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ABSTRACT

This thesis studies tense information logic (TIL), an extension of modal information logic
(MIL). MIL was introduced by van Benthem [2] to model information flow using possi-
ble worlds semantics by adding a binary modality (sup) to the language of propositional
logic, interpreted via the supremum of two states; TIL adds a second binary modality (inf)
interpreted via the infimum of two states.

We give a sound and complete axiomatization of TIL on posets, extending Knud-
storp’s [17] axiomatization of MIL. As a corollary, we obtain completeness of TIL on
preorders. We also show that TIL has the finite model property with respect to a generalized
class of structures, thereby establishing its decidability.

Beyond completeness and decidability, we develop a Stone—Jénsson—Tarski duality for
TIL, show that interpreting the modalities via minimal and maximal bounds leaves the
logic unchanged, and construct two translations between weak positive logic (WPL) and
an extended version of TIL containing Kleene star-like versions of the (sup) and (inf)
modalities.
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1 INTRODUCTION

Modal information logic (MIL), introduced by van Benthem [2], models information flow
using possible-worlds semantics of modal logic by interpreting worlds as information states
and introducing additional modalities. Because informational inclusion should at least form
a partial order, the natural semantic framework is that of posets, whose suprema provide a
notion of informational addition (or ‘merging’). Recently, Knudstorp [17] axiomatized MIL
with a supremum modality on poset frames.

The notion of binary addition through suprema in posets has an obvious downward dual:
infima. This motivates the introduction of a second modality, interpreted as the information
two states share; that is, if x is the infimum of y and z, then x is the most informative state
that contains only the information that y and z have in common, or alternatively, x is the
most informative state such that y and z both refine x.

Given this motivation for the introduction of an infimum operator, the following question
arises: Can the axiomatization of MIL be extended to a version that includes both modalities?
Concretely, the added infimum operator will have the following semantics:

M, x I (inf)py iff  there exist y,z such that M,y + ¢, M, z + ¢ and x = inf{y, z}.
This operator complements the (sup) operator, which has the following semantics:
W, x Ik (sup)pyr iff  there exist y,z such that M,y + ¢, M, z + ¢ and x = sup{y, z}.

We call this extended logic tense information logic (TIL), by analogy with tense logic [10],
whose future and past-looking modalities are definable in the language of TIL. By axiom-
atizing TIL, we answer another question already posed by van Benthem [3]: Are there
interesting general axioms that link (sup)@y to (inf)@y?. The first goal of this thesis is to
find a complete axiomatization of TIL on poset frames, thereby addressing both questions
simultaneously.

To arrive at a complete axiomatization of TIL, we first define its semantics over poset
frames. We then apply the step-by-step method introduced by Burgess [11] (and also followed
by Knudstorp [17]), which for a given consistent set of formulas constructs a poset model
witnessing its satisfiability. This approach recursively repairs so-called ‘defects’ and ‘labels’
points of a subset of our frame with maximally consistent sets for which we prove a truth
lemma. We then show that this result extends to TIL on the class of preorder frames.

Secondly, we prove that TIL is decidable, thus resolving an open problem raised in [4].
Since TIL lacks the finite model property with respect to posets, we instead consider a
generalized class of structures. Since the axiomatization is also complete with respect to
this class, we prove that TIL has the finite model property (FMP) by showing that every
countermodel in this class can be transformed into a finite countermodel. This proof follows
the approach outlined in Theorem 3.9 of [17], adapting it to the new setting.

Beyond completeness and decidability, we interpret the axioms of TIL algebraically
on boolean algebras with two binary operators and, dually, on modal Stone spaces with



INTRODUCTION

two ternary relations. We work out a Stone—J6nsson—Tarski dual equivalence between the
respective categories and show that it restricts to the subcategories validating TIL.

Replacing the supremum and infimum semantics of (sup) and (inf) with semantics
based on minimal upper bounds and maximal lower bounds yields the logic of incomparable
fusions and common information: two information states may have, for example, several
minimal fusions that are pairwise incomparable. We prove that the same axiomatization is
sound and complete for this semantics as well; hence both semantics induce the same logic
(the same set of validities). The argument follows the representation method of [ 18], adapted
to the setting with two modalities.

In [23, 24], Wang and Wang view lattices as relational structures based on partial orders
and study the modal logics over them. Using the same language as TIL, they aim to capture
the structure of lattices with this language. In lattices, every pair of elements has a unique
supremum and infimum (as opposed to posets where suprema and infima do not necessarily
exist), a property that is impossible to express in the language of TIL [24, Theorem 25].
They therefore add nominals to the language to strengthen the expressive power and give
a complete axiomatization of TIL on lattices in a hybrid language. In comparison, the
completeness proof for TIL presented in this thesis does not include nominals, and is over
posets instead of lattices.

This work shows that there is an incentive to interpret TIL on lattices. In the literature,
TIL on lattices is discussed alongside weak positive logic (WPL) [7]: positive modal logic
(the negation- and implication-free fragment of classical propositional logic) that is not
necessarily distributive. Interestingly, the TIL operator (inf) behaves much like disjunction
in WPL. This suggests that a translation between the two logics is possible.

In order to extend the proposed translation in [7] to a full and faithful translation, it turns
out that the modalities are not sufficient. This motivates introducing two additional binary
modalities: Kleene star-like variants of (sup) and (inf) which, instead of taking suprema and
infima over pairs of worlds, take the join / meet of a any non-empty finite set of witnesses.

Having extended the language, there are many interesting directions to study. In this thesis,
we return to poset semantics for these Kleene star-like supremum and infimum modalities
and investigate how TIL (with and without these extra modalities) can be used as a modal
lens on posets. We show that several natural poset operations are definable, while much is
still unexplored.

The main contributions of this thesis are:

* We give a sound and complete axiomatization of TIL on poset frames and show that
this result transfers to preorder frames.

* We prove that TIL is decidable by showing that it has the finite model property with
respect to a generalized class of frames.

* We derive a Stone—J6onsson—Tarski duality for TIL between boolean algebras with two
binary operators and modal Stone spaces with two ternary relations.

* By interpreting the modalities in terms of minimal upper bounds and maximal lower
bounds rather than suprema and infima, we obtain the logic of incomparable fusions
and common information. For this logic, we prove that the same axiomatization is
sound and complete with respect to posets via a representation argument.
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* We give a full and faithful translation of the L-free fragment of WPL into an extension
of TIL with two Kleene star-like modalities.

* We give a full and faithful translation of WPL (including L), relative to a fixed
consequence pair ¢ < ¢ into the same extension of TIL.

* We show that the extended logic enables us to define the supremum and infimum
closure operators on posets.

1.1 GUIDE TO SECTIONS

The structure of the thesis follows the order of the results mentioned above. We start by
providing the preliminaries in Chapter 2 and show that TIL on posets lacks the finite model
property. Chapter 3 introduces an axiomatization for TIL and proves that it is sound and
complete with respect to poset frames. Using this axiomatization, we prove in Chapter 4
that TIL has the finite model property with respect to a generalized class of frames, thus
establishing its decidability.

In Chapter 5, we work out a Stone—Jonsson—Tarski duality for TIL and in Chapter 6, we
show that changing the semantics of the modal operators to the minimal upper bound and
maximal lower bound interpretation does not change the logic. Lastly, we study the relation
between WPL and TIL in Chapter 7, provide two translations between these logics and show
how TIL can be used as a modal lens on posets.



2 PRELIMINARIES

In this chapter, we set up the formal framework of TIL: we define the language, present the
semantics, and thereby lay the groundwork for the rest of this thesis. We then show that the
logic fails to have the finite model property and outline how we will nevertheless prove its
decidability.

2.1 LANGUAGE AND SEMANTICS

Most of the notions in this chapter extend the definitions given in [17]. To capture infima
alongside suprema, we expand the base language £, of MIL [17, Definition 1.1] with an
additional binary modality.

Definition 2.1.1. Given a countable set of propositional letters P, we define the language
L of tense information logic using two binary modalities (sup) and (inf) by the following
BNF grammar:

@ = plLl-e|eny | (supey | (inf)ey.
We denote by L the (inf)-free fragment of L.

Definition 2.1.2. A (Kripke) poset model for Lt is a triple I = (W, <, V), where W is a
set, < is a partial order, and V is a valuation V : P — P(W).

To interpret the binary modalities (sup) and (inf), we recall the standard order-theoretic
notions of supremum (join) and infimum (meet).

Definition 2.1.3 (Supremum and infimum). Let § = (W, <) be a poset and S C W a
non-empty subset.

e Anelement u € W is an upper bound of S if s < u for every s € S. A supremum (or
least upper bound) of S, written sup S, is an upper bound u such that whenever v is
an upper bound of S we have u < v.

* Anelement [ € W is a lower bound of S if [ < s for every s € S. An infimum (or
greatest lower bound) of S, written inf S, is a lower bound / such that whenever m is
a lower bound of § we have m < [.

For the two-element set S = {y, z} we write sup{y, z} (respectively inf{y, z}) and call it the
Jjoin (respectively meet) of y and z.

Remark 2.1.1. Since a partial order is antisymmetric, infima and suprema are unique in
posets if they exist. However, note that they do not necessarily exist.

Definition 2.1.4 (Semantics). The interpretation of a formula ¢ € L at a state x € W is
defined recursively as follows:
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M, x ke L,
M,x-p iff xeV(p),
M,x k- iff WM,x ¥,
W,xkpAy iff M,xkeand MM, x -,
W, x I+ (sup)py iff thereexist y,z € Ws.t. M,y Ik ¢, M, z F ¢ and x = sup{y, z},
M, x - (inf)eyy iff thereexist y,z € Ws.t. M,y I ¢, M, z F ¢ and x = inf{y, z}.

Definition 2.1.5 (Dual box modalities). For ¢,y € Lr, define the duals of the binary
diamonds as

linf] g := —(inf)~@ -y, [sup] @y := —(sup) ~¢ .
By Definition 2.1.4, their truth conditions are:

M, x I+ [inf] o iff foreveryy,ze W (x=inf{y,z} =M,y r¢ or M,z ),
I, x - [sup] gy iff foreveryy,ze W (x =sup{y,z} = MM,y k¢ or WM,z IFy).

Definition 2.1.6. With these semantics at hand we are able to define the standard past /
future looking diamond / box of temporal logic [10] in the following way:

Py := (sup)pT past looking diamond,
Fo = (inf)pT future looking diamond,
Hy := —(sup)—¢T past looking box,
Gy := =({nf)=¢T future looking box.

Recall the semantics of the above-mentioned temporal modalities:

M,x-Py iff thereexists y € Wsuchthaty <xand MM,y I ¢,
M, x - Fe iff there exists y € W such thatx < y and M,y I ¢,
M, x+rHe iff foreveryy e W such that y < x it holds that IR, y I ¢,
M, x-Ge iff foreveryy € Wsuch thatx <y itholds that I, y I ¢.

Remark 2.1.2. We show that these semantics correspond to the definitions of P, F, H and G
of Definition 2.1.6.

e Assume M, x I+ (inf)oT. By the semantics of (inf) this holds iff there are y,z € W
such that M,y + ¢, M,z + T and x = inf{y, z}. Since WM, x + T always holds, it
follows that 9, x + (inf)o T iff there is y € W such that M, y - ¢ and x = inf{y,x}.
Because x = inf{y, x} is equivalent to x < y we get the desired result.

* The case of (sup)¢T is shown in a similar way, using the fact that x = sup{y, x} is
equivalent to y < x.

* Since H is the dual of P, it follows that Hy is defined as =P—-¢, which coincides with
the above definition. To get a better feeling for the semantics of the modalities, we still
show it directly:
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Assume M, x I —(sup)—¢T. By the semantics of (sup) this holds iff there are no
v,z € W such that I,y I+ =, M,z + T and x = sup{y, z}. Since we always have
M, x - T, it follows that M, x - =(sup)—eT iff thereisno y € W such that M, y + —¢
and x = sup{y,x}. Because x = sup{y,x} is equivalent to y < x, M, x I —(sup)—pT
holds iff M, y I+ ¢ for every y < x.

* The case of —=(inf)—¢T is shown in a similar way.

Based on these semantics, we define the logic TIL. For completeness, we repeat the
definition of MIL as presented in [17]:

Definition 2.1.7. Tense information logic on posets is denoted TIL and defined as the set of
all Lr-validities on poset frames; that is

TIL := {go € L7 | forevery poset model M = (W, <, V) andeveryx e W : I, x I ¢ }

MIL is defined as the set of all validities in the (inf)-free fragment of L7 on poset frames;
that is,

MIL = {go € Ly | for every poset model I = (W, <, V) andeveryx € W: I, x - ¢ }

Remark 2.1.3. It should be clear that the expressive power of TIL strictly extends MIL, but
for completeness we give an example that shows this. Consider the following two models:

yIp Zkp ykp

~

Xk =p X'+ =p

Then x I+ (inf)pp, since x = inf{y, z}, y F p and z + p while x” ¥ (inf) pp, since x’ is not
the infimum of two p worlds. But, as an induction readily shows, for every ¢ € Ly 1 x I ¢
iff X I .

2.2 FINITE MODEL PROPERTY

Knudstorp [17] shows that MIL lacks the finite model property (FMP) with respect to
preorder frames. Because TIL strictly extends MIL and since every poset is also a preorder,
the failure of the FMP carries over to TIL on poset frames as an immediate corollary. For
completeness (to give a specific example involving both modalities), we still provide a
counterexample in the language L7 that shows that TIL does not have the FMP with respect
to posets.

Proposition 2.2.1. TIL does not have the FMP with respect to poset frames.
Proof. Consider the following formula:
Xeo = G(p =>F-p)AG(-p = Fp)AH(p = P-p)AH(=p = Pp).

We first show that y., is satisfiable on an infinite poset model. Let 0t = (W, <, V) be defined
as follows:

11
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1. W=2,
2. <is the standard less than or equal relation on the integers,
3. V.:P— P(W)isdefinedas V(p) = {z € Z : ziseven }.

Fix an arbitrary z € Z.

e [fz is even. Then p holds at z and —p holds at z + 1. Hence F—p and P —p hold at z,
so the first and third implications in y. are satisfied; the other two implications are
vacuously true. It follows that

M,z-p >F-p A =-p—>Fp A p—>P-p A -p—>Pp.

 [fz is odd. The situation is symmetric, interchanging p and —p.

Thus, M, z = ye for every z € Z.
On the other hand, assume I = (W, <,V) is a finite poset model. It follows that the
model has a minimal element m; [8]. Either m |= p or m; |= —p.

e If m; |= p, then m; ¥ p — P —p because there is no w € W such that w < m and
w Ik =p, since m; is minimal.

e If my |= —p, the clause —p — P p fails by the same reasoning.

Hence m; ¥ p — P-p or m; ¥ ~p — P p. This holds for any minimal element m € W.
Since for every y € W there exists a minimal element m € W such that m < y, it follows that
no world satisfies both H(p — P-p) and H(-p — P p). Thus, no world satisfies yc, SO
M does not satisty y... We conclude that no finite poset model satisfies yc.

Because y. is satisfiable on posets frames but only on infinite ones, 7T/L lacks the finite
model property with respect to posets. O

Remark 2.2.2. Note that y., is satisfiable on a finite preorder frame. Let M = (W, <, V)
be the preorder model that consists of two worlds x;, x such that x; < x; and x, < xy. If
V(p) = x it follows that both worlds satisfy yco.

It follows that y only shows that TIL on posets does not have the FMP, while the lack
of the FMP for TIL on preorders is presented in [17, Proposition 1.7].

To still prove decidability of TIL, we will follow the same route as [17]. In the chapters
that follow we will:

* present a sound and complete axiomatization of TIL; and

* prove that TIL has the FMP with respect to a generalized class of structures.
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In this chapter, we present one of the thesis’ main results: a sound and complete axiom
system for TIL over poset frames, which we subsequently use in the next chapter to prove
decidability.

Section 3.1 introduces a proof-theoretic description of T/L and establishes its soundness
with respect to poset semantics. Section 3.2 explains why the usual canonical model construc-
tion fails and proves some auxiliary lemmas. In Section 3.3 we introduce the step-by-step
method, which will be used to nevertheless prove completeness. Section 3.4 contains the
actual strong completeness proof of T/L on posets.

3.1 AXIOMATIZATION AND SOUNDNESS

To study modal information logics on posets in a symmetric way, we extended the language
by including the infimum operator. However, it is not immediately clear which axioms link
the two modalities (see [3]). Surprisingly, it turns out that the relation between (sup) and
(inf) can be fully captured by standard temporal axioms. To show this, we present the
following logic.

Definition 3.1.1. Let TIL be the least normal modal logic in the language £ containing all
propositional tautologies, instances of the K-axiom for [inf] and [sup]' and the following
axioms:

Re) (pAg— (sup)pg) A (p Agq — (inf)pq),
4 (PPp—Pp) A (FFp — Fp),
(Co.) ((sup)pg — (sup)gp) A ((inf)pg — (inf)gp),
(Dk1) (p A (sup)qr) — (sup)pq,
(Dk2) (p A (inf)gr) — (inf)pq,

(Sy) (p > GPp) A (p — HFp),

and closed under modus ponens, uniform substitution and generalization (i.e., if + ¢ then
+ [inf]y (and thus + [inf]y @) for all ¢, € L1 and similarly for [sup]).

For each axiom in the axiomatization of MIL from [17] (namely (Re.), (4), (Co.) and
(Dk)), we added the same axiom for the new (inf)-operator. The only truly new axiom is
the standard temporal axiom (Sy.) [14, 20]. That this axiom is to be included is expected,
since the temporal operators P, F, G and H are definable. On the other hand, what may be
unexpected is that this is the only axiom that links (sup) to (inf) that we need to add to the
axiomatization of MIL to obtain an axiomatization of TIL. We will proceed to show that
this axiom system is strongly complete for 7/L and thus that the single axiom (Sy.) already
suffices to syntactically link (sup) and (inf).

For each operator we include both coordinate-wise schemes: [sup](p — ¢)r — ([sup]pr — [suplgr),
[sup]r (p — q) — ([sup]r p — [sup]r ¢) and analogously for [inf].

13
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First off, the axiomatization is readily seen to be sound by checking that TIL is a normal
modal logic validating all the axioms of TIL:

Theorem 3.1.1 (Soundness). TIL C TIL.

To familiarize the reader with the framework and provide some hands-on intuition, we
include parts of the soundness proof.

Proof. Let M = (W,<,V) be a poset model. We must verify that every propositional
tautology, the normal modal schemata K and the axioms of TIL are valid in 9%, and, further,
that validity on poset models is preserved under modus ponens and generalization:

(4)  This follows directly from transitivity of <. Assume I,x + PP p, so there are
v,z € Wsuchthaty <x,z<yand MM,y I Pp and M, z I p. By transitivity, we get
z <xand so M, x I P p. The second part is shown symmetrically.

(Dk2) Assume M, x - p A {inf)gr, so MM, x I p and there are y, z such that x = inf{y, z},
M,y - g and M, z + r. Since x = inf{y, z} implies x = inf{x, y}, it follows that
IM, x I (inf) pq.

(Sy.) Assume I, x I p. Now, let y be arbitrary such that x < y. Since M, x I+ p it follows
that M,y I+ P p, so since y was an arbitrary element greater than x it follows that
M, x + GP p. On the other hand, take any y such that y < x; then I,y I+ Fp, so
M, x - HF p.

(K)  We show one instance:

([sup](p — q)r) — ([sup]pr — [sup]gr).

Assume M, x I [sup](p — ¢q)r, so for every y, z such that x = sup{y, z} we have
M,y - p — qor M,z r. Now assume I, x I- [sup]pr, so for every u, v such that
x = sup{u,v}wehave M,u i p or M, v I r. We need to show M, x I+ [sup]gr. So let
v, z be arbitrary such that x = sup{y, z}. Since x = sup{y, z}, wehave M,y + p — ¢
or M,z I+ r. In case of the latter, we are done, so assume I,y + p — ¢g. Then
M, x - [sup]pr and x = sup{y, z} imply MM, y r p or M, z I r, and again, in case of
the latter, we are done. If M,y I+ p, then M,y F p — g implies M, y + g. Hence
M, x I [sup]gr.

Lastly, we check whether the rule of generalization preserves validity. We again show one
instance: Assume - ¢. We must show that for any ¢ € L7 : I [inf]gy. So let M be
an arbitrary poset model and x € W. Let y, z be arbitrary so that x = inf{y, z}. We have
M,y k@, so W, x - [inf]py. m|

3.2 CANONICAL MODEL AND AUXILIARY LEMMAS

To prove completeness, we will use a similar approach to the one presented in [17, Section 2].
To avoid redundancy, we will omit some proofs that are identical (or nearly so), instead
focusing on the aspects that provide insight into the relation between (sup) and (inf) in our
extended system.

We begin by constructing the canonical model. However, this canonical model lacks the
properties required to establish the necessary truth lemma for the completeness proof; in
particular, the underlying frame is not a poset frame where the canonical relations refer to
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the supremum and infimum induced by the ordering those relations induce. We therefore
make use of the step-by-step method (see [10]).

Definition 3.2.1. Let Wy, be the set that contains all maximally consistent TIL-sets. Let
Csup and Cjyr be the two induced ternary relations of the canonical TIL-frame:

Cspl’'A® & Vo€AHeO({sup)od ),

CitT’'A® < V6eA0e0((inf)d0 €T).
We define the following binary relation on the canonical frame:
<pre := {(A,T) € WriL, x Wy, | Csup T A}

It may appear bizarre that our definition of <y only depends on Cjyp, and indeed we
will need that it admits an equivalent characterization in terms of Ciys:

<pre := {(A, 1) € Wy, X W, | Cing AAT}. (D

To show this, we rely on two auxiliary lemmas (Lemma 3.2.1(1) and (2)). The equivalence
itself is given by Lemma 3.2.1(3), while Lemma 3.2.1(4), (5) and (6) are needed for later
proofs.

Lemma 3.2.1. 1. p = Ppand p — F p are derivable in TIL.
2. VILA,0 € Wy, 1 (Csup TA® iff Cup 'O A) and (Cip A O iff Cipyy O A).
3. VILA e Wi, @ Coup TT AT Cipr AAT
4 VOLAeWrL : A<p Tiff (V6 €A: PoeTandVy el': Fy € A).
5. <pre is a preorder.

6. VI,A,0 € Wy, : (Csup TA® only if A <pre I'O <pre I') and (Cinr I A © only if
r <pre AT <pre 0).

We explicitly present the proof of Lemma 3.2.1(3), as the proofs of the other statements
are analogous to the proofs of Observation 2.5 and Lemma 2.6 in [17]. In each case, the

version involving the (inf) operator is proven in the same way as the version involving (sup).

Proof of Lemma 3.2.1 (3). Throughout, we use the standard properties of TIL-maximally
consistent sets (MCSs), which hold because TIL is a normal modal logic.

Assume Cgyp I'T" A. To show that Ci, AAT, let 6 € A and y € T be arbitrary. (Sy.) and
uniform substitution entail

v — =(sup)(=(inf)yT)T € T.
Since y € I', modus ponens yields
=(sup) (=(inf)yT)T € T.

Consistency then forces
(sup) (=(inf)yT)T ¢ T.

15
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By Lemma 3.2.1 (2), Csyp I'T" A implies Cgyp I' AT, s0 it follows from
(sup)(=(inf)y T)T ¢ I'

that
—~(inf)yT ¢ A or T¢Tl.

But T € I', so =(inf)yT ¢ A, hence (inf)yT € A by maximality of A. Since § € A, an
application of US and (Dk2) yields (inf)dy € A. Hence Ci, AAT.
The other direction is proven similarly. O

In case Cyyp and Ciyr would correspond to the infimum and supremum relation with
respect to <pre, and if <, was a partial order instead of merely a preorder, we would have
completeness in our pocket. The next examples show that neither are the case. We first show
that <, is not antisymmetric:

Example 3.2.2. Consider the following model:
1. W=27,
2. < is the standard less than or equal relation on the integers,
3. V.:P—> P(W)isdefinedas V(p) ={z € Z: zis even }.

For everyi € Z put
A = {pe Lr|iF @,iiseven}, I = {pe Ly |ilre,iisodd}.

It is easily seen that
= Aa=lo= A=, )

and

Our goal is to show
Ao <pre I and T <pre Ao,

while Ay # I'1, thus showing that <, is not anti-symmetric.
We have O+ p and 1 + —p, hence p € Ag and —p € T'|, so Ay # T'y.
Now take § € Ay, i.e. 0 v 6. Because —1 <0 <1,

—1+vF6 and 1w P,

soby (3)Fo,P¢6 €T7.
Conversely, fory € I'y (so 1 - y) we have 0 < 1 < 2, hence

OFFy and 21 Py.

It follows from (2) that Fy, Py € Ay.
Lemma 3.2.1(4) yields Aoy <pre I'y and I'y <ppe Ag.

Secondly, we give an example showing that Ciyy is not the infimum relation of <.
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Example 3.2.3. Suppose we have MCSs I and A for which it holds that Ci,y I' A A. If Cyyp, and
Ciny matched the supremum and infimum relations induced by <., we would have I" <,,, A
and A <p,, I'. We show that CiyI" AA can hold without A <,,. I" being true. Consider the
following model:

Vi —p Vo Ik —p

~.

Wik p

And let p be the only propositional variable that the states satisfy / falsify. We define the
following MCSs:
r = {cpELT|§m,wlktp}

A = {¢eLT|ﬁR,v1u—go}z{thLTI?m,VleD}

We see that p € T', but Fp & A, so by Lemma 3.2.1(4) we get that A £,,. I'. On the other
hand, since w = inf{vy,v2} we see that Cy,;I" A A holds.

3.3 REPAIR LEMMAS

To prove that syntactic consistency implies satisfiability (and hence completeness), we use
the step-by-step defect—repair construction to build a model 9t whose worlds are labeled
by a function /, assigning each world a MCS. The objective is then to ensure that the truth
lemma for labeled worlds

Mxrp — ¢gellx)

holds.

Concretely, we start with a single world labeled by our initial MCS T, so that if the truth
lemma holds, then we have our satisfying model. For the truth lemma to hold, a world’s label
[(x) can dictate that it should satisfy some formula involving (sup) or (inf); for example, if
(sup)gyr € I(x), then x should satisfy (sup)¢iy.

If the model under construction does not yet provide points witnessing this (so x k¥
(sup)gyr), we call this shortfall a defect. These defects (Definitions 3.3.2, 3.3.3, 3.3.4
and 3.3.5) are repaired in stages. In case of the defect we just described, it is resolved
by adding two fresh worlds y and z, such that x = sup{y, z}, ¢ € [(y) and ¢ € I(z).

That the procedures we describe actually resolve the defects is proven in their respective
repair lemmas (see Lemma 3.3.1 and 3.3.2). Iterating this process until no defects remain
yields our full model.

We will mostly use the outline presented in Section 4.6 of [10] and Section 2.2 of [17].

We now turn to the formal definition of the tuples (/, <) that at each stage determine the
‘approximating frame’:

Definition 3.3.1. Let W be a countable set, and IP the set of all tuples (/, <) such that:
1. [ is a partial function from W to the set of all MCSs, Wryy,.
2. dom(!) is finite.
3. <is a partial order on dom(/), and the identity relation on W \ dom(/).

4. If y < x then I(y) <pr I(x) (Whenever x,y € dom(/)).

17
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There are four different types of defects that can occur. In addition to the two defects
described in Definitions 2.8 and 2.9 of [17], there are now two additional defects involving
the new (inf) operator. To be complete, we define all possible defects that can occur:

Definition 3.3.2 ((sup)-defect). Let (/,<) € IP. Then a pair ({sup)pi,x) is a (sup)-defect
(of (1,<))iff

(1) x € dom(!)
(i1) (sup)ey € I(x), and
(iii) there are no y,z € dom(!) such that:

e el(y), Capl®)I(y)1(z), Ty=TxU{y}u(Tyn{w[Tw nTx=0}),
¥ €l(z), x=sup{y,z}, Tz=Txu{z}u(Tzn{w | Tw NTx =0}),

where Tw :={v | w < v}.
Definition 3.3.3 (({inf)-defect). Let (/,<) € IP. Then a pair ({inf)¢y, x) denotes an (inf)-
defect (of (I, <)) iff
(1) x € dom(l)
(i) (inf)ey € I(x), and

(iii) there are no y, z € dom(/) such that:

pel(y), Curl(x)I(y)l(z), ly=lxu{ytulyn{w|lwnlx=0}),
v €l(z), x=inf{y,z}, lz=lxu{z}u(l zn{w|lwn]x=0}),

where | w:={v | v < w}.

Definition 3.3.4 (—(sup)-defect). Let (/,<) € IP. Then a quadruple (—={(sup)¢y,x,y,2)
denotes a —(sup)-defect (of (I, <)) iff:

x € dom(l), x =sup{y,z}, —(sup)ey €l(x),
pelly), ¢el).

Definition 3.3.5 (—(inf)-defect). Let (/,<) € IP. Then a quadruple (={inf)py, x, v, z) de-
notes a —{inf)-defect (of (I, <)) iff:

x e dom(l), x =inf{y,z}, —(inf)ey € l(x),
pelly), el

[17] faces the same defects, but constrained to (=) (sup)-defects. The question is whether
a similar approach to resolving the defects in this setting would also work. It is not difficult to
see that in the case of the (sup)- and (inf)-defects, the same solution as presented in Lemma
2.11 of [17] can be applied. For the sake of completeness, we discuss how an (inf)-defect is
repaired as an illustrative case.

Assume ((inf)¢yr, x) denotes an (inf)-defect of (I, <) € IP. Then (inf)pys € I(x), but no
v,z € dom(/) satisfy the conditions in clause (iii) of definition 3.3.3, i.e. there are no y, z
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such that x = inf{y, z}, ¢ € [(y) and ¥ € I(z). Since I(x) is a MCS of the canonical model,
the existence lemma guarantees that there are MCSs A and © such that Ciys [(x) A®, p € A
and ¢ € ©. Take fresh, distinct y,z € W, place them directly above x and extend / to I’ by
adding I’ (y) = A, I’(z) = ©. We will show in Lemma 3.3.1 that the resulting pair (I’, <’) is
still in IP and that the defect is indeed resolved.

Lemma 2.12 of [17] repairs —{sup)-defects by adding dummy states without labels. This
tactic fails here: since the (sup) and (inf) modalities act in opposite directions, every world in

the model becomes reachable by looking ‘up’ and ‘down’ with the (inf) and (sup) operators.

It thus matters with which MCS the new points get labeled. To resolve this, we duplicate the
label of the point that constitutes the defect we are resolving.

To sketch how the updated —(inf)- and —({sup)-repair lemmas work, we briefly discuss
the former.

Assume (—(inf)pys, x, v, z) constitutes a —(inf)-defect. Then —(inf)pyy € I(x) (so the
label of x dictates that it does not satisfy (inf)¢y), but at the same time there are y, z such
that ¢ € I(y), ¥ € I(z) and x = inf{y, z} contradicting this. To resolve this, we modify
the model such that x is no longer the infimum of y and z by adding a duplicate of x that
is incomparable with x itself. That the resulting tuple is still in IP is proven formally in
lemma 3.3.2.

We provide illustrations of the four repair lemmas to give an intuition:

(sup) —repair
=

X X
o (sup)eyr € I(x) o (sup)oy € [(x)

y e e 7
@ €l(y) W€ l(z)
p€l(y) Y el(z)
y e e 7

(inf) —repair

).c (inf)py € 1(x) = e (infYpy € I(x)
x

19
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x ~(sup)—repair  {(Sup)py € I(x) I(d) = I(x)
—(sup)pyy € [(x) o = X e e d
y e e 7 y e e 7
pel(y) Y€ l(z) pel(y) Y€ l(z)
e €l(y) Y€ l(z) ~(inf) ~repair pel(y) Y€ l(z)
y e ® 7 = y e ®Z
x o —(infypyr € I(x) X e o d

—(inf)py € I(x) I(d) =1(x)

We will only work out the (inf)- and —(inf)-repair lemmas as explanatory cases. The
(sup)- and —(sup)-repair lemmas are in fact mirrored versions of these ones. For a worked
out version of the (sup)-repair lemma we refer to Lemma 2.11 of [17].

Lemma 3.3.1 ({inf)-repair). Let ({inf)¢y,x) be an (inf)-defect of (/,<). Then we can
resolve this defect by extending (/, <) to ({, <) in the following way:
Take distinct y,z € W \ dom(/) and let:

I':=1V {(y>r)’ (Z7A)}’ <i=<U {(M,y), (M, Z) | u < X},
pel.yeA, Cont [(X) T A,

Then y, z witness that ({(inf)@y, x) does not form an (inf)-defect anymore.
Proof. Take fresh, distinct y, z € W and map them to I' and A respectively, which we know
exist due to the existence lemma:

If (inf) s € O, then there exist I', A such that ¢ € I, ¥ € A and Ci,s ® T A.

We must show that (I’,<’) € IP and that the defect is resolved. That the defect is resolved
follows clearly from how we define (', <’). Also conditions 1.-3. clearly hold for (I, <’).
The only condition we check is 4:

* The inequalities we added are of the form # < y and u < z for u < x, so we can focus
on the subset {(u, y), (#,z) | u < x} € <’ and the two inequalities y <’ y and 7 <’ z.

(y <" y) Since < is a preorder, it is in particular reflexive. It follows that 1" (y) <pre I’ ().
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(x <" y) We know that Cipe I’ (x) I’ (y) I’(z). We have proven in Lemma 3.2.1 that
CintTA® only if I' <pre A, T <pre ©, s0 it follows that I (x) <pre I’ (y).

(u <" y) The only cases left are elements u < x. Since < is a preorder, it is in partic-
ular transitive. So I’(#) <pr I’(x) combined with the previous result (namely
I(x) <pre I'(y)) yields " (u) <pre I"(y).

The same reasoning can be repeated for z. O

Lemma 3.3.2 (=(inf) repair lemma). Let (={inf)¢y, x, y, z) be a —(inf)-defect of
(I,<) € IP. Then we can resolve this defect by extending (/, <) to (I’, <’) € IP in the following
way:

Take d € W\ dom(!l) and let:

I':=10{(d,l(x))}, <:=<uU{(d,u),(d,v) |y <u,z<v}
So we get x # inf{y, z}.

Proof. Take a fresh d € W and map it to /(x). We must show that (//,<") € IP and that the
defect is resolved.

* It is not difficult to show that (!, <") € IP, the only step we highlight is showing that
y <" x implies [(y) <pre [(x) since this is where we see that the new way of labeling
(different from what is done in [17]) plays a role. We again only check the subset
{(d,u),(d,v) : y < u,z <v} C < and the inequality d <’ d. We go through all the
cases:

(d <" d) I(d) <pre I(d) follows from reflexivity of <pre.

(d <" y) Since d <" y, we should show that I(d) = [(x) <pr [(y). We know that (/,<) €
IP. So since we assumed x = inf<{y, z}, we have x < y, so [(d) = [(x) <pre [().
We can replace y by z and repeat the same reasoning.

(d<"u) Ify <uorz<uwe getl(d) <pe [(u) by transitivity of <pr.

* We show that the —(inf) defect is resolved by showing that d £’ x (while d is a lower
bound of {y, z}), which contradicts that x = inf</{y, z}.
Assume d <’ x, then by definition of <’ this could only be the case if x = y,x = z,x > y
or x > z. The latter two cases are impossible by antisymmetry of the ordering (< is a
partial order, not merely a preorder). For the former two cases, assume without loss of
generality that x = y. Then since x < z, we get [(x) <pre [(2). S0 (1) Csup [(2) [(2) I(x)
and (2) Cins[(x) I(x) 1(2). By (2) we get Cins I[(x) I(y) I(z) since [(y) = I(x), but then
we cannot have had a —(inf) defect, so we derived a contradiction. O

3.4 COMPLETENESS PROOF

Theorem 3.4.1 (Completeness). TIL is strongly complete with respect to T7L.

We want to show that if I'* is a TIL-consistent set, then we can find a model defined on
a poset-frame such that there is x € M for which M, x I y for every y € I'*. The labeled
models defined by (/, <) will approximate such a model better at each step. We now explain
how this approximation works.

21
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First note that we can extend I'* to a TIL-MCS I'. Let W be an arbitrary countable set
and let x € W be arbitrary. Define [y := {(x,T)} and let <( be the identity relation on W.
Then (o, <o) satisfies all the conditions of Definition 3.3.1.

It is possible to enumerate all the potential (sup)-, (inf)-, =(sup)- and —(inf)-defects
since the defects are defined as finite tuples, L7 is a countable language and W is countable.
We construct a sequence

(10, <0)s ees Uy <), o

with [,, C [,41 and <,,C<,,4+1, by constructing from (/,,, <,,) the next element in the sequence
(14+1, <n+1) by taking the least tuple in our enumeration constituting a defect for (I,,, <,),
and applying the corresponding repair lemma to it.

Let
(lo<w) = (Ut U =0);

nelN nelN

and let V(p) := {x € dom(l,,) | p € I, (x)}. To prove completeness, we want to prove the
following:

Lemma 3.4.2 (Truth Lemma for labeled points).
Vx edom(l,),Voe Lr: (W, <o, V),x ko & ¢ ely(x)

Proof. We prove the lemma by induction on the complexity of ¢. The base case and induction
steps for =, A are routine arguments. We therefore focus on the cases of (sup) and (inf):

=: Assume (W, <,,,V),x IF (sup)pir. By definition, there exist y, z € W such that

W, <0, V), y ko, (W,<4,V),z-y¢y and x = sup{y, z}.
w

We know that y,z € dom(/,,), since if not, then as <, is the identity relation on
W\ dom(!,,), either x = y and / or x = z, contradicting x € dom(!/,,). By the induction
hypothesis, it follows that ¢ € [, (y) and ¥ € [, (z). To conclude that (sup)py € 1., (x),
it would suffice that (/,,,<,) does not contain any —(sup)-defects, which we will
address later.

&: Assume now that (sup)gy € [,,(x). Then, again provided that (I, <) does not contain
any (sup)-defects, there exist y, z € dom(/,,) such that

x =sup{y,z}, ¢ €ly(y) and ¢ €1,(2).

By the induction hypothesis, this implies that (W, <,,,V),y F ¢ and (W, <,,,V),z IF ¢,
so by definition (W, <,,, V), x I (sup)py.

The case of (inf) is proven similarly. O

As pointed out in the proof, once we show that (/,,, <.,) does not contain any defects,
the truth lemma holds, and completeness follows. The argument to show this follows the
proof of Theorem 2.13 from [17], where necessary adjustments have to be made to handle
the (inf)-operator. For the sake of completeness, we include most parts of the proof here.

Lemma 3.4.3. (/,,, <,) does not have any (sup), —(sup), (inf) or —(inf) defect.



3.4 COMPLETENESS PROOF

To prove this statement we first need some auxiliary lemmas.

Lemma 3.44. Letn € w. If

Tn2y :Tnxu{y}U(Tnym{W|ananx:®})’

then the same equality holds for every m > n, hence in particular

Twy :wau{y}U(Twym{W|TwW0wa:®})~

Proof. We argue by induction on m > n.
Base case: Holds by assumption.

Induction step: Assume the equality is true at stage m; we show it remains true at stage
m+ 1, i.e. we show

Tm+1 Y =Tms1 XU {)’} U (Tm+1 yﬁ{W | Tt WO T x = 0})

We consider each possible repair in turn and verify that, if that repair is carried out at
stage m, the equality is still true afterwards.
(sup)-repair: The fresh points are only below existing points, so the equality still holds.

(inf)-repair:  Let ({inf)py, c¢) be the defect that is resolved at stage m and let a, b be the
two fresh points. We discuss the three possible positions of ¢ relative to x
and y.

(i) Suppose ¢ >,, y but ¢ #,, x. Then since
Smtl = <m U {(u,a), (u,b) |u <c},
a,b ey y,a,b ¢ Tmer x and, because a, b #,, x, we also have

a,b € (Tme1 YOAW [ Tma1 wN Ting1 x = 0}).

(ii) Suppose ¢ >;,, x. Then a, b € T,u+1 X € Tims1 ¥ so the equality holds.

(iii) Suppose ¢ #,, y. Then a, b ¢ T;+1 y and
a,b ¢ Tt XU{YIU (Tma1 YO AW [Tir1 w 0 Tier x = 0}).

—(sup)-repair: Let (=(sup)¥y/’, a, b, c) be the defect that is repaired, introducing one fresh
point d. Since a >,, b,c and b and ¢ are incomparable (for assume they
were comparable, then [(c) >pe [(b) or [(b) >pre [(c) would imply that we
cannot have had a =(sup) defect), the only new inequalities are of the form
U <1 dforu <, band u <, c. We go through all the possible cases:

—Ifa <, yoryisunrelated to a,b,c,thend ¢ T,,+1 y and d ¢ Tye1 X,
so the equality still holds at stage m + 1.

-Ify=b,x=a,thend € 1,41 yand d & T;u+1 x. So since T,,4+1 d = d,
it follows that d € T,e1 Y NA{W | Tir1 W N Tine1 x = 0} (case where
x = a and y = c¢ is symmetric).

2 1, yisdefined as {x : y <,, x}

23
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—If b and / or ¢ are greater than or equal to x under <,,, it follows that
d € Tm+1 X € T+l ¥, so the equality still holds.

—If b and / or ¢ are greater than or equal to y under <, and unrelated
tox,thend € T,,41 y and d € T,+1 X, SO again since T,,41 d = d it
follows that d € Tye1 Y NA{W | Tie1 wN Tine1 X = O} which implies
that the equality still holds.

—If x = a and b and c are unrelated to y then d is also unrelated to x and
¥, so the equality still holds.

We see that in all cases the equality still holds after the repair step.

—(inf)-repair: The single fresh point d is only below existing points, but not above any, so
the equality still holds.

In every repair, the equality is preserved; therefore it holds at stage m + 1, completing
the induction. O

Lemma 3.4.5. Letn € w. If

ny =lnxU{y}U(lnyﬁ{wIlnwﬂlnx=®}),

then the same equality holds for every m > n, hence in particular

loy =lwa{y}U(lwyﬁ{w [lw Wﬁlwxzm})-
Proof. Symmetric proof to the previous lemma. O

We now prove auxiliary lemmas stating that once a defect is repaired, it remains repaired
in every subsequent stage of the construction. We start with (sup) defects.

Lemma 3.4.6. Let x € dom(/,,) and (sup)ey € [,,(x). If ({(sup)¢y, x) does not constitute a
defect for (1,,, <), then ({sup)¢y, x) does not constitute a defect for (1,,,, <,,,) for any m > n,
thus showing that it does not constitute a defect in the limit ({,,, <,,).

Proof. Because ((sup)@yr,x) does not constitute a defect at stage n, there exist witnesses
v,z with [,(y) = T"and [,,(z) = A, such that:

pel, Csupln(x)FA’ Ty =TaxU{IUTnyn{w|[TawnT,x=0}),
€A, x:supsn{y,z}, TnzzTnxu{Z}U(TnZﬂ{W|ananx:®})-

Now let m > n. We show that y, z also witness that ({sup)¢y, x) is not a defect for

(Ims <m).
The previous lemma ensures that

Tm Yy =T xU{y}U(Tm y O {w [T w N T x = 0})

and
Tm2=Tm xU{Z}U(Tm z0{w [T w N Ty x=0})

for every m > n.
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Since [,,, extends /,,, the only thing that remains to show is that x stays the supremum of
{y. z} throughout the construction; that is, for every m > n we still have x = sup,, {y, z}. We
proceed by induction on m:

Base case: The claim holds for m = n by assumption.

Induction step: Assume x = sup,,{y, z}. We consider each possible repair that could be
carried out at stage m + 1 and verify that it leaves the ordering of x, y, z unchanged, hence
X = SUP;y,4q {y’ Z}-

The cases of (sup)-repair and —(sup)-repair are covered in Theorem 2.13 of [17], we
therefore only cover the two remaining repairs:

(inf)-repair:  Assume (I;,+1, <m+1) Was obtained by repairing an (inf)-defect for some
world s by adding fresh states yy and z5 to the domain of /,,, and extending
the inequality relation as described in the repair lemma

Smi1= Sm U {1, y5), (1, 25) 1 u < s} U{(25, 26), (V50 ¥s) }-

By induction hypothesis and the definition of <., the only candidates that
could now lie above {y, z} but not above x under <,,,+| are ys and z;. Suppose
V,Z <m+1 Vs. Then y, z <, s, hence x <, s by the induction hypothesis and
therefore x <,,,4+1 ys by definition of <,,,;;. The same reasoning applies to z,
so x is still the least upper bound of {y, z}.

—(inf)-repair: Assume (/,,+1, <m+1) Was obtained by repairing a —(inf)-defect for worlds
s, Vs, Zs by introducing a fresh state dy such that ;.1 (ds) = 1,41 (s) and

Sm+1= Sm U {(ds,u), (ds,v) 1 ys S tt, 25 < v U {(ds, dy) }.

Any new upper bound of {y, z} would have to be d itself. But d; is below
any of the old worlds, not above them, so ds #,,+1 y and dy #m+1 2, s0 the
supremum of {y, z} is still the same as before.

Thus x is still the supremum of {y, z} at stage m + 1, completing the induction.

For every m > n the same worlds y and z witness that ({sup)¢, x) does not constitute a
defect for (I,,;, <,n). So in particular it does not constitute a defect for (I, <.). O

Lemma 3.4.7. Let x € dom(/,,) and (inf)py € I,,(x). If ({inf)pyr, x) does not constitute a
defect for (I, <,), then ({inf)pyr, x) does not constitute a defect for (I,,,, <,) for any m > n,
thus showing that it does not constitute a defect in the limit (/,,, <.,).

Proof. The proof of this lemma is symmetric to the proof of the previous lemma. O

It remains to prove that any —(sup)- or —(inf)-defect that is repaired, remains repaired in
subsequent stages of the construction. For that we need an auxiliary lemma.

Lemma 3.4.8. Letn € w and a,b € dom(l,). If b £,, a then forevery m > n : b £,, a;
hence showing b £, a.

Proof. We show by induction that for every m > n we also have b £,, a.

Base case: The claim holds by assumption.
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Induction case: Assume b £, a. If (1,41, <m+1) Was obtained from (/,,, <,,,) by carrying
out a (sup)- or =(sup)-repair, the claim is proven in Theorem 2.13 from [17], we therefore
only cover the two remaining cases:

(inf)-repair:  Assume (I,;41, <m+1) is obtained from (I,,, <,,) by repairing an (inf)-defect
at a world x, introducing two fresh worlds y, z. This gives

SI’}'l+1 = SI’Vl U {(M’J’), (M’Z) | u SI’Vl x}'

It follows that every u <, x now has the two additional successors y, z under
the updated ordering <,,,+1. Since b £,, a, the relation b <11 a could only
hold if a = y or a = z; but that is impossible, because y and z are fresh.

=(inf)-repair: If (I;y+1, <m+1) is obtained from (I, <,,) by repairing a —(inf)-defect for
X, y,z, one fresh state d is added and

Sm+1 = <m U {(d’ u)’ (d’ V) | YS<mU,Z<m V}

Thus every element that was above y or z at stage m, has a new predecessor
d at stage m + 1. No other inequalities are introduced. Because b %,, a, the
only way to get b £,,+1 a would be to have b = d; but that is impossible
because d is fresh. Hence b £,,+1 a as required.

Hence b £,, a for every m > n. In particular, if there exists an n € w with b £,, a, then
b <%, a. O

With this lemma at hand, we can prove the two last auxiliary lemmas:

Lemma 3.4.9. If (=(sup)¢y,x,y,z) does not constitute a defect for (/,,,<,) for which

x,y,z € dom(l,) and —(sup)py € I,(x), ¢ € I,(y), ¥ € 1,(2), then (=(sup)py,x,y,z7)
does not constitute a defect for (/,,,, <,,,) for any m > n, thus not for (/,,, <,,).

Proof. x # sup,{y, z} holds if either x is not an upper bound of {y, z} (i.e. y £, x and / or
Z £ X), or it is an upper bound but there is u € W such that u >, y, z and x £, u. In case of
the former, it follows from Lemma 3.4.8 that y £,, x and / or z £,, x. In case of the latter;
<n € <, implies u >, y,z and Lemma 3.4.8 yields x £,, u. m]

Lemma 3.4.10. If (=(inf)¢y, x,y,z) does not constitute a defect for (I,,<,) for which
x,y,z € dom(l,) and —~(inf)py € I,(x), ¢ € I,(y) ¥ € 1,(2), then (=(inf)ey, x,y, z) does
not constitute a defect for (I,,,, <,,,) for any m > n, thus not for (1., <.).

Proof. This lemma is proven symmetrically to the previous lemma. O
Using what we proved so far, we can derive the following lemma:

Lemma 3.4.11. If a tuple constitutes a defect at some stage n, but not at a later stage m > n,
then it never constitutes a defect at any stage k > m.

Proof. Every tuple occurs in our enumeration of potential defects, so if a tuple is a defect at
stage n, it is repaired no later than at stage n + i + 1, where i is its position in the list. Once
the repair has been completed, 3.4.6, 3.4.7, 3.4.9 and 3.4.10 guarantee that the defect is still
repaired at all subsequent stages. O
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We now prove that (I, <.,) does not contain any defects, thereby closing the final gap
in the proof of the truth lemma for labeled points 3.4.2.

Proof of Lemma 3.4.3. In [17, Theorem 2.13], the (sup) and —(sup) cases are treated in
detail. The arguments for the (inf) and —(inf) cases are analogous, but for the sake of
completeness we include them here:

(inf)-defect:

—(inf)-defect:

Assume ({inf)¢y, x) is the i-th in the enumeration of potential defects, with
x € dom(/,,) and (inf)py¥ € [, (x). Then there exists n € w such that
x € dom(/,) and {inf)gyr € [,,(x). By definition of the construction process
we have that for any m > n it is the case that dom(/,,) € dom(/,,), so

x € dom(l,,) and (inf)py € I,,(x) since the definition of [,, extends [,,.
There are two possibilities:

- If ({inf)yy, x) does not constitute a defect for (/,,, <,,), then by
Lemma 3.4.7, it does not constitute a defect for (1,,,, <,,,) for any m > n
and thus not for (/,, <4).

- If ({(inf)pyr,x) does constitute a defect for (/,,<;) the construction
process repairs the i-th tuple no later than at stage n +7 + 1. Lemma 3.4.7
then guarantees that the repair is permanent, so the tuple is not a defect
in any (I, <;) for m > n+i+ 1, and in particular not in the limit

Assume for contradiction that (—(inf)py,x,y,z) constitutes a defect for
(I, <) and that it is the i-th defect in our enumeration. This means that

—(inf)py € [, (x), p €l (y), ¥ €ly(z) and x = igf{y,z}.
It follows that there is n € w such that

—(inf)py € [,,(x), ¢ € [,(y), ¥ € l,(z) and x = igf{y,z}-

This means that (=(inf)ey, x, y, z) constitutes a defect for (I,,<,). Since
(=(inf)p, x,y,z) is the i-th defect in our enumeration, the defect is re-
paired no later than at stage n +i + 1. From Lemma 3.3.2 it follows that
x # infu4;41{y,z}. From x = inf,{y,z} it follows that x <, y,z, so
since <, C<p,+i+1 We get that x <,.;+1 ¥,z. Since x is not the infimum
at stage n + 1 + 1, there exists a € dom(/,4;+1) With a <,4;+1 ¥,z and
a £n+i+1 x. Lemma 3.4.8 guarantees that this inequality still holds at the
limit stage: a £, x. Because <,4;+1 € <., We also have a <, y, z, contra-

dicting x = inf,{y, z}. Hence (=(inf)py, x, y, z) cannot constitute a defect
for (1o, <w)- m|

Thus, the completeness of TIL is now fully established.

3.5 SOUNDNESS AND COMPLETENESS OF TIL ON PREORDERS

Having established completeness of TIL on poset frames, a direct corollary is completeness
with respect to another class of frames, namely preorders. M = (W, <,V) is a preorder
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model if < is a preorder on W. In this case, suprema and infima need not be unique, but can
come in clusters.

Definition 3.5.1 (Supremum and infimum in preorders). Let § := (W, <) be a preorder and
v,z € W.

* Anelementx € W is a quasi-supremum of {y, z} (write x € sup{y, z}) iff x is an upper
bound of {y, z} and x < w for all upper bounds w of {y, z}.

e An element x € W is a quasi-infimum of {y, z} (write x € inf{y, z}) iff x is a lower
bound of {y, z} and x < w for all lower bounds w of {y, z}.

The semantics of the modal operators are then defined as:
Definition 3.5.2.
M, x - (sup)py iff thereexist y,z € W s.t. M,y Ik o, M,z + ¢, and x € sup{y, z},
M, x - (inf)py iff thereexist y,z € W s.t. M,y I ¢, M,z -, and x € inf{y, z}.
With these new semantics at hand, we can define TIL on preorders.
Definition 3.5.3.

TILpe := {¢ € L7 | for every preorder model M = (W, <,V) and every x € W :
M, x -}

It is not difficult to show that the axiomatization we gave is also sound and complete with
respect to 1Ly, as the following theorem shows:

Theorem 3.5.1.
TILye = TIL = TIL

Since the soundness proof of TIL on poset frames carries over to preorders without signifi-
cant changes, we also derive that TIL C TIL,., which concludes the proof. |

Proof. TILy.e C TIL follows from the fact that every poset frame is also a preorder frame.

This result provides yet another example of how modal information logics cannot differ-
entiate preorders from posets (see also [16, 18]).
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Following the outline of [17, Section 3], we prove decidability of T/L. Since the logic does
not have the finite model property (FMP) with respect to neither preorders nor posets (see
section 2.2 and [16, Section 1.2]), we show that it does have the FMP with respect to a
generalized class of frames. Again, we highlight the adjustments that have to be made to the
proofs in [17], to make them work in the new setting with two modal operators: (inf) and
(sup).

In Section 4.1 we introduce the generalized frame class on which TIL will be interpreted
and derive first-order correspondents for all its axioms. Section 4.2 proves that TIL has the
FMP with respect to this class and works out the filtration argument that yields decidability.

4.1 GENERALIZED FRAMES AND FIRST-ORDER CORRESPONDENTS

As we have already mentioned, the canonical ternary relations Cgyp and Ciy¢ do not necessarily
match the order-theoretic supremum and infimum determined by the preorder they induce.
We investigate whether (sup) and (inf) can be reinterpreted via frame-correspondence
techniques on the class of all tuples

(W’ Csup > Cinf) s

where W is a set and Cyyp and Cjyr are arbitrary ternary relations on W.

Since the axioms of TIL are Sahlqvist, each has a first-order equivalent on these tuples
(W, Csup, Cint) [21]. Concretely, for every axiom Ax in our axiomatization of TIL, we denote
by FOAX its first-order correspondent, i.e. a first-order sentence in the signature {Cgyp, Cinf}
such that

(W, Csup, Cint) F Ax & (W, Cqup, Cinf) E> FOAX

Building on the suprema-only correspondences of Lemma 3.1 of [17], we add matching
infimum clauses and introduce a new one for the (Sy.)-axiom.

Definition 4.1.1 (First-order frame conditions for TIL).

(FORe) := Vx (Csupxxx A Cinfxxx)
(FO4’) := Vx,y,z,u,v ([Csupxy ZACqpyuv — Iw Cypxuw]
A [CinxyzZ ACipgyuv — Iw Cintx u W])
(FOCo) := Vx,y,z ([Csupxyz — Capxzy| A [Cingxyz > Cmfxzy])
(FODK1) := Vx,y,z (Csupxyz - Csupxxy)
(FODK2) := Vx,y,z (Cinfxy 7= Cinfxxy)

3 In what follows, ‘F’ is used for frame validity of FO-sentences.

29



30 DECIDABILITY OF TIL

(FOSy’) := Vx,y ([EIZ CsupXxyz — 3u Cimcyxu] A [Elz Cingxyz — 3uCqypyx u])

In addition to (FO4”) and (FOSy’), we introduce first-order sentences (FO4) and (FOSy)
that, while equivalent only modulo the other axioms, have a simpler form and are easier to
apply in arguments.

(FO4) := Vw,v,u([Csupwwv/\Csupvvu—>Csupwwu]
A [Cmfwwv/\Cmfvvu—>Cinfwwu])
(FOSy) := Vw,v([CsupwwvaCinfvvw] A [CianWV—)CsupVVW])

Using standard frame correspondence proofs, we can show the following.
Theorem 4.1.1 (Sahlqvist correspondence for TIL).
(W, Cup, Cing) F TIL & (W, Cyyp, Cing) £ (FORe) A (FO4) A
(FOCo) A (FODk1) A (FODK2) A (FOSy).

For a proof see [10, Theorem 3.54].
Lastly, we use the first-order correspondents of the axioms of TIL to define the class of
tuples (W, Cyyp, Cint) that satisfy them. We call this class C:

Definition 4.1.2.

é = {(W, Csupa Cinf) | (W, Csup’ Cinf) F (FORC) A (FO4)A
(FOCo) A (FODK1) A (FODK2) A (FOSy)}

Any tuple that is an element of this class is called a C-frame.
4.2 FINITE MODEL PROPERTY AND DECIDABILITY
In order to prove that TIL is decidable, we first show that it has the finite model property.

Specifically, we will show that if a formula ¢ is not derivable in TIL, then there exists a
finite C-model that falsifies it. To do so, we need the following definitions:

Definition 4.2.1.
Cr = {(W,Csp,Cint) € C | W finite },
Log(C) := {¢ € L1 | (W, Cqup, Cint) I+ ¢ for every (W, Coyp, Cint) € C },
Log(Cr) := {Lp € Ly | (W, Csup, Cing) I+ ¢ for every (W, Coyp, Cing) € Cr }

From the fact that poset frames are special cases of C-frames together with Theorem 4.1.1,
we derive soundness and strong completeness of TIL with respect to the class C, so in
particular TIL = Log(C).

Theorem 4.2.1. TIL has the finite model property, that is, TIL = Log(Cr).
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Proof. We show Log(Cr) C Log(C) by contraposition. Assuming y ¢ Log(C), we know

that there is a C-model (W, Cyup, Cint, V) based on a C-frame such that (W, Csup, Cint, V) ¥ x.

We turn (W, Cyp, Cint, V) into a finite model that refutes y by a filtration argument.

The first step is to further extend the notion of a set of formulas being subformula closed.

We introduce (inf) versions of the clauses (Com) and (S-P) already present in Definition 3.7
of [17] and we add a new (Symm) clause that keeps the set closed when (sup) and (inf) are
swapped:

Definition 4.2.2. A set of £ formulas X is C-closed if:

e It is subformula closed (Sub)

o If (sup)gy € X then (sup)yg € £ and if (inf)ey € X then (inf)iyp € X (Com)

If (sup)pyy € Zthen Py € X (S-P)

If (inf)py € X then Fp € X (S-F)
o If (sup)py € X then (inf)py € T and if (inf)gy € X then (sup)py € T (Symm)

Take X’ = {y} and let = be the least extension of £’ such that it is C-closed. We claim
without proving that X is finite.

We construct a finite model out of (W, Cyyp, Cint, V) that also falsifies y. Define an
equivalence relation ~y on W as:

w o~y v & VeeXZ ((W,C s Csup, V)W k@ & (W, Cinp, Csup, V), v I ®).

Let Wy := {|w|s : w € W} be the set of states. To define the relations Cszuplw||v||u|
and Ciif|w||v||u|, consider the following. We ultimately want to show that the quotient
frame (Wg, C,p, Cop) lies in the class Cr, so Cy,, and Cpp must satisfy all first-order
correspondents listed above. Reflexivity (FORe) will follow once we show that Cgpwvu
implies C,,[w/|[v||u| and Cinpwvu implies Cy-i|w||v||u|. Because the quotient map x — |x|x
is surjective, this property lifts reflexivity to the quotient frame without further work.

Every other frame axiom is an implication. Take (FOSy) as an example:
Csupwwv — Cipryvw

is equivalent to
Coupwwv V Cipyvw.

If the implication is true because ~Cs,pwwv is true, we cannot derive —quzup

the fact that Cgypwwv implies CSZup [w||w]||v|. The definition of C-closedness and the filtration
b

[w||w]|v| from

relations Cgy, and Cii ; are therefore designed to preserve the implications in the other axioms.

Thus, define
Coplwlivllul & V(sup)py € T :

@ (I, ulky) = wi (sup)py
b) (WrHPp, urPy)=>wirPoAPy
© (Wike, viey) = v (inf)eoy

(d (wie, uky)= ul {inf)py
() wikFo= (vikFgpanduI-Fo)
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Clw|v||u| & V(inf)py € X

@ (ke ukry)=wli {inf)py

b) (WrFp, urFy)=>wirFoAFy

) W@, viFy) = v (sup)ey

(d (wike, ulry) = ulr (sup)py

() wirPp= (viPypanduPy)
and Vx(p) = {|x|[zs € Wg : x € V(p)} forall p € X.

Thus, if we can show that
(WZ5 CS%Elp’ Cflf) € CFa

and that
(WZ’ ngup’ Cflfe VZ)

is a filtration of (W, Csyp, Cint, V) through X (that is, for every ¢ € X and every x € W,
(W27 Cszl:lp’ Clzr:lf’ VE)? |-x|2 I- ‘70 — (W9 CSUp’ Cil'lf7 V)’x I- ‘70)

then the proof is complete.

Proposition 4.2.2. (Ws,C%,.Cx) € Cr

sup?

Proof. We show that (Wx, Cszup, Cii () satisfies all the frame correspondences:

© (Wg,C3,p» CLp) £ (FORe) follows from (W, Cup, Cint) I (Re).

. (WZ,CSZHP, Cflf) £ (FOCo) follows from (Com)-closure of X and (W, Cgyp, Cinf)
(Co.).

¢ For (WZ,CSZHID,C.2 ) £ (FODK1), assume Cgyp|w||v||u| and let (sup)eyr € X be arbi-

inf

trary. We show that all clauses hold:

(a) Assume w IF ¢ and v I+ ¢. From (Com)- and (S-P)-closure of X it follows that

(sup)y T =Py € X.
(W, Csup, Cint) I+ (Re) implies
ul-(sup)TT =PTandv I (sup)y T =Py
Then from Cgyp|w||v]|u|(b) we get w IF Py AP T, hence w IF Py = (sup)ys T.

From (W, Cqyp, Cint) I+ (Dk1) and w I ¢ it follows that w I (sup)@yr.

(b) Assume w - P and v I Py. Again, since u I+ P T, it follows from v I Py,
(Com)- and (S-P)-closure of X (whichimplies Py € X) and from Cyp|w/|[v|[u|(b)
thatw - Py APT. Thusw - Py, sow r Po APy.

(c) Assume w IF @, w I i, then w I (inf)pys follows directly from (W, Cyyp, Cint) I+
(Re).

(d) Assume w I @ and v I+ ¢. Cyyp|w||v[|u|(c) yields v I+ (inf)gir.
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(e) Assume w - Fg. Then Cgyp|w|[v||u|(e) implies v I F¢ and u = Fe, so in
particular w F Foand v IF Fop.

© (Wg,C3,. CLp) £ (FODK2) is shown in the same way as (W, Csup, Cint) £ (FODKI).

» For (Ws, Cszup,Ciif) F (FO4), assume Cyyp|w||w]|[v| and Cyyp|v||v||u| and let
(sup)@yr € X be arbitrary. We show that all clauses hold:

(a) Assume w IF ¢ and u I . By (Com)- and (S-P)-closure of £ we get

(sup)y T =Py € X.

From

CsuplVI[V]|u|(d), u - Py and v - P T
it follows that v I+ Py. Then

Cswplw|lw|[v|(b), w-PT and v - Py
yield w - Pyr. Since (W, Cyyp, Cing) = (DK1), it follows from w I+ (sup)y T and
w I ¢ that w I {(sup)iyr.

(b) Assume w I Py and u  Py. Again, (Com)- and (S-P)-closure of £ imply

Py € X. So again from (Com)-closure we get (sup) Ty € Z. Since

VIE{(Sup)TT, ulk (Sup)yT,

it follows from Cgyp|v|[v||u|(b) that v I Py

By applying the exact same reasoning again but with Cgp|w||w||v|, we get that
w I Py since v I Py. From w I P ¢ we derive that w - Po A Py,

(c) Assume w I ¢ and w I . Then w I+ (inf)py follows from (W, Csyp, Cint) I+
(Re).

(d) Assume w I+ ¢ and u I . (Symm) and (S-F)-closure imply F¢ € Z. Since
(W, Csup, Cint) I+ (Re) and w I+ ¢ imply w I F, it follows from
Csuplw|lw||v|(e) and w IFFg
that v I+ F ¢. We apply the same reasoning using

viFFo and Cgplv||v||ul(e)

to getu - F. Thenu I+ and (W, Cyyp, Cing) = (Dk2) yield u I (inf)yr¢. Since
(W, Csup, Cint) I+ (Co.), it follows that u I+ (inf) oy

(e) Assume w I F ¢ We already showed in (d) that this implies u I F ¢.

* For (Wg, C3,p,, Cizp) E (FOSy), assume Cyp|w||w||v| and let (inf)py € ¥ be arbitrary.

Then by (Symm)-closure of £ we have that (sup)¢y € X. We show that all clauses
hold:

(a) Assume v I ¢ and w I+ . By (Com)-closure of X, it follows that (sup)y¢ € X.

Csup|W||W||V|(d) and (W’ Csup, Cinf) I (CO)
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yield v I+ {inf)py

(b) Assume v I Fp and w I Fiy. (Com)- and (S-F)-closure of X imply Fy € Z.
From
Csuplwllw||vI(e) and w I Fyy

it follows that v - Fyr. Hence v IF Fo A F .

(c) Assume v - ¢ and v I+ ¢. Then v I+ (sup)py follows from (W, Cyyp, Cing) I+
(Re).

(d) Assume v I~ ¢ and w IF . It follows from (S-P)-closure of X that P ¢ € X.
Cswplwllw||v|(@), w - T and v IF ¢

yield w I (sup) T¢. Since (W, Csyp, Cinr) = (Co.) it follows that w I (sup)eT.
Then

(W’ Csup’ Cinf) I+ (Dkl) ’ (Wa Csupa Cinf) I (CO) and w I '70

imply w I (sup)@y.
(e) Assume v I P ¢. From (S-P)- and (Com)-closure it follows that (sup)T¢ € X.
Since
w ik (sup)TT and v I (sup)eT

it follows from Cgyp|w||w||v|(b) that w I P ¢. O

Proposition 4.2.3. (Ws, CZ  C=

sup’ ~inf’

Vs ) is a filtration of (W, Cgyp, Cint, V) through X.
Proof. There are four things we need to show:

1. Cszuplw| |v||u| implies that for every (sup)¢y € X we have that v - ¢ and u I ¢ imply
w I (sup)pyr.

2. Ciif|w||v||u| implies that for every (inf)py € ¥ we have that v I ¢ and u I y imply
w I (inf) .
3. Csupwvu implies C3p | w/[v] |u].

4. Cippwvu implies C£f|w||v||u|.

1. and 2. follow by definition of CZ,_ and Ciif.

sup
To prove 3., we first make the following observations:

(W, Csup, Cing), w - P &= FveW: Cypwwy A (W, Coyp, Cing), vV - ¢,
(W, Coup, Cing),w F Fp &= v e W: Cppwwv A (W, Coup, Cing), v I+ .

Assume Cgpwvu and let (sup)gy € X be arbitrary. We show that all clauses of
Cszup|W||V||u| hold:

(a) This clause follows by definition.

(b) Assume v I Py and u I+ Py. From (W, Cyyp, Cing) £ (FODk1) A (FOCo) it follows
that Csypwwv and Cgypwwu. Thus, by our previous observation and by our assumptions,
w - PP APPy. Then (W, Cyyp, Cing) I+ (4), implies w - Po AP .
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(c) Assume w I @ and v I ¢. From (W, Cyp, Cing) £ (FODk1) A (FOSy) it follows that
Cinfvvw, which implies v I~ (inf)yrp. (W, Cyyp, Cing) I+ (Co) yields v I+ (inf)py.

(d) This clause is proven in a similar fashion as (c), but additionally relying on
w, Csupa Cinf) F (FOCo).

(e) Assume w I F¢. From (W, Csyp, Cins) £ FODKI A FOSy, it follows that Ciypvvw.

By our observation, we have v I FF ¢. Since (W, Cgyp, Cint) I+ (4), it follows that
v I F . The result for u is obtained in a similar way, with an additional application
of (W, Csup, Cinf) £ FOCo.

This finalizes the proof of 3.; 4. is proven similarly. O
This finishes the proof, showing that TIL = Log(Cr). m]

We conclude that
TIL = TIL = Log(Cr).

Since TIL is a finitely axiomatizable normal modal logic that has the FMP, we conclude
that 71L is decidable (see Theorem 6.15 in [10]). Note that from TIL = TIL,, we immediately
get the same result for TIL .
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5 DUALITY

Having worked out a sound and complete axiomatization of TIL on posets, we now want to
see how the same logic looks from an algebraic and topological point of view. The aim of
this chapter is to work out the Stone—Jénsson—Tarski duality between the categories

2B-BAO (Boolean algebras with two binary operators)

and
2T-MS (Modal spaces with two ternary relations),

and to check that this duality carries over unchanged when we restrict to the objects that
validate the axioms of TIL.

We assume familiarity with the usual categorical notions, that is, categories, functors,
and natural transformations. Readers who are not familiar with these concepts can consult
Awodey [1] and Mac Lane [19].

Sections 5.1 and 5.2 fix notation and recall a few less standard categorical facts that
we will need. Section 5.3 sets up the duality itself, shows how it restricts to the TIL-valid
subcategories, and ends with some brief comments.

5.1 ALGEBRAIC NOTIONS

We begin on the algebraic side by introducing the objects and morphisms that form the
category 2B-BAQO. Each object is a boolean algebra that interprets two binary modal operator
symbols, (sup) and (inf).

Definition 5.1.1 (Boolean algebra with two binary operators). Let oo = {{sup), {inf)} be a
modal similarity type. A boolean algebra with two binary operators is an algebra

A= (A,V,~, L, (sup), (inf) )
such that
* (A,V,—, 1) is aboolean algebra,

 (sup) and (inf) are operations of arity 2 satisfying
— normality: (sup)(L, b) = (sup)(a, L) = L and (inf) (L, b) = (inf)(a, L) = L,
— additivity in both arguments, i.e. (sup)(a; V az, b) = (sup)(ai, b) V (sup)(as, b)
and (sup)(a, b V by) = (sup)(a, by) V (sup)(a, by) and likewise for (inf).

Definition 5.1.2 (BAO-homomorphism). Let W = (A, Vv, -, L, (sup), {inf)) and
W = (A", V',~", L, (sup)’, (inf)’) be two BAOs of the same similarity type. Then g : A —
A’ is a BAO-homomorphism if the following conditions hold:

e gisaboolean homomorphism (i.e. a homomorphism from (A, Vv, -, 1) to
(Al, V,’ _',’ J—/))$

36



5.2 TOPOLOGICAL NOTIONS

* it preserves the modal operators: for every a,b € A

g((sup)(a, b)) = (sup)'(g(a),g(b))

and similarly for (inf).
We are now ready to define the category we are interested in.

Definition 5.1.3 (The category 2B-BAO). 2B-BAO, the category of boolean algebras with
two binary operators, is the category whose objects are BAOs over the similarity type
{(sup), (inf)} and whose morphisms are BAO-homomorphisms.

Given a BAO U, an algebraic valuation is amap V : P — A that assigns propositional
variables to elements of the algebra. Let Ter(P), be the o-term algebra over the same
variable set. Every valuation V extends uniquely to a BAO-homomorphism

V:Ter(P)y — A,
as follows:
V(p) = V(p) foreverypeP
V(L) = L
Vievy) = Vip) vV V()
Vimg) = =V(p)
V{(sup)py) = (sup) V(p) V()
V((infypy) = (inf) V() V(¥).

Write T := —~1. We say that A pa0 ¢ =~ T iff V() = T for every algebraic valuation
V. Likewise, W Fpa0 ¢ < ¢ iff V(@) < V() for all V, where the partial order < is defined
bya<biffavb=>b.

5.2 TOPOLOGICAL NOTIONS

We continue by introducing the objects and morphisms that form the category of modal
spaces with two ternary relations (2T-MS). We first recall some topological notions we will
use.

Definition 5.2.1. Let (X, 7) be a topological space. Clop(X) is the set of clopen subsets of
X, i.e. the subsets U of X suchthat U € rand X \ U € 7.

Clop(X) is a Boolean algebra under union, complement, and with 0, X as 0, 1.

Definition 5.2.2 (Stone space). Let (X, 7) be a topological space. We say that (X, 7) is a
Stone space if it is compact, Hausdorff and totally disconnected or, equivalently, a compact,
Hausdorff space with Clop(X) as a basis.*

Definition 5.2.3 (Modal space). Let Ry and R; be ternary relations, then (X, 7, Ry, Ry) is a
modal space iff

4 For a proof of this equivalence see [15].
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* (X, ) is a Stone space,

* R; (i = 1,2) satisfy
— point-closedness: R;[(y,z)] := {x € X | Rixyz}isclosed forevery (y,z) € X2,
- Uy, U, € Clop(X) implies

mR,.(Ul,Uz) = {x € X | 3uy € Uy,upy € Upsit. R,-xuluz} S ClOp(X).

Definition 5.2.4 (Continuous bounded morphism). Let (X, 7, Ry, R) and (X, 7", R|, R})
be two modal spaces with two ternary relations. Then a : X — X’ is a continuous bounded
morphism if the following holds:

U € Clop(X’) implies @' (U) € Clop(X),

* R; (i = 1,2) satisfy
— Rixxixy implies R a (x)a(x1)a(x2),

— If Rja(x)x|x}, then there exist x1, x> € X such that R;xx;x; and
a(x)) = xj, a(x2) = x).

Definition 5.2.5 (The category 2T-MS). 2T-MS, the category of modal spaces with two
ternary relations Ry and R, is the category whose objects are modal spaces (X, 7, Ry, R2)
and whose morphisms are continuous bounded morphisms.

A modal-space valuation on (X, 7, R;,Ry) isamap V : P — Clop(X). Truth is defined
as in ordinary Kripke semantics:

(X, 7,R,R, V), x ryys p it x e V(p),
(X,T,R],RQ,V),XII-MS % iff (X,T,R],RQ,V),XM‘MS ©,
(X, 7,R, R, V), x kyys @ Ay iff (X, 7,R(,R2,V),x IFprs ¢ and
(X, 7,R1,R2, V), x kps U,
(X,7,R1,R2, V), x ks (supyepy iff 3y € [¢]v, 3z € [¢]v such that Ryxyz,
(X,7,R1,R2, V), x ks (infypy iff Ty € [¢]v,3z € [¢]v such that Ryxyz,

where [¢]lv :={x € X | (X,7,R1,R2, V), x Fps ¢}

Since Clop(X) is closed under the boolean operations and, by Definition 5.2.3, under
mpg,, it follows that [¢]ly € Clop(X) for all ¢ € L. We write (X, 7, Ri, R2) Fyps ¢ iff
[¢]lv = X for every valuation V : P — Clop(X).

5.3 THE STONE-JONSSON—TARSKI DUALITY

With the algebraic and topological groundwork in place, we can now state the Stone—J6nsson—
Tarski duality that links the categories 2B-BAO and 2T-MS. We define contravariant functors
F : 2B-BAO — 2T-MS and G : 2T-MS — 2B-BAOQO, and we show that they form a dual
equivalence.
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On objects, the functor F : 2B-BAO — 2T-MS sends a boolean algebra with operators
A = (A,Vv,=, L, (sup), (inf)) to its Stone dual X4 = {U C A : U is an ultrafilter on A},
with the following topological basis of clopens:

{ZflaeA}, E::{UEXAMEU}.
The relations R syp) and Ryinry on X4 are defined as follows:
Rup)GHK & (supyab € G foralla € H,b € K,

RinyGHK & (inf)ab € G foralla € H,b € K.

On morphisms it acts as follows: let g : A — A’ be a BAO-homomorphism, then we

define:
F(g): Xar — Xa

Vi—{acA|gla)eV}.

Now let G : 2T-MS — 2B-BAO be the functor that on objects sends a modal space
(X, 7, Ry, Ry) to the boolean algebra with operators (Clop(X), U, \, 0, mg,, mg,) where for
U,V € Clop(X) we set

mg,(U,V) = {weX:TueU,yeVstRwu},

mg,(U,V) = {w eX:AuelU,veVs.t. szuv}.

If @ : X — X’ is a continuous bounded morphism. Then we define:

G(a): Clop(X’) — Clop(X)
U+— {xeX]|alx)e U}

Theorem 5.3.1 (Duality theorem). The functors F' and G constitute a dual equivalence
between the categories 2T-MS and 2B-BAO.

Proof. As shown in Theorem 5.76 and Propositions 5.79-5.80 of [10], F and G are well-
defined functors between 2T-MS and 2B-BAO. Theorem 5.28 in [22] asserts that F and G
establish a dual equivalence between 2T-MS and 2B-BAO. O

5.4 RESTRICTING THE FUNCTORS

We are interested in those BAOs and modal spaces that are structures that validate the axioms
of TIL. We will consider the appropriate subcategories of the ones we just defined. We recall
the categorical notion of a (full) subcategory:

Definition 5.4.1. Let C be a category and let 0b(C) be the collections of objects of C. For
any two objects C; and C, in 0b(C) we denote with C(Cj, C) the collection of morphisms
between C; and Cs.

We say that U is a subcategory of C if ob(U) C ob(C) and for each U, U, € ob(U)
U(U,,U,) € C(U1,Uy) such that U is closed under composition and identity.

U is a full subcategory if U(U;,U,) = C(Uy, Uy) for all Uy, U, € ob(U).
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On the algebraic side, defining the appropriate subcategory amounts to requiring that the
two binary operations (sup) and (inf) satisfy equational versions of the axioms of TIL.

Definition 5.4.2 (TIL-BAO). Let TIL-BAO be the full subcategory of 2B-BAO consisting
of all BAOs A (we will also call them TIL-algebras from now on) such that A kg0 ¢ = T
for all axioms ¢ of TIL as defined in Definition 3.1.1. L.e. for each such ¢ and every valuation
V : P — A we have V(¢) = T. In the axioms of TIL & — S abbreviates —a V 3.

On the topological side we give a frame-style definition of the subcategory that matches
the first-order correspondents of TIL we spelled out in Section 4.1.°

Definition 5.4.3 (TIL-MS, frame-style). Let TIL-MS be the full subcategory of 2T-MS con-
sisting of all modal spaces (we will also call them TIL-spaces from now on) (X, 7, Rup, Rinf)
such that the ternary relations Ry, and Rjy¢ satisfy the following conditions:

* Ryp and Rjy are reflexive®

transitive’.

, commutative in the second and third argument and

* Rgp and Ry, satisfy (FODK1) and (FODK2): for all x,y,z € X it holds that
Rsupxyz = Rsupxxy and Rinfxyz = Rinfxxy'

* Rgyp and Rjyr are tense duals, that is for all x,y € X: Rypxxy © Rinryyx.

Since the TIL axioms are Sahlqvist, they are d-persistent (Theorem 5.91 of [10]): if
(X,7,R1,R2) s o, then the underlying frame (X, Ry, R2) I+ ¢, where ks quantifies
over V : P — Clop(X) and I over V' : P — P(X).

Combining this with the Sahlqvist frame correspondence result for the axioms of TIL
(see 4.1.1) the frame-style Definition 5.4.3 is equivalent to the following definition:

Definition 5.4.4 (TIL-MS, axiom-validity). Let TIL-MS be the full subcategory of 2T-MS
consisting of all modal spaces (X, 7, R, Ry) such that (X, 1, R, R2) s ¢ for all axioms
¢ of TIL as defined in Definition 3.1.1.

From now on we use the two representations interchangeably.

We check whether the dual equivalence between 2B-BAO and 2T-MS restricts to an
equivalence between TIL-BAQO and TIL-MS. First, we check that the restricted functors

F' := F ItiLBao, G’ = G I'miL-ms
are well-defined.

Theorem 5.4.1. For every BAO U, modal space (X, 7, Ry, R»), and formula ¢ € L, with
F and G as defined above,

Mikpao =T & FA) rys o, (4a)
(X,7,Ri,R) ks ¢ & G(X,7,R,R2) kpao ¢ = T. (4b)

From now on we will use Rgyp and Riyr because we are considering TIL-spaces. They correspond to Cgyp and
Cinr used in the mentioned section.

In this case reflexivity means that Rg,pxxx and Rjpexxx hold for all x € X in accordance with (FORe).
Transitivity is defined on the induced order by Ry and Riyr, thatis forall x,y € X: x <y iff Ryypyyx iff Rinpxxy
(see 3.2.1 for a proof that this equivalence holds). Transitivity then says that for any x,y,z € X if x < y and
y <z thenx < z.
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Proof. For a proof of this theorem we refer to [10, Proposition 5.24, Theorem 5.75]. O

It follows directly from Theorem 5.4.1 and the fact that TIL-BAO and TIL-MS are full
subcategories that the restricted functors F’ and G’ are well-defined.

Since F and G establish a dual equivalence between 2B-BAO and 2T-MS, there are
natural isomorphisms 7 : lap.gao = GF and € : FG = l,1.ms for which the triangle
identities hold (see page 85 of [19]). By the previous reasoning, it follows that if U is
in TIL-BAO, then GF () is in TIL-BAO. Thus the component ngy : A = GF(N) is
a morphism inside TIL-BAO. We can therefore restrict 7 object-wise to get a natural
isomorphism

n" : lti-Bao = G'F’.

The same reasoning can be given to restrict € to a natural isomorphism €’ between F’ G’

and ltp-ms.
Since the components of " and €’ are unchanged, the triangle identities still hold. We
conclude the following.

Theorem 5.4.2. F’ and G’ constitute a dual equivalence between TIL-BAO and TIL-MS

5.5 COROLLARIES

Having established these duality results, we give two applications. First we show that we can
lift the decidability results of Chapter 4 to the variety TIL-BAQ, then we prove that every
normal extension L of TIL is sound and complete with respect to a class of TIL-spaces.

Corollary 5.5.1 (FMP and decidability lift to the variety TIL-BAO). Since TIL has the
finite model property (Chapter 4), any non-theorem ¢ has a finite TIL-countermodel. This
countermodel can be turned into a finite modal space X € TIL-MS falsifying ¢. Then
G(X) € TIL-BAO and by Theorem 5.4.1 (4b), G(X) also falsifies ¢ ~ T. Since by con-
struction G (X) is also finite, it follows that the equational theory

Log(TIL-BAO) := {9 € L7 | Upao ¢ ~ T forall A € TIL-BAO }

is decidable.

Definition 5.5.1 (Normal extensions of TIL). Let TIL be the normal modal logic of Defini-
tion 3.1.1. A logic L is a normal extension of TIL iff TIL C L and L is closed under modus
ponens, uniform substitution, and the generalization rules for [sup] and [inf]3.

Definition 5.5.2. For a normal extension L of TIL, define the following full subcategories
of TIL-BAO and TIL-MS respectively:

TIL-BAO;, := {% € TIL-BAO | A ka0 ¢ ~ Tforallp € L},

TIL-MS;, := {(X,7, Rup, Rint) € TIL-MS | (X, 7, Roup, Rint) Fms ¢ forall g € L}.

Theorem 5.5.2 (Soundness and completeness). For each normal extension L of TIL, L is
sound and complete with respect to the class of modal spaces TIL-MS, that is

L = Log(TIL-MS;),

To briefly recall the definition of generalization (see Definition 3.1.1): if + ¢ then + [inf]y for all ¢, € L
and similarly for [sup].
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where
Log(TIL-MS;) := {80 € L1 | (X, 7, Roup, Rint) Fus ¢ for all
(X’ T, Rsup, Rll’lf) € TIL—MSL }

Proof. Soundness follows immediately from the definition of TIL-MS .
For completeness we rely on algebraic completeness [10, Theorem 5.27]. It follows that
forall ¢ € Lr:
pel =  ¢eLog(TIL-BAO,),

where
Log(TIL-BAO,) := {tp €Ly | Wikrpao ¢ = T forall A € TIL-BAO, }
Applying Theorem 5.4.1 we derive
Uirpao p~T =  FA) kus e,
and similarly for G. It follows that Log(TIL-BAO; ) = Log(TIL-MS;), hence

L = Log(TIL-MS;). m]

Summarizing, we have worked out the Stone—Jonsson—Tarski duality between BAOs
with two binary operators and modal spaces with two ternary relations. We showed that this
duality can be restricted to a duality between TIL-spaces and TIL-algebras and used this
correspondence to show that the variety of TIL-algebras is decidable and that every normal
extension L of TIL is sound and complete with respect to a class of TIL-spaces.



6 TIL OF MINIMAL UPPER BOUNDS AND MAXIMAL LOWER
BOUNDS

There are several natural extensions of TIL worth exploring. Knudstorp studies many inter-
esting extensions of MIL in [16]. A natural question is whether the techniques developed
there can be applied in the present setting.

One alteration of TIL that can be studied is tense information logic of minimal upper
bounds and maximal lower bounds (as opposed to least upper bound and greatest lower
bound). Taking inspiration from [ 18], it can be proven that changing the interpretation of the
modalities this way is, in fact, indistinguishable for the modal language. This chapter will
be devoted to proving that result.

6.1 DEFINITIONS

We first give a formal definition of minimal upper bound and maximal lower bound.
Definition 6.1.1. Let & = (W, <) be aposetand y,z € W.

¢ Anelement x € W is a minimal upper bound of {y,z} if y < x and z < x (so x is an
upper bound) and there is no upper bound strictly below x, i.e. for any w € W that is
also an upper bound of {y, z}, it holds that w ¢ x. We write x € mub{y, z}.

e An element x € W is a maximal lower bound of {y,z} if x < yandx < z(soxisa
lower bound) and there is no lower bound strictly above x, i.e. for any w € W that is
also a lower bound of {y, z}, it holds that x £ w. We write x € mlb{y, z}.

Having these definitions at hand, we are ready to give alternative semantics for the
modalities (sup) and (inf) on posets. To distinguish this new semantics from the original
one, we will write Iy, for the alternative interpretation:

M, x kpr (sup)ypy it Jy,ze Wst. M,y kpr @, MM,z kas ¥, x € mub{y, z},
M, x by (inf)oy iff Ty, ze Wsit. M,y kpr @, M, 2 kpg ¥, x € mib{y, z}.
Just like before, we can define the past / future looking diamond / box in the same way.

For example, the past looking diamond P is still definable as (sup)¢ T, with the following
semantics:

M, x kpr (sup)eT iff Ty, zeWsit. M,y by @, M,z kp T, x € mub{y, z}.

Since M, x 3, T always holds, it follows that I, x -y, (sup)eT if there is y € W such
that M, y ks ¢ and x € mub{y, x}. Since x € mub{y,x} iff y < x, this corresponds to the
semantics of P, just as we showed in Remark 2.1.2.

Definition 6.1.2. The modal logic if minimal upper bounds and maximal lower bounds is
denoted T1Lmin-max and defined as the set of all L validities on poset frames:
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TIL in-max = {(,o € L7 | forevery poset model It = (W, <,V) and every x € W,
M, x Far @ }

At first glance, it seems likely that changing the interpretation of the modalities will
change the logic. Consider, for example, the following model:

YIp ZIkq
X w

In this model the state x fails (inf)pg in the least / greatest (standard) sense because
x # inf{y, z}, while it satisfies the same formula in the minimal / maximal sense because
x € mlb{y, z}.

Surprisingly, we will show that TIL = TILpin-max, and hence (because TIL = TIL) the
axiomatization presented in Section 3.1 is also sound and complete for 7/Lpin-max- One
inclusion is not difficult to show:

Theorem 6.1.1. TIL C TIL in-max-

Proof. This comes down to showing TIL C TILyipmax, that is, we should check that
TIL min-max 1 @ normal modal logic that validates all the axioms of TIL. Fortunately, the
proof of Theorem 3.1.1 applies in this setting. We show this for the (Dk2) axiom:

(Dk2) Assume M, x ks p A (inf)gr, so M,x s p and there are y,z such that x €
mlb{y,z} and M,y +p g and W,z +ps r. Since x € mlb{x, y}, it follows that
M, x IFps (inf) pq. O

6.2 PROOF STRATEGY

To show the converse inclusion TILyin-max © TIL we follow the representation approach
of [18]. We argue contrapositively:

0 TIL = ¢ ¢ TILpin-max-

Let ¢ € L7 and assume ¢ ¢ TIL. Then there exists a poset model M = (W, <,V)andx € W
with I, x ¥ . We construct an extension

M = (W,<, V) with WCW,<c<, VeV,

that still refutes ¢, but now under the minimal / maximal semantics; that is, M’, x ¥pr ¢.

The difficulty lies with formulas containing (sup) and (inf), as the example model we
gave above shows. We therefore want to define 9t so that the least upper bound / greatest
lower bound interpretation of (sup) and (inf) (denoted by I-) coincides with the minimal /
maximal interpretation (denoted by IFys); that is,

VxeW ., VYopelr: Mxre © M. xky @ 5)
One direction of (5) is immediate:

x =sup{y,z} = x € mub{y,z}
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(and dually for infima). For the reverse implication, we must ensure that
x € mub{y,z} = x =sup{y,z}, (6)
x € mlb{y,z} = x =inf{y,z}, @)

for all x, y, z € W’. The main part of this chapter is devoted to constructing such an extension
for which (6) and (7) hold.

Next, the original worlds must preserve truth in the sup/inf interpretation:
Mxkre & M.,xIo. ®)

Putting everything together, the refutation in the supremum / infimum semantics then
also holds under the minimal / maximal semantics:

(8) (5)
Mxwe = M xko = M, x ¥y @ 9)

Hence ¢ ¢ TILyin-max, thus completing the contraposition.

6.2.1 Constructing the extending frame

As mentioned above, the difficult part of this construction is defining an extension of It
such that (6) and (7) hold. The issue is when a world x is

* a minimal upper bound of y, z without being their supremum, or
* a maximal lower bound of y, z without being their infimum.

Because we must make sure that (8) holds, it does not work to turn such an x into the
supremum / infimum of the two worlds in the new model. Instead, we make sure that it is no
longer the minimal / maximal bound in the extension .

For every triple (x, y, z) that falls under one of the cases above, we add a new chain of
bounds below or above x:

» Upper-bound case: add an infinite descending chain
X >Xxp>Xx) >
with x; > y, z for all i.

* Lower-bound case: add an infinite ascending chain
X<xp<xp<--

with x; < y, z for all .
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This process is carried out step-by-step and is depicted below for the case in which x is
a maximal lower bound of the set {y, z}.

The case in which x is a minimal upper bound is shown in Section 3 of [18]: it is the
mirror image of the construction above.

After this process, x is no longer minimal (or maximal) and hence the antecedent of (6)
(and dually of (7)) never holds for such an x, so the implication is vacuously true.

We add these ascending and descending chains for every witness to the failure of (6)
or (7) (possibly iterating the construction infinitely many times) to produce the required
extension Mt’.

As required by (8), all old worlds u € W must keep their truth values under the original
semantics after the extension. Because x will see all its copies, we must control the formulas
those copies satisfy and make sure that they satisfy the exact same formulas as x itself.
Only making x and its copies satisfy the same propositional variables is not enough: if
I, x - (sup)ey is witnessed by u, v < x, then since xq is not the supremum of {u, v} in the
picture above, xo would not satisfy the same formulas as x.

We solve this by copying not only x itself, but also its entire downset:
lx = {ueW:qu}.

A symmetric issue arises for infima: if I, x - (inf)¢y, then every copy of x must again be
the greatest lower bound of the same elements as x itself. Therefore we also copy x’s upset:

Tx = {ueW:uxx}.

For each new x,, we thus duplicate its entire context T x U | x, extend < in the obvious way,
and lift the valuation:

V(p) = V(p) U{ws:weV(p)}

The diagram below illustrates one step of this copying process.
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ulk Vli-l,b

It turns out that this is still too naive. If # in our model above satisfies (inf)¢y, witnessed
by a,b > u, then up would not satisfy the same formula. With P and F definable in our
language, we can reach every world in the same ‘comparability component’, i.e. every state
connected to the current one by a finite zigzag of <- and >-steps. We therefore copy the
entire model at each step’:

ap k¢ bg - Y : N
N D xolF (sup)

uo ¥ (inf)oy o - uo ||- (inf>¢¢’r-"' 5 ‘
ar¢@ by : Wooakrg bEy : w
: ® : :

N

u I+ (inf) oy v u I+ {inf) oy v

Copying the entire set of worlds W is almost enough, but one final hurdle remains.
Suppose u €T y and v € T z have infimum s in W. By adding the new lower bound x( under
v, Z, we also put xo below u, v. Unless xg < s, s is no longer the infimum of {u, v}. This is
shown in the picture left below.

To solve this problem, we also connect xg (and thus any point in its downset by transitivity)
to s. In general, every new lower bound of {y, z} must be seen by all points in the least upset
containing {y, z} closed under binary infima. Dually, every added upper bound of a set
{y’, 7’} must be seen by all points in the least downset containing {y’,z’} closed under
binary suprema.

u v

|

X w
9 Strictly speaking it would be enough to only copy the ‘comparability component’ x is part of, but for notational
convenience we copy the whole model.
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6.3 COMPLETENESS PROOF

In the previous section we sketched the idea behind the completeness proof. We now pro-
vide the technical details, beginning with two lemmas that remove a minimal (respectively
maximal) upper (respectively lower) bound that is not a supremum (respectively infimum),
which we will call a defect. In the end, this guarantees (6) and (7). Concretely, from a given
frame & = (W, <) we build a frame &' = (W’, <’) in which the defect is repaired.

Definition 6.3.1. Let (W, <) be a poset. A triple (x, y,z) € W3 is a max-defect iff
x € mub{y,z} but x # sup{y,z}.

Definition 6.3.2. Let (W, <) be a poset. A triple (x,y,z) € W> constitutes a min-defect iff
x € mlb{y,z} but x #inf{y,z}.

Our construction makes & a p-morphic image of &', thereby preserving validity under
the sup/inf semantics.

Definition 6.3.3. Let (W, <) and (W', <’) be posets, and let f : W — W be a function. We
say that f is a sup / inf p-morphism if the following hold:

(sup-forth) if x” = sup’{y’,z’}, then f(x") = sup{f(y"), f(z")};

(inf-forth) if x” = inf’{y’, 7'}, then f(x") = inf{f(y"), f(2)};

(sup-back) if f(x") = sup{y, z}, then there exist y’,z’ € W’ with f(y’) =y, f(z’) = z, and
x" = sup’{y’, z'};

(inf-back) if f(x”) = inf{y, z}, then there exist y’,z’ € W’ with f(y’) =y, f(z’) = z, and
x" =inf"{y’,z’}.

The following lemmas make precise the method by which we repair the two possible

defects identified above.

Lemma 6.3.1. Let (W, <) be a poset and (x,y,z) € W3 such that (x,y,z) constitutes a
max-defect. Then there exists a poset (W', <’) and a p-morphism f : W — W such that:

(1) W W and |W'| < max{w, |W|},
2) <N (WxW) =<,

(3) fTw=1idw,

4) forallu,v,w e W,

u=sup{v,w} = u= sﬁp{v,w}, u =inf{v,w} = u=inf{yv,w},!°

(5) x ¢ mub’{y, z}.

10 Since W € W’, each element of W is also present in W’. Thus, when we write u = sup’{v, w} (respectively

u = inf’{v, w}), we mean that the elements u, v, w € W, considered as elements in W’, still form the supremum
(infimum) of {v, w} with respect to the extended order <’.
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Lemma 6.3.2. Let (W, <) be a poset and (x,y,z) € W3 such that (x,y,z) constitutes a
min-defect. Then there exists a poset (W', <") and a p-morphism f : W' — W such that:

(1) W € W and |W’| < max{w, |W|},
2) <N (WxW) =X,

(3) fTw=1idw,

4) forallu,v,w e W,

u=sup{v,w} = u-= sﬁp{v,w}, u =inf{v,w} = u =inf{v,w},

(5) x ¢ mlb’{y, z}.

We now prove Lemma 6.3.2. Lemma 6.3.1 is proven symmetrically. The proof adapts
the strategy of Lemma 5.6 in [18] to our present setting, which includes the operator (inf)
and a modified extension construction.

Proof of Lemma 6.3.2. Let
W= WUW = {0, D) [veW}, f:W =W, fvi=v.

For y,z € W let A(y,z) be the least upset containing {y,z} and closed under binary
infima:

Ay = ] Any,2),

n<w

where
Ao(y,2) == TyU Tz, Awn(y.2) = T(An(y,Z)U{inf{bn,cn} | bp.cn € An(y,Z)})-

Define the extended order <’ on W’ by

v,i) < (w,j) i=0andv < w, (10a)
or i=j=landv <w, (10b)
or i=1,j=0,weA(y,z), v €l x. (10¢)

We prove three claims:
Claim 6.3.3. (W’,<’) is a poset.
Claim 6.3.4. Conditions (1)—(5) of the lemma hold.
Claim 6.3.5. f is an onto sup / inf p-morphism.
We first prove two auxiliary lemmas that will be needed to prove these claims.

Lemma 6.3.6. For every s € A(y,z) we have x < s.

Proof. Because x € mlb{y, z} but x # inf{y, z}, there exists w € W such that w < y, z but
x £ wandw £ x. We prove by induction on n that

Ap(y,2) € Tx and An(y,2) © Tw.
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Base case: Fromx < y,z,w < y,z,x £ wand w £ x it follows that x < y,zand w < y, z.
Hence

Ao(y,z) = TyUTz < Tx and Ap(y,z) = TyuTz cTw.

Inductive case: Assume the claim for A, (y, z). Letb,, c, € A, (y, z) be suchthatinf{b,, c,}
exists. By induction hypothesis

bu,cn € An()’,Z) - T.X and by, c, € An(y,Z) c TW

sox < b,,c, and w < by, ¢, It follows that x < inf{b,, c,} and w < inf{b,,, c,,}. On the
other hand, since x £ w and w £ x, it follows that the inequalities are strict. We conclude
that

Apr1(3,2) € Tw and A,r1(y,2) € Tx.

Thus
A2 = [ Ao €1,

n<w

which implies x < s for every s € A(y, z). O
Lemma 6.3.7. The map f is order-preserving.
Proof. Assume (v,i) <’ (w, ). We show v = f(v,i) <w = f(w, j) by cases:

e i = 0. By clause 10a of the definition of <’ we have v < w.

e { = j = 1. Clause 10b implies v < w.

ei=1, j=0withw € A(y,z) and v € | x. Lemma 6.3.6 gives x < w, and v < x by
assumption, so v < w. O

Proof of Claim 6.3.3.

Reflexivity For any (v,i) € W’ the corresponding clause (10a if i = 0 or 10b if i = 1) gives
(v,0) <" (v,i0).

Transitivity: Suppose (v,i) <’ (w, j) and (w, j) <’ (u, k). Lemma6.3.7 givesusv < w < u,
so since < is transitive we get v < u.

e Ifi=0o0ri=k=1, (v,i) <’ (u,k) follows from clause 10a or 10b.

e Ifi = 1and k =0, we must show u € A(y,z) and v € | x.

1. If j = 0 then it follows from (v, 1) <’ (w,0), thatw € A(y,z) and v € | x. From
w < u we getu € A(y, z), since it is an upset.

2. If j = 1 then (w,1) <’ (u,0) implies u € A(y,z) and w € | x. Because v < w,
alsov e | x,s0 (v, 1) <" (u,0).

Antisymmetry: Assume (v,i) <’ (w,j) and (w,j) <’ (v,i). If i = j, Lemma 6.3.7 gives
v < w, hence v = w by antisymmetry of <.

Ifi = 0and j = 1, it follows from (w,1) <’ (v,0) that v € A(y,z) and w €] x.
By Lemma 6.3.6 we get that w < x < v. But then we derived a contradiction because
(v,0) < (w, 1) implies that v < w by Lemma 6.3.7. O

Proof of Claim 6.3.4. If we identify the set {(v,0) : v € W} € W’ with W, condition (1)—(3)
of Lemma 6.3.2 follow immediately.
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(4) Assume u = sup{v,w}. We need to show that (u,0) = sup’{(v,0), (w,0)}. From
v,w < u, clause 10a gives (v,0), (w,0) <’ (u,0). If also (v,0), (w,0) <" (s,i) for
some (s,i) € W’, Lemma 6.3.7 yields v,w < s, hence u < s, since u = sup{v,w}.
Clause 10a then gives (u,0) <’ (s,i). Thus (u,0) = sup’{(v,0), (w,0)}.

Now assume u = inf{v,w}. Then from u < v,w, it follows by 10a that (u,0) <’

(v,0), (w,0). Let (s,i) € W’ be arbitrary such that (s,i) < (v,0),(w,0). By
Lemma 6.3.7 it follows that s < v,w, so since u = inf{v,w} we get s < u. We
need to show that (s,i) <’ (u,0).

e If i = 0, then by 10a it follows that (s,0) <’ (u,0).

e If i = 1, we need to show that s € | x and u € A(y,z2). (s,1) < (v,0), (w,0)
implies s € | x and v,w € A(y, z). Since A(y, z) is closed under binary infima
it follows that inf{v,w} = u € A(y, 2).

(5) By construction (x,0) <’ (x,1), and because y,z € A(y,z) we have (x,1) <’
(¥,0), (z,0). Hence (x,0) ¢ mIb’{(y,0), (z,0)}. O

Proof of Claim 6.3.5. f is clearly onto, so it remains to verify the four p-morphism condi-
tions hold.

(sup)-forth Suppose (u,i) = sup’{(v, j), (w,k)}. Then (v, j), (w, k) <’ (u,i), so Lemma
6.3.7 gives v,w < u. Let a € W satisfy v,w < a. By the definition of <’
we have (v, j),(w,k) <’ (a,1), hence (u,i) = sup’{(v,J),(w,k)} implies
(u,i) <’ (a, 1), and another application of Lemma 6.3.7 yields u < a.

(inf)-forth Suppose (u,i) = inf {(v, j), (w, k)}. From (u,i) <’ (v, j), (w, k), we get u <
v,w by Lemma 6.3.7. If a < v,w, then (a,0) <’ (v, j), (w, k), so since (u,i) =
inf’{(v, j), (w, k)} it follows that (a,0) <’ (u,i) and therefore @ < u. Thus
u = inf{v, w}.

(sup)-back Suppose f(u,i) = sup{v,w}.

-If i = 0, then (v,0),(w,0) <’ (u,0). If (v,0),(w,0) < (a,l) then
Lemma 6.3.7 gives v,w < a, hence u < a and clause 10a yields (u«,0) <’
(a,l).

-Ifi =1 we get (v,1),(w,1) < (u,1). If (v,1),(w, 1) <’ (a,l), then
[ = 1 implies v,w < a. So since u = sup{v, w} we get that u < a, hence
(u,1) <’ (a,l).

If I =0, then (v, 1), (w, 1) <’ (a,0) implies a € A(y,z) and v,w € | x.
Since u = sup{v,w},and v, w < x, it follows thatu < x, so (u, 1) <’ (a,0).

(inf)-back Suppose f(u,i) = inf{v,w}.

—1If i = 0, then (u,0) < (v,0), (w,0). If (a,l) < (v,0),(w,0), we get
a < v,w by an application of Lemma 6.3.7. So from u = inf{v,w} it
follows that a < u. If [ = 0, clause 10a gives (a,0) < (u,0).

If/ =1, then (a,1) <’ (v,0), (w,0) implies a € | x and v,w € A(y,z).
Because u = inf{v, w} we have u € A(y, z), so (a,1) <’ (u,0).

—Assume i = 1, then (u, 1) <’ (v, 1), (w, 1). If (a,l) <’ (v, 1), (w, 1), then

a<v,w,soa <uand (a,l) < (u,l). m]
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This finalizes the proof of Lemma 6.3.2. O

To prove that
TIL D TILyin-max

we need one more lemma showing that we can repair all max- and min-defects that a given
poset may contain.

Lemma 6.3.8. Let (W, <) be aposet. Then (W, <) is the p-morphic image of a poset (W’, <’)
that contains no max- or min-defects.

Proof. Fix acountable set U disjoint from W. For convenience we assume that W is countable
(the uncountable case can be handled by a standard transfinite recursion).

Enumerate all triples (x,y,z) € (WU U)? and set (W, <) = (Wo, <o). Given (W,, <),
let (x’,y’,7’) be the least triple in the enumeration that is still a max- or min-defect in
(Was <n).

o If it is a max-defect, apply Lemma 6.3.1 to obtain (W,.,<,4+1) such that x’ ¢
mubc, . {)', 7'}

o If it is a min-defect, apply Lemma 6.3.2 to obtain (W, <,+1) such that x’ ¢
mlb. . {y'. 7'}

Clause (1) of the cited lemmas ensures that |W,,.;| < max{w, |W,|}, so new points can be
chosen from U. Each application produces a p-morphism

fn+1: (Wn+17 Sn+l) - (Wna Sn)

that acts as the identity on W,, (condition (3) in the cited lemmas). Since compositions of
p-morphisms are p-morphisms, we can define

f;+1 = f;: ofn+1 : (Wn+l’ Sl’l+1) - (WO’ S0) = (W’ S)

W 20) = (U War U =)

nelN nelN

Finally, set

and

fo= U s Wa,<0) = o, <0) = (W, 9).
nelN

We reason as follows:

1. (Wy,<w) is a poset. Each <, extends <,, and agrees with it on W,, by clause (2) of
Lemmas 6.3.1 and 6.3.2, so the union <, is again a partial order on W,.

2. fJ is a surjective p-morphism. We first show that f, is a function. Let x € W, and
let n be least such that x € W,,. For any m > n f, restricts to the identity on all Wy’s
such that k < m, so f,;,(x) = f> _,(x) =--- = fy(x). Thus the union {J,,, f,, assigns
a unique value to x, since f,, does, showing that f;, is a well-defined function.

S is onto since fi; [ W = Idw and W C W,,. Moreover, it follows that f, satisfies
both (sup)- and (inf)-forth from condition (2) of Lemmas 6.3.1 and 6.3.2 and the fact
that each f, satisfies both forth conditions. For the back conditions we use that each
/., satisfies the back conditions, together with condition (3) of the before mentioned
lemmas.
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3. No defects remain. Every potential defect appears in the enumeration and is repaired
at a certain stage in the recursive process. Once a defect is repaired, clause (2) and (5)
of Lemmas 6.3.1 and 6.3.2 ensure that it stays repaired. O

Theorem 6.3.9.
TIL = TILpin-max

Proof. The inclusion TIL C TILyjn-max Was proven in Theorem 6.1.1. For the converse
assume ¢ ¢ TIL. Then there exists a poset model M = (W, <, V) such that M ¥ .
By Lemma 6.3.8 there is a poset (W’, <”) without defects and a surjective p-morphism

f:(W.,<) - (W,2).

Put
Vi(p) == {w eW | fw)eV(p)}, M =W, <, V).

Because p-morphisms preserve truth, 3" ¥ ¢. Since (W', <) contains no max- or min-
defects, the ordinary sup / inf semantics and the max / min semantics coincide on It’, so
also M’ kps ¢. Hence ¢ € TILin-max, showing TILiyin-max € TIL. O

Thus the logic of minimal upper bounds (‘incomparable fusions’) and maximal lower
bounds (‘incomparable common information’) is the same as standard TIL under the supre-
mum / infimum semantics.



7 TRANSLATING WPL TO TIL

So far the language of TIL has been interpreted on posets and preorders, structures in which
suprema and infima need not exist. A natural next step (already explored by Wang and Wang
in [23, 24]) is to move to lattices, where any two elements possess both a supremum and an
infimum. In this chapter we follow this direction too.

Translations between logics are a way to reveal connections, bridging the worlds between
different logics and this way enabling techniques and results to be imported and exported.
Their importance was recently emphasized in a LIRA seminar by van Benthem [6]. Classic
examples include Godel’s embedding of intuitionistic logic into S4 [13] (see also [12] for a
textbook proof) and the standard translation of modal formulas into first-order logic [9] and,
an example more related to the subject of this thesis, the translation of truth maker logic into
modal information logic [5]. Here we study the relationship between TIL (over lattices) and
weak positive logic (WPL). The latter has the same language as positive logic (namely the
negation- and implication-free fragment of classical propositional logic), but it does not, in
general, satisfy the distributivity axiom.

Building on the partial translation sketched in [7], we provide a full, faithful translation
from the L-free fragment of WPL into an extended version of TIL and discuss the additional
expressivity gained through this enrichment.

7.1 WPL AND TIL ON LATTICES

We begin by spelling out tense information logic over lattices.

7.1.1 TIL on lattices

Definition 7.1.1. A lattice model for the language L7 is a poset (X, R) in which for every
pair of elements x,y € X both a supremum (alternatively called join) and an infimum
(alternatively called meer) exist. We write

xVvy = sup{x,y}, x Ay = inf{x, y}.

Equivalently, a lattice can be described as a triple (X, A, V), where A,V : X? > X are
operations satisfying commutativity, associativity, idempotence, and absorption. A lattice is
bounded if there are elements 0,1 € X such that 0 < a and a < 1 for all a € X. We then
write (X,0,1, A, V).

Every lattice (X, 0, 1, A, V) induces a partial order < defined by
x<y & xAy=x (equivalently,x Vv y=y),

which is also the way to show that the two definitions are equivalent.

A notion we will use extensively in this chapter is that of filters on lattices.

Definition 7.1.2. A filter on a lattice (X, 0, 1, A, V) is a subset F C X that is
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* non-empty,
» upward closed: x € Fandx <y imply y € F,
* closed under meet: x,y € F impliesx A y € F.

The semantics for TIL on lattices is identical to the semantics of TIL on posets, as
presented in Definition 2.1.4. For notational convenience, we write

M,x Fp @

to mean that the formula ¢ € L7 is true at the world x € X of the lattice model I =
(X, 1,0, A,V,V).

Definition 7.1.3 (TIL on lattices).

TILy = {go € Ly | for every lattice model M = (X, 1,0, A, v, V) and every
xeX, Mxirp ¢}

As mentioned before, Wang and Wang [23, 24] give a finite axiomatization of TIL over
lattices for a hybrid language with supremum and infimum operators as well as nominals.
Since the class of lattices is first-order definable [23, Definition 7], and the formulas of 71 L,
can be translated into first-order logic through the standard translation [10, Definition 2.45],
it follows that 7'/ Ly, is recursively enumerable [10, Lemma 6.32], hence axiomatisable.

What remains open is an axiomatization in our non-hybrid language L: Wang and
Wang show that uniqueness of joins / meets is not definable in the non-hybrid language [24,
Theorem 25], which motivates their move to the hybrid setting. We therefore state the
following open problem.

Open Problem 7.1.1 (Axiomatise non-hybrid TIL over lattices). Find a sound and complete
axiomatization of TIL over lattices without hybrid features. Moreover, can we find a finite
axiomatization or is it not finitely axiomatizable?

7.1.2 WPL

As mentioned before, WPL is the name for positive logic that is not necessarily distribu-
tive. [7] studies this logic and it is from this paper that we take the following definitions and
results.

Definition 7.1.4. Let Ly be the language of weak positive logic, generated by the grammar
eu=p|T|LleAy|eVy

Logics based on Ly are defined as sets of consequence pairs, i.e. expressions of the
form ¢ < ¢ where ¢ and ¢ are formulas in Ly .
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Definition 7.1.5. Let WPL be the smallest set of consequence pairs containing the following
axioms

paT 1L4p
plq qgdr
pap -
par
rd rd
pAgp pANqgdq ——ﬁ———ﬁ
ra4pAgq
dr dr
pApVg qdpVg g———i——

pVvVgdr
and closed under uniform substitution.

Algebraically, this is the positive fragment of bounded lattice logic: the connectives
are interpreted as the lattice operations. The calculus above is sound and complete for the
algebraic (lattice) semantics [7, Thm. 3.5].

The frame semantics for this logic are defined as follows:

Definition 7.1.6. An L-model is a bounded lattice (X, 1,0, A, V) with a valuation
V:P— F(X,1,0,A, V),

that assigns to each propositional variable p € P a filter of (X, 1,0, A, V).

Definition 7.1.7. The interpretation of an Ly -formula ¢ at a state x in an L-model IM =
(X, 1,0, A, v, V) (which we will denote by Iy to distinguish it from the semantics of TIL)
is defined recursively as follows:
M,x by T always
M, x by L iff x=1
M xw p iff xeV(p)
W, x kw oAy iff P, x kw g and W, x Fy Y
Mxkw vy iff Fy,zeXst.P,yrw o, Mzkw yandy Az <x

With these semantics at hand we can define weak positive logic on lattices:

Definition 7.1.8.

WPLyy = {(p € Lw | forevery L-model M = (X,1,0,A,V,V) andevery x € X :
M,x kw ¢}

Soundness and completeness of WPL for the frame semantics follow from [7, Thm. 3.22].

11 (X, 1,0, A, V) denotes the set of all filters on the lattice (X, 1,0, A, V).
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7.2 TRANSLATING WPL TO TIL

Bezhanishvili et al. sketch in [7] a partial translation
T : 'LW — LT-

The translation they propose is motivated by the close match between the semantics of
disjunction in WPL and the semantics of the (inf)-operator in TIL. The only difference is
that, for ¢ V ¢ to hold at x in an L-model, it suffices that the meet of the worlds that witness ¢
and y lies below x. Since the past-looking diamond is definable in TIL, let

T(pVvy) = PnH)T ()T (¥)).

This section will be devoted to defining a suitable translation function 7" and proving that
for every consequence pair ¢ < i:

grwy = T(p)rrT(). (11)
To that end we first establish the following lemma by structural induction over ¢:
(L,pV).xkw ¢ &= (L,V),xIrr T(p) (12)

for all lattice models (L, V)lz, all x € L, and all ¢ € Ly, where
\%4 pV
PE (P—>7>(X)) — (P—>77(X,1,O,A,v)). (13)

is a function that sends a TIL subset—valuation to a WPL filter—valuation.
Concretely, we want to find a schema y (a) such that

poV(p) = {x eX|(L,V),x kr X(p)} € (L) for all propositional p.
Defining T on propositional variables by T'(p) := y(p) then yields the base case of (12):
(L,pV),xtw p © x€pV(p) & (L, V),xrr x(p) © (L, V),x 7 T(p).

In accordance with the definition of filters, we must have pV (p) closed under finife meets.
However, L7 can only speak about a binary meet witness via (inf). To capture arbitrary
finite meets inside the logic, we therefore enrich the language with two modalities:

M, x +r (inf Yoy iff  Fyi,...,¥n,21,...,2m for m,n > 1 such that
Vyityivbr @, Vzj 125 k1 ¥,
and x = inf{y(,..., ¥, 21s.+.»2Zm}-

WM, x kr (supHey iff Tyi,...,Yn 21, .., 2m for m,n > 1 such that
Yyityibr @, ¥z; iz b1 4,
and x = sup{y1,---»Vu,Z1>--->Zm}-

12 Here L = (X, 1,0, A, V)
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We write L. for this extension of Lr.

Remark 7.2.1. For proving (12), it would actually suffice to add a unary finite-meet operator

M, x k7 () iff dyq,...,y, forn > 1suchthatVy; : y; k7 @
and x = inf{yy,...,y,}.

Also the “finite-join” operator (sup*) is not required. We nevertheless introduce both
binary operators because

* the unary versions are immediate special cases:
M,xikr (Y < M, x Iy {inf"Hpp,

and

* we want to keep studying the structures we interpret the language on (later we will
also interpret it on posets again) in a symmetric way.

First, we show that these operators are not definable in L.
Proposition 7.2.2. L. is strictly more expressive on lattices than L.

Proof. Define recursively a function B: L3 — IN measuring an upper bound for the number
of distinct witnesses a formula ever needs in any model.

Definition 7.2.1.
B(p) = 1,
B(—¢) = B(¢),
B(o Ay) = B(y)+B(Y),

B((sup)(¢,¥)) = B(y) +B(¥),
B((inf)(¢.y)) = B(p) +B(y).

Assume, for contradiction, that the operator (inf*) is definable in L. This means that
there exists a schema B(p, g) € Lr, such that

M, x by (infHYoy — M, x k7 B, W) (14)
holds for all models I, x € M and ¢, € Lr-. Letn := B(B(p, p)) and consider the lattice
X =PH0,...,n}), v =U, A:=n 0:=0, 1:={0,...,n},

together with the valuation
V(p) := {{1,...,11},{(),2,...,n},...,{O,...,n— 1}}.
At the point 0 = @ we have I, 0 7 (inf*)pp, witnessed by the set
{1,...,n}1,{0,2,...,n},...,{0,...,n—1}

of size n + 1. No set of witnesses of size less than or equal to » suffices. Because B(B8(p, p)) =
n, the formula B(p, p) cannot be satisfied at 0, contradicting (14). Hence (inf*) (and, by a
symmetrical argument (sup*)) is not expressible in L. O
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Definition 7.2.2. Given a lattice model 9t = (L,V), let
pV(p) = {x eX | M, x k7 P(infYpp Vv —|FPp}

Claim 7.2.3. For every valuation V and propositional variable p, the set pV(p) is a filter
on L.

Proof. LetM = (L,V).

(Non-emptiness) If V(p) # 0, then M, x 7 p implies I, x 7 (inf*)pp, so M, x 1
P {inf*)pp, thus x € pV(p) and pV(p) # 0.

IfV(p) = 0,then I, x ¥ p foreveryx € X.Itfollowsthat M, 1 -7 =FP p,so1 € pV(p),
thus pV(p) # 0.

(Upward-closedness) Assume x -7 P (inf*)pp V =FP p and y > x. Then
x 7 P {inf*)pp implies there is u < x such that u 7 (inf*)pp. By transitivity it follows
thatu <y, soy Irr P{(inf")pp.

If on the other hand x -7 —=F P p this implies V(p) = 0, thus pV(p) = X. It follows that
y € pV(p).

(Closed under meet) Assume x I+ P (inf*)pp and y I+ P (inf*) pp. It follows that there
exists u < x such that u I (inf*)pp and v < y such that v Iy {(inf*)pp, thus there are

Y1,y Ypand zq, ..., Zn such that y; &7 p, z; b7 p,u = inf{yq, ..., y,tand v = inf{zy, ..., Zn }.

Thenu A v =inf{y, ..., Vn, Z1se0» Zm > SOU AV k7 {inf*) pp.Fromu < x and v < y it follows
thatu Av <x Ay, sox Ay Pdnf")pp.

If x b7 =FPp or y ry =FPp, we get that V(p) = 0, so pV(p) = X,s0x Ay €
pV(p). O

Remark 7.2.4. Definition 7.2.2 is not the only way to map subset—valuations to filter—
valuations (e.g. the trivial choice pV(p) = X = {x | M, x 7 T } also yields a filter). That
we use Definition 7.2.2 is motivated as follows:

First of all, note that if V(p) is a filter (thus non-empty), the first part of the disjunction
(i.e. P{inf*)pp) guarantees that pV(p) = V(p). More generally, if V(p) is non-empty, then
{xeX | M, xrP(infYpp} is the least filter containing V(P):

Upward-closedness and closure under meet follow from similar reasoning as in the proof
of Claim 7.2.3. Moreover, let H be a filter containing V(p) and let x € X be such that
W, x + P{Anf"ypp. If WM, x = P (inf*)pp, it follows that there is a world u < x such that
M, u + (infYpp. Then M, u I+ {inf*)pp iff there are uy,...,u, such that u; + p and
u = sup{uy,...,un}. Since V(p) C H, it follows that uy,...,u, € H. By closure under
meet and upward closedness, it follows that x € H,so {x € X | I, x r P (inf*)pp} C H.

The second part of the conjunct in the definition of T'(p) (i.e. =F Pp) is motivated to
guarantee that pV (p) is never empty, which is required for it to be a filter. Assume V(p) = 0,
this implies that there is also no x € X such that 9, x 7 P (inf*) pp, so without the second
part we would get that pV(p) = 0. But since V(p) = 0, and since I is a model based on a
lattice, it follows that for all x € X it holds that Ik, x k7 =FPp, so pV(p) = X. Thus pV(p)
is non-empty.

To give a full translation between Ly and Lr, every formula needs to be translated. We
already reasoned how disjunction and propositional variables should be translated. It turns
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out that it is not evident how to translate the falsum symbol of Ly . Since M, x Fy L &
x = 1, a translation into TIL requires a formula ¢; € L such that

M, x by ¢ &= x=1. (15)
Such a formula does not exist, which we will show by a bisimulation argument.

Definition 7.2.3 (Bisimulation). Let I and I’ be two lattice models. A non-empty binary
relation Z € X x X’ is a bisimulation between 9t and M’ iff

e xZx’ implies that x and x” satisfy the same propositional formulas, and
 Z satisfies the back- and forth-conditions as stipulated in 6.3.3.
Proposition 7.2.5. There is no formula ¢; € L7 satisfying (15).

Proof. Consider the following two lattice models of TIL:

1/
M 1 w’ M,
0 o

Set V(p) := {1} and V'(p) := {1’,w’}. The relation Z := {(1,1"), (1,w’),(0,0")} is a
bisimulation as defined in 7.2.3. It follows that 1 and w’ satisfy the same L7 formulas. But
1 is the top element and w’ is not, so the top element is undefinable in L. Hence (15) is
impossible. O

This makes defining a complete translation difficult. We could add a constant for L and
shift to hybrid logic, but we will not explore this direction in this thesis. Instead, we will
restrict the translation to the falsum-free fragment of Ly, which we denote by Ly,.

Definition 7.2.4. Define T : L;,, — Lr by

T(p) =P({inf")pp) v =FPp,
T(T)=-1,

T(pNy) =T(p) NT (),

T(e V) =P (inf) T(p) T (¥)).

We will prove that if we leave L out of the picture, we have a full and faithful translation.
This is a corollary of the following lemma, which captures (12).

Lemma 7.2.6. Let T : Ly, — L be as defined above, then for all ¢ € £, and all lattice
models M = (L, V) (where L denotes a lattice (X, 1,0, A, Y)):

(L,pV).,xrw o < (LV),xrr T(¢p)
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Proof. We give a proof by induction on the complexity of .
Base case: (L, pV),x IFy p holds iff

xepV(p) = {x € X | M, x rr P((inf")pp) Vv —uFPp}.

Thus x € pV(p) iff M, x 7 T(p), which is what we needed to show.
The case ¢ := T follows directly from the semantics and the definition of T.
Inductive case: The case where ¢ := /1 A ¥ follows directly by induction hypothesis.
Assume ¢ := | V. Then (L, pV),x w Y1 V ¥, implies
dy,z € X such that (L, pV),y kw Y1, (L, pV),z kw Yo and y A 7 < x.

It follows by induction hypothesis that (L,V),y 7 T () and (L, V), z k7 T(2), so since
y A z < x it follows that

(L, V). x kr P((nf)T ()T () =T (Y1 V ¢2)
The converse direction follows in a similar way. m]

Theorem 7.2.7. For all consequence pairs ¢ S ¢ with ¢, € Ly

erwyy =  T(p) rr TY)

Proof. Let ¢ < i be an arbitrary consequence pair with ¢, € Ly, and assume ¢ IFw ¢ . Let

M = (L, V) be an arbitrary lattice model and let x € X be arbitrary. Assume MM, x 7 T ().

Then pV is a filter valuation on L and by an application of Lemma 7.2.6 it follows that
(L,pV),x Fw ¢, so by assumption (L, pV),x Iy . Applying Lemma 7.2.6 again yields
(L,V),x k7 T ().

Conversely, assume T (¢) 1 T (), let M = (L, V) be an arbitrary L-model, let x € X
be arbitrary and assume (L,V),x kw ¢. Then (L,V) is also a lattice model and pV =V
since V is already a filter valuation. By an application of Lemma 7.2.6 it follows that
(L,V),x wp T(¢), so by assumption (L,V),x k7 T(¥). Applying Lemma 7.2.6 again
yields (L, pV), x w ¢ and since pV =V we get the desired result. m|

7.3 TRANSLATING WPL TO TIL WITH L

Even though we showed that the top element is not definable in the language of TIL, we
can still give a full translation of WPL (including 1) into TIL by making the translation
relative to a consequence pair. To this end, let ¢ < ¢ be an arbitrary consequence pair with
¢,y € Ly. We define a translation function Ty, , : Ly — L7 as follows.

Definition 7.3.1. For propositional letters p, T, A and V, T, , is defined in the same way as
T of Definition 7.2.4. Additionally, let ¢ € P be such that g ¢ Prop(¢g, ¢), we define

Tpy(L) = A P (inf*)(=P p — =FPp, -Pp — —FPp),
pEProp(¢,.¥)U{q}

where Prop(¢, ) is the set of all propositional letters that occur in ¢ and .
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We want to show

Toy(@) b Ty () = o¢w.

For the right-to-left direction we argue by contraposition. Suppose there is a lattice model
(L,V)andx € Lsuchthat (L,V),x 7 Ty 4 (p) yet (L,V),x ¥1 Ty 4 (). We now construct
an L-model from (L, V) as follows. Because L is true only at the top element of an L-model,
we collapse all points of L that satisfy T, ; (L) into a single class. Concretely, let ~ be the
equivalence relation that identifies exactly the points satisfying 7, ,, (L) and leaves all other
points distinct, and write |y| for the ~—class of y € L. On the set {|y| | y € L} we then
define meet and join operations A, v . (see below) and verify that they make this set into a
lattice whose top element is the class of the T, , (_L)—points. Defining an appropriate filter
valuation on this lattice gives us an L-model in which the ~-class of x satisfies ¢ and refutes
¥, as required.

Let (L, V) be a lattice model. Define the following equivalence relation on L:
xITpy(L) and y =Ty (L),
X ~ y (= or
x¥Tpy(Ll) and x =y.

On the set {|x| | x € L} we define the following meet and join operations and claim that
it defines a lattice:

© xlvalyl=lx vyl

lx Ayl if ] # [1] # [yl
© IxlAciyl = 1 |, if [y| = 11,
|y, if x| = [1].

The join is well-defined since [T, ,(L)] is an upset and the meet is well-defined by
definition.

Claim 7.3.1. (L/~, A.,Y.) is a lattice with |1| as top element and |0| as bottom element.

Proof. We first show that |1] is the top element and |0 is the bottom element:

|x| v 1] =[1], |x|Vv~|0| =]|x| by definition of v,
|x] A~ |1] = |x|, |x| A~|0] =1]0|] by definition of A..
Showing that the lattice laws hold is straightforward. The only more involved cases are the
two absorption rules:
x| = lxl v (el A~ IyD)
— holds if |x| # [1] # |yl;
= if x| = |1], then |x[ A~ [y[ = |y| and [1] v~ |y| = [1] = |x[;

= if |[y| = [1], then |x| A~ [y = |x| and [x| V- |x| = |x].
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o fxl =[xl Ac (Ix[ v~ [y])
— holds if |x| # |1] # |y|;
— if |x| = [1], then [x[ A~ (Iy| v~ |x]) = |y] v~ x| = [x];
— if [y[ = [1], then |x| v+ |y[ = |y and |x| A~ |y] = |x]. O

Denote by Sub(¢p, ) the set of subformulas of ¢ and . We will need the following
auxiliary lemma for later proofs.

Lemma 7.3.2. Let y € Sub(g, ) be arbitrary. Then

Yirr Toy(L) = yirr Ty y(x)

Proof. We give a proof by structural induction over y.
Base case: The case of y := L is trivial.

If y := T, then Ty 4 (T) = =L and the statement follows by the semantics of L in TIL.

For y := r we need to show that

y k7 A\ P (inf*)(=Pp — =FPp, -Pp — -FPp) =
peProp(¢,.¥)U{q}
y kg P{inf*)rr v =FPr.

Since r € Prop(¢, ¢), we can assume that y 7 P {(inf*)(=Pr — =FPr, -Pr — =FPr).
If V(r) = 0 it follows that y kr =FPr, soy ibp Ty 4 (r). If V(r) # 0 we reason as follows.
y k1 P(inf")(=Pr — =FPr, =Pr — —FPr) implies that there exist y;, ..., y, € [-Pr —
=FPr] such that inf{yy,...,y,} < y. If there exist i € {1,...,n} such that y; k7 —Pr, it
follows that y; 7 —FPr, so since L is a lattice it follows that V(r) = 0, which is in
contradiction with our assumption.

It follows that y; 7 Pr for all i € {1, ..., n}. This implies that there exist y1, ..., y;, such
that y; < y; and y} 7 r foralli € {1,...,n}. Since inf{y{, ..., y;} <inf{yi,..,yn} < yit
follows that y -7 Ty y (7).

Inductive cases: The case where y := x| A x» follows from the induction hypothesis.

Assume y := yi1 V x2. Since y Ik Ty (L), it follows by the induction hypothesis
that y k7 Ty (x1) and y k7 Ty 4 (x2). Since y < y and y = inf{y,y} it follows that
yikr PGnh)Ty y (x1) T,y (X2) = Ty (X1 V X2)- O

We now consider the lattice (L/~, A-, Y., |1],]0]) as a model of WPL. We define the
following valuation on (L/~, A, Y ., |1],]0]):

p'V(p) = {Ix| € L/~ | (L,V),x 7 Ty y(p) } (16)

Remark 7.3.3. Note that the definition of p” V might not be well-defined if V(r) # 0 for any
r ¢ Prop(e, ). We prove that in that case we can define an alternative valuation V' that
evaluates all subformulas of ¢ and i the same as V, which is what we need for our purposes.

Proposition 7.3.4. Let L be a lattice and let V and V’ be subset valuations on L. If V and V’
agree on all propositional letters in ¢, then for any subformula y of ¢ and any x € L it holds
that

(L,V),xt7 x < (LV),xWkrx
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Proof. By structural induction over y. O

We argue that the definition of (16) is a well-defined filter valuation. For any p €
Prop(¢, ¢) it follows from Lemma 7.3.2 that for allx € [T, , (L) ] and forall p € Prop(¢, ¥)
it is the case that x I+ T, (p).

For any p ¢ Prop(p,y), we may assume by Remark 7.3.3 that V(p) = 0. This implies
that (L,V),x + =FPp,so (L,V),x I Ty, 4 (p) forallx € L.Itfollows thatx,y € [T 4 (L)]
implies that

(L,V),x+ Ty y(p) & (L,V),y Ty u(p)

for any p € P.
It follows from similar reasoning as in Claim 7.2.3 that p’ V is a filter valuation.

We can now prove the following lemma.

Lemma 7.3.5. For all y € Sub(y, ¥)

(L,V),yrr Tpy(x) = (L/~p"V),|yltw x

Proof. We give a proof by induction on the complexity of y.

Base case: The case y := T follows by the semantics.

If y := 1, then (L,V),y rr Ty (L) iff |y| = [1] iff (L/~,p"V),|y| +w L by the
semantics of WPL.

For y := p the claim follows by definition of p’ V.
Inductive case: The case where y := x| A x» follows from the induction hypothesis.

Assume y := x1 V x». For the left-to-right direction, assume (L, V), y k1 Ty y (X1 V X2)-
Since Ty y (1 V x2) = P(inf)Ty,  (x1)T,4 (x2) this means there exist y; and y> such that

(L,V),yl =7 Ttp,zﬁ(/\/l)’ (L,V),y2 =7 Tcp,w()(Z) and yi Ay <y

By induction hypothesis we get that

(L/~,p" V), |yil +w x1 and (L/~,p"V),|y2| Fw x2.

The claim would follow if we showed that [y{| A~ |y2] < B|y|, i.e. (Iyi] A~ [y2]) A~ |y| =
|¥1] A~ |y2|. We distinguish cases:

o If [y1] # [1| # |y2l, then |y1| A< [y2] = [y1 A y2|. Assume |y| = [1], then |y A y2| A~
[1] = |y1 A yal.
If [y| # [1], then [y A yo| A< |y] = [(y1 A ¥2) A ¥| = [y1 A y2| since y; A y2 < y.

* Assume |y;| = |1] and [y,| # [1], then [y| A~ [y2| = |y2|. Assume |y| = |1], then
(1l A< ly2]) A< Iyl = [yl Ayl = [y2l.

Assume |y| # |1]. We get that (|yi| A~ [y2]) A~ [y = [y2] A~ |yl = |y2 A y|. Since
ly2 Ayl Vo |yl = [(y2 A y) ¥ y| = |y| by definition of v . and absorption, it follows
that |y, A y| <. |y|, which is what we needed to show.

* The case where |y;| # 1 and |y,| = |1] is analogous.

13 Where <. is the ordering induced by A . or equivalently by v .
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* Lastly, assume |yi| = [1| = |yz|. Since [T, 4 (L)] is a filter, it follows that y €
[Tp,u(L)], s0 |y| =1 and the claim follows.

For the right-to-left direction, assume (L/~, p’ V), |y| Fw x1 V x2. This implies there are
[y1], [y2| such that

(L/~,p" V), Iyil vw x1, (L/~,p"V),|y2|l Fw x2 and [yi| A< [y2] << |yl

By induction hypothesis it follows that

(L’ V)’ Y1 T T(p,l//()(l) and (L’ V))’Z =7 Tgp,l,b(XZ)‘
We need to show that y; A y» < y. We distinguish cases:

o If [y| = [1], then (L,V),y I Ty (L), so by Lemma 7.3.2 we get that (L,V),y I
Toy(x1V x2).

o If [y| # [1], [y1] # [1] # |y2l, then since |yi| A~ [y2| << |yl, it follows that (|yi| A
[v2]) Ayl = |(y1 A y2) A y| = |¥1 A ¥2|, s0 as |y1 A y2] is a singleton, it follows that
(y1 A y2) =y, so we are done.

o If [y| # [1] # |y1l, ly2| = [1], then [y1]| A~ |y2| = [y1], thus from

il = Iyl A< y2l = (il A< Iy2D) A< Iyl = Iyl A Iyl
it follows that y; A y = y1, so y; < y. We conclude that y; A y» < y. O
With all the groundwork in place we can prove the main theorem of this section.

Theorem 7.3.6. Let ¢ < ¢ be an arbitrary consequence pair with ¢, € Lw. Let T, ,, be
as in Definition 7.3.1, then

Toy(@) b1 Tpy(Y) = ¢w.

Proof. = We show that

o¥wy = Tuu(e) ¥r Ty y (). (17)

By assumption there exists a lattice L, x € L and a filter valuation V on L such that

(L7 V)’x "_W ‘)0 yet (La V)7-x JFW ¢

Consider the L-model (L,V’), where V'(p) = V(p) for p # g and V'(q) = 1. As g ¢
Prop(¢, ¢), it still holds that (L, V"), x kw ¢ and (L, V"), x kw .

Now consider (L, V’) as a TIL-model. We prove by structural induction over y that for
all y € L and y € Sub(gp, ¢) it holds that

(LV)yrwxy &  (LV),yrr Ty
Base case: The case where y := T follows by the semantics.

Assume y := L, then

(L,V),ybrw L < y=1.
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On the other hand we claim that
(LV),yrr Tpy(L) & y=1

Since V’(g) = {1}, 1 is the only element of L such that (L,V’),1 k7 =Pg — =FPgq. For
letz e Lbesuchthatz # 1. Thenz < 1,s0 (L,V’),z +p =P g, while (L,V’),z +7 FPg. It
follows that 1 is the only element such that

(L, V'), 1 kp /\  P(inf)(=Pp — =FPp,-Pp — ~FPp) =T, ,(1).
peProp(¢.¢)U{q}

Assume y := p. Then (L,V’),y +w p iff (L,V’),y 1 p, since both models have the
same valuation and (L, V’),y +r p ift (L,V’),y k7 T(p) since V' is a filter valuation.
Inductive case: The case where y := x| A x» follows from the induction hypothesis.

Assume y := y1V x2, then (L,V’),y Fw x1 V x» iff there are y;,y, € L such that
yiAY2 £y, (L, V), y1 rw x1 and (L,V’),y2 Fw x2. By induction hypothesis it follows
that (L,V’),y1 b1 Ty y(x1) and (L, V"), y2 b1 Ty 4 (x2), SO since y; A yp < y it follows
that

(L, V), y rr P((nH) Ty (X1 Ty (x2)) = Ty (X1 V X2)-
The other direction is proven similarly, which finishes the induction proof.
We conclude that (17) holds which finishes this direction of the proof.

< We show that
Tou (@) ¥r Toy(W) =  @¥w . (18)

By assumption there exists a lattice L, x € L and subset valuation V on L such that

(L,V),x by Ty y (@) yet (L,V),x ¥ Ty ().

It follows from Lemma 7.3.5 that (L/~, p’ V), |x| kw ¢ and (L/~, p" V), |x| ¥w ¢, which
proves (18). O

We conclude that even though the top element of a lattice is not definable in the language
of TIL, we can nevertheless define a translation of WPL into TIL that is relative to a
consequence pair.

7.4 BACK TO POSETS

In order to give a full and faithful translation of the bottom-free fragment of WPL into TIL
on lattices, we extended the language of TIL with two binary operators. These operators can
also be interpreted on posets.

We therefore switch our attention back to posets and explore what the consequences are
of interpreting the * modalities on posets.

Definition 7.4.1.

TIL® = {(,o € L} | for every poset model M = (W,<,V) and every x € W,
M, x -}



7.4 BACK TO POSETS

Even though the proof of Proposition 7.2.2 lifts to posets, we give an alternative proof
that exploits the fact that not all binary suprema exist in posets.

Proposition 7.4.1. L. is strictly more expressive on posets than L.

Proof. Consider the following two poset models where the worlds satisfy all and only the
proposition letters shown.

DN

b+ p bk p b3 p
x’ X"
’ \ ’ uu// 1
I’ Cll a2 Cl3 a4 as 616 al Clz Cl3 a4 as a6

bivp by p b3 p

We define a bisimulation between 9t and M’ as defined in 7.2.3 as follows:

xZx', x"
a; Za.,a’ (1<i<6)
b; Z b (1<i<g3)
Since
M, x - (sup™)pp,
but
M, x" ¥ (sup*)pp,
it follows that (sup*) is not definable in L. O

7.4.1 Modal operations on posets

In this section we explore how TIL can be viewed as a modal lens on partial orders. With the
basic modalities already present in £ we can define four natural operations on posets, two of
which go beyond the operations we can define with just the forward- and backward-looking
operators of (tensed) S4.
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Fix a poset model M = (W, <, V). For every ¢ € L. we write
[[go]]we = {x eW |Mx = 90}

for the truth set (or extension) of .

Definition 7.4.2. For A, B C W define

lA={xeW|x<aforsomeacA},

TA:{er|a£xf0rsomeaeA},
sup(A, B) = {sup{a,b} |a€ A, be B},
inf(A, B) = {inf{a,b} |a € A, b€ B}.

Note that even if A and B are closed under suprema, sup(A, B) need not be, which is
shown by the following example:

Example 7.4.2. Consider the following poset.

a a

The subsets A = {a,b,my} and B = {a’, b’, ms} are closed under suprema since sup{a, b} =
my and sup{a’,b’} = ms. On the other hand,

sup(A, B) = bigl{m,my, m3, my, ms, mg }
is not suprema closed since sup{m,ms} = x ¢ sup{A, B}.
Lemma 7.4.3. Let M = (W, <, V) be a poset model. For any formulas ¢, € L7 we have
LIel™ = [Fe]™,
T Lel™ = [Pe]™,
sup([@]™, [¢1™) = [Gup)ew ™,
inf ([ ]™, [w1™) = [infey ™.

Proof. It is easy to check that the definitions are correct. As an example we verify two:

o x €] [@]™ iff there is y € [¢]™ such that x < y, which by the semantics of F ¢ is
exactly the case if x I F ¢, so in other words x € [F ¢]™.

o x € inf([]™, [¥]™) iff there are y € [¢]™, z € [ ]™ such that x = inf{y, z}. By
the semantics of (inf) this corresponds exactly to x I (inf)gy, sox € [(inf)oy ™. O
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With the new modalities, we can define the finite-supremum closure operator. Formally,
given a set X and a subset A C X, this operation is defined as follows:

Clg, : P(X) —» P(X)
A {sup{S} : 0 # S C A such that S is finite}

We prove the following.

Proposition 7.4.4. Let ¢,y € L} be arbitrary, then

Clan([e] U [ ]) = [{(sup™)ew V (sup™)ype v (sup™ )y

Proof. To prove the left to right inclusion, let x € Clg,([¢] U [[¢]) be arbitrary, then
there is finite non-empty S C [¢] U [¢] such that x = sup{S}. Assume SN [¢] # @ and
SN [¢] # 0, then there exist yi,....,v, € [¢] G.e. M, y; + ¢) and z1, ...,z € [¥] Gee.
M, z; + ) such that x = sup{yi, ..., Y, 21, ..., Zm }- It follows that x I+ (sup*)¢gy. In case
SN [¢] = 0 it follows that x - (sup*)yyr and S N [¢] = 0 yields x  (sup*)pe.

For the right to left inclusion, let x € [[(sup*)py V (sup*)pp V (sup*)yy || be arbitrary.
Assume M, x - (sup*)ey. Then there exits yi, ..., v, € [¢] and z1, ..., 2 € [¢] such that
X = SUP{Y1s s Vs 21 - Zm }- It fOllows that x € Clgn ([o]] U [w])- If x - (sup*) e, we get
that there exist yy, ..., yn, € [[¢] such that x = sup{y, ..., yn}, sox € Clgy ([ ]l U [¥]). The
case where x I+ (sup*)y is handled similarly. O

In conclusion, the extension L7, lets us define several natural operations on posets directly
at the formula level. There are still many interesting directions to explore from here, some
of which are discussed in the next section.



8 CONCLUSION AND FURTHER RESEARCH

In this thesis we study tense information logic, an extension of modal information logic with
a second modality: the infimum operator.

Following the outline and proofs of [16], we presented an axiomatization of TIL on
posets that only links (sup) and (inf) through a standard axiom of temporal logic, thereby
answering an open question posed by van Benthem in [4]. We extended the completeness
proof for MIL in [16] using the step-by-step method and showed that this result extends
to TIL on preorder frames as well. We proved that TIL enjoys the FMP with respect to a
generalized class of frames, thereby establishing decidability of the logic and answering yet
another question posed in [3].

Next, we studied tense information logic from an algebraic and topological perspective.
We worked out the Stone-Jénsson—Tarski duality between the category of Boolean algebras
with two binary operators (2B-BAQO) and the category of modal Stone spaces with two
ternary relations (2T-MS) and checked that this duality carries over unchanged when we
restrict to the objects that validate the axioms of TIL.

Continuing our study of TIL, we examined whether the logic remains sound, complete
and decidable when we change the semantics of the modal operators (sup) and (inf): instead
of interpreting them via the least upper bound and greatest lower bound, we define them with
respect to minimal upper bounds and maximal lower bounds. Applying a modified version
of the representation method of [18], we proved that no modal principle is valid under one
interpretation but not the other. In particular, we showed that TIL and its variant based
on minimal / maximal bounds can be axiomatized by, and are sound and complete with
respect to, the same set of axioms. Tense information logic with minimal / maximal bounds
shares the informational interpretation of TIL. However, instead of uniqueness, multiple
incomparable bounds and thus merges and states containing most common information can
exist.

Connecting TIL with other modal logics, the last chapter worked out a translation of the
L -free fragment of weak positive logic into tense information logic interpreted on lattices,
starting from the translation suggested in [7]. To make this translation work, we extended TIL
with two binary *-modalities that take witness sets of any finite size in order to define meet-
closure of filters in the logic. Moreover, by defining a translation relative to a consequence
pair ¢ < ¢ and using a fresh propositional letter ¢ ¢ Prop(¢, ¢) in the translation of L, we
obtained a full and faithful translation of WPL including L into the extended version of TIL.

Extending the logic with these modalities turned out to have interesting implications. If
we interpret the extended language on posets, the supremum and infimum closure operators
are definable, thus going beyond the operators that are definable with only the past-/future-
looking modalities of (tensed) S4. There seem to be many interesting directions one could
go from here, of which some will be discussed in the following section.
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8.1 FURTHER RESEARCH

During the investigation of TIL, multiple open problems and directions for further research
presented themselves. We briefly discuss those that seem most interesting.

8.1.1 Informational implication

In [16], Knudstorp studies different alterations of modal information logic, one of which is
MIL of minimal upper bounds. In Chapter 6 we lifted this result to the setting of TIL with
two modalities.

Another extension that is studied in [16] is an enrichment of the language with the
‘informational implication’. Since the (sup) and (inf) operators behave in many ways like
a ‘meet’ operator, it is natural to consider their residuals. We therefore enrich the language
(denoting the result with £-7) with the informational implications Dg,p and Diyt, interpreted
on posets as follows:

M, x @ Dpyy iff Vu,v € W, if M, u - ¢ and v = sup{u,x} then M, v - ¢,
M, x k@ Dipgy iff Vu,veW, if M, ureandv =inf{u,x} then M, v I .

Definition 8.1.1. Let TIL be the logic of all £ validities on poset frames, that is

TIL- = {go € L7 | forevery poset model 9 = (W, <, V) and every x € W,
W, x Ik }

In [17], Knudstorp presents an axiomatization of MIL extended with Dg,, and uses
bulldozing and representation theorems to prove soundness and completeness. The same
approach seems to apply without problems to 7/L-, but one preliminary result turns out to
be difficult to show: does introducing residuals increase expressive power? At this moment
it remains an open problem whether Dgy, and Djy¢ are definable in the original language.

8.1.2 Axiomatization of TIL*

In Chapter 7 we extended TIL with two additional binary modalities that capture infima
and suprema of sets of states of any finite size. The new operators quantify over finite but
unbounded sets of witnesses. This raises the possibility that 7/L* is not compact (compare
for example PDL’s non-compactness proof [10]). Whether or not the logic is compact is an
open question. A further direction of research is to prove or refute that the logic is compact
and, depending on the result, choose a strategy for finding an axiomatization and prove that
it is sound and complete.

8.1.3 Operations on posets

In Section 7.4.1 we studied how TIL can be used as a modal lens on posets. We showed that
the supremum and infimum closure operators are definable in the extended language L..
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Several other operations on posets might also be definable. One natural candidate is the
filter-closure operation. Given a poset (W, <), let

Fi: P(W) — P(W)

send a set A C W to the least filter containing A. A first attempt to define this operator in £,
looks as follows:

Fi([e]™ u[w]™) := [P(inf) gy v P(inf) pp v P(inf") yy]™.

Unfortunately, this definition does not apply in the current setting, since in posets suprema /
infima do not necessarily exist. It motivates the introduction of a filter modality. Determining
its exact definition and expressive power is an open problem and an interesting direction for
further work.
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