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Abstract

This thesis studies logical properties in lattices of modal logics, focusing on union-splittings, the
axiomatization problem, and the rule dichotomy property. We use semantic approaches to investigate
these topics by working with the theory of stable canonical rules and formulas. Under the modal
duality, we apply universal algebra to modal algebras and combinatorial methods to modal spaces.

We reformulate and extend the theory of stable canonical rules and formulas by introducing the
notion of definable filtration, which will be the semantic foundation for much of the thesis. Building
on this, a new combinatorial method, the Refinement Construction, is developed to prove the finite
model property for a large class of logics and rule systems, generalizing the finite model property of
union-splittings in NExtK, K4-stable logics, and stable rule systems.

We then give a semantic characterization of union-splittings in the lattice NExtK and show that
both being a union-splitting and a splitting are decidable in NExtK. This yields two more decidable
properties in NExtK, namely, being a decidable formula and having a decidable axiomatization problem.
These results answer the open questions [WZ07, Problem 2] and [CZ97, Problem 17.3] in the affirmative.

Finally, we study admissibility and the rule dichotomy property in the weak transitive logic wK4
and the basic modal logic K. We refine the notion of rule dichotomy property, and show that stable
canonical rules have the rule dichotomy property over wK4 but fail over K. The latter supports
Jetabek’s remark that the rule dichotomy property is a very strong property and thus is likely to fail
for many logics [Jer09].

The last chapter applies descriptive set theory to study the cardinality of sets of logics without
assuming the Continuum Hypothesis and resolves the open questions [JL18, Question 6.4 (ii)] and
[BBM25, Section 8 (1)].
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Chapter 1

Introduction

Modal logics are obtained by adding modal operators to classical logic. They are very expressive, yet
often still reasonably easy to handle. While modal logics originated in the study of logical reasoning
regarding necessity and possibility, different interpretations of the modal operators enable the modeling
of notions and reasoning in various areas, such as: provability logic, modeling provability in mathematics;
epistemic logic, modeling knowledge and belief; tense logic, modeling the flow of time; and propositional
dynamic logic, modeling the behavior of computer programs. Additionally, modal operators allow
translations from many non-classical logics to modal logics, including intuitionistic logic and quantum
logic. As a result, studying modal logics often yields valuable insights and results across various applied
fields and other logical systems. For more details, see [BAVO01] and [CZ97] and the references therein.
In this thesis, we will exclusively focus on modal logics that involve a single modal operator.

Modal logic, as a branch of mathematical logic, is not merely a collection of individual logical systems.
Since the 1960s, the focus has shifted from examining various concrete modal logics independently
to studying classes of modal logics, usually lattices of extensions of a fixed base logic. We denote K
as the least modal logic and NExtK as the lattice of extensions of K, namely all normal modal logics.
A significant turning point is the result proved by Jankov [Jan68] that there are continuum many
superintuitionistic (and therefore modal) logics. Consequently, the primary research question has
become understanding the structure of these lattices of modal logics and achieving general results on
the logical properties of these systems. Such studies offer an abstract mathematical understanding of
modal operators in formal systems and make individual results into corollaries. Some notable results

in this area include:

e Bull [Bul66] and Fine [Fin71] showed that all extensions of S4.3 have the fmp, are finitely

axiomatizable, and thus decidable.

e Maksimova [Mak79] showed that there are exactly 8 superintuitionistic logics that have the Craig

interpolation property (this result is for superintuitionistic logics but has the same spirit).

e The Blok-Esakia theorem [Blo76; Esa76]: there is a lattice isomorphism between the lattice of all

superintuitionistic logics and the lattice of all normal extensions of the modal logic Grz.

e Blok’s dichotomy theorem [Blo78]: the degree of Kripke incompleteness of a modal logic in
NExtK can only be 1 or 2%, and a logic has the degree of Kripke incompleteness 1 iff it is a
union-splitting in NExtK. (A logic L is a splitting in NExtK if there is a logic L’ such that (L, L’)



is a splitting pair of NExtK in lattice theoretic sense; a logic L is a union-splitting in NExtK if it

is a join of splittings in NExtK.)

This thesis aligns with this direction of research and studies the logical properties of modal logics.

We will work with both algebraic semantics and relational semantics for modal logic. On the
algebraic semantics, we use modal algebras and apply notions and results from universal algebra.
In particular, we will exploit the one-to-one correspondence between modal logics and varieties of
modal algebras. On the relational semantics, we use modal spaces, a generalization of Kripke frames
by equipping them with a topology. These relational structures can be visually represented, and
thus are convenient for combinatorial proofs and constructing counterexamples. The two semantics
are combined by the Jénsson—Tarski duality based on [JT51]. It states that the category of modal
algebras and homomorphisms and the category of modal spaces and p-morphisms are dually equivalent.
Consequently, we can move freely between the two realms, using the most appropriate semantics for
our purposes. For a comprehensive overview of the historical development of modal logic, primarily
from a mathematical perspective, we refer to [Gol03].

One of the most powerful tools in the study of lattices of logics is characteristic formulas. These
formulas are defined from finite structures (e.g., finite modal algebras or finite Kripke frames) in a
way that their validity has a semantic characterization. This semantic characterization allows us to
reformulate questions about logics into purely semantic arguments when working with logics that
are axiomatized by characteristic formulas, which gives us more control over them. The pioneering
work by Jankov [Jan63; Jan68] and [de 68] introduced the first type of characteristic formulas, now
referred to as Jankov-de Jongh formulas. The modal logic counterpart, known as Jankov-Fine formulas,
was introduced by Fine [Fin74b]. A generalization to n-transitive modal logics was constructed by
Rautenberg [Rau80]. Subsequent developments in this area include subframe formulas, cofinal subframe
formulas, and canonical formulas (see, e.g., [CZ97, Chapter 9]). A milestone result regarding canonical
formulas is that they axiomatize all transitive logics [Zak92], which means that we can semantically
study all logics over the transitive modal logic K4.

The idea of generalizing characteristic formulas to inference rules was first introduced by Jefabek
[Jer09], who extended canonical formulas to canonical rules. Both canonical rules and canonical
formulas rely on selective filtration (see, e.g., [CZ97, Section 5.5]). Bezhanishvili et al. [BBI16],
motivated by the filtration method (see, e.g., [BAVO01, Section 2.3] and [CZ97, Section 5.3]), introduced
stable canonical rules and stable canonical formulas. While selective filtration is mostly used for
transitive logics such as K4 and S4, standard filtration is also constructed for non-transitive logics such
as K. So, aiming to study all normal modal logics, in particular non-transitive ones, we will work with
stable canonical rules and formulas in this thesis.

As we will observe in Chapter 3, an essential point needed for the theory of stable canonical rules
and formulas is definable filtration, a generalization of the standard filtration introduced in [KSZ20].
We generalize the axiomatization result via stable canonical rules by allowing the base rule system to be
any one that admits definable filtration. Furthermore, using Gabbay’s filtration [Gab72], we generalize
the stable canonical formulas to pre-transitive logics of the form K + ¢™*1p — ©p and generalize the
axiomatization result via stable canonical formulas from K4 to the pre-transitive logics. Through our
proof, we observe that the axiomatization result can be further strengthened by considering a stronger
type of formulas, which we call m-stable canonical formulas. These notions and results will be used in

the subsequent chapters.



A modal logic (resp. rule system) has the finite model property (fmp for short) if, for any formula
(resp. rule) that is not provable, there exists a finite countermodel. The finite model property is one
of the most important and well-studied properties of modal logics (see, e.g., [BAVO01] and [CZ97]). A
crucial step toward Blok’s dichotomy theorem, which is interesting in itself, is that all union-splittings
in NExtK have the fmp. In Chapter 4, we significantly generalize this result by introducing a novel
combinatorial method on modal spaces, which we call the Refinement Construction. This method is
built on top of the theory of stable canonical rules and formulas and gives an explicit construction of
finite countermodels. Using the Refinement Construction, we prove the fmp for a large class of logics
and rule systems, which implies the fmp of union-splittings in NExtK [Blo78], K4-stable logics [BBI1§],
and stable rule systems [BBI16].

In addition to the question of whether a logic has a particular property, it is also natural to ask if it
is decidable to determine whether a logic has that property. This question has been extensively studied
(see [WZ07] for a comprehensive survey), but in NExtK most known results are negative; almost all
logical properties that one could consider were proved to be undecidable, except for the consistency and
the coincidence with K. In contrast, we show in Chapter 5 that the property of being a union-splitting
is decidable in NExtK. The key to our proof is a semantic characterization of union-splittings. From
the characterization, it also follows the decidability of being a splitting. These results answer the open
question [WZ07, Problem 2| affirmatively, adding two properties to the decidable properties in NExtK.
Moreover, we observe that there is a somewhat mysterious connection between union-splittings and
decidability. A formula ¢ is a decidable formula if it is decidable, given a formula 1, whether ¢ € K+ ).
The axiomatization problem for a logic L is the problem of, given a formula v, deciding whether
L = K+1. It turns out that a formula ¢ is a decidable formula in NExtK iff the axiomatization problem
for K 4 ¢ is decidable iff K 4+ ¢ is a union-splitting in NExtK or the inconsistent logic. Consequently,
our result implies the decidability of being a decidable formula and having a decidable axiomatization
problem, and therefore positively answers another open question [CZ97, Problem 17.3].

The study of admissible rules is related to both decidability and logical properties. Admissible
rules in a logic are valid inferences in that logic. The decidability of admissibility in a logic is then a
natural strengthening of the decidability of the logic. Friedman [Fri75] posed the question of whether
the admissibility of a given inference rule in IPC is decidable. Rybakov showed that this is the case for
IPC and a large class of transitive modal and superintuitionistic logics (see [Ryb97] for a comprehensive
overview and references). However, the decidability of admissibility in K is a long-standing open
question (e.g., [CZ97, Problem 16.4]). Recently, Jefabek [Jef09] introduced a new method to establish
the decidability of admissibility. This method involves proving the rule dichotomy property over L for a
class of rules, that is, every rule in the class is either admissible or equivalent to an assumption-free rule.
While Jerabek used canonical rules, which are less effective in the non-transitive setting, our approach
in Chapter 6 focuses on stable canonical rules, as they do axiomatize all rules over K. We show that
stable canonical rules have the rule dichotomy property over wK4, but not over K. This partially
confirms Jefabek’s conjecture that many logics may lack the rule dichotomy property. Unfortunately, it
also suggests that the method may not be very effective for K. Finally, we provide sufficient conditions
for both admissibility and inadmissibility in K, which highlight the combinatorial complexity involved.

Studying the logical properties of lattices of modal logics from an abstract perspective often involves
counting logics with or without certain properties. In Chapter 7, we take a slightly different point of

view and study the cardinality of classes of modal logics without assuming the Continuum Hypothesis.



We introduce the idea of applying descriptive set theory, specifically, the theory of Borel sets, to logic
and universal algebra through coding. We can naturally encode formulas/identities as natural numbers
and logics/equational theories as real numbers. Then, by characterizing the arithmetical hierarchy to
which the set of reals corresponding to the set of logics/equational theories belongs, we show that the
cardinality of any subvariety lattice, the cardinality of any interval, and the degree of fmp of any logic
is either < Ry or 2%, This answers the questions [JL18, Question 6.4 (ii)] and [BBM25, Section 8 (1)]
in the positive. Chapter 7 is based on a joint work with Juan P. Aguilera and Nick Bezhanishvili.

Finally, we summarize the main contributions of this thesis:

e We reformulate the theory of stable canonical rules in a more general setting where the base logic
admits definable filtration (Chapter 3);

e We give an algebraic proof of Gabbay’s filtration and generalize the theory of stable canonical

formulas to pre-transitive logics K + ¢™*lp — op (Chapter 3);

o We introduce m-stable canonical formulas, a stronger notion of stable canonical formulas, and

show that they also axiomatize all logics extending the pre-trantive logics (Chapter 3);

e We generalize the fmp results of union-splitting in NExtK, K4-stable logics, and stable rule systems,
in a unified way by introducing a new combinatorial method, called Refinement Construction
(Chapter 4);

e We observe that in a stable canonical rule or formula defined from a modal algebra of finite

height, the closed domain essentially does not increase the expressivity (Chapter 4);

e We show the decidability of being a union-splitting and a splitting in NExtK by providing a

semantic characterization of union-splittings (Chapter 5);

e We show as a result that having a decidable axiomatization problem and being a decidable

formula is also decidable (Chapter 5);

e We redefine the rule dichotomy property (over a logic) so that it makes sense in a broader context
(Chapter 6);

e We show that stable canonical rules have the rule dichotomy over wK4 but not over K (Chapter 6);

e We provide sufficient conditions for a stable canonical rule to be (in)admissible in K and discuss

some examples, including a full characterization of the admissibility for stable rules (Chapter 6);

e We show (in ZFC) that any interval of varieties and thus any interval of modal logics has the
cardinality either < Xg or 2% (Chapter 7);

e We show (in ZFC) that the degree of fmp of any logic is either < Xg or 2% (Chapter 7).



Chapter 2

Preliminaries

In this chapter, we recall notions and results that we will use in the thesis. Notations will be fixed

along the way.

2.1 Universal algebra

We recall basic notions and results from universal algebra, which serves as the foundation of algebraic
semantics for logics. We refer to [Berll] and [BS81] for details.

Algebras

Definition 2.1. A language or similarity type of algebras is a set F' of function symbols such that
each f € F is assigned a non-negative integer n, called the arity of f. A function symbol f € F with

arity n is called an n-ary function symbol, and a 0-ary function symbol is also called a constant symbol.

Definition 2.2. Let F be a language. An algebra A of type F is a pair (A4, F) where A is a non-empty
set and F¥ is a set of functions or operations on A such that for each n-ary function symbol f € F,

there is a corresponding n-arry function f%: A® — A in F*.

Definition 2.3. Let 2 = (A, F*) and B = (B, F®) be algebras of type F. A map h: A — B is called

a homomorphism if for any n-ary function symbol f € F|
h(f*(ar,...,an)) = f2(h(ar),...,h(ay)) for all ag,...,a, € A.

An injective homomorphism is called an embedding. A bijective homomorphism is called an isomorphism.

We often denote h: 2 — B, h: A — B, and h: A — B, to emphasize that h is a homomorphism,

an embedding, and a surjective homomorphism, respectively.

Definition 2.4. Let 2l and B be algebras of the same type.
1. A is a subalgebra of B if A C B and the inclusion map ¢ : A — B is a homomorphism.
2. B is a homomorphic image of A if there is a surjective homomorphism f : A — B.

3. A is wsomorphic to B if there is an isomorphism h : 2 — B.



For any X C A, there is a least subalgebra of 2 containing X, which we call the subalgebra of 2l
generated by X. A subalgebra 21" of 2 is called finitely generated if it is generated by a finite subset of
A.

Definition 2.5. Let {2;};c; be a family of algebras where each 2; = (A;, ) is an algebra of type
F. The direct product or product of {;}icr is the algebra I A; = (I;er A;, FHZ'GIQ“) where

1. I;erA; is the cartesian product of {A4;}ier, and

2. for each n-ary function symbol f € F,

ey a) (@) = fR (i), ..., an(i) forall ay,..., o, € HicrA;.

The notions above induce the following operations on a class K of algebras:

e H(K) = {®B : B is a homomorphic image of some A € K},

e S(K) = {B: B is a subalgebra of some 2 € £},

e I(KC) = {*B : B is isomorphic to some A € K},

e P(K)={%B:B is a product of a family of algebras in K},

e Py(K) = {8 :B is an ultraproduct of a family of algebras in K}.
Definition 2.6. Let I be a class of algebras.

1. K is called a variety if it is closed under H, S, and P. We denote by V(K) the least variety

containing K.

2. K is called a universal class if it is closed under I, S, and Py;. We denote by U(K) the least

universal class containing /.

The following characterization of varieties and universal classes has been obtained by Tarski (see
[BS81, Chapter 2, Theorem 9.5] and [BS81, Chapter 5, Theorem 2.20]).

Theorem 2.7. Let K be a class of algebras. Then,
1. Y(K) = HSP(K),
2. UK) = ISPy (K).

Definition 2.8. An algebra 2l is called locally finite if every finitely generated subalgebra of 2/ is finite.
A class K of algebras is called locally finite if every algebra in K is locally finite.

Syntax and semantics
Definition 2.9. Let F' be a language and X be a set. Elements of X are called variables.
1. Terms of type I over X are defined recursively by

(a) Each variable x € X and each constant symbol f € F' are terms,

(b) If f € F is an n-ary function symbol and t1,...,t, are terms, then f(¢1,...,t,) is a term.



2. An identity of type F over X is an expression of the form
s~t

for some terms s and t.

Definition 2.10. A waluation over a set X of variables on an algebra 2 = (A4, F?) is a function
V : X — A. Then, V naturally generalizes to a function from terms to A. We say that 2 satisfies
an identity s ~ ¢t under V, written A,V = s~ ¢, if V(s) = V(¢) in A. We say that 2 validates s ~ t,
written 2 = s & ¢, if A satisfies s ~ ¢ for any valuation on 2(. Moreover, for a set X of identities, we
write 2 = X if 2 |= ¢ for all ¢ € ¥; for a class K of algebras, we write I |= ¢ if A |= ¢ for all A € K.

An algebra 2 can also be seen as a first-order structure. Followng first-oder model theory, for a
frist-order sentence 1, we write 2 |= 1) if 2 satisfies 1.

For a set ¥ of identities, let V(X) = {20 : 2 |= X}. For a class K of algebras, let Th(K) = {¢ : K = ¢}.
The following characterization, due to Birkhoff, bridges between the syntax and the semantics of

universal algebra.
Theorem 2.11. Let K be a class of algebras.
1. K is a variety iff K = V(X) for a set ¥ of identities,
2. K is a universal class iff K ={A: A =T} for a set T of first-order universal sentences.

We call a set ¥ of idenenties an equational theory if ¥ = Th(K) for a variety K. It is well-known
in universal algebra that varieties and equational theories respectively form a complete lattice, and
operations Th(—) and V(—) are dual isomorphisms between these two lattices that are inverse of each
other.

We have a proof system-like characterization of equational theories (see, e.g., [BS81, Chapter 2,
Definition 14.16 and Theorem 14.17]).

Definition 2.12.

e For a term ¢ and an identity s ~ s’, an identity ¢t ~ t' is a replacement instance of t and s ~ s’ if

t’ is the result of replacing an occurrence of s in ¢ by s’

e For an identity s =~ s’ and a tuple of terms (¢1,...,t,), the substitution instance of s ~ s’ and
(t1,...,tpn) is the resulting identity by simultaneously replacing every occurrence of each variable

x; in s = s’ by t;.

Theorem 2.13. Let X be a set of identities. Then Th(X), the least equational theory containing ¥, is

the least set of identities containing ¥ such that:
1. smseThX) forseT,
2. s~teTh(X) =t~ se Th(T),
3. st trueTh(X)=s~uecTh(),
4. Th(X) is closed under replacement,

5. Th(X) is closed under substitution.



Congruences and subdirectly irreducible algebras

Definition 2.14. Let 2 = (A, F*) be an algebra of type F. A binary relation § C A x A is a
congruence on 2 if 6 is an equivalence relation (i.e., reflexive, transitive, and symmetric and for each

n-ary function symbol f € F,
(f*a1,...,an), fA(br,...,bn)) €0 for all (ay,b1),. .., (an,b,) € 6.
Every algebra 2 has the least congruence A = {(a,a) : a € A} and the greatest congruence A x A.
In fact, congruences on 2 form a lattice, called the congruence lattice of .

Definition 2.15. Let 2 = (A4, F¥) be an algebra of type F and 6 be a congruence on 2. Then the
quotient of 2 by 6 is the algebra /0 = (A/6, F*/%) where

1. A/ is the quotient set of A by 6, and

2. for each n-ary function symbol f € F,

a1 /0,. .. an/0) = (fYa1,...,an))/0 for all ai,... a, € A.

For each quotient /6, the projection map from 2 to 2(/6 is a surjective homomorphism. Conversely,
each surjective homomorphism from 2 induces a congruence on 2. Thus, there is a one-to-one

correspondence between congruences on 20 and homomorphic images of 2 (up to isomorphism).

Definition 2.16. Let {2;};c; be a family of algebras and p; : II;c/2; — 2A; be the projection map for
each i € I.

1. An algebra B is called a sudirect product of {2;};cr if B is a subalgebra of I1;c;2; such that
pi| B B — 2, is surjective.

2. An embedding h : B — I1;c12; is called a subdirect embedding if the image h[B] is a subdirect
product of {;}icr.

Definition 2.17. An algebra 2 is called subdirectly irreducible (s.i. for short) if for any subdirect
embedding h : A < II;c;2A;, there is an ¢ € I such that p; o h : A — 2A; is an isomorphism.

Subdirectly irreducible algebras can be characterized by congruences (see, e.g., [BS81, Chapter 2,
Theorem 8.4])

Theorem 2.18. An algebra U is subdirectly irreducible iff there is a second least congruence on U,

that is, there is a congruence 6 on 2 such that A C 0 and 6 C 0" for any congruence ' # A on 2.

Given a class I of algebras, we write g for the set of subdirectly irreducible members of K.
Subdirectly irreducible algebras are particularly important in universal algebra because of the following
result by Birkhoff (see, e.g., [BS81, Chapter 2, Theorem 8.6]). Intuitively, subdirectly irreducible

algebras serve as building blocks of all algebras.
Theorem 2.19.

1. Every algebra 2 is isomorphic to a subdirect product of subdirectly irreducible algebras that are

homomorphic images of .

10



2. For any variety V, it holds that V = V(Vy).

Definition 2.20. A variety V is called congruence-distributive if the congruence lattice of every algebra

A €V is a distributive lattice.

The following results about congruence-distributive varieties are consequences of the Jonsson’s
Lemma [J6n67] (see also [Berll, Section 5.2] and [BS81, Section 4.6]).

Theorem 2.21. Let K be a class of algebras such that V(K) is a congruence-distributive variety. Then
V(K)si € HSPy (K).

Corollary 2.22. Let K be a finite set of finite algebras such that V(K) is a congruence-distributive
variety. Then V(K)s € HS(K).

2.2 Lattice theory

In this section, we recall the theory of lattices. Lattices, on the one hand, serve as a base structure of
various algebras used in algebraic semantics. On the other hand, lattice theory is useful in studying a

class of logics as they often form a lattice. We refer to [Berll] for details.

Definition 2.23. A pair (X, R) of a set X and a binary relation R C X x X is called a partially
ordered set (poset) if R is:

1. reflexive: Vo € X (zRz),
2. transitive: Vz,y,z € X (zRy AyRz — zRz), and
3. antisymmetric: Vz,y € X (zRy AyRx — x =y).
If (X, R) is a poset, the relation R is called a partial order on X and often denoted by <.

Definition 2.24. Let (X, <) be a poset and Y C X. An element x € X is called a lower bound of Y
ifx <y forall y €Y. The element x € X is called a greatest lower bound or infimum of Y if x is a
lower bound of Y and 2/ < x for any lower bound 2’ € X of Y. The notions upper bound and least

upper bound (or supremum) are defined dually.

An infimum and a supremum of Y are unique if they exist; they are denoted as AY and \/Y

respectively.
Definition 2.25. A poset (L, <) is called a lattice if any {x,y} C L has an infimum and a supremum.
Lattices also have an algebraic definition.

Definition 2.26. A lattice is an algebra (L, A, V) with two binary operations A (called meet) and V
(called join) validating the following identities:

(Associativity) zA(yAz)=(zAy)Az, zV(yVz)x(xVy)Vz,
(Idempotence) zAz~z, zVz=uz,

(Commutativity) zAy~yAz, zVy=ryVuz,
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(Absorption) zA(zVy)=xz, zV(rAy) =zx.

These two definitions are equivalent. A lattice (L, <) in Definition 2.25 induces a lattice (L, A, V)
in Definition 2.26 by defining x Ay = A{z,y} and =V y = V{xz,y}. Conversely, a lattice (L, A, V) in
Definition 2.26 induces a lattice (L, <) in Definition 2.25 by defining x < y iff z Ay = x (or, equivalently,
x Vy =y). Moreover, these two constructions are inverse to each other.

We often simply write L for a lattice (L, A, V).

Definition 2.27. A lattice L is called distributive if L validates the identities
(xAy)Vzr(xVz)A(yVz)and (xVy) Az (xAz)V(YyAz).

In fact, for lattices, the two identities above are equivalent to each other.

Definition 2.28. An algebra (L, A, V,0,1) is a bounded lattice if (L, A, V) is a lattice and the identities
xAO=0and zV1=1 hold.

Definition 2.29. A lattice L is called complete if the infimum AX and the supremum \/ X exist for
every subset X C L.

Note that a complete lattice is always bounded, that is, it has the greatest element and the least
element. Moreover, a lattice is complete iff the infimum exists for any subset iff the supremum exists

for any subset.

Definition 2.30. Let L be a bounded lattice. A subset ' C L is called a filter on L if the following
hold:

1. If x € Fand z < y, then y € F,

2. lf x,y € F,then x ANy € F.
The filter F' is called trivial if ' = {1}. The filter F' is called proper if F # L.
The following notions and results will be useful in the study of lattices of modal logics.

Definition 2.31. A closure operator on a set A is a function C' : P(A) — P(A) such that for any
X, Y CA,

(increasing) X C C(X),
(idempotent) C(C(X)) = C(X),
(monotone) X CY = C(X) C C(Y).
For a closure operator C' on A, a set X C A is called C-closed if C(X) = X.

Definition 2.32. An closure operator C' on a set A is called algebraic if for any X C A,
Cc(X)= U{C(Y) : Y is a finite subset of X}.

Definition 2.33. Let L be a complete lattice. An element x € L is called compact if for any X C L,
arg\/X = xg\/onr some finite Y C X.

The lattice L is called algebraic if every element is a join of compact elements.
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An algebraic closure operator induces an algebraic lattice (see, e.g., [Berll, Theorem 2.30])

Theorem 2.34. Let C be an algebraic closure operator on a set A. Then C-closed sets with the subset

relation form an algebraic lattice where compact elements are C(X) for finite sets X C A.

Definition 2.35. Let L be a complete lattice. A splitting pair of L is a pair (x,y) of elements of L
such that x £ y and for any z € L, either z < z or z < y. If (x,y) is a splitting pair of L, we say that
x splits L and y is a splitting in L.

Note that if = splits L, then there is a unique y € L such that (x,y) is a splitting pair, which we

denote L/x. Conversely, a splitting y also uniquely determines z.

2.3 Modal algebras and modal duality

In this section, we recall modal algebras used in algebra semantics for modal logics. The materials are
collected from [BAVO01, Chapter 5], [CZ97, Chapter 7 and 8], [Kra99, Chapter 2], and [Ven07]. Note

that modal algebras are a type of algebra, so results from universal algebras apply.

Modal algebras

Definition 2.36. An algebra 2 = (A4, A,V,—,0,1) is a Boolean algebra if (A, A,V,0,1) is a bounded
lattice and the identities A (z — 0) ~ 0 and z V (x — 0) ~ 1.

We abbreviate x — 0 as —x. Since a Boolean algebra is also a lattice, all the notions for lattices
apply. In particular, a filter F' on a Boolean algebra 2 is called an wultrafilter if it is proper and for any
a€A a€ For—ackF.

Definition 2.37. An algebra A = (A,A,V,—,0,1,<) is a modal algebra if (A,A,V,—,0,1) is a
Boolean algebra and the identities ¢0 ~ 0 and O(x V y) = Oz V Oy hold.

We abbreviate =-<¢&—x as Ox. Then the above two identities are equivalent to 01 = 1 and
O(z Ay) = Ox A Oy. Also, we often write a modal algebra as a pair (A4, &) where A is its base Boolean

algebra and ¢ is the additional operation.

Definition 2.38. Let 2 be a modal algebra. A subset F' C A is called a modal filter on L if F' is a
filter on A and a € F implies Oa € F'.

There is a one-to-one correspondence between modal filters and congruences, and thus a one-to-one

correspondence between modal filters and homomorphic images.

Theorem 2.39. Let 2 be a modal algebra. The lattice of modal filters on A is dually isomorphic to

the lattice of congruences on 2.

Modal algebras are congruence-distributive, so the consequences of Jénsson’s Lemma apply. The
following characterization of s.i. modal algebras is from Rautenberg [Rau80]. Note that an opremum

may not be unique.

Proposition 2.40. A modal algebra A is s.i. iff A has an opremum, that is, an element c € A such
that ¢ # 1 and for any a # 1, there is n € w such that O="a < c.
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Modal duality

Duality theory is useful in studying lattice-based algebraic structures. Some well-known dualities
include: Priestley duality for bounded distributive lattices and Priestley spaces, Esakia duality for
Heyting algebras and Esakia spaces, and Stone duality for Boolean algebras and Stone spaces. In
the rest of this section, we recall the modal duality between modal algebras and modal spaces (see,
e.g., [BAVO01, Chapter 5]). This duality is also known as Jésson-Tarski duality as it is based on
Jénsson-Tarski representation theorem [JT51].

Let X be a set and R C X x X be a binary relation on X. We use the following notations. For
U C X, R[U] and R![U] denote the direct image and the inverse image of U under R respectively. Let
R™ denote the n times composition of R, where R is the identity. For a < w, let R<*[U] = |J,,., R"[U]
and R=[U] = |, <, R"[U]. In addition, if U = {x}, we will write R[z] instead of R[{z}], and similarly
for other cases. A subset U C X is called an upset of (X, R) if RSYU] = U; downsets are defined
dually.

Definition 2.41. A Stone space is a compact Hausdorff totally disconnected topological space.

Definition 2.42. A modal space X is a pair (X, R) where X is a Stone space and R C X x X is a

binary relation on X satisfying:
1. RJx] is closed for each x € X,
2. For any clopen set U C X, the set R™![U] is also clopen.

Definition 2.43. Let X = (X, R) and 9 = (Y, Q) be modal spaces. A continuous map f: X — Y is

called a p-morphism if the following conditions hold:
(forth) For any z,2’ € X, xRz’ implies f(x)Qf ('),
(back) For any x € X, if f(x)Qy' for some 3y € Y, then there is an 2’ € X such that xRz’ and
fa@)=y.

Definition 2.44. Let X = (X, R) be a modal space. A point z € X is called a topo-root of X if the
closure of R<“[z] is X. The modal space X is called topo-rooted if the set of topo-roots of X has a

non-empty interior.

Theorem 2.45. The category of modal algebras and homomorphisms is dually equivalent to the category

of modal spaces and p-morphisms.

We sketch the construction of the dual equivalence functors, which is built on top of Stone duality
(see e.g. [BAVOL1, Section 5.4]). Given a modal algebra 2, the dual modal space of 2 is A, = (A4, R)

where

1. A, is the dual Stone space of A: A, as a set is the set of all ultrafilters on A, and the topology
is generated by the base {f(a) : a € A}, where the function § : A — P(A,) is such that
Bla) ={x € Ay : a € x},

2. R is defined by
xRy iff for any a € A, a € y implies Ca € .
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Given a homomorphism & : 20 — 9B, the dual p-morphism of 4 is hy : B, — As;z — h~'z]. Conversely,
given a modal space X = (X, R), the dual modal algebra of X is X* = (X*, ©) where

1. X™ is the Boolean algebra of clopen subsets of X,
2. ¢a = R—1]a] for a € A.

Given a p-morphism f : X — 9), the dual homomorphism is f* : 9* — X*;a — f~![a].
The following table summarizes the correspondence between notions for modal algebras and modal

spaces under this dual equivalence.

modal algebras modal spaces
homomorphic images closed upsets
subalgebras p-morphic images
subdirectly irreducible topo-rooted

Kripke frames and general frames

Another commonly used semantics of modal logic is Kripke frames, which resemble modal spaces but

lack the topological structure.
Definition 2.46. A Kripke frame is a pair (X, R) of a set X and a binary relation R C X x X.

Since finite Stone spaces are discrete, finite Kripke frames coincide with finite modal spaces.

A subframe of a Kripke frame is a model-theoretic substructure. A generated subframe of a Kripke
frame is an upset. P-morphisms between Kripke frames are defined the same as for modal spaces,
except that the continuity is dropped.

Modal logics are not complete with respect to classes of Kripke frames in general. One can overcome

this by adding extra structures on Kripke frames.

Definition 2.47. A general frame or frame is a tuple (X, R, A) where (X, R) is a Kripke frame and
A is a non-empty family of subsets of X that is closed under Boolean operations (N, U, —¢) and R~!.

Elements of A are called admissible sets.
Definition 2.48. A general frame (X, R, A) is called descriptive if it is:

differenciated: for any distinct x,y € X, there is some A € A such that x € A and y ¢ A,
tight: for any x,y € X such that Ry, there is some A € A such that y € A and x ¢ R™![A],

compact: for any A" C A, if any finite intersection of elements of A’ is non-empty, then (A’ is

non-empty.

Descriptive frames are equivalent to modal spaces in the following sense. For a descriptive frame
(X, R, A), if we equip X with the topology generated by the base A, then (X, R) becomes a modal
space. For a modal space (X, R), letting A be the set of all clopen subsets of X, we obtain a descriptive

frame (X, R, A). Moreover, these two operations are the inverse of each other.

2.4 Modal logics

In this section, we recall basic notions and results for modal logics. We refer to [BAVO01] and [CZ97] for
details.
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Syntax and semantics

We recall the syntax of modal logics. Formulas are defined by the following syntax, where Prop is a

countable set of propositional variables. Let Fml be the set of all formulas.

pu=p|LleAY|o—=1|0Op, peProp

We will use the following abbreviation: - for ¢ — L, T for =L, ¢ V4 for =(—¢p A =), ¢ <> ¢ for
(p = V)N (Y — @), and Op for ~O-¢.

A substitution is a function ¢ : Prop — Fml. For a substitution ¢ and a formula ¢, the substitution
instance of ¢ under o is the resulting formula by simultaneously replacing each occurrence of each
propositional variable p by o(p).

A normal modal logic L is a set of formulas that contains all the propositional tautologies and the

K axiom O(p — q) — Op — Og, and is closed under:

modus ponens: from formulas ¢ and ¢ — ¥, to deduce 1,
necessitation: from a formula ¢, to deduce Oy

uniform substitution: froma a formula ¢, to deduce a substitution instance of .

We will work solely with normal modal logics in this thesis, so we simply call them logics.

A logic L is called a normal extension or simply an extension of another logic Lg if Ly C L. For
any logic Ly, the extensions of Ly form a complete lattice, denoted NExtLy, where the order is the
subset relation C. For a set ¥ of formulas, let Log(3) be the least logic containing 3. The meet in
NExtLg is N and the join of two logics L and L’ is given by L + L' := Log(L U L'). For a logic L, a
formula ¢, and a set ¥ of formulas, let L + ¢ = Log(L U {¢}) and L + % = Log(L UX). When the base
logic Ly is fixed and L = Lg 4+ X, we call elements of ¥ azxioms of L and say that L is axiomatized by
¥ (over Ly).

We write K for the least normal modal logic, K4 for the transitive modal logic K+ Op — OOp, wK4
for the weak transitive modal logic K + Op A p — OOp, and S4 for the logic K4 + Op — p.

We recall the semantics of modal logic with respect to modal algebras, modal spaces, Kripke frames,

and general frames.

Definition 2.49. Let 2 be a modal algebra. A wvaluation on 2 is a function V : Prop — A. This
naturally generalizes to V : Fml — A. We say that 2 satisfies a formula ¢ under the valuation V,
written 2,V = ¢, if V() = 1. We say that 2 validates o, written 2 = ¢, if A,V = ¢ for any

valuation V on 2.

Definition 2.50. A logic L is said to be complete with respect to a class IC of modal algebras if for

any formula ¢,
peLiff K= (le., A= pforall A e ).

For a modal algebra 2, let Log(2A) = {¢ : A = ¢}. Similarly, for a class K of modal algebras,
let Log(K) = {¢ : K = ¢}. For alogic L, let V(L) = {2 : A |= L}. The following is known as the

completeness theorem for algebraic semantics.

Theorem 2.51. Every logic L is complete with respect to the class V(L). Moreover, the operations
Log(—) and V(—) are dual isomorphisms between the lattice of varieties of modal algebras and the

lattice of modal logics that are the inverse of each other.
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In addition, there is a one-to-one correspondence between logics and equational theories for modal
algebras.
The semantics with respect to modal spaces can be obtained by dualizing the one with respect to

modal algebras, but we give an explicit account.
Definition 2.52. Let X = (X, R) be a modal space.

1. A wvaluation on X is a function V' : Prop — P(X) such that every value of V' is clopen in X. This
generalizes to V : Fml — A as follows: Boolean connectives are interpreted by Boolean operations
on P(X), and V(&p) = RV (p)].

2. We say that a point x € X satisfies a formula ¢ under a valuation V, written X, V,x = ¢, if
xz € V(p).

3. We say that ¢ is universally true in X under a valuation V, written X,V | ¢, if X,V 2z | ¢ for
all x € X.

4. We say that X wvalidates o, written X = ¢, if X,V | ¢ for any valuation V on X.

The semantics with respect to Kripke frames and general frames are similar except that: for Kripke
frames, a valuation is a function V' : Prop — P(X); for general frames, a valuation is a function
V : Prop — A. The operation Log(—) is defined similarly for modal spaces, Kripke frames, general
frames, and classes of them. By duality, modal logics are also complete with respect to modal spaces
and descriptive frames. However, there are modal logics that are not complete with any class of Kripke

frames. The following is a useful completeness result (see, e.g., [CZ97, Corollary 3.19)).

Theorem 2.53. K is sound and complete with respect to the class of finite rooted irreflexive intransitive
trees (viewed as finite Kripke frames).

Logical properties

We recall various logical properties and special classes of logics. We state them for modal logics, while

they often apply to other types of logics as well.
Definition 2.54. Let Ly and L be logics.
1. L is Kripke complete iff it is complete with respect to a class of Kripke frames.

2. L has the finite model property (fmp for short) iff it is complete with respect to a class of finite
modal algebras iff it is complete with respect to a class of finite modal spaces (i.e., finite Kripke

frames).

3. L is tabular iff L = Log(2) for some finite modal algebra iff L = Log(X) for some finite modal

space (i.e., finite Kripke frames).
4. L is finitely axiomatizable over Ly iff L = Lo+ X for a finite set X.
5. L is decidable iff there is an algorithm that, given a formula ¢, to decide if ¢ € L.

6. L is a splitting logic in NExtLg or an Lg-splitting iff it is a lattice-theoretic splitting of the lattice
NExtLg.
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7. L is a union-splitting logic in NExtLg or an Lg-union-splitting iff it is the join of a set of splitting

logics in NExtLy.

Some logical properties can be rephrased in terms of varieties of modal algebras. For example, a
logic L has the finite modal property iff the variety V(L) is generated by a class of finite algebras.

Harrop’s theorem [Har58] (see also [CZ97, Theorem 16.13]) is one of the most well-known criteria
for decidability.

Theorem 2.55. FEvery finitely axiomatizable logic with the fmp is decidable.

The following notion was introduced by Fine [Fin74a] to measure the extent to which a logic is

Kripke incomplete.

Definition 2.56. Let Ly be a logic. For a logic L € NExtLg, the degree of Kripke incompleteness of L
in NExtLg is the cardinal
[{L' € NExtLg : KF(L') = KF(L)}|,

where KF(L) is the class of Kripke frames validating L.
Blok [Blo78] showed the connection between degrees of Kripke incompleteness and union-splittings,
and fully characterized the degrees of Kripke incompleteness in NExtK: surprisingly, only 1 and 2%0

are realized as the degree of Kripke incompleteness of some logic L in NExtK (see also [CZ97, Section
10.5)).

Theorem 2.57. Let Ly be a logic with the fmp. For any union-splitting L in NExtLg, if L is Kripke
complete, then L has degree of Kripke incompleteness 1 in NExtLg.

Theorem 2.58 (Blok’s dichotomy theorem). Let L be a modal logic. If L is a K-union-sptting, then it
has degree of Kripke incompleteness 1 in NExtK; otherwise it has degree of Kripke incompleteness 280
in NExtK

2.5 Modal multi-conclusion rules

In this section, we recall the notions and properties of modal multi-conclusion rules. We refer to [Kra07]
and [Jef09] for details.

Definition 2.59. A modal multi-conclusion rule p is an expression of the form

r

A

or I'/A where I and A are finite sets of formulas. If A is a singleton, p is called single-conclusion. If

I'=10, pis called assumption-free.

We will work solely with modal multi-conclusion rules in this thesis, so we simply call them rules.

A single-conclusion assumption-free rule /¢ can be identified with the formula ¢.

Definition 2.60. A normal modal multi-conclusion consequence relation or normal modal multi-

conclusion rule system is a set S of rules satisfying:

1. p/p €S,
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2. 00 > /P ES,

3. p/Op €S,

4. Jp € S for all p € K,

5. T'/A € S implies I', /A, A" € §  (weakening),

6. T/A,peSand ', o/A € SimpliesI'/A €S (cut),

7. I'/A € S implies o(I") /o(A) € S for any substitution o (substitution).

We simply call normal modal multi-conclusion consequence relations rule systems. Similar to logics,
for any rule system Sy, the extensions of Sy form a complete lattice, denoted NExtSy. Splitting rule
systems and union-splitting rule systems are defined analogously to logics (Definition 2.54). For a set
R of rules, let Sg + R be the least rule system containing So UR. When § = Sy + R, we call elements
of R azioms of S and say that S is aziomatized by R over Sy. For a logic L, let Sp, be the least rule

system containing L.

Definition 2.61. A modal algebra 2 validates a rule I'/A, written 2 = T'/A, if for any valuation V'
on 2, V(y) =1 for all v € I' implies V(§) = 1 for some ¢ € A.

The semantics with respect to modal spaces can be obtained by duality, but we provide an explicit

account.

Definition 2.62. A modal space X validates a rule I'/A, written X = I'/A, if for any valuation V' on
X, V(y) = X for all v € T implies V(§) = X for some ¢ € A.

Since each formula corresponds to an identity for modal algebras, each rule corresponds to a
universal sentence. Thus, for a rule system S, U(S) := {2 : 2 = S} is a universal class. Conversely,
for a universal class U, S(U) := {p : U |= p} is a rule system. Moreover, the operations i and S are
dual isomorphisms between the NExtSk and the lattice of all universal classes.

For a logic L, let (L) be the least rule system containing {/¢ : ¢ € L}, that is, (L) =
Sk + {/¢ : ¢ € L}. Note that 3(L) = Sr. For a rule system S, let A(S) = {¢ : /¢ € S}. Then,
¥ i NExtK — NExtSK and A : NExtSk — NExtK are order-preserving map. Since, dually, we have
V(U((V)) =V for a variety V and U C U(V(U)) for a universal class U, it follows that A(X(L)) = L for
a logic L and ¥(A(S)) C S for a rule system S.

The finite model property generalizes straightforwardly to rule systems. A rule system S has the
finite model property (fmp) if for any rule p ¢ S, there is a finite modal algebra 2 such that 2 = S
and 2 £ p. This is equivalent to the universal class U(S) being generated by a class of finite algebras.
The fmp is preserved by operations ¥ and A.

Proposition 2.63. If a rule system S has the fmp, then the logic A(S) has the fmp.

Proof. If a rule system S has the fmp, then U(S) = U(K) for some class K of finite algebras, so
VU(S)) = V(U(K)) = V(K), which implies that the logic A(S) has the fmp. O
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2.6 Descriptive set theory

In this section, we recall the basics of descriptive set theory, particularly the notions and results about
Borel sets, which will be used in Chapter 7. We work in ZFC and do not assume the Continuum
Hypothesis. We refer to [Kan08] for details.

Recall that Cantor space is 2¥ endowed with the topology generated by the clopen basis {B;s: s €
259}, where By = {z € 2¥ : s C x}. Elements of Cantor space are often called reals because they
can be identified with standard real numbers. There are two types of measures on the complexity of

subsets of Cantor space: Borel hierarchy and arithmetical hierarchy.

Definition 2.64. The Borel hierarchy is defined as follows: for A C 2¢ and 1 < a < wy,

Ae Z‘f iff A is open,
A € TIY iff A is closed,

A € X0 iff A is a countable union of sets in U 119,
0<fB<a

A € TID iff A is a countable intersection of sets in U =9
0<f<a

Ais Borel iff Ac | ) =0= (] .

O<a<wi I<a<wi

Definition 2.65. The arithmetical hierarchy is defined as follows: for A C 2* and n > 0,

Ae 22 iff A is defined by 3Im1Vms - - - Qmy, R for some recursive R C w™ x 2%,

Ace Hg iff A is defined by Vmi3ms - - - Qmy, R for some recursive R C w™ x 2%,

For a € 2%, by allowing the use of a as a parameter in R, we obtain the relativized notions: %0 (a) and
T (a).

The following proposition characterizes the relation between the two hierarchies (see, e.g., [Kan08,
Proposition 12.6])).

Proposition 2.66. Let A C 2“ and n > 0.

1. Ae XV iff AeXV(a) for some a € 2%,

2. Ac T iff AeTll(a) for some a € 2

In short, if a set A C 2% is ¥ (a) or 112 (a) for some a € 2%, then A is Borel.
The perfect set property dates back to Cantor’s effort to establish the Continuum Hypothesis.
Cantor [Can84] showed that any perfect set has the cardinality 2% (see also [Kan08, Proposition 11.3]).

Definition 2.67. A set A C 2¥ is perfect if it is nonempty, closed, and has no isolated points. The set

A has the perfect set property if it is either countable or contains a perfect subset.
Proposition 2.68. Every perfect set of reals has the cardinality 2%°.

It is a classical result in descriptive set theory that Borel sets have the perfect set property (see,
e.g., [Kan08, Theorem 12.2]).
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Theorem 2.69. Fvery Borel set has the perfect set property. Consequently, every Borel set has the
cardinality either < Xg or 280,

We will exploit this fact to study the cardinality of sets of equational theories and logics in Chapter 7.
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Chapter 3

Stable Canonical Rules and Formulas

One of the most powerful tools in the study of the lattice of modal logics and superintuitionistic logics
is characteristic formulas. Characteristic formulas, also called algebra-based formulas or frame-based
formulas, refer to variations of formulas that are defined from finite algebras or finite relational
structures (e.g., finite Kripke frames) so that their validity has a semantic characterisation. Thus,
logics axiomatized by characteristic formulas are often easier to analyse.

The first type of characteristic formulas, Jankov formulas or Jankov-de Jongh formulas, was
introduced and studied by Jankov [Jan63] and independently by de Jongh [de 68] for superintuitionistic
logics. Jankov formulas were used to construct continuum many superintuitionistic logics [Jan63]. Their
modal logic analogue, Fine formulas or Jankov-Fine formulas, were introduced by Fine [Fin74b]. A
generalization to n-transitive modal logics was constructed by Rautenberg [Rau80]. Further development
includes subframe formulas, cofinal subframe formulas, and canonical formulas (see, e.g., [CZ97, Chapter
9]). A remarkable feature of canonical formulas is that they axiomatize all transitive logics [Zak92].
See also [Bez08] for a historical overview and a unified framework to address frame-based formulas.

Recently, Jefabek [Jer09] generalized the idea of canonical formulas to inference rules and defined
canonical rules. They are based on selective filtration (see, e.g., [CZ97, Section 5.5]) and axiomatize
all rule systems over K4. Bezhanishvili et al. [BBI16], motivated by the filtration method (see, e.g.,
[BAV01, Section 2.3] and [CZ97, Section 5.3]), defined stable canonical rules and showed that all rule
systems can be axiomatized by stable canonical rules over Sk. They also introduced stable canonical
formulas for K4 as an alternative to canonical formulas.

In this chapter, we review the theory of stable canonical rules and formulas, which will be used
throughout the thesis. We recall definable filtrations from [KSZ20] and generalize the axiomatization
result via stable canonical rules by allowing the base rule system to be any one that admits definable
filtration. Moreover, using Gabbay’s filtration [Gab72], we generalize the stable canonical formulas to
pre-transitive logics of the form K + ¢™*lp — ©p. We also define m-stable canonical formulas and

show that they provide an alternative axiomatization result for pre-transitive logics.

3.1 Stable homomorphisms and the closed domain condition

Stable homomorphisms and the closed domain condition for modal algebras and modal spaces are
introduced in [BBI16], generalizing that for Heyting algebras and Priestley spaces introduced in [BB17].
Intuitively, a stable homomorphism h does not preserve the modal operator (so it is not a modal

algebra homomorphism), but it does satisfy the inequality Gh(a) < h(<Oa); the closed domain condition
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indicates for which elements a the equality Gh(a) = h(<¢a) should hold. Dually, for modal spaces and
continuous maps, a stable map f is order-preserving, or in other words, f satisfies the forth condition in
the definition of p-morphisms; the closed domain condition requires f to meet the back condition, but
only partially. Stable homomorphisms and the closed domain condition will be used in the semantic
characterization of the validity of stable canonical rules and formulas.

The definitions and facts in this section are from [BBI16, Section 3].

Definition 3.1. Let 2 and 28 be modal algebras. A Boolean homomorphism h : A — B is a stable
homomorphism if Gh(a) < h(<a) for all a € A.

Definition 3.2. Let X = (X, R) and 9 = (Y, Q) be modal spaces. A continuous map f: X — Y is a
stable map if xRy implies f(z)Qf(y) for all z,y € X.

The two definitions are dual to each other.

Proposition 3.3. Let A and B be modal algebras and h : A — B be a Boolean homomorphism. Then
h: A — B is stable iff hy : B, — A, is stable.

Definition 3.4. Let 2 and B be modal algebras and h : A — B be a stable homomorphism. For
a € A, we say that h satisfies the closed domain condition (CDC) for a if h(¢a) = Oh(a). For D C A,
we say that h satisfies the closed domain condition (CDC) for D if h satisfies CDC for all a € D.

Note that for a stable homomorphism h, h(<$a) = Gh(a) is equivalent to h(Ga) < Oh(a) as the
other inequality is guaranteed by being stable.

Definition 3.5. Let X = (X, R) and 2 = (Y, Q) be modal spaces and f : X — Y be a stable map.
For a clopen subset D C Y, we say that f satisfies the closed domain condition (CDC) for D if

QUf(x)]ND # 0= f(R[z]) N D # 0.

For a set D of clopen subsets of Y, we say that f : X — Y satisfies the closed domain condition (CDC)
for D if f satisfies CDC for all D € D.

Again, these definitions are dual to each other.

Proposition 3.6. Let A and B be modal algebras and h: A — B be a stable homomorphism. For any
a€ A,
h satisfies CDC' for a iff h. satisfies CDC for B(a).

For any D C A,
h satisfies CDC for D iff hy satisfies CDC for 5[D].

It follows directly from the definition that a stable homomorphism h : A — B satisfying CDC for
A is a modal algebra homomorphism, and a stable map f : X — Y satisfying CDC for P(Y) is a
p-morphism.

We will primarily focus on stable embeddings between modal algebras and their dual surjective

stable maps between modal spaces. Therefore, we introduce abbreviated notation.

Notation 3.7. We write h : A —p B if h is a stable embedding satisfying CDC for D and A —p B
if there is such an h. We write f : X —p Q) if f is a surjective stable map satisfying CDC for D and
X —p 2 if there is such an f.
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3.2 Definable filtrations

The filtration method was first used in its algebraic form by McKinsey [McK41], and the frame-thoeretic
approach was later developed by Lemmon and Scott [Lem77]. It has been the most powerful tool to
establish the finite modal property for modal logics. We refer to [BAVO01, Definition 2.36] and [CZ97,
Section 5.3] for the standard filtration for Kripke frames and models, and to [BBI16, Section 4] for an
algebraic account.

For our purposes, we will use a slightly generalized version of filtrations, definable filtration,
introduced in [KSZ20] for Kripke frames. The idea is to encompass filtrations where one extends the
subformula-closed set of formulas before taking the quotient. We first define definable filtrations in a

frame-theoretic way for modal spaces.

Definition 3.8. Let X = (X, R) be a modal space, V be a valuation on X, © be a finite subformula-
closed set of formulas, and ©’ be a finite subformula-closed set of formulas containing ©. A definable
filtration of (X,V) for © through ©' is a modal space X’ = (X', R") with a valuation V' such that:

1. X' = X/~g, where

r~e yiff (X, Vol < X, V,ykEoforall p €®),

2. V'(p) ={|z]er : 2 € V(p)} for pe © and V'(p) =0 for p ¢ O,
3. Ry implies [z]o' R'[y]er,
4. if [z]erR'[yler then (y | ¢ implies z = O for G € O).
We also call X’ a definable filtration of X for © through ©'.
We drop the subscript ©’ when it is clear from the context.

Remark 3.9. The only difference between a standard filtration and a definable filtration is that in
a definable filtration, one can use a finer equivalence relation to obtain the quotient X’. For a finite
subformula-closed set © of formulas, a definable filtration for © through © is just a standard filtration
through ©. The idea of using a different set of formulas to define X’ appears earlier in [Gab72].

One could go further and generalize item (1) to allow any equivalence relations as long as the
quotient X’ is finite. The Filtration Lemma (Lemma 3.13) still holds, and the fmp can be proved.
This more generalized filtration was used earlier in [She87]. Recently, [KS25] used it to prove the fmp
for pre-transitive analogues of wK4. However, we only allow equivalence relations induced by a set of
formulas because by doing so, we guarantee that the projection X — X’ is a continuous map, which
allows an algebraic presentation as in Definition 3.10. This will be crucial for developing the theory of
stable canonical rules and formulas in the subsequent sections.

We refer to [vB23] for an overview and discussion of the filtration method. They also define weak

filtration, which is sufficient to prove the Filtration Lemma (Lemma 3.13).
Now we define definable filtrations for modal algebras.

Definition 3.10. Let 2 = (A, ¢) be a modal algebra, V' be a valuation on X, © be a finite subformula-
closed set of formulas, and ©’ be a finite subformula-closed set of formulas containing ©. A definable
filtration of (A, V') for © through ©' is a modal algebra 2’ = (A’, &) with a valuation V' such that:
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1. A’ is the Boolean subalgebra of A generated by V[0'] C A,
2. V'(p) =V(p) for p e © and V'(p) =0 for p ¢ ©’,

3. The inclusion 2" — 2 is a stable homomorphism satisfying CDC for D, where
D ={V(p): 0p € B}

We also call ' a definable filtration of A for © through ©'.

It is straightforward to verify that the two definitions of definable filtrations are dual to each other,
generalizing the proof for standard filtrations in [BBI16, Theorem 4.2]. We will mostly use algebraic
filtrations throughout the chapter, while one can always reformulate it using the language of modal

spaces.

Proposition 3.11. Let 2 = (A, &) be a modal algebra with the dual space X = (X, R). For a valuation
V on 2, a finite subformula-closed set © of formulas, and a finite subformula-closed set ©" of formulas
containing O, let A’ be the Boolean subalgebra of A generated by V[O'] C A and D = {V(p) : O € O}.

For a modal operator &' on A’, the following two conditions are equivalent:

1. The inclusion (A', ') — (A, ©) is a stable homomorphism satisfying (CDC) for D,

2. Viewing V' as a valuation on X, there is a definable filtration (X', V') of (X,V) for © through ©'
such that R’ is the dual of &'.

Example 3.12 ([BBI16)).

1. Recall that the least filtration and the greatest filtration are standard filtrations defined frame-
theoretically by

[2]R'[y] iff (z ~ 2’ and y ~ ¢/ and 2'Ry’, for some z’,y’ € X)

and
[z] RI[y] iff (y | ¢ implies x = O, for all O € O)

respectively. The algebraic constructions of them are

ola= \{be A :oa<b}

and
Oga:/\{ob:agbandbeDv}

respectively, where DY is the (V,0)-subsemilattice of 2" generated by D.

2. Recall that the Lemmon filtration, also called the transitive filtration (see, e.g., [BAV01, Section
2.3] or [CZ97, Section 5.3]) is a standard filtration defined frame-theoretically by

[z]RE[y] iff (y = 0=t implies z = O, for all Gp € ©),
where ©=!a = a V ¢a. The algebraic construction of the Lemmon filtration is
ola = /\{Ob coa< oband OSta < OS'hand b e DV}.
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The importance of the filtration method is illustrated in the following lemma.

Lemma 3.13 (Filtration Lemma). Let (A, V') be a definable filtration of (A, V) for © through ©'.
Then V(p) = V'(p) for all p € ©.

Proof. By a routine induction on the complexity of ¢. Use the fact that © C ©' for the base case, that
A’ is a Boolean subalgebra of A for the Boolean cases, and that the inclusion is stable and satisfies
CDC for D for the ¢ case. O

Using the Filtration Lemma, we can automatically deduce the fmp for logics and rule systems that
“admit definable filtration.”

Definition 3.14.

1. A class C of modal algebras admits definable filtration if for any finite subformula-closed set © of
formulas, there is a finite subformula-closed set ©’ containing © such that, for any modal algebra
20 € C and any valuation V on 2, there is a definable filtration (', V') of (2, V') for © through
©’ such that A’ € C.

2. A modal logic L admits definable filtration if the variety V(L) admits definable filtration.

3. A rule system S admits definable filtration if the universal class U(S) admits definable filtration.

Note that a logic L admits definable filtration iff the rule system Sy admits definable filtration

because they correspond to the same class of modal algebras.

Remark 3.15. The notion of admitting filtration has been used in the literature with various meanings
and strengths. An explicit definition of admitting filtration in the weak sense and admitting filtration
in the strong sense is provided in [BBI18], where the relation of the two definitions is also discussed. A
similar discussion can also be found in [KSZ20]. We define it as Definition 3.14 because this is just
enough to prove Theorem 3.24 and Corollary 3.25, though it is stronger than what is needed to prove
Proposition 3.16.

Proposition 3.16. If a logic L admits definable filtration, then it has the fmp. If a rule system S
admits filtration, then it has the fmp.

Proof. We only show the statement for rule systems, and the case for logics can be obtained similarly.
Let S be a rule system that admits definable filtration. For any rule p = I'/A ¢ S, there is an
S-algebra 2 such that 2[ j~ p, witnessed by some valuation V' on 2. By the assumption that S admits
definable filtration, since 2 € U(S), there is a finite subformula-closed set © containing Sub(I' U A) and
a filtration (', V') of (2, V) for ' U A through © such that 2" € Y(S). By Lemma 3.13, 2[,V £ T'/A
implies A", V' £ T'/A. Thus, 2 is a finite S-algebra that refutes p. Hence, S has the fmp. O

Many logics are known to admit standard filtration and thus admit definable filtration. For example,
K, T, and D admit the least and the greatest filtration. For transitive logics, K4 and S4 admit the
Lemmon filtration.

In the rest of this section, we give an algebraic account of the fact that a certain type of pre-
transitive logics admits definable filtration. Recall that pre-transitive logics K4.' are logics axomatized

by ¢"'p — &™p (or equivalently, O"p — O"p) over K. The logic K4 defines the condition
VaVy (xR™y — xR"y),
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where RF is the k-time composition of R, for modal spaces. Note that K4§ is the transitive logic K4.

We present a definable filtration construction for K4r1“+:l (m > 1), meaning that when applied to a
K4’1“+1—algebra, the filtrated algebra is also a K4r1"+1—algebra. This filtration will be used to develop
the theory of stable canonical formulas for pre-transitive logics K41m+1 in Section 3.4. The construction

is the algebraic dual of the frame-theoretic filtration presented in the proof of [Gab72; Theorem 8|.

Lemma 3.17. Let2A = (A, <) be a K4T+1—algebm, V be a valuation on A, and © be a finite subformula-
closed set of formulas. Let ©' = Sub(©@ U {&™p : ¢ € O}) and A’ be the Boolean subalgebra of A
generated by V[©']. Define the modal oparators &g and &1 on A’ by

Ooa = /\{b €A :0a<b} and O1a= \/{Olgmﬂa 1k € wl.

Then, A' = (A’,&1) is a definable filtration of A for © through @' and A’ |= K4TTL.

Proof. Note that ©' is a finite subformula-closed set, so A’ is finite since Boolean algebras are locally
finite. For each a € A/, since A’ is finite, there exists k, € w such that {OF™™a: k < k,} = {okmq
k € w}. Let K = max{k, :a € A'}. Then, Gra = \V{OF™ ™ a: k < K} for any a € A', so <1 is always
a finite join and well-defined. In fact, ¢G1a = \V{OF™ ™ a : k < K'} for any K’ > K.

Let D' = {V(y) : O € ©'}. We know from Example 3.12 that (A’, o) is the least filtration of A
through @', so i : (A’, &g) —pr (A, ©), where i is the inclusion map. Since &0 = 0, we have ©10 = 0.

Since A’ is closed under finite joins and < preserves them, we have

o1av o1b=\/{of™ a k< K} v \/{of" b k < K}
= \/{okmlav ofm iy k < K}
= \/{Olgmﬂ(a\/ b): k< K}
= <O1(a V).
So, ¢1 preserves 0 and V, hence (A’,;<1) is a modal algebra. Next, we show by induction that

ola =\ {ok™a: k < K} for I > 1. This holds for [ = 1 by the definition of ¢;. Assuming that it

holds for I, we have

olfla = o10ha
=\{ot " ola: k< K}
_\/{Olgm-i-l \/{Okzm—&-l K< K)}:k<K)
_ \/{\/{Okm+1 OFmHy 1 < KY i k< K)
_ \/{O(k-s—k:’ m+l+1 a: kK < K}
_ \/{Okm+l+1a k< 2K)
=\{ot""a: k< K},

showing that the statement also holds for [ + 1. So, ¢Ya = \/{ok™ a : k < K} holds for I > 1, and
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we obtain that for any a € A,

oftla = \/{Olgm+m+la k< K}
= \/{og ™"k < K}
<\/{otma:k <K +1}
=\/{of"a: k < K}

= Oqa.

Thus, (A’, 1) is a K47 -algebra.

Let D = {V(p) : Oy € O©}. It remains to show that i’ : (A, 1) < p (A,0), where i’ =i as a
map. Note that i’ is a Boolean embedding. Since 7 is stable and ¢Gga < <1a by definition, we have
Oi'(a) = ©i(a) < i(©a) =i (Gpa) < i'(O1a). So, ' is stable.

Let d € D. Then, d = V() for some Gp € O, so 0", ... ., 0p € © and ©™d,...,d € D'
Moreover, since ¢ is the least filtration, we have 0™d = Of'd,...,od = Ood (see, e.g., [BBIL6,
Lemma 4.5]). Since i satisfies CDC for D’ and d € D', we have i/(¢od) < <©4/(d). Assume that
i'(of'd) < ©™4'(d) for some 1 < m/ < m. Then &i'(OF'd) < o™ *+1i/(d). Again since i satisfies
CDC for D" and of'd = o™ d € D', we have #/(0F' t1d) < oi (08" d), thus i (O F1d) < o™i/ (d).
Inductively, we obtain (0§ d) < ¢™*+1i'(d). Morover, since (A, ¢) is a K47 -algebra and i is
stable, we have ©™11i/(d) < &i'(d) < i'(God). So, 7' (0§ d) < i'(God), and OJ"d < ©od since i is

a Boolean embedding. Since ¢ is monotone, we inductively obtain Olgde < &pd for all £ > 1. So,
i'(o1d) = ' (\/{o§"'d : k < K}) < i'(0od) < 0i'(d).

Thus, ¢’ satisfies CDC for D. Hence, i’ : (A, 1) <—p (4,<) and (A4', ©1) is a definable filtration of
(A, ©) for © through ©'. O

Theorem 3.18. For any m > 1, the logic K4r1“Jrl admits definable filtration.

Proof. This follows immediately from Lemma 3.17. Note that ©' defined in Lemma 3.17 does not
depend on 2. O

Corollary 3.19 ([Gab72]). For any m > 1, the logic K&t has the fmp.

Proof. This follows from Theorem 3.18 and Proposition 3.16. O

3.3 Stable canonical rules

Stable canonical rules are introduced in [BBI16] as an alternative to canonical rules, the theory of which
is developed in [Jef09]. Both of them are generalizations of characteristic formulas to multi-conclusion
rules. They are defined from finite modal algebras or finite modal spaces, and their validity has purely
semantic characterizations. While canonical rules, generalizing Zakharyaschev’s canonical formulas (see,
e.g., [CZ97, Chapter 9]), use selective filtration (see, e.g., [CZ97, Section 5.5]), stable canonical rules
use the standard filtration. A special feature of stable canonical rules is that, contrary to canonical
rules, any rule can be axiomatized by stable canonical rules over the least normal modal rule system

Sk [BBI16]. We see in this section that the key component for the axiomatization result via stable
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canonical rules is definable filtration, and we generalize the result to any rule system that admits
definable filtration.

The basic idea of stable canonical rules, like characteristic formulas as well as canonical rules, is very
similar to diagrams, widely used in model theory: to encode the structure of finite algebras or finite
spaces (frames), but only partially. That is why subalgebras and homomorphisms (or p-morphisms
and clopen upsets for modal spaces) are not enough to capture the validity of stable canonical rules,

and we have to consider stable homomorphisms and the closed domain condition.

Definition 3.20. Let 2 be a finite modal algebra and D C A. The stable canonical rule p(2, D)
associated to 2 and D is the rule I'/A, where:

' ={pavs <> pa V pp : a,b € A}U
{=pa > —pq 1 a € AU
{OPpa = poa:a € AU
{poa = Opa :a € D},

and

A={ps:acAa#l}.
Stable canonical rules can also be defined directly via finite modal spaces (i.e., finite Kripke frames).

Definition 3.21. Let X = (X, R) be a finite modal space and D C P(X). Define the stable canonical
rule p(X, D) associated to X and D as the rule I'/A, where:

r :{\/{pcg cx e XU
{pe = —py 12,y € X,z # y}U
{pz = —COpy 1,y € X,z Ry}U
{p. = \/{opy:ye D} :2€ X,D e D,z RD]},

and
A:{—!px:xEX}.
We will work primarily with modal algebras, but one can obtain the dual results by either using
the duality or working directly with Definition 3.21.
Below is the semantic characterization of the validity of stable canonical rules, which we will use

freely throughout the thesis.
Theorem 3.22 ([BBI16]). Let A be a finite modal algebra, D C A, and B be a modal algebra. Then

B £ p(A, D) iff A —p B.

For convenience, we provide the dual presentation of this fact. For a finite modal space F, D C P(F),

and a modal space X, we have

X W p(F, D) iff X »p F.

Before proving the axiomatization result, we remark that one may restrict oneself to stable canonical
rules p(2(, D) where D is a (V, 0)-subsemilattice of A. We do not need this fact to show the following

results, but it will simplify things, for example, when we count stable canonical rules in Example 6.37.
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Proposition 3.23. For any finite modal algebra 2 and any D C A, there is a (V,0)-subsemilattice D'
of A such that, for any modal algebra B,

B p(2, D) iff B = p(A, D).

Proof. Let 2 be a finite modal algebra and D C A. Let D’ be the (V, 0)-subsemilattice of 2 generated
by D. For any modal algebra B, if B [~ p(2, D), then A —p B, which implies A < p B since
D C D', hence B (= p(A, D). Conversely, assume that B (= p(2, D), then there is some stable
homomorphism h : A < p B. For any d’ € D', since D' is a (V,0)-subsemilattice of A generated by D,
d =dyV---Vd, such that each d; = 0 or d; € D. For 0 € 2, we have h(<¢0) = h(0) = 0 = &0 = ©h(0).
For d € D, we have h(<d) = Oh(d) since h satisfies CDC for D. Thus,

h(od)

h(O(do V-V dy))
(Odo) V -+ V (Ody))
Odo) V-V h(&dy,)

h(
h(

Oh(do) V -+ -V Oh(dy)
O(h(do) V -+ V h(dn))
Oh(dy V -+ -V dy,) = Oh(d).

Therefore, h satisfies CDC for D’. It follows that 20 < p/ 9B, namely, B £~ p(2, D’). Hence, B = p(A, D)
F B = p(2, D). O

Now we prove the main theorems of this section, generalizing [BBI16, Theorem 5.5 and Theorem
5.6] by extending the base rule system from Sk to any one that admits definable filtration. We already
extracted the key feature of Sk used in the original proofs, namely that it admits definable filtration;
the proofs below are essentially the same as the original ones. The main idea is to construct finite

refutation patterns for a given rule and represent them by stable canonical rules.

Theorem 3.24. Let S be a rule system that admits definable filtration. For any rule p, there exist
stable canonical rules p(A1, D1), ..., p(&An, Dy) where each 2; is a finite S-algebra and D; C A;, such
that for any S-algebra B,

B = p iff B p(A1,D1),...,p(An, Dy),

Proof. Let p = I'/A be a rule. If p € Sz, then we take n = 0. Assume that p ¢ Sp and let
© = Sub(I"U A). By the assumption that S admits definable filtration, there is a finite subformula-
closed set ©' containing © such that, for any S-algebra B and any valuation V on B, there is a
definable filtration (B, V') of (B, V) for © through ©’ such that B’ = S. Let m = |©’|. Since Boolean
algebras are locally finite, up to isomorphism, there are finitely many tuples (2, V, D) satisfying the

following conditions:
1. 2 is a finite S-algebra based on an at most m-generated Boolean algebra and 2 }~ p,
2. V is a valuation on 2 such that 2,V (£~ p and V(p) =0 for p ¢ O/,

3. D={V(¥): ov e 0.
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Let (A1,V1,D1),..., (A, Vi, Dy) be an enumaration of such tuples. We show that for any S-algebra
B, B = piff B p(Ay,Dr),...,p2n, Dy).

Suppose that B F~ p(2;, D;) for some 1 < i < n. Then there is a stable embedding h : A; —p, B.
Define a valuation V' on 8 by V(p) = ho V;(p). Since h satisfies CDC for D;, we have V(¢) = ho V;(y)
for all ¢ € ©. Therefore, since Vj(y) = 1 for all v € I and V;(d) # 1 for all § € A, it follows that
V(y)=1forall vy € ' and V(§) # 1 for all § € A, namely, B,V |~ p.

Conversely, suppose that 8 = p. Let V be a valuation on B such that 8,V F p and V(p) = 0 for
p ¢ ©'. Then, there is a definable filtration (B, V") of (B,V) for © through © such that B’ = S. By
the definition of definable filtrations, B’ is a Boolean subalgebra of B generated by V[©'], so B’ as a
Boolean algebra is at most m-generated. By Lemma 3.13, since 'UA C © and B,V [~ p, we obtain
B' V' |~ p. Let D = {V(¢) : &p € ©}. Then, the tuple (B’,V’, D) is identical to (2;,V;, D;) for
some 1 < i <n. Since B’ < p B by the definition of definable filtration, we have 2; < p, B, namely,
B = p(A;, D;). Therefore, we conclude that B = p iff B = p(A4, D1), ..., p(~An, Dy). O

It follows directly from Theorem 3.24 that any formula ¢ is also semantically equivalent to finitely
many stable canonical rules over any rule system that admits definable filtration, by identifying ¢ with
the rule /. Thus, we obtain the following axiomatization result. Recall that for a logic L, Sy, is the

rule system X(L).
Corollary 3.25.

1. Let S be a rule system that admits definable filtration. Any rule system S’ O S is axiomatizable
over 8 by stable canonical Tules. Moreover, if 8’ is finitely axiomatizable over S, then S’ is

axiomatizable over § by finitely many stable canonical rules.

2. Let L be a logic that admits definable filtration. Any logic L' O L is axiomatizable over Sy, by
stable canonical rules. Moreover, if L' is finitely axiomatizable over L, then L' is axiomatizable

over Sy, by finitely many stable canonical rules.
Proof.

1. Let S be a rule system that admits definable filtration. For any rule system &’ 2 S, &' =
S+ {pi:i €I} foraset {p;:i € I} of rules. By Theorem 3.24, each rule p; is semantically
equivalent to a finite set of stable canonical rules {p(2;, D;j) : 1 < j < n;} for S-algebras.
So, for any S-algebra B, B = S ift B = p(A;;, D;j) for all i € I and 1 < j < n;. Thus,
S =S+ {p(Aij, Dij) :i € I,1 < j < n;}. Moreover, if S’ is finitely axiomatizable over S, then
we can choose I to be finite, hence the set {p(;;, D;;) :i € I,1 < j < n;} is also finite.

2. Let L be a logic that admits definable filtration. For any logic L' O L, S;y =Sp + {/p; 11 € I}
for a set {¢; : i € I} of formulas. By (1), there is a set {p(2;, D;) : j € J} of stable canonical
rules such that Spy = S +{p(2;,D;) : j € J}. Thus, L' = A(Sp) = A(SL+{p(;,D;) : j € J}).
Moreover, if L' is finitely axiomatizable over L, then we can choose I to be finite, so that J is
also finite by (1).

O]

As we mentioned, many logics such as K, T, D, K4, and S4 admit definable filtration; we also
showed that pre-transitive logics K47 (m > 1) admit definable filtration (Theorem 3.18). Thus, their
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corresponding rule systems admit definable filtration, and Corollary 3.25 applies to Sk, St, Sp, Ska,
Ssq, and Z(K4r1"+1) for m > 1.

Remark 3.26. If the base rule system S is decidable, then the result of Corollary 3.25 is computable;
that is, given a finite axiomatization of &’ over S, a finite set of stable canonical rules that axiomatize S’
over S can be computed. This can be shown by observing that if S is decidable, then in the proof of The-
orem 3.24, the enumeration of tuples (2, V, D) is computable, so the finite set p(1, D1), ..., p(An, Dy)
of stable canonical rules that is equivalent to the given rule p is also computable. Since a finitely
axiomatizable rule system with the fmp is decidable, this is the case for all the rule systems mentioned

above.

Finally, we briefly discuss two extreme types of stable canonical rules, namely stable canonical rules
p(A, D) with D = ) and those with D = A. We refer to [BBI16, Section 7] for details.

Definition 3.27. A stable canonical rule p(2, () is called a stable rule. A stable canonical rule p(2, A)

is called a Jankov rule.

The name Jankov rules comes from the analogy to Jankov formulas (see Definition 3.41 and the

discussion after). It follows immediately from Theorem 3.22 that for any modal algebra 9B,
B~ p(A,0) iff Ay B, ie., there is a satble embedding from A to B

and
B p(A, A) iff A4 B, ie., Ais (isomorphic to) a subalgera of B.

It turns out that stable rules and Jankov rules respectively axiomatize certain classes of rule systems

with special features.

Definition 3.28. A rule system S is stable if the universal class U(S) is closed under stable subalgebras;
that is, for any modal algebras 2 and B, if A <y B and B € U(S), then A € U(S).

It follows directly from the definition that stable rule systems admit definable filtration.
Proposition 3.29. Any stable rule system admits definable filtration.

Proof. Let S be a stable rule system. For any finite subformula-closed set © of formulas, S-algebra 2,
and valuation V on 2, let (A, V') be the least filtration (Example 3.12) of (2, V') through ©. Then
(A, V') is a definable filtration of (2, V) for © through ©. Thus, 2’ is a stable subalgebra of 2, so
A" = S since S is stable and 2’ = S. Therefore, S admits definable filtration. O]

Theorem 3.30 ([BBI16]). A rule system S is stable iff it is axiomatizable over Sk by stable rules.
We can also define stability for logics in a similar manner.
Definition 3.31. Let M be a logic.

1. A class K of M-agebras is M-stable if for any M-algebra 2 and any B € K, if A < ‘B, then
20 € K. The class K is finitely M-stable if for any finite M-algebra 2l and any B € I, if 2 — ‘B,
then 2 € K.
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2. A logic L O M is M-stable if V(L) is generated by an M-stable class. A K-stable logic is simply

called a stable logic.
The notion of M-stable logics is studied in [BBI18] (see also [Ili18] for a comprehensive account).
Theorem 3.32 ([Jef09]). Let S be a rule system.
1. S is splitting in NExtSk iff S is aziomatizable by a Jankov rule.
2. § is a unton-splitting in NExtSk iff S is axiomatizable by Jankov rules.

An algebraic proof of this result can be found in [BBI16, Theorem 7.10].

3.4 Stable canonical formulas for pre-transitive logics

One of the main reasons that we had to move to rules when defining stable canonical rules is that there
is a hidden universal quantifier in the frame-theoretic definition of the validity of rules. This allows
stable canonical rules to have better control over the structure of modal algebras and enables us to
prove the semantic characterization Theorem 3.22. However, if the master modality (see, e.g., [BAVO01,
Section 6.5]) is “definable” in the base logic, then we can turn stable canonical rules into formulas. This
idea is realized in [BBI16, Section 6] for K4, which developed the theory of stable canonical formula for
K4 as an alternative to Zakharyaschev’s canonical formulas.

In this section, we develop the theory of stable canonical formulas for pre-transitive logics K4'1“+1,
generalizing the stable canonical formulas for K4. We already showed that these logics admit definable
filtration (Theorem 3.18). As we can observe in Definition 3.35, the master modality is also definable
in K4'1nJrl in a similar manner as in K4.

As we are dealing with logics in this section, it is useful to work with s.i. modal algebras. We
recall the following lemma from [BB11, Lemma 6.4], which is proved as a corollary of Venema’s
characterization [Ven04] of s.i. modal algebras. Recall that 0™¢ is an abbreviation of O - - - Oy with m

many O and O™ is an abbreviation of ¢ A --- A O™ ; similarly for elements of modal algebras.

Lemma 3.33. Let 2 be a finite modal algebra and B be a s.i. modal algebra. If A is a stable subalgebra
of B, i.e., A —p ‘B, then A is also s.i.

We first show how to construct finite refutation patterns for modal formulas. The proof is similar
to Theorem 3.24.

Theorem 3.34. For any formula ¢, there exist pairs (A1, D1), ..., (Un, Dy) such that each A; = (A;, i)
is a finite s.1i. K4r1"+1—algebm, D; C A;, and for any s.i. modal algebra B = (B, <), the following

conditions are equivalent:
(1) B |~ ¢
(2) There is 1 < i <mn and a stable embedding h : 2; —p, B.

(8) There is a s.i. homomorphic image C = (C, <) of B, 1 < i < n, and a stable embedding
h: Q[i —D; C.
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Proof. If ¢ € K4TT! then let n = 0. Assume that ¢ ¢ K4T and let © = Sub(y). Since K4
admits definable filtration by Theorem 3.18, there is a finite subformula-closed set ©" containing ©
such that, for any K4" 1 algebra B and any valuation V on 9B, there is a definable filtration (%', V")
of (B, V) for © through © such that B’ = K471, Let m = |©’|. Since Boolean algebras are locally
finite, up to isomorphism, there are finitely many tuples (2, V, D) satisfying the following conditions:

1. 2 is a finite s.i. K4r1“+1—algebra based on an at most m-generated Boolean algebra and 2 - ¢,
2. V is a valuation on 2 such that A,V [~ ¢ and V(p) =0 for p ¢ ©/,
3. D={V(¢): oy € O}.

Let (2y,V1, D1), ..., (2, Vy, Dy) be an enumaration of such tuples. We show that (21, Dy), ..., (2, Dy)
is the desired pairs. Let B be a s.i. K4'1“+1—algebra.

(1) = (2). Suppose that B = ¢. Let V be a valuation on B such that B,V = . Then there is a
definable filtration (B’, V') of (B, V) for © through ©’ such that B’ = K47'""1. By the definition of
definable filtration, 9B’ is a stable subalgebra of B, so B’ is also s.i. by Lemma 3.33. Then the same
argument as in the proof of Theorem 3.24 shows that the tuple (B’,V’, D) is identical to (2, V;, D;)
for some 1 < i < n. Since B’ < p B by the definition of definable filtration, we conclude ; < p, B.

(2) = (3). This is obvious by taking C = 8.

(3) = (1). Suppose that there is a s.i. homomorphic image C of B, 1 < i < n, and a stable
embedding h : 2; —p, C. Let V; be valuation on 2(; such that 2;, V; = ¢. Define a valuation V on C
by V(p) = h(Vi(p)). The same argument as in the proof of Theorem 3.24 shows that C [~ ¢. Thus,
B [~ ¢ since C is a homomorphic image of B.

O

Now we define stable canonical formulas for pre-transitive logics K4'1"+1, which capture the semantic

condition (3) in the theorem above.

Definition 3.35. Let 2 be a finite s.i. KAT"-algebra and D C A. Let p(2, D) = I'/A be the stable

canonical rule defined in Definition 3.20. We define the stable canonical formula v™(2(, D) as

™A, D) = N{o="y:y €T} - \/{O""5: 6 € A}
=0 \T = \/{o="5:6 € A}

We will write (2, D) for v*(2(, D); this notation is consistent with [BBI16]. The following lemma

is a straightforward generalization of [BB11, Lemma 4.1] to pre-transitive logics K4r1"+1.

Lemma 3.36. Let A be a K4r1"+1—algebm and a,b € A such that OS™a £ b. Then there exists a
s.i. K& algebra B and a surjective homomorphism f : 4 — B such that f(O=™a) =1 and f(b) # 1.

Proof. Let 2 be a K4r1"+1—algebra and a,b € A such that 05™a £ b. Let ' = t05™a. Then F is a
filter on A. If c € F, i.e., ¢ > O<™a for some c € 2, then since Oa < O™ la by A |= K4r1“+17 we have

DCZD(nga):Da/\'--/\DmHaZEla/\---/\l]maZDSma,

thus Oc € F. So, F is a O-filter. By Zorn’s Lemma, there is a O-filter M such that O05a € M and

b ¢ M, and M is maximal in this sense.
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Let B = A/ ~, where a ~ b iff a <> b € M for a,b € A. Since M is a O-filter, operations on 2
induce operations on B and turn it into a modal algebra B. Let f : A — B be the projection map. It is
straightforward to verify that f is a surjective modal algebra homomorphism. Moreover, f(O5™a) = 1
and f(b) # 1 since 0="a € M and b ¢ M.

By the correspondence between O-filters of B and O-filters of A containing M, if F” is a O-filter
on B such that {1} C F’, then its corresponding O-filter on 2 contains b by the maximality of M,
so f(b) € F'. Tt follows that O<"f(b) € F’'. So, T O="f(b) is the smallest O-filter of B properly
containing {1}. Therefore, B is s.i. O

Theorem 3.37. Let 2 be a finite s.i. K4T+1-algebm and D C A. Then, for any K4T+1—algebm B,
B 4" (A, D) iff there is a s.i. homomorphic image C of B such that A —p C.

Proof. Suppose that there is a s.i. homomorphic image C of B and a stable embedding h : A —p C.
Define a valuation V4 on 2 by V4(p,) = a. It follows from the definition of I' and A (Definition 3.20)
that Va(y) = 1 for all ¥ € T and Va(8) # 1 for all § € A. Thus, V4(OS™ AT) =1 and V4(OS™6) =
OS"V4(8) # 1 for all § € A. Since 2 is s.i., 2 has an opremum ¢ by Proposition 2.40. So, for each § € A,
there is n € w such that O™(O="V4(8)) < c. Since A = KT for any a € A and k € w, 0¥ a < OF
for some 0 < k' < m. Thus, we have OS™V4 () < 0™*(OS™V4(d)) < c. Hence, \/ O="V4(8) < ¢, which
implies 2 = y™ (A, D). Next, define a valuation Vo on C by Vo (pa) = h(Va(pa)). The same argument
as in the proof of Theorem 3.24 shows that Vi (y) = 1 for all v € T and Viz(6) # 1 for all § € A.
Thus, Vo(OS™ AT) = 1 and Vo (OS™6) = O0S™Ve(6) # 1 for all § € A. Since C is a homomorphic
image of B and B |= K4'1"+1, CE K4’1"‘*'1 as well. Since C is also s.i., applying the same argument as
for 2, we obtain that Vo(OS™ AT) = 1 and \/ OV () is below or equal to the opremum of C, so
C £ ~y™(U, D). It follows that B p~= ™ (2, D) since C is a homomorphic image of B.

Conversely, suppose that B = v™(2A, D). Then there is a valuation Vz on 9B such that ="V (AT) £
Vp(V O="§). By Lemma 3.36, there is a s.i. homomorphic image C of B and a valuation V¢ on C such
that Vo(oS™ AT) = 1 and V(\/ OS™6) # 1. Define a map h : % — C by h(a) = Vo (pa). Unfolding
the definition of T" and A (Definition 3.20), it is straightforward to verify that h is a stable embedding
satisfying CDC for D. O

Combining Theorem 3.34 and Theorem 3.37, we obtain the following corollary, which is a version

of Theorem 3.24 for stable canonical formulas for pre-transitive logics.

Corollary 3.38. For any formula ¢, there exist stable canonical formulas v™ (A1, D1), ..., 7™ (2, Dy)
where each 2; is a finite s.i. K4T+1-algebm and D; C A;, such that for any s.i. modal algebra B,

BEeiff BE /\{Vm(mi,Di) 11 <i<n}.
Proof. This follows directly from Theorem 3.34 and Theorem 3.37. ]

Now we arrive at the axiomatization result for logics above K4T+1, generalizing the result for logics
above K4 ([BBI16, Theorem 6.10]).

Theorem 3.39. Let m > 1. Any logic L O K4r1"+1 1 axiomatizable over K4r1"+1 by stable canonical
formulas. Moreover, if L is finitely ariomatizable over K4’1"+1, then L is axiomatizable over K4r1"+:l by

finitely many stable canonical formulas.
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Proof. Let L be a logic containing KAT™. Then L = K4T*! 4 {; 15 € I} for a set {g; : i € I} of
formulas. By Corollary 3.38, for each formula ¢;, there exists a finite set of stable canonical formulas
{y™(Aij, Dij) : 1 < j < n;} such that for any s.i. K& -algebras B, B |= ¢ iff B = {y™(Ay;, Dij) :
1 <j <mn;}. So, for any s.i. K4r1“+1—algebra B, B = Liff B =~ (A5, D;j) foralli e T and 1 < j < ;.
Since, by Theorem 2.19, every logic is determined by the class of its s.i. modal algebras, it follows that
L= K4'1"+1 + {¥" (5, D;j) i € 1,1 < j <n;}. Moreover, if L is finitely axiomatizable over K4r1“+1,
then we can choose I to be finite, hence the set {7 (2;;, D;;) :i € 1,1 < j < n;} is also finite. O

Remark 3.40. We have a computability result similar to Remark 3.26. Since the logic K42qul is
finitely axiomatizable and has the fmp (Corollary 3.19), it is decidable. Thus, the enumeration in the
proof of Theorem 3.34 is computable. Therefore, the result of Theorem 3.39 is computable; that is,
given a finite axiomatization of L over K4'1“+1, a finite set of stable canonical formulas that axiomatize

L over K4?1+1 can be computed.
As in Definition 3.27, stable canonical formulas also induce two extreme types of formulas.

Definition 3.41. A stable canonical formula v™ (21, () is called a stable formula. A stable canonical

formula 7™ (2(, A) is called a Jankov formula.

It follows immediately from Theorem 3.37 that for any K4T+1—algebra B,

B 4™ (A, 0) iff A is a stable subalgebra of a s.i. homomorphic image of B

and
B = 4™ (A, D) iff A is a subalgebra of a s.i. homomorphic image of 8.

The relation of stable formulas for K4 (S4) and K4(S4)-stable logics is studied in [BBI18] (see also
[11i18] for a comprehensive account).

The terminology Jankov formulas is motivated by the fact that, by Theorem 3.37, a stable canonical
formula v (2, A) has the same semantic characterization as the original Jankov formula [Jan63] for
Heyting algebras. Finally, we describe a characterization of splitting logics and union-splitting logics in

NExtK4r1nJrl via Jankov formulas.
Theorem 3.42. Let m > 1.

1. A logic L € NExtK4r1n+1 15 a splitting logic in NExtK4’1“Jrl iff L = K4r1n+1 + ™A, A) for some
finite s.i. K& _algebra 2.

2. A logic L € NExtK4™ ! is a union-splitting logic in NExtK4T ™! iff L = KATTL + {4 (2, 4;)
i€ I} for a set {A; i €I} finite s.i. K& _algebras.

Proof. (2) is an immediate consequence of (1). To show (1), first suppose that L = K47 4 4™ (21, A)
for some finite s.i. K47 -algebra 21. We show that (L,Log(2)) is a splitting pair in NExtK4T*!.
For any logic L' € NExtK4T*! such that L ¢ L/, there is a modal algebra B such that B = L'
and B = L. Thus, B £ y™(2A, A), namely, 2 is a subalgebra of a homomorphic image of B. So,
L' C Log(B) C Log(A). Hence, (L,Log(RA)) is a splitting pair in NExtK4" L,

Conversely, suppose that L is a splitting logic in NExtK4T+1. Then by Theorem 3.43 below,
since NExtK4T™! has the fmp (Corollary 3.19), (L, Log(2)) is a splitting pair in NExtK4T" for some
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finite s.i. K4T+1—algebra 2. By the argument above,(K4r1n+1 + 4™ (A, A), Log(2)) is a splitting pair in
NExtK4T+1. Tt follows that L = K47 4 4™(2A, A). O

A similar characterization of (union-)splitting logics in NExtwK4 can be found in [BB12]. Note that
both of these characterizations follow from the combination of the following two general results by
McKenzie [McK72] and by Rautenberg [Rau80]; the proof of the latter uses a version of characteristic

formulas.

Theorem 3.43 ([McK72]). Let L be a logic with the fmp. If a logic L' splits NExtL, then L' = Log(2l)
for some finite s.i. L-algebra 2.

Theorem 3.44 ([Raus0]). Let L be a logic containing the logic K+pA---AO"p — O™ p. Then for
any finite s.i. L-algebra A, the logic Log(2A) splits NExtL.

3.5 The m-closed domain condition and m-stable canonical formulas

In this section, we consider a variation of the closed domain condition and stable canonical formulas for
pre-transitive logics. The intuitive idea is to preserve the modality not only one step but also up to m
steps. This leads to an alternative axiomatization result as Theorem 3.39 for logics above pre-transitive
logics K4'1“+1. However, note that the notions and results in this section will not be used in other parts
of the thesis.

Definition 3.45. Let 21 and B be modal algebras and h : A — B be a stable homomorphism. For
a € A, we say that h satisfies the m-closed domain condition (m-CDC) for a if h(SGFa) = OFh(a) for
all 1 <k <m. For D C A, we say that h satisfies the m-closed domain condition (m-CDC) for D if h
satisfies m-CDC for all a € D.

Similar to the case of CDC, for stable homomorphisms, 2(&*a) = ¢*h(a) holds iff h(oFa) < OFh(a)
holds. We also provide the frame-theoretic version of the definition and show that the two definitions

are dual to each other.

Definition 3.46. Let X = (X, R) and 9 = (Y, Q) be modal spaces and f : X — Y be a stable map.
For a clopen subset D C Y, we say that f satisfies the m-closed domain condition (m-CDC) for D if
forall 1 < k <m,

Q*[f(x)]ND #0= f(R"[z])N D # 0.

For a set D of clopen subsets of Y, we say that f: X — Y satisfies the m-closed domain condition
(m-CDC) for D if f satisfies m-CDC for all D € D.

Proposition 3.47. Let A and B be modal algebras and h: A — B be a stable homomorphism. For
any a € A,
h satisfies m-CDC for a iff hy satisfies m-CDC for (a).

For any D C A,
h satisfies m-CDC' for D iff hy satisfies m-CDC for [D].
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Proof. Let 2 and B be modal algebras with dual spaces X = (X, R) and 9 = (Y,Q) and h: A — B
be a stable homomorphism. Let a € A. Tt follows from the duality that

h satisfies m-CDC for a iff h(SFa) < OFh(a) for all 1 <k <m
iff h71oFB(a) € OFhI B(a) forall 1 < k < m
iff Q¥ [h(x)] N B(a) # 0 = ho(R*z]) N B(a) # D forall 1 <k <m
iff h, satisfies m-CDC for 3(a).

The second statement follows directly from the first. O

Notation 3.48. We write h : 2l <7 B if h is a stable embedding satisfying m-CDC for D and
A —'0 B if there is such an h. We write f : X -5 2 if f is a surjective stable map satisfying m-CDC
for D and X —5 Q) if there is such an f.

Now we define m-stable canonical formulas for pre-transitive logics K4'1“Jrl (m > 1). The only
difference with standard stable canonical formulas is that in ', the part using the closed domain D is

generalized so that it captures m-CDC.

Definition 3.49. Let 2 be a finite s.i. K4T+1—algebra and D C A. We define the m-stable canonical
formula ~7' (U, D) as

VP(A, D)= N\{O%"y:veT} = \/{o="6: 0 € A}
=0 AT = \/{o="5: 6 € A},

where
I' ={pavb <> Pa V0 : a,b € A}U
{—pa > “pg 1 a € AU
{OPa = Poa:ac AU
{poka—><>kpa:a6D,1 < k <m},
and

A={p,:aeAa#l}.

Remark 3.50. As stable canonical rules, m-stable canonical formulas can also be defined directly
from finite modal spaces (i.e., finite Kripke frames). The basic idea is the same as Definition 3.49, but

we use I' and A in Definition 3.21 instead and change the last clause in I' to
{pz — \/{Okpy cyeDY:zeX,DeD,ze (RYD,1<k<m,}

in light of Definition 3.46.

Remark 3.51. In general, m-CDC is stronger than the standard CDC. For m = 1, where the base
logic is K4, the m-CDC and m-stable canonical formulas reduce to the standard CDC and stable
canonical formulas. It is clear that m-stable canonical formulas induce the same stable formulas (up to
equivalence) as stable canonical formulas. Moreover, since a modal homomorphism always satisfies

m-CDC for any D, they also induce the same Jankov formulas (up to equivalence).
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Following the proof of Theorem 3.37, it is straightforward to verify the semantic condition of the

validity of m-stable canonical formulas.

Theorem 3.52. Let 2 be a finite s.i. K4T+1-algebm and D C A. Then, for any K4T+1—algebm B,

B = AT (A, D) iff there is a s.i. homomorphic image C of B such that A <7 C.

Now we show that any logic above K4?1Jr1

can be axiomatized by m-stable canonical formulas, thus
providing an alternative to Theorem 3.39. Recall that in the case of stable canonical formulas, the
essential idea was to construct finite refutation patterns as done in Theorem 3.34. The construction
in turn essentially depends on the definable filtration developed in Lemma 3.17. Thus, to adapt the
whole proof for stable canonical formulas to m-stable canonical formulas, it suffices to observe that the

definable filtration in Lemma 3.17 in fact induces a stable homomorphism satisfying m-CDC.

Lemma 3.53. Let A = (A, ) be a K4r1“+1-algebm, V' be a valuation on A, © be a finite subformula-
closed set of formulas, and ©" = Sub(© U {O™¢p : ¢ € O}). Let ¢ and <1 be the modal operators on
A’ defined in Lemma 3.17. Then, the inclusion i’ : A" = (A, 1) —p A satisfies m-CDC for D, where
D ={V(p): op € O}.

Proof. Let D' = {V(p) : Op € ©'}. Let d € D. Then, as we saw in the proof of Lemma 3.17,
OMd = ofd,...,0d = Ood,d € D'. Since the inclusion i : (A', &g) <, A is the same map as
i', we have i'(Ohd) < ©l'(d) for all 1 < I < m. Also, recall from the proof of Lemma 3.17 that
ola = \{okmHg .k < K} for 1 > 1 and a € A’ and oF™™d < ¢d for all k > 1. Thus, for any

1 <1 < m we have
i'(ohd) =i/ (\/{otmTd  k < K}) < i'({ohd) < o'(d).

Hence, we conclude that 7’ satisfies m-CDC for D. O

Theorem 3.54. For any formula @, there exist stable canonical formulas (21, D1),. .., vV (U, Dy)
where each 2A; is a finite s.i. K4r1“+1—algebm and D; C A;, such that for any s.i. modal algebra B,

B iff BE AT D):1<i<n}.

Proof. Lemma 3.53 shows that the condition (3) in Theorem 3.34 can be strengthened such that the
stable embedding h : 2(; —p, C satisfies m-CDC for D;. Thus, combined with Theorem 3.52, the

statement follows. O

Corollary 3.55. Let m > 1. Any logic L D K4'1T1Jr1 is axiomatizable over K4?1Jr1 by m-stable canonical
formulas. Moreover, if L is finitely aziomatizable over K45"+1, then L is axiomatizable over K4’1n+1 by

finitely many m-stable canonical formulas.
Proof. This follows from Theorem 3.54 by a similar argument as in the proof of Theorem 3.39. 0

Remark 3.56. The above results can be seen as an improvement of Corollary 3.38 in the sense that
every m-stable canonical formula is equivalent over K4'1"Jrl to a stable canonical formula, but not

vice versa. It is easy to see from the semantic characterizations Theorems 3.37 and 3.52 that, any
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m-stable canonical formula v7*(2, D) is equivalent to the stable canonical formula ™ (2, D), where
D' ={ok"1d:d e D,1 <k <m}. The following example shows that the converse does not hold.

We construct a counterexample using finite modal spaces. Let X be the finite rooted K43-space
depicted as below and D = {d}.

od

[ ] [ [ ]
s S e}

Assume for a contradiction that the stable canonical formula v (X, {D}) is equivalent to some
m-stable canonical formula 47 (%, D). Then X & ~+7(X',D’) and X' = 4™ (X, {D}). By the dual of
Theorem 3.37 and Theorem 3.52, one can verify that X’ = X. Let ) and 2)’ be rooted K4}-spaces
depicted as below.

e — 00— 0 — 0

/.
)

Note that there is only one stable map from ) or )’ to X. It is easy to see that 9 —p X and
' Ap X, thus Y = +™(X,{D}) and Q' =" (X,{D}). If d € D’ for some D’ € D', then Q) A% X,
s0 Q) = (X', D). If there is no D’ € D’ such that d € D', then ' -7, X, s0 Y’ = ~7(X,D’). This
contradicts that v (X, {D}) and (X', D’) are equivalent.

3.6 Splitting formulas

Although the master modality is not fully definable in K, if a stable canonical rule is defined from a
finite s.i. modal algebra (or dually, a finite rooted cycle-free modal space), then we can mimic the
master modality and turn the rule into a formula. We call the formulas obtained in this way splitting
formulas because they axiomatize union-splitting logics in NExtK. This type of characteristic formulas
is studied in [BBI16, Section 7] under the name stable canonical formulas. We summarize the results

while leaving out the proofs.

Definition 3.57. Let A be a finite s.i. modal algebra of height <n and D C A. Let p(2(,D) =T/A
be the stable canonical rule defined in Definition 3.20. We define the splitting formula e(2, D) as

e, D) = (@M LA N{o="y:yeT}) = \/{o="5:6 € A}
=@ LA AT) = \/{o="6: 6 € A}

40



Splitting formulas have exactly the same validity characterization as stable canonical formulas,
except that here we consider all modal algebras. Thus, they are semantically equivalent and axiomatize

the same logics over pre-transitive logics.

Theorem 3.58 ([BBI16]). Let A be a finite s.i. modal algebra of finite height and D C A. Then, for
any modal algebra ‘B,

B [~ e(A, D) iff there is a s.i. homomorphic image C of B such that A —p C.

Corollary 3.59. Let m > 1 and L be a logic containing K4T+1. Then, for any finite s.i. K41m+1—algebm
A of finite height and D C A, we have

L+e®,D)=L+~"(A,D)

Proof. By Theorem 3.37 and Theorem 3.58, for any K4l algebra B, we have B = (A, D) iff
9B = 4™ (A, D). This holds for all L-modal algebras because L D K4™ 1. Thus, the logics L + ¢(2, D)
and L +~y™(2(, D) correspond to the same variety, and hence they are the same logic. O

Similar to stable canonical rules and formulas, we can consider special splitting formulas of the
form €(2A, A). We also call them Jankov formula in light of Corollary 3.59. In fact, this form of Jankov
formulas appeared early in the study of union-splitting in NExtK (see, e.g., [CZ97, Section 10.5]).

Contrary to pre-transitive logics, where every finite s.i. modal algebra splits the lattice NExtK41m+1,
only finite s.i. modal algebras of finite height split the lattice NExtK. Moreover, we will see in
Theorem 4.27 that in fact any splitting formula is equivalent to a set of Jankov formulas, thus all
splitting formulas axiomatize union-splittings. The following theorem is proved by Blok [Blo78], and

an alternative proof can be found in [BBI16].
Theorem 3.60 ([Blo78]). Let L be a logic.

1. L is a splitting in NExtK iff L is axiomatizable by a Jankov formula of finite s.i. modal algebras
of finite height.

2. L is a union-splitting in NExtK iff L is axiomatizable by Jankov formulas of finite s.i. modal

algebras of finite height.

3.7 Summary

We reviewed and generalized the theory of stable canonical rules and stable canonical formulas. We
identified definable filtration, a generalization of filtration, as the key property for the axiomatization
results. If S is a rule system that admits definable filtration, then any rule system in NExtS is
axiomatizable by stable canonical rules over S. Another factor that the master modality is definable is
needed to define stable canonical formulas. We provided a dual presentation of Gabbay’s filtration
for pre-transitive logics K45“Jrl =K+ o™Flp — op (m > 1) and defined stable canonical formulas
for them. Similar to the case of stable canonical rules, we showed that any extension of K4r1nJrl is
axiomatizable by stable canonical formulas over K4T+1. Moreover, we defined the m-closed domain
condition and m-stable canonical formulas, strengthening the closed domain condition and stable

canonical formulas for K4T+1. Up to logical equivalence, m-stable canonical formulas form a proper
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subset of stable canonical formulas. We showed that any extension of K4TJr1 is axiomatizable by
m-stable canonical formulas over K4’1“+1.

The aforementioned two points, i.e., admitting definable filtration and being able to define the
master modality, are also the obstacles when trying to further generalize the theory of stable canonical
formulas. Given the success with the logics K4’1“+1, one might expect a similar result for weakly
transitive logics and other pre-transitive logics. However, even though wK4 has the fmp [BEG11], it is
unknown whether it admits definable filtration (see, e.g., [KS25, Section 5]). The fmp of pre-transitive
logics in general, such as K43, is a long-standing open problem (e.g., [CZ97, Problem 11.2]), let alone
definable filtration. Stable canonical rules work well for Sk because rules have the master modality
built into their semantics. Since the master modality is not definable in K, it seems quite challenging
to define stable canonical formulas for K in a meaningful way. We leave it open to generalize stable

canonical formulas to non-transitive logics other than K41m+1.
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Chapter 4

The Finite Model Property via the

Refinement Construction

The finite model property (fmp for short) is one of the most important and thus well-studied properties
of modal logics. It implies Kripke completeness; a finitely axiomatizable logic with the fmp is decidable.
Filtration, as we saw in the last chapter, has been used to show the fmp for individual logics. Earlier
fmp results for classes of logics include the following. Bull [Bul66] and Fine [Fin71] showed that every
extension of S4.3 has the fmp. Segerberg [Seg71] showed that every extension of K4 of finite depth has
the fmp. Later, the interests shifted to the fmp for classes of logics with certain semantic properties.
Subframe logics in NExtK4 have been defined and studied by Fine [Fin74b; Fin85|, and Zakharyaschev
[Zak92; Zak96] generalized them to cofinal subframe logics; all transitive subframe logics and cofinal
subframe logics have the fmp. Moreover, Zakharyaschev [Zak97] showed the fmp for a large class of
extensions of cofinal subframe logics, which implies the fmp of extensions of K4 with modal reduction
principle and the fmp of extensions of S4 with a formula of one variable (see [CZ97, Chapter 11] for an
overview). Blok [Blo78] showed that all union-splittings in NExtK have the fmp. Recently, Bezhanishvili
et al. [BBI18] introduced stable logics and stable rule systems and showed that they have the fmp.
In this chapter, we introduce a novel combinatorial method, which we call the Refinement Con-
struction, to establish the fmp for a broad class of logics and rule systems. This method relies on the
theory of stable canonical formulas and stable canonical rules we discussed in the last chapter. It turns
out that the construction works well with stable formulas/rules and stable canonical formulas/rules
defined from finite modal algebras of finite height and splitting formulas. Thus, our fmp results at the

same time generalize the fmp of union-splittings in NExtK and the fmp of stable logics/rule systems.

4.1 Refinement construction

In this section, we focus on the combinatorics of modal spaces. We will prove the main lemma
(Lemma 4.6) by introducing a new construction, Refinement Construction, for modal spaces. The
usefulness and applications of the main lemma will become clear in the subsequent sections.

We begin by introducing a measure that will be used in our inductive construction. For a modal
space X and = € X, we define rank(z), the rank of x (in X), to be the length of the longest path
starting at x: formally, rank(z) = sup{n € w: X,z = 0" ! L}. For example, rank(z) = 1 iff x is a

dead end, and rank(z) = w iff there is an arbitrarily long path starting at x. It is easy to see that the
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rank < k (k < w) part of a modal space is an upset, and the rank is non-decreasing under stable maps.

Lemma 4.1. Let X = (X, R) be a modal space and k < w. Then the rank < k part of X is an upset of
X.

Proof. Let x,y € X such that xRy and rank(z) < k. For any finite path starting at y, adding = at the
beginning results in a longer path starting at x, so rank(y) < rank(xz) < . Thus, the rank < k part of
X is an upset of X. O

Lemma 4.2. Let X = (X, R) and ) = (Y, Q) be modal spaces and f : X — ) be a stable map. Then,
for any x € X, rank(x) < rank(f(x)).

Proof. Let x € X and n = rank(z). Then there is a path © = 1R - -+ Rz, of length n in X. Since f is
stable, f(z) = f(z1)Q--- Qf(zy) is a path of length n in ), so rank(f(x)) > n. O

A related notion, cycle-free, has been widely used in the literature. A cycle in a modal space
is a finite path of length > 2 with the same initial point and the terminal point. A modal space
X is cycle-free if there is no cycle in X. For finite modal spaces, being cycle-free admits a useful

characterization via the rank function.

Proposition 4.3. Let X = (X, R) be a finite modal space. The following are equivalent.
1. X s cycle-free,
2. rank(z) < w for all z € X,
3. there is some n < w such that rank(z) < n for all x € X.

Proof. If X has a cycle, then any point in the cycle has rank w, so (2) = (1) follows. If rank(x) = w for
some x € X, then there is no n < w such that rank(x) < n, so (3) = (2) follows. Finally, suppose that
there is no n < w such that rank(z) < n for all z € X. So, there is some = € X such that rank(z) > | X]|.
Then there is a path of length > |X]| (starting at =) in X. Such a path must contain two identical
points, which implies that X has a cycle. This shows (1) = (3). O

Before diving into the proof of the main lemma, we present a simple example of the Refinement

Construction. This example illustrates how the construction works and the motivation behind it.

Example 4.4. Let F; be the following modal space.

®C

1

obh

f

®q

Let X = (X, R) be a modal space and f; : X —( F1 be a stable map. All points in ffl(c) are dead
ends. A point in f; L(b) can either see some point in fi L(¢) or be a dead end. However, this distinction
is lost when moving to F; by fi. We can rescue this information by letting f; factor through the

following modal space F».
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Let fo : X —p F2 be a map behaving the same way as f; except for that f, sends points in fl_l(b)
that see some point in f; 1(6) to b1 and that are dead ends to by. One can verify that fs is continuous,
surjective (assuming that in f; () there are points that see some point in f; '(c) and that are dead
ends), and stable. Also, there is a canonical stable map g2 : Fo —y F; identifying b; and by as b.
Indeed, we have f; = g2 o fo. Moreover, all points in f5 (b)) see some points in Iy L(¢) and all points
in fy 1(b2) are dead ends. In this sense, we recover the information that was lost when applying fi
directly.

Next, we proceed with f; 1(a) in a similar manner. In principal, there are eight possibilities for
points in f{l(a), depending on whether they see some point in f{l(c), f{l(bl), and f{l(bg). But
since fy is stable, a point in fy () cannot see any point in fa (¢). So, we may consider the following

modal space F3 and construct a similar factorization of fs as g3 o f3.

®C
.bl .b2
o] ®ay a3 eay

The finite modal space F3 and the maps f3 : X —y F3 and g3 : F3 —y F1 are the results of the
Refinement Construction applied to the map fi : X -y F1. One can verify from the construction that
f3 is in fact a p-morphism.

There may be two concerns about this example of the Refinement Construction. First, not all
possibilities are realized in a preimage. For example, there might be no dead end in f, 1(a), S0 f3 might
not be surjective. This issue can be overcome by adding points only when the corresponding possibility
is realized in the preimage. One may also wonder what happens if we take the closed domain D into
account. However, as we will see in the proof of the main lemma, the CDC works perfectly with this
construction.

Moreover, it should be clear from this example that the Refinement Construction only works for
the cycle-free part, in particular, the irreflexive part, of a modal space. Indeed, if a is reflexive, then
points in f5 1(a) can see each other, and there is no appropriate way to define the relation on F3. This

concludes our example.

Definition 4.5. Let X = (X, R) and ) = (Y, Q) be modal spaces and f : X — 2) be a stable map.
We call f a p-morphism for x € X if, for any 3y’ € Y such that f(z)Qvy’, then there exists some 2/ € X
such that zRa2’ and f(z') = /.

So, a stable map f: X — 2 is a p-morphism iff for any z € X, the map f is a p-morphism for x.
Now we are ready to introduce the Refinement Construction. The output of the construction is

summarized in the following lemma, whose proof will be given along the way.
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Lemma 4.6 (Refinement Lemma). Let X be a modal space, F be a finite modal space, D C P(F'), and
f:X —p F be a stable map. Then, the Refinement Construction applied to f : X —p F produces

1. a finite modal space F',
2. a stable map f': X —¢ F' such that " is a p-morphism for x € X with rank(f'(x)) < w,
3. a stable map g : F' —p F such that g is the identity between the rank w part of F' and that of F,

such that the following diagram commutes.

Refinement Construction

Let X be a modal space, F be a finite modal space, D C P(F'), and f : X —p F be a stable map.
Let /1 = F, fi = f, and g1 be the identity map on F. Suppose that we have constructed a finite
modal space F,, = (F,, @), a stable map f, : X —y F,, such that f, is a p-morphism for x € X with
rank(f,(x)) < n, and a stable map g, : F,, —»p F such that g, is the identity between the rank > n
part of F,, and that of F, and g, o f,, = f. These hold for n = 1: in particular, note that for any x € X
such that rank(fi(x)) <1, f1 is a p-morphism for z since fi(x) is a dead end. We construct Fy, 1,
fn+1, and gp41 as follows.

F=Fr < f"<9n+1 Fnt1 e d Fn=F
gn /
In+1 / /
gN=g

Let C = {co, ..., cm—1} be the set of points in F,, with rank < n. Let V = {v € F), : rank(v) = n+1}.
Fix a v € V. Divide the clopen set U’ := f-!(v) by boolean combinations of the clopen sets

{Rf M ()] s ce OF:
L. UY = [1,com U{, where each U} is a (possibly empty) clopen set in X,
2. for any s € 2™ and x € U?, v € R7[f,; }(c;)] <= s(i) = 1.

Let S = {s € 2™ : U? # (}. Take a set of fresh points W = {w? : v € V;s € S’}. Let
Fot+1 = (Fpt1,Qnt1) the finite modal space where F,,11 = (F, \ V) UW and

L. pQni1q <= pQnq for p,q ¢ W,
2. pQui1wy <= pQuuv for p ¢ W,

3. wWQn+19 <= q=ciNs(i)=1forqg W,
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4. Qua NW x W = 0.

Every point in Fj,1 \ W has the same rank in F,; as in F,,, and every point in W has rank < n + 1
in F,11. The rank > n + 1 part of F,,41 is isomorphic to that of F,, and therefore to that of F. For
the sake of simplicity, we will use the same letter to denote a point in Fj,+1 \ W and its counterpart in
F, \ 'V, and when the point has rank > n + 1, also its counterpart in F.

Let U = ey U". Define fr,11: X — Fj,11 as follows:

L. foy1(z) =w? if 2 € U? for some v € V and s € SY,

2. fori(z) = fulz) ifx¢U.
Then, for any z € X, fpii(x) e Wif z € U iff fr11(x) # fu(2).

Claim 4.7. fp41 is continuous and surjective.

Proof. For each b€ F, 1 \ W, f, . 4}1(19) = f.71(b), which is clopen and nonempty since f;, is continuous
and surjective. For each w € W, f jl (w?) = UY, which is clopen by definition and nonempty since

s € SY. Thus, f,y1 is continuous and surjective. O

Claim 4.8. fn41 is stable.

Proof. Assume that zRy in X. If z,y ¢ U, then f,+1(2)Qn+1fnt1(y) since fr(2)Qnfn(y), fryi(x) =
fn(z), and fr41(y) = fuly). fy € UY and x ¢ U, then f,(z)Qnv since f,,(y) = v, so fp+1(z)Qni1w?
by the definition of Qp41 and fri1(z) = fr(z). If y ¢ U and x € U?, then vQ,, fr(y) since f(z) = v, so
rank((fn(y)) < rank(v) = n+1; it follows that f,(y) = ¢; for some i, and s(i) = 1 since x € R7[f,71(c;)],
hence w{Qn41¢; by the definition of Qp41. If 2,y € U, then rank(f,(x)) = rank(f,(y)) = n+ 1 by the
definition of U and V', which contradicts f,(x)Qnfn(y) by fn being stalbe, so this case cannot happen.

So, in all possible cases, we verified that f4+1(2)Qn+1fn+1(y), hence fr41 is stable. O
Claim 4.9. fn41 is a p-morphism for z € X with rank(f,41(z)) <n+ 1.

Proof. Let x € X such that rank(f,+1(z)) < n+ 1 and ¢ € F,41 such that fr11(2)Qni1q. If
fo+1(z) ¢ W, then fro41(z) = fo(zr) and rank(f,4i(x)) < n in both F,41 and F,. So, f, is a
p-morphism for z, hence there is a y € X such that Ry and f,(y) = q. Since f,(z)Qng, rank(q) <n
in F, so frn+1(y) = fuly) = q. If foy1(z) € W, then fr41(z) = w? for some v € V and s € S,
and g = ¢; for some i such that s(i) = 1 by the definition of Q1. So, x € UY, which by definition
imlies # € R7[f, *(c;)], hence z € R‘l[fjil(ci)]. Therefore, f,41 is a p-morphism for z € X with

n

rank(frr1(x)) <n+ 1. O
Define gy, 41 : Fni1 — Fn as follows:
1. gnt1(w?) =v for wl € W,
2. gn+1(w) =w for w ¢ W.

Let Gnt1 = Gn © gny1 : Fne1 — F. Since gny1 0 fnt1 = fn and gy o fr, = f, we have gpy1 0 for1 = f.
Also, since g1 is the identity on the rank > n 4 1 part of F, 11, and this part is isomorphic to the
corresponding part of F,,, the assumption that g, is the identity between the rank > n part of F,, and
that of F implies that g,41 is the identity between the the rank > n + 1 part of F,, 11 and that of F.
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Claim 4.10. gn41 is continuous and surjective.

Proof. Continuity is clear since JF,, 11 is finite, hence discrete. For the subjectivity, given that g, is
surjective, it suffices to show that g, is surjective, which is clear since U? = f, ! (v) is nonempty by

the subjectivity of f,, for every v € V. O
Claim 4.11. g,y is stable.

Proof. Given that g, is stable, it suffices to show that g, is stable. Assume that pQ,+1q in Fj,41.
If p,g ¢ W, then gn+1(p) = p, gnt1(q¢) = ¢, and pQrq by the definition of Qn4+1. If p ¢ W and
g = w?, then g,+1(q) = v and pQ,v by definition of Q,+1. If p = w? and ¢ ¢ W, then ¢ = ¢; for
some ¢ and s(i) = 1 by the definition of @41, so there exists some (in fact, for any) = € U? such that
x € R7Yf (c;)], and vQyc; by the stability of f,. If p,q € W, then =pQ,11¢q by the definition of
Qn+1, so this case cannot happen. So, in all possible cases, we have verified that g,+1(p)@ngn+1(q),

therefore g,,11, and hence g, is stable. O
Claim 4.12. gn41 satisfies CDC for D.

Proof. Let D € D and d € D. Assume that pQd in F and g,11(p’) = p. Let z € f,;ll(p’), which
exists since f,+1 is surjective. Since f(z) = gni1(fn+1(2)) = gnt1(p) = p and f satisfies CDC for D,
there exists some y € X such that xRy and f(y) € D. So, p'Qn+1fn+1(y) by the stability of f,,11, and
In+1(fnt1(y)) = f(y) € D. Therefore, g,1 satisfies CDC for D. O

Since F is finite, there is an upperbound on the rank of all points in F of finite rank, say, V.
Inductively applying the above construction, we obtain a finite modal space Fn = (Fn,Qn), a stable
map fy : X —y Fn such that fx is a p-morphism for x € X with rank(fx(z)) < N, and a stable map
gn @ Fn —p F such that gy is the identity between the rank > N part of F and that of F. By the
definition of N, for any x € X, if rank(fy(x)) < w then rank(fx(z)) < N. So, it follows that fy is a
p-morphism for € X with rank(fy(z)) < w. Moreover, since, by the construction, the rank > N part
of Fn is isomorphic to that of F, gy is the identity between the rank w part of Fy and that of F.
The tuple (Fn, fn,gn) is the result of the construction, and we conclude the proof of Lemma 4.6 by
taking F' = Fn, f' = fn, and g = gn.

Remark 4.13. The idea of modifying the cycle-free part of a modal space and leaving the rest as
they are is inspired by the direct proof of Corollary 4.20 given in [CZ97, Theorem 10.54], which was
originally proved by Blok [Blo78].

4.2 The finite model property of union-splitting logics

In this section, we apply the Refinement Construction (Lemma 4.6) to establish the fmp for union-
splittings in NExtK and their relatives, thus generalizing Blok’s fmp result in [Blo78].

First, we relate finite cycle-free modal spaces to their algebraic counterpart, namely, finite modal
algebras of finite height. Let FH be the class of modal algebras of finite height, that is, FH = {2 :
dn e w(@ E0O"L)}, and FHgy, be the class of finite algebras in FH.

Proposition 4.14. Let 2 be a finite modal algebra and X be its dual space. Then, U is of finite height
iff X is cycle-free. Therefore, FHgy is the class of modal algebras dual to finite cycle-free modal spaces.

48



Proof. Let 2 be a finite modal algebra and X be its dual space. Then,

2 is of finite height <= there is some n € w such that A = 0" L
<= there is some n € w such that X =0"1
<= there is some n € w such that rank(z) <n+2 forallz € X

<= X is cycle free (by Proposition 4.3).

Thus, a finite modal algebra is of finite height iff its dual modal space is cycle-free. O

Moreover, with the dual approach, we can easily show that the property of having finite height is
reflected by stable subalgebras.

Proposition 4.15. Let 2 be a modal algebra and B be a modal algebra of finite height such that
B —y A. Then A is also of finite height. Therefore, FH reflects stable subalgebras.

Proof. Let X = (X, R) and Q) = (Y, Q) be the dual spaces of 2 and 9B respectively. Then there is some
n € w such that 9 E 0O"L and X —3 2. Let f: X -4 2. Suppose, for a contradiction, that 2 is not
of finite height. Then, in particular, X = O"L, so there is a path xgRz1R--- Rz, in X. Since f is
stable, f(z0)Qf(x1)Q - Qf(zy) is a path in 9), so ), f(zo) ~ O"L, which is a contradiction. Thus,
2l is of finite height. O

Now we proceed to prove the two main theorems of this section. Both of them have a similar form:
“a base rule system or logic + stable rules or formulas + splitting formulas” has the fmp. In general,
the Refinement Construction does not preserve properties of modal spaces due to its combinatorial
nature. But when it does, it will produce a finite countermodel that is useful for showing the fmp.

Recall that 3(L) = Sk + {/¢ : ¢ € L} for a logic L and A(S) = {¢: /¢ € S} for a rule system S.

Theorem 4.16. Let {e(;, D;) : i € I} be a set of splitting formulas and S be a rule system that
admits definable filtration. Suppose that the Refinement Construction preserves S, that is, if the modal
spaces X and F validate S, then the modal space F' obtained in Lemma 4.6 also validates S. Then,
for any set of stable rules {p(2;,0) : j € J}, the rule system

S+{p;,0):5€J}+E({e,D;) :i € I})
has the fmp. Consequently, the logic
A(S +{p(2;,0) : j € T} + ({e(,, Dy) : i € I}))

has the fmp.

Proof. The latter statement follows from the former by Proposition 2.63. Let &' =S + {p(2;,0) : j €
J}+3({e(U;, D;) :i € I}. Let p ¢ S’. Then there is a modal algebra B such that B = S, B = p(2;,0)
for all j € J, B = e(A;, D;) for all i € I, and B [~ p. By Theorem 3.24, for S-algebras, p is equivalent
to a set of stable canonical rules {p(2g, Dy) : 1 < k < n} where each 2 is a finite S—algebra and
Dy, C Ay, so B = p(Ug, D) for some 1 < k < n, namely A, —p, B.

Let X = (X, R) and F = (F,Q) be the dual space of B and 2l respectively, and Dy = S[Dy].
Then there is a stable map f : X —p, F. Applying the Refinement Construction (Lemma 4.6), we
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obtain a finite modal space F’, a stable map f’: X —y F’ such that f’ is a p-morphism for x € X with
rank(f’(z)) < w, and a stable map g : 7' —p, F such that g is the identity between the rank w part
of 7 and that of F, and f = go f’. Let 2 be the dual algebra of F'. Since by our assumption the
Refinement Construction preserves S, we have F' |= S, so 2 is a finite S-algebra. If A" }= p(2;,0)
for some j € J, then 2A; < A’. But since X —y F', i.e., A —y B, we would obtain A; <y B, i.e.,
B B p(A;,0), which is a contradiction. Moreover, since 7' —p, F, dually we have 2, —p, 2, so
A" = p(Ag, D), hence A’ P~ p.

It remains to show that A’ |= e(2;, D;) for all i € I. Assume for a contradiction that 2’ j= e(2;, D;)
for some ¢ € I. Then 2A; < p, A” for a s.i. homomorphic image 2A” of 2’. Dually, this means that
there is a rooted closed upset 7"’ C F' such that F” —p, F; (D; = B[D;]), where F” is dual to A"
and F; to 2;. Since 2l; is of finite height, 2" is so by Proposition 4.15, namely, F” is cycle-free by
Proposition 4.14, which by Proposition 4.3 implies that any point in F’ has rank < N for some N. Let
so be the root of 7 and xg € f'~!(sp). Then rank(sg) < N and rank(zo) < N since f’ is stable. Let
X" = R<¥[z9] = RSN[z0] and X’ be X’ with the topology and relation induced by X. Then X’ is a
closed upset of X, and X’ is topo-rooted because z is a topo-root of X" and {zo} = f'~*(s0) N X' is

clopen in X’.

A B x Ly F
I ]
Aj —— A" —— B’ X —» F'—— Fi

~_ L

hl

Recall that ' : X' —y F” is surjective and stable. Since f' : X —y F’ is a p-morphism for
x € X' with rank(f’(x)) < w and F” is cycle-free, f'[X' : X' — F” is a surjective p-morphism. Let
h:F" —p, Fiand i’ = ho f'[X’. Then, we have b’ : X' —p F;. Thus, X’ is a topo-rooted closed
upset of X such that X’ —p/ F;. Dually, if we let B’ be the dual of X/, then this means that B’ is a
s.i. homomorphic image of B such that A; < p, B, namely, B = €(;, D;), which is a contradiction.

Therefore, 2’ is a finite modal algebra such that ' = 8" and 2’ £ p, and we conclude that the
rule system S’ has the fmp. O

Corollary 4.17. For any stable rule system S, the rule system
S+X({e;,D;) i€ 1})
has the fmp. Consequently, the logic
AS +E({e(Wi, D;) i € I}))

has the fmp.

Proof. Sk admits (definable) filtration and is clearly preserved by the Refinement Construction. Thus,
the former statement follows from Theorems 3.30 and 4.16. The latter statement follows from the

former by Proposition 2.63. 0

Dropping stable rules in Theorem 4.16, we obtain a general fmp result for logics.
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Lemma 4.18. For any logics L and L',
AL +2(L)=L+1L.

Proof. Let V and V' be the corresponding varieties of L and L’ respectively. Then (L) and X(L')
also correspond to V and V'. Thus, since VNV’ is a variety and hence a universal class, X(L) 4+ (L)
corresponds to VNV’ which also corresponds to A(X(L) + X(L')). Since L 4+ L’ corresponds to VNV,
we conclude A(X(L) +X(L)) =L+ L' O

Theorem 4.19. Let {e(;,D;) : i € I} be a set of splitting formulas and L be a logic that admits
definable filtration. Suppose that the Refinement Construction preserves L, that is, if the modal spaces
X and F wvalidate L, then the modal space F' obtained in Lemma 4.6 also validates L. Then, the logic

L+{€(Q{1,DZ) Z’iEI}

has the fmp.

Proof. Let L be a logic that admits definable filtration. Then the rule system S, = X(L) also admits
definable filtration because they correspond to the same class of modal algebras. So, by Theorem 4.16,
the logic A(X(L) + X({e(U;, D;) : i € I1})) has the fmp. By Lemma 4.18, we have

AS(L) +S({e(, D;) i € 1)) = L+ {e(;, D;) i € I},

where the statement follows. O]

This immediately implies Blok’s fmp result [Blo78] (see also [CZ97, Theorem 10.54]).
Corollary 4.20 ([Blo78]). Every union-splitting in NExtK has the fmp.

Proof. K admits (definable) filtration and is clearly preserved by the Refinement Construction. Thus,
the statement follows from Theorems 3.60 and 4.19. O

Corollary 4.21. Fvery finitely axiomatizable union-splitting in NExtK is decidable.

In practice, it is not always easy to verify whether a logic is preserved by the Refinement Construction.
We show in the following lemma that this is the case for pre-transitive logics K4’1nJrl (m > 1) considered
in Section 3.2. Recall that pre-transitive logics K4r1n+1 are logics of the form K + &™*lp — op. They
define the condition VaVy (xR™*1y — xRy) for modal spaces. Note that K4% is the transitive logic K4.

Lemma 4.22. Let m > 1. The Refinement Construction preserves K4r1"+1, that s, if the modal spaces
X and F validate K4’1“+1, then the modal space F' obtained in Lemma 4.6 also validates K4T+1.

Proof. Let X = (X, R) be a KAT""-space and F = (F,Q) be a finite K47 -space. Applying the
Refinement Construction (Lemma 4.6), we obtain a finite modal space 7' = (F',Q’), a stable map
'+ X —y F' such that f’ is a p-morphism for z € X with rank(f'(z)) < w, and a stable map
g : F' —p F such that g is the identity between the rank w part of 7' and that of F, and f = go f’.
Let sq,...,8, € F' be such that s;_1Q’s; for each 1 < i < m. We show that s¢Q’s;,.

If rank(sg) < w, then rank(s;) < w for all 0 < i < m. Since f’: X —»y F’ is a p-morphism for z € X
with rank(f’(z)) < w, we obtain a chain zgR - - Rx,, in X such that f'(x;) = s; for each 0 < i < m.

Then xRz, since X = K45“Jrl by assumption, which implies soQ’s,, since f’ is stable.
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Suppose that rank(sg) = w. Since g : F' —p F is stable, we have g(s0)Q - Qg(sy,) in F. Then
9(50)Qg(sm) since F = KATT! by assumption. Again since g is stable, rank(g(s)) = w. Reviewing
the Refinement Construction, either rank(g(s,)) = w so that s, remains the same as ¢(s;,) or
rank(g(sm,)) < w so that s, is added with g(s,,) replaced, we must have soQ’s;, by g(s0)Qg(sm)-

Thus, in both cases we have s¢oQ’s,,. Hence, F’ validates K4’1“+1. O

The following characterization of K4'1“+1—stable logics is a straightforward generalization of the

series of characterizations of K4-stable logics obtained in [BBI18].

Lemma 4.23. Let m > 1. A logic L D K4r1n+1 18 K4r1"+1-stable iff the class V(L) is finitely K4’1“+1-

stable. Moreover, each K4r1“+1—stable logic is axiomatizable by stable formulas over K4r1“+1.

Proof. We only sketch the proof. Since K4’1nJrl admits definable filtration, following the proof of [BBI1S,
Theorem 3.8], we can show that V(L) is generated by a KAT ™ -stable class KC of finite K4 -algebras.
Then, [BBI18, Lemma 4.5] also holds for K47+ because for any finite K4 !-space F, adding an extra
point to F so that it sees every point in F and itself results in another K4Q1+1

the proof of [BBI18, Theorem 4.7] and using Lemma 3.33, we obtain the statement. O

-sapce. Finally, following

Now we show our second main theorem. Recall that a logic L O K4'1"Jrl is K4’1“+1—stable if the
variety V(L) is generated by a K47 -stable class.

Theorem 4.24. Let m > 1 and L be a K47 -stable logic. For any set of splitting formulas {e(2;, D;) :
i € 1}, the logic
L+ {G(Q[Z,DZ) 11 € I}

has the fmp. Consequently, for any set of stable canonical formulas {y™(U;, D;) : j € J} where each
20, is a finite s.i. K4T+1-algebm of finite height, the logic

L+{y"(4;,D;):j€J}
has the fmp.

Proof. The latter statement follows from the former with Corollary 3.59. By Lemma 4.23, there
is a set of stable formulas {y™(2;,0) : j € J} such that L = K4t 4+ {y™(A;,0) : j € J}. Let
L' =L+ {e®;,D;):i €I} Let o ¢ L. Then there is a s.i. modal algebra B such that B |= K47,
B =" (A;,0) for all j € J, B = €(2;, D;) for all i € I, and B = . Since K4 admits definable
filtration and K4'111+1 and E(K4r1“+1) correspond to the same class of modal algebras, by Theorem 3.24,
for K47 algebras, ¢ is equivalent to a set of stable canonical rules {p(Ay, Dy) : 1 < k < n} where
each 2, is a finite K4r1"+1—algebra and Dy C Ag. So, B = p(™Uy, D) for some 1 < k < n, namely
A —p, B.

Let X = (X, R) and F = (F,Q) be the dual space of B and 2l respectively, and Dy = S[Dy].
Then there is a stable map f : X —p, F. Applying the Refinement Construction (Lemma 4.6), we
obtain a finite modal space F', a stable map f' : X —y F’ such that f’ is a p-morphism for x € X
with rank(f’(z)) < w, and a stable map g : 7/ —p, F such that g is the identity between the rank
w part of 7/ and that of F, and f = go f’. Let 2! be the dual algebra of F’. Since the Refinement
Construction preserves K41””Jrl by Lemma 4.22, the same argument in the proof of Theorem 4.16 shows
that ' is a finite K47 -algebra, A’ |= €(A;, D;) for all i € I, and A’ = .
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It remains to show that A" = ~™ (2, 0) for all j € J. It suffices to show that 2’ = L. Note that B
is s.i. and 2’ is a finite stable subalgebra of 9B since X —y F'. Thus, since L is K4T+1—stable, A = L by
Lemma 4.23. Therefore, 2" is a finite modal algebra such that 2" = L’ and 2 [~ ¢, and we conclude
that the logic L’ has the fmp. O

Remark 4.25. The series of fmp results so far can be compared with the general fmp result regarding
cofinal subframe logics and canonical formulas in [CZ97, Theorem 11.55]. These results have interesting
consequences that every extension of S4 (or IPC) with finitely many axioms in one variable has the
fmp [CZ97, Theorem 11.58 and Corollary 11.59]. It remains open if our results lead to such a concrete

fmp result.

Another naturally arising question from our results is which logics or rule systems admit definable
filtration and are preserved by the Refinement Construction. A reasonable sufficient condition will

make the results more useful. We leave this as an open question.

Question 4.26. Is there a non-trivial class of logics or rule systems that admit definable filtration and
are preserved by the Refinement Construction, other than the pre-transitive logics K4TJrl (m>1) we

have discussed?

The proof strategy we have used in this section yields another result about splitting formulas and
stable canonical formulas defined from finite s.i. modal algebras of finite height. Essentially, it implies
that the closed domain condition collapses to p-morphisms when working with finite s.i. modal algebras
of finite height.

Theorem 4.27. Let 2 be a finite s.i. modal algebra of finite height and D C A. Then, the logic
L =K+ ¢, D) is a union-splitting in NExtK.

Proof. Let
L' =K+ {e(2;, A;) : A is a finite s.i. modal algebra of finite height such that 2 —p 21;}.

It suffices to show L = L’ since L’ is a union-splitting in NExtK by Theorem 3.60. Let B be a modal
algebra.

Suppose that B (= L'. Then B (£ €(2;, A;) for some i € I. So, 2; is a subalgebra of a s.i. ho-
momorphic image B’ of B. Since A —p A;, we have 2 < p B’ which implies B (= (2, D), hence
B}~ L.

Conversely, suppose that B £ L. Then B [~ €(2, D), namely, 20 < p B’ for a s.i. homomorphic
image B’ of B. Let X’ and F be the dual space of B’ and 2 respectively, and D = S[D]. Then X' is a
topo-rooted closed upset of X such that X’ —p F. Let f: X’ —p F. Since 2 is a finite modal algebra
of finite height, F is finite and cycle-free by Proposition 4.14, so there is some N € w such that any
point in F has rank < N by Proposition 4.3. Since f : X’ —»p F is stable, any point in X’ has rank
< N. X' is topo-rooted since B’ is s.i. If z is a topo-root of X, then X’ is the closure of R"[x], which
implies X’ = R%[z] since RV [x] is closed in X. Thus, a topo-root of X' is a root of X’. So, X’ is rooted.

Applying the Refinement Construction (Lemma 4.6) to f : X’ —p F, we obtain a finite modal
space F', a stable map f': X’ —y F’ such that f’ is a p-morphism for z € X’ with rank(f'(z)) < w,
and a stable map ¢ : 7/ —»p F such that f = go f’. Since F is cycle-free, F’ is also cycle-free. Thus,

f': X — F'is a p-morphism. Since X’ is rooted and f’ is surjective and stable, F’ is also rooted. Let
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A’ be the dual algebra of F’. Then 2’ is a finite s.i. modal algebra of finite height such that 2 < p 2’
and 2" — B’. Thus, A’ coincides with 2; for some i € I and B’ [~ e(A’, A’). Then B = (A, A") since
B’ is a homomorphic image of B. So, B £ L', and therefore, L = L'. O

Corollary 4.28. For any set of splitting formulas {e(2;, D;) : 1 € I}, the logic
K+ {e®;,D;) :i €1}

18 a union-splitting in NExtK.

Theorem 4.29. For any set of stable canonical formulas {y™(;, D;) : i € I} where each ; is a finite
S.1. K4r1"+1—algebm of finite height, the logic

K4T+1 + {’}/m(ﬂi, D,) 11 E I}

is a union-splitting in NExtK4™ 1,
Proof. Since the Refinement Construction preserves K41m+1 by Lemma 4.22, the statement follows from

the same proof as in Theorem 4.27. 0

In terms of the lattice of pre-transitive logics, our fmp results also have implications on the degree

of Kripke incompleteness.

Corollary 4.30. Every union-splitting in NExtK4T1Jr1 split by a set of finite s.1. K41m+1-algebms of
finite height has the degree of Kripke incompleteness 1 in NExtK4r1"+1.

Proof. This follows directly from Theorem 4.24 and Theorem 2.57. O

Determining the degree of Kripke incompleteness in the lattice NExtK4 is a long-standing open
question (e.g., [CZ97, Problem 10.5]). It is even unknown whether all union-splittings in NExtK4 are
Kripke complete, let alone what their degree of Kripke incompleteness is. In this respect, Corollary 4.30

identifies a subclass of union-splittings in NExtK4 that have the fmp and thus is Kripke complete.

4.3 The finite model property of union-splitting rule systems

In this section, we apply the Refinement Construction to study the fmp for rule systems. The proofs
will be quite similar to the ones in the last section, and are even simpler because stable canonical
rules have a simpler semantic characterization than stable canonical formulas, so we will only present

sketches. The following fmp result is a rule system analogue of Theorem 4.16.

Theorem 4.31. Let {p(A;, D;) : i € I} be a set of stable canonical rules where each A; is a finite
modal algebra of finite height, and S be a rule system that admits definable filtration. Suppose that the
Refinement Construction preserves S, that is, if the modal spaces X and F validate S, then the modal
space F' obtained in Lemma 4.6 also validates S. Then, for any set of stable rules {p(2;,0) : j € J},

the rule system
S+{p(;,0):j € T} +{p(4i,D;) :i € I}

has the fmp.
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Proof. This is proved in a similar manner to the proof of Theorem 4.16 by using Theorem 3.24. [

Corollary 4.32. For any stable rule system S, the rule system

has the fmp.

Proof. Sk admits (definable) filtration and is clearly preserved by the Refinement Construction. So,
the statement follows directly from Theorem 4.31 and Theorem 3.30. O

Similar to Theorem 4.27, we also obtain an observation about the closed domain in stable canonical

rules defined from finite modal algebras of finite height.

Theorem 4.33. Let A be a finite modal algebra of finite height and D C A. Then, the rule system
S =S8k + p(, D) is a union-splitting in NExtSk.

Proof. Let
S = Sk + {p(A;, A;) : 2; is a finite modal algebra of finite height such that 2 —p 2;}.

It suffices to show S = &’ since &’ is a union-splitting in NExtSk by Theorem 3.32. This is proved by a

similar argument as in the proof of Theorem 4.27. 0

Corollary 4.34. For any set of stable canonical rules {p(;, D;) : i € I} where each ; is a finite
modal algebra of finite height, the rule system

Sk + {p(Qli,Di) 11 € I}

18 a union-splitting in NExtSk.

This subclass of union-splittings in NExtSk has a neat characterization. It turns out that they are
the lower part of union-splittings in NExtSk. A similar idea for K-union-splittings will appear later in
Theorem 5.5. Recall that FH is the class of modal algebras of finite height. Let C be the complement
of FH, and Cg, be the class of finite members of C.

Theorem 4.35. For any rule system S, the following are equivalent:
1. CCU(S),
2. Cin CU(S),
3. S is axiomatized over Sk by Jankov rules of finite modal algebras of finite height,
4. S is axiomatized over Sk by stable canonical rules of finite modal algebras of finite height,
5 SCSk+{p,A) : A€ FHan}.

Proof. (1) = (2): This is clear.
(2) = (3): Suppose that Cs, CU(S). Let

S =S8k + {p(2A, A) : 2 is a finite modal algebra such that2l j= S}.
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Since Cgy, CU(S), 8’ is axiomatized over Sk by Jankov rules of finite modal algebras of finite height,
thus &’ has the fmp by Theorem 4.31. It suffices to show that S = &'.

If S € &', then by the fmp of &', there is a finite modal algebra 2 such that 2 = S" and A £ S,
which contradicts the definition of &’ since 2 = p(2A, A). So, S C &’. Convsersely, if S’ S, then there
is a modal algebra B such that B = S and B = p(A, A) for some finite modal algebra A = S. So,
2A — B, and since U(S) is closed under subalgebras, 2 € U(S), which contradicts 2 £ S. So, S’ C S.

(3) = (1): For any B € C and any finite modal algebra 2l of finite height, since being of finite height
reflects stable subalgebras by Proposition 4.15, 20 <54 B, so B = p(A, A). So, if S is axiomatized over
Sk by Jankov rules of finite algebras of finite height, then C = S, i.e., C CU(S).

(3) & (4): This follows from Corollary 4.34.

(3) = (5): This is clear.

(5) = (2): This follows from a similar argument as in the case (3) = (1). O

Similar to the case of NExtK4 and contrary to the case of NExtK;, it is unknown if all union-splittings

in NExtSk have the fmp. This is expected since all finite algebras split NExtSk.

Question 4.36. Does every union-splitting in NExtSk have the fmp?

4.4 Summary

We introduced the Refinement Construction as a method for showing the fmp for logics and rule
systems. Given a modal space X, a finite modal space F, and a stable map f : X —-p F where
D C P(F), the construction makes the map f factor through a finite modal space F’, which will be
the desired finite countermodel. We summarize the logics and rule systems that were shown in this

chapter to have the fmp as follows:

e A logic that admits definable filtration and is preserved by the Refinement Construction -+

splitting formulas.

A K4'1“+1—stable logic + splitting formulas (or equivalently, stable canonical formulas defined from
finite s.i. K47 -algebras of finite height).

A rule system that admits definable filtration and is preserved by the Refinement Construction +

stable rules + splitting formulas.

e A stable rule system + splitting formulas.

A rule system that admits definable filtration and is preserved by the Refinement Construction +

stable rules + stable canonical rules defined from finite modal algebras of finite height.
e A stable rule system + stable canonical rules defined from finite modal algebras of finite height.

Note that by Proposition 2.63, for a rule system S in the above list, the logic A(S) also has the fmp.
These fmp results imply the fmp of union-splittings in NExtK [Blo78], K4-stable logics [BBI18], and
stable rule systems [BBI16]. Moreover, it follows that every union-splitting in NExtK4?1Jr1 split by a set
of finite s.i. K4T+1—algebras of finite height has the degree of Kripke incompleteness 1 in NExtK4T+1.

As a side result, we observed that for splitting formulas and stable canonical formulas defined from

finite s.i. K4T+1—algebras of finite height, the closed domain condition collapses to p-morphisms. Thus,
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logics of the form “K + splitting formulas” are union-splittings in NExtK and logics of the form “K4r1"+1
+ stable canonical formulas defined from finite s.i. K4'1n+1—algebras of finite height” are union-splittings
in NExtK4+1,

Further applications of the Refinement Construction are open. A characterization or sufficient
condition of logics or rule systems preserved by the Refinement Construction will lead to more fmp
results. Although the above list contains many logics and rule systems, they are presented in a rather
technical way. These results are in line with Zakharyaschev’s fmp result [CZ97, Theorem 11.55] proved
using canonical formulas, while it has the consequence that every extension of S4 with finitely many
axioms in one variable has the fmp [CZ97, Theorem 11.58]. We leave it for further research whether

our results and technique can be used to obtain such a concrete fmp result.
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Chapter 5
Decidability of Logical Properties

In this chapter, we study the decidability of logical properties. Intuitively, our question is: is there an
algorithm that, given a modal logic, decides whether it has a specific property? There are different ways
to formulate this question, depending on how logics are encoded as input. Note that an input must be
a finite object, so it is certainly not possible to take all of the continuum many logics into account.
The most general possible formulation is to consider all recursively axiomatizable logics, encoded by
recursive functions that enumerate them. However, Kuznetsov showed that this only leads to triviality,
similar to Rice’s Theorem for partial recursive functions. Kuznetsov left the result unpublished, but
one can find a proof in [CZ97, Section 17.1]. The result also holds for NExtK4, NExtS4, and other

lattices of normal modal logics.

Theorem 5.1 (Kuznetsov). Let P be a non-trivial property of recursively axiomatizable logics, that is,
there are a recursively axiomatizable logic that has P and a recursively ariomatizable logic that does

not have P. Then it is undecidable whether a recursively ariomatizable logic in NExtK has P.

So, we will confine ourselves to finitely axiomatizable logics. Since most logics we encounter in
practice are finitely axiomatizable, this is not a serious drawback. A finitely axiomatizable logic will be
encoded by a finite subformula-closed set of formulas axiomatizing the logic, or equivalently, a single

formula axiomatizing the logic. Now we can formulate our question as follows.

Definition 5.2. Let Ly be a modal logic. A logical property P is decidable in NExtLg iff the set
{¢ : Lo + ¢ has P} is decidable.

We will identify a property P with the set of logics having P and write L € P if L has P.

5.1 Undecidable logical properties

Many logical properties have been shown to be undecidable, see [CZ97, Section 17.6] for a historical
overview. The proof of [WZ07, Theorem 9], based on Chagrov’s method and the proof of Theorem 2.58,
provides a very general scheme to establish the undecidability of logical properties, which can be
summarized as the following theorem. Note that although the statements there were written for specific

logical properties, their proof in fact shows more.

Theorem 5.3. Let P be a logical property. If there is a logic L € P that is not a K-union-splitting,
and any logic in P is Kripke complete, then P is undecidable in NExtK.
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Sketch. We briefly sketch the proof idea of [WZ07, Theorem 9]. Recall that KF(L) is the class of
Kripke frames validating L.

We want to reduce an undecidable problem @ ([CZ97, Theorem 16.3]) about Minsky machines, also
called counter machines with two tapes (see, e.g., [CZ97, Section 16.1]). Fix an arbitrary logic L that
is not a K-union-splitting. Then we can construct a reduction f, given an input x of (), computing a
finitely axiomatizable logic f(z) such that, for any input = of Q, x € @ implies f(z) = L and = ¢ Q
implies f(x) # L and KF(f(x)) = KF(L). So, x € Q implies f(x) € P since L € P, and x ¢ () implies
f(z) ¢ P since any logic in P is Kripke complete. Thus, this reduction shows that P is undecidable. [

Theorem 5.3 shows that almost all interesting logical properties are undecidable in NExtK, including
Kripke completeness, finite model property, tabularity, first-order definability, to name a few. One can
also show that decidability is undecidable by adjusting this proof. For the details, we refer to [WZ07,

Theorem 9] and the subsequent discussion. We add one more to this family.
Corollary 5.4. Being a stable logic is undecidable in NExtK.

Proof. All stable logics have the fmp, and all extensions of S5 are stable [BBI18]. Since KD =K+ & T
is the largest K-union-splitting, any extension of S5 witnesses that there is a stable logic that is not a

K-union-splitting. It follows from Theorem 5.3 that being a stable logic is undecidable. 0

On the other hand, we point out three limitations of this scheme. First, the construction of the
reduction in the proof of Theorem 5.3 relies heavily on the proof of Blok’s dichotomy Theorem 2.58,
which only works for NExtK. The other two limitations are when a property P does not satisfy the
assumptions of the theorem. For example, since there are Kripke incomplete subframe logics over K
[Wo193], Theorem 5.3 does not apply to subframeness. Moreover, there is certainly no K-union-splitting
that is not a K-union-splitting, so it neither applies to union-splittings. It turns out that being a

union-splitting is decidable in NExtK.

5.2 Decidability of being a K-union-splitting logic

Given the generality of Theorem 5.3, it might seem that all meaningful logical properties would be
undecidable in NExtK. Indeed, it was pointed out in [WZ07] that “we know only two interesting
decidable properties of finitely axiomatizable logics in NExtK: consistency and coincidence with K,”
which are more or less trivial. However, in this section, we show that being a union-splitting is decidable
in NExtK, answering the open question [WZ07, Problem 2] in the affirmative.

We first give a semantic characterization of K-union-splittings. The idea is similar to that of
Theorem 4.35. Recall that FH is the class of modal algebras of finite height, that is, FH = {2 : In €
w@E=o"l)}.

Theorem 5.5. For any modal logic L, the following are equivalent:
1. L is a K-union-splitting.
2. L is axiomatized over K by Jankov formulas of finite s.i. modal algebras of finite height,
3. L is axziomatized over K by splitting formulas of finite s.i. modal algebras of finite height,

4. For any modal algebra A, H(2A)s N FH C V(L) implies A € V(L),
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5. For any finite modal algebra A, H(A)g N FH C V(L) implies A € V(L),

Proof. (1) < (2) < (3): this follows from Theorem 3.60 and Corollary 4.28.

(2) = (4): let A be a modal algebra such that 2 = L. By (2), 2 }~ €(B8,B) for some finite
s.i. modal algebra 9B of finite height such that €(8,8B) € L. So, B — 2 for a s.i. homomorphic image
A" of A. Since B is of finite height, it follows from Proposition 4.15 that 2(’ is also of finite height. Thus,
A" € H®A)s N FH. Moreover, since B — ', A" b~ ¢(B,B), hence A" = L. So, HRA)s N FH L V(L).

(4) = (5): this is clear because for any finite modal algebra 2(, H(2l) g = H(2A)gi.

(5) = (2): let L' = K+ {e(*B,B) : B € FHg,B = L}. It suffices to show that L = L.

We know from Corollary 4.20 that L’ has the fmp. If L € L', then by the fmp of L’, there is a
finite modal algebra 2 such that 20 = L' and 2 [~ L. So, by (5), there is a B € H(2)g N FH such
that B (£ L. Since €(B8,98) € L’ by the definition of L' and B [~ €(B,8), B £ L'. Since H preserves
validity, we have 2( = L', which is a contradiction. Thus, L C L'.

If L' ¢ L, then there is a modal algebra 2 such that 2 = L and 2( £ L’. By the definition of L',
2 [~ €(B,B) for some B € FHy; such that B (= L. So, B — A’ for a s.i. homomorphic image A’ of
2. Since H and S preserve validity, 2 & L, which is a contradiction. Thus, L' C L, and therefore,
L=1I". O

As an immediate consequence, we see that KD is the largest K-union-splitting.
Corollary 5.6. KD is the largest K-union-splitting.

Proof. For any 2 € FHg, the dual space of 2 is cycle-free and refutes D = & T, so 2 ¢ V(L). Thus,
the condition (5) in Theorem 5.5 is trivially satisfied, hence KD is a K-union-splitting.

On the other hand, let L be a K-union-splitting. For any finite D-algebra 2, since the dual space of
2l is serial, there is no cycle-free upset of 2, so H(2)¢; N FH = (), thus A € V(L) by (5). It follows that
V(KD) C V(L), namely, L C KD. So, KD is the largest K-union-splitting. O

Moreover, we can use the characterization to decide whether a concrete logic is a K-union-splitting

or not.
Example 5.7.

1. K+ O<¢T is not a K-union-splitting. Let X be the modal space o—e and 2 be its dual algebra.
Clearly, 20 = OO T. On the other hand, since the only cycle-free upset of X is the irreflexive
singleton, which validates O T, it holds that HR) g N FH C V(K+ 00 T).

2. K+ 00T VoOT is a K-union-splitting. Let o = K4+ 00T VOO T. Let 2 be a finite modal
algebra with the dual space X such that 2( & . Then there is a rooted upset X’ C X where ¢ is
refuted at the root. It follows that X’ has depth 2, so X’ is cycle-free. Let 2" be the dual algebra
of X'. Then A" € H(A); N FH and A" ¢ V(K + ), hence HR)gs N FH L V(K + ¢).

The condition (5) in Theorem 5.5 is special in its finitary nature. It should be seen in contrast to

subframe logics over K4 and K4-stable logics. The following examples show that:

e there is a logic L € NExtK4 such that the class of finite rooted L-spaces is closed under subframes,
while there is an L-frame F and a finite subframe F' of F such that 7' [~ L, so L is not a

subframe logic,
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e there is a logic L € NExtK4 such that the class of finite rooted L-spaces is closed under stable
images, while there is an L-frame F and a finite stable image F' of F such that 7' £ L, so L is
not a K4-stable logic.

Example 5.8. Let F be the Kripke frame of negative integers with the order < and a reflexive root w
at the bottom.

o 0

J’_'

For any finite rooted frame G | LogF, since G [~ v(G,P(G)), v(G,P(G)) ¢ LogF, namely
F = v(G,P(G)), so G is a p-morphic image of a generated subframe of F. Note that a p-morphism
cannot identify two irreflexive points in F. So, since G is finite, G must be a finite irreflexive chain.
Thus, the class of finite rooted LogF-spaces is the class of finite irreflexive chains, which is closed under

subframes. However, F has the single reflexive point as its subframe, which refutes LogF.

Example 5.9. Let F and F’ be the K4-s shown below. These frames are inspired by the proof of
[CZ97, Proposition 9.50]

> L
<< N

F

Let C be the class of all finite rooted frames of width < 3 and L = Log(C U {F}). For any finite
rooted frame G |= L, since G [~ v(G,P(G)), v(G,P(G)) ¢ L, so CU{F} ~~v(G,P(G)). Then G is a
p-morphic image of a generated subframe of some frame in C or F. Since p-morphisms do not increase
width, in both cases G has width < 3. For any stable image G’ of G, since stable maps do not increase
width, G’ has width < 3, so G’ € C and G’ = L. However, F' is a finite stable image of F, and F' [£ L
since it has width 4.

Now we turn to the decidability of union-splittings in NExtK.
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Lemma 5.10. Let Ly be a modal logic. If Lo+ ¢ = Lo + {1; : i € I}, then there is a finite subset
I' C I such that Lo+ ¢ = Lo+ {¢; : i € I'}.

Proof. Let @ be a set of formulas. Since modal logics have finitary proof systems, for any ¢ € Ly + @,
© € Lo+ @' for some finite subset &' C ®. It follows that the closure operator ® — Ly + ® on the set
of formulas is algebraic. So, by Theorem 2.34, NExtLg is an algebraic lattice, and finitely axiomatizable
logics are exactly compact elements in NExtLg.

If Lo+ ¢ = Lo+ {4 : i € I}, then by the definition of compact elements, there is a finite subset
I' C I such that Lo+ ¢ C Lo+ {¢;:i€I'}. Since Lo+ {1p; ;1 € I'} C Lo+ {¢;:i € [} = Lo+ ¢, we
obtain Lo+ ¢ = Lo+ {¢; : i € I'}. O

Theorem 5.11. Being a union-splitting is decidable in NExtK. That is, it is decidable, given a formula
i, whether the logic K+ ¢ is a union-splitting in NExtK.

Proof. First, we show that the union-splitting problem is ¥?. By Lemma 5.10, K + ¢ is a union-
splitting iff there is a finite set {24; : i < n} of finite s.i. modal algebras of finite height such that
K+ ¢ =K+ {e(2;,2;) : i <n}. Dually, this means that K+ ¢ = K+ {e(X;, P(X;)) : i < n} for a
finite set {X; : ¢ < n} of finite rooted cycle-free modal spaces. Since it is decidable whether a finite
modal space is rooted and cycle-free, finite rooted cycle-free modal spaces and finite sets of them
can be effectively enumerated. Moreover, since a finitely axiomatized logic is recursively enumerable,
the problem whether K + ¢ = K + {(X;, P(X;)) : i < n} is X{. As X is closed under existential
quantification, it follows that the union-splitting problem is 2(1).

Next, we show that the union-splitting problem is I1{. By Theorem 5.5 and the duality, K + ¢
is not a union-splitting iff there is a finite modal space X such that all rooted cycle-free upsets of X
validate ¢ and X [~ ¢. A finite modal space X only has finitely many rooted cycle-free upsets, which
can be effectively computed. So, whether K 4 ¢ is not a union-splitting is E(l), hence the union-splitting
problem is TIY.

Thus, the union-splitting problem is both 2(1) and H(l], hence decidable. ]

We can also provide an intuitive description of an algorithm that decides K-union-splittings as
follows. We start enumerating all finite sets {e(X;, P(X;)) : @ < n} where X;’s are finite rooted cycle-free
modal spaces. During the enumeration, for each enumerated finite set, we start verifying whether
K+o =K+ {e(X;,P(X;)) : i <n} holds. If K + ¢ is a union-splitting, then eventually the enumeration
will find a finite set {e(X;, P(X;)) : i < n} that axiomatizes K + ¢ and the identification verification
halts. (One might be concerned about “nested” computation here, but this is fine because we have a
computable bijection from w to w X w, which is the main reason that X is closed under existential
quantification.) Simultaneously, we start enumerating all finite rooted cycle-free modal spaces. For
each of them, we compute all its rooted cycle-free upsets and check if it witnesses that K + ¢ breaks
the condition (5) in Theorem 5.5. If K + ¢ is not a union-splitting, we will eventually find such a
witness. Combining these two, we can decide whether K + ¢ is a union-splitting.

This algorithm is constructive, in the sense that if K+ ¢ is a union-splitting, then it can output a
finite set {e(X;,P(X;)) : i < n} that axiomatizes K + ¢. From this, we can show the decidability of
splittings in NExtK.

Theorem 5.12. Being a splitting is decidable in NExtK. That is, it is decidable, given a formula o,
whether the logic K+ ¢ is a splitting in NExtK.
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Proof. First, we run the algorithm from Theorem 5.11. If K 4+ ¢ is not a union-splitting, then the
algorithm outputs false, and we are done because K + ¢ is not a splitting. Suppose that K+ ¢ is a
union-splitting. Then the algorithm can output an axiomatization K 4+ ¢ = K + {e(;,24;) : i < n},
where each 2; is a finite s.i. modal algebra of finite height. If n = 0, then K 4+ ¢ = K is not a splitting.
So, we may assume n > 1.

If K+ ¢ is a splitting, then K+ ¢ = K+ €(28,B) for some finite s.i. modal algebra 9B of finite
height. For each 2;, since ; ¥~ €(A;, A;), we have 2; (= €(B,B), so there is a homomorphic image 2,
of 2; such that B < A, thus |B| < |4;]. Let m = max{|;| : ¢ <n}. Then |B| < m. Thus, K+ ¢ is a
splitting iff K4 {e(;,24:) : i <n} = K+ €(*B,B) for some finite s.i. modal algebra B of finite height
such that |B| < m.

There are only finitely many such 9, and we can effectively enumerate all of them. Also, given a
B, whether K + {e(;,2;) : i <n} = K+ ¢(B,B) holds is decidable because both logics are decidable
by Corollary 4.21. Thus, it is decidable whether K + ¢ is a splitting. O

Another application of this constructive algorithm is on the axiomatization problem for union-
splittings. Given a modal logic Lg and a formula ¢, the axiomatization problem for Ly + ¢ is, given a
formula 1), to decide whether Lo 4+ = Lo + . In other words, the axiomatization problem for Ly + ¢
is decidable iff the property “Lo+ (—) = Lo + ¢” is decidable in NExtLy.

Lemma 5.13. Let K+ be a K-union-splitting. Then the axiomatization problem for K+ is decidable.

Proof. Let K+ ¢ be a K-union-splitting. Applying the algorithm from Theorem 5.11, we obtain an
axiomatization K + ¢ = K+ {e(2;,2;) : ¢ < n}, where each 2, is a finite s.i. modal algebra of finite
height. If n = 0, then K+ ¢ = K, and the decidability of the axiomatization problem for K + ¢ follows
from the decidability of K. So, we may assume n > 1.

Given a formula ¢, K+ ¢ = K+ ¢ iff v € K+ {e(;,2;) i < n} and €(A;,2A;) € K+ 9 for
i <n. Whether ¢ € K+ {e(;,2;) : i < n} holds is decidable by Corollary 4.21. To decide whether
€(A;,2A;) € K+ holds, note that if e(2;, ;) € K41 then ; = 9 since A; B €(A;,2;), and if ; B 9,
then K+t Z Log®l;, so K+ €(24;,2;) € K+ v since (K + ¢(21;,2;), Log?l;) is a splitting pair, and thus
e(;, ;) € K+ 1. So, it suffices to check whether 2; [~ 1 holds, which is decidable. Hence, it is
decidable whether K + ¢ = K+ ¢. d

Theorem 5.14. The axiomatization problem for a consistent logic K 4 ¢ is decidable iff K+ ¢ is a
union-splitting in NExtK.

Proof. The left-to-right direction can be proved by a similar method used in the proof of Theorem 5.3,
combining Chagrov’s method and the proof of Theorem 2.58; see [WZ07, Theorem 7] for details. [

Remark 5.15. Theorem 5.14 is already proved in [WZ07, Theorem 7], but unlike their proof, our
proof is constructive, in the sense that there is an algorithm that, given a formula ¢ such that K+ ¢ is a
K-union-splitting, outputs an algorithm that decides the axiomatization problem for K + . Essentially,
Lemma 5.13 says that the process of obtaining a finite axiomatization via Jankov formulas for a given

K-union-splitting K + ¢ is computable.

A formula ¢ is called a (un)decidable formula in NExtL if it is (un)decidable, given a formula v,
whether ¢ € L + v (see, e.g., [CZ97, Section 16.4]). From the proof of Lemma 5.13, we can observe
that if K+ ¢ is a K-union-splitting, then ¢ is a decidable formula in NExtK: we first compute an
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axiomatization K + ¢ = K+ {e(;,2;) : i < n}, then p € K+ 9 iff A; = 9 for all i. Moreover, the
proof of [WZ07, Theorem 7] in fact established the converse: if K+ ¢ is not a K-union-splitting, then ¢

is an undecidable formula in NExtK. Hence, we obtain another characterization of K-union-splittings.
Theorem 5.16. ¢ is a consistent decidable formula in NExtK iff K + ¢ is a union-splitting in NExtK.

Thus, we also obtain a somewhat mysterious equivalence between decidable axiomatization problems

and decidable formulas.

Corollary 5.17. ¢ is a (un)decidable formula in NExtK iff the aziomatization problem for K+ ¢ is
(un)decidable.

Proof. For a consistent formula ¢, the equivalence follows from Theorem 5.14 and Theorem 5.16.
For an inconsistent formula ¢, the equivalence holds because p € K+ ¢ iff K+ ¢ = K+ 9 (= the

inconsistent logic). O
Finally, we see three immediate consequences of Theorem 5.11.

Corollary 5.18. Blok’s dichotomy is decidable. In other words, it is decidable whether K 4+ ¢ has
degree of Kripke incompleteness 1 or 280 in NExtK.

Proof. This follows from Theorem 2.58 and Theorem 5.11. O
Corollary 5.19. It is decidable whether the aziomatization problem for K + ¢ is decidable.

Proof. This follows from Theorem 5.14, Theorem 5.11, and the fact that consistency is decidable (¢ is
consistent iff o = ¢ or e = ). O

Corollary 5.20. It is decidable whether ¢ is a (un)decidable formula in NExtK.
Proof. This follows from Theorem 5.16, Theorem 5.11, and the fact that consistency is decidable. [J

This answers [CZ97, Problem 17.3] for NExtK.

5.3 Summary

We showed that the properties of being a union-splitting and being a splitting are decidable in NExtK
by providing a semantic characterization of K-union-splittings. These answer the open question [WZ07,
Problem 2] affirmatively. Moreover, we observed that a formula ¢ is a decidable formula in NExtK
iff the axiomatization problem for K + ¢ is decidable iff K + ¢ is a union-splitting in NExtK or the
inconsistent logic. Consequently, the decidability of being a union-splitting implies the decidability of
being a decidable formula and having a decidable axiomatization problem. This answers another open
question [CZ97, Problem 17.3] for NExtK in the affirmative. We leave it open whether these three
properties are decidable in other lattices of modal logics such as NExtK4 and NExtS4.
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Chapter 6

Decidability of Admissibility and the
Rule Dichotomy Property

Admissible rules in a logic can be regarded as valid inferences in that logic. The decidability of
admissibility in a logic is then a natural strengthening of the decidability of a logic. Friedman [Fri75]
asked whether the admissibility of a given inference rule in IPC is decidable. Rybakov showed that
this is the case for IPC and a large class of transitive modal and superintuitionistic logics (see [Ryb97]
for a comprehensive overview and references). However, the decidability of admissibility in K is a
long-standing open question (e.g., [CZ97, Problem 16.4]).

Recently, Jetabek [Jef09] introduced a new method to construct admissible bases and establish
the decidability of admissibility. Since the admissibility in a decidable logic is IIY by definition, the
existence of a ¥{ admissible base implies the decidability of admissibility. Given a logic L, the method

consists of two parts:
1. find a class of rules that (effectively) axiomatizes all rules over L,
2. provide an admissible base for those selected rules over L.

The latter is done concurrently by proving the rule dichotomy property over L (Definition 6.6) for the
class of rules.

Jerabek [Jer09] employed canonical rules, a generalization of Zakharyaschev’s canonical formulas
[Zak92], to study admissibility in IPC and several transitive modal logics. An admissible base for these
logics was constructed and the decidability of admissibility was established. However, canonical rules
are less effective in the non-transitive setting as they do not axiomatize all rules over K. In this chapter,
we study the possibility of generalizing this method with stable canonical rules to non-transitive modal
logics wK4 and K. Note that an alternative proof of the existence of an admissible base and the
decidability of admissibility in K4, S4, and IPC via stable canonical rules was presented in [Bez+16].

The weak transitive logic wK4 = K+ &Op — Op V p characterizes the derived set operator in
topological spaces (see, e.g., [Esa04]). Moreover, studying wK4 is a first step of the generalization from
the transitive setting to the non-transitive one, as it is weaker than K4 but still has clear similarity
with K4. We show in Section 6.2 that stable canonical rules enjoy the rule dichotomy property over
wK4, following the proof for K4 presented in [Bez+16].

However, as we will see in Section 6.3, stable canonical rules do not have the rule dichotomy

property over K. This aligns with Jefabek’s remark that the rule dichotomy property is a very strong
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property and thus is likely to fail for many logics [Jef09]. Finally, in Section 6.4, we provide some
sufficient conditions on the admissibility and inadmissibility in K. On the one hand, these conditions
yield a full characterization of admissibility for stable rules in K. On the other hand, they illustrate

the combinatorial difficulty of the admissibility in K.

6.1 Admissibility and the rule dichotomy property

Definition 6.1. Let L be a modal logic. A rule I'/A is admissible in L or L-admissible if for any

substitution o,
Vy €T (oy € L) implies 3§ € A (66 € L).

Admissible rules are sometimes informally described as rules that, when added to the base logic,
do not produce new theorems. Though Definition 6.1 implies this informal description, the converse
does not hold in general. We show that the converse holds for modal logics with the modal disjunction
property (see, e.g., [CZ97, Chapter 15]). See [Iem16] and [Met12] for more discussion on the two
formalizations of admissibility. Recall that A(S) = {p: /¢ € S} for a rule system S.

Proposition 6.2. Let L be a modal logic. For any L-admissible rule p,
A(SL +p)=L.

Proof. Let p be an L-admissible rule. From the characterization of admissibility in [Met12], we obtain
that HSPy(V(L)) = HSPy(V(L) NU(p)). Clearly, the lefthand side is equal to V(L). Also, since
V(L) = U(SL), the righthand side is equal to HSPy(U (S, + p)). Applying V to both, we obtain
V(L) = V(U(SL, + p)), namely, L = A(S + p). O

Definition 6.3. A modal logic L has the modal disjunction property if for any formulas @1, ..., @n,
Qg1 V---V Op, € L implies ¢; € L for some 1 <1¢ < n.
Proposition 6.4. Let L be a modal logic with the modal disjunction property. Then for any rule p,
A(SL + p) = L implies p is L-adimissible.

Proof. Let p=T/A be a rule such that A(Sy + p) = L. Let o be a substitution such that oy € L for
all v € T', namely, /oy € Sp for all y € I'. Let S =S + p and A = {01,...,0p,}. Then we have:

r/AeS
= ol'/JocAeS
= /oA €S (by applying the cut rule with each rule /o7)
= /0001,...,000, € S (by applying the cut rule with necessitation rules)
= /0061 V---V 0oy, €S
= 006 V---V0O0b, € A(S)=1L

— 0d; € L for some 1 <i<n (by the modal disjunction property of L).

66



Thus, p is L-adimissible. O
We recall some notions of rules and rule systems.
Definition 6.5. Let L be a logic.

1. Two rules p and p’ are equivalent over L or L-equivalent if they derive each other over L, in other

words, Sp, + p = Sg, + p'; similar for sets of rules.
2. A rule p is aziomatized over L by a class R of rules if p is L-equivalent to a set of rules R’ C R.

3. An admissible base for R over L is a class of L-admissible rules that axiomatizes all L-admissible

rules in R. An admissible base for all rules over L is simply called an admissible base over L.
Definition 6.6. Let L be a modal logic and R be a class of rules.

1. R has the rule dichotomy property over L if every rule in R is either L-admissilbe or L-equivalent

to an assumption-free rule.

2. L has the rule dichotomy property if every rule is L-equivalent to a set of rules which are either

L-admissible or assumption-free.

Remark 6.7. The rule dichotomy property was first introduced in [Jef09], where a transitive modal
logic L was said to have the strong rule dichotomy property if the class of canonical rules has the rule
dichotomy property over L. We modified the definition so that it covers other classes of rules. A
transitive modal logic L has the strong rule dichotomy property in Jefabek’s terminology iff canonical

rules have the rule dichotomy property over L in our terminology.

It is clear from the definition that if there is a class of rules that axiomatizes all rules over L and
has the rule dichotomy property over L, then L has the rule dichotomy property.

It was shown in [Jef09] that canonical rules have the rule dichotomy property over several transitive
modal logics and IPC, in the process constructing an admissible base over these logics and proving the
decidability of admissibility of them. But the rule dichotomy property is not only a byproduct of the
decidability of admissibility and thus a strong sign of the decidability of admissibility, but also has

consequences on the admissibility in the extensions.

Theorem 6.8 ([Jei09]). If L has the rule dichotomy property and L' is an extension of L, then L' has

an admissible base consisting of rules both L- and L'-admissible

However, canonical rules do not axiomatize all rules over K. For example, D, viewed as the rule
/<O T cannot be axiomatized by canonical rules over K [Jef09, Example 6.3]. So, they are less effective
in the non-transitive setting. On the other hand, stable canonical rules do axiomatize all rules over K
[BBI16], and are applied to IPC, K4, and S4 in [Bez+16] to construct an admissible base and prove
the rule dichotomy property. The following theorems summarize the known results about the rule

dichotomy property.

Theorem 6.9 ([Jer09]). The class of canonical rules has the rule dichotomy property over IPC, K4,
GL, S4, K4.3, S4.3, and GL.3. Therefore, these logics have the rule dichotomy property.

Theorem 6.10 ([Bez+16]). The class of stable canonical rules has the rule dichotomy property over
IPC, K4, and S4. Therefore, these logics have the rule dichotomy property.
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6.2 The rule dichotomy property over wK4

In this section, we prove that stable canonical rules have the rule dichotomy property over wK4. The
proof largely follows the proof in [Bez+16] for K4, fixing some ambiguous points and minor issues there.
However, note that this does not immediately imply the decidability of admissibility in wK4; see the
discussion following Corollary 6.18. We will work mostly with modal spaces and exploit combinatorics
on them.

We will establish the rule dichotomy property over wK4 for stable canonical rules, construct an
explicit admissible base for them over wK4, and provide a decidable characterization of admissibility
for them all at once. We begin with a lemma providing a sufficient condition for a stable canonical

rule to be wK4-equivalent to an assumption-free rule. Recall that OStp = o A Oep.

Lemma 6.11. Let p(F,D) be a stable canonical rule over wK4, that is, F is a finite wK4-space.
Suppose that for any wK4-space X, any clopen upset X' C X, and any stable map f': X' —p F, there

is a stable map f : X —p F. Then p(F,D) is equivalent to an assumption-free rule over wK4.

Proof. Let p = p(F,D) be rule

and p’ be the rule

oSty = 61, ---, Oy = 4§,
We show that p and p’ are wK4-equivalent. It is clear that p’ derives p: for any wK4-space X |= p/ and
any valuation V on X, if X,V | v, then X,V = 05ty and X,V |= 05ty — §; for some 1 < i < n, so
X,V = §; for some 1 <i <n, thus X = p.

For the other direction, let X be a wK4-space that refutes p’. Then there is a valuation V' on X such
that X,V £ 051y for all 1 <4 < n. Let X’ be the subspace of X with the underlying set X’ = V[OS!y].
Since X |= wK4, X' is a clopen upset of X, and X’ is a wK4-space. So, X',V |= O0<!y implies X',V |= 7.
For each 1 < i < n, since X,V [ Oy — §;, there is some x € X’ such that X,V,z [~ §;, hence
X', V,x £~ 6. So, X' |~ p. Then there is a stable map f': X’ —p F. By the assumption, there is a
stable map f : X —p F, so X |~ p. Hence, p derives p, and they are equivalent over wK4. O

Next, we introduce a class of rules that will be shown to be an admissible base for stable canonical
rules over wK4. For [, m,n € w, let S,l{m and T7" be the following rules, where we follow the convention
A0 =T and \/() = L. The intuition behind these formulas will be made clear in the proof of (3) = (2)
in Theorem 6.13.

AL (D0 — v) A AT O — O(rs V OS'9))] = Vi, Op;
ostq = py, -, 05 = py

ghm

AL (Ori = o(ri ADSYg) — Vim, Op;
Délq _>p17 Tty Dglq _>pn

s

Before going into the main theorem, we need to define an auxiliary property for stable canonical
rules. This is not only a technical tool for the proof, but also a decidable criterion for a stable canonical
rule to be admissible in wK4. Recall that 151X = X U1X and |S'X = X U [ X.
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Definition 6.12. A stable canonical rule p(F, D) is called trivial if for any S C F, there are s°,s* € F
such that:

1. S C 1s° and s° is reflexive,
2. for any D € D, if D N1s° # ) then D N ({s°} UT=SLS) # 0,
3. §C7s°,
4. for any D € D, if D N1s® # 0 then D N1SLS #£ (.
Note that s® does not have to be irreflexive; s° and x® can even coincide.
Theorem 6.13. Let F be a finite rooted wK4-space and D C P(F). The following are equivalent:
1. p(F,D) is admissible in wK4.
2. p(F,D) is derivable from {Sf{m,Tgn :l,myn € w}.
3. p(F,D) is not trivial.
4. p(F,D) is not equivalent to an assumption-free rule over wKé4.

Proof. (2) = (1). It suffices to show that Sk™ and T," are admissible for all [, m,n € w.

Suppose that n = 0. Let o be a substitution. Let M be the Kripke model with a single reflexive point
 and the empty valuation. Then M,z b~ [AL_,(Qov; = ov;)) A A, O(or; — O(or; VO oq))] — L,
which thus is not a theorem of wK4. Using the Kripke model with a single irreflexive point and the
empty valuation, the same argument shows that A", (Cor; — O(or; A0S oq)) — L ¢ wK4. So, S(l)’m
and 73" are admissible.

Suppose that n > 0. Let o be a substitution such that O'oq — op; ¢ wK4 for all 1 < i < n.
Then, by the finite model property of wK4 [BEG11], for each i, there is a finite rooted Kripke model
M, of wK4 with a root x; such that M;, z; = OS'oq and M;,z; [~ op;. By the weak transitivity,
M; = o%log.

Let M be the Kripke model consisting of the disjoint union of M1, ..., M,, with an extra reflexive
root x, where all propositional variables are false. Then M,z | /\izl(ljavi — owv;) since z is
reflexive, M,z = AL, O(or; — O(or; V 0S1oq)) since M; E 0Slog for all 1 < i < n, and
M,z = Oop; since x sees x; for all 1 < ¢ < n. So, M,z = [/\ézl(ljavi — ov;)) AN N[~ O(or; —
O(or; VOStoq))] — Vi, Oop;, which thus is not a theorem of wK4. Using the Kripke model consisting
of the disjoint union of My,..., M,, with an extra irreflexive root =, the same argument shows that
AL (Car; = O(or; AOStoq)) — Vi, Oop; & wK4. So, S5™ and T™ are admissible for n > 0.

(3) = (2). Suppose that p(F, D) is not derivable from {S5™,T™ : I, m,n € w}. Then there is a
wK4-space X = (X, R) validating {Sf{m,T[l” :l,m,n € w} and refuting p(F, D). So, there is a stable
map f: X —p F. We show that p(F,D) is trivial. Let S C F.

We work in the modal algebra X* dual to X. For the sake of readability, we use propositional
variables and formulas to also denote the corresponding elements in X* and the corresponding clopen
subsets of X, with a specified valuation. Let C' = {v1,...,v;} be a finite set of clopen subsets of X. Let
ps =X\ f(s) forse S, g= f1=L8], and 7, = f~(a) for a € F. p,,q,r, are all clopen since f is
continuous. Since f is stable and F is weakly transitive, we have ¢ = 0Slq, so OSlq € ps for all s € S.

So, the conclusion of Sf{m is falsified in X, thus the assumption is also falsified. It follows that the set
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{Ov—v:veX*}U{NepO(ra = O(ra UDSq)) NN,eg Ops} has the finite intersection property.
Since X is compact, there is some x in all of these clopens.

Let s° = f(x). Since x € Ov — v for all v € X*, x is reflexive, so s° is reflexive. Since z €
Nseg ©s, for any s € S, xRy for some y € f~1(s),s0 S C 1s°. Since € (,cp O(ra = O(r,UDg))
and 7 is reflexive, € 7o — O(rgee UOSYq), so # € O(rse UDOSYg) by f(z) = s°. If DN 1s® # () for
some D € D, then since f satisfies CDC for D, there is some y such that xRy and f(y) € D. Then
y € reo UDSYg, s0 f(y) € {s°F UTSLS. Hence, DN ({s°} UTSLS) £ 0.

Again, let p; = X \ f7I(s) for s € S, ¢ = f'[1=15], and r, = f~'(a) for a € F. Then, the
conclusion of T is falsified in X, so the assumption is also falsified. It follows that there is some
v € Nuer(Ora = O(ra NO=1q)) NNyeq O ws. Let s* = f(2). Since 2/ € (,cg O—ps for s € S,
S C1s®. If DN 71s® # () for some D € D, then since f satisfies CDC for D, 2’ € &ry for some d € D,
so x € O(rg N O=1q), which implies D N1=1S # (. Hence, p(F, D) is trivial.

(4) = (3). Assume that p(F,D) is trivial. We use Lemma 6.11 to show that p(F,D) is equivalent
to an assumption-free rule. Let X = (X, R) be a wK4-space, Y C X be a clopen upset, and f : Y —p F
be a stable map satisfying CDC for D. Let fO = f and Y° =Y. Given a clopen upset Y* C X and a
stable map f*:Y* —p F, we extend f* to f¥*t1 as follows.

For z € X, let f¥ = fF[Y*N1z]. For S C F,let Y = {z € X\ Y*: f¥ = S}. Take a minimal
S C F such that YSk # (). Such an S always exists because F is finite.

Case (I): S has a reflexive root s € S. Define

ffz) ifxeYh

. k
s 1fxEYS.

=]

Let Yit! = domf = Y* UYL

Claim 6.14. Y**1 is a clopen upset and f**! is stable and continuous.

Proof. Since for any x € X, z € a(Y* — (f))71S) \ Y* iff f£ = fF[Y*N1z] € S and = ¢ Y7,
YE =0o(y* — (f%)71[S]) \ Y* by the minimality of S. So, Y& and Y**! are clopen. If z € Y} and
xRy for some y ¢ Y*, then 1y C 12 U {2} by the weak transitivity, so f?f C fF =S, hence f;: = S and
Yy € Yé“ by the minimality of S. So, Y**! C X is an upset. It follows that f**! is stable (since s is a

reflexive root of S) and continuous. O
Claim 6.15. f**1 satisfies CDC for D.

Proof. 1t suffices to verify CDC for x € Yé“ since f* satisfies CDC. Suppose D N1 f51(x) # () for some
D € D and x € Y¥. Since fF = 3, there is a y € Y¥ N1z such that f*(y) = fFi(y) = s = fiti(a),
so DN 1fE(y) # 0. Since f* satisfies CDC, there is a z € Y* such that yRz and f(z) € D. We
have zRyRz. Since = ¢ Y* and z € Y*, x # 2, so Rz by the weak transitivity. This shows that
DA fE ] £ 0. m

Case (II): S does not have a reflexive root. Then s® ¢ S since S C 1s°*. Let Y¥* = Y&\ |Y¥ and
on = Ysk \iSIYé“. YSI?' consists of irreflexive R-maximal points in YS]“. All R-maximal points in Yé“’
are reflexive: if x € Yslfo is maximal in Yé’“’ but not maximal in Yb’?, then zRy for some y € ileSI?', SO
x € iSIYSk' by the weak transitivity, which contradicts = € Y°; if z € Yé” is maximal in Yg, then it

is reflexive since = ¢ Y&°.
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Define:
ff(x) ifxeYh
k+1 _ . : U
ff i (x)=1<s if x € Yé‘/’ ,
s° if z € Y&°.
Let Yitl = domf = Y* U YE U YEe

Claim 6.16. Y**1 is a clopen upset and f*+1 is stable and continuous.

Proof. Since Y¥ is clopen as shown in Case (I), Y&, Y£°, and Y**! are clopen. So, f**1 is conitnous.
Suppose that zRy. If z € Y*, then y € Y* since Y* is an upset. If z € Yé’f', then y € Y* U Yé“ since
Y*UY¥ is an upset as shown in Case (I), and y € Y* since z is irreflexive and R-maximal in Y&.
If x € YSI?O, then again y € Y* U Yé“. If furhter y € ¢Y§‘, then yRz for some z € Yé’?’, and xRz by
the weak transitivity since 2 ¢ Y¥*, which contradicts 2 ¢ ¢Y§". Also, y ¢ Yé“ since = ¢ in]«“. So,
y € YFUYF. Tt follows that Y*T! C X is an upset and f**! is stable (since s° is reflexive). O

Claim 6.17. f**1 satisfies CDC for D.

Proof. It suffices to verify CDC for z € YSL“ and z € on since f* satisfies CDC. Suppose that
DNt fr*Y(z) # 0 for some D € D and z € Y¥*. Then DN 1SS # () since fA+1(z) = s*. If DN S # 0,
then D N f*[Y* N 1x] # 0 since f¥ =S, so DN fFH1x] # 0. If DNAS # 0, then there is some s € S
such that DN s # (. Since f¥ = S, there is a y € Y* N1z such that f*(y) = s. Since f* satisfies CDC
for D, there is a z € Y* such that yRz and f*(z) € D. We have RyRz. Since z ¢ Y* and z € Y'*,
x # z, so xRz by the weak transitivity. This shows that D N f*1[ta] # 0.

Suppose that D N1 f*1(z) # @ for some D € D and = € Y#°. Then D N ({s°} U1=S) # 0 since
fFi(x) = s°. If s° € D, then D N f**1[tz] # 0 since all R-maximal points in Y° are reflexive. If
DNASLS £ (), then D N fF41[12] # () follows as the above case of YSI?‘. dJ

It remains to show that the construction halts in finitely many steps. Suppose that f°,..., f are
constructed as above and S C F' is used to construct fk for some 0 < k < n. We show that S cannot
be used to construct ft!. Note that Y0 C ... C Y™ by the construction.

Suppose that S occurs as one of the candidates to construct f"*! for a contradiction. Then
S = f7 for some x € X \ Y™, so x ¢ Y*. If f¥ is constructed by Case (I), then Y* = Y+~ U Yslffl,
sox ¢ Y1 and o ¢ Yé‘:_l, which implies S # f+~!. By the minimality of S, ff=1\ S # 0, so
P\ S # 0 since f*=1 C f7, which contradicts S = f7. If f* is constructed by Case (II), then
VE = YR luysteyvd= If 2 ¢ Y&!, then we again obtain a contradiction with S = f=. If
T € Y;il, then = € iY;il' since = ¢ Yslffl' U Y;ilo, so v Ry for some y € Y;il', which contradicts
S = fo since fr(y) = f¥(y) = 5* ¢ S.

So, since F' is finite, there are only finitely many S to use in the construction, so the construction
halts in finitely many steps. In the end, we obtain a clopen upset ¥ C X and a stable map f : Y —»p F.
Since the construction cannot be applied to f, for any S C F there is no z € X \ Y such that f, = S,
which implies that X =Y. Thus, f : X —»p F. Hence, by Lemma 6.11, p(F, D) is equivalent to an
assumption-free rule.

(1) = (4). Suppose that p(F,D) is admissible and equivalent to an assumption-free rule /A for a
contradiction. Then one of the formulas in A is a theorem of wK4, so /A is valid on all wK4-sapces.
However, this contradicts F £ p(F, D).

O
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Corollary 6.18.
1. Stable canonical rules have the rule dichotomy property over wKé4,
2. The set {Sf{m,T,fL” :l,m,n € w} forms an admissible base for stable canonical rules over wK4,
3. It is decidable whether a stable canonical rule is admissible in wK4.

However, Corollary 6.18 does not immediately imply the decidability of admissibility in wK4, as
it remains open whether all rules can be axiomatized by stable canonical rules over wK4 (note that
this was the first part of Jefdbek’s method as described in the introduction). In particular, we lack a
filtration for wK4 (cf. Section 3.2). Although the finite model property of wK4 was proved in [BEG11]

and recently in [KS25], their filtrations are non-standard, and it is unclear whether they are continuous.
Corollary 6.19. If wK4 admits filtration, then the admissibility is decidable in wK4.

The following problem is also asked in [KS25].
Question 6.20. Does wK4 admit filtration?

Taking another look at the rules Sh™ and T™

7' one may notice that these rules are exactly the

rules forming the admissible base for K4 constructed in [Bez+16]. This is not a coincidence, given the

following fact, which aligns with the idea in Theorem 6.8.

Proposition 6.21. Let R be a class of rules that has the rule dichotomy property over L, L' be
an extension of L, and R C R. If A is an admissible base for R over L, then A" = {p € A :

p is L'-admissible} is an admissible base for R’ over L'.

Proof. Let A be an admissible base for R over L. For any L’-admissible rule p € R/, p is either
L-admissible or L-equivalent to an assumption-free rule by the rule dichotomy property over L. If p is
L-admissible, then Sy, +p = Sz, + Ag for some Ay C A, and S/ +p = S +.Ap. Since p is L'-admissible,
rules in Ay are L'-admissible, so Ay C A’. Thus, p is axiomatized by A’. If p is L-equivalent to an
assumption-free rule, then p is L'-equivalent to an assumption-free rule p’, and since p is L’-admissible,
P is s0, so one of the conclusion of p’ is a theorem in L', thus p’ is derivable in L', hence p is so. This

means that p is trivially axiomatized by A’. So, A’ is an admissible base for R’ over L'. O
Corollary 6.22 ([Bez+16]).

1. The set {Sf{m,T[L” :l,m,n € w} forms an admissible base for stable canonical rules over K4,

2. The set {Sﬁ;m,Tff‘ :l,m,n € w} forms an admissible base in K4,

3. The admissibility is decidable in K4.

Proof. Stable canonical rules over K4 are stable canonical rules over wK4. So, by Corollary 6.18 and
Proposition 6.21, the rules Sh™ and T'" that are K4-admissible form an admissible base for stable
canonical rules over K4. As done in the proof of Theorem 6.13 (2) = (1), it can be verified that
these rules are K4-admissilbe, where (1) follows. It was shown in [Bez+16] that stable canonical
rules axiomatize all rules over K4, which together with (1) implies (2). Finally, it is clear that the
set {S’i{m, T :l,m,n € w} is recursively enumerable. So, as we mentioned at the beginning of this
chapter, (3) follows. O
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6.3 The rule dichotomy property over K

Contrary to wK4 and many transitive modal logics, we show that the rule dichotomy property over K
fails for stable canonical rules. In fact, we will construct infinitely many stable rules (that is, stable
canonical rules with D = ()) that are neither K-admissible nor K-equivalent to an assumption-free rule.
So, even though stable canonical rules axiomatize all rules over K (Theorem 3.24), we cannot prove a
similar result as Theorem 6.13 for K.

It is well-known that K has the modal disjunction property (see, e.g., [CZ97, Theorem 3.72]). So,
by Propositions 6.2 and 6.4, a rule p is admissible in K iff A(Sk + p) = K. We will take the latter as
our working definition of K-admissibility in this section.

For n € w, let F;, be the following modal space. Points in the circle form a cluster; they all see u

and are not seen by wu.

ou

Figure 6.1: F,

Lemma 6.23. For any n € w, p(Fy,,0) is inadmissible in K.

Proof. Let n € w. We show that there is a formula ¢ such that ¢ € A(Sk + p(Fp,0)) but ¢ ¢ K. For
0<7<n,let
i =pi A \{-p; :0<j<ni#j}

and
p=N\{ovi:0<i<n}—0(OTV\/{pi:0<i<n}).

As ¢ is refuted at the root in the following model, ¢ ¢ K.

D D, °

Assume that ¢ ¢ A(Sk + p(Fn,0)) for a contradiction. Then, V(U(Sk + p(Fn,0))) ¥~ ¢, so
U(Sk + p(Fn, D)) = . So, there is a modal space X such that X = p(F,,0) and X £ ¢. Let

wz/\{—'pi:()gign}.

Let V' be a valuation on X such that X,V (£ ¢. Define f : X — F, by f(z) = w; if x € V(1) for
0<i<n, f(z)=wifz e V(OLAY), and f(x) = wp otherwise. As {V(¢;):0 <i <n}u{V(OLAy)}
is a pairwise disjoint family of non-empty clopen subsets of X, f is well-defined, continuous, and
surjective. Since all points in f~!(u) = V(OL A %) are dead ends, f is stable. So, f : X —y Fp.
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Thus, X & p(Fn, D), which is a contradiction. Therefore, ¢ € A(Sk + p(Fn,?)) \ K, and p(F,,0) is

inadmissible in K. O

Remark 6.24. Lemma 6.23 can also be derived as an immediate consequence of Theorem 6.33 proved

in the next section.

To show that p(Fy, () is not K-equivalent to an assumption-free rule, we use the following fact.
Proposition 6.25 ([Jer09]). For any rule system S, the following are equivalent.

1. Validity of S is preserved by generated subframes (i.e., upsets),

2. S is aziomatized by assumption-free rules over K.

Lemma 6.26. For any n € w, Sk + p(Fn, D) is not ariomatized by assumption-free rules over K. In

particular, p(Fp, D) is not K-equivalent to any assumption-free rule.

Proof. Let n € w. Let X = (X, R) be the following modal space, where U C X is clopen iff UN(wU{y})

is finite without y or cofinite with y. Note that R is not transitive, y only sees y, and 0 only sees xg.

.O .1 Oy

oxy ox o Xy

Fyn is (isomorphic to) a closed upset of X. We show that X = p(F,,0) and F, |~ p(Fy,0). The
latter is clear. Suppose that there is a stable map f : X —»y F,, for a contradiction. Since u has no
proper successor, if f(z) = v and xRy then f(y) = u. If f(0) = u, then f(zg) = u. If f(x;) = u
for some 0 < i < n, then f(z;) = u for all 0 <i < n and f(y) = u. If f(y) = u, then, since f~1(y)
is clopen, there is some k € w such that f(l) = u for all | > k. If f(k) = u for some k > 0, then
f(k—1) =wu. Since f~1(u) # 0, this argument implies that f~!(u) = X, which is a contradiction. So,
X Ay F and X | p(Fp,0).

This shows that the validity of p(F,, () is not preserved by upsets, so by Proposition 6.25, p(Fp, ()

is not axiomatized by assumption-free rules over K. ]

Theorem 6.27. There are infinitely many stable (canonical) rules that are neither K-admissible
nor K-equivalent to an assumption-free rule. Therefore, stable canonical rules do not have the rule

dichotomy property over K.
Proof. This follows directly from Lemma 6.23 and Lemma 6.26. 0

Jerdbek remarked in [Jef09] that “the rule dichotomy is a very strong property which is unlikely
to hold for a substantial class of logics.” Since there are only countably many stable canonical rules,
Theorem 6.27 shows that the rule dichotomy property over K fails for stable canonical rules as badly
as possible. This is further evidence to the fact that K may lack the rule dichotomy property. At least,

we can conclude that it is impossible to prove Theorem 6.13 for K, thus we cannot apply Jefdbek’s
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method of establishing the decidability of admissibility with stable canonical rules to K, even though,
unlike canonical rules, stable canonical rules do axiomatize all rules over K.

However, the fact that stable canonical rules do not have the rule dichotomy over K does not imply
that K does not have the rule dichotomy property. Specifically, it does not exclude the possibility that
a stable canonical rule, though itself is neither K-admissible nor K-equivalent to an assumption-free
rule, is K-equivalent to a set of rules such that each of them is either K-admissible or K-equivalent
to an assumption-free rule. It remains open whether one can design a class of rules that axiomatizes
all rules over K (which canonical rules fail to do) and has the rule dichotomy property over K (which
stable canonical rules fail to do), and thus prove the rule dichotomy property for K. The existence of

such a class of rules would lead to an affirmative solution to the decidability of admissibility in K.

Question 6.28. Is there a class of rules that axiomatizes all rules over K and has the rule dichotomy

property over K¢ Does K have the rule dichotomy property?

6.4 Decidable sufficient conditions for (in)admissibility in K

Moving away from Jetabek’s method of proving the decidability of admissibility in K via the rule
dichotomy property, in this section, we try to study the admissibility of stable canonical rules directly
by working with combinatorics on modal spaces. We present some combinatorial sufficient conditions
for stable canonical rules to be K-admissible or K-inadmissible.

We will use the following lemma as our main strategy to obtain sufficient conditions for being

K-admissible.

Lemma 6.29. Let F be a finite modal space and D C P(F). Suppose that for any finite rooted
irreflexive tree X, there is a modal space X' such that X is a closed upset of X' and X' /p F. Then,
p(F,D) is admissible in K.

Proof. Let X be an arbitrary finite rooted irreflexive tree, and X’ be given as in the assumption. Since
X' /Ap F, we have X' = p(F, D), in particular, X' = A(Sk + p(F, D)). So, since the validity of formulas
is preserved by closed upsets, X = A(Sk + p(F,D)). This holds for any finite rooted irreflexive tree.
Therefore, since K is sound and complete with respect to finite rooted irreflexive trees (Theorem 2.53),
it follows that K = A(Sk + p(F, D)), namely, p(F, D) is admissible in K. O

For a modal space X = (X, R), a point x € X is called a sharp root of X if xRy for all y € X. A

sharp root must be reflexive.

Lemma 6.30. Let F = (F,Q) be a finite modal space and D C P(F). If F has no sharp root r such
that either VD € D(D # 0 — r € D) or Jw € F(w # r AwQw AN wQr), then p(F,D) is admissible in
K.

Proof. Assume that F' has no sharp root r such that either VD € D(D # 0 — r € D) or 3w € F(w #
rAwQuwAwQr). Let X = (X, R) be an arbitrary finite rooted irreflexive tree. Let X' = (XU{z,z1}, R')
be the finite modal space where R' = RU {(z¢,z) : x € X'} U{(21,20)} U {(x1,21)}. Then, X is a
closed upset of X’.

Case (I): F has no sharp root. Then, it is clear that there is no stable map X’ —p F, since X’ has

a sharp root xg.
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Case (II): F has sharp roots and for any sharp root r, 3D € D(D # ) Ar ¢ D) and Vw € F(w #
r AwQw — —wQr). Suppose for a contradiction that there exists a stable map f : X’ —p F. Then
f(zo) is a sharp root in F. By the assumption, there is some D € D such that D # () and f(z¢) ¢ D.
Let w € D. If f(x1) = f(x0), then f(x1)Qw, which contradicts CDC for D since z; only sees xg
and x; and f(z1) = f(zo) ¢ D. So, f(x1) # f(xo). Then, since f(x1)Qf(z1) by z1R'x1, we have
—f(21)Qf(xo) by the assumption, which contradicts f being stable since x1R'xg. Thus, there is no
stable map X’ —»p F.

In both cases, we have shown that X' 4p F, so it follows from Lemma 6.29 that p(F,D) is
admissible in K. O

Lemma 6.31. Let F = (F,Q) be a finite modal space and D C P(F). If there is some D' C D and
d € D' such that there is no path in |JD' from d to a mazimal irreflexive point in |JD’, then p(F,D)

1s admissible in K.

Proof. Let D' C D and d € |JD’ such that there is no path in [JD’ from d to a maximal irreflexive
point in |JD'. Let X = (X, R) be an arbitrary finite rooted irreflexive tree. Suppose that there is a
stable map f : X —p F for a contradiction.

Let dy = d and x9 € f~!(dp). Assume that we obtained a path do@---Qd, in F and a path
zoR -+ Rxy, in X such that d; € |JD' and f(z;) = d; for all 0 < i < n. By our assumption, d, is
not a maximal irreflexive point in |JD’, so there is some e € |JD’ such that d,,Qe. Let E € D’ be
such that e € E. Since f satisfies CDC for E, there is some z,4; € X such that f(z,+1) € E. Let
dnt1 = f(xn41), s0 dpt1 € |JD'. Thus, we obtain a path do@ - - - Qdy, 11 in F and a path xoR - - - Rry41q
in X such that d; € [JD’ and f(x;) = d; for all 0 <i < n+ 1. Repeating the construction, it follows
that there is an infinite path in X, which contradicts the assumption that X is a finite rooted irreflexive
tree. So, f : X Ap F, and therefore, p(F, D) is admissible in K by Lemma 6.29. O

Summarizing Lemma 6.30 and Lemma 6.31, we obtain the following sufficient condition for K-

admissibility.

Theorem 6.32. Let F = (F,Q) be a finite modal space and D C P(F). If one of the following
conditions is not satisfied, then p(F,D) is K-admissible:

1. F has a sharp root r such that YD € D(D # 0 — r € D) or 3w € F(w # r ANwQw N wQr),

2. For any D' C D and d € |JD', there is a path in\JD' from d to a mazimal irreflexive point in
Uno'.

Now we turn to the inadmissibility. A set D C P(F) is called trivial if D=0 or D = {0}. If D is
trivial, then any stable map satisfies CDC for D.

Theorem 6.33. Let F = (F,Q) be a finite modal space with a sharp root r and D C P(F) be trivial.
Then, p(F, D) is inadmissible in K.

Proof. Let n=|F|—1and F = {r,wy,...,w,}. If n =0, then F consists of a single reflexive point
since F has a sharp root, so X —p F for any modal space X, thus U(Sk + p(F,D)) = (. Then,
V(U(Sk + p(F,D))) = 0, which means that A(Sk + p(F, D)) is the inconsistent logic, hence p(F, D) is

inadmissible in K.
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Assume that n > 0. For each 1 < i < n, let
i =pi A N\{pj i 1< j <nyi# )

and

p=-(A\{oWiADOL):1<i<n}).
We show that ¢ € A(Sk + p(F, D)) and ¢ ¢ K. As ¢ is refuted in the following model, ¢ ¢ K.
® D1 . e ® Dy
[

Suppose that ¢ ¢ A(Sk + p(F,D)) for a contradiction. Then, V(U(Sk + p(F,D))) ¥~ ¢, so
U(Sk + p(F, D)) = ¢. So, there is a modal space X = (X, R) such that X = p(F,D) and X }= ¢. Let
V' be a valuation on X such that X,V £ ¢.

Define f : X — F by f(x) = w; if v € V(¢ AOL) for 1 < i < n, and f(x) = r otherwise.
Since ¢ is refuted at some point in X, V(¢; AOL) £ 0 for all 1 < i < nand V(OT) # 0. Then,
{V(; AOL):1<i<n}U{V(OT)}is a pairwise disjoint family of non-empty clopen subsets of X, so
f is well-defined, continuous, and surjective. If z € X has a successor, then x £ O, so f(x) = r. Thus,

f is stable since r is a sharp root of F'. So, X —p F, naemly, X = p(F,D), which is a contradiction.
Therefore, ¢ € A(Sk + p(F, D)) \ K, and p(F, D) is inadmissible in K. O

Remark 6.34. Note that both conditions in Theorem 6.32 and Theorem 6.33 are decidable. In
particular, the second condition in Theorem 6.32 is decidable because in a finite modal space F, there

is a path from x to y iff there is a path of length < |F| from x to y.
Finally, as an application, we consider some concrete examples.
Corollary 6.35. A stable rule p(F,0) is K-admissible iff F has no sharp root.

Example 6.36. An explicit axiomatization was presented for several logics and rule systems in [BBI16,

Section 8§].

1. Let Rooted be the class of all finite rooted modal spaces. Then S(Rooted) = Sk + p()+ p(oco) +
p(o—oo0). The three rules are all K-admissible since none of the corresponding spaces has a
sharp root. It follows that A(S(Rooted)) = K. This confirms that K is complete with respect to
Rooted.

2. KD = A(Sk + p(e) + p(o—s)). Since K C KD, at least one of the two rules must be K-inadmissible.
Corollary 6.35 tell us that p(e) is K-admissbile and p(o—se) is not.

3. KT = A(Sk + p(e) + p(ox—e)). Similarly, it follows from Corollary 6.35 that p(e) is K-admissbile
and p(oe) is not.

Example 6.37. We clarify the (in)admissibility in K for stable canonical rules p(F, D) such that
|F| =1 and |F| = 2. Proposition 3.23 dually states that, up to equivalence, we can work with D that
contains () and is closed under unions. For the sake of simplicity, we will only count and present stable

canonical rules with such D’s.
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1. Among stable canonical rules p(F, D) such that |F| = 1, up to equivalence, there is only one rule
that is K-inadmissible. Theorem 6.33 implies that p(o, {#}) is K-inadmissible, and Theorem 6.32

implies that all the others are K-admissible.

2. Among stable canonical rules p(F, D) such that |F| = 2, Theorem 6.33 implies that p(F,{0}) is

K-inadmissible for the following four F’s.

[ ] [ ] o

O O o
Theorem 6.32 implies that all the others are K-admissible, except for p = p(F, {0, F'}), where F

is the leftmost one in the above figure.

We can manually verify that p is K-inadmissible. Let ¢ = —=<o0OL. It is clear that ¢ ¢ K. If
@ ¢ A(Sk + p), then, as done in the proof of Theorem 6.33, there is a modal space X such that
X | p and X [~ . Then, X contains points that are dead ends and that are not, so X — g gy F
by mapping dead ends to the irreflexive point and the other points to the reflexive root. However,
this contradicts that X = p = p(F, {0, F'}). Thus, p € A(Sk + p) \ K, which implies that p is

K-inadmissible.

Hence, we conclude that, up to equivalence, there are exactly five stable canonical rules p(F, D)
such that |F'| = 2 that are K-inadmissible.

6.5 Summary

We studied the rule dichotomy property and the decidability of admissibility for non-transitive logics
K4 and K. We showed that stable canonical rules have the rule dichotomy property over wK4 by
generalizing the proof for K4 in [Bez+16]. However, this does not immediately yield the decidability
of admissibility in wK4, as it is unknown whether stable canonical rules axiomatize all rule systems
over wK4. In addition, we showed that stable canonical rules do not have the rule dichotomy property
over K. This partially confirms Jefdbek’s conjecture that many logics may lack the rule dichotomy
property. As the rule dichotomy property is a crucial step in Jefdbek’s method, unfortunately, this
also suggests that the method may be less effective for K. Finally, we provided sufficient conditions for
both admissibility and inadmissibility in K and discussed some examples. In particular, we obtained a
full characterization of K-admissibility for stable rules.

In the following table, we summarize our results and the known results on the rule dichotomy
property and the decidability of admissibility for different logics L and classes R of rules. We say
the R is complete over L if R axiomatizes all rule systems over L. We abbreviate the rule dichotomy

property as rdp.
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We leave it open if stable canonical rules axiomatize all rule systems over wK4. If this is the case,
then we obtain the rule dichotomy property and the decidability of admissibility in wK4 for free. As
wK4 shares more similarities with K4 than K, canonical rules could be more effective for wK4 than
stable canonical rules, though we have not discussed this approach. We leave it for further research to

apply Jetabek’s method with canonical rules to wK4, aiming to fill in the third row in the table.
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Chapter 7
Cardinality of Sets of Logics

In this short chapter, we study the cardinality of sets of logics. This chapter is based on a joint work
with Juan P. Aguilera and Nick Bezhanishvili.

Counting logics has been an interesting question in the study of lattices of logics. Since we assume
the set of propositional variables to be countable, there are at most 28 many logics, being sets of
formulas. Jankov [Jan68] showed that there are indeed 280 many distinct superintuitionistic logics,
which implies that there are also 2% many modal logics. Many results on logical properties are about
the number of logics with or without a certain logical property. Blok’s dichotomy result (Theorem 2.58)
can also be seen in this regard.

The current study is motivated by the following question posed recently in [BBM25].

Question 7.1 ([BBM25]). Does every superintuitionistic and transitive modal logic have the degree of
fmp (Definition 7.8) either < Xg or 2802

This question can be reformulated as the following, where the interval between two logics Ly and
L4 is the set
[Lo, L] ={L: Lo C L C L1}

Question 7.2 ([BBM25]). Does every interval of superintuitionistic or transitive modal logics have the

cardinality either < Xg or 280 2

We applied descriptive set theory via coding and showed that this is the case. While the proof was
written for logics, we noticed that it works in a much more general setting. Later, George Metcalfe,
Niels Vooijs, and Simon Santchi pointed out that the proof works in the setting of varieties. In

particular, the following open question in [JL18] was communicated to us by Niels Vooijs.

Question 7.3 ([JL18, Question 6.4 (ii)]). Does the subvariety lattice of every variety have the cardinality
either < Ng or %o 2

We answer all three questions in the positive; the latter two are addressed in Section 7.1 and the
first one is addressed in Section 7.2, generalized to all modal logics. Throughout the chapter, we work
in ZFC and do not assume the Continuum Hypothesis.

7.1 Cardinality of intervals of varieties and equational theories

We first illustrate the main idea behind the proofs: applying descriptive set theory to logic/universal

algebra via coding. We assume our algebraic language and the set of variables to be countable. So,
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there are only countably many terms and identities, and they can be effectively coded by natural
numbers. Let T be the set of all terms and Id be the set of all identities. We will identify T and Id
with their corresponding subsets of w.

Equational theories, viewed as sets of identities, thus correspond to subsets of w, or elements of
the Cantor space 2%, which are in turn often identified with real numbers. Explicitly, an equational
theory ® corresponds to an element A € 2¢, i.e., an infinite 0-1 sequence, such that A(i) = 1 iff the
identity with the code ¢ belongs to ®. So, instead of varieties or equational theories, we can count
sets of subsets of w, in other words, sets of reals. With this correspondence, it is no surprise that
descriptive set theory can be used to study the cardinality of sets of equational theories/varieties, as
it is exactly the theory about sets of reals. In particular, descriptive set theory is good at handling
cardinalities between Xy and 280; any explicit construction of an uncountable family of varieties or
equational theories would result in a family of the cardinality 2%°.

Recall the definition of the arithmetical hierarchy, the Borel hierarchy, and Borel sets from
Section 2.6. All of our cardinality results will be obtained in the same scheme. Given a set of
logics/equational theories, we show that it is Borel by finding an arithmetical hierarchy it belongs to,
and then apply the fact that every Borel set has the cardinality < R or 280 (Theorem 2.69).

We start with intervals of varieties and equational theories. Let &g and ®; be equational theories.
Recall that the interval between ®3 and ®4 is the set

[@1,Po] = {P : ® is an equational theory such that &1 C & C Py},

An interval in this sense may not be linear. Since each equational theory corresponds to a real, we can
view an interval as a set of reals. Thus, it is meaningful to talk about the arithmetical hierarchy or
Borel hierarchy of an interval. Recall that for A, B C w, the join A ® B C w is the set

{2n:ne A} U{2n+1:n € B}.
Intuitively, using the parameter A & B amounts to using the parameters A and B.

Lemma 7.4. The set [®, ®1] is I} (®¢ @ ®1).

Proof. A set ® C w is in [®g, P;] iff each element in & indeed codes an identity, ® is an equational
theory, and ®; C ® C ®5. Recall that a set of identities is an equational theory iff it satisfies the five
conditions in Theorem 2.13. Thus, ® € [®(, ®,] iff it satisfies all the following conditions:

1. & Cld,

2. smsedforseT,

3. s=teP=t~=sed,

4. st truedP=s~ucd,
5. ® is closed under replacement,
6. ® is closed under substitution,

7. Dy C D C By,
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We show that all these conditions can be expressed by II{ formulas, with the parameters ®; and ®;
used in the last one. We only address items (6) and (7). The others can be verified in a similar manner.
It follows from Definition 2.12 that the ternary relation “y’ is a replacement instance of ¢ and ¢” is

recursive. Thus, using a recursive predicate Rep, item (6) can be expressed by the Hcl) formula:
ViVjVk (j € TAk € ® ARep(i,j, k) — i € D).
Item (7) can be expressed by the IIY formula with parameters ®q and ®;:
Vi[iePg—oieP)A(ied—icd)].
Thus, the set [®g, ®;] can be defined by a II{ formula with parameters ®, and ®;, hence it is
(g & ©1). ]

Theorem 7.5. For any equational theories ®y and @1, the interval [Po, P1] has the cardinality < N
or 28, Dually, for any varieties Vy and Vi, the interval Vo, V1] has the cardinality < RXq or oRo

Proof. By Lemma 7.4 and Proposition 2.66, the interval [®g, ®;] is II{, so it is Borel. Thus, it has
the cardinality < R or 2% by Theorem 2.69. The dual statement follows from the correspondence

between equational theories and varieties. O

Corollary 7.6. Every eugtional theory has < Xg or 280 many extensions. Dually, every variety has

<Xy or 280 many subvarieties.

Proof. This follows from Theorem 7.5 by considering the contradictory equational theory or the trivial

variety. O

This answers the open question [JL18, Question 6.4 (ii)] in the affirmative.

Remark 7.7. The cardinality results were formulated for equational theories and varieties, so they
apply to a wide range of logics, including modal logics, superintuitionistic logics, and substructural
logics. Moreover, it should be clear from the proofs that the same idea works for even general settings,

such as quasivarieties and universal classes.

7.2 Cardinality of the degrees of the finite model property

Next, we present a particular application of our main idea to logics and study the degrees of the
finite model property (degrees of fmp for short). The degrees of fmp were introduced in [BBM25| as a
modified version of the degrees of Kripke incompleteness (Definition 2.56) using finite Kripke frames.
We first recall the definition for modal logics; the case of superintuitionistic logics is analogous. Let Lg

be a logic.

Definition 7.8. Let FFr be the set of all finite Kripke frames. For L € NExtLg, let
FFr(L) ={F € FFr: FF L},
and the fmp span of L (in NExtLg) be the set
fmp;, (L) = {L' € NExtLg : FFr(L') = FFr(L)}.

83



The degree of fmp of L (in NExtLg) is the cardinality of the set fmp; (L).

The relation FFr(L) = FFr(L’) induces an equivalence relation on the lattice NExtLg, and the
fmp span of L refers to the equivalence class that L belongs to. Thus, intuitively, the degree of fmp
of L measures to what extent L cannot be distinguished from other logics by the means of finite
Kripke frames. The following antidichotomy theorems were proved in [BBM25], which states that
every cardinal 0 < k < R or £ = 2%0 is realized as the degree of fmp in superintuitionistic logics and
transitive modal logics. This makes a clear contrast with Blok’s dichotomy theorem about the degrees

of Kripke incompleteness (Theorem 2.58).

Theorem 7.9 ([BBM25]). For each cardinal 0 < k < Rg or k = 280, there is a superintuitionistic logic
that has the degree of fmp k.

Theorem 7.10 ([BBM25]). Let Ly C Grz be a modal logic with the fmp such that Grz is a union-
splitting in NExtLg. For each nonzero cardinal 0 < k < Rg or k = 280, there is a normal extension L
of Lo that has the degree of fmp K in NExtLg.

Using the same idea introduced at the beginning of the last section, we apply descriptive set theory
and show that every cardinal Ry < x < 280 cannot be realized as the degree of fmp of any modal logic.

Let Lg be a logic.
Lemma 7.11. For any logic L € NExtLy, the set fmpy (L) is (Lo & L).

Proof. By Lemma 7.4, there is a I1{ formula a with the parameter Ly that defines NExtLo.

A finite Kripke frame is a finite set with a binary relation. Given a finite Kripke frame F and a
formula ¢, it is decidable whether F = ¢ by considering all possible valuations on F of propositional
variables occurring in ¢. So, finite Kripke frames (up to iso) can be recursively coded by natural

numbers such that: the validity relation

Val(f,q) iff f is the code of a finite Kripke frame F and
i is the code of a formula ¢ and F = ¢

is recursive.

For any L € NExtLo and L' C w, we have L’ € fmp,, (L) iff L' satisfies a and the formula
B=Vflf € FFr — [(Vi € L' Val(f,1)) <> (Vj € L Val(f,j))]],

which is readly verified to be a IIJ formula with the parameter L. Thus, the set fmp Lo (L) is defined by
oA B3, which is a IIJ formula with the parameters Lo and L. Hence, the set fmp; (L) is I3(Lo® L). O

Theorem 7.12. For any logic Ly and L € NExtLg, the degree of fmp of L in NExtLg is either < Xg
or 280,

Proof. This follows from Lemma 7.11 analogously to the proof of Theorem 7.5. O

Remark 7.13. It is straightforward to modify the proofs of Lemma 7.11 and Theorem 7.12 and prove

similar results for superintuitionistic logics.

This shows that we can obtain complete antidichotomy results without using the Continuum

Hypothesis, answering the question posed in [BBM25, Section 8 (1)].
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Remark 7.14. Such a characterization in terms of the arithmetical hierarchy can be obtained for
various logical properties, viewed as sets of logics. For example, it can be shown that for any logic
Lo, the set of tabular logics in NExtLg is AJ(Lg). However, this has no non-trivial implication on the
cardinality since there are only countably many tabular logics in total. We leave it as future research to
obtain meaningful results about logical properties other than cardinality from their characterizations

in the arithmetical hierarchy.

Remark 7.15. Another limitation of this method is that it heavily relies on coding. So, it works only
if everything involved (e.g., identities, formulas, finite Kripke frames) can be effectively coded. For
example, this is not the case for Kripke frames, which form a proper class. It is unknown how to apply

this method to count Kripke complete logics or the degree of Kripke incompleteness.

7.3 Summary

We studied the cardinality of sets of equational theories and logics without the Continuum Hypothesis
by applying descriptive set theory via coding. The main idea is to code identities and formulas by
natural numbers and equational theories and logics by real numbers. Then, sets of equational theories
and sets of logics correspond to sets of reals. Characterizing the arithmetical hierarchy they belong to,
we exploited the well-known fact that Borel sets have the perfect set property and thus the cardinality
either < Ry or 2%, We showed that every interval of equational theories has the cardinality < R
or 2% Thus, it holds for every interval of varieties and interval of logics as well. This affirmatively
answers the open question [JL18, Question 6.4 (ii)]. The proof does not rely on anything peculiar to
equational theories or logics, and it works in a more general setting, such as quasi-equational theories
and rule systems. We also showed that the degree of fmp for any modal logic is either < Rg or 280
by coding finite Kripke frames in addition to the syntax. This answers a recently posted question
[BBM25, Section 8 (1)] in the positive.

The perfect set property is more than having the cardinality < Rg or 280, We leave it for future
research if the method can be applied to solve another open question that appeared in [JL18]. Note
that if this were true, then it would imply that every subvariety lattice has the cardinality < R or 280
as continuum many equational theories can be constructed from an independent system. We conjecture
this does not hold.

Question 7.16 ([JL18, Question 6.4 (i)]). Does every variety with uncountably many subvarieties have

an independent system extending its equational theory?

Moreover, it is not clear what implications the characterization in the arithmetical hierarchy or
Borel hierarchy may have for studying logical properties beyond the cardinality argument we presented.
For example, if a logical property is shown to be Borel, analytic, or precisely in some complexity class,

what conclusion can we draw about that property?
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Chapter 8

Conclusion and Future Work

In this thesis, we started by generalizing the theory of stable canonical rules and formulas and studied
several topics of lattices of modal logics. We established the finite model property for a large class
of modal logics, including union-splittings and their relatives. We showed the decidability of being a
union-splitting, which implies the decidability of being a decidable formula and having a decidable
axiomatization problem. We saw that stable canonical rules have the rule dichotomy property over
wK4 but not over K. Finally, we applied descriptive set theory to study the cardinality of intervals of
logics without assuming the Continuum Hypothesis. Many open questions and further research have
been discussed along the way. We summarize them as well as some general directions for future work

as follows.

Stable canonical rules and formulas

A main open question in this regard is to construct (definable) filtrations. Though the fmp of wK4
was proved in [BEG11] and a variation of filtration was constructed recently in [KS25], there is no
known definable filtration for wK4 (see, e.g., [KS25, Section 5]). The fmp of pre-transitive logics K4
in general is a long-standing open question (e.g., [CZ97, Problem 11.2]).

Another interesting direction for future work is to construct variations of stable canonical rules
and formulas, or other types of characterization rules and formulas, and study their implications. We
introduced m-stable canonical formulas for the pre-transitive logics K4T+1, but we did not really utilize
them. We leave it open what can be shown via m-stable canonical formulas beyond our results via

stable canonical formulas.

The finite modal property and the Refinement Construction

Further applications of the Refinement Construction are open. We verified by hand that the pre-

4T+1 are preserved by the Refinement Construction, but we do not have a systematic

transitive logics K
way to determine whether a logic is preserved or not. We leave it for future research to identify
other (classes of) logics that are preserved by the construction and obtain a sufficient condition to be
preserved. Such results will lead to more fmp results. Moreover, contrary to Zakharyaschev’s result
that every extension of S4 with finitely many axioms in one variable has the fmp [CZ97, Theorem
11.58], all of our results have a technical presentation. It would be very interesting if such a concrete

fmp result could be drawn from the fmp results we presented or the Refinement Construction.
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Decidability of being a (union-)splitting

The decidability of being a union-splitting or a splitting is unknown for many important lattices of
modal logics, such as NExtK4 and NExtS4. We refer to [WZ07] for more discussion of results and
questions on the decidability of logical properties for modal logics.

Another related area is the degree of Kripke incompleteness. We remark that, while Blok’s dichotomy
theorem solves it for NExtK, determining the degree of Kripke incompleteness in NExtK4, NExtS4, or
the lattice of all superintuitionistic logics is a long-standing open question (see, e.g., [CZ97, Problem

10.5]). It is even open whether all (union-)splittings in these lattices are Kripke complete.

Admissibility and the rule dichotomy property

The rule dichotomy property and the decidability of admissibility remain open for wK4 and K. As for
wK4, canonical rules could be more effective than stable canonical rules, since wK4 is more similar to
K4 than K. We leave it for further research whether Jerdbek’s method with canonical rules applies to
wK4. If we want to apply the method to K, it seems that a new type of characteristic rules is needed.

A more general research direction is to use stable canonical rules to study other proof-theoretical

notions. For example, stable rules were shown to have the bounded proof property [BG14].

Cardinality of sets of logics

A question in [JL18] that we did not address is whether every variety with uncountably many subvarieties
has an independent system extending its equational theory. The idea of coding identities by natural
numbers and equational theories by real numbers seems also useful to this question, and our conjecture
is that this does not hold.

While we characterized the arithmetical hierarchy to which intervals of logics and sets of logics
sharing the same class of finite Kripke frames as a given logic belong, it is not clear what implications
we can draw from such characterizations other than the cardinality results we presented. For example,
if the set of reals corresponding to a logical property is shown to be Borel, analytic, or precisely in

some complexity class, what conclusion can we draw about that property?

Finally, in this thesis, we constrained ourselves to the simplest type of modal logics, namely, modal
logics with a single modal operator. It is a natural question to ask if our methods can be applied to
other types of modal logics with richer languages, such as tense logic, propositional dynamic logic,
or more ambitiously, modal mu-calculus. One can also consider other non-classical logics. The main
challenge would be to construct a definable filtration for the logic in question, which is a crucial step

toward an axiomatization result.
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