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Abstract

This thesis examines the relationship between embodiment and agency with specific reference to

Artificial Intelligence (AI) models. It argues that a sense of embodiment is a necessary condition of

agency because agents must be able to sense and manipulate the external world that they inhabit. I

argue that although some AI models are low-level agents, high-level embodied agency has the potential

to help AI models overcome their current limitations by allowing them to learn from and ground

meaning in first-hand experience. I explore existing robotic technology and agentive machine learning

architectures to make the case that embodied artificial agents are possible and, if achieved, have the

potential to be significantly more powerful, efficient, and versatile than current AI models.
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Chapter 0

Introduction

Agency has often been cited as one of the key human capacities which differentiates us from automata

[Hue21] [DeL11] [Lis21]. Humans (and a number of other intelligent beings) are capable of intentionally

acting in a particular way in pursuit of particular goals. Beyond the capacity that most organisms

possess to move towards pleasure (food, sunlight, water, etc) and away from pain (predators, danger,

poisons, etc), some organisms are able to internally represent an expectation of how a particular action

might transpire, allowing them to choose the action which might most align with their goals. For

example, if I am faced with the choice of what activity to do with a group of friends, I can envision

what the experience of each activity might be like and make a selection based my preferences (for

certain activities, foods, locations, etc), short term goals (to see a particular show, exercise, have a

conversation, etc), and my long term goals (to forge connections with my friends, explore new places,

develop my social skills, etc). In addition to simple, immediate responses to stimuli, I am able to make

considered decisions based on my environment, experiences, and the other agents around me that

align with my values, desires, and goals. Some other organisms possess the same ability at a lower

level; they may pursue simpler, shorter-term goals using less detailed outcome expectations and less

understanding of the external world. While the precise definition of agency is the subject of extensive

debate amongst philosophers [Ari99] [Hum07] [Dav01] [Ban89], it is clear that a fundamental capability

of intelligent organisms is the ability to act intentionally for a particular purpose.

Thus far, artificial intelligences (AI), largely do not possess high levels of agency. To give a broad

definition, ‘AI’ refers to the general ability of computers to perform tasks commonly associated with

intelligent beings. AI programs have, in the last several decades, managed to attain or even exceed

the performance level of human experts in a range of specific tasks. For example, in March 2016 a

Go-playing program developed by DeepMind called AlphaGo defeated top (human) Go player Lee Sedol

in a five-game match, winning four of the five games [Wan+16]. Further still, AI systems have found

applications in early cancer diagnosis, optimising search engines, voice, or handwriting detection, and

chatbots. While the most advanced AI models are capable of solving some highly complex problems

and calculate optimal actions for maximising a reward (such as points in a game), the level of agency

they possess is limited. They are limited by how much they know about the world in which they exist,

the complexity and accuracy of the predictions they can make and how much their actions are able to

make changes in the world.
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Further still, there are a number of limitations that the AI models that currently exist have yet

to overcome. Machine Learning (ML) models, which are AI models with the capability to learn

autonomously, require a great deal more data than seemingly required by humans in order to learn

insights, recognise patterns, and apply that learning to make increasingly better decisions. For example,

large language models (LLMs) are ML algorithms that uses massive amounts of training data to

understand and predict text. They require a great deal more data to learn how to properly use language

than humans do [CWF24]. ML models also struggle to transfer learned solutions to similar problems,

understand causality, and struggle to explain their decision-making processes, to name a few further

issues. In addition, some artificial intelligence research attempts to pursue the creation of artificial

general intelligence (AGI), sometimes called strong AI. An AGI would be a machine with intellectual

abilities indistinguishable (or perhaps exceeding) that of a human being. One of the key issues that

researchers face in pursuit of this goal is generalisability. While AI models can perform exceedingly

well as highly specialised tasks, they perform poorly when solving a broader range of problems. Thus,

paralleling the human ability to perform tasks over multiple domains, adapt knowledge from past

experience, self-reflect, and generally understand the external world as a whole, is out of reach for

current AI systems.

This thesis aims to investigate whether the limitations of current AI models may be overcome by

allowing these models to achieve higher levels of agency, and how we may go about doing so.

One way that researchers have attempted to improve AI models and bring them closer to replicating

human intelligence is by developing models that are more similar to human brains. Neural Networks,

for example, are computational models that mimic networks of neurons, similar to those that exist

within the human brain. They consist of interconnected nodes that process data, and are used to

approximate non-linear functions. These nodes are usually arranged into layers. The term ‘Deep

Neural Network’ (DNN) typically refers to a neural network with more than three layers.

For this reason, it is worthwhile to turn to research into human development to gain some insight into

how humans are able to achieve the range of cognitive abilities that we possess. The term ’cognitive

ability’ will be used to refer to the skills involved in performing tasks associated with perception,

learning, memory, understanding, reasoning, judgement, intuition, and language [Nei+96]. According

to psychologists such as Jean Piaget [Gau09], infants develop knowledge and understanding through

directly experiencing and manipulating objects. As development continues, children are able to learn

from others, through the imagination of future and possible scenarios, and eventually through more

advanced logical reasoning.

Abilities that aid in the development of human cognitive capabilities, such as sensing and manipulating

external objects, imaging possible scenarios, and testing hypotheses, are also the abilities that make up

agency. The more developed these skills are, the higher the level of agency a being might be able to

achieve.

In Chapter 1 of this thesis, it will be argued that a higher level of agency has the potential allow AI

models to overcome several of their current limitations. If models are able to make better predictions

about short and long term outcomes in addition to having a high level of control over the external

world, then they might be able to perform more detailed investigations and experiments, develop a

broader understanding of the world, and utilise external objects to aid in the execution of cognitive
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tasks.

In Chapter 2, it will be argued that a sense of embodiment is a requirement for agency. As humans, we

understand ourselves as beings within the world. The way that we experience, think, make decisions,

and act is inseparable from our physical extension in a physical world. I am able to experience the

world through the use and adjustment of my sense organs. I am able to make changes in the world by

using my body to speak, write, manipulate objects, explore, etc. My ability to sense and manipulate

the world is what allows me to develop increasingly accurate predictions for the outcomes of my actions,

to refine my ability to determine the actions that best align with my goals, and to improve my motor

function such that I have a greater level of control over my actions. While it is possible to be an agent

over a limited world (for example, the world of a simple game), the level of agency that the agent can

achieve is similarly limited. It will also be argued that embodied agency is what allows for a high level

of agency.

In Chapter 3, it will be argued that there are model architectures and physical components that already

exist that demonstrate both that higher levels of agency in AI models are possible to achieve, and

that making such changes could in fact help to lessen, or even entirely remove, the limitations faced by

current models. As it was shown in Chapter 2 that a sense of embodiment is a requirement for high

levels of agency, it will be argued that providing models with access to physical components which

meet the criteria for embodiment (as well as a model architecture that allows them to effectively utilise

these components) is how higher levels of agency can be achieved. For example, providing real-time,

multimodal data, such as a continuous visual and audio stream has the potential to greatly reduce

the data requirement for a number of problems, such as image categorisation, as it allows for the

understanding of how objects move and change over time as well as filling in any gaps from one modality

with the other. In addition, there are models which allow for the adjustment and “pointing” of sensing

devices towards areas of interest, the goal-based determination of action procedures, and learning from

outcomes in order to update and refine future actions. It will be argued that a combination of the

architectures and physical components that already exist could be used to provide models with a level

of agency similar to that of humans, and that embodiment and agency may possibly push AI research

further towards the development of an AGI.

Overall, I propose to demonstrate the significance of agency in the development of high-level cognitive

abilities, which themselves aid in reaching higher levels of agency. I will argue that embodiment is

fundamentally necessary for a high level of agency, and that providing AI models with the ability to

directly sense and manipulate the external world is therefore essential for the development of high-level

artificial agents. Such agents, with their broader understanding of the external world and ability to

explore and experiment within it, have to potential to be able to solve highly complex problems over a

range of domains, pursue long and short-term goals, reflect upon their decision-making processes, and

learn from a great deal less data than models currently require.
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Chapter 1

This chapter aims to understand the ways in which high levels of agency might be a requirement for

certain mental capabilities found in humans. This question is particularly relevant for understanding

the possibilities for artificial intelligence (AI) models. AI models such as Large Language Models

(LLMs) are already capable of a great deal, especially when it comes to specific tasks and synthesising

information from across the Internet in a conversational style. However, AI models are still limited in

a number of ways. This chapter aims to explore what these limitations are, and whether some of these

limitations may be overcome by instilling AI models with stronger agency. I will begin by giving an

overview of the ways in which existing AI models are limited, followed by a brief discussion of how

this compares to human abilities and development in order to identify the areas in which agency may

play a role. I will end this chapter by arguing for the areas that I believe will benefit from developing

agency in AI models.

1.1 Current Technological Limitations

As previously stated, current AI models have highly advanced abilities such as language skills and

complex reasoning and can generate new images or future scenarios. But it is what they are not yet

capable of doing that might give us a greater insight into how agency fits into the cognitive network.

By understanding the current limitations of AI models, we can begin to understand where advancing

agency might be of value.

1.1.1 Buckner’s Limitations

We begin with some of the limitations of machine learning (ML) models identified by Cameron J

Buckner in his 2023 book From Deep Learning to Rational Machines: Perception, Memory, Imagination,

Attention, and Social Cognition [Buc23]. Buckner specifically discusses ML models as opposed to AI

models in general, as non-ML models are generally able to handle much less complex problems because

they are largely rule-based and follow explicit decision-making patterns[Inf25]. These are:

• Opacity: ML models often lack the ability to explain how they reached a certain decision.

For example, Deep Neural Networks (DNNs) have millions of parameters, so it can be nearly

impossible for humans to interpret which factors were most significant in leading to certain

decisions. There have been some developments in this field since Buckner’s writing, with more

LLMs having the ability to cite directly the sources that they utilise in their answers. For

example, Microsoft Copilot uses a pre-processed library of documents to find relevant chunks
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of text to use in its answers [Lin+24]. That said, Copilot still lacks the ability to explain why

specific sources are chosen and how answers are compiled on a case-by-case basis. In general,

opacity remains an issue for AI models. There are a great number of proposed solutions to this

issue, and we will examine whether agency might be part of these solutions or perhaps a natural

consequence of them.

• Training Efficiency: What has become known as ’The Data Efficiency Crisis in Machine

Learning’ refers to the concern that ML models currently require very large amounts of data

to perform well. Models require much more data than humans do for equivalent levels of

performance [Ada21]. For example, AlphaGo’s networks were trained on more than 160,000

stored games, before it then played millions of games against iteratively stronger versions of

itself. Meanwhile, its human counterpart, Lee Sedol, would have played no more than 50,000

matches in his lifetime [Buc23](pg.65). Some of the proposed solutions to this problem include

the recognition that humans receive data very differently from most ML models. For example, as

babies learn to interpret the physical world, they receive a continuous stream of multisensory

data and are able to direct their sense organs towards particular objects [MN23]. This hints

towards agency being a significant factor in resolving the data efficiency crisis, and we will return

to this later in the chapter.

• Adversarial Attacks: ML models can often be misled by what are known as ’adversarial exam-

ples’. These are unusual stimuli that are specifically designed to fool or mislead a model [GSS15].

For example, an image classification model might be fed an image that is altered in a way that is

imperceptible to humans but that leads to a dramatic misclassification by the model. This issue

again points to the fact that the way these models receive and process data is very different from

the way humans do. Altering this may, therefore, allow models to better overcome these kinds of

adversarial attack, or perhaps develop the ability to identify and ignore the alterations to the

stimuli.

• Reward Hacking: Many models come up with solutions to problems that are entirely different

from the intended outcome. Many describe this as models lacking “common sense” that a human

might bring to a task. For example, OpenAI attempted to teach a DNN to play a boat racing

game called Coast Runners. Instead of actually competing in races, the model endlessly turned

the boat in circles in order to receive “turbo” bonuses and continually boost it’s score [CA16].

One of the solutions to these kinds of problem is simply to provide the model with a broader

understanding of the context of the problem and a more detailed understanding of the goal

(e.g. “win as many races as possible”, as opposed to “get as many points as possible”). At first

blush, this does not seem like an issue for which agency is a requirement to solving, as increased

prompt specificity and greater understanding of the context of the task can be achieved without

it. However, the ability to understand the broader context of the task could help to prevent

models from reward hacking.

• Transfer Learning: ML models often struggle with the ability to transfer the solutions and

abilities learned in the context of one problem to another. A model trained to play a particular

game might struggle to adapt to even small changes in the game environment. For example,

when a ML model was taught to play the Atari game Breakout, a game in which the player
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moves a virtual paddle horizontally to bounce a ball towards targets, it struggled to adapt

to playing the game when the paddle was moved up on the Y-axis, while humans took very

little time to adapt [GG18]. This points to the idea that ML models do not learn the same

kinds of representations of their environment as humans do. The ways in which they learn

about and interact with the world are very different from the ways that we do. While the

ability to act intentionally may not factor into transfer learning particularly, we will discuss the

consequences a model having a limited and almost unchanging set of objects over which it has

direct control. When interaction with the world always involve some kind of familiar action, such

as the movement of an object over which one has always had direct control and through which

one has always received sense feedback, it might perhaps be easier to adapt the steps required

to complete one task for another, similar task. In the Breakout case, human players were still

performing the similar basic physical actions (hand and eye movements), whereas the change for

the model was akin to controlling one’s own hand from a meter away from where it usually is. It

may be that being able to sense with and control a consistent set of objects that will be used

across all tasks is the reason why humans are able to adapt more easily to new scenarios: the

tools remain the same.

• Compositionality and Systematicity: Another issue that has been raised with regards to AI

models is whether they are capable of compositionality and systematicity. This is a capability of

human thought where, based on a limited number of mental representations, a potentially infinite

number of new thoughts can be produced. It could be argued that, in the age of generative AI,

that this is already a capability that machine learning models possess. Whether or not this is

“truly” the case is an ongoing debate which is beyond the scope of this paper. It will be enough

for our purposes to acknowledge that AI models are able to generate original (in that they are

not exact copies of input data) and coherent texts, images, and even videos (take GPT-4 and

Dall-E, for example).

• Causal Understanding: Perhaps the cognitive gap that most prominently comes to mind when

we consider agency is that of causal understanding. Humans are fairly adept at determining causal

relationships, as opposed to mere correlations. This kind of thinking is vital for making predictions

about the result of certain actions, counterfactual thinking, and transferring learning. Judea Pearl

[Pea09] argues that all AI models have been able to achieve so far is the recognition of patterns

or correlations, but that they cannot predict the effect of actions or reason with counterfactuals.

Buckner describes figuring out how to best model causal understating as “perhaps the most

important unsolved problem in the field and the one most likely to require a substantially new

kind of structure in standard DNN architectures to overcome”(pg 74). In the next part of this

chapter, I will make the case that if a model were to be given agency – in particular, the ability

to interact with the world, observe the consequences of those actions, and adapt future actions

accordingly – some form of causal understanding must arise. We will also need to examine

whether causal understanding is something that arises from agency, or if it is something that is

fundamental to agency itself. If it is the latter, then we must delve deeper into exactly which

skills lead causal thinking to arise.

• Emotions and ”Care”: Finally, we turn to a limitation of ML models that is mentioned

incredibly often discussions of ML models – feelings. Models do not have emotions. A model
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has no reason to “care” one way or the other about a particular thing. A model does not have

a reason to pursue any particular goal other than that we have told it to. The exact nature of

emotions and whether it is cognitively important for AI models to possess them is far beyond

the scope of this thesis, but we will discuss the implications of how a model might be able to

not only recognise the emotions of other agents and demonstrate empathy for them, but also

perform more complex social and moral reasoning.

1.1.2 Further Limitations

The limitations identified by Buckner are certainly not all modern AI models face. Buckner’s writing

pertains specifically machine learning, whereas our discussion looks more broadly at AI models as a

whole. There are some further limitations that I have identified and which are important to discuss.

• Metacognition: AI models largely lack the ability to think about thinking. They are currently

not able to monitor their own thoughts or recognise mental states (if they have any) as they are

taking place. Additionally, AI models are unable to self-critique. They rely on external stimuli

to determine when they have made a mistake, rather than being able to check and evaluate

their own responses. Some models are able to give estimates of the confidence they have in their

predictions, but this is not the same as self-reflection and evaluating their own decision-making

processes. If, however, a model is able to generate an expectation of an outcome and compare it

against the actual consequences of a particular action, then this may at least give rise to the

kind of metacognition in which an agent understands that they had a particular mental state (an

intention) and a thought (an expectation).

• Hallucination: Large Language Models (LLMs) are prone to what is known as hallucina-

tion [Hua+25]. This occurs when an LLM generates plausible, yet false information. Given that

they largely generate text on a probability basis, responses are not often checked for accuracy

and truthfulness. Some amount of goal-directedness towards truthfulness would push these

models towards producing factual information; however, it seems here that what is really required

is a system of fact-checking and a requirement for providing sources. Agency is likely not a

requirement for overcoming this issue.

1.2 Are Some Models Already Agents?

Having established a list of key limitations of current AI models, it is now time to delve deeper into

what I mean by a ’higher level’ of agency. To begin with a simple definition: in order to have agency, a

being needs to be able to act (interact with the external world) intentionally (with an expectation

of desired outcome) and be able to compare the outcome of that action to the expected outcome. In

the next chapter, I will argue in depth for this definition. In this chapter, I will use this intuitive

understanding of agency to argue for how it is instrumental in the development of certain cognitive

abilities.

To make the case for how agency may help overcome the limitations of modern AI models, I wish

to briefly mention how agency is involved in the development of the mental capabilities possessed by

humans. Understanding the role that agency plays will help point to where it may aid AI models and

help them progress towards more advanced skills. Animals have largely evolved agency and cognitive
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capabilities alongside one another. At the most basic level, an organism with a low level of agency

might only be able to act in pursuit of immediate gratification. What makes this organism capable of

action, as opposed to reflex, is some kind of mental state that represents a desired outcome that led

to the particular movement. A being with a high level of agency is capable of pursuing much more

complex goals over a range of time scales and generating detailed expectations of action consequences.

They have a much more in-depth understanding of the external world and the ability to act with a

great deal more precision and control. In the next chapter, I will argue that higher levels of agency are

achieved when an agent is able to receive detailed sense data about the external world and the ability

to manipulate the external world.

In this section, I want to evaluate whether or not current models are agents and to what extent. I will

argue that there are some models that could be considered agents, but only weakly. This will shed

light on what would need to be changed in order for a model to be considered a higher-level agent and

why this might lead to enhanced abilities.

1.2.1 Intentionality

As I will argue, agency requires the ability to manipulate the external world in some way, meaning that

actions are external. I use the word “external” as opposed to “physical”, as I will allow for scenarios in

which an agent acts within a simulated world. So, whatever world the agent can sense and manipulate

need only be external to the agent (it cannot be generated by the being itself), but may be simulated

by some other device. Doing this will also avoid begging the question when it comes to embodiment,

as physicality has not been assumed.

Let’s look at some AI models in order to evaluate whether or not they are agents, and, if so, to what

extent. Take, for example, an LLM like GPT-4. Is its output in conversation with a human user

considered an act? One might compare this type of output to human speech. There is no doubt that

when a human speaks, they are performing an action. But the difference here is that the human in this

scenario is still employing physical movement of a body to speak, which is not the case for the LLM.

When a human and an LLM engage in ‘conversation’ (for lack of a better term), the human makes

physical movements (such as typing or speaking) in order to input their responses to the LLM. The

LLM, however, does not, though we can argue that the external world does change when the output is

displayed. The difference here is that the LLM is not capable of a physical action.

A comparison we might make is that the output of an LLM is like if a human were capable of telepathy.

To take this thought experiment further, suppose this telepathic human had never received any form

of sense data other than telepathic responses from other humans. Their only method of “acting” is

sending these telepathic messages, and their only method of “sensing” is receiving them. If we would

call such a person an agent, then there is scope for suggesting that LLMs, as they currently exist, are

agents.

It is my view that even if we concede that this type of non-embodied communication counts as action

(after all, it has brought about a physical effect in the world), this type of LLM is not an agent, because

it is not an intentional action. The ability to act intentionally is part of the definition of agency. The

LLM does not intend a specific effect when it “speaks”, it simply produces the response predicted by its

specific architectural makeup. It might be able to, if asked, come up with a prediction of the response
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it might receive, but it does not alter its outputs in order to achieve a specific response because it lacks

goal-directedness. LLMs generate responses by predicting the most plausible next word or sentence

based on the input and training data. It does not have internal motivations or desires or plan its

responses in order to reach a particular goal.

It might be argued in response that the telepathic human in the earlier thought experiment does not

face these issues. There is no reason why this person may not wish to elicit a specific type of response

from their interlocutor, and they may alter their telepathic messages in order to pursue this goal. So,

would instilling some form of goal-directedness in LLMs be enough for them to be considered agents?

To use another example from AI, a game-playing model such as Alpha-Go acts with the intention of

winning the game / scoring the most points.

1.2.2 Expectation

In addition to intention, as discussed in the definition given at the beginning of this section, the agent

must have some sort of expected outcome for the action which they are about to undertake, coupled

with a desire to achieve said outcome. In their 2003 paper ”The Self as an Embodied Agent”, Chris

Dobbyn and Susan Stuart [DS03] consider requirements for a self-aware agent. They argue that the

goals of an agent should be self-directed – the ultimate end is to bring about some internal state of the

agent (for our most basic agent this might be pleasure), rather than a state in the external world. They

outline four specific internal states required for this process: first, the agent is aware of its current

internal state, secondly it has a conception of an internal state that it would like to achieve, thirdly it

executes a plan to achieve this goal, and finally a new internal state is formed. Dobbyn and Stuart note

here that more complex goals may involve a more complex version of this process, where intermediate

subgoals must first be achieved.

This description aligns with my own discussion, as I will take the plan for achieving the desired internal

state (the intention) to be the same as an expectation: the agent carries out a particular plan because

it expects the outcome to lead to the desired internal state. For example, if I am hungry and I move

towards the fridge to retrieve some food, I have the expectation that I will experience the sensations

associated with this process (moving my body, feeling and seeing my hands open the fridge, tasting the

food). These are the sensations I expect to experience in order to achieve my goal of feeling satiated,

and, because I am receiving continual sense data, if my expectations are not met, I can adjust my plan

as I am carrying it out. The complexity of my expectation is correlated with the amount of sense data

I have access to and my ability to interpret said data.

AI models are programmed to be goal-directed in the sense that they are designed to carry out a set of

tasks, but they might set expectations in different or less detailed way that humans do. An AI model

might be able to set expectations about the feedback it might receive, if it is able to internally simulate

the feedback it expects to receive. A model must therefore be working with some set of (however

minimal) assumptions with regards to the laws that govern their world, e.g. “action X will result in

the receipt of data Y”. If the expected sensation does not occur, then these rules are updated.

Let’s return to the example of a game-playing model such as AlphaGo. In addition to its goal to

win/score more points in the game, these models possess some amount of expectation of how the

board/game space will appear after they make a particular move and the events that might take place
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within the game after this. This is how it determines which move it will make. Therefore, is model an

agent?

At first glance, our instinct might be to answer ‘no’. However, the telepathic human and Alpha go

both meet the definition of agency as outlined in the start of this chapter. They can act intentionally,

with (potentially) some amount of expectation of outcome. An agent need not be able to interact

with the physical world, simply an external one. So by our definition there is no reason why, for

example, the world of Go, although extremely limited, does count as a world that AlphaGo is sensing

and manipulating. Thus, we conclude that this model is an agent. Even if the actions it is capable of

are physical in the sense of physically moving pieces or displaying moves on a screen, as far as the

model can determine, the act exists purely within the world of the Game. In this way, AlphaGo, and

goal-directed models like it, have limited agency, a conclusion which resonates with our understanding

of agency as a spectrum, rather than something a being does or does not have. They are limited

because the world they can sense and manipulate is limited. Models without goal-directedness, such as

LLMs and other models whose outputs are based in probability, are not agents.

These conclusions lead us to a slight paradigm shift in how we understand the relationship between

agency and cognitive capabilities. Firstly, some cognitive capabilities may require not just agency, but

embodied agency. If sensing and interaction is limited to a non-physical external world, then it makes

sense that cognitive capabilities might be limited compared to creatures, such as humans, that have

the ability to sense and interact with the physical world. When agents are embodied, they are able to

sense and manipulate the physical world that we inhabit. Agency is a spectrum that is determined

by how much the agent can sense about the world and how much they are able to interact with it.

As such, being able to solve complex problems about, and react in real time to, the physical world

requires a higher level of agency than AI models currently have, which is achieved via embodiment.

1.2.3 A Spectrum of Senses

This leads us to the discussion of the ways in which an embodied agent might sense and manipulate

the physical world.

The level of agency is made higher not only by the amount of information that a being is able to receive

(e.g. being able to see and hear), but also how well they are able to make sense of this data. At a more

basic level, an organism might be an agent in that they act with the intention of avoiding pain and

seeking pleasure, and the sense information they receive is as simple as informing the organism which

of these they are experiencing (these senses are external in the sense that they come from an external

source). They are then able to alter their actions based on the past experience of which caused them

pleasure and which caused them pain. At a more complex level, a human is able to interpret a great

deal about the world based on visual, auditory, taste, smell, and touch data (as well as other senses

such as proprioception). Being able to interpret this data, a skill we develop because we are able to

explore and interact with the world and direct our senses toward the consequences of our actions,

allows us to pursue more complex long-term goals.

The comparison of my expectations with the actual outcome is what allows me to distinguish myself

as a being in the world: there are objects (my body) over which I have direct control, and there are

certain sensations that are caused by the manipulation of those objects. This is yet another capability
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which AI models do not (yet) have). The level of sensation and agency that humans have allows us to

distinguish the boundaries between our own bodies and the rest of the physical world.

This points us towards the idea, which we will expand on in the next section, that cognitive development

is greatly aided by agency, which itself is developed through the employment of some cognitive abilities.

My agency allows me to explore the world and uncover more information about it. This information

allows me to build more detailed and more accurate predictions for the outcomes of my actions, allowing

me to produce more precise motor signals and develop more control over the world around me which,

in turn, allows me to solve more complex problems. An model that is given more multimodal data

about the world in which it acts and given greater resources to interact with that world is likely to

understand the world more deeply. However, this simply describes (perceived) embodiment. The

missing piece of the puzzle is intentionality: acting in pursuit of a particular goal and generating an

expectation of the outcome.

1.2.4 Overview

In this section, we have explored the ways in which current AI model can sometimes be considered

agents, and how they are currently limited in their agency. At minimum, it must be able to act

within, and receive data from, an external world. These acts must be intentional, carried out with the

expectation of receiving particular data and achieving a desired internal state. Some models, such as

LLMs, do not act intentionally, so they are not agents. Some models, such as game-playing models,

are limited agents because they act with intention and generate expectations for the outcomes of

their actions. Agents who receive data in greater volumes and a broader range of modalities have to

potential to be able to generate more complex outcome expectations and pursue a more complex range

of subgoals. Expectations are what allow agents to distinguish themselves from the external world. A

higher level of agency is achieved when agents have multiple methods of interacting with their external

world and more control over how they do so.

Most AI models only have the ability to work with very limited virtual worlds, such as AlphaGo, which

only works within the world of the game. When an agent is embodied, it has access to information

about and the ability to manipulate the physical world. A model like AlphaGo is not embodied because

it only has agency over the Go board. Even if this board were to be physical, the rest of the physical

world, as far as it is concerned, does not exist. Embodiment allows for the possibility of receiving sense

data from the whole physical world.

A high level of embodied agency allows the possibility of solving the kind of complex and far-reaching

problems that humans can solve. I leave open the possibility of the model acting entirely within a

virtual world that simulates the physical world, as opposed to being embodied in the physical world,

but note that achieving a sophisticated simulation such as to allow for a high level of agency would be

a very difficult endeavour to achieve, from a technological standpoint [Vid14].

1.3 Filling the Gaps

We can finally turn to understanding whether any of the cognitive limitations facing current AI

models can be resolved by implementing a high level of embodied agency. Understanding this means

13



understanding what happens when they possess, at minimum, the ability to generate expectations. In

addition, when they are given the ability to sense and interact directly with the physical world.

1.3.1 Data Efficiency

In his 1998 paper ”Embodiment and the Philosophy of Mind”, Andy Clark [Cla98] makes the argument

that there are a great deal of “computational economies” (pg. 29) that are afforded by action within

the real world. For example, a deictic pointer is a bodily orientation that “points” to other data

structures. This allows us to focus on a particular part of a visual scene and retrieve more detailed

information. In addition, there is “a kind of temporary variable binding” (pg. 9) that allows us to

associate information with a particular spatial location. Another example Clark uses, is that of the

associating of a particular motor routine with a visual cue, such as the way in which we look at an

object as we go to reach for it. For Clark, this means that the external world is analogous to computer

memory. In this way, interaction with the external world allows a thinking thing to be far more efficient

in terms of internal memory requirements. In addition, the biological capability of an animal to make a

feedback prediction before sense data actually arrives has been shown to aid in the refinement of motor

capabilities and allow for mental rehearsal that is not linked directly to action. Mental rehearsal itself

is a tool that allows for the improvement of a range of motor and cognitive skills, such as language and

reasoning. Further still, interaction with our environment gives us access to physical tools and other

agents, both of which aid in problem-solving.

In addition, in his 2024 paper ”The Embodied Intelligent Elephant in the Room”, Saty Raghavachary

[Rag24] emphasises the need for models to directly experience the world through the physical body in

order to generate human-level grounded meaning. It is only possible for models to associate symbols

with direct interactions with the world via embodiment, coupled with a suitable architecture (he

calls this “embrainment”). Models without this can only operate at a symbolic level and cannot

experientially understand the physical world.

These points suggest that the ability to interact with and sense the physical world is a potential solution

for the data efficiency crisis in machine learning. Fewer internal cognitive resources are required when

the model has the ability to link more detailed information with a particular set of sense data, meaning

that these detailed memory stores and calculations need not exist entirely internally. Moreover, these

capabilities aid in the development of both physical and cognitive skills. This points to the importance

for embodiment in aiding with data efficiency in model learning.

In addition to these ideas, simply having a continuous, multimodal stream of data and the ability

to adjust one’s perspective within the world helps to build understanding of that world a great deal

more rapidly than, say, a DNN which only receives a series of static images that it must learn to

categorise [Car+24]. Babies, for example, are able to reach out and grab, feel, bite, and throw objects

to gain a deeper understanding not only of the properties of said object, but of the rules of physics

governing that object. Intentionality comes into this when, as infants develop, they are able to choose

the way in which they orient their sense organs and interact with the objects around them in order to

fill specific gaps in their understanding [SH23]. For example, I am able to direct myself to look more

closely at an object when I know that I do not yet fully understand its properties. This means that

embodiment in addition to intentionality can further aid model learning. Further still, when models
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can generate expectations of what they intend to learn, the senses can be more efficiently directed

towards relevant sources of information. This combination of capabilities makes up embodied agency.

Receiving (sufficiently complex) multimodal data in this way, binding information to the external world,

and being able to intentionally make investigations about the world would make it considerably easier

for AI models to build a picture of its external world and make predictions about the outcome of its

actions. We can conclude here that, given these capabilities, a model would need a great deal less data

to develop cognitive skills such as adaptive and context-aware reasoning. As an additional note, the

ability to interact with and learn from other agents is also a way in which data efficiency is improved.

1.3.2 Causal Reasoning

Causal reasoning also seems to be a natural consequence of agency, as in order to develop expectations,

agents must have some sense of which sensations are caused by which particular actions. Being able to

link actions to sensations gives at least an understanding of causation when the instigating event is an

action carried out by the agent. This can come about because agents observe the consequences of a

particular action and, when that same action is repeated, have an expectation of the same or similar

outcome (this may require multiple instances for the connection to be made). As the agent experiments

with a wider range of actions, they can develop a better understanding of causal relationships. When

expectations do not match outcomes, we are able to update our expectation-generating assumptions to

be more accurate.

With a sufficiently complex understanding of the world, an agent would then be able to observe similar

processes as carried out by external agents or objects and make predictions about the outcomes of

those events.

If an agent experiences uncertainty about the outcome of an action, they may also be able to intentionally

test hypotheses. For example, if I had a desire to move a remote-controlled car but did not understand

the controls, I can find out the outcome of pressing a particular button by repeatedly pressing it and

observing the consequences. I can test other buttons to see if the result is different, and observe other

agents pressing the button.

The ability to make predictions and test hypotheses allows me to go beyond observing that two events

frequently occur one after the other and make conclusions about causation. The more observations

and experiments that can be carried out, the better the agent will become at making predictions about

new scenarios. These abilities allow models to climb Judea Pearl’s hierarchy of causal understanding,

moving from mere association to predicting the effects of actions, and finally to reasoning about

alternate realities.

1.3.3 Transfer Learning

As previously discussed, agency may help to make transfer learning easier for AI models. However,

this may only be the result of having more data about an environment, rather than requiring specific

intentionality. Returning to the Breakout example, if a model has only ever played one version of the

game before the paddle is moved, moving the paddle represents a paradigmatic shift in the world of

the model. For humans, this is not the case. Having developed a general understanding of the laws of

physics and the way these kinds of games operate, it is considerably easier for a human to adapt to the
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new version of this game. If the model had perhaps played a wider range of games before or had more

ways in which it was able to interact with the game environment, understanding the parameters of the

new game could be made specifically easier.

This development does not, therefore, specifically require agency, but it does suggest an expansion of

sensing and interaction capabilities. However, expectation generation allows for experimenting within

the new scenario to make better predictions.

1.3.4 Self Awareness and Metacognition

As suggested by Dobbyn and Stuart (2003) [DS03], agency may lead to some amount of self-awareness.

As discussed, agency (and some causal understanding) allows models to distinguish between which

sensations are generated by their own actions and which are not. Further still, understanding which

objects you have direct control over allows one to understand the boundaries of their own body and

that they are a part of the external world that they inhabit. In addition, the ability to control your

own perspective allows a being to place itself as an object within the world they inhabit. Being able

to self-monitor and establish one’s physical boundaries and capabilities allows for, at minimum, an

understanding of what is and what is not part of and caused by one’s self.

At high levels of agency, a metacognitive layer can also develop. By carrying out and observing the

consequences of their actions, an agent may develop and internal understanding of their own physical

and mental limitations. Understanding that an outcome was different from what was expected opens

up the possibility for an agent to be able to reflect not only on what could have been done differently

in terms of physical action, but also reflect on whether any reasoning or decision-making mistakes were

made. With a sufficiently high level of awareness of their own cognitive processes, the ability to make

mistakes makes it possible for an agent to reevaluate and improve those processes.

1.3.5 Caring

Perhaps the most hypothetical of the consequences we will discuss, agents that understand themselves to

be agents existing in an external world may, if they develop a goal-directedness towards self-preservation,

to some extent, develop a form of caring about the world around them. As beings in the world we care

about what happens because we want events to align with our goals, be it survival, pleasure, avoiding

pain, etc. I care about climate change, I care about climate change because I don’t want the world to

be destroyed. I don’t want the world to be destroyed because it provides me with things that bring me

pleasure and bring me closer to my desires. Furthermore, understanding other agents having similar

goals allows for collaboration and empathy between agents.

Exactly what gives rise to emotions and whether or not an AI model could truly “feel” them, or “care”

in the way that we perceive ourselves to care about things is an ongoing debate and one that would

require multiple theses to discuss. For now, I simply make the claim that the self-awareness that may

arise from a sufficiently high level of agency in a sufficiently complex external environment may give

rise to model behaviours that emulate a desire for self-preservations and caring about what happens in

the world.
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1.4 Conclusions

In this chapter, I have outlined the types of cognition that have been described by philosophers and

psychologists to identify the cognitive gaps that exist in current AI models. I have then and developed

a view of agency as a spectrum which depends on how good the agent is at action selection and

expectation generation, which is influenced by the sensing and interacting capabilities of the agent.

Finally, I have explored how a high level of embodied agency can improve the data efficiency and

reasoning capabilities of AI models, as interacting with the world has been shown to expand memory,

having a multimodal stream of sense data has been shown to increase learning speed, and intentionality

allows agents to direct their interactions towards the filling of particular knowledge and ability gaps.

Furthermore, the development of agency inherently forms a rudimentary level of causal understanding

which, given sufficient data and experience, could develop into more advanced causal reasoning skills.

Transfer learning may also be made easier by expanding the investigative capabilities of a being.

Following the writings of Dobbyn and Stuart, we also find that agency paves the way for a being to

develop a basic sense of self-awareness, which may become stronger as agency also becomes stronger. A

high level of agency may allow agents to develop metacognitive skills, as they can identify themselves

and understand the thought processes that led to certain actions, which can then be evaluated. Finally,

I have explored whether, by being an embodied agent existing with human agents in the world, an

artificial agent might come to care, or at least seem to care, about the world around them and prioritise

self-preservation. In the last chapter, I will explore agency and embodiment in AI models from a

technological perspective.
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Chapter 2

Having established that embodied agency has the potential to aid in overcoming a great deal of the

limitations faced by modern AI models, it is now time to dive deeper into the relationship between

embodiment and agency. This chapter aims to make the claim that a thinking thing must at the very

least believe that it is embodied in order to have agency but that embodiment specifically gives thinking

things agency over the physical world. I will use the term ’thinking thing’ as a broad placeholder for

a being that thinks because I aim to make as few stipulations as possible as regards the cognitive

capabilities of thinking things as we discuss what it means for a thing that thinks to be embodied. We

will begin this chapter by exploring and refining a definition of embodiment, as informed by modern

literature on the topic. I will then do the same for the definition of agency. Once conditions for both

characteristics have been determined, we will be able to example the compatibility of the two and

explore edge cases to determine if there are scenarios in which they do not align.

2.1 Defining Embodiment

We now turn to understanding what it means for something to be ’embodied’. This meaning will be

slightly different from ’having a body’, which we will see throughout the course of this discussion. By

the end of this section, I intend to have generated a short list of minimal requirements for considering

an agent to be embodied.

2.1.1 What is a Body?

Rene Descartes, for example, distinguishes sharply between res cogitans (thinking thing) and res

extensa (extended thing) [Des08]. Related to his famous “cogito, ergo sum”, he defines the mind

purely as a thing that thinks, without the requirement of a body, something that is defined by spatial

extension and mechanistic properties. For Descartes, the mind, and therefore all cognition, is not

physical at all, but it does control the body via, he believed, the pineal gland in order to interact

with the physical world. This dualistic way of thinking about the mind and body is largely considered

outdated by philosophers of cognition, as simply being an ’extended thing’ is not enough for most

philosophers to consider something to be a body. It is true that in order to have a body, one must

exist as a physical entity, but as physicalism is now the most widely accepted theory in philosophy of

mind, most philosophers would argue that having some physical extension is a requirement of being a

thinking thing, as it is by physical processes that cognition takes place.

However, we do not consider an LLM like GPT-4 to be embodied or to have a body at all, although it does
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possess physical connections constructed from cables, wires, physical memory storage, motherboards,

etc. These physical objects are purely what allow GPT-4, and other machine learning models like it to

carry out tasks. So, what, then, distinguishes this kind of physical extension from the kind of physical

extension that leads humans to be able to describe our own bodies and engage with the physical world?

Two answers come to mind here. The first is that my body allows me to experience the world. The

second is that I have the ability to manipulate my body through movement.

2.1.2 The Sense Requirement

Let us begin by examining the first of these answers. In his Phenomenology of Perception [Mer12],

Maurice Merleau-Ponty writes (pg. 92) “I observe external objects with my body, I handle them,

inspect them, walk around them. But as for my own body, I do not observe it: to do so, I would need

a second body, which would itself be unobservable.” According to Merleau-Ponty, the body allows us

to observe and investigate that which is not part of our own body, and that we cannot observe our own

bodies in the same way. In short, to have a body is to have the ability to sense the external world in

some ways. Our bodies are not simply containers for the mind. One might respond to this conclusion

with a thought experiment similar to that described by Avicenna (or Ibn Sina) in his eleventh-century

work ‘On the Soul’ [Avi06]: suppose that an adult human came into existence floating in space, with

no ability to see or hear, and posed in such a way that no part of their body touched another part,

and that they were not subject the feeling of any winds or supporting forces. This person receives zero

sense data, but they would still be considered to have a body. This thought experiment is employed

by Chalmers in his 2023 paper ‘Does thought require sensory grounding?’ [Cha23] as an example of

a ‘pure thinker’. However, in this thought experiment our ‘pure thinker’ still has sense organs, they

have just found themselves in a situation in which they are not receiving sense data, so they still

meet the criterion of being able to sense the external world in some way, even if they never actually

do so. Instead let us consider an altered version of this thought experiment: suppose a person is

born without any senses. This ‘senseless thinker’ is blind, deaf, has no sense of smell or taste, and

they have no feeling in any of their body parts, this person not only does not receive sense data (like

the ‘pure thinker’) but they also cannot receive sense data of any kind. In this scenario, while the

thinking capabilities (i.e. the brain) of this person still reside within a container with only trivial visual

differences from a human body, I would argue that such a person is not embodied, nor do they truly

”have” a body. This is because it makes no difference to the experiences of this person whether or not

they have sense organs or not. If the technology existed, this person could have their brain removed

and kept alive in a lab and they would not know the difference. The physical extension of this thinker

beyond the brain is inconsequential to them. It would be the same as attaching googly eyes to a server

tower. Thus, we can conclude that a necessary condition for having a body is the ability to sense the

external world. We will discuss later in this chapter how we should define what it is to sense.

The ‘sense requirement’, as I shall call it, for having a body runs somewhat contrary to the writings of

many philosophers. For example, Edmund Husserl [Hus52] makes a distinction between the lived body

(Lieb) and the physical body (Körper). Lieb is the source of our intentional experience, and Körper is

the physical body that can be experienced as a thing in the world by another agent. In introducing the

sense requirement, I have differentiated three cases: being a body, having a body, and being embodied.

The first is the same as Husserl’s Körper : a thing (at least according to physicalism) is a body as it is
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an object with contiguous material existence in the physical world. A body need not think. Having a

body, by contrast, is similar to Lieb in that the body is able to “experience worldly things” [Weh20].

This is where the sense requirement, as I have described it, comes in: the thinking thing must be able

to sense in some way, as the physical components of the body must make some experiential difference

to the thinking thing. The details of this distinction will be discussed further in the section on defining

senses, as naturally the physical makeup of a machine learning model’s circuitry makes a difference to

its output capabilities, but for now we will simply refer back to the word “worldly”: the difference

between “being” and “having” a body is made by the ability to directly access information about the

state of the external physical environment.

2.1.3 The Manipulation Requirement

Unlike Husserl, I argue that there is a third distinction to be made. To be embodied, as opposed to

having a body, one must also be able to intentionally interact with the world. An embodied thing must

be able to direct their senses towards and manipulate parts of the physical world. 1

However, there are ways in which we might cause problems for this criterion. Let us propose another

thought experiment. Consider a person with Locked-in Syndrome (LiS), a rare and serious neurological

disorder in which part of the brain is damaged [Sch+23]. People with LiS have total paralysis, but

retain their normal cognitive abilities and senses, which means they can still see, hear, taste, smell,

think, and feel. Some patients with LiS also retain some proprioception and sensation throughout

their bodies. In this thought experiment, we have an individual who cannot move at all, but retains

some sense ability. By meeting the sense requirement from the previous section, we would say that

this person has a body. But are they embodied? Most people with LiS are able to communicate via

eye movements and assistive technology, so this meets the movement requirement. But suppose that

this individual cannot move their body at all, including their eyes. Without the kind of mind-reading

technology that does not yet exist (such possibilities will be discussed in Chapter 3), this person has a

body but is not embodied. They are not able to interact with the external world in any way at all.

Their body allows them to receive inputs, but not to intentionally produce any outputs. Even an

individual existing in a vacuum such that they can never make contact with a non-body object can

produce outputs because their body is a part of the physical world that they can control.

Embodiment, as defined for this discussion, requires the perception of inputs and the production of

outputs.

2.1.4 Being a Body, Having a Body, and Being Embodied

Let us formalise what we have so far.

To be a body, a thinking thing must:

• Be a contiguous collection of matter that exists in space and time (The Physical Requirement).

To have a body, a thinking thing must:

• Be a body and

1We might be able to reduce this to simply a requirement of being able to intentionally cause bodily movement,
whether or not this is the case will be discussed later in the chapter.
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• Be able to sense the external world (The Sense Requirement).

To be embodied, a thinking thing must:

• Have a body and

• Be able to directly control the movement of some objects in the external world (The Manipulation

Requirement).

2.1.5 Contiguity

The only criterion that we have not closely examined thus far is the Physical Requirement. Being

physical seems like a trivial requirement, but need a body be contiguous? It would seem at first glance

that it does, as this part of the physical requirement helps us to determine what is and is not part of

one’s own body. This requirement is important because it gives us a clear distinction between what is

and is not the body of a particular thinking thing. It also prevents us from making the claim that a

particular thinking thing has more than one body. It does not prevent the case in which two thinking

things may occupy the same body, but this is a strength of the criterion, as it allows for cases such as

conjoined twins.

However, we may raise the case that contiguousness with the thinking matter is not a necessary

condition for that which may allow the thinking thing to fulfil the Sense and Manipulation requirements.

Let us use movement (which allows for the fulfilment of the Manipulation requirement), as an example.

Intuitively, some objects that are part of my body, such as my hands, can be moved directly simply

by thinking about doing so (thinking about moving is not itself a necessary condition for movement,

we will discuss this further in the section about the difference between reflex and action). In order to

manipulate an object that is not part of my body, there must be an intermediary step in which I move

a part of my body (making noise, activating motion sensors, throwing items, generating vibrations,

etc).

While we do not have the direct ability to consciously move all parts of our bodies (I cannot, for

example, directly compel my liver to move), such things are contiguous with the parts that I can move.

For example, if I were to move my legs and travel from one room to another, my liver, and the rest of

my internal organs for that matter, must come with me.2

What, then, if there exists an object that I can move directly through thought, but that is not

contiguous with the matter of my brain? Suppose, for example, that I develop telekinetic abilities and

am able to move objects on the other end of a room simply by thinking about them. To give a more

plausible example, smart home devices have the ability to remotely control devices such as lights, fans,

televisions, etc. without any movement from the device itself. If such a device had no other means of

interacting with the external environment other than through the direct manipulation of non-body

objects, would such a device be considered embodied? What about if those objects could be controlled

by multiple thinking things? One might make the point that in the case of a device with the capability

to remotely control other objects there is some kinetic chain linking the two. In response, I would refer

back to the first thought experiment, in which the manipulation is the result of some unexplained

telekinetic power. In either case, the thinking thing in question (assuming it also fulfils the Sense

2I would concede here that something like a splinter is temporarily a part of my body.
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Requirement) is considered embodied under the definition as I have given it. It is my claim that being

physically contiguous with those objects which permit sensing and interacting is not a requirement

for embodiment, and thus that the conditions I have outlined are both necessary and sufficient for a

thinking thing to be considered embodied. This particular claim will become important in the next

section of this chapter, where we will investigate the definitions of action and agency.

This conclusion aligns with Clark and Chalmers’ [CC98] Extended Mind Hypothesis. They argue that

the separation between mind, body, and environment is entirely arbitrary. For them, if an external tool

(such as a calculator or notebook) plays the same functional role as an internal cognitive process, then

it should be considered part of the mind. Other philosophers, such as Walker and Sparrow [WS24],

develop an analogous argument (The Extended Body Hypothesis), which claims that bodily processes are

not confined within the skin but extend into the environment. This theory, while originally developed

for the discussion of devices like respirators and mobility aids, supports my argument that the objects

a thinking thing uses to sense or interact with the world need not be contiguous with the objects

that perform the thinking. Sensing and manipulating are bodily processes (if only in that they are

conditions of embodiment), and whichever objects that serve this purpose are part of the (extended)

body of the thinking thing.

2.2 Action and Agency

Let us begin with a more detailed investigation of the concepts of action and agency. In the previous

chapter, I defined agency as the capacity to act (interact with the external world) intentionally (with an

expectation of desired outcome) and to compare the outcome of that action to the expected outcome.

This is the definition that I will argue for in this section.

The generally accepted understanding of agency is that it is the “exercise or manifestation of this

capacity [to act]” [Sch19], which aligns with my definition. Given this definition, it is pertinent to

first clarify what we mean by ’action’ and what it means for a being to ‘act’. I will break down what

intentionality is and make the case for why expectation is a necessary component of intentional action.

After understanding this, we can proceed to determine how this relates to my definition of embodiment.

In the final part of this section, I will define what it is to have what I will call ‘a sense of agency’ and

explore some evolutionary arguments for how this could have developed in biological creatures.

2.2.1 Defining Action

The colloquial definition of an ‘action’ is simply that it is a thing done, but for our philosophical

purposes we additionally require the stipulation of the existence of some kinds of mental states in

relation to the thing done. Firstly, this is so that we can define an actor as something that has the

capacity to perform an action. Without this stipulation, an actor could be any object that is part of a

causal chain (for example, a leaf that moves in the wind). Additionally, this stipulation allows us to

differentiate between an action and a reflex, as, for example, an involuntary movement would not be

considered a meaningful interaction with the external world.

In his 1953 Philosophical Investigations, Ludwig Wittgenstein [Wit53](§621) asks the question “What

is left over if I subtract the fact that my arm goes up from the fact that I raise my arm?”. Many

have read this question as suggesting there is something more to an action than the physical outcome.
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For example, there is something that is different about me raising my arm, than me sneezing. The

straightforward answer to this is that there is some form of intentionality involved. I chose to raise my

arm, whereas I did not choose to sneeze. Even if I chose to do something (inhaled some pepper, for

example) to make myself sneeze, the sneeze itself was a reflex that I used an act to trigger. I cannot

think to myself “I am going to sneeze now” and then cause myself to sneeze with no other external

input.

A very widespread theory of intentional action is known as the Causal Theory of Action (CTA),

pioneered by Donald Davidson [Dav63]. According to CTA, something counts as an intentional action

in virtue of its causal connection to certain mental states [PT23]. For Davidson, a true action statement

denotes an event, and more specifically, a bodily movement. Such a bodily movement is an action

if, and only if, the event is an intentional action. For Davidson, an event is an intentional action

if, and only if, there is a “true rationalising explanation”. According to many proponents of CTA,

intentional action is explained in terms of mental states, as they are the “causal antecedents” of an

agent’s behaviour or bodily movement.

Part of this theory helps to explain why we can describe the consequences of an intentional bodily

movement as intentional actions themselves. To use Davidson’s example, suppose I flip a switch, and

in doing so I turn on the light and also alert the burglar. On Davidson’s view “flipping the switch”,

“turning on the light”, and “alerting the burglar” are all descriptions of the same action: they are the

same bodily movement, and said bodily movement is caused by a mental state.

Exactly which mental states are relevant for intentional action is a topic of much debate. Intentions

seem to be the obvious choice here, as beliefs and desires do not appear to directly control bodily

movement in the same way. However, Davidson pointed out that simply describing actions as intentional

if, and only if, they are caused by some set of mental states leads us to ‘The Problem of Causal

Deviance’. There are two cases here that Davidson [Dav73] discusses that he calls ‘Primary’ and

‘Secondary’ deviance.

Secondary Deviance is when CTA would misdescribe one of the consequences of an action as intentional

when it was not, such as if an agent wishes to kill someone by shooting them. They miss, but the

target dies anyway due to a stampede that was triggered by the sound of the shot. While the outcome

was intended by the agent, the steps leading to the outcome were not. The agent intended for the

target to die as a result of being shot, which is not what happened. Had the agent taken the shot with

the intention of triggering the stampede and killing the target, then the death of the target would be

considered intentional. This indicates that intentional action involves some kind of plan for how the

outcome should be achieved.

Looking at Primary Deviance can strengthen this conclusion further. Primary deviance occurs when

we have an intentional causal chain that leads to an event which is not intentional. Returning to

Davidson’s initial example, suppose I did not know that there was a burglar in my home, then while

“flipping the switch” and “alerting the burglar” are considered to be different descriptions of the same

action, I intended for the former to take place and not the latter. So, the issue for CTA as a whole

is that the causal chain alone from an intentional mental state to an event is not sufficient for the

event to count as an intentional action. The difference between “flipping the switch” and “alerting the

burglar” appears to be that there was some amount of foresight involved in flipping the switch. In
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lifting my arm to make contact with the switch, I had the expectation that the switch would move

under the pressure applied, and that the lights would come on. Given my lack of information about

my environment (I was not aware of the presence of the burglar), I was not aware that this action

would lead to a burglar being alerted, so this event was not something that I expected to take place as

a result of my movements.

Consider a different example. Suppose I am playing basketball with my friends. When I receive the

ball and throw it at the basket, I expect (or, depending on my abilities, I hope) that the ball will travel

through the air at a certain trajectory such that it falls into the basket. This given my intention, I

have used my cognitive and physical abilities as best I can to move my body in such a way that makes

it likely that the ball will travel as intended. If, instead, the ball bounces off the backboard and hits

my friend in the face, this was an unintended outcome. Intention is not just about a particular mental

state that causes an action, but about the expectation that I have for how events will transpire as a

result of that action. The unintended outcome of missing the basket, or of alerting the burglar are a

result of limitations in my physical and cognitive abilities, and/or of information that I have about the

external environment. These are factors that limit my ability to generate accurate expectations of the

outcomes of my actions. By contrast, an omniscient and omnipotent agent would never experience

an action leading to an unintended outcome, as they would always be able to perfectly predict the

consequences of their movements and precisely guide their actions towards the intended outcomes.

An important aside here is that for an act to be intentional it is not required that the agent be made

aware of the entire causal chain of events. For example, if I threw the basketball blindfolded and never

found out whether it went into the basket or not, the event of the ball going into the basket still an

intentional action.

What I have highlighted via these examples is that intentional action is not just an event that the

causal consequent of a particular mental state. The particular event must be part of the expectation

that the agent has for the outcome of their action. If the same desired outcome is achieved, but via an

unexpected causal chain, it is not intentional. If an unexpected additional event is caused by an action,

it is not intentional. My expectation is the “best guess” I have for the outcome of my action, based on

my understanding of the external world and the level of control I have over my bodily movements. My

expectations aid me in selecting the best plan for fulfilling my desires.3

2.2.2 How are Expectations Set?

In the previous section, we concluded that an intentional act is comprised of an action, an intention

(a mental state that causes the action), and an expectation (a set of sensations the agent expects

to experience as a result of the action). Now that we have constructed this understanding, and

therefore have determined working definition for agency (the capacity to act intentionally) and an

agent (something with agency), we can dig deeper into what exactly an ‘expectation’ is and how they

are set.

In his 2016 book Other Minds, Peter Godfrey-Smith [God16] discusses the concept of an “efference

copy” and reframes it in an evolutionary context. When the brain sends out a signal to initiate

3There is still massive ongoing debate in the philosophy of action that I will not be able to go through in detail here.
Instead, I have highlighted the theories and discussions that are relevant for my argument.
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movement, a duplicate of this signal (called a “motor command”) is simultaneously sent to the body’s

sensory systems, this is called an efference copy. This allows organisms to generate an expectation of

the sensory outcome of their bodily movement faster than they can receive actual sense data, which

aids them in making motor adjustments in real-time. For example, I know that by turning my head I

will feel my hair move against my neck, so I expect to feel this and am not surprised by this sensory

input and I do not assume that I have been accosted by some other creature.

Godfrey-Smith makes an evolutionary argument that efference copies allowed organisms to develop an

understanding of the bodily self. He argues that early animals would have benefitted evolutionarily

from the ability to “tag” and filter out any sensory feedback that was the result of self-initiated

movement. An efference copy allows an organism to sort sense data into two categories: internal origin

and external origin. Sense data of internal origin is the result of the agent’s bodily movements or

functions (for example, the proprioceptive feedback of moving). Sense data of external origin is caused

by something external to the agent. The result of such an ability is that an organism would be able to

ignore predictable consequences of movement and focus on new and important sensory information,

such as the rustle of leaves, which might suggest the presence of a nearby predator. Sense data that

is expected can be ignored, and sense data that is unexpected is used to inform the organism’s next

actions.

The idea of the presence of a feedback loop that allows models to learn from and adjust their actions

by comparing the sense data they expect to receive to the sense data they actually receive is supported

by the work of Wolpert, Ghahramani, and Jordan [WGJ95]. By asking participants to estimate the

position of their hands after moving in the dark, they found evidence that the central nervous system

uses internal models to simulate the motor system. Forward models predict the sensory consequences

of motor commands, and inverse models estimate the motor commands needed to achieve a desired

outcome. Through repeated movement and sensory feedback, an organism can come to reliably predict

the sensory feedback that will result from a particular motor command. If the sensory feedback is

different to what is predicted, an organism benefits from being able to detect this mismatch and

becomes better at determining which motor command to employ to achieve a particular outcome.

Godfrey-Smith additionally argues that, over time, as nervous systems became more complex, the

phenomenon of efference copies would have contributed to the emergence of more sophisticated concepts

such as selfhood and agency. This jump from basic efference copies to the kind of detailed outcome

predictions achieved by humans is outlined by Rick Grush’s [Gru04] emulation theory. He argues that

the brain constructs neural circuits that model the body and environment. These “emulators” use

efference copies to generate expectations of sense data. These models can also run offline in order

to evaluate the consequences of different actions. With them, an agent can mentally simulate motor

processes and perception because they can form expectations of, and interpret, sensory input.

As the complexity of these emulators increases, it stands to reason that some organisms would develop

the ability to make increasingly detailed predictions for longer causal chains. For example, in addition

to predicting that when I turn my head I will feel my hair move against my neck, I am also able to

predict that I will be able to see further down the street and, because I just heard her call out, I will

see my friend walking towards me. I may also predict that if I smile and wave at her, she will smile and

wave back to me. I am able to make predictions using my internal model of physical laws and of social
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behaviours. I am even able to make predictions about what would occur even when there is no chance

of receiving particular sensory feedback by imagining what I would experience as an observer, such as

in the blindfolded basketball example, where I would not be able to see the outcome of my actions.

The neurological phenomenon of efference copies laid the evolutionary groundwork for the human

ability to make complex predictions about possible future events and their causal outcomes. This

ability allows us to learn and make adjustments when our expectations do not match the reality. It is

by lining up a desired outcome with a motor signal that we predict is most likely to cause this outcome

that we are able to act intentionally.

Further still, Giovanni Pezzulo [PC09] [Pez11] argues that theses internal models and mental simulations

give rise to particular kinds of knowledge and reasoning. He argues that procedural knowledge

(knowledge of how to do something) is supported by the sensorimotor feedback loop. Declarative

knowledge (knowledge of facts) arises from offline simulations, which allow for more abstract reasoning

and planning. What began as a system of planning and learning from actions can also be used for

cognitive functions such as memory, language, and imagination. This argument, if correct, demonstrates

that not only is expectation generation essential for agency, but it is a vital tool that assists in the

development of symbolic representations and complex reasoning skills.

2.2.3 van Hateren’s View

In his 2014 paper ‘The Origin of Agency, Consciousness, and Free Will’, J. H. van Hateren [Hat14]

makes a similar evolutionary argument for the origins of agency that also relies on the existence of a

feedback loop. He begins by introducing two functions: ftrue (fitness) and fest (self-estimated fitness).

These are predictive functions of time that track the potential success of an organism. Van Hateren

defines success in this paper, in its most basic form, as the expected number of offspring of an organism,

but notes that for a more complex social and cultural species, success would also include indirect

components such as the success for related organisms. When the environment changes for an organism,

it can respond accordingly via behavioural change. Not changing behaviour could result in death and is

therefore a poor strategy. However, ftrue is not directly available to the animal as it is not observable

and could only, perhaps, be calculated by means of simulating the animal and others like it in its

environment. This is where self-estimated fitness, fest, comes in. This estimate could be based on

a wide range of internal and external signals that might be available to the animal. By evaluating

the outcome of a particular behaviour in reference to fest, an animal is able to determine suitable

behaviours given particular environmental factors, the outcomes of which can then themselves be

evaluated. When ƒest is low, there is more variation in behaviour than when it is high.

Van Hateren argues that this loop of behaviour determination and outcome evaluation is the origin of

an elementary form of agency. The variance in behaviours is determined by fest, meaning that the

behaviour of the animal is at least partly determined by sensory feedback. Additionally, there is an

intrinsic goal-directedness in the animal, as fest is part of a control loop that implements agency, it is

a goal of the organism to have a high fest.

Through the evolutionary accounts of both Godfrey-Smith and van Hateren, we see possible explanations

of the development of agency in cognitive organisms. In both cases, agency develops via a feedback

loop based on received sensory information and continuous adjustment over time. Agency comes in
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when organisms develop the ability to use their generated expectations of sensory feedback to decide

which course of action most aligns with their goals and desires. These descriptions align with our

earlier definition of an intentional action, in that behaviours are enacted towards a goal and there is an

expectation of sensory feedback that is compared with a real outcome. This feedback is then used

to inform and refine the decision-making process for future actions. Therefore, expectation is both

definitionally important in order to properly determine what is an is not an intentional action, and it

is itself a cognitive skill that can be refined and improved upon through experience.

Moreover, these accounts point to my previous assertion that agency as a spectrum of capability

rather than something that an animal does or does not possess. The level of agency that an agent

possesses is determined largely by their ability to receive sense data, the accuracy with which they can

make predictions about the consequents of bodily movements, and how well they can carry out such

movements. Agents with a high level of agency are able to receive and interpret a great deal of sense

data and use it to make accurate and detailed predictions. These agents can then use those predictions

to select actions that align with their goals with a high level of accuracy. We might say that high-level

of agent has a high level of control over their external environment, as the understand it in great detail

and can use this understanding to plan courses of action that alter the state of the environment to

precisely match their desires.

2.3 Embodiment as a Condition of Agency

Now that we have taken the time to outline and argue for our definitions of both embodiment and

agency, we can begin to answer the question of whether embodiment is a condition for a thinking thing

to have agency. I will argue that an agent must at least have a sense that it is embodied.

At first blush, the connection between the two seems almost definitional. Based on the discussion so

far, an agent has the capacity to act intentionally. As we have defined thus far, an intentional act is a

bodily movement that is the expected consequent of an intentional mental state. In order to make a

bodily movement, an agent must be a body, and therefore they must meet the physical requirement. If

an agent can move intentionally, then they meet the manipulation requirement. Finally, if an agent

has expectations of sense data, then this implies that they are capable of receiving sense data, and

therefore they meet the sense requirement.

I note here that I have not included mental actions in my definition, such as the ’action’ of adding 2

and 4. I do not claim that mental actions are not actions, but I do claim that in order to be a full

agent, a thinking thing must be capable of an external action (an action that manipulates the external

world in some way). As I will argue later, I make this claim because a thinking thing that cannot

act externally cannot compare the expected consequences of their actions to reality. If the act exists

entirely within their mind, so do the consequences, meaning that the feedback loop collapses in on

itself. There is nothing to distinguish the generation of an expectation from the act itself4. Thinking

through what the result of a particular sum might be is the same as performing the calculation, and

then there is no way of checking this answer. I leave a discussion of agency with regard to purely

internal actions outside the scope of this thesis.

4Philosophers such as Alvin Goldman [Gol06] argue that simulation is a central cognitive mechanism, further reinforcing
the idea that expectation generation is itself a mental act.
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However, let us examine these conditions more closely and consider whether all three embodiment

conditions are truly necessary for a sense agency. As far as we know, all objects that think are physical,

so the physical requirement is already met. However, for an agent to have a sense of embodiment, they

need not actually be physical. So, this requirement is not important, even though it does appear to be

contingently met.

2.3.1 Are all Acts Physical?

We begin by reviewing the manipulation condition. The manipulation condition states that in order

for a thinking thing to be embodied, it must be able to intentionally control objects directly. As the

body is physical, the implication is that control means the ability to move parts of the body. Thus

far in the discussion, I have argued that an action must also involve bodily movement. If we can call

into question whether this is the case, then we can question whether embodiment is truly a necessary

condition of agency.

In his paper ‘Agency and Embodiment: Groups, Human-Machine Interactions, and Virtual Realities’,

Johannes Himmelreich [Him16] describes three kinds of ‘disembodied actions’: Proxy Actions, Extended

Actions, and Extended Movements. Proxy actions are acts that were not performed by the agent

responsible. For example, a spokesperson giving a statement on behalf of the president is performing a

proxy action.

Proxy actions still align with our working definition of an intentional act, as there must still be some

causal chain of events from a bodily movement of the agent to the performance of the proxy action.

In giving consent for a spokesperson to make a statement, the agent has made an intentional bodily

movement and therefore the action is still embodied.

Extended actions are similar to those considered at the end of the first section of this chapter. Extended

actions take place when an agent performs an action, but the agent’s body does not move in performing

that action. The example that Himmelreich uses is of an agent (whom he names Jim) who is able to

control the movement of an object using some form of brain-machine interface, allowing the brain

to directly send signals to a moving machine. As argued above, the objects that an agent has direct

control over need not be part of their contiguous body in order for the agent to meet the manipulation

requirement. David Armstrong [Arm68] even goes as far to say that the body is just those objects

under an agent’s control5, regardless of how they are connected to them. Therefore, even an agent that

can only perform extended actions (say, a person with LiS connected to a brain-machine interface)

would meet the manipulation requirement, and therefore still be considered embodied.

Finally, we have Extended movements. Extended movements occur when “[the agent]’s body moves

in performing [the action] but [the agent]’s narrowly individuated body does not move.” [Him16] (pg

10). These movements can also be explained as embodied if we do away with a contiguity requirement,

as we have done with the case of extended actions. The example of Jim does not change at all. In

fact, Himmelreich does not make a clear differentiation between extended movements and extended

actions at all if, as he suggests we might, we give up the idea that the objects over which an agent has

5This would imply that something like a hammer is part of the body as long as it is in use, which aligns with the
claims of the Extended Body Hypothesis. Examples like this are not particularly relevant for this discussion as a tool like
a hammer still requires physical movement to be used.

28



control must be part of their contiguous body. By doing so, I have done away with the possibility of

extended actions entirely and defined extended movements as embodied. However, the discussion of

extended movements does give rise to one final edge case that may yet cause issues for the manipulation

requirement.

Suppose that a patient with LiS is given access to an artificial humanoid body which they can control

directly. Then the patient is using this body (or avatar), they perceive everything as if they were the

avatar, with no conscious awareness of their biological body. This scenario is still no problem for our

definition of embodiment, for reasons we have discussed. The objects that the agent uses to receive

sense data and the objects the agent can control directly need not be contiguous with their body.

But what if this avatar were purely digital? Consider the famous ‘brain in a vat’ thought experi-

ment [Put81]. If a thinking thing were only able to perceive digital data, believing itself to be an

embodied creature in an entirely simulated universe, would we call this creature embodied? My answer

is that we would not. The manipulation requirement stipulates that a thinking thing must be able

to sense and directly control objects in the physical world. In this case, the thinking in thing is not

embodied, it just believes itself to be.

We might, however, still consider this being to possess agency. In terms of mental states, and agent

performing an intentional action in the physical world is identical to a twin brain performing the

same action in a twin simulated world. We might save the manipulation requirement by stipulating

that an agent must somehow be deemed so by some other agent, but this moves us far away from

understanding agency as a cognitive capability and towards something altogether different. Such a

discussion is beyond the scope of this paper.

What, then, differentiates my intentional actions in the physical world from those in, say, a very vivid

dream? If the two are the same, then this would lead us to conclude that thinking about throwing

a ball is the same as actually throwing the ball. If this is true, then any link between embodiment

and agency entirely collapses. The difference, I argue, is that the external world is just that: external.

Even in the simulation scenario, the simulated world is not generated by the brain itself. Those signals

that lead the brain to believe that it is embodied and performing actions in the physical world are

externally generated. The agent still experiences themselves to be manipulating objects in the external

world, whether or not that external world is actually physical. As with the physical world, the sense

data an agent receives from an external world world can be generated by objects over which they have

no control. By contrast, in a dream world, all parts of the world are generated by the agent’s brain

and are not external, meaning their actions are not external, they are mental. As mentioned at the

beginning of this section, an agent must be capable of external actions, because there is no way for the

agent in the dream world to be wrong about the consequents of their “actions”. The generation of

an expectation is identical with the act itself. I will argue this point in more depth in the next part.

Therefore, even though the agent does not meet the requirements for embodiment, they do still have a

sense of embodiment, in that they must still be able to interact with an external world.

This argument has made clear the difference between embodiment and a sense of embodiment, and why

only the latter is required for agency. An agent at the needs to be able to interact with an external

world, even if that world is not physical. Embodiment, however, stipulates that such interactions be

with physical objects in the physical world. This reinforces the conclusion that a sense of embodiment
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is required for agency, not embodiment itself. Being an embodied agent is what gives agents control

over the physical world that humans inhabit.

2.3.2 Reviewing the Sense Condition

Does a being need to be able to sense to act intentionally? So far, we have had no particular reason to

think that it is. Despite this, it seems unusual to imagine performing an action without any kind of

sense feedback. For example, a person with paralysis can send the same motor signals to a paralysed

limb that they did prior to the paralysis, but this does not mean that said signals will be received.

Intention is not enough for agency. Even if a person were to suddenly lose all ability to receive sense

data, thus still being able to mentally simulate actions and generate outcome expectations based on

their experiences before this event, they would have no way of knowing if they performed the intended

action.

We might make a distinction between internal and external sensations. Even the being that exists in a

vacuum would experience some proprioceptive feedback, such as the feeling of moving their limbs, and

would know that they had done so, allowing for the kind of feedback loop described in our evolutionary

examples. Any objects that a thinking thing is able to control are themselves part of the external

world, even if they are also part of the body of that thing. Therefore, internal sensations are also

sufficient to meet the sense requirement for embodiment.

But what if the thinking thing were unable to receive any kind of feedback from an action, proprioceptive

or otherwise (like the ‘senseless thinker’)? I would say that such a being would not be an agent. I

make this claim for the same reason that I argued that agents must be capable of external actions:

the feedback loop collapses without the ability to compare expected outcomes with actual outcomes.

Agency develops through the repeated testing and adjustment of action plans, a process that sense

feedback, whether internal or external is essential to. If an agent is unable to receive any kind of

information about the consequences of their actions, they are unable to develop any kind of control

over their actions or the external world. One motor signal is entirely indistinguishable from another (if

these could even be generated without proprioceptive feedback), meaning that the agent cannot select

actions for the pursuit of their goals because they have no way of knowing the possible consequences of

their actions. A being that has never experienced any kind of sense data would not have the ability to

form expectations (or intentions, for that matter) of any kind.

The case of an agent that has suddenly stopped receiving sense feedback of any kind is a little more

difficult. They may have developed desires and the ability to act intentionally, but now have no way of

knowing if and how they are acting, as well as whether the external world still behaves in the way they

might expect it to. They receive no sensory feedback of any kind, including proprioceptive feedback.

In short, this once-agent has lost any control that they had over themselves and the external world and

they can no longer develop or refine their expectation-generating abilities. Their mental life becomes

indistinguishable from a thinking thing with no ability to manipulate the external world – as far as the

agent is concerned, it is only capable of internal action.

The reason I argue that an agent must have a sense of embodiment, rather than actually be embodied,

is that regardless of whether it is simulated or comes from the physical world, sense data would

appear identically in terms of the mental states of the receiver. The capacity of agency is therefore
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unchanged. If the external environment is simulated, however, it must be simulated externally to the

agent, otherwise any actions would be purely internal.

In the final chapter of this thesis, we will discuss the ways in which artificial intelligence technology

might utilise internal monitoring systems, and whether a lack of external monitoring systems has

significant cognitive consequences.

2.4 Conclusions

This chapter has aimed to explore the question of whether embodiment is a requirement for agency. In

the first section of this chapter, I went into detail as to what exactly we mean by embodiment, and I

argued that there is a difference between being a body, having a body, and being embodied. I argued

that, in order to be embodied, a thinking thing must be able to sense the external world in some way

and directly control objects within it. I made the case that the objects that a thing uses to sense and

the objects it has direct control over need not be contiguous with the thinking parts of its body. In

the second section, I argued that actions not only require intentional mental states but also require

some form of expectation for the outcome of an action. I examined two evolutionary explanations for

the development of agency in biological creatures. Finally, I examined whether embodiment is truly a

necessary condition for agency. After exploring edge cases of the embodiment conditions, we reached

the conclusion that while embodiment can often lead to the development of agency, there is a key

difference between the two. Agency is a primarily mental capability, whereas embodiment is not. An

agent must be able to interact with the external world, but for an embodied creature, that world must

be physical. By contrast, both embodied creatures and agents must meet the sense requirement, as an

agent must be able to determine that an action has taken place. From this we conclude that a being’s

belief that it is an embodied creature is a necessary condition for agency, but it need not actually be

embodied.
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Chapter 3

Having established that agency requires a sense of embodiment as well as, in Chapter 1, establishing

that embodied agency has the potential to enable AI models overcome some of their limitations, we now

need to understand what technological changes could be made to these models in order to make them

embodied agents. We will begin with examining current research and ideas about how to make these

models embodied, before turning to the more complex issue of intentionality (or something resembling

intentionality) in these models.

There is already a great deal of research in the field of robotics [Rob24] [Cou24], but much of this research

focusses on optimisation of the robotic mechanisms themselves, such as improving the sensitivity of

cameras or refining movement capabilities. I wish to look at this problem from the perspective of how

the capabilities of a complex AI model can be enhanced by the addition of physical tools for sensing

and interacting with the external world. I will also discuss how the architecture or code of these models

may need to be adapted to enable the use of these physical components, as well as the development of

something that we might call intentionality. I will then discuss a range of model architectures that

could be implemented for agency. I aim to demonstrate that there are agentive model architectures

that, when combined with physical components for sensing and manipulating the external world, would

result in a model that could be deemed an embodied agent. I will argue throughout this chapter that

these physical tools and agentive architectures have the potential to produce models that can overcome

some of the limitations outlined in Chapter 1. Focussing on specific individual additions that could

be made to current AI models will help me to be precise about how exactly embodied agency has

potential benefits for models.

3.1 Adding Senses

When we return to our three requirements for embodiment (the physical requirement, the sense

requirement, and the manipulation requirement), we see that, since an AI model would already meet

the physical requirement, there are two steps that need to be made for a model to be considered

embodied: it must be able to sense the external world and interact with it.

We have already discussed in Chapter 1 that an LLM does interact with an external world (a world

of user-generated textual inputs and probability-based outputs), but the mono-modality and limited

input data of this world is part of the reason that these LLMs are limited in their capabilities. If we

want LLMs to be capable of solving problems based in the physical world, such as causal reasoning or

classification of real-world objects, then they must be able to sense and interact with it. For example,
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work by Baravesco, de Heer Kloots, Pezzelle, and Fernández [Bav+25], found vision language models

(VLMs), which learn from both images and text-skilled representations, that aligned more closely with

human brain activity related to language processing than language-only models. This suggests that

greater access to data about the physical world (in this case, multiple modalities) helps models to more

closely mimic the brain processes of humans.

Of course, they could theoretically achieve the same capabilities by interacting with a simulated world

that is just as complex as our physical world, but then the problem moves to how such a simulated

world would be possible, as it requires a vast amount of computing power [Vid14]. So, for the purposes

of our discussion, we will focus on the technological adaptations that can be made in order for AI

models to sense and interact with our physical world.

The aim of this section is to explore ways in which models might come to meet the sensing requirement

for the physical world and to demonstrate how these methods can help improve the performance or

capability of existing models. Of course, models that only meet the sense requirement would not be

embodied agents, but models that are embodied agents must meet the sense requirement.

This discussion will be split into three segments: sensing the external world, adjusting the senses

towards particular objects, and manipulating external objects. With all three, a model would be

considered embodied. I have chosen to make a distinction between the latter two segments, as some

models may be able to control their own machinery (such as moving a camera), but not manipulate

external objects. We will investigate the model architectures that may be required in both cases. In

the next section, I will explore agentive model architectures.

3.1.1 Continuous Data

The most obvious place to start when it comes to giving AI models something akin to ’sense organs’

would be with cameras, giving AI models access to a continuous video stream of information. When

it comes to the task of image recognition, multiple similar frames help systems to recognise which

parts of an image are redundant and also understand what an object may look like from multiple

angles [Car+24].

It may be argued that these benefits are simply the result of providing a model with more data.

However, what is important about a stream of visual data is that it is different from a series of discrete

frames because it is continuous and therefore there is a relationship between those frames. A 2024

study by Shrivastava and Shrivastava [SS24] revealed that when video is treated as a ”continuous

multidimensional process rather than a series of discreet frames” (pg. 1), there is a 75% reduction in

the sampling steps required to sample a new frame.

From a technological perspective, it is important to understand the changes that were made in order

for the model to utilise the data effectively. In this particular study, the model was designed to make

predictions about what the next frame of the video would look like. The framework created used a

mathematical formula to create intermediate frames between video frames. Some noise was added

to these intermediate frames to simulate natural motion and variability. The time variable was also

modelled as continuous rather than discreet. As a result, the model was more efficient in its prediction.

This use of continuous visual data mimics the ways in which humans and animals sense the world –
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instead of observing separate frames of a scene, we understand an event as a whole, fluid motion. By

modelling time as a continuous variable, we unlock the potential for systems to recognise patterns of

motion, observe how objects change over time, predict behaviour, and perhaps even begin to develop

a rudimentary understanding of causality (in the sense of observing that certain events are always

preceded by other certain events).

While this alone does not mean that a model is embodied or an agent, enhancing the sense capabilities

of models that are agents (such as with continuous data streams) can lean to a higher level of agency.

3.1.2 Multimodal Data

Audio data, however, always has a time variable due to the nature of how it is received – any clip

of sound has a duration. So, there are no obvious changes that might occur if a model trained on

only audio data were to be solely equipped with microphones that were continuously receiving audio

data, other than the expected benefits of simply receiving more data. So, while audio models may

not benefit much from continuous data(any more than they already do with clips of sound), we might

consider whether models can benefit from receiving multiple modalities of data.

When AI models receive both audio and visual data, they are better at making predictions. This

was shown in a 2024 study by Su, Liu, and Shilzerman [SLS24], which found that models showed

improved performance in speech recognition and object detection. The use of this kind of multimodal

data allows models to understand the relationship between certain visual events and particular sounds.

This means that models are better at identifying complex events, such as when there are overlapping

sounds or multiple visual events. The Contrastive Audio-Visual Masked AutoEncoderCAV-MAE Sync

model, developed by researchers at MIT and IBM, was able to predict sounds from video data and

generate images from audio data [Gon+23] [Ara+25]. For example, it was able to match the sound of

a roller coaster with the visual of its motion. This was shown to help with speech recognition in noisy

environments and with emotion detection.

An understanding of the relationship between data from different sense modalities, which is created

when that data is linked by a time variable, overall allows for a greater understanding of the real world

environment. Not only are models better at understanding and predicting complex events, but they

have a broader picture of the features of particular objects and scenarios.

3.2 Directing the Senses

Some of the senses we have not yet discussed include touch, taste, and smell. These differ from sight

and hearing in that they more often require actions to be taken in order to be employed. In general,

we choose to touch, smell, and taste a particular object by picking it up, inhaling through our nose,

and putting it in our mouths. This is of course not always the cause. For example, one often finds that

they cannot help but smell a particularly foul odour. The point is simply that our ’field of sensing’, as

it is, for sight and hearing is generally larger. Many objects that we can see and hear will need to be

brought much closer, either by our own actions or by some external force, in order for us to also be

able to touch, taste, and smell them.

Receiving important sense data about the external world is enhanced when we are able to move our
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sense organs toward that which we wish to perceive.

The ability to direct our senses towards certain objects is part of what allows us to investigate the world

around us. We move towards objects of interest and away from that which is deemed unimportant.

We might call this skill ’attention’, as there is some, however minimal (and perhaps unconscious),

decision-making process which determines how the senses are directed.

3.2.1 Physical Directing

Before turning to the decision-making processes that may be involved in AI model attention, we can

briefly mention the physical components that may assist with this. Firstly, some amount of camera

movement and focus adjustment helps to adjust the visual field. A model might utilise this to follow

an object of interest or scan a wider space for relevant information. In addition, the use of multiple

microphones would help a model to identify where the source of a sound is in space by comparing

the volume between each microphone. The camera could then be directed towards the source of the

sound. Furthermore, the ability to manipulate objects would unlock even more information. If a

model had access to a grasping mechanism to move objects around, the object could be observed from

multiple angles, its movements examined, and its size, hardness, texture, and weight could potentially

be determined. We will discuss further intentional manipulation of objects in a later section of this

chapter. For now, we will move on to discussing how a model might determine where to ’focus’ on its

data receiving tools.

3.2.2 Attention Architectures

If a model is equipped with some device that allows it to be receiving raw, real-time data about the

external world and has some goal-directed decision-making process that it uses to direct those devices

towards particular stimuli, then we might be able to say that it has a rudimentary version of agency

(the capacity to act intentionally with an expectation of outcome). It is able to sense the world and

carry out actions (such as the movement of a camera) with an aim of gaining information relevant to

its task. While it may not have fully simulated an expectation of the data it might receive in directing

its sense devices, the model expects that it will gain the most useful information from the specific area

it ’turns’ toward. This means that, in simple terms, the model is turning away from the expected (that

about which it does not need to learn more) and towards the unexpected. If a model is aiming to carry

out a particular task, then it needs to be able to investigate new information. I would argue, however,

that this is not necessarily enough for agency, as these behaviours may be simply reflexive and bypass

any kind of symbolic reasoning.

In Chapter 6 of From Deep Learning to Rational Minds [Buc23], Buckner outlines a number of ways

in which attention-like mechanisms can be utilised in ML model architectures. The first of these are

called Region-based Convolutional Neural Networks (R-CNNs). These models, used, for example, for

image classification, direct their resources towards areas of the image that are most likely to lead

to identification, which leads to a significant improvement in efficiency and accuracy compared to

traditional CNNs. The R-CNN uses a component called a Region Proposal Network (RPN) to compute

a set of proposals for regions that should undergo more intensive feature detection. Within this type

of model architecture, there is some (minimal) level of expectation in that the regions selected are

expected to be most useful in the classification process.

35



The ability to direct the senses towards particular stimuli is another building block that could lead

models to a high level of agency. This capability allows models to explore the external environment

beyond the static receipt of sense data. Attentional models also form the foundation of the ability

to interpret sense data. By selecting areas of importance, models are able to pick out the significant

features of the objects around them. While this capability still does not constitute agency, an agent

with sense-directing capabilities has a greater ability to receive and interpret data, which aids in the

expectation generation process.

3.2.3 Recurrence and Continuous Learning

Buckner points out that R-CNNs are limited in that they lack recurrence, which is something that

would bring a model closer to truly representing agency because being able to learn from sense feedback

is very important for improving action selection. Recurrence in ML models is when past outputs are fed

back into the model in order to inform the next output. For the R-CNN, the results of later processing

do not influence the selection of the regions of interest. This, naturally, differs from human visual

processing in that we will learn from one area of focus in a visual space and use this information to

determine the next area of focus. For example, seeing that someone is looking in a particular direction

might prompt me to also look in that direction.

Recurrence is a capability that is implied within agency, as agents are able to learn from the outcomes

of their actions in order to develop better control over their actions. 1 Many models are trained on a

specific dataset and then put to work on the specific task they were trained to carry out. A model with

recurrence is able to alter its behaviour based on its outputs in order to make increasingly accurate

predictions, even when the external environment changes.

Buckner then goes on to describe a recurring attention model (RAM), which uses information from a

prior ’glimpse’ of an input to determine where to focus next. This mimics human visual scanning more

accurately, because the ’glimpse sensor’ used is much more similar to the human retina, in that the

resolution of the input increases toward the centre of the window.

In addition to mechanisms that adjust focus towards specific parts of a fixed visual field, there are also

systems, sometimes known as Active Vision Systems, that use reinforcement learning or recurrence

to control camera movement (such as panning or zooming) and maximise useful visual information.

These kinds of system can be combined with audio input so that cameras can be moved towards target

audio sources.

3.3 Manipulating the External World

We have now understood some of the physical and architectural systems that could be implemented

to allow models to sense the world and direct those senses towards particular stimuli. We have

also discussed some of the performance benefits that may result from this, in that multimodal and

continuous data aid greatly in the efficiency and accuracy of categorisation tasks, and the ability to

1Theoretically, a model that acts intentionally with an expectation of outcome that never learns from the outcome of
their actions would still be an agent, but just not a very good one, as they would be unable to adapt to the environment
as it changes. The would therefore be at a lower level of the agency spectrum than models that do have recurrence, as
they are worse at predicting the consequences of their actions.
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focus on specific points of interest helps to identify and isolate particularly useful data.

We now turn to how an AI might be able to (intentionally) manipulate the world. This goes beyond

the ability to adjust the senses, as it unlocks the potential to change the stimuli themselves and learn

more about their behaviours. Although adjustment of one’s own sensing organs / devices counts as an

action, agents that are only able to act in this way are limited in the amount of information about the

external world that they can access compared to agents that can manipulate the external world. As

discussed in earlier chapters, agency exists on a spectrum and having a greater ability to manipulate

the external world allows agents to achieve higher levels of agency. This is because the agent can

gain a great deal more information about the external world via, e.g. hypothesis testing, leading to

more accurate action selection and expectation generation, resulting in more control over the external

environment.

In the coming section, we will discuss the physical components that a model might be able to employ

to better manipulate the world. We will investigate possible model architectures that could be used to

decide what physical actions to take, and finally we will talk about intentionality and how this might

be at least simulated by an AI model.

3.3.1 Physical Mechanisms of Manipulation

There are a range of physical devices that can be controlled by AI models to manipulate the physical

environment. The obvious examples that come to mind are the robotic equivalent of ’limbs’, which

give models the capability of reaching out and grasping objects in order to move them. There are also

various ways in which the systems as a whole can move around a space, such as with wheels, bipedal,

or quadrupedal locomotion. Much of this depends on the size and shape of the robot and the tasks

it is expected to carry out. If the physical devices the controlling model has access to are designed

specifically for a narrow range of tasks, then the model is likely to be less effective at transferring its

skills to other tasks. Therefore, access to general tools that can be used to explore a range of objects

and environments is beneficial for allowing models to investigate and try to solve a wide range of

problems.

For example, Atlas (Fig. 3.1) is a humanoid robot developed by Boston Dynamics [Kui+15] with

the ability to walk, run, and jump, as well as lift, carry, and organise objects. Atlas demonstrates

the possibilities for models to be embodied with the physical hardware to perform a range of tasks

and to have a high level of precision in their movements. These abilities further enhance the amount

of information agents are able to uncover about the external environment. In addition, Atlas uses

optimisation algorithms for planning and controlling its movements in real time, allowing it to perform

complex movements in unpredictable environments. I will discuss model architectures like this in more

detail in the next section, but this example at least serves as a proof of concept that recurrence-based

planning models can control complex robots.

3.3.2 Proprioceptive Feedback and Reactive Architectures

Another element of sensing that is helpful in giving agents greater control over their actions is

proprioceptive feedback, which is information about the movements and positioning of the body.

In a 2025 paper written by Zhang, Li, and Dai titled ‘Continuous Learning and Adaptation of Neural
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Figure 3.1: Boston Dynamics’ Atlas Robot doing Parkour.2

Control for Proprioceptive Feedback Integration in a Quadruped Robot’ [ZLD25], a four-legged robot

was able to effectively navigate unpredictable terrain with the use of simple sensors in each limb that

returned the angle of the Coxa-Femur joint (CF) of the limb. The CF joint angle refers to the angle

between the coxa, which is attached directly to the body and usually controls horizontal rotation, and

the femur, which is attached to the coxa and usually controls vertical movement. The control module

in the robot is then able to compare the commanded and the actual CF angles and broadcast the

“error” signal to all legs. Doing so allows the robot to anticipate any uneven terrain that is approaching

and adjust the movement of the other legs accordingly. In this example, there is a feedback loop that

closely resembles the way that biological organisms utilise efference copies [WGJ95]. A copy of the

commanded motor signal is made and compared to the actual outcome of the movement. Typically,

there will be a great deal more feedback that is available to a biological organism, but this kind of

experiment shows that efference copies, a rudimentary form of outcome expectation, is not only a

useful method for adapting to a changing environment but is also a very efficient way for robots to

learn reliable patterns of movement, which can be used again in future scenarios. Further still, this

kind of feedback can be combined with other sensory feedback, such as visual and auditory information,

in order for models to make better predictions about the kind of motor signals that will be needed for

particular tasks. For example, a model could learn to visually identify a particular type of terrain,

such as a step, as it approaches and anticipate which motor signal will be needed.

Experiments [Li+25] with robots that receive proprioceptive feedback indicate that comparing expec-

tation to outcome is an efficient way for embodied models to learn. Receiving real-time information

about the status of the body aids embodied models in refining their physical abilities. As previously

mentioned, the model architecture employed by Atlas displays this kind of real-time refining.

I note, however, that it remains to be seen if more complex agentive architectures can be integrated

into these embodied robots. Some of the integration issues can be resolved by acknowledging that

embodied agentive models do not need to be one cohesive “body”, and could instead remotely control

2Image Source: Boston Dynamics
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devices for sensing and manipulating, thus removing any restrictions on the size and shape of the

thinking parts of the model.

3.4 Agentive Architectures

Having investigated how models might use immediate sensory feedback to adjust physical movements in

real time (this is often called a reactive architecture), we can now turn to how this and similar processes

can become increasingly complex for the pursuit of long-term goals and the solving of more difficult

problems. Having the ability to solve problems that require more in-depth investigations requires a

certain amount of pre-planning and understanding. For example, opening a puzzle box requires an

understanding of what constitutes the box being ’open’, the ability to guess what motor signals may

lead to this result, and the ability to choose the next step based on the result of what was tried. This

kind of reasoning is more detailed than simply comparing CF angles, meaning that a model needs to

be able to develop a more complex understanding (and memory) of the external world. This kind of

reasoning therefore requires more complex expectations and intentions.

This move from reactive to agentive architectures represents a shift from models that may simply be

acting reflexively (and therefore are not agents), to models that use some amount of symbolic reasoning

for action selection and expectation generation, which are agents. I will discuss these models in roughly

chronological order, beginning with the earliest agentive architectures that relied solely on symbolic

reasoning, and ending with some of the most recently developed models. At each stage, I will discuss

the strengths and weaknesses of each type of model, arguing that more modern systems are our best

options for high levels of (possibly embodied) agency.

There are a number of AI model architectures called ’Agentive AI Systems’. These types of system

incorporate the elements that we have discussed so far in this chapter: a loop of perception, planning,

action, and learning. But how do these kinds of model maintain and plan for these longer-term goals?

3.4.1 Deliberative Architectures

Deliberative Architecture Agents build and manipulate explicit world models and plan sequences

of actions by filtering desires through feasibility checks and priority rules [GI89]. They then carry

out these actions, monitor the results, and handle exceptions, as these models use explicit symbolic

reasoning to calculate the best course of action.

One of the most influential approaches to automated planning is known as Stanford Research Institute

Problem Solver (STRIPS) [FN71]. This is an early kind of deliberative architecture, and it is a planning

system. States of the world are described by a set of logical propositions, and goals are defined as a

set of conditions that describe the desired outcome. Actions in STRIPS are characterised as a set of

three components: conditions that must be true for an action to be carried out, conditions that must

become true as a result of the action, and conditions that must become false as a result of the actions.

Belief, Desire, Intentions (BDI) systems work slightly differently from this [RG91]. They maintain a

set of beliefs which function as a knowledge base about the current state of the world that is updated

based on sensory input. Desires represents the agent’s goals and objectives. These objectives adapt

based on the beliefs that the agent holds. Finally, the intention component represents the specific
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courses of action that the agent plans to carry out. The beliefs and desires of the agent help them to

determine which actions to commit to. Once the agent commits to an action, it will carry it out unless

circumstances change.

Another type of deliberative architecture is a Procedural Reasoning System (PRS), which also has

explicit representations of beliefs, desires, and intentions, but in addition it is equipped with a plan

library, representing the agent’s procedural knowledge, which is knowledge of the processes that the

agent is able to employ in order to realised its intentions [GI89]. The PRS has an interpreter component

which manages the beliefs, goals, plans, and intentions, continuously cycling between updating its

beliefs and deciding what to do next.

Finally, there is the Intelligent Resource Bounded Machine Architecture (IRMA) [BIP88]. IRMA’s

structure is the most complex of the four deliberative architectures in this subsection. It has the same

four symbolic data structures as PRS (plans, beliefs, desires, and intentions), but also employs some

additional components. Sense data is fed into the belief structure, which communicates with a reasoner.

The reasoner uses beliefs to make inferences about the world, and these are added to the belief set.

Beliefs and plans feed into a means-end analyser, which determines which plans might be used to

achieve the agent’s intentions outputs these as options. Options are also generated by an opportunity

analyser, which takes information about the environment and the agent’s goals to determine which

actions are possible. These options go through a filtering process to determine which options are

compatible with the agent’s current intentions. The surviving options, combined with the beliefs and

desires finally go through a deliberation module to determine the best intention to adopt, and then the

intentions are updated, being output as actions.

Deliberative architectures handle explicit planning well and adapt to novel situations by reasoning over

symbolic models. They are particularly useful when there are strict restraints on the agent, such a

safety regulations or correctness requirements. However, the use of explicit symbolic reasoning has a

fair number of limitations. Firstly, it is computationally intensive. These types of models require a

detailed internal model of the external world, which, for increasingly complex tasks, requires a great

deal of computing power. Modelling the external world in this way also means that models can struggle

in changing or uncertain environments, as the internal model may not always match with the actual

world and there may be a delay in the updating of plans. Additionally, these models require highly

accurate systems to convert raw data to symbols. As we have seen earlier in this chapter, if a model is

receiving a constant stream of real-time, multimodal data, then this process not only takes a great

deal of computing power, but requires a sophisticated system of object detection and identification,

an advanced ability to make inferences based on this data, and being able to do so in enough time

for those inferences to be useful (even if we employ attentional systems to improve efficiency). If we

wish our models to be able to solve a range of complex problems in real time, then this type of system

is likely not feasible, as the entire external environment is too complex to be accurately modelled

symbolically.

The issue of computational complexity that arises here is related to what is known as The Frame

Problem, which refers to the issue of making an alteration to a representation of the world, such as

tracking the consequences of an action [MH69]. The problem was introduced in 1969 by John McCarthy

and Patrick J. Hayes. In 1971, Hayes issued a memo proposing some solutions to the problem [Hay81].
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One of the proposed solutions requires a more robust understanding of causal relationships, allowing

systems to more efficiently infer the consequences of actions. In Chapter 1, I discussed the possibility

for embodied agency to give rise to a higher level of causal understanding in AI models, so this is one

possible way that this problem might be resolved. In addition, Hayes emphasises the need for efficient,

context sensitive world models. Something like this may be achieved through the use of hybrid models,

which will be discussed in the next subsection.

3.4.2 Reactive and Hybrid Architectures

In response to the difficulties with these symbolic systems, researchers have developed Reactive

Architectures [Lee00]. These are behaviour-based models of activity, which are considered to be a

lot more flexible that deliberative architectures because they can manage their resource abilities in

unpredictable worlds. One of the earliest architectures that works in this way is known as a Subsumption

Architecture, introduced by Rodney Brooks in 1986 [Bro86]. Brooks was a vocal critic of symbolic AI

and argued that intelligent behaviour can be generated without explicit representations and explicit

reasoning. The subsumption architecture that he proposed organises intelligence into parallel layers

which run concurrently and can override each other. The lowest layer handles reflexive tasks and runs

the fastest to ensure real-time responses. The middle layers build on these lower layers and are able to

override the outputs from the lower layer if needed. The highest layers of this architecture perform

goal-directed actions such as exploration and can override lower behaviours to achieve higher-level

objectives.

While reactive architectures are great at real -time reactivity and flexibility, they cannot take past

events into account or foresee the future. Their actions come only from perceptions, and thus they are

difficult to predict and perform poorly at complex actions and pursuing longer-term goals. Therefore,

some researchers have suggested that combining the capabilities of deliberative and reactive systems

might help agents to react quickly to immediate changes in the environment, while still pursuing more

complex objectives [Gat92].

Such a hybrid architectures are similar to what many philosophers and psychologists have theorised

about human systems of decision-making, in that humans have two types of reasoning, one which is

rapid, intuitive, and automatic, largely pertaining to making quick decisions in real time, and another

which is slower and more analytical, pertaining more to the pursuit of longer term goals. This second

type of reasoning can override out instinctive responses of the first type [Kah11].

One example of a hybrid architecture is a Touring Machine (not to be confused with a ‘Turing

Machine’) [Fer92], which consists of a perception subsystem that feeds information to three layers:

the reactive layer, which produces an immediate response; the planning layer, which manages typical

running, assuming that the circumstances of the world are unchanged; and the modelling layer, which

predicts conflicts and generates solutions to these problems. These layers are managed by a control

subsystem, which decides which of the three layers should take control over the agent. The result of this

is then fed to the action subsystem. This architecture is different from the subsumption architecture in

that each of the layers may contain some explicit representations.

Another hybrid architecture is Integration of Reactive Behaviour and Rational Planning (InteR-

RaP) [MP94]. This model architecture uses a hierarchical knowledge base, which interacts with
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hierarchical layers the control agent behaviour. The world interface, which consists of perception,

communication, and acting components feeds into the world model, which is an internal representation

of the external world. The world model interacts with the behaviour-based control component, which

controls reactive behaviours. It generates and revises beliefs, activates reactions based on perception.

It also generates requests to the plan-based component, the layer above, if needed. The plan-based

component generates plans of action for the agent based on the plan library, which is the next layer in

the knowledge base above the world model, and sends requests to the next layer up, the cooperation

component. The cooperation component generates joint plans to satisfy the goals of a number of agents

using cooperation knowledge, which is the top layer of the knowledge base and represents a social

model of the world. Not only does InteRRaP unite reflexive and deliberative reasoning, but it is also

able to do this with social reasoning about other agents by maintaining models of those agents, which

goes beyond the capabilities of the models we have discussed so far.

While hybrid systems are able to manage both real-time problems and complex routines, they have

their own limitations. There is the challenge of managing communication between layers and balancing

resource allocation between them, because communication is multidirectional and must be timed

and sequenced precisely. Further still, these models still face the problem of needing a great deal of

computing power to internally represent the external world complexly enough to achieve challenging,

long-term goals.

Finally, there is potential for a great deal of rigidity for having pre-designed plan libraries and patterns

of behaviour – they cannot effectively update their strategies based on what they learn about the

world [Woo09]. As argued in my discussion of recurrence, agents that cannot update their decision-

making processes are likely to remain at the lower level of the agency spectrum, as they cannot

refine their methods of choosing actions. It is true that hybrid architectures are an improvement in

modelling agency compared to reactive architectures (actions are not simply reflexive) and deliberative

architectures (they are better at reacting in real-time to changes in the environment, but the level of

agency these models can achieve is limited because they cannot learn from the results of their actions.

3.4.3 Cognitive Architectures

We now move to an example of a more modern version of hybrid architectures: cognitive architectures.

This is a very broad term for architectures that seek to emulate human cognitive processes such as

memory, learning, perception, and problem solving.

Adaptive Control of Thought – Rational (ACT-R) (Fig.3.2, which is short for , is a hybrid cognitive

architecture developed at Carnegie Mellon University [RTO18]. It differs from hybrid models such as

InteRRaP in that instead of dividing functionality into separate reactive and planning tiers, it integrates

all the cognitive processes with both symbolic and subsymbolic layers. In addition to declarative

knowledge (facts about the world), which are stored symbolically, ACT-R has an additional memory

module for procedural memory, which stores a series of IF-THEN rules that tell the model what actions

to take if certain conditions are met.

ACT-R uses a set of buffers (goal buffer, retrieval buffer, sensory buffer, and motor buffer) to store the

most recently perceived or retrieved information. When perception occurs, the sensory modules place

new data in the correct buffer. The buffers are then scanned to determine if any if the procedural IF
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conditions have been met. If so, the THEN action is activated. This might involve updating the buffers,

retrieving information from memory, or issuing a motor command. The buffers are then scanned again

and the cycle continues. If multiple IF-THEN rules match, then the expected value of each rule is

calculated, and the rule with the highest expected utility is selected, although it does not have an

explicit expectation of sensory outcomes.

What is ACT-R closer to high-level agency than the architectures in the previous subsection is that it

is able to adapt its procedures based on sensory feedback. Each rule tracks how successful it has been

and is less likely to fire if it has been shown to be less successful. In addition, complex sequences of

rules are often combined into more efficient rules to speed up behaviours.

Figure 3.2: A simplified flowchart of the ACT-R model architecture.3

3.5 Embodied Cognition

As mentioned in Chapter 1, Saty Raghavachary emphasises the need for models to directly experience

the world through the physical body in order to generate human-level grounded meaning [Rag24].

This has been missing from the architectures we have discussed so far, so combining them with the

robotic technologies discussed in Section 3.4 would not give models access to some of the key benefits

of embodiment. While all of the models from the previous section have contained modules from

receiving sense data and making inferences, this has either involved updating an internal model of the

world, updating procedural rules of action, or quickly activating a reflexive response. By contrast,

Raghavachary argues that agents should associate symbols with real-world experiences in order to

ground their meaning in reality4. In addition, we have discussed how Andy Clark argues that being able

3Image Source: Wikimedia Commons
4This is also supported by [Bav+25].
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to associate particular motor routines and visual cues with particular data structures allows agents to

deliberate more efficiently and rely less heavily on a complex system of internal representations [Cla98].

Furthermore, while the cognitive models described in the previous section represent a reasonably high

level of agency and the ability to act within the world by demonstrating the ability to perceive, plan,

act, and learn, these architectures place little emphasis on the ability to explore and learn through

real-time interactions and experiments with external objects and other agents. This ability is the key

to why embodied agency has the potential to be so beneficial for AI models: embodied agents can act

with the intention of finding out more about the physical world. We might say this is more like the

way that a baby learns – babies explore the world primarily through sensory exploration without much

in the way of preexisting procedures for action. The trial and error that babies undergo allows for the

refinement of both knowledge and motor functions themselves. For this reason, we now turn to some

model architectures that emphasise the learning of inferences through sensory grounding.

3.5.1 Sensory Grounding

The Connectionist Learning with Adaptive Rule Induction On-Line (CLARION) Architecture (Fig.3.3)

is a dual-process cognitive architecture that makes a distinction between implicit and explicit learn-

ing [Sun16]. While its embodiment has only been simulated so far, its structure centres on learning

from experience and the consequences of action, while also using declarative knowledge and beliefs to

inform action (much like the agentive feedback loop). CLARION is designed to represent embodied

cognition and the idea that thinking is deeply influenced by interaction with the external world, a

claim which I have also made through my discussion of embodied cognition, grounded meaning, and

the Extended Mind Hypothesis. CLARION is also designed to be integrated with robotic components

such as sensors and ’limbs’, although this has not yet been attempted in earnest.

Crucially, CLARION contains both an action-centred and a non-action-centred subsystem. At the

bottom level of the action subsystem, a network of perceptrons learns via reinforcement, whereas, at the

top level, explicit symbolic rules are extracted and refined. These rules pertain to what action should

be taken given a certain internal state, which means that the model carries out explicit reasoning for

action selection based on the expected future reward. Both layers in the action-centred subsystem

control internal and external actions. At the bottom level of the non-action subsystem, neural networks

learn via association, and, at the top level, explicit rules are extracted. These rules are either semantic

(pertaining to definitions) or episodic (pertaining to sequences of events) and are grounded in first-hand

sensorimotor traces. This means that the model’s understanding of meaning and sequences of events

are grounded in the sense data received and motor signals employed when learning these rules. In both

subsystems, the two layers work together in that repeated successful neural activations that are learnt

at the bottom level are extracted to generate new explicit rules or adapt existing rules. These explicit

rules then bias or shape further implicit learning at the lower level, meaning that hypotheses can be

tested.

Further still, CLARION contains a motivational subsystem, with the bottom level representing simple

drives such as hunger and the top level representing explicit goals. The final subsystem is metacognitive

and balances the layers of the other subsystems, such as weighting explicit versus implicit responses.

CLARION is similar to ACT-R in that the distinction between action-centred and non-action-centred
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Figure 3.3: A simplified flowchart of the CLARION model architecture.5

subsystems is similar to ACT-R’s distinction between procedural and declarative memory. However,

ACT-R does not distinguish between implicit and explicit processes. Furthermore, rules learnt by

ACT-R are not grounded in sensorimotor data as they are in CLARION.

CLARION contains many of the features of high-level agency that I have discussed: reacting in

real-time to changes in the environment, learning explicit rules from experience, balancing simpler

desires and long-term goals, choosing actions based on expected reward, and grounding meaning in

sensorimotor feedback. By building on the research that produced the models discussed throughout

this chapter, CLARION has the potential, when combined with devices for sensing and acting within

the real physical world, to be a high-level embodied agent. Such an agent, with it’s capabilities,

has the potential to overcome a great deal of the current limitations of AI models. Of course, with

grounded meanings (and, potentially, with multimodal, continuous sense data), CLARION may be

more data-efficient than many current modes. As it learns explicit rules through experience, when it

repeatedly observes sequences of events, it is able to form if-then rules in the explicit layers, representing

causal understanding. Further still, CLARION monitors whether these rules continue to produce

expected results, modifying or discarding them if they do not, ensuring that coincidence or noise can

be dealt with. CLARION is also able to generalise patterns in the implicit layer from one domain to

5Image Source: Wikimedia Commons
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another, and adapt explicit rules across contexts, allowing for more efficient transfer learning. Finally,

CLARION contains a metacognitive subsystem that monitors, directs, and modifies the operations of

all other subsystems, ensuring that processes run smoothly and efficiently. This kind of metacognitive

capability lays the groundwork for increasingly self-aware AI systems that can check and explain their

reasoning and decisions.

As a result, the CLARION architecture system is able to model a wide range of cognitive abilities,

such as reaction time, grammar learning, and complex problem solving. It has been shown to be

useful in social situations, in collaborating with humans, and in making decisions in complex, dynamic

environments. These capabilities further reinforce how agentive architectures can help AI models to

overcome their limitations. In particular, being able to act within an environment and ground learning

in sensorimotor feedback is part of what allows models to achieve a more general intelligence, being

able to explore and adapt to new scenarios and learn explicit rules through experience. This ability

sets CLARION apart for the other architectures I have discussed. Though it naturally has its own

limitations, the discussion so far demonstrates that agency and embodiment will be fundamental in

the push towards general artificial intelligence.

3.5.2 Robots

We now turn to a way in which key ideas from the model architectures we have discussed can

be integrated into a robotic system. The Distributed Integrated Affect, Reflection, and Cognition

(DIARC) system is a robotic cognitive architecture that integrates modules for perception, natural

language processing and generation, procedural and declarative memory, action execution and planning,

motivation, and performance monitoring (metacognition) [Sch+19]. New concepts can be added via

natural language instruction, which distinguishes it from the models we have looked at so far, as none

of these have specific natural language processing frameworks. In addition, DIARC adapts its attention

and learning priorities based on sensory data and certainty levels. For example, a surprised human face

may lead to focussing on nearby objects. However, DIARC is an architecture that focusses primarily

on multimodal human-robot interaction, so it lacks the framework for more explicit symbolic reasoning

and complex decision-making.

While DIARC is not designed for a specific robot, it demonstrates the ways in which a robot might

be able to act as a being in the world and learn not only from sense data but also from interaction

with other agents. If some combination of CLARION’s human-like learning and DIARC’s interaction

capabilities is possible in the future, then we may be able to fully represent the ways in which high-level

agents can learn from hypothesis testing in the external world and from interaction with other agents;

reason implicitly and explicitly; and react quickly in pursuit of both short-term needs and long-term

goals.

3.5.3 Additional Components

We almost have an overview of how agency may be realised in artificial intelligence architectures, based

on current frameworks. There are some final components that are worth mentioning which may help

to further strengthen agency in AI models.

The first is curriculum-driven embodied learning. This is when agents are guided, whether by another
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agent or a specific ’curriculum scheduler’ component, through a structured learning process through

progressively more complex experiences [XLZ25] [Ram+23]. For example, an infant learns about

tools by first mastering touch, then grasping and moving in various ways, then picking up and using

tools, and finally grounding this in language. This is similar to how implicit learning can feed explicit

learning, except that there is an agent or module in place to ensure that more basic and general skills

are mastered first before higher-level skills can be worked on. A curriculum scheduler component in AI

organises and adjusts the order and difficulty of the learning tasks that the agent will go through based

on their current capabilities and progress. This system has the potential to aid in the transferability of

the skills the agent learns, as they are able to master simple control of their motor functions and basic

understanding of sensory data before learning more complex solutions to tasks, meaning that agents

are able to approach new tasks with a preexisting set of skills for exploration. In addition, this helps

to prevent catastrophic forgetting, as earlier tasks are periodically revisited.

Secondly, there may be some additional components required for social grounding. Being able to model

the reasoning processes of other agents is not something architectures like CLARION are specifically

designed to do. However, InteRRaP does have components for this, so there is a possibility for these

elements to be combined for models to be better social agents.

Finally, although the more complex models we have discussed generate expectations by storing explicit

rules about the world and planning actions with specific goals in mind, they do not necessarily explicitly

simulate the expected world-state that will result from an action. The integration of an imagination

component, such as that employed by the Imagination-Augmented Argent architecture developed

by DeepMind, would allow agents to simulate different actions when deliberating as to what to

do [Web+17]. Being able to do so has the potential to enhance action efficacy, as some experimentation

is able to be simulated internally. However, more testing is needed to determine whether these benefits

could be encapsulated by the explicit reasoning already discussed.

3.6 Future Developments

Given the capabilities of agentive models like CLARION, robotic architectures like DIARC, robot

mechanics like those of Atlas, and other components, we now have a clear roadmap for how AI models

could be high level embodied agents. As discussed, CLARION, already performs agency at a high

level and, if integrated with sensing devices and robotic components, would be considered a high level

embodied agent. It interprets sense data it receives to learn patterns and explicit rules, using these to

determine plans for the pursuit of immediate needs and long-term goals based on expected rewards,

and learns from the outcomes of its actions, thereby refining its reasoning processes and expectation

functions.

With its emphasis on exploring the environment and learning through experience, it is able to develop

better causal understanding and transfer learned solutions to new domains much better than current

AI models that act within limited virtual worlds or models that cannot learn from experience. Further

still, employing both explicit and implicit learning aligns much more closely with human cognitive

development and improves data efficiency in problem solving and decision-making. CLARION also has

the metacognitive ability to reflect upon and refine the performance of all of its submodules, potentially

paving the way for more transparent AI systems.
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What Clarion lacks, however, is much of a framework for interacting with other agents. This is where

DIARC comes in. The ability to learn from natural language instructions, as well as model other

agents (a feature that also came up in my discussion of InteRRaP), further enhances how much agents

can learn from and control their external environments. Collaboration between agents is an important

way that knowledge and resources are shared, and understanding collaborators as agents themselves

has the potential to lead to enhanced performance in social reasoning models. Social and group agency

is unfortunately beyond the scope of this thesis, but is an interesting area for further research.

Finally, these capabilities could be further enhanced if there is some oversight within the model that

dictates the order and complexity of learning tasks. Implementing a component like this could further

reduce learning times. In addition, there is also research being done into more detailed simulation of

actions (which we might call imagination), that may yet further enable models to make accurate action

decisions in complex situations by comparing simulated sequences of events, as opposed to relying

simply on a reward function.

If these architectures (CLARION, DIARC, a curriculum scheduler, and an imaginative architecture)

could in the future be combined into one architecture and given control over high quality sensing

devices (such as cameras and microphones) and mechanical object manipulation tools (such as those

akin to limbs and hands), then the resulting intelligent robot would be a high level embodied agent

with the potential to develop a detailed understanding of the physical world and the laws that govern

it. Such an agent could learn through both experience and from natural language inputs; reflect upon,

explain, and refine its own reasoning; solve complex problems across a range of domains including in

hypothetical scenarios; and react in real-time to changes in the environment whilst also pursing and

updating its long-term goals, to name a few possibilities. These abilities are some of the fundamental

expectations that we have for an Artificial General Intelligence and, if achieved, would certainly

represent a significant step towards that goal6.

Although the separate architectures and components that could be brought together to achieve this

do exist, it remains to be seen if it is feasible for them all to be brought together. Both CLARION

and DIARC are designed to be integrated with robotic components, so this part is not an issue, but

whether the two of them could be combined is unclear. DIARC has previously been integrated with

ACT-R (and models like it) and found to have the capabilities of both architectures as well as new

capabilities that resulted from both systems leveraging one another [SHS13]. This is evidence that

the same may be possible with CLARION, although potentially more challenging due to the model’s

complexity. Further still, CLARION’s modular design makes it a good candidate for integrations

with other components, such as a curriculum scheduler or imaginative architecture. It is therefore

reasonable to suggest that some form of embodied artificial agent is highly possible in the future, and

that said agent would have capabilities that overcome many of AI’s current limitations.

3.7 Conclusions

In this chapter, I have examined all the ways in which embodied agency could be developed in artificial

intelligence models. At the rudimentary level, models can be equipped with some simple sensing devices

6I do not claim that this is all that would be needed for AGI, and whether or not true general intelligence can be
achieved by AI models is outside the scope of this thesis.
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and reaction architectures, as well as possibly also an attention framework for physically or intentionally

directing the senses for more efficient reasoning. While these models would not be considered agents,

I have shown that the addition of multimodal and continuous sense data as well as the ability to

focus on particular stimuli has significant performance benefits for models and that sense devices and

attentional frameworks would be necessary for a model that is an embodied agent.

At a middling level, deliberative architectures use beliefs about the world, desires for future world-

states, to generate intentions for actions. These models are therefore low-level agents. Deliberative

architectures are poor at responding to immediate changes in the environment, so can be combined

with reactive architectures to balance more complex reasoning with reflexive reactions to the world.

The resulting hybrid architectures are better at responding in real time to changes in the environment,

while maintaining the ability to carry out symbolic reasoning.

Being able to update action procedures from experience pushes agency to a higher level. This can be

found in cognitive architectures such as ACT-R and further strengthened by the ability of architectures

such as CLARION to ground learning and stored rules in sensorimotor experience, which is much

closer to the way humans learn about the world. This capability helps to improve cognitive efficiency

and further demonstrates the symbiotic relationship between agents and the worlds they inhabit.

Finally, researchers are beginning to develop robotic architectures such as DIARC that can learn

from direct communication with human agents, as well as components that plan learning tasks for

increased efficiency and imaginative architectures that can simulate possible sequences of events. In

the future, if these high-level capabilities could be integrated into one architecture and given control

over robotic devices for sensing and manipulating the physical world, then models may be able to

achieve human-like embodied agency and reach higher levels of general intelligence. There is already

mounting evidence that this kind of integration between architectures and robotic devices is possible

and, if achieved, the resulting model would be able to overcome the limitations identified in Chapter 1.
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Chapter 4

Conclusions

In this thesis, I have aimed to argue that the some of the limitations faced by current AI models can

be overcome through embodied agency.

In Chapter 1, I identified the key limitations faced by current AI models, including a lack of data

efficiency, difficulties with causal reasoning, poor transfer learning, and a lack of metacognition. I

argued that, while some models do fulfil the basic requirements for agency, they are low-level agents, as

agency exists on a spectrum. Higher level agents are better at pursuing a range of short and long-term

goals by making accurate predictions about the consequences of their actions and updating their

decision-making processes based on the sense feedback that results from those actions. Furthermore,

I argued that some AI agents are only able to sense and act within limited virtual worlds (such as

the world of the game Go), meaning they are limited in the range and complexity of the problems

they can solve. Embodied agency gives models access to the same physical world that humans can

learn from and interact with. This allows them to solve complex problems about, and react in real

time to the physical world. A higher level of agency can therefore be achieved through embodiment as

agents have direct access to much more sense data and can carry out experiments within the physical

environment. Finally, I argued that a high level of embodied agency can help models to overcome

many of their current limitations. Data efficiency is improved when models are able to ground meaning

in the external world. Causal reasoning is improved when models can learn from repeated observations

and test hypotheses. Transfer learning, adversarial attacks, and reward hacking can be improved by

giving models access to information about a broad range of domains and wider context. A high level of

agency may also help models to develop a level of self-awareness, as they can reflect upon and improve

their decision-making processes. Finally, a high level of embodied agency allows models to understand

themselves as beings within the world and potentially to understand and model the behaviours of other

agents.

In Chapter 2, I explored the definitions of embodiment and agency in more detail, making the case

that agency requires a sense of embodiment. I argued that there are three requirement for embodiment:

being a collection of matter that exists in space and time (The Physical Requirement), being able to

sense the external world (The Sense Requirement), and being able to directly control the movement

of some objects in the external world (The Manipulation Requirement). I also argued that the parts

of the body need not be contiguous with the matter where thinking takes place. I then argued that
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agency requires the ability to act intentionally, with an expectation of the outcome of the action, as a

causal link with intentional mental states alone can lead to the misattribution of intention. I explored

two evolutionary explanations of how organisms developed the ability to set expectations and refine

that ability by learning from experience. This sensorimotor feedback loop is essential for high levels

agency, allowing models to get better at choosing actions that align with their goals. Finally, I argued

that, while agents do not need to be able to act in the physical world, they do need to be able to

act in an external world, meaning that only being able to perform mental actions is not enough for

agency. For a similar reason, the ability receive sense feedback is an essential part of agency, as agents

must be able to compare the outcomes of their actions with expectations. Therefore, a thinking thing

must have a sense of embodiment within the external world it has access to in order to be an agent.

Embodied agency provides a level of control over the physical world.

In Chapter 3, I looked at the technologies and model architectures that could be used for an AI

model to achieve embodied agency. I showed that access to continuous, multimodal sense data has

significant performance benefits for models. Furthermore, attentional models can allow for the directing

of these senses towards significant stimuli. While these elements are not sufficient for agency, they

do lay the groundwork for embodiment. I then followed a timeline of the development of agentive

architectures, beginning with deliberative architectures, followed by reactive and hybrid architectures,

before finally exploring cognitive architectures and architectures designed for embodied cognition. I

made the argument that some combination of the CLARION and DIARC architectures, along with

some curriculum scheduling and imaginative components, and combined with robotic devices for sensing

and manipulating the physical world, not only meets all the requirements for a high level of embodied

agency, but also has the potential to entirely overcome many of the major limitations of modern AI

systems. I argued that the integration of these systems is possible in the future, as similar systems

have already been integrated and shown to have capabilities beyond the individual capabilities of the

systems. There is therefore a clear pathway for the creation of an embodied, high-level artificial agent

that is capable of complex reasoning over multiple domains, learning implicitly and explicitly from

experience and from natural-language inputs, communicating with and modelling other agents, building

cognitive skills through experimentation in a similar way to humans, imagining a range of hypothetical

situations, and pursuing complex long and short-term goals. This would represent a significant step in

the push towards general intelligence.

In this thesis, I have made the case that a high level of agency is vital to the way that humans are

able to develop their cognitive abilities and understanding of the world. It is not just the individual

skills that make up agency (interpreting sense data, action selection, expectation generation, updating

procedures from sensorimotor feedback) that aid in the cognitive development of humans, but agency

as a whole, which leads humans to understand ourselves as beings within the world, within which

we have the ability to experiment and pursue a range of goals. This exploration is made possible

because we are embodied creatures, able to directly sense and manipulate the objects around us. I

have argued that current AI models could see significant performance benefits via high level embodied

agency, particularly through grounding knowledge in external experience, experimenting across a range

of domains, and constantly reviewing and refining internal processes. I acknowledge that there are

potentially less computationally taxing solutions to some of the individual problems faced by modern AI,

but argued that high level embodied agency has the potential to overcome a high number of problems,
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while significantly boosting performance. While high levels of agency are possible without embodiment,

models would then be limited by the complexity of the simulated world that they have access to, and

simulating a world of a similar complexity to our own requires high levels of computational power. I

have argued that the technological groundwork has already been laid for the creation of high-level

embodied agents, and that doing so would be a significant step not just towards more powerful and

efficient models, but towards some kind of artificial general intelligence.

In future, I would like to be able to explore some of the topics that were outside the scope of this thesis,

such as mental actions, group agency and emotions. I would also like to delve deeper in to the precise

ways that our existing models for agency and embodied cognition could be integrated into one system.
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