
Using Zippers for Nested Sequents with Focus

MSc Thesis (Afstudeerscriptie)

written by

Shing Yau Simon Chiu

under the supervision of Dr Marianna Girlando and Dr Malvin Gattinger, and submitted
to the Examinations Board in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 25, 2025 Dr Benno van den Berg (chair)

Dr Marianna Girlando
Dr Malvin Gattinger
Dr Ronald de Haan

Abstract

Nested sequent calculus augments the formalism of standard Gentzen-style sequents by allowing
nesting of sequents, giving them a tree-like structure. In the classical modal setting, the resulting
calculus is invertible, enabling terminating root-first proof search without backtracking. While
provers based on nested sequents exist, they involve additional structure and heuristics not
formally part of the proof system, indicating a gap between theory and implementation. Here,
we augment nested sequents by adding a current focus, internalising the heuristics of proof search
into the calculus. We implement this using the zipper data structure in Haskell, and test it on
various examples to ensure correctness.

Contents

1 Introduction 2
1.1 Background . 2
1.2 Contribution . 3
1.3 Previous Work . 3

2 Modal Logics and Proof 4
2.1 Syntax . 4
2.2 Semantics . 5
2.3 Axioms . 5
2.4 Nested Sequents . 6

3 Zippers 9
3.1 Lists . 9
3.2 Trees . 10

4 Nested Sequents with Focus 12
4.1 Proof search in NSK . 12
4.2 Nested Sequents with Focus . 13
4.3 Proving in NSfK . 15

5 Haskell Implementation 18
5.1 Syntax . 18
5.2 Sequents . 19
5.3 Prover . 22
5.4 Examples . 25
5.5 Simple Tests . 26

6 Conclusion and Future Work 28

Bibliography 29

1

Chapter 1

Introduction

1.1 Background

Sequent calculus was introduced by Gentzen as a tool for formal analysis of proofs. It is used
to construct analytic proofs, where every formula in the proof is a subformula of the conclusion.
This property makes the sequent calculus particularly suited for backwards proof search, as it
limits the formulas that could occur in a proof.

An example of a sequent calculus is the system G3cp for classical propositional logic, which
can be found in [Nv01]. The rules of G3cp are all invertible, meaning that no information is lost
when applying a rule. In the context of proof search, this means that the order of application of
rules does not matter, which streamlines the proof search process.

Basic modal logic extends classical modal logic with the modal operators 2 and 3. There are
a number of sequent calculi for modal logic which extend classical propositional logic by adding
additional rules, such as the system G3K for modal logic K, obtained by adding to G3cp the
following rule:

Γ ⇒ A
K

Γ′,2Γ ⇒ 2A,∆

However, this rule is not invertible, as information is lost in backwards application of K when
choosing which formulas to include in the context Γ′ and ∆. Consequently, this means that
backwards proof search for G3K requires backtracking, for a failed proof search may be due to a
wrong choice of context in the application of the K rule.

Sequent calculus has been generalised in various ways by adding additional structure. One
such extension is nested sequent calculus, introduced independently in [Bul92], [Kas94], [Brü09],
and [Pog09], which allows nesting of sequents on the right of the arrow ⇒. This gives nested
sequents a tree-like structure, mirroring the tree model property of many modal logics. The
resulting calculus is fully invertible, which enables proof search without backtracking.

Theorem provers are computer programs which automate the proof search procedure, often
based on existing proof systems. While many proof search algorithms already exist on paper, prac-
tical design choices have to be made in the representation of the proof system and implementation
of the algorithm, which may involve adding additional structure or heuristics.

2

1.2 Contribution

This thesis aims to bridge the gap between theory and implementation of nested sequents for
modal logic K. We introduce the system NSfK, which uses nested sequents with focus, extending
the nested sequent formalism of [Brü09] by adding a focus, the current location within the nested
sequent. We then implement a prover based on NSfK in Haskell. To represent nested sequents
with focus, we make use of zippers, a technique for representing hierarchal data structures such
as lists and trees, introduced in [Hue97]. The source code is available on https://github.com/

shosukeyuu/NestProveML.
Chapter 2 reviews the basics of modal logic, including the syntax, semantics, and axiomatisa-

tion, as well as the nested sequent proof system. Chapter 3 introduces the zipper data structure,
which is illustrated with lists and trees in Haskell. Chapter 4 presents nested sequents with
focus and the proof system NSfK, along with the proof search algorithm. Chapter 5 shows the
implementation of NSfK in Haskell, and we test the implementation using example formulas.

1.3 Previous Work

This thesis is inspired by [Yan24], which implements a prover in Haskell based on G3K using the
zipper data structure to represent proof trees to facilitate backtracking. We instead use zippers
to represent nested sequents, as no backtracking is needed. The MOLTAP prover presented
in [van09] is based on nested sequents with signed formulas, using state monads to facilitate
proof search. By introducing nested sequents with focus, we provide a more streamlined proof
search strategy. The MOIN prover presented in [GS20] implements a prover for both classical and
intuitionistic modal logics based on nested sequents in Prolog. Utilising types and data structures
in Haskell, our implementation represents and manipulates the tree-like structures of proofs and
nested sequents more concisely.

3

https://github.com/shosukeyuu/NestProveML
https://github.com/shosukeyuu/NestProveML

Chapter 2

Modal Logics and Proof

In this chapter, we will cover the basics of modal logic, as well as nested sequent calculi as
introduced in [Brü09], which uses one-sided sequents. Standard two-sided sequents have the form
Γ ⇒ ∆, where Γ and ∆ are multisets of formulas, interpreted as

∧
Γ =⇒

∨
∆. Classically, this

is equivalent to
∨
{¬γ | γ ∈ Γ} ∨

∨
∆, therefore every sequent is equivalent to a sequent where

the antecedent is empty. The advantage of a one-sided approach is that it allows for a uniform
presentation of rules, instead of having separate left and right rules, which also makes it simpler
to implement. The tradeoff is that we will have to work with the modal language in negation
normal form, requiring both ∧, ∨, and 2, 3 to be primitive.

2.1 Syntax

Definition 2.1. For a countable set of propositional variables Prop, the language L of modal
logic in negation normal form is generated by the following:

A ::= p | p̄ | A ∨A | A ∧A | 3A | 2A ,

where p ∈ Prop.

We use A,B,C, ... to denote formulas, and p, q, r, ... to denote propositional variables.

Definition 2.2. The negation A is extended to any arbitrary formula A by the following rewrite
rules:

¯̄p := p

A ∨B := A ∧B

A ∧B := A ∨B

3A := 2A

2A := 3A .

We define implication A → B as A∨B, and ⊤ and ⊥ as p∨ p̄ and p∧ p̄ respectively, for some
fixed p.

4

Definition 2.3. For any formula A and propositional variable p, A[Bp] is obtained from A by
replacing each occurrence of p by B.

2.2 Semantics

Definition 2.4. A Kripke frame F is a pair (W,R), where

• W is a non-empty set of worlds.

• R ⊆ W ×W is a binary relation on W .

We call R[w] := {u ∈ W | w R u} the set of successors of w.

Definition 2.5. A Kripke model M is a pair (F , V), where

• F = (W,R) is a Kripke frame,

• V : Prop → P(W) is a valuation.

We will refer to Kripke frames and Kripke models as just frames and models respectively.

Definition 2.6. Given a model M = (W,R), world w ∈ W , and formula A, the satisfaction or
forcing relation M, w ⊨ A is defined inductively as follows:

M, w ⊨ p iff w ∈ V (p), for p ∈ Prop;

M, w ⊨ p̄ iff w /∈ V (p), for p ∈ Prop;

M, w ⊨ A ∨B iff M, w ⊨ A or M, w ⊨ B;

M, w ⊨ A ∧B iff M, w ⊨ A and M, w ⊨ B;

M, w ⊨ 3A iff M, v ⊨ A, for some v ∈ R[w];

M, w ⊨ 2A iff M, v ⊨ A for all v ∈ R[w].

We call a model-world pair (M, w) a pointed model.

Definition 2.7. For any formula A:

• A is satisfiable if there are M, w such that M, w ⊨ A.

• A is valid if M, w ⊨ A, for any pointed model M, w.

We denote a valid formula A by ⊨ A.

2.3 Axioms

In this section, we introduce the standard Hilbert-style axiomatisation of modal logic. Hilbert-style
systems consist of axioms and rules. A proof is a finite sequence of formulas, each being either an
axiom, or following from previous items in the sequence by a rule. A formula is provable if it is
the last formula of some proof. If S is a system, we write ⊢S A to denote that A is provable in S.

Definition 2.8. The Hilbert system K consists of the following axioms:

5

• all classical propositional tautologies;

• 2(p → q) → (2p → 2q);

• 3p ↔ ¬2¬p

The rules of inference of K are the following:

• Modus ponens: If ⊢K A and ⊢K A → B, then ⊢K B;

• Uniform substitution: If ⊢K A, then for any p ∈ Prop and formula B, ⊢K A[Bp];

• Necessitation: If ⊢K A, then ⊢K 2A.

Two properties of a good proof system are soundness and completeness. A system is sound if
only validities are provable, and it is complete if all validities are provable. Together they imply
that the proof system fully reflects all validities of the logic.

Theorem 2.9 (Soundness). If ⊢K A, then ⊨ A.

Soundness is proven by showing that all axioms are valid, and that all rules preserves validity.

Theorem 2.10 (Completeness). If ⊨ A, then ⊨K A.

The proof for normal modal logics can be found in [BRV10, Theorem 4.22].

2.4 Nested Sequents

This section introduces nested sequent calculi, presented in [Brü09].

Definition 2.11. A nested sequent Γ is a finite multiset of formulas and boxed sequents. A
boxed sequent is an expression [Γ], where Γ is a nested sequent.

From here onwards, we will use sequents to refer to nested sequents. Sequents are denoted by
Γ,∆, and have the following form:

Γ = A1, ..., Am, [∆1], ..., [∆n] ,

where n,m ≥ 0.

Definition 2.12. The corresponding formula I(Γ) of a sequent Γ = A1, ..., Am, [∆0], ..., [∆n] is
defined as

I(Γ) := A1 ∨ ... ∨Am ∨2I(∆1) ∨ ... ∨2I(∆n) .

Every sequent can be represented as tree, where the nodes are multisets of formulas. The root
of the tree is the multiset A1, ..., Am, and the immediate subtrees are the trees corresponding to
the sequents ∆1, ...,∆n.

6

For example, consider the sequent A,B, [C], [D,E[F]].

F

C D,E

A,B

Due to the tree-like structure of sequents, the rules of the calculus that we will present
can be applied not just to the formulas at the root of a sequent, but anywhere deep in the
structure. In order to state the rules, a notational device is needed. A context Γ{} is a sequent
with a hole, which can be filled in by another seqeunt. For example, if Γ{} = A, [B, {}], then
Γ{C, [D]} = A, [B,C, [D]].

Definition 2.13. A hole is the expression {}. The set of contexts is defined inductively as
follows:

1. the singleton multiset {} is a context;

2. if ∆ is a sequent and Γ{} is a context, then ∆,Γ{} is a context;

3. if Γ{} is a context, then [Γ{}] is a context.

A sequent system consists of rules, which have the following form:

Γ1, ...,Γn
ρ

∆

We call Γ1, ...,Γn the premises, and ∆ the conclusion. Axioms are rules with no premise. A
derivation of a sequent Γ is a finite upward-growing tree with root Γ whose nodes are sequents,
and are built according to the rules of inference. We call the sequents at the leaves of a derivation
the premises, and the sequent at the root the conclusion. A closed derivation, or proof, is a
derivation whose premises are all axioms. Similarly to Hilbert systems, we say a sequent Γ is
derivable if there is a proof of Γ in S, which is denoted by ⊢S Γ.

Definition 2.14. The sequent calculus NSK consists of the following rules:

ax
Γ{p, p̄}

Γ{A} Γ{B}
∧

Γ{A ∧B}

Γ{A,B}
∨

Γ{A ∨B}

Γ{[A]}
2

Γ{2A}

Γ{3A, [∆, A]}
3

Γ{3A, [∆]}

Figure 2.1: Rules of NSK

Here is an example of a proof of the formula 3(p∨ q) → 3p∨3q, which is 2(p̄∧ q̄)∨3p∨3q

7

in negation normal form:

ax
[p̄, p],3p,3q

3
[p̄],3p,3q

ax
[q̄, q],3p,3q

3
[q̄],3p,3q

∧
[p̄ ∧ q̄],3p,3q

2
2(p̄ ∧ q̄),3p,3q

∨
2(p̄ ∧ q̄),3p ∨3q

∨
2(p̄ ∧ q̄) ∨3p ∨3q

A rule ρ is admissible in a system S, if whenever the premises of ρ are provable, so is the
conclusion; It is invertible if whenever the conclusion is provable, so are the premises.

The calculus NSK admits the usual structural rules such as weakening and contraction. The
admissibility of the necessitation rule is needed to prove soundness.

Γ
nec

[Γ]

Γ{∅}
wk

Γ{∆}

Γ{∆,∆}
ctr

Γ{∆}

Figure 2.2: necessitation, weakening, and contraction

Lemma 2.15. The rules nec,wk, ctr are admissible in NSK.

What distinguishes the nested sequent formalism compared to other sequent systems for K is
that all the rules are invertible. This implies that when constructing a proof, rules can be applied
in any order to any applicable principal formula.

Lemma 2.16. All rules of NSK are invertible.

The system NSK is both sound and complete with respect to Kripke semantics.

Theorem 2.17 (Soundness). If ⊢NSK Γ, then ⊨ I(Γ).

Theorem 2.18 (Completeness). If ⊨ I(Γ), then ⊢NSK Γ.

Full proofs can be found in [Brü09]. Similar to the Hilbert system K, soundness is proven by
showing that the initial sequent Γ{p, p̄} is valid, and that all rules preserves validity. Completeness
is proven by extracting a countermodel from a failed exhaustive proof search of a related system.
The proof search procedure for NSK is explained in Section 4.1. A cut-elimination procedure is
also provided in [Brü09], which offers another way to prove completeness.

8

Chapter 3

Zippers

Zippers are data structures used to navigate and modify hierarchal structures, introduced in
[Hue97]. This is done by splitting the data structure into two parts: the focus, and the context.
The focus is the current position which can be modified, and the context or path points to the
location where the focus is within the structure. In the following, we will illustrate two main
examples of zippers: Lists and trees.

3.1 Lists

In Haskell, lists are ordered sequences of elements of a type. For example, [5, 4, 8, 2, 0, 6]

is a list of integers. For any arbitrary type a, the list type for a is denoted by [a]. The goal
of a zipper for lists is to store a current position within the list, allowing efficient definition of
navigation and modification functions such as changing the value, deleting it, and moving left or
right. We define a type class ListLike for the functions we would want from a zipper for lists:

class ListLike l where
-- create a zipped list from a single item

singleton :: a -> l a
-- change the value at the current position

change :: a -> l a -> l a
-- delete the current item and move to the right

delete :: l a -> l a
-- move to the left

moveLeft :: l a -> l a
-- move to the right

moveRight :: l a -> l a
-- insert an item after the current item

insertAfter :: a -> l a -> l a

We define a zipper for lists as follows:
data ZipList a = Zip [a] a [a]

As an example, the zipped list of [5, 4, 8, 2, 0, 6] focused on the fourth item 2 would
be Zip [8, 4, 5] 2 [0, 6]. Note that the first list is reversed, since Haskell has access to the
first items of a list before the latter, this makes it more efficient to, for example, move the focus
to the left.

We define a ListLike instance for ZipList:

9

instance ListLike ZipList where
singleton c = Zip [] c []

change c (Zip xs _ ys) = Zip xs c ys

delete (Zip xs _ (y:ys)) = Zip xs y ys
delete (Zip _ _ []) = error "Cannot delete last element"

moveLeft (Zip (x:xs) c ys) = Zip xs x (c:ys)
moveLeft (Zip [] _ _) = error "Cannot move left at first item"

moveRight (Zip xs c (y:ys)) = Zip (c:xs) y ys
moveRight (Zip _ _ []) = error "Cannot move right at last item"

insertAfter p (Zip xs c ys) = Zip xs c (p:ys)

3.2 Trees

Trees are a more complex example of a hierarchal data structure. In Haskell, a standard definition
of the tree type of an arbitrary type a is:

data Tree a = Node a [Tree a]

That is, a tree is a node containing a value of type a, along with a list of its immediate
subtrees. For example, the tree in Figure 3.1 would be be represented by the following:

example32 :: Tree Int
example32 = Node 1 [Node 2 [], Node 3 [Node 5 [], Node 6 []], Node 4 []]

5 6

2 3 4

1

Figure 3.1: example tree

Similarly to lists, a zipper for trees stores a current location within the tree. We define the
type class TreeLike for functions used to navigate within a tree:

class TreeLike z where
-- create a zipped tree with one node

zsingleton :: a -> z a
-- move to the sibling on the left

move_left :: Eq a => z a -> z a
-- move the the sibling on the right

move_right :: Eq a => z a -> z a
-- move to the parent

move_parent :: z a-> z a
-- move to the left -most child

move_child :: Eq a => z a -> z a

The zipper for trees is defined as follows:

10

data ZipTree a = ZT (Tree a) (Path a)
data Path a = Top | Step a (Path a) [Tree a] [Tree a]

A zipper for a tree focuses on a subtree, with the path being the location of the root of that
subtree within the whole tree. If the path of the focused subtree is Top, it means that the focus
is in fact the whole tree. Otherwise, it is one Step from it’s parent with value in a, who itself has
a path, along with a list of siblings on both the left and right, which are subtrees. As a ZipTree

has immediate access to its parent, children, and close siblings, it allows for efficient navigation
and modification of values.

The zipper for the tree 3.1, focused on the subtree whose root is 3 is represented as follows:
example322 :: ZipTree Int
example322 = ZT (Node 3 [Node 5 [], Node 6 []]) (Step 1 Top [Node 2 []] [Node 4 []])

We define an instance of TreeLike for ZipTree:
instance TreeLike ZipTree where

zsingleton x = ZT (Node x []) Top

move_left (ZT t (Step s p (x:xs) ys)) = ZT x (Step s p xs (t:ys))
move_left _ = error "cannot move to left"

move_right (ZT t (Step s p xs (y:ys))) = ZT y (Step s p (t:xs) ys)
move_right _ = error "cannot move to right"

move_parent (ZT t (Step s p xs ys)) = ZT (Node s (xs ++ t:ys)) p
move_parent _ = error "cannot move to parent"

move_child (ZT (Node c (t:ts)) p) = ZT t (Step c p [] ts)
move_child _ = error "cannot move to child"

We will use zippers in Section 5.2 to represent nested sequents with focus, which will be
introduced in Section 4.2.

11

Chapter 4

Nested Sequents with Focus

4.1 Proof search in NSK

The introduction of a focus for nested sequents is motivated by the implementation of proof
search for NSK. The following is the proof search algorithm for NSK, adapted from [Brü09], which
uses a cumulative version of the rules of NSK, where the principal formula is repeated in each of
the premises, and a rule is not applied to a sequent if no new formulas are added. This will be
explained in the next section, when we introduce NSfK, which also uses cumulative rules.

Algorithm 1 Proof Search for NSK
repeat

while any non-2 rule ρ is applicable do
apply ρ

if 2 rule is applicable then
apply 2

until no rules are applicable

Note that in the context of proof search, a rule is “applied” from the conclusion to the premises.
Given a sequent, at each iteration of proof search, the principal formula of applicable rules could
a priori be anywhere deep in the sequent. Therefore, the entire sequent has to be scanned through
to look for applicable rules.

For example, consider the sequent 3A, [A,2E, [C ∨D]]

C ∨D

A,2E

3A

This sequent has two possible rule applications: a 2 rule and a ∨ rule. We do not apply the 3

rule with principal formula 3A, since its child already contains A. Since the non-2 rules have a
higher priority, starting from the root we have to scan the whole tree before finding the formula
C ∨D. Once we apply the ∨ rule, we have to scan through the entire tree again to make sure
there are no non-2 rules to apply before applying the 2 rule.

12

However, we can avoid the situation above if we start our proof search with a formula and
not a sequent. Observe that a rule application during the while loop does not create new nodes,
since only the 2 rule creates a new boxed sequent. Only when the other rules are exhausted
do we apply the 2 rule to create a new child node. The only possible rule application then to
the parent node would be if there is a 3 formula present for the 3 rule, or other 2 formulas.
Since no rule moves a formula from a child to its parent, these are the only possible further rule
applications to the original parent node.

Therefore, we can avoid the need to scan the whole tree and instead focus on only one node
at any given time: Starting with a single formula at the root, apply all propositional rules before
creating a child node with the 2 rule. Then we shift our focus to the newly created node, applying
all propositional rules and potentially the 3 rule, bringing in a formula if a 3 formula is present
in the parent node. This process is repeated, applying rules and moving the focus to the newly
created child node after an application of 2 rule, until no rules are applicable. Then, we shift
our focus back along the branch until we find a 2 formula to apply the 2 rule, and the search
continues, terminating either when we have an initial sequent, or the focus returns back to the
root with no further applicable rules.

The rest of this chapter introduces nested sequents with focus, which internalise the heuristics
described above into the calculi.

4.2 Nested Sequents with Focus

Definition 4.1. A nested sequent with focus is a nested sequent with a distinguished subsequent,
which is either the sequent itself or a boxed sequent, called the focus, denoted by a wavy underline
Γ
:
.

We call nested sequents with focus focused sequents for short. Consider the previous example
of a sequent A,B, [C], [D,E, [F]]. The same sequent with focus on the boxed sequent [D,E, [F]]

is denoted by A,B, [C], [D,E, [F]
::::::::

], and the corresponding tree is as follows:

F

C D,E
::::

A,B

For simplicity, we only underline the root of our focus in the tree representation, and we may
identify the focus of a sequent with the formulas in its root, as there is a one-to-one correspondence
between nodes of a tree and its subtrees.

Before presenting the rules, we introduce the notion of set sequents, which will be used to
limit rule application to stop proof search.

13

Definition 4.2. The set sequent of the sequent

A1, ..., Am, [∆1], ..., [∆n]

is the underlying set of
A1, ..., Am, [Λ1], ..., [Λn] ,

where Λ1, ...,Λn are the set sequents of ∆1, ...,∆n respectively.

For example, the set sequent of p, p, [p, q, q, [r]] is p, [p, q, [r]].

Definition 4.3. The rules of NSfK are as follows:

axf

Γ{p, p̄
:::

}

Γ{A ∧B,A
::::::::

} Γ{A ∧B,B
::::::::

}
∧f

Γ{A ∧B
:::::

}

Γ{A ∨B,A,B
:::::::::::

}
∨f

Γ{A ∨B
:::::

}

Γ{2A, [A]
::

}
2f

Γ{2A
:::

}

Γ{3A, [∆, A]
:::::

}
3f

Γ{3A, [∆]
:::

}
,

Γ{∆, [Λ]
:::::

}
bk

Γ{∆, [Λ]
::

}

The rules come with the following conditions:

1. for all rules, the set sequents of all its premises are different from the set sequent of the
conclusion;

2. for the 2f rule, the node of the active formula 2A in the conclusion does not have a child
node containing A.

The structural rule bk stands for back, as we move “back” to the parent when reading the rule
from the conclusion to the premise.

Note that Γ{∆
:
} means that ∆ is part of the focus of the sequent. All the rules of NSfK are

cumulative, meaning that the active formula in the conclusion is repeated in all the premises. For
the 3f rule, which is also cumulative in the original NSK, it ensures that contraction is admissible.
For the other rules, it acts as a history of formulas we have encountered before during proof
search to ensure termination.

The following is an example of the proof of the K-axiom 2(p → q) → (2p → 2q), which
reduces to 3(p ∧ q̄) ∨3p̄ ∨2q in negation normal form. The principal formulas in the premises

14

of non-3 rules have been omitted for readability:

axf

3(p ∧ q̄),3p̄, [q, p, p̄
:::::

]

3f

3(p ∧ q̄),3p̄, [q, p
:::

]
axf

3(p ∧ q̄),3p̄, [q, q̄
:::

]

∧f

3(p ∧ q̄),3p̄, [q, p ∧ q̄
::::::

]

3f

3(p ∧ q̄),3p̄, [q
:
]

2f

3(p ∧ q̄),3p̄,2q
:::::::::::::::

∨f

3(p ∧ q̄),3p̄ ∨2q
::::::::::::::::

∨f

3(p ∧ q̄) ∨3p̄ ∨2q
::::::::::::::::::

4.3 Proving in NSfK

By design, the rules of NSfK impose an order of application of rules. The only rules which change
the focus are 2f , which simultaneously creates a new boxed sequent and move the focus to it,
and bk, which moves the focus one step back to the parent. This means that once bk is used to
move out of a boxed sequent, there is no way to return the focus back to it.

Therefore, the proof search strategy is to always apply all non-2f logical rules, including the
axf rule, whenever possible. Once those are exhausted, we apply the 2f rule to create a new
boxed sequent and move the focus to it, and the process is repeated, until we reach a boxed
sequent where no 2f application is possible and is not an initial sequent. Then, the bk rule is
applied to move back along the branch. Since the non-2f rules have already been exhausted in
the parent sequent, the only possible application would be a 2f if there are multiple 2 formulas
present in the sequent, or the bk rule to search for an unused 2 formula along the branch. This
terminates either when we reach an initial sequent, or the bk rule returns to the root and no rules
are applicable.

Algorithm 2 Proof search for NSfK
Require: Formula A

Initialise: A
:

repeat
if any non-2, non-bk rule ρf is applicable then

apply ρf

else if 2f rule is applicable then
apply 2f

else if current focus is not the root then
apply bk rule

until no rules are applicable

Note the use of the axf rule is included in the first if conditional, which also terminates the
proof search since the rule has no premise.

15

axf
3(p̄ ∧ q̄), [p, p̄]

::::
,2q

3(p̄ ∧ q̄), [p, q̄], [q, p̄]
::::::::::::::::::

bk
3(p̄ ∧ q̄), [p, q̄], [q, p̄]

::::

axf
3(p̄ ∧ q̄), [p, q̄], [q, q̄]

::::

∧f

3(p̄ ∧ q̄), [p, q̄], [q, p̄ ∧ q̄]
:::::::

3f

3(p̄ ∧ q̄), [p, q̄], [q]
::

2f

3(p̄ ∧ q̄), [p, q̄],2q
:::::::::::::::::

bk
3(p̄ ∧ q̄), [p, q̄]

::::
,2q

∧f

3(p̄ ∧ q̄), [p, p̄ ∧ q̄]
:::::::

,2q

3f

3(p̄ ∧ q̄), [p]
::
,2q

2f

3(p̄ ∧ q̄),2p,2q
:::::::::::::::

∨f

3(p̄ ∧ q̄),2p ∨2q
::::::::::::::::

∨f

3(p̄ ∧ q̄) ∨2p ∨2q
::::::::::::::::::

Figure 4.1: failed proof of 3(p̄ ∧ q̄) ∨2p ∨2q

Figure 4.1 is an example of a failed proof search of the invalid formula 2(p ∨ q) → 2p ∨2q,
which is 3(p̄ ∧ q̄) ∨ 2p ∨ 2q in negation normal form. Principal formulas in the premises of
non-3f rules have been omitted for clarity.

The systems NSK
f and NSK are equivalent in the following way:

Theorem 4.4. For any formula A,

⊢
NSfK

A
:

⇐⇒ ⊢NSK A

Proof. (=⇒) Suppose we have a proof of A
:

in NSfK. By the first side condition of the rules, each
non-3 formula can be the principal formula of at most one rule application. Therefore, we can
remove repeated instances of principal formulas of all non-3f rule applications, and ignore the
focus and bk rule to construct a NSK proof of A.

(⇐=) Suppose we have a proof of A in NSK. We first add principal formulas for all rule
applications to the premises to make the rules cumulative. If there are redundant applications of
the 3 rule, in which a 3 formula is applied to the same boxed sequent multiple times, we ignore
such applications, which is illustrated in Figure 4.2. By invertibility of NSK, we permute the rule
applications in a way which respects the focus. New rule applications may need to be added, but
by invertibility, no information is lost, so this does not affect other rule applications. Finally, we
add the focus to the sequents to obtain a proof in NSfK.

Combining this result with Theorem 2.17 and Theorem 2.18, we immediately obtain soundness
and completeness of NSfK.

Corollary 4.5. For any formula A,

• (Soundness) If ⊢
NSfK

A
:
, then ⊨ A;

16

3(A ∨B), [C,A,B,A ∨B]
3

3(A ∨B), [C,A,B]
∨

3(A ∨B), [C,A ∨B]
3

3(A ∨B), [C]

⇝

3(A ∨B), [C,A,B]
∨

3(A ∨B), [C,A ∨B]
3

3(A ∨B), [C]

Figure 4.2: redundant application of 3 rule

• (Completeness) If ⊨ A, then ⊢
NSfK

A
:
.

17

Chapter 5

Haskell Implementation

In this chapter, we present a prover for NSfK based on Algorithm 2 in Haskell. The full code can
be found on https://github.com/shosukeyuu/NestProveML.

5.1 Syntax

We implement the formulas of modal logic in negation normal form as MNNForm, indexing our set
of propositional variables with Int:

type Proposition = Int
data MNNForm = P Proposition

| NP Proposition
| Con MNNForm MNNForm
| Dis MNNForm MNNForm
| Box MNNForm
| Dia MNNForm
deriving (Eq ,Ord ,Show)

Other operators are defined in terms of the primitive ones, and are used for easier input of
formulas:

neg :: MNNForm -> MNNForm
neg (P n) = NP n
neg (NP n) = P n
neg (Con f g) = Dis (neg f) (neg g)
neg (Dis f g) = Con (neg f) (neg g)
neg (Box f) = Dia (neg f)
neg (Dia f) = Box (neg f)

implies , iff :: MNNForm -> MNNForm -> MNNForm
implies f = Dis (neg f)
iff f g = Con (implies f g) (implies g f)

top , bot :: MNNForm
top = Dis (P 0) (NP 0)
bot = Con (P 0) (NP 0)

bigDis :: [MNNForm] -> MNNForm
bigDis [x] = x
bigDis (x:xs) = Dis x (bigDis xs)
bigDis [] = bot

18

https://github.com/shosukeyuu/NestProveML

For example, the formula 3p0 ∧2(p̄0 ∨ p1) is represented as follows:
example5_1 :: MNNForm
example5_1 = Con (Dia (P 0)) (Box (Dis (NP 0) (P 1)))

To make it more readable, we define a pretty printing function pp, which converts an MNNForm

into a String. We do this by defining a type class PrettyPrint, so that we can use the same
function name pp to pretty print other types, such as sequents:

class PrettyPrint a where
pp :: a -> String

instance PrettyPrint MNNForm where
pp :: MNNForm -> String
pp (P n) = "P" ++ show n
pp (NP n) = "~P" ++ show n
pp (Con f g) = "(" ++ pp f ++ " & " ++ pp g ++ ")"
pp (Dis f g) = "(" ++ pp f ++ " v " ++ pp g ++ ")"
pp (Box f) = "{}" ++ pp f
pp (Dia f) = "<>" ++ pp f

Using the previous example, we have that
ghci > pp example5_1
"(<>P0 & {}(~P0 v P1))"

We also define an Arbitrary instance for MNNForm which generates arbitrary formulas, used for
testing the correctness of the prover in Section 5.5.

instance Arbitrary MNNForm where
arbitrary = sized randomForm where

randomForm 0 = oneof [P <$> choose (1,7), NP <$> choose (1,7)]
randomForm n = oneof [Con <$> randomForm (n ‘div ‘ 7) <*> randomForm (n ‘div ‘ 7)

, Dis <$> randomForm (n ‘div ‘ 7) <*> randomForm (n ‘div ‘ 7)
, Box <$> randomForm (n ‘div ‘ 7)
, Dia <$> randomForm (n ‘div ‘ 7)]

5.2 Sequents

Recall that a nested sequent is a multiset of formulas and boxed sequents. We define the type of
nested sequents as follows, where f is a formula type, which will be MNNForm in our case:

newtype NestSeq f = NS [Either f (NestSeq f)]
deriving (Eq , Ord , Show)

We choose the List type to represent sequents, since they are the simplest option, and they
more closely resemble the syntax of sequents. While lists are ordered, it does not affect provability
of formulas. Because lists can only contain terms of a fixed type, we use the Either type to tag
formulas with Left and boxed sequents with Right. For example, the sequent p1, [p̄1, p1∨p2, [2p3]]
can be represented by the following:

example521 :: NestSeq MNNForm
example521 = NS [Left p, Right (NS [Left (neg p), Left (Dis p q), Right (NS [Left (Box

r)])])] where
p = P 1
q = P 2
r = P 3

19

As the constructors Left, Right, and NS make it difficult to read, we define an instance of
PrettyPrint for NestSeq as follows:

instance PrettyPrint f => PrettyPrint (NestSeq f) where
pp :: NestSeq f -> String
pp (NS []) = ""
pp (NS [Left x]) = pp x
pp (NS (Left x:xs)) = pp x ++ ", " ++ pp (NS xs)
pp (NS [Right y]) = "[" ++ pp y ++ "]"
pp (NS (Right y:xs)) = "[" ++ pp y ++ "]" ++ ", " ++ pp (NS xs)

We then have:
ghci > pp example521
"P1 , [~P1, (P1 v P2), [{}P3]]"

We define functions forms and boxedSeqs to extract the formulas and boxed sequents of a
nested sequent as follows:

forms :: NestSeq f -> [f]
forms (NS sq) = lefts sq

boxedSeqs :: NestSeq f -> [NestSeq f]
boxedSeqs (NS sq) = rights sq

These are used to define the corresponding formula of a nested sequent:
correspondingForm :: NestSeq MNNForm -> MNNForm
correspondingForm ns = case (forms ns, boxedSeqs ns) of

([], []) -> bot
(_:_, []) -> bigDis $ forms ns
([], _:_) -> bigDis $ map (Box . correspondingForm) (boxedSeqs ns)
(_:_, _:_) -> Dis (bigDis $ forms ns) (bigDis $ map (Box . correspondingForm) (

boxedSeqs ns))

For example,
ghci > pp (correspondingForm example521)
"(P1 v {}((~ P1 v (P1 v P2)) v {}{}P3))"

To represent focused sequents, we use a zipper similar to that of basic trees in Section 3.2:
data PathNestSeq f = TopNS | StepNS [Either f (NestSeq f)] [Either f (NestSeq f)] (

PathNestSeq f)
deriving(Eq, Ord , Show)

data ZipNestSeq f = ZNS {focus :: [Either f (NestSeq f)], path :: PathNestSeq f }
deriving(Eq, Ord , Show)

A PathNestSeq of TopNS means that the focus is the root. The first and second arguments of
StepNS are the sequents on the left and right of the focus respectively, followed by the path of
the parent sequent. The focus of a ZipNestSeq is the sequent corresponding to the subtree with
whose root is the focus of the focused sequent we are representing. Note that we use the type
[Either f (NestSeq f)] instead of NestSeq f for the arguments, since this removes the NS

constructor in front, which makes it more straightforward to define functions.
We define an instance of PrettyPrint for ZipNestSeq, which surrounds the focus with *:

instance (Show f, PrettyPrint f) => PrettyPrint (ZipNestSeq f) where
pp (ZNS sq pa) = case ppPathNestSeq pa of

([] ,[]) -> "*" ++ pp (NS sq) ++ "*"

20

([],r:rs) -> "*[" ++ pp (NS sq) ++ "]*, " ++ r:rs
(l:ls ,[]) -> l:ls ++ ", *[" ++ pp (NS sq) ++ "]*"
(l:ls,r:rs) -> l:ls ++ ", *[" ++ pp (NS sq) ++ "]*, " ++ r:rs

ppPathNestSeq :: (Show f, PrettyPrint f) => PathNestSeq f -> (String ,String)
ppPathNestSeq TopNS = ("", "")
ppPathNestSeq (StepNS ls rs pa) = case ppPathNestSeq pa of

([] ,[]) -> (pp (NS ls), pp (NS rs))
([],y:ys) -> (’[’: pp (NS ls), pp (NS rs) ++ "], " ++ y:ys)
(x:xs ,[]) -> (x:xs ++ ", [" ++ pp (NS ls), pp (NS rs) ++ "]")
(x:xs,y:ys) -> (x:xs ++ ", [" ++ pp (NS ls), pp (NS rs) ++ "], " ++ y:ys)

For example, consider the focused sequent p0, [p0, [p2, [p1]
::::::

], [p2]], p1, which is represented as

follows:
example522 :: ZipNestSeq MNNForm
example522 = ZNS [Left r, Right (NS [Left q])] (StepNS [Left p] [Right (NS [Left r])]

(StepNS [Left p] [Left q] TopNS)) where
p = P 0
q = P 1
r = P 2

Pretty printing it gives the following:
ghci > pp example522
"P0 , [P0, *[P2 , [P1]]*, [P2]], P1"

We define helper functions toZipNS and fromZipNS to convert between NestSeq and ZipNestSeq:
toZipNS :: NestSeq f -> ZipNestSeq f
toZipNS (NS sq) = ZNS sq TopNS

fromZipNS :: ZipNestSeq f -> NestSeq f
fromZipNS (ZNS cs TopNS) = NS cs
fromZipNS (ZNS cs (StepNS ls rs pa)) = (fromZipNS . move_parent) (ZNS cs (StepNS ls rs

pa))

We also define an instance of TreeLike for ZipNestSeq to navigate through the tree-like structure
of a focused sequent:

instance TreeLike ZipNestSeq where
zsingleton x = ZNS [Left x] TopNS

move_left (ZNS cs (StepNS ls rs pa)) =
case rights ls of

NS x :_ -> ZNS x (StepNS (delete (Right $ NS x) ls) (Right (NS cs):rs) pa)
[] -> error "cannot go left"

move_left (ZNS _ TopNS) = error "cannot go left"

move_right (ZNS cs (StepNS ls rs pa)) =
case rights rs of

NS x :_ -> ZNS x (StepNS (Right (NS cs):ls) (delete (Right $ NS x) rs) pa)
[] -> error "cannot go right"

move_right (ZNS _ TopNS) = error "cannot go right"

move_parent (ZNS cs (StepNS ls rs pa)) = ZNS (ls ++ Right (NS cs):rs) pa
move_parent (ZNS _ TopNS) = error "no parent to move to"

move_child (ZNS cs pa) =
case rights cs of

21

NS x:_ -> ZNS x (StepNS (take (fromJust $ elemIndex (Right $ NS x) cs) cs) (drop
(1 + fromJust (elemIndex (Right $ NS x) cs)) cs) pa)

[] -> error "no child to move to"

5.3 Prover

The data structures for rules and proofs are adapted from [Yan24]. We take RuleName to be
strings. The Proof type is a modified tree type, where a node is either Proved, indicating that
the branch is closed, or has the form Node (ZipNestSeq f) RuleName [Proof f], where the
first argument is the sequent of that node, followed by the RuleName of the rule with the first
argument as its conclusion, and a list of proofs for the premises of the rule.

type RuleName = String

data Proof f = Proved | Node (ZipNestSeq f) RuleName [Proof f]
deriving (Eq ,Ord ,Show)

A Proof is closed when all its leaves are Proved:
isClosedPf :: Eq f => Proof f -> Bool
isClosedPf Proved = True
isClosedPf (Node _ _ ts) = ts /= [] && all isClosedPf ts

We now define our rule type. Given any sequent type s, a Rule s takes a sequent as an input,
and outputs a list of pairs for each possible application of the rule, where a rule is applied from
the conclusion to the premise, and each pair consists of the RuleName and a list of sequents as its
premises.

type Rule s = s ->[(RuleName , [s])]

Observe that Algorithm 2 groups rules into two categories: rules which do not create new boxed
sequents and rules which do. To allow for extension of this implementation to other logics such
as T and S4, we let the Logic be an input to our prover, and call the former simpleRules and
latter boxRules

data Logic f = Log {simpleRules :: Rule f , boxRules :: Rule f}

The logical rules for NSfK are implemented as follows, packaged into a logic k:
simpleAnd :: Rule (NestSeq MNNForm)
simpleAnd (NS sq) = [("&", [NS (Left f : sq), NS (Left g : sq)]) | Left (Con f g) <-

sq, Left f ‘notElem ‘ sq && Left g ‘notElem ‘ sq]

simpleOr :: Rule (NestSeq MNNForm)
simpleOr (NS sq) = [("v", [NS (Left f : Left g : sq)]) | Left (Dis f g) <- sq , Left f

‘notElem ‘ sq || Left g ‘notElem ‘ sq]

toZipRule :: Rule (NestSeq f) -> Rule (ZipNestSeq f)
toZipRule ru (ZNS cs pa) = [(rule , [ZNS pm pa | NS pm <- premises]) | (rule , premises)

<- ru (NS cs)]

childForm :: NestSeq MNNForm -> [MNNForm]
childForm (NS ns) = [a | Right (NS y) <- ns, Left a <- y]

diaK :: Rule (ZipNestSeq MNNForm)

22

diaK (ZNS cs (StepNS ls rs pa)) = [("<>", [ZNS (Left a : cs) (StepNS ls rs pa)]) |
Left (Dia a) <- ls ++ rs , Left a ‘notElem ‘ cs]

diaK (ZNS _ TopNS) = []

boxK :: Rule (ZipNestSeq MNNForm)
boxK (ZNS cs pa) = [("{}", [ZNS [Left a] (StepNS cs [] pa)]) | Left (Box a) <- cs, a ‘

notElem ‘ childForm (NS cs)]

safeK :: Rule (ZipNestSeq MNNForm)
safeK zns = concatMap ($ zns) [diaK , toZipRule simpleAnd , toZipRule simpleOr]

k :: Logic (ZipNestSeq MNNForm)
k = Log safeK boxK

To begin proof search, we convert the input formula into an open proof with only that formula
as the root:

start :: f -> Proof f
start f = Node (ZNS [Left f] TopNS) "" []

We then continue proof search with extend, which takes a Logic and a Proof and extends it
based on Algorithm 2. We focus on the case where the second argument has the form Node (ZNS

cs pa) "" [], such as when we initialise a proof with start. It proceeds as follows:

1. check if the sequent is an axiom with isAxiom. If it is, close off the branch with Proved

and terminate. Otherwise, move on to the next:
isAtom :: MNNForm -> Bool
isAtom (P _) = True
isAtom _ = False

isAxiom :: ZipNestSeq MNNForm -> Bool
isAxiom (ZNS cs _) = any (\f -> isAtom f && neg f ‘elem ‘ lefts cs) (lefts cs)

2. check if any simpleRules are applicable. If there is one, apply it and call extend on its
premises. Otherwise, move on to the next:

3. check if any boxRules are applicable. If there is one, apply it and call extend on its
premises. Otherwise, move on to the next:

4. check if the focus is at the root. If it is, terminate the proof search and leave the branch
open. Otherwise, apply the bk rule to move the focus back to the parent, and call extend.

The function extend is defined as follows.
extend :: Logic (ZipNestSeq MNNForm) -> Proof MNNForm -> Proof MNNForm
extend l (Node (ZNS cs pa) "" []) =

case (isAxiom (ZNS cs pa), simpleRules l (ZNS cs pa), boxRules l (ZNS cs pa)) of
(True , _, _) -> Node (ZNS cs pa) "ax" [Proved]
(_, rule:_, _) -> Node (ZNS cs pa) (fst rule) [extend l $ Node premise "" [] |

premise <- snd rule]
(_, [], rule:_) -> Node (ZNS cs pa) (fst rule) [extend l $ Node premise "" [] |

premise <- snd rule]
(_, [], []) -> case pa of

StepNS {} -> Node (ZNS cs pa) "bk" [extend l $ Node (move_parent $ ZNS cs pa) ""
[]]

TopNS -> Node (ZNS cs pa) "" []

23

The following cases are defined to complete pattern matching, and never occur if we apply extend

to a proof initialised with start:
extend _ Proved = error "branch already closed"
extend _ (Node (ZNS _ _) (_:_) []) = error "no rule with no premise"
extend _ (Node (ZNS _ _) "" (_:_)) = error "can ’t have premise without rule name"
extend _ (Node (ZNS _ _) (_:_) (_:_)) = error "already extended"

We combine start with extend into provek, and check whether a formula is provable with
isProvablek using isClosedPf:

provek :: MNNForm -> Proof MNNForm
provek = extend k . start

isProvablek :: MNNForm -> Bool
isProvablek = isClosedPf . provek

We define the function ppProof to pretty print a Proof. Note the output type IO(), as we
directly print the output.

ppProof :: (Show f, PrettyPrint f) => Proof f -> IO ()
ppProof = ppp "" where

ppp pref Proved = putStrLn $ pref ++ "Proved."
ppp pref (Node zns rn ps) = do

putStrLn (pref ++ pp zns)
putStrLn (pref ++ rn)
mapM_ (ppp (pref ++ " ")) ps

For example, the following is the pretty printed output proof of the K axiom
ghci > ppProof (provek kaxiom)
ghci > ppProof (provek kaxiom)
(<>(P0 & ~P1) v (<>~P0 v {}P1))
v

<>(P0 & ~P1), (<>~P0 v {}P1), (<>(P0 & ~P1) v (<>~P0 v {}P1))
v

<>~P0, {}P1 , <>(P0 & ~P1), (<>~P0 v {}P1), (<>(P0 & ~P1) v (<>~P0 v {}P1))
{}

<>~P0, {}P1 , <>(P0 & ~P1), (<>~P0 v {}P1), (<>(P0 & ~P1) v (<>~P0 v {}P1)), *[P1
]*

<>
<>~P0, {}P1 , <>(P0 & ~P1), (<>~P0 v {}P1), (<>(P0 & ~P1) v (<>~P0 v {}P1)),

[~P0 , P1]
<>

<>~P0, {}P1 , <>(P0 & ~P1), (<>~P0 v {}P1), (<>(P0 & ~P1) v (<>~P0 v {}P1)),
[(P0 & ~P1), ~P0, P1]

&
<>~P0, {}P1 , <>(P0 & ~P1), (<>~P0 v {}P1), (<>(P0 & ~P1) v (<>~P0 v {}P1))

, *[P0, (P0 & ~P1), ~P0 , P1]*
ax

Proved.
<>~P0, {}P1 , <>(P0 & ~P1), (<>~P0 v {}P1), (<>(P0 & ~P1) v (<>~P0 v {}P1))

, *[~P1, (P0 & ~P1), ~P0 , P1]*
ax

Proved.

The following is the output of a failed proof search of the 4 axiom:
ghci > ppProof (provek fouraxiom)
(<>~P0 v {}{}P0)
v

24

[<>~P0, {}{}P0 , (<>~P0 v {}{}P0)]
{}

<>~P0, {}{}P0, (<>~P0 v {}{}P0), *[{}P0]*
<>

<>~P0, {}{}P0, (<>~P0 v {}{}P0), *[~P0, {}P0]*
{}

<>~P0, {}{}P0, (<>~P0 v {}{}P0), [~P0 , {}P0, *[P0]*,]
bk

<>~P0, {}{}P0, (<>~P0 v {}{}P0), *[~P0, {}P0, [P0]]*

Since Algorithm 2 works without having to store the history of the proof search, we also
implement a more lightweight prover extendNoHist which does not build a Proof, but otherwise
works analogously to extend:

extendNoHist :: Logic (ZipNestSeq MNNForm) -> ZipNestSeq MNNForm -> Bool
extendNoHist l (ZNS cs pa) =

case (isAxiom (ZNS cs pa), simpleRules l (ZNS cs pa), boxRules l (ZNS cs pa)) of
(True , _, _) -> True
(_, rule:_, _) -> all (extendNoHist l) (snd rule)
(_, [], rule:_) -> all (extendNoHist l) (snd rule)
(_, [], []) -> case pa of

StepNS {} -> extendNoHist l $ move_parent (ZNS cs pa)
TopNS -> False

isProvableNoHistk :: MNNForm -> Bool
isProvableNoHistk f = extendNoHist k (ZNS [Left f] TopNS)

In Section 5.5, we will test that isProvablek, which first generates a derivation using extend and
check that the resulting proof is closed using isClosedPf, is equivalent to isProvableNoHistk.

5.4 Examples

In this section, we encode various formulas, which will be used to test our prover in Section 5.5.
Some of these are schemas, taking in other formulas as arguments.

The following are valid formulas:
p, q, r :: MNNForm
p = P 0
q = P 1
r = P 2

lem :: MNNForm -> MNNForm
lem f = Dis f (neg f)

kaxiom :: MNNForm
kaxiom = Box (p ‘implies ‘ q) ‘implies ‘ (Box p ‘implies ‘ Box q)

kschema :: MNNForm -> MNNForm -> MNNForm
kschema f g = Box (f ‘implies ‘ g) ‘implies ‘ (Box f ‘implies ‘ Box g)

valid1 :: MNNForm -> MNNForm -> MNNForm
valid1 f g = Con (Box (f ‘implies ‘ g)) (Box f) ‘implies ‘ Box g

valid2 :: MNNForm -> MNNForm -> MNNForm
valid2 f g = Box (Con f g) ‘iff ‘ Con (Box f) (Box g)

valid3 :: MNNForm -> MNNForm -> MNNForm

25

valid3 f g = Dia (Dis f g) ‘iff ‘ Dis (Dia f) (Dia g)

The following are invalid formulas:
contradiction :: MNNForm -> MNNForm
contradiction f = Con f (neg f)

fouraxiom :: MNNForm
fouraxiom = Box p ‘implies ‘ Box (Box p)

taxiom :: MNNForm
taxiom = Box p ‘implies ‘ p

invalid1 :: MNNForm
invalid1 = Con (Dia p) (Dia q) ‘implies ‘ Dia (Con p q)

invalid2 :: MNNForm
invalid2 = Box (Dis p q) ‘implies ‘ Dis (Box p) (Box q)

glaxiom :: MNNForm
glaxiom = Box (Box p ‘implies ‘ p) ‘implies ‘ Box p

5.5 Simple Tests

We use the Hspec library to define tests to check the correctness our prover in Section 5.3. Some
of the tests also make use of the QuickCheck library, generating random formulas as inputs
using the Arbitrary instance of MNNForm defined in Section 5.1 The first test checks that
isProvableNoHistk is equivalent to isProvablek on randomly generated input formulas:

main :: IO ()
main = hspec $ do

describe "Testing prover" $ do
prop "Provable with history iff provable without history" $

\f -> isProvablek f == isProvableNoHistk f

The following tests check that valid formulas defined in Section 5.4 are provable.
describe "Valid formulas are provable" $ do

prop "Law of excluded middle" $
isProvableNoHistk . lem

prop "k axiom {}(A -> B) -> ({}A -> {}B)" $ do
\f g -> isProvableNoHistk (kschema f g)

prop "({}(A -> B) & {}A) -> {}B" $ do
\f g -> isProvableNoHistk (valid1 f g)

prop "{}(A & B) <-> {}A & {}B" $ do
\f g -> isProvableNoHistk (valid2 f g)

prop " <>(A v B) <-> <>A v <>B" $ do
\f g -> isProvableNoHistk (valid3 f g)

The following tests check the invalid formulas are not provable.
describe "Invalid formulas are not provable" $ do

prop "A & ~A" $
\f -> not $ isProvableNoHistk $ contradiction f

it "4 axiom {}p ->{}{}p " $
not $ isProvableNoHistk fouraxiom

it "T axiom {}p -> p" $
not $ isProvableNoHistk taxiom

26

it "<>p & <>q -> <>(p & q)" $
not $ isProvableNoHistk invalid1

it "{}(p v q) -> {}p v {} q" $
not $ isProvableNoHistk invalid2

it "GL axiom {}({}p -> p) -> {}p" $
not $ isProvableNoHistk glaxiom

The result of running stack test is as follows:
Testing prover

Provable with history iff provable without history [v]
+++ OK, passed 100 tests.

Valid formulas are provable
Law of excluded middle [v]

+++ OK, passed 100 tests.
k axiom {}(A -> B) -> ({}A -> {}B) [v]

+++ OK, passed 100 tests.
({}(A -> B) & {}A) -> {}B [v]

+++ OK, passed 100 tests.
{}(A & B) <-> {}A & {}B [v]

+++ OK, passed 100 tests.
<>(A v B) <-> <>A v <>B [v]

+++ OK, passed 100 tests.
Invalid formulas are not provable

A & ~A [v]
+++ OK, passed 100 tests.

4 axiom {}p ->{}{}p [v]
T axiom {}p -> p [v]
<>p & <>q -> <>(p & q) [v]
{}(p v q) -> {}p v {} q [v]
GL axiom {}({}p -> p) -> {}p [v]

Finished in 0.0797 seconds
12 examples , 0 failures

27

Chapter 6

Conclusion and Future Work

After presenting the preliminaries, we examined a pre-existing proof search algorithm for modal
logic K based on the nested sequent calculus NSK. While simple in theory, we uncovered the
implicit steps required when implementing the algorithm. Motivated by a heuristic to streamline
the proof search procedure, we introduced nested sequents with focus, which augments the
tree-like structure of nested sequents with a current position of interest. We presented the proof
system NSfK, where the order of application of rules is enforced by the presence of the focus,
accompanied by a proof search algorithm incorporating the heuristic, and showed that this system
is equivalent to NSK for derivability of formulas.

To demonstrate the benefit of the focused approach, we represent nested sequents with focus
in Haskell using zippers, enabling efficient navigation through the structure, and succinctly
implemented a prover which faithfully replicates the proof search algorithm of NSfK. To check
the correctness of our prover, we tested it on simple formulas, where the variables are uniformly
substituted by randomly generated formulas.

We hope that this thesis demonstrates the potential of zippers in both the theory and
implementation of theorem proving. We conclude with a few directions for future work.

• The performance of our prover can be tested by benchmarking its run time with a set of
formulas with a size parameter. Its performance can also be compared against other provers
of modal logic K, such as those mentioned in Section 1.3.

• We can extend the system NSfK to other modal logics which can exploit the structure of
nested sequents with focus to streamline the proof search procedure. The implementation
has been designed to accommodate further extensions. Primary candidates include T and
S4, and the implementation has been designed to accommodate further extensions.

• The user experience of the prover can be enhanced. Currently, it is only operable with a
Haskell installation. A web interface, along with a simplified syntax for inputting formulas
can make the prover more accessible.

• The use of zippers for other logics and proof systems involving deep inference can be
investigated.

28

Bibliography

[Brü09] Kai Brünnler. “Deep Sequent Systems for Modal Logic”. In: Archive for Mathematical
Logic 48.6 (July 2009), pages 551–577. issn: 1432-0665. https://doi.org/10.1007/
s00153-009-0137-3 (cited on pages 2–4, 6, 8, 12).

[BRV10] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Fourth printing
with corrections. Cambridge Tracts in Theoretical Computer Science 53. Cambridge:
Cambridge University Press, 2010. isbn: 978-1-107-05088-4. https://doi.org/10.
1017/CBO9781107050884 (cited on page 6).

[Bul92] Robert A. Bull. “Cut Elimination for Propositional Dynamic Logic without *”. In:
Mathematical Logic Quarterly 38.1 (Jan. 1992), pages 85–100. issn: 0942-5616, 1521-
3870. https://doi.org/10.1002/malq.19920380107 (cited on page 2).

[GS20] Marianna Girlando and Lutz Strassburger. “MOIN: A Nested Sequent Theorem Prover
for Intuitionistic Modal Logics (System Description)”. In: IJCAR 2020 - 10th Interna-
tional Joint Conference. July 2020, page 398. https://doi.org/10.1007/978-3-030-
51054-1_25 (cited on page 3).

[Hue97] Gérard Huet. “The Zipper”. In: Journal of Functional Programming 7.5 (Sept. 1997),
pages 549–554. issn: 1469-7653, 0956-7968. https://doi.org/10.1017/S0956796897002864
(cited on pages 3, 9).

[Kas94] Ryo Kashima. “Cut-Free Sequent Calculi for Some Tense Logics”. In: Studia Logica 53.1
(Mar. 1994), pages 119–135. issn: 1572-8730. https://doi.org/10.1007/BF01053026
(cited on page 2).

[Nv01] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge: Cambridge
University Press, 2001. isbn: 978-0-521-79307-0. https : / / doi . org / 10 . 1017 /

CBO9780511527340 (cited on page 2).

[Pog09] Francesca Poggiolesi. “The Method of Tree-Hypersequents for Modal Propositional Logic”.
In: Towards Mathematical Philosophy: Papers from the Studia Logica Conference Trends
in Logic IV. Edited by David Makinson, Jacek Malinowski, and Heinrich Wansing.
Dordrecht: Springer, 2009, pages 31–51. isbn: 978-1-4020-9084-4 (cited on page 2).

[van09] Twan van Laarhoven. MOLTAP : A Modal Logic Tableau Prover. Feb. 2009 (cited on
page 3).

[Yan24] Xiaoshuang Yang. “Sequent Calculus with Zippers”. Master’s thesis. Universiteit van
Amsterdam, 2024 (cited on pages 3, 22).

29

https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1002/malq.19920380107
https://doi.org/10.1007/978-3-030-51054-1_25
https://doi.org/10.1007/978-3-030-51054-1_25
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1007/BF01053026
https://doi.org/10.1017/CBO9780511527340
https://doi.org/10.1017/CBO9780511527340

	Introduction
	Background
	Contribution
	Previous Work

	Modal Logics and Proof
	Syntax
	Semantics
	Axioms
	Nested Sequents

	Zippers
	Lists
	Trees

	Nested Sequents with Focus
	Proof search in NSK
	Nested Sequents with Focus
	Proving in NSKf

	Haskell Implementation
	Syntax
	Sequents
	Prover
	Examples
	Simple Tests

	Conclusion and Future Work
	Bibliography

