with tight

quartiles and whiskers, and a lot of outliers; respectively, AUC is just below 0.8 for fb, and just above 0.6 for fu,

in this case with very tight quartiles. Inspecting the distance density plots (Figure E.5) we see that the CA set

overlaps almost completely with the set of tuples that do not satisfy A. As the constraint of θ2 imposed that the

answer is not in the first sentence and the model’s prediction is wrong, the above implies that it is impossible to

distinguish those tuples only based on the amount of contribution of the first sentence (and the corresponding

distance). While in light of the previous conclusions this might not be surprising for the biased model, it means

that the unbiased model, when making wrong predictions, is not following a specific pattern based on the first

sentence. On one hand, this is good, as it means that fu is not focusing on the first sentence when it should not,
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Figure E.3: Median distance and AUC for θ4 calculated with S = U and R = Cθ.

on the other, this also implies that solving those errors or finding their cause might not be an easy task.

Hypothesis 3 The results for the third hypothesis, shown in Figure E.6 and E.7 are similar to those for θ5,

Figure 4.3 and 4.4, leading to similar conclusions.

Hypothesis 4 Finally, MD, AUC and distance density for θ4 are presented in Figure E.8 and E.9. For this

hypothesis the CA set is separable for the biased model but not for the unbiased one. Indeed, MD of fb is around

0.5 with high variance, while AUC, albeit having a lot of outliers, is around 0.9, with very tight quartiles. On

contrary, fu has MD under 0.2 and low AUC, just above 0.6, with wider quartiles when compared to fb. Recall

that in this case, the distance is defined as the difference between the contribution of the answer’ sentence.

For the biased model, this can be explained by the fact that it often focuses on the first sentence, making the

wrong prediction and attributing only low contribution on the answer’ sentence. When the model is correct, it is

frequently the case that the answer is in the first sentence, which also has high contribution, and thus, the tuples

where the model is correct will have bigger distance from those where the model is not, giving good separability

of CA. Note that, in general, this is not great: a good model should always receive a lot of contribution from the

answer’ sentence, while fb does that only sometimes.

The unbiased model instead does not separate well the tuples on which its predictions are correct from the others.

This is both positive and negative: on one side, we expect a good model to focus on the correct sentence, and

the low MD of fu confirms that this is happening. On the other, the fact that CA is not separable by the distance

of θ4 suggests that the above behaviour is not sufficient to assure that the model’s prediction will be correct.
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Figure E.4: MD (first row) and AUC (second row) plots for θ2, for the biased (left column, red) and unbiased
(right column, blue) models, calculated with S = U and R = CA.
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Figure E.5: Distance density plots for θ2, for the biased and unbiased models.
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Figure E.6: MD (first row) and AUC (second row) plots for θ3, for the biased (left column, red) and unbiased
(right column, blue) models, calculated with S = U and R = CA.
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Figure E.7: Distance density plots for θ3, for the biased and unbiased models.
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Figure E.8: MD (first row) and AUC (second row) plots for θ4, for the biased (left column, red) and unbiased
(right column, blue) models, calculated with S = U and R = CA.
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Figure E.9: Distance density plots for θ4, for the biased and unbiased models.
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Appendix F

Sign of hypothesis and metrics

In the main text we had little space to discuss how the definition of the behaviour B influences the results of the

semantic match metrics. While this is still an open research question, and a systematic answer would benefit

from a fully formalized syntax for the hypotheses, we add here a new version of θ1, with switched sign, and

compare the previous results with the scores for the new hypothesis, providing insights on the relation between

the specification of θ and the results of the metrics.

The hypothesis we use here is thus:

θ6 := ‘The contribution of the first sentence is ≤ z% of the total contribution.’

θ6 := ⊤ ⇒ c1(e) ≤ z

In Figure F.1 we compare MD scores for θ1 and θ6, while in Figure F.2 we relate AUC results. Both metrics are

calculated by fixing CA as sample set and Cθ as reference set.

Interestingly, MD scores of the biased model seem to be a mirrored version of θ1. As we saw, for fb the

distribution of explanations is close to a normal distribution, with centre at 0.6. Switching the sign, the behaviour

range will increase with z; the same reasoning used to explain the trend for θ1 is still valid, but this time reversed:

at low thresholds, the reference points will be fewer, and far from the median, leading to higher distances, while

the more z increases, the bigger the reference set, and the closer the tuples in it are to the median, decreasing

the distances. Surpassing 0.6, the median will remain low, with a flat trend, as the majority of the tuples falls

near 0.6.

For the unbiased model, the rationale is the same, however, as its distribution is centred around 0.1, we

observe low median distance across all thresholds. For the highest thresholds, the quartiles are wider, due to a

secondary peak of the distribution around 0.7; those explanations fall further away from the main peak, having

higher distances.

The AUC scores, for the biased model are also in line with our previous analysis, and resemble almost

identically the plot for θ1, albeit mirrored on z.

On the other hand, AUC of fu for the two hypotheses are quite different. Indeed, for θ6 the median is always

at 1.0, with no variance between z = 30% and z = 70%, and a lot of outliers. This is due to the fact that θ6

requires to have ≤ z contribution, and, as made clear from Figure 3.8, almost all tuples satisfy this constraint

even at low thresholds (like 30%). At high thresholds, variance increases, and the distribution of AUC scores is

skewed negatively, signalling that predicting θ6-compliance with respect to some reference points is now harder.

This happens because of the second spike in the distribution of explanations: as there are tuples with more than

0.7 contribution from the first sentence, the tuples with more than 0.8 contribution (which do not satisfy θ6)

now fall close to those that satisfy θ6, making prediction harder. Similarly, the big number of outliers is also
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Figure F.1: In the first row, median distance of fb (red) and fu (blue) for θ1. In the second row, median distance
of the two models for θ6.

due to tuples that actually have more contribution from the first sentence, which usually happens when that

sentence contains the answer, as shown in Chapter 3.
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Figure F.2: In the first row, AUC of fb (red) and fu (blue) for θ1. In the second row, AUC of the two models for
θ6.
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Appendix G

Avoiding one more risk
1

Zooming out and looking at the framework as a whole, one might rise concerns regarding the many choices

that need to be made in order to measure semantic match: before applying AUC and MD, one has to choose

an explanation method and to define a function to aggregate low-level features into high-level ones, a distance

between the functions of explanations thus obtained, and, only after, a series of hypotheses to evaluate.2

Given that the ultimate goal of the framework is to properly explain the behaviour of a model without falling

pray to confirmation bias, one might rise the concern that all these choices actually make the user vulnerable to

the very same bias she is trying to avoid.

In the main text this issue was not discussed, as the objective of the thesis was to apply semantic match and

to prove that it can be fruitfully employed on a state-of-the-art model to highlight a bias it may suffer from.

As such, choosing the high-level feature of interest was a natural consequence of the induced bias, and so was

choosing the distance. Nonetheless, in a more general environment, where less is known about the model, the

risk of incurring in confirmation bias might still persist, if one applies the framework carelessly.

The root of the problem is this: because the framework is very general, it must be very flexible, and indeed,

there are only few constraints on the feature aggregation function and on the distance function. However,

this flexibility might be exploited to achieve desired results even against the evidence provided by the feature

attribution methods.

Yet, the above risk can be neutralized in multiple ways.

The definition of the distance function, should, as a rule of thumb, only depend on features that are present

in the considered hypothesis; intuitively, including more features increases the dimensionality, resulting in higher

distance scores, even between very similar explanations. Including fewer features has the opposite effect, reducing

the distance. Furthermore, there are standard candidates to score similarities between vectors, and having to

define a new kind of distance just to get an acceptable match is a tip-off that we might already be suffering from

confirmation bias.

The choice of high-level feature should also closely depend on the behaviour we want to match, with particular

attention regarding the assumptions made about the model and its workings. To give an example, we used

the relative contribution of the first sentence, calculated without including the question; this was motivated by

the assumption that the question was important for both models, and never ignored. However, while it was

a sensible assumption to make, it is something that needs to be checked, in order to avoid confirmation bias.

Hence, we re-evaluated the hypotheses using the same distance function based on the relative contribution of the

first sentence, now calculated including the question. And only because the results substantiated this hypothesis,

we decided to go forward and drop the question from the definition of attention on a sentence3

Thus, in general, one should always try to make any assumptions underlying the definition of the high-level

1I owe inspiration for the following to the committee’s questions and the resulting discussion during the public defense of this
thesis.

2See Chapter 2, Section 2.1.3 in particular.
3See Appendix D.

94



feature explicit, and formulate specific tests to prove that they indeed hold.

In addition, it is possible to form a vocabulary of useful feature aggregators and distances across multiple

experiments in different modalities: indeed, our mappings for sentences work in a very similar manner as the

bounding boxes introduced to measure model’s attention on part of an image in the experiments of [11]. A

similar vocabulary could then be carried on across multiple modalities, to suggest the initial choices of the

experiment or to build a baseline reference.

Finally, in crucial experiments one could add a phase of calibration of the framework to further limit the

arbitrariness of the initial choices: instead of starting directly with the black-box model that needs explanation,

we could begin by training a white-box model for the same dataset and task. Then, formulate hypotheses that

reflect the knowledge we have about the inner workings of the white box model, and experiment with different

choices of distances and high-level features, to see with which we get the best match between the hypotheses,

the behaviour, and the knowledge we have of the model. Since the hypotheses encode that knowledge, they

should display high semantic match, and if they do not, we have a clear sign that the distance or the high-level

feature considered is somewhat ill-defined, and should not be used to evaluate the black-box model. On the

other hand, if high semantic match is observed, we evidence that the distance and high-level feature are aligned

with the phenomena the hypotheses describe, so they can be employed for evaluating the black-box model.
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