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Abstract

Visual information is commonly assumed to complement distributional semantics in achieving human-

like concept understanding, motivating development and evaluation of various vision-language models

(VLMs). However, there have been mixed findings on when and how VLMs outperform unimodal LMs.

One key challenge lies in the representation of abstract words with low perceptability.

In this work, we focus on contrastive VLMs whose text encoders produce visual-semantic representations

for text-only input and have been reported to outperform unimodal LMs across several word-, phrase-,

or sentence-level understanding tasks.

We propose a novel approach to the lexical relation hypernymy (IS A) based on synthetic concepts (“q,

a type of p”), and conduct intrinsic evaluation of text encoders of contrastive VLMs accordingly against

unimodal counterparts with contrastive learning. We find that contrastive VLMs, though generally

outperformed by unimodal sentence transformers possibly due to the absence of unimodal language

modeling, achieve competitive performance on traditional hypernymy benchmarks. We further argue

that contrastive VLMs hold an inherent advantage on distinguishing hypernymy from one particular

distractor relation, coordination (co-hyponymy), and suggest that further research is needed to better

complement contrastive VLMs with textual distributional information.

Moreover, we examine the impact of word concreteness on model behaviour on a newly constructed

dataset, and argue that abstractness does not necessarily pose a more significant challenge to text

encoders of contrastive VLMs than to unimodal LMs. We also highlight the importance of exploring

more systematic evaluation protocols for abstract concept representation.
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Chapter 1

Introduction

Perception plays a crucial role in human language learning, and concepts acquire meaning via interaction

with the external world [Bis+20]. Despite the contemporary success of distributional semantic models

(DSMs) establishing word embeddings from text corpora, distributional semantics [LS23] is criticized

as “a ‘solipsistic’ route to semantics” [Bar16] with no perceptual grounding, affected by the symbol

grounding problem [Har90], and questioned in terms of human-like language understanding [BK20].

Such discussions lead to growing interest in multimodal distributional semantics [BTB14], integrating

complementary distributional and perceptual information with the aim to build more cognitively

plausible models of meaning [AVV09]. It is therefore assumed that multimodal models, especially

vision-language models (VLMs), could establish more human-like concept representations than unimodal

LMs [Bar16; Bis+20].

VLMs integrate multimodal information via fusion strategies from simple concatenation [FL10;

BTB11; KB14] to neural mechanisms [Lu+19; Li+19; Che+20b], and are evaluated on semantic

benchmarks such as word similarity [FL10; LPB15; PTF21] as well as brain alignment [BF25;

Bav+25]. Despite the theoretical advantage, there exist mixed results concerning when and how VLMs

outperform their unimodal counterparts, calling for further investigation into VLM mechanisms towards

human-like concept representations with complementary information from both modalities. One key

challenge to VLMs is abstract words, which are argued to have no [Pai91; Pai13] or indirect [Lou11;

Dov14] perceptual grounding, where multimodal fusion is found to be less beneficial [HRK14; Kie+14;

PTF21].

Contrastive VLMs such as CLIP [Rad+21] are distinct from multimodal fusion models due to

their architecture and training objective: there exist separate encoders for the language and vision

modalities, jointly trained to maximize the similarity of actual matching image-caption pairs. Due

to the cross-modal contrastive objective, linguistic and visual features are integrated via alignment,

mapped into a shared visual-semantic space, enabling meaningful cross-modal similarity scores. This

dual-encoder architecture of contrastive VLMs also allows for independent use of each module. Their

text encoders, on one hand, produce sequence-level representations for text-only input in analogy

to unimodal LMs such as sentence transformers; on the other hand, they rely more on visual than

on textual distributional information being trained with cross-modal contrastive objective, which

motivates the comparison of text encoders of contrastive VLMs against unimodal LMs.

While performing poorly on natural language understanding (NLU) benchmarks [HLT22] possibly

due to lack of unimodal training, the CLIP text encoder is found to outperform GPT2 [Rad+19] on

word-level [RG65; Fin+01; HRK15] as well as sentence-level [Cer+17] similarity benchmarks [WC22b].
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Pezzelle, Takmaz, and Fernández [PTF21], however, report mixed results comparing the CLIP text

encoder against BERT [Dev+19] on word similarity, suggesting an impact of word concreteness. Chen,

Chen, Diao, Wan, and Wang [Che+23] further indicates that CLIP outperforms BERT on a vision-

centric task, i.e. to predict whether two captions are from the same image. Yan, Li, Zhu, Lu, Wang,

and McAuley [Yan+22] and Hsu, Li, and Yun-Nung [HLY23] compare the CLIP text encoder with

PhraseBERT [WTI21] and UCTopic [LSM22], which are unimodal models specialized for phrase-level

representations with contrastive learning, where CLIP outperforms its unimodal counterparts when

enhanced with domain-aware prompting.

Hypernymy, commonly known as the IS A or TYPE OF relation, e.g. (robin, bird) is a hypernymy

pair as robin is a type of bird, is a core lexical relation in human concept understanding [Mur04]

as well as backbone of semantic hierarchies such as WordNet [Fel00], and therefore used for the

evaluation of DSMs [BL11] along with other benchmarks such as word similarity [Fin+01; HRK15].

Baryshnikov and Ryabinin [BR23] even adopts hypernymy to investigate the concept understanding

of image synthesis models. Among the hypernymy-related tasks, hypernymy detection is the binary

classification between hypernymy pairs such as (robin, bird) and non-hypernymy pairs such as (robin,

cat); hypernym discovery [Cam+18] aims to retrieve hypernyms for a given word; graded lexical

entailment (GLE) assigns entailment strength scores to word pairs under the assumption that the

hypernymy relation is more gradual than binary [Vul+17]. On one hand, GLE successfully reflects

typicality and vagueness in concept categorization [Ham07]; on the other, previous critiques against

word similarity evaluation [Far+16] also apply to GLE in this graded setting.

Hypernymy has been used for evaluating word representations ranging from early count-based

DSMs [SSS16; Vul+17] as well as the more recent Transformer-based pre-trained LMs such as BERT

and GPT2 via prompting [Ett20; HM21; MER21; SVS23]. In particular, Regneri, Abdelhalim, and Laue

[RAL24] investigates the representation of hypernymy in BERT qualitatively by analyzing attention

matrices of prompts generated with hypernymy versus non-hypernymy pairs, for example, “I like ravens

and other animals” versus “I like ravens and other people”, and observe substantial differences. While

hypernymy is mainly used for evaluating unimodal LMs, Liao, Chen, and Du [LCD23] adopt the CLIP

text encoder for hypernym discovery with a linear binary classification layer. CLIP outperforms BERT,

demonstrating the competitiveness of contrastive VLMs. Both models perform worse on abstract

concepts than on concrete concepts, suggesting that abstractness poses a general challenge to both

unimodal and multimodal models.

In this work, we focus on text encoders of contrastive VLMs and assess them via hypernymy

detection and GLE. Unlike previous work contrasting the CLIP text encoder with GPT2 [Rad+19]

or BERT [Dev+19], we ablate the effect of contrastive learning via comparison with sentence trans-

formers [RG19; GYC21], and more directly investigate the contribution of the visual modality. We

also explore how word concreteness modulates performance for both types of models. Our research

questions are as follows:

RQ1 How well do contrastive VLMs capture hypernymy compared to unimodal models with contrastive

learning Do they exhibit certain advantages due to their visual grounding? (Chapters 4–5)

RQ2 Do contrastive VLMs perform worse on abstract or generic words? (Chapters 5–6)

Our contributions are as follows:
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• While previous research on the text encoders of contrastive VLMs mainly focus on comparing

CLIP with BERT [Che+23] or GPT2 [WC22b], we perform a direct assessment against sentence

transformers with unimodal contrastive learning to examine the effect of visual-semantic training;

• Inspired by the work of Regneri, Abdelhalim, and Laue [RAL24], we propose a novel methodology

based on synthetic concepts (“q, a type of p”), defining similarity-based measures to reflect the

hypernymy relation, and achieve competitive performance;

• We evaluate 5 multimodal and 7 unimodal models on hypernymy detection and GLE, and

qualitatively analyze how contrastive VLMs represent word pairs of different lexical relations;

• We construct a novel dataset, BBC, named after Bolognesi, Burgers, and Caselli [BBC20], to

investigate model performance on words of different levels of concreteness and specificity, and

find contrastive VLMs to be more robust than previously expected.

We first review related work on visual semantic understanding (Section 2.1) and on hypernymy

(Section 2.2); then we propose a novel methodology based on synthetic concept prompts (Chapter 3);

in the following chapters we conduct experiments on hypernymy detection (Chapter 4) and on graded

lexical entailment (Chapter 5), as well as investigate model performance on word pairs of different

levels of concreteness and specificity (Chapter 6); Chapter 7 concludes the work.
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Chapter 2

Related work

2.1 Visual-semantic understanding

2.1.1 Multimodal fusion

Distributional semantics [LS23] is a computational approach to word meaning representation [TP10;

Len18] and has sparked discussion from the perspective of human cognition [Len+08; Kum20]. Learned

from text corpora with no perceptual grounding, its ability to achieve human-like language understanding

is questioned [Har90; Bis+20; BK20]. Multimodal distributional semantics is therefore proposed

to enhance distributional semantic models (DSMs) with information from the visual [BTB14] or

auditory [KC15] modalities.

Feng and Lapata [FL10] propose the first multimodal DSM, representing words based on their

distribution via both textual and visual features, improving performance on word similarity [Fin+01]

and association [NMS04]. While they learn multimodal information from the same mixed-media corpus,

others integrate textual and visual representations which are learnt separately via simple concatenation,

obtaining promising performance on a range of semantic tasks including word similarity [BTB11;

BTB14; Kie+14], and demonstrating the complementary nature of visual information [Bru+12b;

Bru+12a]. More sophisticated multimodal fusion strategies are also explored and shown to outperform

concatenation [SL12; SL14]. Lazaridou, Pham, and Baroni [LPB15] extends the predictive skip-gram

model [Mik+13b] via jointly predicting visual features for a subset of the vocabulary, thus propagating

visual information and improving performance on word similarity benchmarks [BTB14; HRK15].

Apart from static embeddings, contextualized models have been developed to encode multimodal

input, typically image-caption pairs, using pre-trained language models such as BERT [Dev+19]

as a linguistic backbone. Among these vision-language models (VLMs), ViLBERT [Lu+19] and

LXMERT [TB19] adopt a dual-stream architecture encoding text and image input separately before

combination, while the single-stream mechanism of VisualBERT [Li+19] and UNITER [Che+20b]

conduct early fusion. One specific model, Vokenization [TB20], visually supervised during training,

encodes text-only input via automatically retrieving related images. Pezzelle, Takmaz, and Fernández

[PTF21] evaluates these multimodal transformers intrinsically, extracting static word embeddings

from contextualized multimodal representations with additional visual input. Compared with the

unimodal counterpart BERT, they observe increased performance on word similarity evaluation for

benchmarks with higher concreteness, i.e. RG-65 [RG65] and MEN [BTB14], but not for more abstract

WordSim-353 [Fin+01] and SimLex-999 [HRK15]. Yun, Sun, and Pavlick [YSP21] conduct ablation
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studies via training VLMs on text-only data, and find the performance gap between VisualBERT and

VideoBERT [Sun+19] variants with vision-language versus text-only pretraining to be marginal. Liu,

Yin, Feng, and Zhao [Liu+22] report better spatial common sense knowledge (e.g. a sofa is smaller

than a mountain) in the VLM VinVL [Zha+21] than in unimodal models.

Multimodal models are also evaluated on brain alignment as participants read concept words.

Anderson, Bruni, Lopopolo, Poesio, and Baroni [And+15] report that textual and visual features

correlate better with fMRI activities in linguistic and visual processing areas in the brain, respectively,

and that their combination is further more explanatory to conceptual encodings. Bavaresco, Heer

Kloots, Pezzelle, and Fernández [Bav+25] investigates human concept processing in two settings,

where each concept word either appears in a full sentence that is read by participants and fed to

models, or is accompanied by a corresponding image seen by participants and fed to models. Overall,

LXMERT [TB19] and VisualBERT [Li+19] correlate with human brain activations more strongly than

their unimodal counterparts including BERT. However, the advantage of integrating visual information

is not consistent: VisualBERT and MCSE [Zha+22b], a contrastive model with multimodel training,

underperform their unimodal counterparts BERT and SimCSE [GYC21] on alignment with both

experiential ratings and brain responses [BF25], also casting doubt on whether multimodal models

produce more human-like concept representations.

More recently, the triumph of large language models (LLMs) has challenged the necessity of

visual grounding for human concept understanding. The empirical evaluation of [Li+24] suggests that

unimodal LLMs partially converge towards representations isomorphic to those of vision models. Li,

Xu, Dong, Zheng, Liu, Kong, and Sun [Li+23a] probe unimodal LLMs via zero (few)-shot prompting,

and demonstrate that the understanding of visual concepts including colour and size emerges as scaling

up models in the GPT-based OPT[Zha+22c]-family, which is not the case for embodied concepts such

as temperature and mass. While LLMs perform only slightly above chance level on embodied concepts,

VLMs including CLIP [Rad+21] and BLIP [Li+22] achieve human-level understanding, in favour of

multimodality. Du et al. [Du+25] and Xu, Peng, Nastase, Chodorow, Wu, and Li [Xu+25] investigate

object concept understanding in LLMs and multimodal LLMs (MLLMs), suggesting that both capture

human conceptual knowledge, while MLLMs have advantages on visual sensory aspects. (For a review

on VLM and MLLM architectures, see Wadekar, Chaurasia, Chadha, and Culurciello [Wad+24].)

Overall, while perceptual grounding is argued to be necessary for human-like concept understand-

ing [Har90; Bis+20; BK20], there exist mixed results concerning when and how VLMs outperform

their unimodal counterparts, and more investigation into model architectures and multimodal fusion

strategies is required to explore how to establish better concept representations with complementary

visual information. In this work, we focus on contrastive VLMs (Section 2.1.3).

2.1.2 Concrete vs. abstract words

Word concreteness is a property characterized by the perceptability of its referent [BBC20]. Compared

to abstract words corresponding to concepts “neither purely physical nor spatially constrained” [BW05],

concrete words are easier to process and remember [Pai91; WH00], and activate overlapping but partly

distinct brain systems [Bin+05]. Hill, Korhonen, and Bentz [HKB14] further illustrates that concrete

and abstract concepts are organized differently in human concept understanding, where concrete ones

are more feature-based and organized according to their semantic similarity. Human concrete ratings

are made available in the MRC psycholinguistic database [Col81] as well as the work of Brysbaert,
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Warriner, and Kuperman [BWK14], where human concreteness judgments are reported to focus on

visual and haptic aspects at the expense of gustatory and auditory ones [LC09; BWK14].

While perception is recognized as necessary for concrete words, it is debatable whether and how

abstract words are grounded in human cognition. Paivio’s dual-coding theory [Pai91; Pai13] contends

that abstract concepts are purely linguistic; Barsalou and Wiemer-Hastings [BW05] argue that abstract

concepts are grounded just as concrete ones are, as situational experiences are integrated via mental

simulation [Bar99]; others are in favour of an indirect grounding view [Lou11] with language as a

cognitive medium [Dov14]. The question then follows whether the assumed advantage of multimodal

distributional semantics exists also for abstract concepts, motivating investigation into evaluation of

existent VLMs and design of new mechanisms with better abstract concept understanding.

Previous evaluations of multimodal DSMs mainly focus on concrete words [Bru+12a; SL12]. Hill,

Reichart, and Korhonen [HRK14] demonstrate that simply concatenating perceptual representations

is less beneficial to abstract concepts than to concrete ones, and Kiela, Hill, Korhonen, and Clark

[Kie+14] suggest concatenating linguistic and visual representations only for concrete words. Still, Hill

and Korhonen [HK14], Takano and Utsumi [TU16], and Utsumi [Uts22] propose new methodologies for

establishing multimodal DSMs propagating perceptual information from concrete concepts to abstract

ones based on their semantic relatedness, and achieve more robust performance, supporting the indirect

grounding view.

For multimodal transformers, it is not clear whether visual information is successfully propagated

to enhance abstract concept representations. In the experiments of Pezzelle, Takmaz, and Fernández

[PTF21], VLMs outperform their unimodal counterpart BERT only on datasets with higher average

concreteness. They further conduct evaluation on subsets containing concrete words only, and find

that BERT is consistently outperformed by at least one VLM. This contrast reveals the weakness

of evaluated VLMs (ViLBERT, LXMERT, VisualBERT, UNITER, and Vokenization) over abstract

words. In this work, we focus on contrastive VLMs, and investigate their performance on abstract

words compared to unimodal counterparts with contrastive learning.

2.1.3 Contrastive vision-language models

Contrastive VLMs such as CLIP [Rad+21] have separate text and image encoders, which are jointly

trained to maximize the similarity of actual matching image-caption pairs. While other VLMs typically

conduct multimodal fusion either via simple strategies such as concatenation [FL10; BTB11; KB14]

or via neural mechanisms [Lu+19; Li+19; Che+20b], they conduct multimodal alignment, mapping

representations from the two modalities into a shared visual-semantic space with a contrastive objective,

enabling meaningful cross-modal similarity scores for tasks such as cross-modal retrieval [Rad+21]. Such

contrastive objectives, which aim to distinguish similar from dissimilar inputs, have also proven effective

within single modalities including language [GYC21] and vision [Che+20a; Car+21]. Furthermore, the

dual-encoder architecture of contrastive VLMs allows for initialization via pre-trained unimodal models

for each module, as well as separate evaluations against counterparts from each modality.

Existent contrastive VLMs adopt different settings for initialization and fine-tuning. For CLIP [Rad+21]

and ALIGN [Jia+21], both text and image encoders are trained from scratch. LiT [Zha+22a] uses a

pre-trained image encoder frozen during contrastive learning, while the text encoder is trained from

scratch. Another model, ALBEF [Li+21], has an extra multimodal fusion encoder, leverages pretrained

weights for all encoders, and is trained on extra masked language modeling and image-text matching
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bjectives, differing significantly from CLIP-like mechanisms relying solely on contrastive alignment.

With its meaningful cross-modal similarity scores, CLIP has gained popularity for various down-

stream applications such as zero-shot image classification [Rad+21], as well as other vision-language

tasks including Visual Question Answering and Image Captioning [She+21]. It is even evaluated on

recognizing emotions in abstract paintings [WT24], ad understanding [BTF24], as well as book/movie

genre classification [Bie+22]. Bielawski, Devillers, Van De Cruys, and VanRullen [Bie+22] argue that

as CLIP is trained on image-caption pairs “made by human for other humans”, it has advantages on

dealing with human-centric concepts. Despite its current success, CLIP is reported to behave like a

bag-of-words model [Yuk+22], failing to distinguish constituent order and binding in linguistic construc-

tions [Lew+22; CFP23]. Koishigarina, Uselis, and Oh [KUO25] suggest that the individual text and

image encoders conduct attribute object binding correctly, whereas the bag-of-words behaviour is due

to the insensitivity of the cosine similarity. Kamath, Hessel, and Chang [KHC23], however, investigates

this phenomenon with recovery probes to reconstruct captions from their vector representations via

the text encoder, and observe failure on more compositional inputs.

On the psycholinguistic task object naming, visual representations produced by the image encoder of

CLIP outperform those by computer vision models Bottom-Up [And+18] and the self-supervised Visual

Transformer (ViT) [Dos+20] pretrained via DINO [Car+21] on object naming across different image

types [Che+24]. Intriguingly, concept representations produced by its text encoder further outperform

visual concept representations which are computed by averaging visual exemplar representations,

demonstrating the phrase-level concept understanding ability of the CLIP text encoder. Indeed, the

text encoders of contrastive VLMs such as CLIP produce phrase- or sentence-level representations

for text-only input in analogy to sentence transformers, despite being trained with a cross-modal

contrastive learning instead of masked language modeling (MLM) or semantic textual similarity (STS).

Compared to unimodal LMs, they have very limited access to distributional patterns in text corpora and

benefit more from visual features paired with linguistic captions, which explains the poor performance

on natural language understanding (NLU) benchmarks [HLT22].

Several works have evaluated the text encoder of CLIP versus unimodal LMs. As the CLIP

text encoder is based on a GPT2[Rad+19]-like architecture [Rad+21], Wolfe and Caliskan [WC22b]

compares its semantic representations against those produced by GPT2: first, its contextualized

word embeddings do not suffer from high anisotropy as in the case of GPT2 and other unimodal

LMs [Eth19], although further ablation studies is required to examine to what extent this results

from contrastive learning or multimodality; second, when given single-word inputs, its contextualized

embeddings outperform those produced by GPT2 on word similarity benchmarks RG-65 [RG65],

WordSim-353 [Fin+01] and SimLex-999 [HRK15], while its sequence-level EOS token embeddings also

outperform GPT2 by a smaller margin, in contrast to the findings of Pezzelle, Takmaz, and Fernández

[PTF21] where multimodal transformers are outperformed by BERT on WordSim-353 and SimLex-999;

third, its sentence-level EOS token embeddings ourperform GPT2 on Semantic Textual Similarity

(STS) [Cer+17]. Overall, the text encoder of CLIP establishes semantic representations of remarkable

quality despite its small size compared to GPT2.

Chen, Chen, Diao, Wan, and Wang [Che+23] compare the CLIP text encoder with BERT. Despite

poor performance on general text understanding including STS, CLIP outperforms BERT on a designed

vision-centric task STS-V adapted from STS, i.e. to predict whether two captions are from the same

image, demonstrating its advantage in cross-modal association. Apart from BERT, Yan, Li, Zhu, Lu,

9



Wang, and McAuley [Yan+22] and Hsu, Li, and Yun-Nung [HLY23] compare the CLIP text encoder

with two unimodal models specialized for phrase-level representations with contrastive learning, namely

PhraseBERT [WTI21] and UCTopic [LSM22]. Hsu, Li, and Yun-Nung [HLY23] report mixed results

on phrase understanding, wheras CLIP with the domain-aware prompting strategy proposed by Yan,

Li, Zhu, Lu, Wang, and McAuley [Yan+22] outperform the unimodal counterparts.

Research on brain alignment exhibit mixed results: compared to BERT and the contrastive unimodal

sentence transformer SimCSE [GYC21], contextualized embeddings produced by the CLIP text encoder

are less aligned to human brain activations viewing single word stimuli [BF25]; when concept words

are read by human participants and fed to models in full sentences, or when single word concepts

are paired with corresponding images which are available to humans and VLMs but not unimodal

models, CLIP is more brain-aligned than BERT [Bav+25]. Tikhonov, Bylinina, and Paperno [TBP23]

also compare CLIP with BERT-based unimodal LMs, and find that word concreteness contributes

significantly to explaining the impact of visual grounding, in accordance with previous findings of

Pezzelle, Takmaz, and Fernández [PTF21].

The CLIP text encoder is initialized from scratch and has limited access to textual distributional

patterns during training, motivating exploration into the impact of initialization from a pretrained

LM or joint training with unimodal objectives. Zhao et al. [Zha+23b] report that SimCSE-like

unimodal contrastive learning improves CLIP on cross-modal retrieval, while there is a lack of evidence

whether it benefits concept representations of the text encoder as well. Research on initialization

from pretrained LMs is more concerned about efficiency, with evaluation limited to cross-modal tasks

as well [KF23]. While further investigation is needed, it seems questionable whether distributional

semantic information learnt via unimodal training is beneficial to text encoders of contrastive VLMs

at all: Zhuang, Fedorenko, and Andreas [ZFA23] train two novel variants of CLIP from scratch on

two datasets based on Conceptual-Captions-12M [Cha+21]: a visual + language model on its original

image-caption pairs, and a visual + word model via replacing each image-caption pair by multiple

image-word pairs, splitting the single words in the original caption and thus ablating co-ocurrence

patterns. The visual + language model turns out to significantly underperform its visual + word variant

on word learning, calling for more existensive research on how to better integrate complementary visual

and distributional information.

With representations in a shared visual-semantic space, the text encoder of CLIP is also used for

image synthesis models such as DALL-E 2 [Ram+22], Stable Diffusion [Rom+22], and VQGAN [ERO21],

which can in turn assist the analysis of CLIP encoding [RRG22; WC22a] or further enhance its semantic

understanding [HLY23]: given a textual prompt, Hsu, Li, and Yun-Nung [HLY23] generates an image

via Stable Diffusion with CLIP text encoding, which is then fed to the CLIP image encoder, and

the two encodings are combined via concatenation, improving performance on phrase understanding

datasets but not consistently. Liu, Yin, Feng, and Zhao [Liu+22] adopt VQGAN-CLIP [Cro+22] for

investigating spatial commonsense, where generated images are evaluated both automatically and

manually, achieving the most accurate and consistent performance, also illustrating the potential of

CLIP concept understanding.
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2.2 Hypernymy in distributional semantics

2.2.1 Tasks & datasets

Hypernymy, commonly known as the IS A or TYPE OF relation, e.g. robin is a type of bird, is a core

lexical relation in human concept understanding [Mur04] and the asymmetric backbone of semantic

hierarchies such as WordNet [Fel00]. While evaluation tasks such as word similarity [Far+16] measure

how human concept understanding is reflected in distributional semantic models (DSMs) in terms of

distance in the semantic space, hypernymy-based evaluation further examines the representation of

the semantic hierarchy by distinguishing hypernymy pairs like (robin, bird) from word pairs of other

relations, such as (robin, dove) and (robin, feather).

Hypernymy detection is a binary classification task: given a pair (q, p), predict whether q is a type

of p. Some task formulations take directionality into account and assign a separate label to cases

where p is a type of q [Kie+15]. BLESS [BL11], a benchmark for distributional semantic evaluation

spanning 200 distinct target concepts (q) paired with relata corresponding to hypernymy as well as

coordination (also known as co-hyponymy, e.g. “robin” and “dove” are both hyponyms of “bird”),

meronymy (the part-whole relation, e.g. “robin” has the part “feather”) and randomly matched nouns,

is often used for hypernymy detection. Alongside variants of BLESS, WBLESS [Wee+14] and BiB-

LESS [Kie+15], other datasets including Lenci/Benotto [LB12], LEDS [Bar+12], EVALution [San+15],

and SHWARTZ [SGD16] have also been developed for hypernymy detection. Another related task is

hypernym discovery, i.e. retrieve as many hypernyms as possible for a given query q, with datasets

provided by SemEval-2018 Task 9 covering three languages and two specific domains [Cam+18].

While these task formulations treat hypernymy and non-hypernymy as discrete cases, Vulić, Gerz,

Kiela, Hill, and Korhonen [Vul+17], however, argues that hypernymy is “more gradual than binary”:

on one hand, the hypernymy relation tends to be stronger for some word pairs than others, e.g. “robin”

is more representative of the “bird” category than “penguin” (typicality) [Ros75]; on the other, the

boundary between hypernymy and non-hypernymy can be fuzzy (vagueness [KP95]), e.g. it is not

clear whether “wheelchair”, “table”, and “bench” can be considered hyponyms of “chair”, and to

what degree. They define a graded lexical entailment (GLE) task: given a word pair (q, p), predict its

entailment strength s, which is then evaluated in terms of correlation with human judgments in their

dataset HyperLex.

2.2.2 Previous approaches

Hearst-style patterns

As indicated by the pioneering work of Hearst [Hea92], frequent occurrences of expressions including “p

such as q” and “q or any other p” indicate that (q, p) is a hypernymy pair. Such syntagmatic patterns

can be automatically extracted and then exploited to enhance hypernymy detection [SJN04]. However,

pattern-based methods suffer from the sparsity problem as hypernymy pairs do not necessarily co-occur

in Hearst-style patterns [RKN18], obtaining high precision and low recall in the hypernym discovery

task. Still, they provide valuable contextual constraints and are used to augment both hypernymy

detection [SGD16; RE16; Le+19] and hypernym discovery [SJN04; BB18; HH19].
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Unsupervised measures

Early count-based DSMs are evaluated on hypernymy detection via unsupervised measures, following

several distributional hypotheses (see Shwartz, Santus, and Schlechtweg [SSS16]). First, a hypernymy

pair (q, p) is supposed to be semantically similar and therefore distributionally similar [San+14], and

similarity measures such as cosine, Lin [Lin98], and ApSyn [San+16b] are used as hypernymy measures.

However, such symmetric measures are insufficient as they cannot even distinguish the directionality of

the pair; moreover, coordination pairs also tend to be similar and are therefore very difficult [Wee+14].

Two other hypotheses have been proposed to better capture the asymmetry of the hypernymy

relation. The distributional inclusion hypothesis [GD05] contends that contexts of a hyponym q are

expected to be included in contexts of its hypernym q: as a dog barks entails an animal barks, “bark”,

being a context of “dog”, should also be a context of “animal”. Several measures have been proposed

to quantify the level of context inclusion between a word pair (q, p), including WeedsPrec [WW03],

ClarkeDE [Cla09], and APinc [Kot+10]. Some combine multiple measures via geometric means, e.g.

cosWeeds [LB12] is the geometric mean of cosine similarity and WeedsPrec, balAPinc [Kot+10] of

APinc and Lin similarity, and invCL [LB12]is also a geometric mean based on ClarkeDE. There also

exists attempts to refine the distributional inclusion hypothesis, e.g. Pannitto, Salicchi, and Lenci

[PSL18] smooths the quantification of inclusion by expanding the range of contexts via neighbours, and

Roller, Erk, and Boleda [REB14] report that inclusion only applies selectively to relevant dimensions.

Other measures are based on the distributional informativeness hypothesis : hyponyms, being more

specific, are also more informative than their hypernyms and therefore likely to occur in less general

contexts. The SLQS measure [San+14] evaluates word informativeness via the median entropy of its

top contexts; Rimell [Rim14] measures the topic coherence of a word also via its top contexts, and

then calculates an RCTC (ratio of change in topic coherence) score evaluating the impact of excluding

contexts of q from contexts of p, and vice versa. Apart from these methods designed for count-based

DSMs, there exists another informativeness measure utilising the visual modality: observing that

related images of hypernyms exhibit more variability than their hyponyms [DF11], Kiela, Rimell,

Vulic, and Clark [Kie+15] obtain related images of a concept word via Google Images and use their

CNN-derived visual representations to calculate an image dispersion measure for hypernymy detection.

These unsupervised measures are used for both binary hypernymy detection [SSS16] and graded

lexical entailment [Vul+17], and the image dispersion measure of Kiela, Rimell, Vulic, and Clark

[Kie+15] outperforms the textual distributional measures on the noun subset of HyperLex [Vul+17],

demonstrating the potential of the visual modality. Such unsupervised measures can be further

combined, e.g. via the random forest algorithm of Santus, Lenci, Chiu, Lu, and Huang [San+16a].

Supervised approaches

Apart from these unsupervised measures based on distributional hypotheses, attempts have also been

made to capture the hypernymy relation via supervision, e.g. to develop classifiers based on the

concatenaton [Bar+12], offset [REB14], or even pointwise product [Wee+14] of the two vectors of a

word pair via linear regression or support vector machines, achieving better performance. However, such

supervised approaches are reported to suffer from lexical memorization, as they tend to predict whether

p is a “prototypical hypernym” rather than distinguish whether (q, p) is a hypernymy pair [Lev+15].

Beyond early count-based DSMs, predictive models have trained to maximize the probability of

observed word-context co-occurrence. From static CBOW embeddings [Mik+13a] to contextualized
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models such as BERT [Dev+19], predictive models have gained prominence and are shown to outperform

their count-based counterparts on a range of lexical semantic tasks [BDK14]. In the case of hypernymy,

the unsupervised inclusion or informativeness measures are no longer applicable due to their lack of

interpretability, while diverse supervised approaches have been explored, e.g. Shwartz, Goldberg, and

Dagan [SGD16] encode the dependency paths between word pairs via an LSTM network [HS97] in

addition to word vector concatenation.

A distinct class of supervised methods aim to capture the hypernymy relation via projection

learning : Fu, Guo, Qin, Che, Wang, and Liu [Fu+14] argue that the vector offset is insufficient for

representing the hierarchical hypernymy relation of a word pair, and propose to map hyponyms to their

hypernyms via linear projection instead. Since then, several works have trained transition matrices

such that the projections of a word embedding are close to the embeddings of its hypernyms [Yam+16;

BB18; Wan+19; Bai+21]. Moreover, Wang and He [WH20] exploit the residual vectors, i.e. the offsets

between hyponym projections and hypernyms, as input to classifiers, which substantially alleviates

lexical memorization. Meanwhile, Kruszewski, Paperno, and Baroni [KPB15] optimize a mapping

function in order to derive Boolean structures between hypernymy pairs.

Specialized embeddings

The hypernymy relation is characterized by its hierarchical structure and often formalized as a partial

order. Vendrov, Kiros, Fidler, and Urtasun [Ven+15] introduce an order-preserving semantic space

trained on hypernymy pairs from WordNet, which is shown to improve hypernymy detection. Nguyen,

Köper, Walde, and Vu [Ngu+17] develop hierarchical embeddings such that hypernymy pairs are

more similar than word pairs of other lexical relations in terms of cosine distance, and the magnitude

of a hypernym is larger than that of its hyponym in terms of Euclidean norms. Vulić and Mrkšić

[VM17] similarly preserve hypernymy via vector norms, while optimizing semantic similarity for both

hypernymy and synonymy pairs. While word embeddings are typically based on a Euclidean vector

space, attempts have been made to preserve hypernymy via convex cones in hyperbolic spaces, based

on the Poincaré ball [NK17; GBH18] or Lorentz model [NK18].

2.2.3 Hypernymy in pre-trained language models

With the emerging popularity of Transformer-based pretrained language models (PLMs) such as

BERT [Dev+19] and GPT2 [Rad+19], there is also growing interest in zero-shot evaluation of their

semantic knowledge, including lexical semantic understanding [Vul+20; BCS20]. Ettinger [Ett20]

examines the predictive capacities of BERT given cloze-style prompts such as “A robin is a [MASK]”,

and report high accuracy on retrieving canonical hypernyms (“bird” in the case of “robin”). However,

the systematicity of such hypernymy knowledge is under question, as performance drops significantly

with prompts in plural form (“robins are [MASK]”) [Rav+20]. Hanna and Mareček [HM21] experiments

with more complex prompts, inspired by Hearst-style patterns, and conduct evaluation on hypernym

discovery [Cam+18], where zero-shot BERT proves competitive when compared to supervised ap-

proaches. Apart from querying BERT with cloze-style prompts, Shani, Vreeken, and Shahaf [SVS23]

probes GPT-based models with a binary question answering scheme (“Is q a type of p?”).

Misra, Ettinger, and Rayz [MER21] further extracts the conditional probability of predicting p

given the prompt “A(n) q is a(n)” as the taxonomic verification score of the pair (q, p) for both

BERT-like masked LMs and GPT2-like autoregressive LMs. originally designed for probing typicality
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knowledge in PLMs, this measure is shown to outperform previous unsupervised count-based measures

on GLE [Vul+17; RDG23]. Also using conditional probabilities as hypernymy measures, Tikhomirov

and Loukachevitch [TL24] probe GPT2 with a large number of prompts [Sei+16] and highlight the

significance of prompt quality.

In particular, Regneri, Abdelhalim, and Laue [RAL24] investigates the representation of hypernymy

in BERT by analyzing attention matrices based on Hearst-style patterns. For example, they generate

the positive prompt “I like ravens and other animals” based on the hypernymy pair (raven, animal),

as well as counterfactual prompts using non-hypernymy pairs formed by replacing either q or p with

its co-hyponym, such as (raven, crow) and (raven, people). Attention patterns for the three groups of

word pairs exhibit substantial differences, and overall attention is lower for positive prompts than for

counterfactuals, providing qualitative evidence that BERT successfully captures hypernymy.

While most research probe hypernymy in PLMs via prompting, Liao, Chen, and Du [LCD23]

evaluate the CLIP text encoder against on hypernym discovery with a linear binary classification

layer. CLIP outperforms BERT, demonstrating the competitiveness of contrastive VLMs. Both models

perform worse on abstract concepts than on concrete concepts, suggesting that abstractness poses a

general challenge to language models.
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Chapter 3

Methodology

3.1 Synthetic concepts

For a word pair (q, p), we generate two synthetic concepts q′ and p′ for detecting their lexical relation.

More specifically, for detecting hypernymy pairs where q is supposed to be the hyponym and p to be

the hypernym, e.g. (robin, cat), let q′ be “q, a type of p” and p′ be “p, such as q” following Hearst

patterns [Hea92].

If hypernymy holds for (q, p), i.e. if q is indeed a type of p, then q′ (“q, a type of p”) easily

understood as just q, and p′ as p. However, for negative pairs where hypernymy does not hold, such as

(robin, tree) and (raven, person), q′ and p′ presuppose counterfactual class inclusion statements, e.g. “a

robin is a tree”, and are processed differently. Fischler, Bloom, Childers, Roucos, and Perry Jr [Fis+83]

report that such false affirmative sentences produce slower responses than true sentences (“a robin is a

bird”) as well as substantially more negative averaged ERPs. Counterfactual expressions e.g. “ravens

are persons” are also reported to behave differently in terms of BERT attention maps [RAL24]. In

this work, we evaluate phrase-level representations of these synthetic concepts, comparing hypernymy

against non-hypernymy pairs. Our intuitions are as follows:

For hypernymy pairs, q′ (“q, a type of p”) would denote the same concept as q, and p′ the same as

p, reflected in similarity scores of their word/phrase-level embeddings:

1 ≈ sim(q′, q) > sim(q′, p) ≈ sim(q, p)

1 ≈ sim(p′, p) > sim(p′, q) ≈ sim(p, q)

where sim denotes the cosine similarity of embeddings produced by text encoders.

Meanwhile, for non-hypernymy pairs, q′ and p′ would be synthetic hybrid concepts by blending q

and p. On one hand, we could expect sim(q′, q) and sim(p′, p) to be smaller than 1. On the other hand,

as q′ is stipulated to be “a type of p” due to the appositive, it is expected to be more similar to p than

the original q is. The case for p′ is similar, as it is stipulated to encompass q. Therefore we expect:

1 > sim(q′, q), sim(q′, p) > sim(q, p)

1 > sim(p′, p), sim(p′, q) > sim(p, q)
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3.2 Measures

With intuitions demonstrated in the last section, we design the following measures reflecting whether

(q, p) is a hypernymy pair.

B (baseline) measure We use sim(q, p), the näıve cosine similarity between q and p, as a baseline,

which does not involve the synthetic concepts q′ and p′. Note that similarity is a symmetric measure

and therefore insufficient for the asymmetric hypernymy relation.

S (similarity) measures We evaluate whether q′ is the same concept as q and whether p′ is the

same as p via their similarity scores. sq and sp are defined as follows:

sq(q, p) = sim(q, q′)

sp(q, p) = sim(p, p′)

sp and sq are expected to be higher (closer to 1) for hypernymy pairs and lower for non-hypernymy.

R (ratio) measures Inspired by the RCTC measure [Rim14], we propose the R (ratio) scores

comparing the original and synthetic concepts in terms of similarity to their relatum term:

rq(q, p) =
sim(q, p)

sim(q′, p)

rp(q, p) =
sim(p, q)

sim(p′, q)

rp and rq are also expected to be higher (closer to 1) for hypernymy pairs. 1

C (check) measures Considering the asymmetry of the hypernymy relation, q′ and p′ are not

expected to be a näıve average of q and p. Although it is not clear how the counterfactual hybrid

concepts would behave in the case of non-hypernymy, we expect q′ to be closer to q than to p and p′ to

be closer to p than to q for hypernymy pairs. Additional measures are designed for sanity check:

cq(q, p) =
sim(q′, q)

sim(q′, p)

cp(q, p) =
sim(p′, p)

sim(p′, q)

The C measures are expected to be larger than 1 for hypernymy pairs.

In our first experiment (see Chapter 4), the synthetic concept p′ fails the sanity check as cp tend

to be smaller than 1 in most cases, while q′ behaves as expected. We discuss this phenomenon in

Appendix A, and use only sq and rq as hypernymy measures in the upcoming chapters. Despite its

failure in this hypernymy detection scenario, we argue that p′, the synthetic concept based on p, may

still prove informative for other tasks, and include it here for completeness and future extensibility.

1While the numerator, sim(q, p) might be negative for non-hypernymy pairs, the denominators are much less likely to
be negative because of the designed stipulation.
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3.3 Models

In this work, we evaluate unimodal and multimodal models with contrastive learning on hypernymy

tasks based on their representations of isolated words and phrases. We focus on text encoders of

contrastive VLMs (Subsection ??) alongside unimodal sentence transformers.

Sentence transformers Sentence transformers are typically initialized with a pre-trained lan-

guage model, e.g. BERT [Dev+19], and then fine-tuned on natural language inference (NLI)

or Semantic Textual Similarity (STS) to learn effective sentence embeddings. We evaluate Sim-

CSE [GYC21]2, fine-tuned contrastively with self-supervision using dropout; GTE [Li+23b] 3,

a BERT-based general-purpose text embedding model with multi-stage contrastive learning over

diverse datasets; MiniLM [Wan+20], MPNet [Son+20], and DistilRoBERTa variants of Sen-

tenceBERT [RG19] 4, which use Siamese networks trained also with contrastive learning; as well as

PhraseBERT [WTI21]5, fine-tuned contrastively on a phrasal paraphrase dataset.

Contrastive VLMs As for contrastive VLMs, we evaluate the text encoders of the ViT-B/32 and

ViT-L/14 variants of CLIP [Rad+21] 6 with a GPT2-like [Rad+19] architecture, which are jointly

trained with the corresponding ViT [Dos+20] variants, as well as ALIGN [Jia+21]7 with a BERT-like

architecture, jointly trained with an EfficientNet[TL19]-based image encoder using the same loss

function while leveraging noisy data. Note that CLIP and ALIGN train both text and image encoders

from scratch. LiT [Zha+22a] 8 trains the text encoder from scratch alongside a frozen pre-trained

image encoder, and outperforms CLIP and ALIGN on ImageNet [Den+09] zero-shot classification.

MCSE Also equipped with a text encoder and an image encoder mapped onto the same space,

MCSE [Zha+22b]9 differs from the contrastive VLMs above in terms of initialization, training objective,

and training data: its text and image encoders are both initialized with pre-trained models; it extends

the contrastive framework of SimCSE with CLIP-like multimodal contrastive learning; its unimodal

training data is the same as SimCSE, while its multimodal training data is much smaller. Like LiT, the

image encoder of MCSE is also locked. Designed for sentence embedding learning, MCSE is evaluated

not on cross-modal tasks but on Semantic Textual Similarity (STS), and outperforms the unimodal

SimCSE significantly.

Taxonomic verification Additionally, we use the taxonomic verification method proposed by Misra,

Ettinger, and Rayz [MER21] as a baseline, which calculates the conditional probability of producing

p as the next word given the prompt “A(n) q is a(n)”. According to Renner, Denis, and Gilleron

[RDG23], it is the best-performing LM-based approach to GLE [Vul+17].10

2https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased
3https://huggingface.co/thenlper/gte-base — gte-small
4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2— all-mpnet-base-v2— all-distilroberta-v1
5https://huggingface.co/whaleloops/phrase-bert
6We refer to these two variants with as CLIP-b and CLIP-l. https://github.com/openai/CLIP
7https://huggingface.co/kakaobrain/align-base
8We use their LiT-B16B model. https://github.com/google-research/vision_transformer#lit-models.
9https://huggingface.co/UdS-LSV/mcse-flickr-bert-base-uncased

10Note that Renner, Denis, and Gilleron [RDG23] report results using GPT2-XL, whereas we only experiment with
BERT [Dev+19] and GPT2 [Rad+19] due to computational constraints.
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Chapter 4

Experiment 1: hypernymy vs. other

relations

In this chapter, we perform binary hypernymy detection, distinguishing hypernymy pairs from word

pairs of other lexical relations.

4.1 Experimental setup

Dataset BLESS [BL11] is a semantic relation dataset designed for distributional semantic evaluation

and commonly used for hypernymy detection (see, inter alia, [SSS16; Kie+15; RKN18; WH20]). We

experiment with its noun-noun subset, which contains 14547 (q, p) pairs spanning 200 distinct target

concepts (q). All target concepts are unambiguous, concrete, basic-level English nouns consisting of

a single word. Apart from 1337 positive hypernymy pairs, each concept is also paired with relata

corresponding to other lexical relations including coordination and meronymy, as well as random nouns.

Evaluation For evaluation, we first rank all (q, p) pairs according to the similarity-based measures

introduced in Section 3.2. we then conduct a one-sided Welch’s t-test [DLL17], and compute average

precision (AP) following Shwartz, Santus, and Schlechtweg [SSS16]. Our other metric is MAP, the

mean AP value averaged over the 200 concepts, following [LB12]. We also evaluate the models on

discriminating hypernymy from each of the negative relations, and provide boxplots in Appendix B.1.

Image generation To qualitatively examine the representation of lexical relations in the multimodal

semantic space, we follow White and Cotterell [WC22a] and use the Stable Diffusion model [Rom+22]
1 with CLIP-l encoding for image generation. By looking at generated images with synthetic prompts

such as “robin, a type of bird” and “robin, a type of dove”, we gain a deeper understanding of the

semantic distance between the synthetic q′ and the original concepts.

4.2 Results & analysis

Table 4.1 summarizes the performance of all models against different distractor relation types, using

proposed measures described in Section 3.2. Images generated for the synthetic concept q′ w.r.t.

different lexical relations are presented in Figure 4.1.

1https://huggingface.co/CompVis/stable-diffusion-v1-4
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vs. non vs. coord vs. mero vs. random
AP MAP AP MAP AP MAP AP MAP

proportion 0.0919 0.0951 0.2727 0.2821 0.3124 0.3626 0.1663 0.1690

b

CLIP-b 0.1741 0.3012 0.3398 0.4384 0.4234 0.6135 0.4210 0.6469
CLIP-l 0.1585 0.2695 0.2811 0.3926 0.4410 0.6108 0.4583 0.6464
ALIGN 0.1411 0.2534 0.2322† 0.3342 0.3895 0.5848 0.5722 0.7333
LiT 0.1889 0.3873 0.3844 0.5314 0.4534 0.7038 0.4146 0.7370
MCSE 0.1440 0.2215 0.2468† 0.3379 0.3722 0.5193 0.5408 0.5740
SimCSE 0.1527 0.2351 0.2739† 0.3787 0.3575 0.4983 0.5320 0.5766
GTE-small 0.2051 0.3223 0.3160 0.4333 0.4109 0.5792 0.7149 0.7675
GTE-base 0.2512 0.3788 0.3548 0.4771 0.4829 0.6338 0.7997 0.8264
MiniLM 0.1813 0.2854 0.2734† 0.3790 0.4091 0.5660 0.7102 0.7476
MPNet 0.1614 0.2525 0.2303† 0.3313 0.4522 0.5790 0.7295 0.7606
DistilRoBERTa 0.1516 0.2403 0.2512† 0.3664 0.3956 0.5494 0.5511 0.6036
PhraseBERT 0.1111 0.1603 0.1816† 0.2395 0.3808† 0.5073 0.6007 0.6545

sq

CLIP-b 0.2129 0.3230 0.5832 0.7263 0.5984 0.7164 0.2869 0.3924
CLIP-l 0.2984 0.4699 0.5134 0.7096 0.6253 0.7534 0.4785 0.6424
ALIGN 0.1903 0.3473 0.4566 0.6907 0.4726 0.6736 0.3120 0.4575
LiT 0.1152 0.1701 0.6475 0.8109 0.5075 0.7056 0.1487 0.1971
MCSE 0.1596 0.2515 0.3511 0.5348 0.4477 0.5765 0.3060 0.4122
SimCSE 0.2100 0.3835 0.5514 0.7905 0.5040 0.7076 0.3147 0.4665
GTE-small 0.3815 0.5748 0.5786 0.7657 0.6151 0.7611 0.6095 0.7674
GTE-base 0.3354 0.5897 0.5194 0.7545 0.5983 0.7592 0.5698 0.7733
MiniLM 0.2795 0.4899 0.4854 0.6870 0.5537 0.6928 0.4635 0.6457
MPNet 0.2581 0.4754 0.4064 0.6575 0.5670 0.7323 0.5054 0.6530
DistilRoBERTa 0.2723 0.4033 0.4511 0.6338 0.5612 0.6709 0.4492 0.5510
PhraseBERT 0.1199 0.1673 0.2231† 0.3052 0.3427† 0.4359 0.4096 0.5626

rq

CLIP-b 0.2318 0.3776 0.5088 0.6716 0.4593 0.5932 0.4353 0.6015
CLIP-l 0.1653 0.2919 0.4265 0.5781 0.4202 0.5819 0.2986 0.4658
ALIGN 0.2869 0.4428 0.5254 0.6698 0.4764 0.6081 0.6198 0.7043
LiT 0.1490 0.2775 0.5529 0.7679 0.3938 0.5280 0.2297 0.3722
MCSE 0.1726 0.2637 0.3019† 0.4102 0.3925 0.5414 0.5281 0.5751
SimCSE 0.2322 0.3391 0.4704 0.5768 0.4552 0.5811 0.4598 0.5633
GTE-small 0.3394 0.5022 0.4973 0.6463 0.5537 0.6826 0.7258 0.7755
GTE-base 0.4268 0.5611 0.6077 0.7104 0.6318 0.7208 0.7475 0.7907
MiniLM 0.3134 0.4348 0.4418 0.5649 0.5369 0.6381 0.6488 0.6977
MPNet 0.3015 0.4343 0.3877† 0.5261 0.5825 0.6713 0.7225 0.7686
DistilRoBERTa 0.2521 0.3730 0.4154 0.5469 0.5528 0.6628 0.5249 0.6170
PhraseBERT 0.0992 0.1451 0.1819† 0.2457 0.2793† 0.4245 0.4791 0.5509

veri
BERT 0.2421 0.3525 0.3535 0.4848 0.7004 0.7769 0.5164 0.6031
GPT2 0.2255 0.3461 0.2940† 0.4248 0.5508 0.6438 0.7595 0.8093

Table 4.1: Model performance on binary hypernymy detection.
“Proportion” indicates the proportion of positive pairs, i.e., the AP or MAP of a random baseline.
For each model, we report AP and MAP scores evaluating the ability to distinguish hypernymy pairs
from other lexical relations in BLESS, based on the measures introduced in Section 3.2. Boldface
highlights the best score in each column.
Statistical significance tests (one-sided Welch’s t-test) are conducted over the full dataset. †alongside
APs denotes p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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Hypernymy: “robin, a type of bird”

Coordination: “robin, a type of dove”

Meronymy: “robin, a type of feather”

Random: “robin, a type of sewerage”

Random: “robin, a type of earring’

Figure 4.1: Generated images for the synthetic concept q′ with CLIP-l encoding using Stable Diffusion.
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4.2.1 Hypernymy vs. non-hypernymy

We observe that our method outperforms taxonomic verification [MER21], and that sq and rq tend to

outperform the näıve similarity baseline (b) except with LiT or PhraseBERT, demonstrating the utility

of the synthetic concept q′. This indicates that most models successfully capture the hypernymy relation

between concepts using the simple template “{q}, a type of {p}”, although CLIP is sometimes

observed to behave like a bag-of-words model [Yuk+22].

GTE-base is the best-performing model both in terms of AP (0.4268 with rq) and MAP (0.5897

with sq). While the performance gap between GTE-base and GTE-small is relatively small, GTE

surpasses the other models by a significant margin, which can be attributed to its carefully curated

training objectives and training data [Li+23b]. Among the other sentence transformers, MiniLM is

the best-performing model, achieving an AP of 0.3134 (with rq) and an MAP of 0.4899 (with sq) still

outperforming the best contrastive VLM combination, i.e. CLIP-l with sq (AP 0.2984, MAP 0.4699)

by a less dramatic margin. CLIP outperforms SimCSE in this hypernymy detection setting, although it

is previously reported be yield less brain-aligned word representations than BERT and SimCSE using a

different methodology [BF25]. PhraseBERT performs the worst despite being optimized for phrase-level

representations. Overall, contrastive VLMs underperform unimodal models. Nevertheless, since their

text encoders are trained from scratch, these models have very limited access to distributional patterns

in text corpora and rely more on visual features learned during training. Therefore, their current

performance is already remarkable.

Interestingly, results show that MCSE is outperformed by SimCSE, in accordance with previous

findings that MSE capture less experientual information than SimCSE [BF25]. Such performance

drop suggests that additional CLIP-like contrastive learning does not necessarily benefit sentence

embedding models. MCSE also underperforms contrastive VLMs, which requires further ablation

studies to identify the impact of initialization from a pre-trained LM, text-only contrastive learning,

and the small amount of multimodal training data.

4.2.2 Hypernymy vs. coordination

Distinguishing hypernymy from coordination is known to be a challenging task [LB12; Wee+14]

where symmetric similarity scores are insufficient. In this setting, our asymmetric sq and sq measures

consistently outperform näıve cosine similarity, which sometimes underperform a random baseline. The

best-performing model turns out to be the contrastive VLM LiT in terms of both AP and MAP. Again,

MCSE is outperformed by both SimCSE and contrastive VLMs by a significant margin.

While further analysis is needed, we hypothesize that text encoders of contrastive VLMs hold an

inherent advantage in this task due to their visual grounding. As contrastive VLMs are pre-trained

with an image-caption matching objective, the word embeddings they produce are aligned with the

visual features of images whose captions contain the corresponding word, i.e. their occurrences in the

image-caption corpora. For instance, the representation of “robin” is closely associated with exemplars

of the visual object “robin”. Co-hyponyms and their hypernyms are often distributionally similar in

text corpora, making them difficult to distinguish, whereas their occurrences in image-caption corpora

can be distinguished in terms of visual features.

Consider the hypernymy pair (robin, bird) and the coordination pair (robin, dove). Exemplars of

“robin”, can be viewed as a subset of exemplars of “bird”, as images depicting robins are depicting birds

21



at the same time, 2 while exemplars of “dove” constitute another subset of “bird” almost distinct from

“robin’. Visual features of these exemplars benefit the understanding of the hypernymy inclusion as

well as the distinction between the co-hyponyms.

Intriguingly, while generated images of “robin, a type of bird” consistently depict robins, similar

to those generated with just “robin” (see Appendix A), generated images of “robin, a type of dove”

tend to depict a hybrid bird with visual features from both robins and doves (see Figure 4.1). This

observation aligns with the fact that the sq score is higher for (robin, bird) than for (robin, dove),

supporting our assumption that sq would be higher for hypernymy pairs.

4.2.3 Hypernymy vs. meronymy

On the hypernymy-meronymy distinction, the best-performing sentence transformer is GTE-base in

terms of AP (0.6318 with rq), and GTE-small in terms of MAP (0.7611 with sq). The best-performing

contrastive VLM is CLIP-l, achieving an AP of 0.6253 and an MAP of 0.7534 with sq. Multimodal models

underperform unimodal models with contrastive learning, and both are outperformed by taxonomic

verification with BERT (AP=0.7004, MAP=0.7769) by a more significant margin. Considering the

performance gap between GTE and BERT, We hypothesize that this is because BERT has remarkable

syntactic abilities [Gol19], sentence embedding models are not sufficiently sensitive to syntactic patterns,

which are effective for distingsuishing meronymy from hypernymy [SSS16]. Zhang, Feng, Teng, Liu,

and Li [Zha+23a] report that sentence transformers including SimCSE and the MiniLM and MPNet

variants of Sentence-BERT [RG19] perform poorly on syntactic understanding.

As for the performance of contrastive VLMs, We observe that rq tends to underperform the näıve

cosine similarity baseline except with ALIGN: for a meronymy pair (q, p), “q, a type of p” is not

necessarily significantly more similar to p than q is. We hypothesize that this is due to the distribution

of meronymy pairs in the image-caption corpora. Consider “robin” and its meronym “feather”: images

depicting “robin” also depict feathers and can be paired with captions containing the word “feather”.

Therefore, exemplars of holonyms and meronyms theoretically form a subset relation in analogy to those

of hyponyms and hypernyms, making them more difficult to distinguish relying on visual information

alone. Meanwhile, as ‘CLIP’s training dataset is mainly composed of image annotations made by

humans for other humans’ [Bie+22], in practice exemplars of “robin” are less likely to be annotated with

“feather”, “wing”, “eye”, and “beak”, and exemplars of “feather” often depict isolated feathers rather

than parts of birds, alleviating this difficulty. Prompted with the synthetic concept “robin, a type of

feather”, generated images depict robins, feathers or feathers with robin-like colouring inconsistently

(Figure 4.1), demonstrating the sophisticated visual understanding of meronymy.

4.2.4 Hypernymy vs. random pairs

Since random word pairs are typically dissimilar, symmetric similarity is a strong baseline for dis-

tinguishing hypernymy. In fact, in our experiment, the best performance is achieved by GTE-base

using näıve cosine similarity, whereas our sq and rq measures perform no better. To account for this

2In analogy to the distributional inclusion hypothesis, it is plausible to propose a multimodal distributional inclusion
hypothesis, where occurrences of a hyponym can be replaced with its hypernym without falsifying the image-caption
match—e.g., any image depicting a robin may also be captioned as “bird”. Similarly, following the distributional
informativeness hypothesis, images of a hypernym tend to be more variable than those of a hyponym—e.g., images of birds
encompass not only robins but also doves and ravens—as observed by Deselaers and Ferrari [DF11] and operationalized
in the visual generality measure of Kiela, Rimell, Vulic, and Clark [Kie+15].
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phenomenon, we also look at generated images via prompting the synthetic concepts for hypernymy.

For the random pair (robin, sewerage), generated images tend to depict robins, but differ from images

for “robin” in terms of visual background. For (robin, earring), generated images depict earrings,

sometimes bird-shaped. We conclude that for some random pairs, the counterfactuality of synthetic

concepts causes processing difficulty, and they are represented similarly to the original concept q depite

the irrelevant relata p, posing a challenge to our measures specialized for hypernymy.

Considering the importance of asymmetric measures for distinguishing hypernymy from other

distractor relation types, it is thus worth exploring the combination of multiple measures [San+16a]

for accomplishing a more robust hypernymy detection approach. Inspired by previous unsupervised

count-based metrics [Kot+10; LB12] making use of geometric means, we also experiment with combining

these measures using their direct multiplication, leading to improved performance, but not consistently

(see Appendix D).

4.3 Summary & discussion

In this chapter we investigate how unimodal and multimodal models with contrastive learning represent

the hypernymy relation in contrast to other lexical relations. Multimodal models underperform

unimodal models on the hypernymy detection task. GTE, a general-purpose text embedding model,

performs the best, potentially due to its carefully curated training objectives and data. The performance

gap between contrastive VLMs and other sentence transformers is relatively small.

We also examine model performance on distinguishing hypernymy against each distractor relation

type, reason about how concepts are represented in the text encoders of contrastive VLMs, and propose

multiple hypotheses attempting to explain model performance and what type of information is useful

for hypernymy detection. We argue that text encoders of contrastive VLMs hold an inherent advantage

for distinguishing coordination pairs, as is reflected in the generated images using the synthetic concepts

“q, a type of p” for prompting. We also advocate the combination of multiple measures for more robust

hypernymy detection, and experiment with the multiplication of current measures (Appendix D).

Initialized from scratch and pre-trained with cross-modal but not unimodal mapping, contrastive

VLMs learn limited information from distributional patterns in text despite the large amount of

captions in their training data, which can be a disadvantage. However, previous work suggests that

textual distributional information does not necessarily benefit contrastive VLMs. Recall the visual +

language and visual + word CLIP variants of Zhuang, Fedorenko, and Andreas [ZFA23], where ablating

distributional information with single-word captions improves word learning. More investigation is

required towards better integration of the complementary information provided by both modalities.

distributional information However, the typical way to combine them, implemented as Visual

+ Language models, fails to show benefits over Language-Only models. The Visual + Language

(CLIP) models perform significantly worse than the Visual + Word (CLIP) models, indicating that the

CLIP architecture is particularly inefficient in associating visual information to single words when full

captions are present.

Although SimCSE-like unimodal contrastive learning is reported to enhance CLIP on image-text

retrieval [Zha+23b], it is not yet clear whether it enhances the text encoder on representation learning.

It is thus desirable to conduct ablation studies comparing MCSE with contrastive VLMs in future
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work to identify the impact of initialization from a pre-trained LM, text-only contrastive learning, and

the amount of multimodal training data on dual-encoder architectures with cross-modal contrastive

learning. Meanwhile, the fact that MCSE underperforms SimCSE suggests that additional CLIP-like

contrastive learning does not necessarily benefit sentence embedding models [BF25].

Overall, both unimodal and multimodal contrastive learning prove useful for hypernymy detection.

Multimodal models underperform unimodal ones on general hypernymy detection, but outperform

them on the hypernymy-coordination distinction in particular. Further analysis suggests that visual

information is beneficial for concept understanding, while more research is required to explore how to

better integrate the complementary information from the two modalities.
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Chapter 5

Experiment 2: graded lexical entailment

(GLE)

In this chapter, we evaluate the models on graded lexical entailment (GLE) [Vul+17] to see how their

concept understanding correlates with the gradual hypernymy judgment in human cognition, and

compare model performance on concrete and abstract words.

5.1 Experimental setup

Dataset & evaluation Motivated by discussions on typicality [Ros75] as well as graded member-

ship [KP95], Vulić, Gerz, Kiela, Hill, and Korhonen [Vul+17] constructed a novel dataset, HyperLex, for

GLE, aggregating human judgments on to what degree is q a type of p on a 0-6 rating scale. HyperLex

focuses on single words and covers different lexical relations in WordNet [Fel00]: apart from hypernymy.

coordination, and random pairs, it also includes synonymy, antonymy, and reversed hypernymy pairs.

We experiment on its noun-noun subset containing 2163 pairs, 1003 of which are hypernymy pairs

according to WordNet. Models are evaluated using Spearman’s ρ correlation [Spe61].

Concreteness groups A major source of concepts in HyperLex is the USF norms [NMS04], which

provides concreteness scores ranging from 1 to 7. As suggested by Vulić, Gerz, Kiela, Hill, and Korhonen

[Vul+17], we classify words with available concreteness scores as concrete or abstract using 4 as a

threshold, and obtain four subsets: qc pc (concrete q, concrete p); qc pa (concrete q, abstract p); qa pc

(abstract q, concrete p); and qa pa (abstract q, abstract p). We conduct evaluation on each subset and

compare model performance across concreteness groups.

5.2 Results & analysis

We report Spearman’s ρ in Table 5.1. Over the full dataset, GTE-base achieves the highest correlation

score (0.4967) with rq. Bisides GTE, CLIP-l, ALIGN and MPNet with rq also surpass the taxonomic

verification baseline, an approach known to be competitive on GLE [RDG23]1, demonstrating the

effectiveness of our methodology. Similarity-based measures making use of the synthetic concept “q, a

1Renner, Denis, and Gilleron [RDG23] report a correlation score of 0.425 achieved by GPT2-XL on the union of noun
and verb datasets, whereas we experiment with BERT and GPT2 on the noun dataset only.
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all qc pc qc pa qa pc qa pa
# 2163 172 89 119 1055

b

CLIP-b 0.1536 0.0946 0.3609 0.4415 −0.0563†

CLIP-l 0.1740 0.1262 0.3307 0.5128 −0.0159†

ALIGN 0.1874 0.1346 0.3842 0.4852 −0.0415†

LiT 0.1342 0.0989 0.3155 0.4021 0.0038†

MCSE 0.1625 0.0978 0.3923 0.3855 0.0707†

SimCSE 0.1946 0.1174 0.4475 0.3233 0.1999
GTE-small 0.2460 0.1870 0.3834 0.5249 0.2335
GTE-base 0.3020 0.2654 0.4324 0.5739 0.2351
MiniLM 0.2209 0.1830 0.3876 0.4398 0.0302†

MPNet 0.2307 0.2019 0.4460 0.4325 0.1238†

DistilRoBERTa 0.1843 0.1474 0.3879 0.5148 0.0794†

PhraseBERT 0.1575 0.0973 0.2980 0.5485 0.0305†

sq

CLIP-b 0.3024 0.3445 0.2198∗ 0.4528 0.0633†

CLIP-l 0.3583 0.3954 0.1391† 0.5413 0.1286†

ALIGN 0.3265 0.3697 0.1285† 0.5748 0.0600†

LiT 0.2130 0.2751 −0.0458† 0.2901 0.1259†

MCSE 0.2717 0.2709 0.1077† 0.5408 0.2282
SimCSE 0.3702 0.3517 0.3062 0.5954 0.3189
GTE-small 0.4106 0.4532 0.2315∗ 0.4719 0.3002
GTE-base 0.4039 0.4575 0.2064∗ 0.4735 0.2531
MiniLM 0.4167 0.4424 0.1308† 0.5953 0.1956∗

MPNet 0.4267 0.4891 0.1689† 0.5845 0.1865∗

DistilRoBERTa 0.3243 0.3530 0.1704† 0.6176 0.0038†

PhraseBERT 0.2569 0.2112 0.2900 0.5627 0.2038

rq

CLIP-b 0.4073 0.4355 0.3417 0.5004 0.0985†

CLIP-l 0.3352 0.3325 0.3774 0.5907 0.1049†

ALIGN 0.4095 0.4307 0.3457 0.6561 0.0904†

LiT 0.3072 0.4009 0.0932† 0.4144 −0.0280†

MCSE 0.2553 0.2943 0.4215∗ 0.3483 0.1391†

SimCSE 0.3394 0.2982 0.4366 0.5139 0.2809
GTE-small 0.4150 0.3986 0.4359 0.6219 0.2641
GTE-base 0.4967 0.5092 0.5225 0.6488 0.2949
MiniLM 0.3619 0.3580 0.3836 0.5339 0.1159†

MPNet 0.4179 0.4152 0.4914 0.5571 0.2866
DistilRoBERTa 0.2856 0.2592 0.3367 0.5817 0.1671∗

PhraseBERT 0.1602 0.0703∗ 0.3134 0.5402 0.0988†

veri
BERT 0.3829 0.4262 0.5024 0.4372 0.0331†

GPT2 0.3536 0.3326 0.4039 0.5842 0.0964†

Table 5.1: Model performance on graded lexical entailment.
For each model, we report Spearman’s rank correlation between its similarity-based measures and the
HyperLex GLE ratings. Boldface highlights the best score in each column.
Statistical significance is assessed using a two-sided permutation test with 10,000 permutations. †denotes
p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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type of p” not only exhibit qualitatively different behaviour across different lexical relations (Fig 4.1),

but also capture their gradual nature quantitatively.

For instance, the word pairs (rabbit, food) and (scallop, animal), despite being labeled as hypernymy

pairs in WordNet, have relatively low GLE ratings. Although “rabbit” is considered a type of food in

many cultures, it is more typically considered an animal in a decontextualized setting. In accordance

with this fact, generated images with CLIP-l encoding using Stable Diffusion depict live animals when

prompted with the isolated word. When prompted with the synthetic concept “rabbit, a type of food”,

generated images still depict a live rabbit or a rabbit alongside some food instead of depicting rabbit

as food per se, likely also due to training data bias. On the other hand, the depiction of “scallop”

resembles food rather than live animals, whereas “scallop, a type of animal” resembles sea animals. The

image-caption training data provide information about how concepts are typically depicted, allowing

contrastive VLMs to learn the corresponding human-like representations, but they also introduce

systematic bias [Ham+24] as in the case of unimodal models.

We further analyze model performance across concreteness groups. Results show that GTE-base

with rq is the best-performing combination only when q is concrete. On the “qa pc” subset containing

(chemistry, science) and (headache, pain), the contrastive VLM ALIGN performs the best. The case

where both q and p are abstract is particularly challenging for all models: while SimCSE maintains

a correlation score of 0.3189, correlation scores obtained by contrastive VLMs do not exceed 0.1286

and are not statistically significant (p-value ≥ 0.05), in accordance with the previous statement that

abstract words are particularly challenging for multimodal models.

Meanwhile, we argue that previous critique against word similarity evaluation [Far+16] such as

subjectivity can extend to graded lexical entailment, especially for abstract words which can be highly

ambiguous. To further explore the performance of contrastive VLMs on abstract words, we perform

another experiment in Chapter 6, focusing on binary hypernymy detection with coordination as the

only distractor relation, i.e. hypernymy versus coordination discrimination.
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“rabbit”

“rabbit, a type of food”

“scallop”

“scallop, a type of animal”

Figure 5.1: Generated images for concepts based on (rabbit, food) and (scallop, animal).
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Chapter 6

Experiment 3: concreteness &

specificity

While abstract words have long been recognized as a challenge to multimodal models, generic words

(e.g. bird, furniture) are also grounded less directly via their more specific hyponyms (e.g. robin,

rocking chair). In this chapter, we evaluate unimodal and multimodal models with contrastive learning

on hypernymy versus coordination discrimination, comparing their performance on concrete versus

abstract, as well as specific versus generic word pairs, in order to investigate whether abstractness and

genericity are significantly more challenging for multimodal models than unimodal models.

6.1 Experimental setup

Material We adopt concreteness ratings provided by Brysbaert, Warriner, and Kuperman [BWK14],

and the corresponding specificity scores computed by Bolognesi, Burgers, and Caselli [BBC20]: for 13518

of the 15030 nouns with available concreteness ratings, they first successfully retrieve a WordNet [Fel00]

synset, always using the first sense in the case of polysemy, and then compute the total amount

of its direct and indirect hypernyms in the WordNet hierarchy1. Both scores range from 1 (most

abstract/generic) to 5 (most concrete/specific).

Sampling Following Bolognesi, Burgers, and Caselli [BBC20], we treat each noun q with concreteness

and specificity ratings as a WordNet synset. We first randomly sample one of its direct hypernym

synsets to form a hypernymy pair (q, h) with the canonical lemma h; then we randomly sample one of

the direct hyponym synsets of h that is distinct from q, and obtain a coordination pair (q, c) with the

canonical lemma c. 2 (q, h) is discarded if q is the only direct hyponym of h, i.e. if such a coordination

pair (q, c) is not available. Such sampling results in 12343 pairs for each relation.

1Bolognesi, Burgers, and Caselli [BBC20] provide 3 different specificity measures. Here we use Specificity 3 only,
following their Study 3.

2For instance, for the word “cat”, we retrieve the synset cat.n.01, whose direct hypernym is the synset feline.n.01.
This hypernym synset has two lemmas, namely feline.n.01.feline and feline.n.01.felid. We use the name of its
first lemma, “feline”, to form a hypernymy pair (cat, feline). feline.n.01 has another hyponym big cat.n.01, whose
lemmas are big cat.n.01.big cat and big cat.n.01.cat, so we sample a corresponding coordination pair (cat, big cat).
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Dataset In this experiment, we focus on single words following BLESS [BL11] and HyperLex [Vul+17],

and conduct evaluation on a subset of the sampled pairs excluding multiword expressions (MWEs). 3

For each word q with a hypernymy pair (q, h) and a coordination (q, c), the two pairs are included in

our evaluation if and only if q, h and c are all single words, resulting in 7907 hypernymy pairs and

7907 coordination pairs. We refer to our constructed dataset as BBCsingle, named after Bolognesi,

Burgers, and Caselli [BBC20]. For each pair (q, p) where p is either a hypernym or a co-hyponym,

concreteness and specificity scores are available for q. Given the close distance between q and p in the

WordNet hierarchy as guaranteed by our sampling methodology, we believe these scores also work as

the concreteness and specificity scores for pair as a whole. Like in Experiment 2, we divide the dataset

into concreteness and specificity groups for performance comparison: following Bolognesi, Burgers, and

Caselli [BBC20], word pairs fall into 4 quadrants, i.e. conc+ spec+, conc+ spec-, conc- spec+, and

conc- spec-, with 3 as a threshold for both dimensions.

Evaluation We adopt two evaluation metrics: The first one is AP; the second one is accuracy, com-

puted via examining whether the score of (q, h) is higher than that of (q, c) for each q, which is actually

in analogy to MAP in Experiment 1. Note that due to the balanced number of positive (hypernymy)

and negative (coordination) pairs in the dataset, the AP and accuracy (Acc) of a random baseline are

both 0.5. We also compute the Spearman’s correlation between the concreteness/specificity scores and

hypernymy measures produced by models. Additiional boxplots are provided in Appendix B.2.

6.2 Results & analysis

6.2.1 Overall performance

Table 6.1 reports the models’ overall performance on hypernymy versus coordination discrimination as

well as correlation with concreteness and specificity scores. We first observe that rq with GTE-base is

the best-performing combination under both metrics, in contrast to previous results where sq with

LiT performs the best on the same task using the BLESS dataset. Also, contrastive VLMs tend to

underperform sentence transformers with more significant performance gaps. There exist two potential

reasons behind this conflict: 1) the target concepts (qs) in BLESS are all unambiguous basic-level

concepts such as “robin”, “banana” and “sweater” [BL11], whereas the source of target concepts for

BBC, namely the Brysbaert, Warriner, and Kuperman [BWK14] concreteness database, aims to include

as many entries as possible, thus containing more sophisticated concepts; 2) hypernymy in BBC are

limited to direct hyponym-hypernym WordNet pairs, which can be less intuitive for humans [Vul+17].

Some pairs in BBC, such as (kamikaze, fighter), (lactose, disaccharide) and (flathead, scorpaenoid),

can be difficult even for humans to process while being well-represented by unimodal models. While

we experiment on BBC to investigate the impact of concreteness and specificity on model performance,

we admit that it is not an ideal dataset for evaluating human-like concept understanding.

Interestingly, in this experiment MCSE outperforms both SimCSE under both evaluation metrics,

contrary to results in our previous experiments as well as the findings of Bavaresco and Fernández

[BF25], which calls for more extensive research to compare the performance of SimCSE and MCSE

and explore the effect of cross-modal contrastive learning on unimodal sentence embedding models.

3For completeness, we also perform an additional experiment using all the sampled pairs including multiword expressions
(BBCfull), reported in Appendix C for completeness. Results are similar.
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measure model AP Acc corrconc corrspec

b

CLIP-b 0.6094 0.7023 −0.4218 −0.2078
CLIP-l 0.6275 0.7234 −0.3349 −0.1640
ALIGN 0.6364 0.7161 −0.0334 −0.0389
LiT 0.5627 0.6493 −0.4316 −0.1686
MCSE 0.6259 0.6698 −0.0298 0.0489
SimCSE 0.6328 0.6670 −0.0290 0.0324
GTE-small 0.6588 0.7247 −0.0171∗ 0.0185∗

GTE-base 0.6721 0.7481 −0.0235 0.0679
MiniLM 0.5482 0.7146 0.0877 0.1160
MPNet 0.6337 0.7044 0.0175∗ 0.1855
DistilRoBERTa 0.5927 0.6423 −0.0232 0.1236
PhraseBERT 0.5768 0.6221 −0.0068† 0.1636

sq

CLIP-b 0.6180 0.7290 −0.4492 −0.2165
CLIP-l 0.6342 0.7808 −0.3861 −0.1795
ALIGN 0.6146 0.7208 −0.1446 −0.1109
LiT 0.5385 0.5785 −0.3273 −0.1787
MCSE 0.6246 0.7172 0.0197∗ 0.0561
SimCSE 0.6219 0.6748 0.0762 −0.0193∗

GTE-small 0.6877 0.7815 −0.0585 0.0363
GTE-base 0.6845 0.7936 −0.0707 0.0333
MiniLM 0.6815 0.7735 −0.0380 0.0626
MPNet 0.6506 0.7582 0.0614 0.1725
DistilRoBERTa 0.6166 0.6876 0.0889 0.1422
PhraseBERT 0.5857 0.6632 −0.1372 0.0095†

rq

CLIP-b 0.6398 0.7156 0.0214 −0.0213
CLIP-l 0.6601 0.7498 −0.0278 −0.0641
ALIGN 0.6584 0.7092 0.1923 0.0404
LiT 0.5638 0.6312 0.1864 0.0143†

MCSE 0.6575 0.7020 0.0121† 0.0532
SimCSE 0.6546 0.6961 0.0584 0.0036†

GTE-small 0.7432 0.8014 −0.0255 −0.0381
GTE-base 0.7619 0.8246 −0.0166∗ 0.0070†

MiniLM 0.7146 0.7662 0.0684 0.0411
MPNet 0.7228 0.7899 0.0000 0.1038†

DistilRoBERTa 0.6307 0.6860 −0.0456 0.0663
PhraseBERT 0.5828 0.6394 0.0824 0.1503

veri
BERT 0.5433 0.6231 0.0358 0.1310
GPT2 0.7607 0.8183 0.0001† 0.0379

Table 6.1: Model performance on hypernymy versus coordination discrimination. MWEs excluded.
For each model, we report AP and Accuracy scores evaluating the ability to distinguish hypernymy
from coordination pairs, based on the measures introduced in Section 3.2. In each column, boldface
highlights the best scores obtained by contrastive VLMs and sentence transformers respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted over the full dataset, and all
differences are statistically significant (p < 0.01).
We also report Spearman’s rank correlation with concreteness and specificity scores. Statistical
significance is assessed using a two-sided permutation test with 10,000 permutations. †denotes p-value
≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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6.2.2 Sensitivity to concreteness/specificity

Table 6.1 also demonstrates that sq with contrastive VLMs CLIP and LiT are particularly sensitive to

word concreteness. Their negative correlations reflect that abstract word pairs tend to have higher

sq scores and might therefore be more easily mistaken as hypernymy pairs, as can be observed in

boxplots as well (Appendix B.2). In terms of specificity, sq with contrastive VLMs also exhibit negative

correlations, which are less drastic than in the case of concreteness. Meanwhile, sentence transformers

MPNet and DistilRoBERTa are also sensitive to specificity, although with a positive correlation: they

tend to produce lower sq scores for more generic pairs. The other measure rq is less sensitive to

concreteness and specificity and yields a higher AP, demonstrating robustness. However, note that sq

with CLIP-l outperforms rp in terms of accuracy: while this measure tend to produce higher scores,

which is a disadvantage when evaluated via AP, it is actually better at distinguishing the hypernymy

pair (q, h) from the coordination pair (q, c) in general, and can be considered as better-performing as

the tendency to produce higher scores for abstract pairs is factored out in the accuracy metric. 4

Table 6.2 reports model performance on BBC subsets with high/low concreteness or specificity,

respectively, factoring out the confounding effect of comparing across concreteness levels. From the

high specificity (spec+) subset to the low specificity (spec-, high genericity) subset, we observe a

performance increase in terms of AP and a performance drop in terms of accuracy. This conflict further

indicates that evaluation of the understanding of concrete versus abstract or specific versus generic

words needs to be handled with caution. We observe a performance drop from the high concreteness

(conc+) to the low concreteness (conc-, high abstractness) subset in terms of both AP and accuracy for

both unimodal and multimodal models, in accordance with findings of Liao, Chen, and Du [LCD23].

Unlike previous results on GLE (Chapter 5), the comparison of performance drop between contrastive

VLMs and sentence transformers is not drastic. Given our former discussions on the subjectivity of the

GLE task and caution about evaluation method, we argue from our current findings that abstractness

is not necessarily significantly more challenging for contrastive VLMs than for sentence transformers,

and that further investigation is required for reaching a definite conclusion.

6.3 Summary & discussion

In this chapter, we construct a novel dataset BBC containing hypernymy pairs and adversarial

coordination pairs, with concreteness and specificity scores for the target concept q. As word pairs are

sampled from direct hypernymy pairs in WordNet, with a known general misalignment from human

intuition [Cao+24], this dataset does not aim to reflect human concept understanding and is only

intended for examining model performance on words of different levels of concreteness and specificity.

Word abstractness has long been considered a challenge to multimodal models. In this experiment,

we do observe that the sq measure with contrastive VLMs is more sensitive to word concreteness, but

the performance of contrastive VLMs does not decrease drastically on abstract word pairs as previously

assumed. Our results demonstrate that abstractness is not significantly more challenging for contrastive

VLMs than for sentence transformers. Meanwhile, the impact of specificity is less clear. Overall, we

highlight the need to explore more systematic evaluation protocols in order to investigate the role of

word concreteness and specificity on model behaviour.

4Actually, the authors of BLESS suggested factoring out concept-specific effects during evaluation [BL11], which is
why we report MAP alongside AP.
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conc+ conc- spec+ spec-
AP Acc AP Acc AP Acc AP Acc

# 5021 2886 194 7713

b

CLIP-b 0.6329 0.7216 0.5990 0.6687 0.6092 0.6856 0.6314 0.7027
CLIP-l 0.6485 0.7411 0.6153 0.6927 0.6272 0.6907 0.6402 0.7242
ALIGN 0.6564 0.7391 0.6016 0.6760 0.6362 0.6804 0.6568 0.7170
LiT 0.5999 0.6909 0.5350 0.5769 0.5620 0.6598 0.5929 0.6490
MCSE 0.6289 0.6734 0.6217 0.6635 0.6253 0.6804 0.6536 0.6695
SimCSE 0.6391 0.6772 0.6223 0.6493 0.6322 0.6804 0.6579 0.6667
GTE-small 0.6684 0.7375 0.6416 0.7024 0.6579 0.7165 0.6871 0.7249
GTE-base 0.6791 0.7624 0.6603 0.7231 0.6718 0.7474 0.6877 0.7481
MiniLM 0.6548 0.7256 0.6382 0.6954 0.6467 0.7835 0.7076 0.7128
MPNet 0.6367 0.7060 0.6290 0.7017 0.6328 0.7062 0.6730 0.7044
DistilRoBERTa 0.5983 0.6487 0.5830 0.6313 0.5924 0.6649 0.6102 0.6418
PhraseBERT 0.5680 0.6023 0.5926 0.6566 0.5772 0.5979 0.5733 0.6227

sq

CLIP-b 0.6537 0.7431 0.6086 0.7044 0.6173 0.7320 0.6719 0.7289
CLIP-l 0.6898 0.8036 0.6133 0.7412 0.6337 0.7526 0.6691 0.7815
ALIGN 0.6369 0.7411 0.5868 0.6854 0.6140 0.7835 0.6412 0.7192
LiT 0.5458 0.5851 0.5362 0.5669 0.5389† 0.5567 0.5231 0.5790
MCSE 0.6293 0.7327 0.6166 0.6902 0.6246 0.7113 0.6337 0.7174
SimCSE 0.6361 0.6865 0.5983 0.6545 0.6225 0.5876 0.6009 0.6770
GTE-small 0.7105 0.8012 0.6520 0.7471 0.6876 0.7784 0.6957 0.7815
GTE-base 0.7007 0.8084 0.6626 0.7678 0.6835 0.8505 0.7333 0.7922
MiniLM 0.7021 0.7827 0.6512 0.7574 0.6812 0.7784 0.6994 0.7734
MPNet 0.6583 0.7598 0.6382 0.7554 0.6505 0.7371 0.6617 0.7587
DistilRoBERTa 0.6276 0.6961 0.5990 0.6729 0.6166 0.7010 0.6299 0.6873
PhraseBERT 0.5867 0.6624 0.5871 0.6646 0.5879† 0.5928 0.5300 0.6650

rq

CLIP-b 0.6416 0.7267 0.6411 0.6961 0.6400 0.6959 0.6438 0.7161
CLIP-l 0.6625 0.7564 0.6579 0.7384 0.6602 0.7680 0.6619 0.7494
ALIGN 0.6811 0.7367 0.6105 0.6615 0.6567 0.7680 0.7221 0.7078
LiT 0.5738 0.6545 0.5395 0.5908 0.5644∗ 0.6546 0.5536 0.6306
MCSE 0.6651 0.7122 0.6442 0.6843 0.6565 0.7526 0.6983 0.7008
SimCSE 0.6668 0.7088 0.6333 0.6739 0.6544 0.6804 0.6634 0.6965
GTE-small 0.7575 0.8208 0.7171 0.7678 0.7425 0.8144 0.7626 0.8011
GTE-base 0.7767 0.8423 0.7347 0.7938 0.7619 0.8454 0.7661 0.8241
MiniLM 0.7215 0.7710 0.7027 0.7561 0.7133 0.7938 0.7646 0.7655
MPNet 0.7292 0.7911 0.7129 0.7879 0.7213 0.8144 0.7765 0.7893
DistilRoBERTa 0.6428 0.6993 0.6117 0.6629 0.6292 0.7680 0.6897 0.6839
PhraseBERT 0.5687 0.6190 0.6117 0.6750 0.5836∗ 0.5979 0.5740 0.6405

veri
BERT 0.5482 0.6280 0.5355 0.6147 0.5447 0.5773 0.5076 0.6243
GPT2 0.7642 0.8192 0.7548 0.8167 0.7610 0.8247 0.7547 0.8181

Table 6.2: Model performance on the high/low concreteness/specificity subsets. MWEs excluded.
In each column, boldface highlights the best scores obtained by contrastive VLMs and sentence
transformers respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. †alongside APs
denotes p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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conc+ spec+ conc+ spec- conc- spec+ conc- spec-
AP Acc AP Acc AP Acc AP Acc

# 179 4842 15 2871

b

CLIP-b 0.6500 0.6927 0.6324 0.7226 0.5594† 0.6000 0.5997 0.6691
CLIP-l 0.6482 0.6872 0.6484 0.7431 0.6512† 0.7333 0.6156 0.6924
ALIGN 0.6648 0.6816 0.6566 0.7412 0.5735† 0.6667 0.6021 0.6761
LiT 0.6040 0.6704 0.5999 0.6917 0.5414† 0.5333 0.5350 0.5772
MCSE 0.6638 0.6872 0.6279 0.6729 0.6299† 0.6000 0.6221 0.6639
SimCSE 0.6772 0.6927 0.6377 0.6766 0.5534† 0.5333 0.6232 0.6499
GTE-small 0.6973 0.7318 0.6669 0.7377 0.5896† 0.5333 0.6433 0.7032
GTE-base 0.7066 0.7654 0.6781 0.7623 0.5387† 0.5333 0.6617 0.7241
MiniLM 0.7209 0.7933 0.6523 0.7230 0.5822† 0.6667 0.6391 0.6956
MPNet 0.6834 0.7207 0.6349 0.7055 0.5925† 0.5333 0.6297 0.7025
DistilRoBERTa 0.6143 0.6536 0.5978 0.6485 0.6236† 0.8000 0.5833 0.6304
PhraseBERT 0.5895 0.6089 0.5674 0.6020 0.4900† 0.4667 0.5942 0.6576

sq

CLIP-b 0.6790 0.7263 0.6531 0.7437 0.7099† 0.8000 0.6082 0.7039
CLIP-l 0.6765 0.7598 0.6904 0.8052 0.6930† 0.6667 0.6127 0.7416
ALIGN 0.6410 0.7877 0.6372 0.7394 0.6756† 0.7333 0.5863 0.6851
LiT 0.5371 0.5810 0.5463 0.5853 0.4518† 0.2667 0.5367 0.5684
MCSE 0.6301 0.7039 0.6297 0.7338 0.7122† 0.8000 0.6161 0.6897
SimCSE 0.5931 0.5810 0.6378 0.6904 0.6882† 0.6667 0.5975 0.6545
GTE-small 0.7087 0.7765 0.7108 0.8021 0.6759† 0.8000 0.6520 0.7468
GTE-base 0.7500 0.8547 0.6992 0.8067 0.6588† 0.8000 0.6628 0.7677
MiniLM 0.7017 0.7709 0.7030 0.7831 0.7229† 0.8667 0.6508 0.7569
MPNet 0.6645 0.7263 0.6583 0.7610 0.6984† 0.8667 0.6383 0.7548
DistilRoBERTa 0.6249 0.6872 0.6286 0.6964 0.6758† 0.8667 0.5985 0.6719
PhraseBERT 0.5230∗ 0.5810 0.5905 0.6654 0.6079† 0.7333 0.5873 0.6642

rq

CLIP-b 0.6507 0.7095 0.6413 0.7274 0.5884† 0.5333 0.6420 0.6970
CLIP-l 0.6654 0.7598 0.6625 0.7563 0.7269† 0.8667 0.6582 0.7377
ALIGN 0.7355 0.7877 0.6790 0.7348 0.5779† 0.5333 0.6112 0.6621
LiT 0.5618 0.6816 0.5746 0.6534 0.4522† 0.3333 0.5403 0.5921
MCSE 0.7026 0.7654 0.6638 0.7102 0.7152† 0.6000 0.6442 0.6848
SimCSE 0.6710 0.6872 0.6669 0.7096 0.6839† 0.6000 0.6334 0.6743
GTE-small 0.7717 0.8324 0.7568 0.8203 0.6953∗ 0.6000 0.7177 0.7687
GTE-base 0.7816 0.8547 0.7767 0.8418 0.6614∗ 0.7333 0.7358 0.7941
MiniLM 0.7705 0.7989 0.7196 0.7710 0.7604∗ 0.7333 0.7030 0.7562
MPNet 0.7810 0.8156 0.7270 0.7902 0.7732∗ 0.8000 0.7128 0.7879
DistilRoBERTa 0.6853 0.7654 0.6413 0.6968 0.7353∗ 0.8000 0.6110 0.6621
PhraseBERT 0.5806 0.6034 0.5689 0.6196 0.5202† 0.5333 0.6126 0.6757

veri
BERT 0.5121 0.5978 0.5502 0.6291 0.4931† 0.3333 0.5362 0.6162
GPT2 0.7581 0.8380 0.7647 0.8185 0.7210∗ 0.6667 0.7550 0.8175

Table 6.3: Model performance on subsets w.r.t. both concreteness and specificity. MWEs excluded.
In each column, boldface highlights the best scores obtained by contrastive VLMs and sentence
transformers respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. †alongside APs
denotes p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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Chapter 7

Conclusion & discussion

7.1 Conclusion

This paper investigates the concept understanding of text encoders of contrastive VLMs alongside

unimodal models with contrastive learning. We focus on hypernymy, a crucial lexical relation in human

semantic memory, and conduct evaluation on both binary hypernymy detection and graded lexical

entailment with a novel methodology based on synthetic concepts.

RQ1 How well do contrastive VLMs capture hypernymy compared to unimodal models with contrastive

learning? Do they exhibit certain advantages due to their visual grounding?

In Experiment 1 (Chapter 4) and Experiment 2 (Chapter 5), we find the best-performing model

to be GTE [Li+23b], a state-of-the-art unimodal sentence embedding model, potentially due to

its carefully curated training objectives and data. Although contrastive VLMs are outperformed

by other unimodal models as well, their performance gap is relatively small. In one particular

scenario, namely hypernymy versus coordination discrimination (Section 4.2.2), the contrastive

VLM LiT [Zha+22a] performs above all other models by a large margin. We hypothesize that

contrastive VLMs hold an inherent advantage in this task due to their visual grounding, with

illustrations via text-to-image generation.

RQ2 Do contrastive VLMs perform worse on abstract or generic words?

In Experiment 2 (Chapter 5) and Experiment 3 (Chapter 6), we compare model performance

on subsets containing concrete and abstract word pairs. On the GLE task, the performance of

contrastive VLMs deteriorates significantly on abstract words, while sentence transformers also

suffer a degradation in performance. We argue that GLE, like word similarity evaluation, may

suffer from problems such as subjectivity [Far+16], especially for abstract word pairs which are

highly ambiguous. On the hypernymy versus coordination discrimination task, both demonstrate

a comparable decline. While contrastive VLMs exhibit a tendency to produce higher scores for

more abstract pairs leading to potential confusion, we argue that with such concept-specific effects

factored out in evaluation metrics, abstractness is not necessarily significantly more challenging

for text encoders of contrastive VLMs than for sentence transformers. The impact of specificity

on both types of models is less clear. We argue for the importance of exploring more systematic

evaluation protocols in order to investigate the impact of word concreteness and specificity on

model performance.
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Our contributions are as follows:

• While previous research on the text encoders of contrastive VLMs mainly focus on comparing

CLIP with BERT [Che+23] or GPT2 [WC22b], we perform a direct assessment against sentence

transformers with unimodal contrastive learning to examine the effect of visual-semantic training;

• Inspired by the work of Regneri, Abdelhalim, and Laue [RAL24], we propose a novel methodology

based on synthetic concepts (“q, a type of p”), defining similarity-based measures to reflect the

hypernymy relation, and achieve competitive performance;

• We evaluate 5 multimodal and 7 unimodal models on binary hypernymy detection and graded

lexical entailment, and qualitatively analyze how contrastive VLMs represent word pairs of

different lexical relations due to their training data;

• We construct a novel dataset, BBC, to investigate model performance on words of different levels

of concreteness and specificity, and find contrastive VLMs to be more robust than previously

expected.

7.2 Discussion

In this work, we evaluate the text encoders of 3 contrastive VLMmodels, CLIP [Rad+21], ALIGN [Jia+21],

and LiT [Zha+22a], all trained from scratch with an image-caption matching objective. It is possible

that initialization from a pre-trained language model or an additional unimodal contrastive learning

objective would enhance their linguistic competency, While SimCSE[GYC21]-like unimodal contrastive

learning is reported to enhance CLIP on image-text retrieval [Zha+23b], it is not yet clear whether it

benefits the text encoder on representation learning.

MCSE [Zha+22b] is an intriguing model for comparison as it has a similar dual-encoder architecture,

but is initialized with BERT and is jointly trained on a CLIP-like objective and a SimCSE-like unimodal

contrastive objective. Also, note that the amount of multimodal training data for MCSE is significantly

smaller than that of contrastive VLMs. In our experiments on BLESS and HyperLex, MCSE is

outperformed by both SimCSE and CLIP, discouraging the integration of vision-language contrastive

learning and unimodal training objectives. More direct ablation studies are currently lacking.

According to Zhuang, Fedorenko, and Andreas [ZFA23], replacing complete captions in the image-

caption training data with single words improves CLIP variants on word learning. They suggest that

full captions actually hinders the CLIP architecture from integrating the visual information for single

word learning. We thus argue that the visual-semantic concept understanding of contrastive VLMs

might differ substantially from word embeddings learnt from distributional patterns in text corpora.

While their text encoders achieve remarkable performance in our experiments as well as previous

work [PTF21], more exploration is required on the integration of contrastive VLMs and the textual

distributional information that empower language models.

7.3 Limitation & future work

In this work we aim to evaluate contrastive VLMs on human concept understanding, and perform

experiments on binary hypernymy detection as well as graded lexical entailment. However, our
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investigations are restricted to single-word nouns and do not address polysemy, which is highlighted

by [Ren+23]: BLESS, the dataset for our first experiment, focuses unambiguous words; HyperLex,

the dataset for our second experiment, contains polysemous words, but we do not look into model

performance in the case of polysemy; during the construction of the dataset for our third experiment,

we link a word to its first WordNet sense by default, overlooking other potential senses.

We report results of Experiment 3 on the complete samples in Appendix C, where multiword

expressions (MWEs) are not excluded. In future work, our work can be extended to other parts

of speech such as verbs by modifying the templates for generating synthetic concepts, and to other

semantic phenomenon, e.g. the lexical relation meronymy [PL25] via “handle, part of some door”

and “door, with some handle”; the idiomaticity of MWEs via computing the similarities between

“beaver”, “eager beaver”, and “eager beaver, a type of beaver”; and polysemy, as the expression “q, a

type of p” provides minimal context for disambiguation, as can be observed in the (scallop, animal)

example (Fig 5.1). Moreover, our synthetic concept “q, a type of p” can be associated to topics such as

categorical knowledge editing [PGH24], e.g. if a cobra is a type of dog, then it also barks. It is also

possible to produce additional concept representations via image synthesis as in [HLY23; Liu+22].

In Experiment 1, our hypernymy-specialized measures underperform the näıve cosine similarity

baseline in hypernymy versus random pair discrimination scenario, and we advocate the combination

of multiple measures for a more robust representation of hypernymy. We experiment with the

multiplication of current measures, namely b · sq, b · rq, and rq · sq, and report results in Appendix D.

These combinations sometimes yield better performance, but not consistently. In future work, we

expect more powerful combination approaches, e.g. via the random forest algorithm [San+16a], to

further improve performance, or even combine different models to better integrate information from

different modalities.
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[RDG23] Joseph Renner, Pascal Denis, and Rémi Gilleron. “WordNet Is All You Need: A Surprisingly

Effective Unsupervised Method for Graded Lexical Entailment”. In: Findings of the

Association for Computational Linguistics: EMNLP 2023. 2023, pages 9176–9182 (cited

on pages 14, 17, 25).

[RE16] Stephen Roller and Katrin Erk. “Relations such as hypernymy: Identifying and exploit-

ing hearst patterns in distributional vectors for lexical entailment”. In: arXiv preprint

arXiv:1605.05433 (2016) (cited on page 11).

47



[REB14] Stephen Roller, Katrin Erk, and Gemma Boleda. “Inclusive yet Selective: Supervised

Distributional Hypernymy Detection”. In: International Conference on Computational

Linguistics. 2014 (cited on page 12).
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Appendix A

Synthetic concepts

We devise two synthetic concepts, q′ and p′, for investigating different models’ representation of the

lexical relation between the pair (q, p). In particular, we hypothesize that for hypernymy pairs where p

is the hypernym of q, e.g. (robin, bird), q′ (q, a type of p) would be highly similar to q, and p′ (p, such

as q) would be similar to p. Compared to a näıve average of q and p, q′ is expected to be closer to q

than to p, while p′ is expected to be closer to p than to q. To examine these hypotheses, we introduce

two measures, cq and cp, as a sanity check, with the assumption that both values would surpass 1 in

the case of hypernymy (Section 3.2).

Fig A.2 and Fig A.3 summarize the distribution of cq and cp on the dataset BLESS in our first

experiment (Chapter 4). We observe that for all models except PhraseBERT, the interquartile range

of cq lies entirely above 1, providing descriptive support for our hypothesis concerning q′. However,

the synthetic concept p′ fails the sanity check with the median of the cp measure falling below 1 for

most models, contradicting with our former hypothesis. Exploration via text-to-image generation also

demonstrates that images generated with synthetic prompts “q, a type of p” and “p, such as q” both

tend to depict the specific concept q rather than the more generic hypernym p (Fig A.1).

This phenomenon can be explained in terms of their in natural language: “bird, such as robin”,

although semantically similar to the hypernym “bird”, is more distributionally constrained as it is

unlikely to occur in contexts which do not also apply to the hyponym “robin”; if a caption contains

the specialization “such as robin”, the corresponding image would also depict a robin rather than an

arbitrary type of bird with high probability. Therefore, the expression “p, such as q” is distributionally

more similar to q. Consequently, only measures based on q′ are used as hypernymy measures in our

experiments, while measures based on p′ are discarded.

Despite its failure in this hypernymy detection scenario, we argue that this observed phenomenon

is hypernymy-specific, and that p′, the synthetic concept based on p, may still prove informative for

lexical relations. For example, the synthetic concept p′ specialized for meronymy, “p, with some q”,

is more similar to p than to q: “door, with some handle” differ from the meronym “handle” w.r.t.

distribution in text corpora, and images depicting “door, with some handle” are more likely to depict a

complete door rather than the local region around the handle, while images depicting “handle” typically

focus on the handle. In our preliminary experiment on BLESS using the synthetic concept p′, “p, with

some q”, sp and rp successfully distinguish meronymy from the other lexical relations.
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q: “robin”

p: “bird”

q′: “robin, a type of bird”

p′: “bird, such as robin”

q′: “robin, a type of cat”

Figure A.1: Generated images for concepts based on (robin, bird) and (robin, cat).
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Figure A.2: Boxplots summarizing the distribution of cq produced by different models on BLESS.
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Figure A.3: Boxplots summarizing the distribution of cp produced by different models on BLESS.
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Appendix B

Boxplots

Following Baroni and Lenci [BL11] and Lenci and Benotto [LB12], we produce boxplots summarizing

the distribution of different measures for each lexical relation. While their original setting includes

a z-normalization procedure for each target concept to factor out concept-specific effects, e.g. the

tendency of more frequent concepts to receive higher scores, our boxplots visualize the raw measures

with no additional preprocessing.

B.1 Distribution per relation

Fig B.1 summarizes the distribution of b, namely the näıve cosine similarity between q and p, produced

by different models across lexical relations in BLESS. We observe that the boxes for hypernymy and

for coordination substantially overlap, indicating limited separability. This is confirmed by a one-sided

Welch’s t-test, where only CLIP, LiT, and GTE exhibit statistically significant differences between the

two relations (Table 4.1). Distinguishing hypernymy from meronymy is another challenge for cosine

similarity. Still, it serves as an effective baseline for distinguishing hypernymy from random pairs,

which are semantically dissimilar.

With our specialized hypernymy measures sq and rq (Fig B.2–B.3), hypernymy can be more easily

distinguished from coordination as well as meronymy. However, with contrastive VLMs these measures

tend to be surprisingly high for random pairs. We argue that for random pairs, the representation of q′

might be dominated by the more plausible component q due to the extreme counterfactuality of the

synthetic concept “q, a type of p”, leading to potential confusion with hypernymy. We thus suggest

that combining these measures may contribute to more robust hypernymy detection, and report results

of a simple combination method via multiplication in Appendix D.

B.2 Distribution w.r.t. concreteness/specificity

We also provide boxplots summarizing the distribution of sq and rq on BBC w.r.t. different lexical

relations (hyper vs. coord) as well as different levels of concreteness and specificity. From Fig B.4 we

observe that contrastive VLMs tend to produce higher sq scores for both hypernymy and coordination

pairs if the word pair has low concreteness, i.e. if the pair is abstract, making it difficult to distinguish

concrete hypernymy pairs from abstract coordination pairs. A similar but weaker tendency exists for

specificity (Fig B.5). Meanwhile, the measure rq does not appear to be sensitive to concreteness and

specificity as sq is (Figures B.6-B.7).
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Figure B.1: Boxplots summarizing the distribution of näıve cosine similarity scores produced by
different models across lexical relations in BLESS.
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Figure B.2: Boxplots summarizing the distribution of sq produced by different models on BLESS.
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Figure B.3: Boxplots summarizing the distribution of rq produced by different models on BLESS.
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Figure B.4: Boxplots summarizing the distribution of sq on concrete and abstract pairs on BBC. MWEs
excluded.
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Figure B.5: Boxplots summarizing the distribution of sq on specific and generic pairs on BBC. MWEs
excluded.
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Figure B.6: Boxplots summarizing the distribution of rq on concrete and abstract pairs in BBC. MWEs
excluded.
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Figure B.7: Boxplots summarizing the distribution of rq on specific and generic pairs in BBC. MWEs
excluded.
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While findings on sq cast doubts on contrastive VLMs’ representation of abstract words, as is

reflected from the performance gap between contrastive VLMs and sentence transformers in terms

of AP, this performance gap is much less drastic in terms of accuracy as concept-specific effects

concerning concreteness are factored out (see Table 6.1). Comparing model performance on concrete

and abstract subsets further demonstrates that both contrastive VLMs and sentence transformers

exhibit a performance drop from concrete to abstract words (Table 6.2). With discussions on the

choice of evaluation metrics, we argue from our current findings that abstractness and genericity are

not necessarily significantly more challenging for contrastive VLMs than for sentence transformers, and

that further investigation is required for reaching a reasonable conclusion.
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Appendix C

Experiment 3: including multiword

expressions

In Experiment 3, we sample 12343 hypernymy pairs (q, h) and 12343 adversarial coordination pairs

(q, c). Focusing on single words, we then report evaluation results on the BBCsingle subset consisting of

7907 pairs per relation. For completeness, here we report results over the full BBCfull dataset where

multiword expressions are not excluded. Table C.1 reports the models’ overall performance as well

as correlation with concreteness and specificity scores on the full dataset, and Tables C.2-C.3 report

performance on subsets according to concreteness and specificity. It can be seen that rq with GTE-base

is still the best-performing combination overall, and that sq with CLIP and LiT are sensitive to word

concreteness. Comparison between MCSE and SimCSE yields mixed results. As the overall patterns

closely mirror those reported in Chapter 6, we provide no further analysis here.
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measure model AP Acc corrconc corrspec

b

CLIP-b 0.6069 0.7094 −0.4124 −0.2072
CLIP-l 0.6244 0.7319 −0.3091 −0.1468
ALIGN 0.6260 0.7136 0.0095† −0.0058†

LiT 0.5695 0.6652 −0.4170 −0.1724
MCSE 0.6047 0.6577 0.0120† 0.0619
SimCSE 0.6125 0.6588 0.0059† 0.0439
GTE-small 0.6438 0.7263 0.0185 0.0349
GTE-base 0.6578 0.7501 0.0245 0.0897
MiniLM 0.6274 0.7069 0.1231 0.1300
MPNet 0.6140 0.6901 0.0813 0.2078
DistilRoBERTa 0.5823 0.6375 0.0190 0.1258
PhraseBERT 0.5616 0.6044 0.0691 0.2010

sq

CLIP-b 0.6192 0.7361 −0.4396 −0.2173
CLIP-l 0.6389 0.7830 −0.3493 −0.1620
ALIGN 0.6150 0.7209 −0.1226 −0.0869
LiT 0.5432 0.5974 −0.3088 −0.1745
MCSE 0.6202 0.7203 0.0177 0.0541
SimCSE 0.6260 0.6991 0.0516 −0.0313
GTE-small 0.6912 0.7893 −0.0563 0.0372
GTE-base 0.6894 0.8005 −0.0434 0.0558
MiniLM 0.6807 0.7778 −0.0351 0.0681
MPNet 0.6484 0.7622 0.0728 0.1778
DistilRoBERTa 0.6206 0.7043 0.0677 0.1302
PhraseBERT 0.5814 0.6588 −0.1201 0.0172

rq

CLIP-b 0.6442 0.7181 −0.0137∗ −0.0221
CLIP-l 0.6616 0.7475 −0.0700 −0.0678
ALIGN 0.6593 0.7067 0.1607 0.0300
LiT 0.5721 0.6476 0.1653 0.0003
MCSE 0.6396 0.6926 0.0302 0.0539
SimCSE 0.6450 0.7001 0.0499 −0.0028
GTE-small 0.7315 0.7932 −0.0304 −0.0343
GTE-base 0.7539 0.8205 −0.0070† 0.0165
MiniLM 0.6981 0.7559 0.0729 0.0542
MPNet 0.7003 0.7682 0.0299 0.1220
DistilRoBERTa 0.6281 0.6855 −0.0319 0.0617
PhraseBERT 0.5689 0.6205 0.1088 0.1686

veri
BERT 0.5578 0.6404 0.0433 0.1134
GPT2 0.7406 0.7889 −0.0248 0.0151∗

Table C.1: Model performance on hypernymy versus coordination discrimination. MWEs included.
For each model, we report AP and Accuracy scores evaluating the ability to distinguish hypernymy
from coordination pairs, based on the measures introduced in Section 3.2. In each column, boldface
highlights the best scores obtained by contrastive VLMs and sentence transformers respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted over the full dataset, and all
differences are statistically significant (p < 0.01).
We also report Spearman’s rank correlation with concreteness and specificity scores. Statistical
significance is assessed using a two-sided permutation test with 10,000 permutations. †denotes p-value
≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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conc+ conc- spec+ spec-
AP Acc AP Acc AP Acc AP Acc

# 8405 3938 364 11979

b

CLIP-b 0.6239 0.7255 0.5997 0.6750 0.6265 0.7115 0.6067 0.7093
CLIP-l 0.6391 0.7459 0.6149 0.7021 0.6351 0.7198 0.6243 0.7323
ALIGN 0.6390 0.7322 0.5977 0.6739 0.6512 0.7115 0.6255 0.7137
LiT 0.5985 0.6990 0.5438 0.5932 0.5963 0.6648 0.5688 0.6652
MCSE 0.6034 0.6613 0.6090 0.6501 0.6132 0.6648 0.6045 0.6575
SimCSE 0.6118 0.6632 0.6151 0.6493 0.6160 0.6676 0.6124 0.6585
GTE-small 0.6483 0.7366 0.6352 0.7044 0.6632 0.7033 0.6433 0.7270
GTE-base 0.6605 0.7615 0.6522 0.7257 0.6708 0.7473 0.6576 0.7501
MiniLM 0.6286 0.7137 0.6289 0.6922 0.6497 0.7280 0.6270 0.7062
MPNet 0.6136 0.6926 0.6170 0.6849 0.6267 0.6703 0.6141 0.6907
DistilRoBERTa 0.5849 0.6420 0.5776 0.6280 0.5731 0.6401 0.5829 0.6374
PhraseBERT 0.5513 0.5858 0.5852 0.6440 0.5507 0.5962 0.5623 0.6046

sq

CLIP-b 0.6471 0.7469 0.6134 0.7131 0.6426 0.7253 0.6189 0.7365
CLIP-l 0.6848 0.8007 0.6162 0.7450 0.6654 0.7665 0.6384 0.7835
ALIGN 0.6337 0.7379 0.5864 0.6846 0.6195 0.7390 0.6149 0.7203
LiT 0.5512 0.6077 0.5390 0.5754 0.5463 0.6016 0.5433 0.5973
MCSE 0.6227 0.7299 0.6151 0.6998 0.6175 0.7170 0.6205 0.7204
SimCSE 0.6370 0.7095 0.6039 0.6770 0.5872 0.6126 0.6273 0.7017
GTE-small 0.7103 0.8055 0.6549 0.7547 0.6807 0.7500 0.6916 0.7905
GTE-base 0.7042 0.8150 0.6643 0.7697 0.7144 0.8187 0.6888 0.8000
MiniLM 0.6953 0.7847 0.6547 0.7631 0.6804 0.7610 0.6808 0.7783
MPNet 0.6564 0.7661 0.6331 0.7539 0.6463 0.7225 0.6486 0.7634
DistilRoBERTa 0.6299 0.7141 0.6024 0.6833 0.6071 0.6841 0.6214 0.7049
PhraseBERT 0.5808 0.6581 0.5849 0.6602 0.5332∗ 0.5989 0.5834 0.6606

rq

CLIP-b 0.6488 0.7268 0.6347 0.6993 0.6700 0.7060 0.6435 0.7184
CLIP-l 0.6643 0.7525 0.6574 0.7369 0.6657 0.7527 0.6616 0.7474
ALIGN 0.6774 0.7286 0.6127 0.6600 0.6973 0.7363 0.6582 0.7058
LiT 0.5805 0.6702 0.5475 0.5993 0.5497 0.6236 0.5730 0.6483
MCSE 0.6425 0.7002 0.6347 0.6765 0.6627 0.7099 0.6390 0.6921
SimCSE 0.6499 0.7066 0.6353 0.6861 0.6287 0.6648 0.6456 0.7011
GTE-small 0.7410 0.8074 0.7112 0.7628 0.7354 0.7775 0.7313 0.7936
GTE-base 0.7641 0.8338 0.7320 0.7920 0.7466 0.8324 0.7543 0.8201
MiniLM 0.6997 0.7601 0.6970 0.7466 0.7154 0.7473 0.6978 0.7562
MPNet 0.7000 0.7682 0.7019 0.7682 0.7179 0.7527 0.6999 0.7687
DistilRoBERTa 0.6361 0.6954 0.6128 0.6651 0.6497 0.7060 0.6275 0.6846
PhraseBERT 0.5558 0.6029 0.6038 0.6582 0.5602 0.5797 0.5697 0.6218

veri
BERT 0.5655 0.6482 0.5419 0.6237 0.5304 0.6291 0.5590 0.6407
GPT2 0.7413 0.7860 0.7393 0.7953 0.7197 0.7720 0.7414 0.7895

Table C.2: Model performance on the high/low concreteness/specificity subsets. MWEs included.
In each column, boldface highlights the best scores obtained by contrastive VLMs and sentence
transformers respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. †alongside APs
denotes p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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conc+ spec+ conc+ spec- conc- spec+ conc- spec-
AP Acc AP Acc AP Acc AP Acc

# 345 8060 19 3919

b

CLIP-b 0.6375 0.7159 0.6235 0.7259 0.5660† 0.6316 0.6002 0.6752
CLIP-l 0.6408 0.7217 0.6392 0.7469 0.6350† 0.6842 0.6153 0.7022
ALIGN 0.6556 0.7130 0.6387 0.7330 0.5886† 0.6842 0.5980 0.6739
LiT 0.6047 0.6754 0.5982 0.7000 0.5263† 0.4737 0.5439 0.5938
MCSE 0.6174 0.6667 0.6030 0.6610 0.6222† 0.6316 0.6094 0.6502
SimCSE 0.6230 0.6725 0.6113 0.6628 0.5722† 0.5789 0.6159 0.6497
GTE-small 0.6682 0.7101 0.6474 0.7377 0.5948† 0.5789 0.6356 0.7050
GTE-base 0.6808 0.7565 0.6599 0.7617 0.5598† 0.5789 0.6532 0.7265
MiniLM 0.6563 0.7333 0.6275 0.7129 0.5539† 0.6316 0.6298 0.6925
MPNet 0.6293 0.6754 0.6134 0.6933 0.5990† 0.5789 0.6174 0.6854
DistilRoBERTa 0.5744 0.6319 0.5857 0.6424 0.6136† 0.7895 0.5780 0.6272
PhraseBERT 0.5565 0.6000 0.5513 0.5852 0.5094† 0.5263 0.5862 0.6446

sq

CLIP-b 0.6519 0.7246 0.6471 0.7479 0.6516† 0.7368 0.6132 0.7129
CLIP-l 0.6748 0.7739 0.6852 0.8019 0.6744† 0.6316 0.6158 0.7456
ALIGN 0.6210 0.7420 0.6346 0.7377 0.6352† 0.6842 0.5862 0.6846
LiT 0.5603 0.6174 0.5511 0.6073 0.4490† 0.3158 0.5395 0.5767
MCSE 0.6148 0.7130 0.6234 0.7306 0.6875† 0.7895 0.6147 0.6994
SimCSE 0.5848 0.6116 0.6392 0.7136 0.6506† 0.6316 0.6035 0.6772
GTE-small 0.6870 0.7478 0.7113 0.8079 0.6707† 0.7895 0.6550 0.7545
GTE-base 0.7291 0.8232 0.7034 0.8146 0.6095† 0.7368 0.6647 0.7698
MiniLM 0.6819 0.7594 0.6964 0.7857 0.7026† 0.7895 0.6545 0.7629
MPNet 0.6482 0.7188 0.6569 0.7681 0.6794† 0.7895 0.6332 0.7538
DistilRoBERTa 0.6028 0.6783 0.6316 0.7156 0.6791† 0.7895 0.6021 0.6828
PhraseBERT 0.5303∗ 0.5913 0.5839 0.6609 0.6135† 0.7368 0.5849 0.6599

rq

CLIP-b 0.6767 0.7159 0.6477 0.7273 0.5576† 0.5263 0.6357 0.7002
CLIP-l 0.6713 0.7478 0.6642 0.7527 0.6941† 0.8421 0.6580 0.7364
ALIGN 0.7045 0.7449 0.6764 0.7279 0.5796† 0.5789 0.6132 0.6604
LiT 0.5552 0.6377 0.5818 0.6716 0.4492† 0.3684 0.5482 0.6004
MCSE 0.6646 0.7130 0.6418 0.6996 0.6998† 0.6316 0.6347 0.6767
SimCSE 0.6300 0.6696 0.6508 0.7082 0.6888† 0.5789 0.6355 0.6867
GTE-small 0.7385 0.7855 0.7410 0.8083 0.7161∗ 0.6316 0.7115 0.7635
GTE-base 0.7546 0.8377 0.7646 0.8336 0.6886∗ 0.7368 0.7328 0.7923
MiniLM 0.7168 0.7507 0.6991 0.7605 0.7349∗ 0.6842 0.6973 0.7471
MPNet 0.7163 0.7536 0.6994 0.7689 0.7556∗ 0.7368 0.7018 0.7683
DistilRoBERTa 0.6454 0.7014 0.6359 0.6948 0.7216∗ 0.7895 0.6124 0.6645
PhraseBERT 0.5624 0.5797 0.5560 0.6038 0.5403† 0.5789 0.6043 0.6586

veri
BERT 0.5327 0.6435 0.5677 0.6484 0.5220† 0.3684 0.5424 0.6249
GPT2 0.7203 0.7768 0.7426 0.7864 0.7259∗ 0.6842 0.7394 0.7959

Table C.3: Model performance on subsets w.r.t. both concreteness and specificity. MWEs included.
In each column, boldface highlights the best scores obtained by contrastive VLMs and sentence
transformers respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. †denotes p-value
≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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Appendix D

Combining measures

In Experiment 1, we observe that our hypernymy measures sq and rq effectively distinguish hypernymy

from coordination or meronymy pairs, but underperform näıve cosine similarity when it comes to

random pairs. We then suggest that combining multiple measures may help accomplish a more

robust hypernymy detection approach against different distractor relation types. Inspired by previous

unsupervised count-based metrics [Kot+10; LB12] making use of geometric means, we experiment

with three composite measures, b · sq, b · rq, and sq · rq, using the direct multiplication of our previous

measures b, sq and rq.

Table D.1 and Table D.2 report results on BLESS and HyperLex, the two distributional semantic

benchmarks. Overall, combining measures via simple multiplication achieves improved or comparable

performance on both hypernymy detection and GLE. The symmetric cosine similarity is especially

beneficial for distinguishing hypernymy from random pairs, as expected. However, composite measures

do not obtain consistent gains on GLE across concreteness groups with smaller amounts of data. Note

that the best-performing combination on the concrete subset (qc pc) is sq ·rq with LiT, demonstrating the

potential of concept representations of concrete words via contrastive VLMs. On our newly-constructed

dataset BBC, combining measures sometimes but not always leads to improved performance (see

Tables D.4-D.8).
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vs. non vs. coord vs. mero vs. random
AP MAP AP MAP AP MAP AP MAP

proportion 0.0919 0.0951 0.2727 0.2821 0.3124 0.3626 0.1663 0.1690
individual 0.4268 0.5897 0.6475 0.8109 0.6318 0.7611 0.7997 0.8264

b · sq

CLIP-b 0.2165 0.3498 0.4275 0.5522 0.5057 0.6834 0.4283 0.5880
CLIP-l 0.2131 0.3440 0.3447 0.4764 0.5286 0.6838 0.5324 0.6968
ALIGN 0.1701 0.3089 0.2733† 0.3991 0.4391 0.6397 0.5905 0.7389
LiT 0.1861 0.3528 0.5261 0.6819 0.5287 0.7678 0.2778 0.4804
MCSE 0.1516 0.2316 0.2568† 0.3564 0.3886 0.5263 0.5404 0.5757
SimCSE 0.1879 0.2921 0.3301 0.4655 0.4041 0.5461 0.5574 0.6028
GTE-small 0.2543 0.3713 0.3700 0.4887 0.4748 0.6176 0.7696 0.8063
GTE-base 0.3011 0.4275 0.4045 0.5305 0.5517 0.6641 0.8111 0.8463
MiniLM 0.2106 0.3200 0.3041† 0.4207 0.4516 0.5854 0.7324 0.7606
MPNet 0.1804 0.2877 0.2487† 0.3677 0.4887 0.6043 0.7441 0.7771
DistilRoBERTa 0.1712 0.2672 0.2699† 0.3954 0.4315 0.5740 0.5876 0.6300
PhraseBERT 0.1136 0.1618 0.1854† 0.2450 0.3856† 0.5000 0.6036 0.6597

b · rq

CLIP-b 0.2316 0.3771 0.4396 0.5585 0.4696 0.6286 0.4945 0.6792
CLIP-l 0.1771 0.3019 0.3325 0.4682 0.4589 0.6068 0.4085 0.5925
ALIGN 0.2016 0.3542 0.3131 0.4577 0.4554 0.6183 0.6580 0.7775
LiT 0.1894 0.3853 0.5235 0.7046 0.4482 0.6310 0.3157 0.5460
MCSE 0.1548 0.2361 0.2663† 0.3662 0.3824 0.5297 0.5338 0.5710
SimCSE 0.1938 0.2853 0.3423 0.4540 0.4006 0.5400 0.5645 0.6073
GTE-small 0.2673 0.4084 0.3936 0.5298 0.4786 0.6342 0.7597 0.7993
GTE-base 0.3533 0.4903 0.4778 0.5984 0.5711 0.6885 0.8206 0.8358
MiniLM 0.2332 0.3508 0.3352 0.4553 0.4625 0.6946 0.7263 0.7560
MPNet 0.2126 0.3191 0.2829† 0.3980 0.5135 0.6233 0.7633 0.7887
DistilRoBERTa 0.1955 0.2981 0.3005† 0.4298 0.4668 0.6030 0.6052 0.6498
PhraseBERT 0.1066 0.1551 0.1804 0.2411 0.3427† 0.4759 0.5771 0.6218

sq · rq

CLIP-b 0.3084 0.4563 0.6406 0.7707 0.5906 0.6994 0.4462 0.5949
CLIP-l 0.2697 0.4150 0.5103 0.6600 0.5741 0.7000 0.4382 0.6092
ALIGN 0.3169 0.4686 0.5578 0.6926 0.5241 0.6453 0.5855 0.6875
LiT 0.1663 0.2965 0.7524 0.8787 0.4908 0.6436 0.2153 0.3451
MCSE 0.1788 0.2680 0.3087† 0.4260 0.4129 0.5447 0.5097 0.5630
SimCSE 0.2445 0.3750 0.5106 0.6491 0.4844 0.6258 0.4353 0.5523
GTE-small 0.3879 0.5264 0.5409 0.6755 0.5992 0.7031 0.7510 0.7953
GTE-base 0.4620 0.5865 0.6182 0.7310 0.6662 0.7362 0.7534 0.8049
MiniLM 0.3376 0.4547 0.4628 0.5891 0.5612 0.6511 0.6599 0.6991
MPNet 0.3230 0.4574 0.4074 0.5515 0.6023 0.6887 0.7210 0.7698
DistilRoBERTa 0.2805 0.4059 0.4317 0.5797 0.5808 0.6795 0.5684 0.6423
PhraseBERT 0.1052 0.1494 0.1893† 0.2547 0.3053† 0.4241 0.4880 0.5641

Table D.1: Model performance on binary hypernymy detection.
“Proportion” indicates the proportion of positive pairs, i.e., the AP or MAP of a random baseline.
“Individual” indicates the best performance achieved by an individual measure (b, sq or rq).
For each model, we report AP and MAP scores evaluating the ability to distinguish hypernymy pairs
from other lexical relations in BLESS, based on the measures introduced in Section 3.2. Boldface
highlights the best score in each column.
Statistical significance tests (one-sided Welch’s t-test) are conducted over the full dataset. †alongside
APs denotes p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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all qc pc qc pa qa pc qa pa
# 2163 172 89 119 1055

individual 0.4967 0.5092 0.5225 0.6561 0.3189

b · sq

CLIP-b 0.2238 0.2029 0.3867 0.4815 −0.0264†

CLIP-l 0.2632 0.2473 0.3004 0.5597 0.0553†

ALIGN 0.2773 0.2563 0.3502 0.5724 −0.0085†

LiT 0.2170 0.2440 0.2297∗ 0.3674 0.1001†

MCSE 0.1966 0.1375 0.3909 0.4380 0.1125†

SimCSE 0.2770 0.2083 0.4724 0.4436 0.2638
GTE-small 0.3253 0.2859 0.3835 0.5472 0.2952
GTE-base 0.3799 0.3674 0.4010 0.6069 0.2646
MiniLM 0.2957 0.2720 0.3846 0.5020 0.0890†

MPNet 0.3016 0.2906 0.4573 0.4786 0.1594∗

DistilRoBERTa 0.2303 0.1999 0.4035 0.5712 0.0435†

PhraseBERT 0.1965 0.1360 0.3094 0.5933 0.0896†

b · rq

CLIP-b 0.2959 0.2717 0.3853 0.4936 0.0082†

CLIP-l 0.2621 0.2274 0.3954 0.5646 0.0470†

ALIGN 0.3042 0.2783 0.3790 0.5770 0.0219†

LiT 0.2819 0.3319 0.2779 0.4514 −0.0333†

MCSE 0.2022 0.1414 0.4052 0.4340 0.0994†

SimCSE 0.2678 0.2019 0.4633 0.4274 0.2388
GTE-small 0.3364 0.2939 0.4348 0.5888 0.2685
GTE-base 0.4114 0.3993 0.4873 0.6327 0.2741
MiniLM 0.2895 0.2655 0.4017 0.4930 0.0640†

MPNet 0.3183 0.2999 0.4918 0.5025 0.1936∗

DistilRoBERTa 0.2388 0.2080 0.3861 0.5674 0.1068†

PhraseBERT 0.1586 0.0837 0.3071 0.5512 0.0510†

sq · rq

CLIP-b 0.4332 0.4730 0.3307 0.5351 0.0793†

CLIP-l 0.3980 0.4134 0.3436 0.6261 0.1390†

ALIGN 0.4278 0.4614 0.2907 0.6414 0.0779†

LiT 0.4374 0.5482 0.1118† 0.4968 0.0050†

MCSE 0.2746 0.2314 0.3954 0.5346 0.1698∗

SimCSE 0.3682 0.3335 0.4252 0.5486 0.3164
GTE-small 0.4549 0.4604 0.3966 0.6064 0.3242
GTE-base 0.5154 0.5421 0.4525 0.6550 0.2943
MiniLM 0.4079 0.4145 0.3619 0.5734 0.1437†

MPNet 0.4604 0.4776 0.4695 0.5803 0.2953
DistilRoBERTa 0.3184 0.3003 0.3341 0.6234 0.1187†

PhraseBERT 0.1989 0.1144 0.3167 0.5908 0.1635∗

Table D.2: Model performance on graded lexical entailment.
“Individual” indicates the best performance achieved by an individual measure (b, sq or rq).
For each model, we report Spearman’s rank correlation between its similarity-based measures and the
HyperLex GLE ratings. Boldface highlights the best score in each column.
Statistical significance is assessed using a two-sided permutation test with 10,000 permutations. †denotes
p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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measure model AP Acc corrconc corrspec
individual (multimodal) 0.6601 0.7808
individual (unimodal) 0.7619 0.8246

b · sq

CLIP-b 0.6200 0.7357 −0.4749 −0.2300
CLIP-l 0.6395 0.7705 −0.3862 −0.1862
ALIGN 0.6469 0.7430 −0.0841 −0.0730
LiT 0.5526 0.6292 −0.4269 −0.1917
MCSE 0.6323 0.6829 −0.0261† 0.0527
SimCSE 0.6465 0.6942 0.0068 0.0186∗

GTE-small 0.6811 0.7553 −0.0300 0.0352
GTE-base 0.6910 0.7784 −0.0393 0.0770
MiniLM 0.6631 0.7382 0.0714 0.1212
MPNet 0.6421 0.7245 0.0310 0.2010
DistilRoBERTa 0.6025 0.6621 −0.0009† 0.1413
PhraseBERT 0.5842 0.6416 −0.0418 0.1352

b · rq

CLIP-b 0.6429 0.7199 −0.2655 −0.1426
CLIP-l 0.6605 0.7616 −0.2317 −0.1340
ALIGN 0.6606 0.7345 0.0650 −0.0077†

LiT 0.5820 0.6547 −0.1390 −0.0877
MCSE 0.6400 0.6891 −0.0087† 0.0516
SimCSE 0.6501 0.6941 0.0132† 0.0192∗

GTE-small 0.7052 0.7744 −0.0236 −0.0112†

GTE-base 0.7226 0.8025 −0.0221 0.0391
MiniLM 0.6816 0.7471 0.0806 0.0828
MPNet 0.6751 0.7546 0.0100† 0.1539
DistilRoBERTa 0.6167 0.6740 −0.0367 0.1032
PhraseBERT 0.5817 0.6330 0.0303 0.1625

sq · rq

CLIP-b 0.6759 0.7450 −0.2019 −0.1147
CLIP-l 0.6944 0.7855 −0.2074 −0.1296
ALIGN 0.6662 0.7313 0.0546 −0.0216
LiT 0.5711 0.6365 −0.0188∗ −0.0836
MCSE 0.6569 0.7090 0.0105† 0.0557
SimCSE 0.6523 0.6975 0.0683 −0.0035†

GTE-small 0.7478 0.8066 −0.0353 −0.0128†

GTE-base 0.7616 0.8280 −0.0324 0.0238
MiniLM 0.7183 0.7731 0.0503 0.0543
MPNet 0.7202 0.7941 0.0166∗ 0.1298
DistilRoBERTa 0.6408 0.6996 −0.0169∗ 0.0913
PhraseBERT 0.5932 0.6526 0.0149† 0.1136

Table D.3: Model performance on hypernymy versus coordination discrimination. MWEs excluded.
For each model, we report AP and Accuracy scores evaluating the ability to distinguish hypernymy
from coordination pairs, based on the measures introduced in Section 3.2. “Individual” indicates the
best performance achieved by an individual measure (b, sq or rq). In each column, boldface highlights
the best scores obtained by contrastive VLMs and sentence transformers respectively. Statistical
significance tests (one-sided Welch’s t-test) are conducted over the full dataset, and all differences are
statistically significant (p < 0.01).
We also report Spearman’s rank correlation with concreteness and specificity scores. Statistical
significance is assessed using a two-sided permutation test with 10,000 permutations. †denotes p-value
≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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conc+ conc- spec+ spec-
AP Acc AP Acc AP Acc AP Acc

# 5021 2886 194 7713
individual (multimodal) 0.6898 .8036 0.6579 0.7412 0.6602 0.7835 0.7221 0.7815
individual (unimodal) 0.7767 0.8423 0.7345 0.7938 0.7619 0.8505 0.7765 0.8241

b · sq

CLIP-b 0.6537 0.7566 0.6106 0.6992 0.6198 0.6856 0.6441 0.7369
CLIP-l 0.6757 0.7933 0.6240 0.7308 0.6393 0.7320 0.6512 0.7714
ALIGN 0.6724 0.7642 0.6084 0.7062 0.6474 0.6804 0.6393 0.7446
LiT 0.5832 0.6632 0.5345 0.5700 0.5521 0.6186 0.5933 0.6295
MCSE 0.6362 0.6881 0.6265 0.6739 0.6317 0.6959 0.6594 0.6826
SimCSE 0.6557 0.7056 0.6310 0.6743 0.6463 0.6598 0.6564 0.6951
GTE-small 0.6939 0.7678 0.6589 0.7335 0.6803 0.7526 0.7060 0.7553
GTE-base 0.6997 0.7925 0.6766 0.7540 0.6907 0.8041 0.7104 0.7778
MiniLM 0.6713 0.7506 0.6497 0.7166 0.6618 0.7990 0.7163 0.7367
MPNet 0.6457 0.7279 0.6362 0.7186 0.6416 0.7216 0.6678 0.7246
DistilRoBERTa 0.6085 0.6676 0.5913 0.6525 0.6024 0.6598 0.6077 0.6621
PhraseBERT 0.5781 0.6272 0.5953 0.6667 0.5853 0.6031 0.5584 0.6429

b · rq

CLIP-b 0.6597 0.7383 0.6286 0.6878 0.6425 0.7062 0.6650 0.7202
CLIP-l 0.6747 0.7749 0.6488 0.7384 0.6605 0.7320 0.6679 0.7623
ALIGN 0.6838 0.7584 0.6141 0.6930 0.6599 0.6907 0.6927 0.7356
LiT 0.6047 0.6907 0.5447 0.5922 0.5823 0.6495 0.5793 0.6549
MCSE 0.6448 0.6969 0.6323 0.6757 0.6393 0.6753 0.6712 0.6895
SimCSE 0.6588 0.7060 0.6347 0.6733 0.6497 0.6804 0.6630 0.6944
GTE-small 0.7165 0.7897 0.6855 0.7477 0.7045 0.7887 0.7257 0.7740
GTE-base 0.7327 0.8192 0.7047 0.7734 0.7226 0.8299 0.7260 0.8018
MiniLM 0.6880 0.7564 0.6717 0.7308 0.6802 0.7990 0.7333 0.7458
MPNet 0.6787 0.7600 0.6691 0.7453 0.6739 0.7577 0.7257 0.7546
DistilRoBERTa 0.6238 0.6819 0.6043 0.6601 0.6161 0.7062 0.6448 0.6731
PhraseBERT 0.5708 0.6144 0.6022 0.6653 0.5821 0.5979 0.5815 0.6339

sq · rq

CLIP-b 0.6902 0.7594 0.6066 0.7200 0.6760 0.7268 0.6768 0.7455
CLIP-l 0.7154 0.8000 0.6719 0.7602 0.6947 0.7732 0.6840 0.7858
ALIGN 0.6929 0.7588 0.6116 0.6833 0.6655 0.7990 0.6953 0.7295
LiT 0.5813 0.6584 0.5488 0.5984 0.5714 0.6546 0.5627 0.6361
MCSE 0.6648 0.7206 0.6425 0.6888 0.6559 0.7577 0.6957 0.7078
SimCSE 0.6660 0.7102 0.6286 0.6753 0.6524 0.6546 0.6497 0.6986
GTE-small 0.7639 0.8257 0.7182 0.7734 0.7473 0.8144 0.7667 0.8064
GTE-base 0.7766 0.8441 0.7344 0.8001 0.7615 0.8351 0.7715 0.8278
MiniLM 0.7277 0.7795 0.7009 0.7620 0.7173 0.7887 0.7574 0.7727
MPNet 0.7274 0.7965 0.7077 0.7900 0.7190 0.8041 0.7656 0.7939
DistilRoBERTa 0.6542 0.7120 0.6183 0.6781 0.6395 0.7835 0.6939 0.6975
PhraseBERT 0.5831 0.6375 0.6116 0.6788 0.5949∗ 0.6082 0.5503 0.6537

Table D.4: Model performance on the high/low concreteness/specificity subsets. MWEs excluded.
“Individual” indicates the best performance achieved by an individual measure (b, sq or rq). In each
column, boldface highlights the best scores obtained by contrastive VLMs and sentence transformers
respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. †alongside APs
denotes p-value ≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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conc+ spec+ conc+ spec- conc- spec+ conc- spec-
AP Acc AP Acc AP Acc AP Acc

# 179 4842 15 2871
individual (multimodal) 0.7355 0.7877 0.6904 0.8052 0.7269† 0.8667 0.6582 0.7416
individual (unimodal) 0.7816 0.8547 0.7767 0.8418 0.7732∗ 0.8667 0.7358 0.7941

b · sq

CLIP-b 0.6646 0.6983 0.6533 0.7588 0.5760† 0.5333 0.6111 0.7001
CLIP-l 0.6679 0.7318 0.6760 0.7955 0.6551† 0.7333 0.6242 0.7308
ALIGN 0.6486 0.6816 0.6740 0.7672 0.5904† 0.6667 0.6089 0.7064
LiT 0.6105 0.6480 0.5825 0.6638 0.5074† 0.2667 0.5345 0.5716
MCSE 0.6692 0.7039 0.6353 0.6875 0.6554† 0.6000 0.6268 0.6743
SimCSE 0.6733 0.6648 0.6551 0.7071 0.5738† 0.6000 0.6319 0.6747
GTE-small 0.7184 0.7709 0.6927 0.7677 0.6141† 0.5333 0.6596 0.7346
GTE-base 0.7339 0.8268 0.6986 0.7912 0.5625† 0.5333 0.6781 0.7551
MiniLM 0.7311 0.8156 0.6691 0.7482 0.5855† 0.6000 0.6506 0.7172
MPNet 0.6783 0.7318 0.6445 0.7278 0.6034† 0.6000 0.6369 0.7193
DistilRoBERTa 0.6102 0.6480 0.6085 0.6683 0.6127† 0.8000 0.5916 0.6517
PhraseBERT 0.5739 0.6145 0.5788 0.6276 0.4997† 0.4667 0.5968 0.6677

b · rq

CLIP-b 0.6833 0.7151 0.6589 0.7392 0.5792† 0.6000 0.6295 0.6883
CLIP-l 0.6751 0.7207 0.6748 0.7770 0.6892† 0.8667 0.6488 0.7377
ALIGN 0.7040 0.6927 0.6833 0.7608 0.5796† 0.6667 0.6147 0.6931
LiT 0.5889 0.6704 0.6059 0.6914 0.4879† 0.4000 0.5451 0.5932
MCSE 0.6791 0.6917 0.6438 0.6970 0.6402† 0.4667 0.6325 0.6768
SimCSE 0.6787 0.6872 0.6581 0.7067 0.5890† 0.6000 0.6354 0.6736
GTE-small 0.7349 0.8045 0.7155 0.7891 0.6208† 0.6000 0.6862 0.7485
GTE-base 0.7457 0.8492 0.7323 0.8181 0.5670† 0.6000 0.7062 0.7743
MiniLM 0.7427 0.8101 0.6858 0.7544 0.6418† 0.6667 0.6724 0.7311
MPNet 0.7324 0.7654 0.6765 0.7598 0.6849† 0.6667 0.6694 0.7457
DistilRoBERTa 0.6466 0.6983 0.6231 0.6813 0.6795† 0.8000 0.6044 0.6594
PhraseBERT 0.5965 0.6145 0.5701 0.6144 0.4978† 0.4000 0.6036 0.6667

sq · rq

CLIP-b 0.6871 0.7318 0.6904 0.7604 0.6959† 0.6667 0.6609 0.7203
CLIP-l 0.6895 0.7765 0.7166 0.8009 0.7310† 0.7333 0.6716 0.7604
ALIGN 0.7115 0.8156 0.6925 0.7567 0.6404† 0.6000 0.6122 0.6837
LiT 0.5698 0.6704 0.5820 0.6580 0.4474† 0.4667 0.5494 0.5991
MCSE 0.7003 0.7654 0.6636 0.7189 0.7223† 0.6667 0.6424 0.6890
SimCSE 0.6560 0.6592 0.6666 0.7121 0.6759† 0.6000 0.6285 0.6757
GTE-small 0.7787 0.8324 0.7634 0.8255 0.6683† 0.6000 0.7188 0.7743
GTE-base 0.7930 0.8492 0.7762 0.8439 0.6231∗ 0.6667 0.7356 0.8008
MiniLM 0.7607 0.7933 0.7264 0.7790 0.7369∗ 0.7330 0.7011 0.7621
MPNet 0.7685 0.7989 0.7259 0.7964 0.7626∗ 0.8667 0.7076 0.7896
DistilRoBERTa 0.6868 0.7821 0.6531 0.7094 0.7667∗ 0.8000 0.6175 0.6775
PhraseBERT 0.5561 0.6145 0.5848 0.6384 0.5215† 0.5333 0.6128 0.6796

Table D.5: Model performance on subsets w.r.t. both concreteness and specificity. MWEs excluded.
“Individual” indicates the best performance achieved by an individual measure (b, sq or rq). In each
column, boldface highlights the best scores obtained by contrastive VLMs and sentence transformers
respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. †denotes p-value
≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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measure model AP Acc corrconc corrspec
individual (multimodal) 0.6616 0.7830
individual (unimodal) 0.7539 0.8205

b · sq

CLIP-b 0.6189 0.7401 −0.4639 −0.2304
CLIP-l 0.6396 0.7744 −0.3522 −0.1657
ALIGN 0.6380 0.7373 −0.0450 −0.0395
LiT 0.5592 0.6472 −0.4046 −0.1924
MCSE 0.6145 0.6744 0.0101† 0.0632
SimCSE 0.6321 0.6953 0.0249 0.0213
GTE-small 0.6702 0.7586 0.0017† 0.0479
GTE-base 0.6813 0.7822 0.0099† 0.1003
MiniLM 0.6454 0.7330 0.1034 0.1330
MPNet 0.6157 0.7136 0.0890 0.2199
DistilRoBERTa 0.5941 0.6602 0.0330 0.1391
PhraseBERT 0.5726 0.6287 0.0210 0.1650

b · rq

CLIP-b 0.6406 0.7249 −0.2706 −0.1399
CLIP-l 0.6572 0.7612 −0.2282 −0.1221
ALIGN 0.6553 0.7300 0.0793 0.0085†

LiT 0.5888 0.6689 −0.1355 −0.0978
MCSE 0.6197 0.6745 0.0228 0.0594
SimCSE 0.6332 0.6093 0.0278 0.0219
GTE-small 0.6912 0.7714 −0.0067† −0.0001†

GTE-base 0.7104 0.8032 0.0089† 0.0557
MiniLM 0.6618 0.7382 0.1020 0.0970
MPNet 0.6540 0.7386 0.0598 0.1743
DistilRoBERTa 0.6082 0.6711 −0.0056† 0.1013
PhraseBERT 0.5666 0.6151 0.0877 0.1930

sq · rq

CLIP-b 0.6739 0.7453 −0.2219 −0.1180
CLIP-l 0.6921 0.7801 −0.2096 −0.1202
ALIGN 0.6666 0.7219 0.0470 −0.0166
LiT 0.5848 0.6556 −0.0475 −0.1007
MCSE 0.6419 0.7033 0.0252 0.0557
SimCSE 0.6470 0.7079 0.0544 −0.0123†

GTE-small 0.7391 0.8004 −0.0375 −0.0099†

GTE-base 0.7564 0.8259 −0.0160∗ 0.0373
MiniLM 0.7040 0.7641 0.0548 0.0654
MPNet 0.7016 0.7753 0.0443 0.1450
DistilRoBERTa 0.6382 0.7017 −0.0098† 0.0834
PhraseBERT 0.5824 0.6352 0.0388 0.1279

Table D.6: Model performance on hypernymy versus coordination discrimination. MWEs included.
For each model, we report AP and Accuracy scores evaluating the ability to distinguish hypernymy
from coordination pairs, based on the measures introduced in Section 3.2. “Individual” indicates the
best performance achieved by an individual measure (b, sq or rq). In each column, boldface highlights
the best scores obtained by contrastive VLMs and sentence transformers respectively. Statistical
significance tests (one-sided Welch’s t-test) are conducted over the full dataset, and all differences are
statistically significant (p < 0.01).
We also report Spearman’s rank correlation with concreteness and specificity scores. Statistical
significance is assessed using a two-sided permutation test with 10,000 permutations. †denotes p-value
≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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conc+ conc- spec+ spec-
AP Acc AP Acc AP Acc AP Acc

# 8405 3938 364 11979
individual (multimodal) 0.6848 0.8007 0.6574 0.7450 0.6973 0.7665 0.6616 0.7835
individual (unimodal) 0.7641 0.8338 0.7320 0.7920 0.7466 0.8324 0.7543 0.8201

b · sq

CLIP-b 0.6438 0.7553 0.6132 0.7077 0.6341 0.7170 0.6188 0.7408
CLIP-l 0.6668 0.7914 0.6247 0.7382 0.6524 0.7445 0.6394 0.7754
ALIGN 0.6563 0.7549 0.6047 0.6998 0.6447 0.7060 0.6388 0.7383
LiT 0.5851 0.6742 0.5403 0.5896 0.6019 0.6484 0.5585 0.6472
MCSE 0.6140 0.6792 0.6165 0.6640 0.6248 0.6786 0.6143 0.6743
SimCSE 0.6342 0.7010 0.6285 0.6831 0.6198 0.6566 0.6325 0.6965
GTE-small 0.6778 0.7687 0.6540 0.7369 0.6806 0.7363 0.6699 0.7592
GTE-base 0.6862 0.7921 0.6707 0.7610 0.6963 0.7830 0.6810 0.7822
MiniLM 0.6482 0.7413 0.6425 0.7151 0.6672 0.7555 0.6451 0.7323
MPNet 0.6268 0.7165 0.6252 0.7075 0.6322 0.6978 0.6259 0.7141
DistilRoBERTa 0.5975 0.6645 0.5870 0.6511 0.5750 0.6401 0.5949 0.6608
PhraseBERT 0.5645 0.6145 0.5894 0.6590 0.5499 0.5934 0.5738 0.6298

b · rq

CLIP-b 0.6544 0.7386 0.6262 0.6958 0.6710 0.7253 0.6397 0.7249
CLIP-l 0.6678 0.7714 0.6473 0.7395 0.6588 0.7473 0.6574 0.7617
ALIGN 0.6723 0.7503 0.6137 0.6869 0.6881 0.7088 0.6544 0.7307
LiT 0.6054 0.6992 0.5553 0.6041 0.5804 0.6401 0.5892 0.6698
MCSE 0.6199 0.6802 0.6209 0.6623 0.6327 0.6676 0.6194 0.6747
SimCSE 0.6343 0.6949 0.6316 0.6803 0.6258 0.6676 0.6336 0.6910
GTE-small 0.6975 0.7832 0.6785 0.7463 0.6999 0.7582 0.6909 0.7719
GTE-base 0.7160 0.8152 0.6986 0.7776 0.7098 0.8077 0.7106 0.8031
MiniLM 0.6628 0.7447 0.6637 0.7245 0.6801 0.7445 0.6615 0.7380
MPNet 0.6534 0.7409 0.6570 0.7336 0.6738 0.7170 0.6539 0.7392
DistilRoBERTa 0.6118 0.6766 0.6006 0.6595 0.6032 0.6786 0.6086 0.6709
PhraseBERT 0.5552 0.5964 0.5946 0.6549 0.5580 0.5714 0.5674 0.6164

sq · rq

CLIP-b 0.6875 0.7559 0.6556 0.7227 0.6855 0.7280 0.6736 0.7458
CLIP-l 0.7091 0.7893 0.6708 0.7605 0.6892 0.7610 0.6923 0.7807
ALIGN 0.6881 0.7422 0.6130 0.6785 0.6779 0.7527 0.6663 0.7209
LiT 0.5947 0.6758 0.5598 0.6125 0.5657 0.6538 0.5856 0.6556
MCSE 0.6453 0.7127 0.6350 0.6833 0.6620 0.7253 0.6414 0.7026
SimCSE 0.6543 0.7151 0.6317 0.6927 0.6243 0.6511 0.6477 0.7097
GTE-small 0.7510 0.8139 0.7132 0.7715 0.7394 0.7720 0.7391 0.8012
GTE-base 0.7680 0.8389 0.7310 0.7981 0.7580 0.8187 0.7564 0.8261
MiniLM 0.7080 0.7693 0.6961 0.7529 0.7175 0.7500 0.7038 0.7645
MPNet 0.7043 0.7767 0.6966 0.7722 0.7197 0.7473 0.7013 0.7761
DistilRoBERTa 0.6475 0.7102 0.6194 0.6836 0.6537 0.7225 0.6380 0.7011
PhraseBERT 0.5727 0.6227 0.6043 0.6618 0.5551 0.5907 0.5837 0.6365

Table D.7: Model performance on the high/low concreteness/specificity subsets. MWEs included.
“Individual” indicates the best performance achieved by an individual measure (b, sq or rq). In each
column, boldface highlights the best scores obtained by contrastive VLMs and sentence transformers
respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. All results are
statistically significant (p-value < 0.01).
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conc+ spec+ conc+ spec- conc- spec+ conc- spec-
AP Acc AP Acc AP Acc AP Acc

# 345 8060 19 3919
individual (multimodal) 0.7045 0.7739 0.6852 0.8019 0.6941† 0.8421 0.6580 0.7456
individual (unimodal) 0.7546 0.8377 0.7646 0.8336 0.7556∗ 0.7895 0.7328 0.7923

b · sq

CLIP-b 0.6456 0.7246 0.6439 0.7566 0.5697† 0.5789 0.6137 0.7083
CLIP-l 0.6632 0.7478 0.6671 0.7933 0.6337† 0.6842 0.6250 0.7385
ALIGN 0.6504 0.7101 0.6569 0.7568 0.5819† 0.6316 0.6050 0.7002
LiT 0.6159 0.6667 0.5841 0.6746 0.4987† 0.3158 0.5404 0.6910
MCSE 0.6274 0.6812 0.6137 0.6792 0.6694† 0.6316 0.6167 0.6642
SimCSE 0.6252 0.6580 0.6347 0.7029 0.5988† 0.6316 0.6292 0.6833
GTE-small 0.6860 0.7449 0.6775 0.7697 0.6196† 0.5789 0.6545 0.7377
GTE-base 0.7095 0.7942 0.6855 0.7921 0.5764† 0.5789 0.6718 0.7619
MiniLM 0.6736 0.7652 0.6474 0.7403 0.5840† 0.5789 0.6433 0.7157
MPNet 0.6347 0.7014 0.6268 0.7171 0.6147† 0.6316 0.6257 0.7078
DistilRoBERTa 0.5756 0.6319 0.5987 0.6659 0.6157† 0.7895 0.5873 0.6504
PhraseBERT 0.5572 0.5971 0.5655 0.6153 0.5268† 0.5263 0.5903 0.6596

b · rq

CLIP-b 0.6833 0.7304 0.6532 0.7390 0.5723† 0.6316 0.6269 0.6961
CLIP-l 0.6647 0.7420 0.6682 0.7727 0.6721† 0.8421 0.6477 0.7390
ALIGN 0.6955 0.7101 0.6716 0.7520 0.5821† 0.6842 0.6141 0.6869
LiT 0.5881 0.6522 0.6065 0.7012 0.4765† 0.4211 0.5558 0.6050
MCSE 0.6367 0.6754 0.6194 0.6804 0.6409† 0.5263 0.6211 0.6629
SimCSE 0.6309 0.6696 0.6345 0.6960 0.6245† 0.6316 0.6323 0.6805
GTE-small 0.7035 0.7652 0.6972 0.7840 0.6312† 0.6316 0.6789 0.7469
GTE-base 0.7201 0.8174 0.7161 0.8151 0.5855† 0.6316 0.6996 0.7783
MiniLM 0.6838 0.7507 0.6621 0.7444 0.6299† 0.6316 0.6643 0.7249
MPNet 0.6743 0.7188 0.6530 0.7418 0.6877† 0.6842 0.6571 0.7339
DistilRoBERTa 0.6034 0.6725 0.6125 0.6768 0.6723† 0.7895 0.6008 0.6588
PhraseBERT 0.5633 0.5768 0.5552 0.5973 0.5173† 0.4737 0.5955 0.6558

sq · rq

CLIP-b 0.6965 0.7304 0.6870 0.7569 0.6492† 0.6842 0.6563 0.7229
CLIP-l 0.6980 0.7623 0.7096 0.7904 0.6854† 0.7368 0.6710 0.7607
ALIGN 0.6878 0.7623 0.6882 0.7413 0.6240† 0.5789 0.6134 0.6790
LiT 0.5722 0.6609 0.5959 0.6764 0.4401† 0.5263 0.5605 0.6129
MCSE 0.6618 0.7275 0.6447 0.7120 0.7304† 0.6842 0.6348 0.6833
SimCSE 0.6243 0.6551 0.6556 0.7176 0.6639† 0.5789 0.6318 0.6933
GTE-small 0.7444 0.7797 0.7512 0.8154 0.6807† 0.6316 0.7136 0.7721
GTE-base 0.7701 0.8261 0.7681 0.8395 0.6545∗ 0.6842 0.7319 0.7987
MiniLM 0.7180 0.7536 0.7077 0.7700 0.7182∗ 0.6842 0.6963 0.7533
MPNet 0.7181 0.7449 0.7040 0.7780 0.7440∗ 0.7895 0.6964 0.7721
DistilRoBERTa 0.6471 0.7188 0.6478 0.7098 0.7391∗ 0.7895 0.6188 0.6831
PhraseBERT 0.5566 0.5913 0.5739 0.6241 0.5470† 0.5789 0.6049 0.6622

Table D.8: Model performance on subsets w.r.t. both concreteness and specificity. MWEs included.
“Individual” indicates the best performance achieved by an individual measure (b, sq or rq). In each
column, boldface highlights the best scores obtained by contrastive VLMs and sentence transformers
respectively.
Statistical significance tests (one-sided Welch’s t-test) are conducted for each subset. †denotes p-value
≥ 0.05, and ∗ denotes 0.01 ≤ p-value < 0.05.
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