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abstract

This thesis studies tense information logic (TIL), an extension of modal information logic
(MIL). MIL was introduced by van Benthem [2] to model information flow using possi-
ble worlds semantics by adding a binary modality ⟨sup⟩ to the language of propositional
logic, interpreted via the supremum of two states; TIL adds a second binary modality ⟨inf⟩
interpreted via the infimum of two states.

We give a sound and complete axiomatization of TIL on posets, extending Knud-
storp’s [17] axiomatization of MIL. As a corollary, we obtain completeness of TIL on
preorders. We also show that TIL has the finite model property with respect to a generalized
class of structures, thereby establishing its decidability.

Beyond completeness and decidability, we develop a Stone–Jónsson–Tarski duality for
TIL, show that interpreting the modalities via minimal and maximal bounds leaves the
logic unchanged, and construct two translations between weak positive logic (WPL) and
an extended version of TIL containing Kleene star-like versions of the ⟨sup⟩ and ⟨inf⟩
modalities.
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1 introduction

Modal information logic (MIL), introduced by van Benthem [2], models information flow
using possible-worlds semantics of modal logic by interpreting worlds as information states
and introducing additional modalities. Because informational inclusion should at least form
a partial order, the natural semantic framework is that of posets, whose suprema provide a
notion of informational addition (or ‘merging’). Recently, Knudstorp [17] axiomatized MIL
with a supremum modality on poset frames.

The notion of binary addition through suprema in posets has an obvious downward dual:
infima. This motivates the introduction of a second modality, interpreted as the information
two states share; that is, if 𝑥 is the infimum of 𝑦 and 𝑧, then 𝑥 is the most informative state
that contains only the information that 𝑦 and 𝑧 have in common, or alternatively, 𝑥 is the
most informative state such that 𝑦 and 𝑧 both refine 𝑥.

Given this motivation for the introduction of an infimum operator, the following question
arises: Can the axiomatization of MIL be extended to a version that includes both modalities?
Concretely, the added infimum operator will have the following semantics:

𝔐, 𝑥 ⊩ ⟨inf⟩𝜑𝜓 iff there exist 𝑦, 𝑧 such that 𝔐, 𝑦 ⊩ 𝜑,𝔐, 𝑧 ⊩ 𝜓 and 𝑥 = inf{𝑦, 𝑧}.

This operator complements the ⟨sup⟩ operator, which has the following semantics:

𝔐, 𝑥 ⊩ ⟨sup⟩𝜑𝜓 iff there exist 𝑦, 𝑧 such that 𝔐, 𝑦 ⊩ 𝜑,𝔐, 𝑧 ⊩ 𝜓 and 𝑥 = sup{𝑦, 𝑧}.

We call this extended logic tense information logic (TIL), by analogy with tense logic [10],
whose future and past-looking modalities are definable in the language of TIL. By axiom-
atizing TIL, we answer another question already posed by van Benthem [3]: Are there
interesting general axioms that link ⟨sup⟩𝜑𝜓 to ⟨inf⟩𝜑𝜓?. The first goal of this thesis is to
find a complete axiomatization of TIL on poset frames, thereby addressing both questions
simultaneously.

To arrive at a complete axiomatization of TIL, we first define its semantics over poset
frames. We then apply the step-by-step method introduced by Burgess [11] (and also followed
by Knudstorp [17]), which for a given consistent set of formulas constructs a poset model
witnessing its satisfiability. This approach recursively repairs so-called ‘defects’ and ‘labels’
points of a subset of our frame with maximally consistent sets for which we prove a truth
lemma. We then show that this result extends to TIL on the class of preorder frames.

Secondly, we prove that TIL is decidable, thus resolving an open problem raised in [4].
Since TIL lacks the finite model property with respect to posets, we instead consider a
generalized class of structures. Since the axiomatization is also complete with respect to
this class, we prove that TIL has the finite model property (FMP) by showing that every
countermodel in this class can be transformed into a finite countermodel. This proof follows
the approach outlined in Theorem 3.9 of [17], adapting it to the new setting.

Beyond completeness and decidability, we interpret the axioms of TIL algebraically
on boolean algebras with two binary operators and, dually, on modal Stone spaces with
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two ternary relations. We work out a Stone–Jónsson–Tarski dual equivalence between the
respective categories and show that it restricts to the subcategories validating TIL.

Replacing the supremum and infimum semantics of ⟨sup⟩ and ⟨inf⟩ with semantics
based on minimal upper bounds and maximal lower bounds yields the logic of incomparable
fusions and common information: two information states may have, for example, several
minimal fusions that are pairwise incomparable. We prove that the same axiomatization is
sound and complete for this semantics as well; hence both semantics induce the same logic
(the same set of validities). The argument follows the representation method of [18], adapted
to the setting with two modalities.

In [23, 24], Wang and Wang view lattices as relational structures based on partial orders
and study the modal logics over them. Using the same language as TIL, they aim to capture
the structure of lattices with this language. In lattices, every pair of elements has a unique
supremum and infimum (as opposed to posets where suprema and infima do not necessarily
exist), a property that is impossible to express in the language of TIL [24, Theorem 25].
They therefore add nominals to the language to strengthen the expressive power and give
a complete axiomatization of TIL on lattices in a hybrid language. In comparison, the
completeness proof for TIL presented in this thesis does not include nominals, and is over
posets instead of lattices.

This work shows that there is an incentive to interpret TIL on lattices. In the literature,
TIL on lattices is discussed alongside weak positive logic (WPL) [7]: positive modal logic
(the negation- and implication-free fragment of classical propositional logic) that is not
necessarily distributive. Interestingly, the TIL operator ⟨inf⟩ behaves much like disjunction
in WPL. This suggests that a translation between the two logics is possible.

In order to extend the proposed translation in [7] to a full and faithful translation, it turns
out that the modalities are not sufficient. This motivates introducing two additional binary
modalities: Kleene star-like variants of ⟨sup⟩ and ⟨inf⟩ which, instead of taking suprema and
infima over pairs of worlds, take the join / meet of a any non-empty finite set of witnesses.

Having extended the language, there are many interesting directions to study. In this thesis,
we return to poset semantics for these Kleene star-like supremum and infimum modalities
and investigate how TIL (with and without these extra modalities) can be used as a modal
lens on posets. We show that several natural poset operations are definable, while much is
still unexplored.

The main contributions of this thesis are:

• We give a sound and complete axiomatization of TIL on poset frames and show that
this result transfers to preorder frames.

• We prove that TIL is decidable by showing that it has the finite model property with
respect to a generalized class of frames.

• We derive a Stone–Jónsson–Tarski duality for TIL between boolean algebras with two
binary operators and modal Stone spaces with two ternary relations.

• By interpreting the modalities in terms of minimal upper bounds and maximal lower
bounds rather than suprema and infima, we obtain the logic of incomparable fusions
and common information. For this logic, we prove that the same axiomatization is
sound and complete with respect to posets via a representation argument.
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• We give a full and faithful translation of the ⊥-free fragment of WPL into an extension
of TIL with two Kleene star-like modalities.

• We give a full and faithful translation of WPL (including ⊥), relative to a fixed
consequence pair 𝜑 ⊴ 𝜓 into the same extension of TIL.

• We show that the extended logic enables us to define the supremum and infimum
closure operators on posets.

1.1 guide to sections

The structure of the thesis follows the order of the results mentioned above. We start by
providing the preliminaries in Chapter 2 and show that TIL on posets lacks the finite model
property. Chapter 3 introduces an axiomatization for TIL and proves that it is sound and
complete with respect to poset frames. Using this axiomatization, we prove in Chapter 4
that TIL has the finite model property with respect to a generalized class of frames, thus
establishing its decidability.

In Chapter 5, we work out a Stone–Jónsson–Tarski duality for TIL and in Chapter 6, we
show that changing the semantics of the modal operators to the minimal upper bound and
maximal lower bound interpretation does not change the logic. Lastly, we study the relation
between WPL and TIL in Chapter 7, provide two translations between these logics and show
how TIL can be used as a modal lens on posets.



2 preliminaries

In this chapter, we set up the formal framework of TIL: we define the language, present the
semantics, and thereby lay the groundwork for the rest of this thesis. We then show that the
logic fails to have the finite model property and outline how we will nevertheless prove its
decidability.

2.1 language and semantics

Most of the notions in this chapter extend the definitions given in [17]. To capture infima
alongside suprema, we expand the base language L𝑀 of MIL [17, Definition 1.1] with an
additional binary modality.

Definition 2.1.1. Given a countable set of propositional letters P, we define the language
L𝑇 of tense information logic using two binary modalities ⟨sup⟩ and ⟨inf⟩ by the following
BNF grammar:

𝜑 ::= 𝑝 | ⊥ | ¬𝜑 | 𝜑 ∧ 𝜓 | ⟨sup⟩𝜑𝜓 | ⟨inf⟩𝜑𝜓.

We denote by L𝑀 the ⟨inf⟩-free fragment of L𝑇 .

Definition 2.1.2. A (Kripke) poset model for L𝑇 is a triple 𝔐 = (𝑊 ,≤,𝑉), where 𝑊 is a
set, ≤ is a partial order, and 𝑉 is a valuation 𝑉 : P → P(𝑊).

To interpret the binary modalities ⟨sup⟩ and ⟨inf⟩, we recall the standard order-theoretic
notions of supremum (join) and infimum (meet).

Definition 2.1.3 (Supremum and infimum). Let 𝔉 = ⟨𝑊 ,≤⟩ be a poset and 𝑆 ⊆ 𝑊 a
non-empty subset.

• An element 𝑢 ∈ 𝑊 is an upper bound of 𝑆 if 𝑠 ≤ 𝑢 for every 𝑠 ∈ 𝑆. A supremum (or
least upper bound) of 𝑆, written sup 𝑆, is an upper bound 𝑢 such that whenever 𝑣 is
an upper bound of 𝑆 we have 𝑢 ≤ 𝑣.

• An element 𝑙 ∈ 𝑊 is a lower bound of 𝑆 if 𝑙 ≤ 𝑠 for every 𝑠 ∈ 𝑆. An infimum (or
greatest lower bound) of 𝑆, written inf 𝑆, is a lower bound 𝑙 such that whenever 𝑚 is
a lower bound of 𝑆 we have 𝑚 ≤ 𝑙.

For the two-element set 𝑆 = {𝑦, 𝑧} we write sup{𝑦, 𝑧} (respectively inf{𝑦, 𝑧}) and call it the
join (respectively meet) of 𝑦 and 𝑧.

Remark 2.1.1. Since a partial order is antisymmetric, infima and suprema are unique in
posets if they exist. However, note that they do not necessarily exist.

Definition 2.1.4 (Semantics). The interpretation of a formula 𝜑 ∈ L𝑇 at a state 𝑥 ∈ 𝑊 is
defined recursively as follows:
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10 preliminaries

𝔐, 𝑥 ⊮ ⊥,

𝔐, 𝑥 ⊩ 𝑝 iff 𝑥 ∈ 𝑉 (𝑝),
𝔐, 𝑥 ⊩ ¬𝜑 iff 𝔐, 𝑥 ⊮ 𝜑,

𝔐, 𝑥 ⊩ 𝜑 ∧ 𝜓 iff 𝔐, 𝑥 ⊩ 𝜑 and 𝔐, 𝑥 ⊩ 𝜓,

𝔐, 𝑥 ⊩ ⟨sup⟩𝜑𝜓 iff there exist 𝑦, 𝑧 ∈ 𝑊 s.t. 𝔐, 𝑦 ⊩ 𝜑, 𝔐, 𝑧 ⊩ 𝜓 and 𝑥 = sup{𝑦, 𝑧},
𝔐, 𝑥 ⊩ ⟨inf⟩𝜑𝜓 iff there exist 𝑦, 𝑧 ∈ 𝑊 s.t. 𝔐, 𝑦 ⊩ 𝜑, 𝔐, 𝑧 ⊩ 𝜓 and 𝑥 = inf{𝑦, 𝑧}.

Definition 2.1.5 (Dual box modalities). For 𝜑,𝜓 ∈ L𝑇 , define the duals of the binary
diamonds as

[inf] 𝜑𝜓 := ¬⟨inf⟩¬𝜑¬𝜓, [sup] 𝜑𝜓 := ¬⟨sup⟩ ¬𝜑¬𝜓.

By Definition 2.1.4, their truth conditions are:

𝔐, 𝑥 ⊩ [inf] 𝜑𝜓 iff for every 𝑦, 𝑧 ∈ 𝑊 (𝑥 = inf{𝑦, 𝑧} ⇒ 𝔐, 𝑦 ⊩ 𝜑 or 𝔐, 𝑧 ⊩ 𝜓),
𝔐, 𝑥 ⊩ [sup] 𝜑𝜓 iff for every 𝑦, 𝑧 ∈ 𝑊 (𝑥 = sup{𝑦, 𝑧} ⇒ 𝔐, 𝑦 ⊩ 𝜑 or 𝔐, 𝑧 ⊩ 𝜓).

Definition 2.1.6. With these semantics at hand we are able to define the standard past /
future looking diamond / box of temporal logic [10] in the following way:

P 𝜑 := ⟨sup⟩𝜑⊤ past looking diamond,

F 𝜑 := ⟨inf⟩𝜑⊤ future looking diamond,

H 𝜑 := ¬⟨sup⟩¬𝜑⊤ past looking box,

G 𝜑 := ¬⟨inf⟩¬𝜑⊤ future looking box.

Recall the semantics of the above-mentioned temporal modalities:

𝔐, 𝑥 ⊩ P 𝜑 iff there exists 𝑦 ∈ 𝑊 such that 𝑦 ≤ 𝑥 and 𝔐, 𝑦 ⊩ 𝜑,

𝔐, 𝑥 ⊩ F 𝜑 iff there exists 𝑦 ∈ 𝑊 such that 𝑥 ≤ 𝑦 and 𝔐, 𝑦 ⊩ 𝜑,

𝔐, 𝑥 ⊩ H 𝜑 iff for every 𝑦 ∈ 𝑊 such that 𝑦 ≤ 𝑥 it holds that 𝔐, 𝑦 ⊩ 𝜑,

𝔐, 𝑥 ⊩ G 𝜑 iff for every 𝑦 ∈ 𝑊 such that 𝑥 ≤ 𝑦 it holds that 𝔐, 𝑦 ⊩ 𝜑.

Remark 2.1.2. We show that these semantics correspond to the definitions of P, F, H and G
of Definition 2.1.6.

• Assume 𝔐, 𝑥 ⊩ ⟨inf⟩𝜑⊤. By the semantics of ⟨inf⟩ this holds iff there are 𝑦, 𝑧 ∈ 𝑊
such that 𝔐, 𝑦 ⊩ 𝜑, 𝔐, 𝑧 ⊩ ⊤ and 𝑥 = inf{𝑦, 𝑧}. Since 𝔐, 𝑥 ⊩ ⊤ always holds, it
follows that 𝔐, 𝑥 ⊩ ⟨inf⟩𝜑⊤ iff there is 𝑦 ∈ 𝑊 such that 𝔐, 𝑦 ⊩ 𝜑 and 𝑥 = inf{𝑦, 𝑥}.
Because 𝑥 = inf{𝑦, 𝑥} is equivalent to 𝑥 ≤ 𝑦 we get the desired result.

• The case of ⟨sup⟩𝜑⊤ is shown in a similar way, using the fact that 𝑥 = sup{𝑦, 𝑥} is
equivalent to 𝑦 ≤ 𝑥.

• Since H is the dual of P, it follows that H𝜑 is defined as ¬P¬𝜑, which coincides with
the above definition. To get a better feeling for the semantics of the modalities, we still
show it directly:
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Assume 𝔐, 𝑥 ⊩ ¬⟨sup⟩¬𝜑⊤. By the semantics of ⟨sup⟩ this holds iff there are no
𝑦, 𝑧 ∈ 𝑊 such that 𝔐, 𝑦 ⊩ ¬𝜑, 𝔐, 𝑧 ⊩ ⊤ and 𝑥 = sup{𝑦, 𝑧}. Since we always have
𝔐, 𝑥 ⊩ ⊤, it follows that𝔐, 𝑥 ⊩ ¬⟨sup⟩¬𝜑⊤ iff there is no 𝑦 ∈ 𝑊 such that𝔐, 𝑦 ⊩ ¬𝜑
and 𝑥 = sup{𝑦, 𝑥}. Because 𝑥 = sup{𝑦, 𝑥} is equivalent to 𝑦 ≤ 𝑥, 𝔐, 𝑥 ⊩ ¬⟨sup⟩¬𝜑⊤
holds iff 𝔐, 𝑦 ⊩ 𝜑 for every 𝑦 ≤ 𝑥.

• The case of ¬⟨inf⟩¬𝜑⊤ is shown in a similar way.

Based on these semantics, we define the logic TIL. For completeness, we repeat the
definition of MIL as presented in [17]:

Definition 2.1.7. Tense information logic on posets is denoted TIL and defined as the set of
all L𝑇 -validities on poset frames; that is

TIL :=
{
𝜑 ∈ L𝑇 | for every poset model 𝔐 = (𝑊 ,≤,𝑉) and every 𝑥 ∈ 𝑊 : 𝔐, 𝑥 ⊩ 𝜑

}
.

MIL is defined as the set of all validities in the ⟨inf⟩-free fragment of L𝑇 on poset frames;
that is,

MIL :=
{
𝜑 ∈ L𝑀 | for every poset model 𝔐 = (𝑊 ,≤,𝑉) and every 𝑥 ∈ 𝑊 : 𝔐, 𝑥 ⊩ 𝜑

}
.

Remark 2.1.3. It should be clear that the expressive power of TIL strictly extends MIL, but
for completeness we give an example that shows this. Consider the following two models:

𝑦 ⊩ 𝑝 𝑧 ⊩ 𝑝 𝑦′ ⊩ 𝑝

𝑥 ⊩ ¬𝑝 𝑥′ ⊩ ¬𝑝

Then 𝑥 ⊩ ⟨inf⟩𝑝𝑝, since 𝑥 = inf{𝑦, 𝑧}, 𝑦 ⊩ 𝑝 and 𝑧 ⊩ 𝑝 while 𝑥′ ⊮ ⟨inf⟩𝑝𝑝, since 𝑥′ is not
the infimum of two 𝑝 worlds. But, as an induction readily shows, for every 𝜑 ∈ L𝑀 : 𝑥 ⊩ 𝜑
iff 𝑥′ ⊩ 𝜑.

2.2 finite model property

Knudstorp [17] shows that MIL lacks the finite model property (FMP) with respect to
preorder frames. Because TIL strictly extends MIL and since every poset is also a preorder,
the failure of the FMP carries over to TIL on poset frames as an immediate corollary. For
completeness (to give a specific example involving both modalities), we still provide a
counterexample in the language L𝑇 that shows that TIL does not have the FMP with respect
to posets.

Proposition 2.2.1. TIL does not have the FMP with respect to poset frames.

Proof. Consider the following formula:

𝜒∞ := G (𝑝 → F¬𝑝) ∧G (¬𝑝 → F 𝑝) ∧H (𝑝 → P¬𝑝) ∧H (¬𝑝 → P 𝑝).

We first show that 𝜒∞ is satisfiable on an infinite poset model. Let 𝔐 = (𝑊 ,≤,𝑉) be defined
as follows:
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1. 𝑊 = Z,

2. ≤ is the standard less than or equal relation on the integers,

3. 𝑉 : P → P(𝑊) is defined as 𝑉 (𝑝) = {𝑧 ∈ Z : 𝑧 is even }.

Fix an arbitrary 𝑧 ∈ Z.

• If 𝑧 is even. Then 𝑝 holds at 𝑧 and ¬𝑝 holds at 𝑧 ± 1. Hence F¬𝑝 and P¬𝑝 hold at 𝑧,
so the first and third implications in 𝜒∞ are satisfied; the other two implications are
vacuously true. It follows that

𝔐, 𝑧 ⊩ 𝑝 → F¬𝑝 ∧ ¬𝑝 → F 𝑝 ∧ 𝑝 → P¬𝑝 ∧ ¬𝑝 → P 𝑝.

• If 𝑧 is odd. The situation is symmetric, interchanging 𝑝 and ¬𝑝.

Thus, 𝔐, 𝑧 |= 𝜒∞ for every 𝑧 ∈ Z.
On the other hand, assume 𝔐 = (𝑊 ,≤,𝑉) is a finite poset model. It follows that the

model has a minimal element 𝑚1 [8]. Either 𝑚1 |= 𝑝 or 𝑚1 |= ¬𝑝.

• If 𝑚1 |= 𝑝, then 𝑚1 ⊮ 𝑝 → P¬𝑝 because there is no 𝑤 ∈ 𝑊 such that 𝑤 ≤ 𝑚1 and
𝑤 ⊩ ¬𝑝, since 𝑚1 is minimal.

• If 𝑚1 |= ¬𝑝, the clause ¬𝑝 → P 𝑝 fails by the same reasoning.

Hence 𝑚1 ⊮ 𝑝 → P¬𝑝 or 𝑚1 ⊮ ¬𝑝 → P 𝑝. This holds for any minimal element 𝑚 ∈ 𝑊 .
Since for every 𝑦 ∈ 𝑊 there exists a minimal element 𝑚 ∈ 𝑊 such that 𝑚 ≤ 𝑦, it follows that
no world satisfies both H (𝑝 → P¬𝑝) and H (¬𝑝 → P 𝑝). Thus, no world satisfies 𝜒∞, so
𝔐 does not satisfy 𝜒∞. We conclude that no finite poset model satisfies 𝜒∞.

Because 𝜒∞ is satisfiable on posets frames but only on infinite ones, TIL lacks the finite
model property with respect to posets. □

Remark 2.2.2. Note that 𝜒∞ is satisfiable on a finite preorder frame. Let 𝔐 = (𝑊 ,≤,𝑉)
be the preorder model that consists of two worlds 𝑥1, 𝑥2 such that 𝑥1 ≤ 𝑥2 and 𝑥2 ≤ 𝑥1. If
𝑉 (𝑝) = 𝑥1 it follows that both worlds satisfy 𝜒∞.

It follows that 𝜒∞ only shows that TIL on posets does not have the FMP, while the lack
of the FMP for TIL on preorders is presented in [17, Proposition 1.7].

To still prove decidability of TIL, we will follow the same route as [17]. In the chapters
that follow we will:

• present a sound and complete axiomatization of TIL; and

• prove that TIL has the FMP with respect to a generalized class of structures.



3 soundness and completeness of til

In this chapter, we present one of the thesis’ main results: a sound and complete axiom
system for TIL over poset frames, which we subsequently use in the next chapter to prove
decidability.

Section 3.1 introduces a proof-theoretic description of TIL and establishes its soundness
with respect to poset semantics. Section 3.2 explains why the usual canonical model construc-
tion fails and proves some auxiliary lemmas. In Section 3.3 we introduce the step-by-step
method, which will be used to nevertheless prove completeness. Section 3.4 contains the
actual strong completeness proof of TIL on posets.

3.1 axiomatization and soundness

To study modal information logics on posets in a symmetric way, we extended the language
by including the infimum operator. However, it is not immediately clear which axioms link
the two modalities (see [3]). Surprisingly, it turns out that the relation between ⟨sup⟩ and
⟨inf⟩ can be fully captured by standard temporal axioms. To show this, we present the
following logic.

Definition 3.1.1. Let TIL be the least normal modal logic in the language L𝑇 containing all
propositional tautologies, instances of the K-axiom for [inf] and [sup]1 and the following
axioms:

(Re.) (𝑝 ∧ 𝑞 → ⟨sup⟩𝑝𝑞) ∧ (𝑝 ∧ 𝑞 → ⟨inf⟩𝑝𝑞),

(4) (P P 𝑝 → P 𝑝) ∧ (F F 𝑝 → F 𝑝),

(Co.) (⟨sup⟩𝑝𝑞 → ⟨sup⟩𝑞𝑝) ∧ (⟨inf⟩𝑝𝑞 → ⟨inf⟩𝑞𝑝),

(Dk1) (𝑝 ∧ ⟨sup⟩𝑞𝑟) → ⟨sup⟩𝑝𝑞,

(Dk2) (𝑝 ∧ ⟨inf⟩𝑞𝑟) → ⟨inf⟩𝑝𝑞,

(Sy.) (𝑝 → G P 𝑝) ∧ (𝑝 → H F 𝑝),

and closed under modus ponens, uniform substitution and generalization (i.e., if ⊢ 𝜑 then
⊢ [inf]𝜑𝜓 (and thus ⊢ [inf]𝜓𝜑) for all 𝜑,𝜓 ∈ L𝑇 and similarly for [sup]).

For each axiom in the axiomatization of MIL from [17] (namely (Re.), (4), (Co.) and
(Dk)), we added the same axiom for the new ⟨inf⟩-operator. The only truly new axiom is
the standard temporal axiom (Sy.) [14, 20]. That this axiom is to be included is expected,
since the temporal operators P, F, G and H are definable. On the other hand, what may be
unexpected is that this is the only axiom that links ⟨sup⟩ to ⟨inf⟩ that we need to add to the
axiomatization of MIL to obtain an axiomatization of TIL. We will proceed to show that
this axiom system is strongly complete for TIL and thus that the single axiom (Sy.) already
suffices to syntactically link ⟨sup⟩ and ⟨inf⟩.

1 For each operator we include both coordinate-wise schemes: [sup] (𝑝 → 𝑞) 𝑟 → ([sup]𝑝 𝑟 → [sup]𝑞 𝑟),
[sup]𝑟 (𝑝 → 𝑞) → ([sup]𝑟 𝑝 → [sup]𝑟 𝑞) and analogously for [inf].

13
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First off, the axiomatization is readily seen to be sound by checking that TIL is a normal
modal logic validating all the axioms of TIL:

Theorem 3.1.1 (Soundness). TIL ⊆ TIL.

To familiarize the reader with the framework and provide some hands-on intuition, we
include parts of the soundness proof.

Proof. Let 𝔐 = (𝑊 ,≤,𝑉) be a poset model. We must verify that every propositional
tautology, the normal modal schemata 𝐾 and the axioms of TIL are valid in 𝔐, and, further,
that validity on poset models is preserved under modus ponens and generalization:

(4) This follows directly from transitivity of ≤. Assume 𝔐, 𝑥 ⊩ P P 𝑝, so there are
𝑦, 𝑧 ∈ 𝑊 such that 𝑦 ≤ 𝑥, 𝑧 ≤ 𝑦 and 𝔐, 𝑦 ⊩ P 𝑝 and 𝔐, 𝑧 ⊩ 𝑝. By transitivity, we get
𝑧 ≤ 𝑥 and so 𝔐, 𝑥 ⊩ P 𝑝. The second part is shown symmetrically.

(Dk2) Assume 𝔐, 𝑥 ⊩ 𝑝 ∧ ⟨inf⟩𝑞𝑟, so 𝔐, 𝑥 ⊩ 𝑝 and there are 𝑦, 𝑧 such that 𝑥 = inf{𝑦, 𝑧},
𝔐, 𝑦 ⊩ 𝑞 and 𝔐, 𝑧 ⊩ 𝑟. Since 𝑥 = inf{𝑦, 𝑧} implies 𝑥 = inf{𝑥, 𝑦}, it follows that
𝔐, 𝑥 ⊩ ⟨inf⟩𝑝𝑞.

(Sy.) Assume 𝔐, 𝑥 ⊩ 𝑝. Now, let 𝑦 be arbitrary such that 𝑥 ≤ 𝑦. Since 𝔐, 𝑥 ⊩ 𝑝 it follows
that 𝔐, 𝑦 ⊩ P 𝑝, so since 𝑦 was an arbitrary element greater than 𝑥 it follows that
𝔐, 𝑥 ⊩ G P 𝑝. On the other hand, take any 𝑦 such that 𝑦 ≤ 𝑥; then 𝔐, 𝑦 ⊩ F 𝑝, so
𝔐, 𝑥 ⊩ H F 𝑝.

(K) We show one instance:

( [sup] (𝑝 → 𝑞)𝑟) → ([sup]𝑝𝑟 → [sup]𝑞𝑟).

Assume 𝔐, 𝑥 ⊩ [sup] (𝑝 → 𝑞)𝑟, so for every 𝑦, 𝑧 such that 𝑥 = sup{𝑦, 𝑧} we have
𝔐, 𝑦 ⊩ 𝑝 → 𝑞 or 𝔐, 𝑧 ⊩ 𝑟. Now assume 𝔐, 𝑥 ⊩ [sup]𝑝𝑟, so for every 𝑢, 𝑣 such that
𝑥 = sup{𝑢, 𝑣} we have𝔐, 𝑢 ⊩ 𝑝 or𝔐, 𝑣 ⊩ 𝑟. We need to show𝔐, 𝑥 ⊩ [sup]𝑞𝑟. So let
𝑦, 𝑧 be arbitrary such that 𝑥 = sup{𝑦, 𝑧}. Since 𝑥 = sup{𝑦, 𝑧}, we have 𝔐, 𝑦 ⊩ 𝑝 → 𝑞

or 𝔐, 𝑧 ⊩ 𝑟. In case of the latter, we are done, so assume 𝔐, 𝑦 ⊩ 𝑝 → 𝑞. Then
𝔐, 𝑥 ⊩ [sup]𝑝𝑟 and 𝑥 = sup{𝑦, 𝑧} imply 𝔐, 𝑦 ⊩ 𝑝 or 𝔐, 𝑧 ⊩ 𝑟, and again, in case of
the latter, we are done. If 𝔐, 𝑦 ⊩ 𝑝, then 𝔐, 𝑦 ⊩ 𝑝 → 𝑞 implies 𝔐, 𝑦 ⊩ 𝑞. Hence
𝔐, 𝑥 ⊩ [sup]𝑞𝑟.

Lastly, we check whether the rule of generalization preserves validity. We again show one
instance: Assume ⊩ 𝜑. We must show that for any 𝜓 ∈ L𝑇 : ⊩ [inf]𝜑𝜓. So let 𝔐 be
an arbitrary poset model and 𝑥 ∈ 𝑊 . Let 𝑦, 𝑧 be arbitrary so that 𝑥 = inf{𝑦, 𝑧}. We have
𝔐, 𝑦 ⊩ 𝜑, so 𝔐, 𝑥 ⊩ [inf]𝜑𝜓. □

3.2 canonical model and auxiliary lemmas

To prove completeness, we will use a similar approach to the one presented in [17, Section 2].
To avoid redundancy, we will omit some proofs that are identical (or nearly so), instead
focusing on the aspects that provide insight into the relation between ⟨sup⟩ and ⟨inf⟩ in our
extended system.

We begin by constructing the canonical model. However, this canonical model lacks the
properties required to establish the necessary truth lemma for the completeness proof; in
particular, the underlying frame is not a poset frame where the canonical relations refer to
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the supremum and infimum induced by the ordering those relations induce. We therefore
make use of the step-by-step method (see [10]).

Definition 3.2.1. Let 𝑊TIL be the set that contains all maximally consistent TIL-sets. Let
𝐶sup and 𝐶inf be the two induced ternary relations of the canonical TIL-frame:

𝐶sup Γ ΔΘ ⇐⇒ ∀ 𝛿 ∈ Δ, 𝜃 ∈ Θ (⟨sup⟩𝛿𝜃 ∈ Γ),

𝐶inf Γ ΔΘ ⇐⇒ ∀ 𝛿 ∈ Δ, 𝜃 ∈ Θ (⟨inf⟩𝛿𝜃 ∈ Γ).

We define the following binary relation on the canonical frame:

≤pre := {(Δ, Γ) ∈ 𝑊TIL ×𝑊TIL | 𝐶sup Γ Γ Δ}.

It may appear bizarre that our definition of ≤pre only depends on 𝐶sup, and indeed we
will need that it admits an equivalent characterization in terms of 𝐶inf:

≤pre := {(Δ, Γ) ∈ 𝑊TIL ×𝑊TIL | 𝐶inf ΔΔ Γ}. (1)

To show this, we rely on two auxiliary lemmas (Lemma 3.2.1(1) and (2)). The equivalence
itself is given by Lemma 3.2.1(3), while Lemma 3.2.1(4), (5) and (6) are needed for later
proofs.

Lemma 3.2.1. 1. 𝑝 → P 𝑝 and 𝑝 → F 𝑝 are derivable in TIL.

2. ∀Γ,Δ,Θ ∈ 𝑊TIL : (𝐶sup Γ ΔΘ iff 𝐶sup ΓΘΔ) and (𝐶inf Γ ΔΘ iff 𝐶inf ΓΘΔ).

3. ∀Γ,Δ ∈ 𝑊TIL : 𝐶sup Γ Γ Δ iff 𝐶inf ΔΔ Γ.

4. ∀Γ,Δ ∈ 𝑊TIL : Δ ≤pre Γ iff (∀ 𝛿 ∈ Δ : P 𝛿 ∈ Γ and ∀ 𝛾 ∈ Γ : F 𝛾 ∈ Δ).

5. ≤pre is a preorder.

6. ∀Γ,Δ,Θ ∈ 𝑊TIL : (𝐶sup Γ ΔΘ only if Δ ≤pre ΓΘ ≤pre Γ) and (𝐶inf Γ ΔΘ only if
Γ ≤pre Δ, Γ ≤pre Θ).

We explicitly present the proof of Lemma 3.2.1(3), as the proofs of the other statements
are analogous to the proofs of Observation 2.5 and Lemma 2.6 in [17]. In each case, the
version involving the ⟨inf⟩ operator is proven in the same way as the version involving ⟨sup⟩.

Proof of Lemma 3.2.1 (3). Throughout, we use the standard properties of TIL-maximally
consistent sets (MCSs), which hold because TIL is a normal modal logic.

Assume 𝐶sup Γ Γ Δ. To show that 𝐶inf ΔΔ Γ, let 𝛿 ∈ Δ and 𝛾 ∈ Γ be arbitrary. (Sy.) and
uniform substitution entail

𝛾 → ¬⟨sup⟩(¬⟨inf⟩𝛾⊤)⊤ ∈ Γ.

Since 𝛾 ∈ Γ, modus ponens yields

¬⟨sup⟩(¬⟨inf⟩𝛾⊤)⊤ ∈ Γ.

Consistency then forces
⟨sup⟩(¬⟨inf⟩𝛾⊤)⊤ ∉ Γ.
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By Lemma 3.2.1 (2), 𝐶sup Γ Γ Δ implies 𝐶sup Γ Δ Γ, so it follows from

⟨sup⟩(¬⟨inf⟩𝛾⊤)⊤ ∉ Γ

that
¬⟨inf⟩𝛾⊤ ∉ Δ or ⊤ ∉ Γ.

But ⊤ ∈ Γ, so ¬⟨inf⟩𝛾⊤ ∉ Δ, hence ⟨inf⟩𝛾⊤ ∈ Δ by maximality of Δ. Since 𝛿 ∈ Δ, an
application of US and (Dk2) yields ⟨inf⟩𝛿𝛾 ∈ Δ. Hence 𝐶inf ΔΔ Γ.

The other direction is proven similarly. □

In case 𝐶sup and 𝐶inf would correspond to the infimum and supremum relation with
respect to ≤pre, and if ≤pre was a partial order instead of merely a preorder, we would have
completeness in our pocket. The next examples show that neither are the case. We first show
that ≤pre is not antisymmetric:

Example 3.2.2. Consider the following model:

1. 𝑊 = Z,

2. ≤ is the standard less than or equal relation on the integers,

3. 𝑉 : P → P(𝑊) is defined as 𝑉 (𝑝) = {𝑧 ∈ Z : 𝑧 is even }.

For every 𝑖 ∈ Z put

Δ𝑖 := {𝜑 ∈ L𝑇 | 𝑖 ⊩ 𝜑, 𝑖 is even}, Γ𝑖 := {𝜑 ∈ L𝑇 | 𝑖 ⊩ 𝜑, 𝑖 is odd}.

It is easily seen that
· · · = Δ−2 = Δ0 = Δ2 = · · · , (2)

and
· · · = Γ−3 = Γ−1 = Γ1 = · · · . (3)

Our goal is to show
Δ0 ≤pre Γ1 and Γ1 ≤pre Δ0,

while Δ0 ≠ Γ1, thus showing that ≤pre is not anti-symmetric.
We have 0 ⊩ 𝑝 and 1 ⊩ ¬𝑝, hence 𝑝 ∈ Δ0 and ¬𝑝 ∈ Γ1, so Δ0 ≠ Γ1.
Now take 𝛿 ∈ Δ0, i.e. 0 ⊩ 𝛿. Because −1 ≤ 0 ≤ 1,

−1 ⊩ F 𝛿 and 1 ⊩ P 𝛿,

so by (3) F 𝛿, P 𝛿 ∈ Γ1.
Conversely, for 𝛾 ∈ Γ1 (so 1 ⊩ 𝛾) we have 0 ≤ 1 ≤ 2, hence

0 ⊩ F 𝛾 and 2 ⊩ P 𝛾.

It follows from (2) that F 𝛾, P 𝛾 ∈ Δ0.
Lemma 3.2.1(4) yields Δ0 ≤pre Γ1 and Γ1 ≤pre Δ0.

Secondly, we give an example showing that 𝐶inf is not the infimum relation of ≤pre.
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Example 3.2.3. Suppose we have MCSs Γ andΔ for which it holds that𝐶inf Γ ΔΔ. If𝐶sup and
𝐶inf matched the supremum and infimum relations induced by ≤pre, we would have Γ ≤pre Δ

and Δ ≤pre Γ. We show that 𝐶inf Γ ΔΔ can hold without Δ ≤pre Γ being true. Consider the
following model:

𝑣1 ⊩ ¬𝑝 𝑣2 ⊩ ¬𝑝

𝑤 ⊩ 𝑝

And let 𝑝 be the only propositional variable that the states satisfy / falsify. We define the
following MCSs:

Γ :=
{
𝜑 ∈ L𝑇 | 𝔐,𝑤 ⊩ 𝜑

}
Δ :=

{
𝜑 ∈ L𝑇 | 𝔐, 𝑣1 ⊩ 𝜑

}
=
{
𝜑 ∈ L𝑇 | 𝔐, 𝑣2 ⊩ 𝜑

}
We see that 𝑝 ∈ Γ, but F𝑝 ∉ Δ, so by Lemma 3.2.1(4) we get that Δ ≰pre Γ. On the other
hand, since 𝑤 = inf{𝑣1, 𝑣2} we see that 𝐶inf Γ ΔΔ holds.

3.3 repair lemmas

To prove that syntactic consistency implies satisfiability (and hence completeness), we use
the step-by-step defect–repair construction to build a model 𝔐 whose worlds are labeled
by a function 𝑙, assigning each world a MCS. The objective is then to ensure that the truth
lemma for labeled worlds

𝔐, 𝑥 ⊩ 𝜑 ⇐⇒ 𝜑 ∈ 𝑙 (𝑥)

holds.
Concretely, we start with a single world labeled by our initial MCS Γ, so that if the truth

lemma holds, then we have our satisfying model. For the truth lemma to hold, a world’s label
𝑙 (𝑥) can dictate that it should satisfy some formula involving ⟨sup⟩ or ⟨inf⟩; for example, if
⟨sup⟩𝜑𝜓 ∈ 𝑙 (𝑥), then 𝑥 should satisfy ⟨sup⟩𝜑𝜓.

If the model under construction does not yet provide points witnessing this (so 𝑥 ⊮
⟨sup⟩𝜑𝜓), we call this shortfall a defect. These defects (Definitions 3.3.2, 3.3.3, 3.3.4
and 3.3.5) are repaired in stages. In case of the defect we just described, it is resolved
by adding two fresh worlds 𝑦 and 𝑧, such that 𝑥 = sup{𝑦, 𝑧}, 𝜑 ∈ 𝑙 (𝑦) and 𝜓 ∈ 𝑙 (𝑧).

That the procedures we describe actually resolve the defects is proven in their respective
repair lemmas (see Lemma 3.3.1 and 3.3.2). Iterating this process until no defects remain
yields our full model.

We will mostly use the outline presented in Section 4.6 of [10] and Section 2.2 of [17].
We now turn to the formal definition of the tuples (𝑙,≤) that at each stage determine the
‘approximating frame’:

Definition 3.3.1. Let𝑊 be a countable set, and P the set of all tuples (𝑙,≤) such that:

1. 𝑙 is a partial function from𝑊 to the set of all MCSs,𝑊TIL.

2. dom(𝑙) is finite.

3. ≤ is a partial order on dom(𝑙), and the identity relation on𝑊 \ dom(𝑙).

4. If 𝑦 ≤ 𝑥 then 𝑙 (𝑦) ≤pre 𝑙 (𝑥) (whenever 𝑥, 𝑦 ∈ dom(𝑙)).
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There are four different types of defects that can occur. In addition to the two defects
described in Definitions 2.8 and 2.9 of [17], there are now two additional defects involving
the new ⟨inf⟩ operator. To be complete, we define all possible defects that can occur:

Definition 3.3.2 (⟨sup⟩-defect). Let (𝑙,≤) ∈ P. Then a pair (⟨sup⟩𝜑𝜓, 𝑥) is a ⟨sup⟩-defect
(of (𝑙,≤)) iff

(i) 𝑥 ∈ dom(𝑙)

(ii) ⟨sup⟩𝜑𝜓 ∈ 𝑙 (𝑥), and

(iii) there are no 𝑦, 𝑧 ∈ dom(𝑙) such that:

𝜑 ∈ 𝑙 (𝑦), 𝐶sup 𝑙 (𝑥) 𝑙 (𝑦) 𝑙 (𝑧), ↑𝑦 = ↑𝑥 ∪ {𝑦} ∪ (↑𝑦 ∩ { 𝑤 | ↑𝑤 ∩ ↑𝑥 = ∅}),
𝜓 ∈ 𝑙 (𝑧), 𝑥 = sup{𝑦, 𝑧}, ↑𝑧 = ↑𝑥 ∪ {𝑧} ∪ (↑𝑧 ∩ { 𝑤 | ↑𝑤 ∩ ↑𝑥 = ∅}),

where ↑𝑤 := {𝑣 | 𝑤 ≤ 𝑣}.

Definition 3.3.3 (⟨inf⟩-defect). Let (𝑙,≤) ∈ P. Then a pair (⟨inf⟩𝜑𝜓, 𝑥) denotes an ⟨inf⟩-
defect (of (𝑙,≤)) iff

(i) 𝑥 ∈ dom(𝑙)

(ii) ⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥), and

(iii) there are no 𝑦, 𝑧 ∈ dom(𝑙) such that:

𝜑 ∈ 𝑙 (𝑦), 𝐶inf 𝑙 (𝑥) 𝑙 (𝑦) 𝑙 (𝑧), ↓ 𝑦 =↓ 𝑥 ∪ {𝑦} ∪ (↓ 𝑦 ∩ { 𝑤 |↓ 𝑤 ∩ ↓ 𝑥 = ∅}),
𝜓 ∈ 𝑙 (𝑧), 𝑥 = inf{𝑦, 𝑧}, ↓ 𝑧 =↓ 𝑥 ∪ {𝑧} ∪ (↓ 𝑧 ∩ { 𝑤 |↓ 𝑤 ∩ ↓ 𝑥 = ∅}),

where ↓ 𝑤 := {𝑣 | 𝑣 ≤ 𝑤}.

Definition 3.3.4 (¬⟨sup⟩-defect). Let (𝑙,≤) ∈ P. Then a quadruple (¬⟨sup⟩𝜑𝜓, 𝑥, 𝑦, 𝑧)
denotes a ¬⟨sup⟩-defect (of (𝑙,≤)) iff:

𝑥 ∈ dom(𝑙), 𝑥 = sup{𝑦, 𝑧}, ¬⟨sup⟩𝜑𝜓 ∈ 𝑙 (𝑥),
𝜑 ∈ 𝑙 (𝑦), 𝜓 ∈ 𝑙 (𝑧).

Definition 3.3.5 (¬⟨inf⟩-defect). Let (𝑙,≤) ∈ P. Then a quadruple (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) de-
notes a ¬⟨inf⟩-defect (of (𝑙,≤)) iff:

𝑥 ∈ dom(𝑙), 𝑥 = inf{𝑦, 𝑧}, ¬⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥),
𝜑 ∈ 𝑙 (𝑦), 𝜓 ∈ 𝑙 (𝑧).

[17] faces the same defects, but constrained to (¬)⟨sup⟩-defects. The question is whether
a similar approach to resolving the defects in this setting would also work. It is not difficult to
see that in the case of the ⟨sup⟩- and ⟨inf⟩-defects, the same solution as presented in Lemma
2.11 of [17] can be applied. For the sake of completeness, we discuss how an ⟨inf⟩-defect is
repaired as an illustrative case.

Assume (⟨inf⟩𝜑𝜓, 𝑥) denotes an ⟨inf⟩-defect of (𝑙,≤) ∈ P. Then ⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥), but no
𝑦, 𝑧 ∈ dom(𝑙) satisfy the conditions in clause (iii) of definition 3.3.3, i.e. there are no 𝑦, 𝑧
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such that 𝑥 = inf{𝑦, 𝑧}, 𝜑 ∈ 𝑙 (𝑦) and 𝜓 ∈ 𝑙 (𝑧). Since 𝑙 (𝑥) is a MCS of the canonical model,
the existence lemma guarantees that there are MCSs Δ and Θ such that 𝐶inf 𝑙 (𝑥) ΔΘ, 𝜑 ∈ Δ

and 𝜓 ∈ Θ. Take fresh, distinct 𝑦, 𝑧 ∈ 𝑊 , place them directly above 𝑥 and extend 𝑙 to 𝑙′ by
adding 𝑙′(𝑦) = Δ, 𝑙′(𝑧) = Θ. We will show in Lemma 3.3.1 that the resulting pair (𝑙′,≤′) is
still in P and that the defect is indeed resolved.

Lemma 2.12 of [17] repairs ¬⟨sup⟩-defects by adding dummy states without labels. This
tactic fails here: since the ⟨sup⟩ and ⟨inf⟩ modalities act in opposite directions, every world in
the model becomes reachable by looking ‘up’ and ‘down’ with the ⟨inf⟩ and ⟨sup⟩ operators.
It thus matters with which MCS the new points get labeled. To resolve this, we duplicate the
label of the point that constitutes the defect we are resolving.

To sketch how the updated ¬⟨inf⟩- and ¬⟨sup⟩-repair lemmas work, we briefly discuss
the former.

Assume (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) constitutes a ¬⟨inf⟩-defect. Then ¬⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥) (so the
label of 𝑥 dictates that it does not satisfy ⟨inf⟩𝜑𝜓), but at the same time there are 𝑦, 𝑧 such
that 𝜑 ∈ 𝑙 (𝑦), 𝜓 ∈ 𝑙 (𝑧) and 𝑥 = inf{𝑦, 𝑧} contradicting this. To resolve this, we modify
the model such that 𝑥 is no longer the infimum of 𝑦 and 𝑧 by adding a duplicate of 𝑥 that
is incomparable with 𝑥 itself. That the resulting tuple is still in P is proven formally in
lemma 3.3.2.

We provide illustrations of the four repair lemmas to give an intuition:

•
𝑥

⟨sup⟩𝜑𝜓 ∈ 𝑙 (𝑥)
⟨sup⟩−repair

⇒ •
𝑥

⟨sup⟩𝜑𝜓 ∈ 𝑙 (𝑥)

•𝑦

𝜑 ∈ 𝑙 (𝑦)
• 𝑧

𝜓 ∈ 𝑙 (𝑧)

•𝑦
𝜑 ∈ 𝑙 (𝑦)

• 𝑧
𝜓 ∈ 𝑙 (𝑧)

•
𝑥

⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥)
⟨inf⟩−repair

⇒ •
𝑥

⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥)
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•
𝑥

¬⟨sup⟩𝜑𝜓 ∈ 𝑙 (𝑥)
¬⟨sup⟩−repair

⇒ •𝑥
¬⟨sup⟩𝜑𝜓 ∈ 𝑙 (𝑥)

• 𝑑
𝑙 (𝑑) = 𝑙 (𝑥)

•𝑦

𝜑 ∈ 𝑙 (𝑦)
• 𝑧

𝜓 ∈ 𝑙 (𝑧)
•𝑦

𝜑 ∈ 𝑙 (𝑦)
• 𝑧

𝜓 ∈ 𝑙 (𝑧)

•𝑦
𝜑 ∈ 𝑙 (𝑦)

• 𝑧
𝜓 ∈ 𝑙 (𝑧) ¬⟨inf⟩−repair

⇒ •𝑦
𝜑 ∈ 𝑙 (𝑦)

• 𝑧
𝜓 ∈ 𝑙 (𝑧)

•𝑥 ¬⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥) •𝑥

¬⟨inf⟩𝜑𝜓 ∈ 𝑙 (𝑥)
• 𝑑

𝑙 (𝑑) = 𝑙 (𝑥)

We will only work out the ⟨inf⟩- and ¬⟨inf⟩-repair lemmas as explanatory cases. The
⟨sup⟩- and ¬⟨sup⟩-repair lemmas are in fact mirrored versions of these ones. For a worked
out version of the ⟨sup⟩-repair lemma we refer to Lemma 2.11 of [17].

Lemma 3.3.1 (⟨inf⟩-repair). Let (⟨inf⟩𝜑𝜓, 𝑥) be an ⟨inf⟩-defect of (𝑙,≤). Then we can
resolve this defect by extending (𝑙,≤) to (𝑙′,≤′) in the following way:

Take distinct 𝑦, 𝑧 ∈ 𝑊 \ dom(𝑙) and let:

𝑙′ := 𝑙 ∪ {(𝑦, Γ), (𝑧,Δ)}, ≤′ := ≤ ∪ {(𝑢, 𝑦), (𝑢, 𝑧) | 𝑢 ≤ 𝑥},
𝜑 ∈ Γ,𝜓 ∈ Δ, 𝐶inf 𝑙 (𝑥) Γ Δ.

Then 𝑦, 𝑧 witness that (⟨inf⟩𝜑𝜓, 𝑥) does not form an ⟨inf⟩-defect anymore.

Proof. Take fresh, distinct 𝑦, 𝑧 ∈ 𝑊 and map them to Γ and Δ respectively, which we know
exist due to the existence lemma:

If ⟨inf⟩𝜑𝜓 ∈ Θ, then there exist Γ, Δ such that 𝜑 ∈ Γ, 𝜓 ∈ Δ and 𝐶inf ΘΓΔ.

We must show that (𝑙′,≤′) ∈ P and that the defect is resolved. That the defect is resolved
follows clearly from how we define (𝑙′,≤′). Also conditions 1.-3. clearly hold for (𝑙′,≤′).
The only condition we check is 4:

• The inequalities we added are of the form 𝑢 ≤ 𝑦 and 𝑢 ≤ 𝑧 for 𝑢 ≤ 𝑥, so we can focus
on the subset {(𝑢, 𝑦), (𝑢, 𝑧) | 𝑢 ≤ 𝑥} ⊆ ≤′ and the two inequalities 𝑦 ≤′ 𝑦 and 𝑧 ≤′ 𝑧.

(𝑦 ≤′ 𝑦) Since≤pre is a preorder, it is in particular reflexive. It follows that 𝑙′(𝑦) ≤pre 𝑙
′(𝑦).
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(𝑥 ≤′ 𝑦) We know that 𝐶inf 𝑙
′(𝑥) 𝑙′(𝑦) 𝑙′(𝑧). We have proven in Lemma 3.2.1 that

𝐶inf Γ ΔΘ only if Γ ≤pre Δ, Γ ≤pre Θ, so it follows that 𝑙′(𝑥) ≤pre 𝑙
′(𝑦).

(𝑢 ≤′ 𝑦) The only cases left are elements 𝑢 < 𝑥. Since ≤pre is a preorder, it is in partic-
ular transitive. So 𝑙′(𝑢) ≤pre 𝑙

′(𝑥) combined with the previous result (namely
𝑙′(𝑥) ≤pre 𝑙

′(𝑦)) yields 𝑙′(𝑢) ≤pre 𝑙
′(𝑦).

The same reasoning can be repeated for 𝑧. □

Lemma 3.3.2 (¬⟨inf⟩ repair lemma). Let (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) be a ¬⟨inf⟩-defect of
(𝑙,≤) ∈ P. Then we can resolve this defect by extending (𝑙,≤) to (𝑙′,≤′) ∈ P in the following
way:

Take 𝑑 ∈ 𝑊 \ dom(𝑙) and let:

𝑙′ := 𝑙 ∪ {(𝑑, 𝑙 (𝑥))}, ≤′ := ≤ ∪ {(𝑑, 𝑢), (𝑑, 𝑣) | 𝑦 ≤ 𝑢, 𝑧 ≤ 𝑣}.

So we get 𝑥 ≠ inf{𝑦, 𝑧}.

Proof. Take a fresh 𝑑 ∈ 𝑊 and map it to 𝑙 (𝑥). We must show that (𝑙′,≤′) ∈ P and that the
defect is resolved.

• It is not difficult to show that (𝑙′,≤′) ∈ P, the only step we highlight is showing that
𝑦 ≤′ 𝑥 implies 𝑙 (𝑦) ≤pre 𝑙 (𝑥) since this is where we see that the new way of labeling
(different from what is done in [17]) plays a role. We again only check the subset
{(𝑑, 𝑢), (𝑑, 𝑣) : 𝑦 ≤ 𝑢, 𝑧 ≤ 𝑣} ⊆ ≤′ and the inequality 𝑑 ≤′ 𝑑. We go through all the
cases:

(𝑑 ≤′ 𝑑) 𝑙 (𝑑) ≤pre 𝑙 (𝑑) follows from reflexivity of ≤pre.
(𝑑 ≤′ 𝑦) Since 𝑑 ≤′ 𝑦, we should show that 𝑙 (𝑑) = 𝑙 (𝑥) ≤pre 𝑙 (𝑦). We know that (𝑙,≤) ∈

P. So since we assumed 𝑥 = inf≤{𝑦, 𝑧}, we have 𝑥 ≤ 𝑦, so 𝑙 (𝑑) = 𝑙 (𝑥) ≤pre 𝑙 (𝑦).
We can replace 𝑦 by 𝑧 and repeat the same reasoning.

(𝑑 ≤′ 𝑢) If 𝑦 < 𝑢 or 𝑧 < 𝑢 we get 𝑙 (𝑑) ≤pre 𝑙 (𝑢) by transitivity of ≤pre.

• We show that the ¬⟨inf⟩ defect is resolved by showing that 𝑑 ≰′ 𝑥 (while 𝑑 is a lower
bound of {𝑦, 𝑧}), which contradicts that 𝑥 = inf≤′{𝑦, 𝑧}.
Assume 𝑑 ≤′ 𝑥, then by definition of≤′ this could only be the case if 𝑥 = 𝑦, 𝑥 = 𝑧, 𝑥 > 𝑦
or 𝑥 > 𝑧. The latter two cases are impossible by antisymmetry of the ordering (≤ is a
partial order, not merely a preorder). For the former two cases, assume without loss of
generality that 𝑥 = 𝑦. Then since 𝑥 ≤ 𝑧, we get 𝑙 (𝑥) ≤pre 𝑙 (𝑧). So (1)𝐶sup 𝑙 (𝑧) 𝑙 (𝑧) 𝑙 (𝑥)
and (2) 𝐶inf 𝑙 (𝑥) 𝑙 (𝑥) 𝑙 (𝑧). By (2) we get 𝐶inf 𝑙 (𝑥) 𝑙 (𝑦) 𝑙 (𝑧) since 𝑙 (𝑦) = 𝑙 (𝑥), but then
we cannot have had a ¬⟨inf⟩ defect, so we derived a contradiction. □

3.4 completeness proof

Theorem 3.4.1 (Completeness). TIL is strongly complete with respect to TIL.

We want to show that if Γ∗ is a TIL-consistent set, then we can find a model defined on
a poset-frame such that there is 𝑥 ∈ 𝔐 for which 𝔐, 𝑥 ⊩ 𝛾 for every 𝛾 ∈ Γ∗. The labeled
models defined by (𝑙,≤) will approximate such a model better at each step. We now explain
how this approximation works.
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First note that we can extend Γ∗ to a TIL-MCS Γ. Let 𝑊 be an arbitrary countable set
and let 𝑥 ∈ 𝑊 be arbitrary. Define 𝑙0 := {(𝑥, Γ)} and let ≤0 be the identity relation on 𝑊 .
Then (𝑙0,≤0) satisfies all the conditions of Definition 3.3.1.

It is possible to enumerate all the potential ⟨sup⟩-, ⟨inf⟩-, ¬⟨sup⟩- and ¬⟨inf⟩-defects
since the defects are defined as finite tuples, L𝑇 is a countable language and𝑊 is countable.
We construct a sequence

(𝑙0,≤0), ..., (𝑙𝑛,≤𝑛), ...

with 𝑙𝑛 ⊆ 𝑙𝑛+1 and ≤𝑛⊆≤𝑛+1, by constructing from (𝑙𝑛,≤𝑛) the next element in the sequence
(𝑙𝑛+1,≤𝑛+1) by taking the least tuple in our enumeration constituting a defect for (𝑙𝑛,≤𝑛),
and applying the corresponding repair lemma to it.

Let
(𝑙𝜔 ,≤𝜔) :=

(⋃
𝑛∈N

𝑙𝑛,
⋃
𝑛∈N

≤𝑛

)
,

and let 𝑉 (𝑝) := {𝑥 ∈ dom(𝑙𝜔) | 𝑝 ∈ 𝑙𝜔 (𝑥)}. To prove completeness, we want to prove the
following:

Lemma 3.4.2 (Truth Lemma for labeled points).

∀ 𝑥 ∈ dom(𝑙𝜔), ∀ 𝜑 ∈ L𝑇 : (𝑊 ,≤𝜔 ,𝑉), 𝑥 ⊩ 𝜑 ⇔ 𝜑 ∈ 𝑙𝜔 (𝑥)

Proof. We prove the lemma by induction on the complexity of 𝜑. The base case and induction
steps for ¬, ∧ are routine arguments. We therefore focus on the cases of ⟨sup⟩ and ⟨inf⟩:

⇒: Assume (𝑊 ,≤𝜔 ,𝑉), 𝑥 ⊩ ⟨sup⟩𝜑𝜓. By definition, there exist 𝑦, 𝑧 ∈ 𝑊 such that

(𝑊 ,≤𝜔 ,𝑉), 𝑦 ⊩ 𝜑, (𝑊 ,≤𝜔 ,𝑉), 𝑧 ⊩ 𝜓 and 𝑥 = sup
𝜔

{𝑦, 𝑧}.

We know that 𝑦, 𝑧 ∈ dom(𝑙𝜔), since if not, then as ≤𝜔 is the identity relation on
𝑊 \ dom(𝑙𝜔), either 𝑥 = 𝑦 and / or 𝑥 = 𝑧, contradicting 𝑥 ∈ dom(𝑙𝜔). By the induction
hypothesis, it follows that 𝜑 ∈ 𝑙𝜔 (𝑦) and 𝜓 ∈ 𝑙𝜔 (𝑧). To conclude that ⟨sup⟩𝜑𝜓 ∈ 𝑙𝜔 (𝑥),
it would suffice that (𝑙𝜔 ,≤𝜔) does not contain any ¬⟨sup⟩-defects, which we will
address later.

⇐: Assume now that ⟨sup⟩𝜑𝜓 ∈ 𝑙𝜔 (𝑥). Then, again provided that (𝑙𝜔 ,≤𝜔) does not contain
any ⟨sup⟩-defects, there exist 𝑦, 𝑧 ∈ dom(𝑙𝜔) such that

𝑥 = sup
𝜔

{𝑦, 𝑧}, 𝜑 ∈ 𝑙𝜔 (𝑦) and 𝜓 ∈ 𝑙𝜔 (𝑧).

By the induction hypothesis, this implies that (𝑊 ,≤𝜔 ,𝑉), 𝑦 ⊩ 𝜑 and (𝑊 ,≤𝜔 ,𝑉), 𝑧 ⊩ 𝜓,
so by definition (𝑊 ,≤𝜔 ,𝑉), 𝑥 ⊩ ⟨sup⟩𝜑𝜓.

The case of ⟨inf⟩ is proven similarly. □

As pointed out in the proof, once we show that (𝑙𝜔 ,≤𝜔) does not contain any defects,
the truth lemma holds, and completeness follows. The argument to show this follows the
proof of Theorem 2.13 from [17], where necessary adjustments have to be made to handle
the ⟨inf⟩-operator. For the sake of completeness, we include most parts of the proof here.

Lemma 3.4.3. (𝑙𝜔 ,≤𝜔) does not have any ⟨sup⟩, ¬⟨sup⟩, ⟨inf⟩ or ¬⟨inf⟩ defect.
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To prove this statement we first need some auxiliary lemmas.

Lemma 3.4.4. Let 𝑛 ∈ 𝜔. If

↑𝑛2 𝑦 = ↑𝑛 𝑥 ∪ {𝑦} ∪
(
↑𝑛 𝑦 ∩ { 𝑤 | ↑𝑛 𝑤 ∩ ↑𝑛 𝑥 = ∅}

)
,

then the same equality holds for every 𝑚 ≥ 𝑛, hence in particular

↑𝜔 𝑦 = ↑𝜔 𝑥 ∪ {𝑦} ∪
(
↑𝜔 𝑦 ∩ { 𝑤 | ↑𝜔 𝑤 ∩ ↑𝜔 𝑥 = ∅}

)
.

Proof. We argue by induction on 𝑚 ≥ 𝑛.
Base case: Holds by assumption.

Induction step: Assume the equality is true at stage 𝑚; we show it remains true at stage
𝑚 + 1, i.e. we show

↑𝑚+1 𝑦 =↑𝑚+1 𝑥 ∪ {𝑦} ∪ (↑𝑚+1 𝑦 ∩ { 𝑤 | ↑𝑚+1 𝑤 ∩ ↑𝑚+1 𝑥 = ∅}).

We consider each possible repair in turn and verify that, if that repair is carried out at
stage 𝑚, the equality is still true afterwards.

⟨sup⟩-repair: The fresh points are only below existing points, so the equality still holds.
⟨inf⟩-repair: Let (⟨inf⟩𝜑𝜓, 𝑐) be the defect that is resolved at stage 𝑚 and let 𝑎, 𝑏 be the

two fresh points. We discuss the three possible positions of 𝑐 relative to 𝑥
and 𝑦.

(i) Suppose 𝑐 ≥𝑚 𝑦 but 𝑐 ≱𝑚 𝑥. Then since

≤𝑚+1 = ≤𝑚 ∪ {(𝑢, 𝑎), (𝑢, 𝑏) | 𝑢 ≤ 𝑐},

𝑎, 𝑏 ∈ ↑𝑚+1 𝑦, 𝑎, 𝑏 ∉ ↑𝑚+1 𝑥 and, because 𝑎, 𝑏 ≱𝑚 𝑥, we also have

𝑎, 𝑏 ∈ (↑𝑚+1 𝑦 ∩ { 𝑤 | ↑𝑚+1 𝑤 ∩ ↑𝑚+1 𝑥 = ∅}).

(ii) Suppose 𝑐 ≥𝑚 𝑥. Then 𝑎, 𝑏 ∈ ↑𝑚+1 𝑥 ⊆ ↑𝑚+1 𝑦 so the equality holds.
(iii) Suppose 𝑐 ≱𝑚 𝑦. Then 𝑎, 𝑏 ∉ ↑𝑚+1 𝑦 and

𝑎, 𝑏 ∉ ↑𝑚+1 𝑥 ∪ {𝑦} ∪ (↑𝑚+1 𝑦 ∩ { 𝑤 | ↑𝑚+1 𝑤 ∩ ↑𝑚+1 𝑥 = ∅}).

¬⟨sup⟩-repair: Let (¬⟨sup⟩𝜓𝜓′, 𝑎, 𝑏, 𝑐) be the defect that is repaired, introducing one fresh
point 𝑑. Since 𝑎 ≥𝑚 𝑏, 𝑐 and 𝑏 and 𝑐 are incomparable (for assume they
were comparable, then 𝑙 (𝑐) ≥pre 𝑙 (𝑏) or 𝑙 (𝑏) ≥pre 𝑙 (𝑐) would imply that we
cannot have had a ¬⟨sup⟩ defect), the only new inequalities are of the form
𝑢 ≤𝑚+1 𝑑 for 𝑢 ≤𝑚 𝑏 and 𝑢 ≤𝑚 𝑐. We go through all the possible cases:

– If 𝑎 ≤𝑚 𝑦 or 𝑦 is unrelated to 𝑎, 𝑏, 𝑐, then 𝑑 ∉ ↑𝑚+1 𝑦 and 𝑑 ∉ ↑𝑚+1 𝑥,
so the equality still holds at stage 𝑚 + 1.

– If 𝑦 = 𝑏, 𝑥 = 𝑎, then 𝑑 ∈ ↑𝑚+1 𝑦 and 𝑑 ∉ ↑𝑚+1 𝑥. So since ↑𝑚+1 𝑑 = 𝑑,
it follows that 𝑑 ∈ ↑𝑚+1 𝑦 ∩ { 𝑤 | ↑𝑚+1 𝑤 ∩ ↑𝑚+1 𝑥 = ∅} (case where
𝑥 = 𝑎 and 𝑦 = 𝑐 is symmetric).

2 ↑𝑛 𝑦 is defined as {𝑥 : 𝑦 ≤𝑛 𝑥}
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– If 𝑏 and / or 𝑐 are greater than or equal to 𝑥 under ≤𝑚, it follows that
𝑑 ∈ ↑𝑚+1 𝑥 ⊆ ↑𝑚+1 𝑦, so the equality still holds.

– If 𝑏 and / or 𝑐 are greater than or equal to 𝑦 under ≤𝑚 and unrelated
to 𝑥, then 𝑑 ∈ ↑𝑚+1 𝑦 and 𝑑 ∉ ↑𝑚+1 𝑥, so again since ↑𝑚+1 𝑑 = 𝑑 it
follows that 𝑑 ∈ ↑𝑚+1 𝑦 ∩ { 𝑤 | ↑𝑚+1 𝑤 ∩ ↑𝑚+1 𝑥 = ∅} which implies
that the equality still holds.

– If 𝑥 = 𝑎 and 𝑏 and 𝑐 are unrelated to 𝑦 then 𝑑 is also unrelated to 𝑥 and
𝑦, so the equality still holds.

We see that in all cases the equality still holds after the repair step.
¬⟨inf⟩-repair: The single fresh point 𝑑 is only below existing points, but not above any, so

the equality still holds.

In every repair, the equality is preserved; therefore it holds at stage 𝑚 + 1, completing
the induction. □

Lemma 3.4.5. Let 𝑛 ∈ 𝜔. If

↓𝑛 𝑦 = ↓𝑛 𝑥 ∪ {𝑦} ∪
(
↓𝑛 𝑦 ∩ { 𝑤 | ↓𝑛 𝑤 ∩ ↓𝑛 𝑥 = ∅}

)
,

then the same equality holds for every 𝑚 ≥ 𝑛, hence in particular

↓𝜔 𝑦 = ↓𝜔 𝑥 ∪ {𝑦} ∪
(
↓𝜔 𝑦 ∩ { 𝑤 | ↓𝜔 𝑤 ∩ ↓𝜔 𝑥 = ∅}

)
.

Proof. Symmetric proof to the previous lemma. □

We now prove auxiliary lemmas stating that once a defect is repaired, it remains repaired
in every subsequent stage of the construction. We start with ⟨sup⟩ defects.

Lemma 3.4.6. Let 𝑥 ∈ dom(𝑙𝑛) and ⟨sup⟩𝜑𝜓 ∈ 𝑙𝑛 (𝑥). If (⟨sup⟩𝜑𝜓, 𝑥) does not constitute a
defect for (𝑙𝑛,≤𝑛), then (⟨sup⟩𝜑𝜓, 𝑥) does not constitute a defect for (𝑙𝑚,≤𝑚) for any 𝑚 ≥ 𝑛,
thus showing that it does not constitute a defect in the limit (𝑙𝜔 ,≤𝜔).

Proof. Because (⟨sup⟩𝜑𝜓, 𝑥) does not constitute a defect at stage 𝑛, there exist witnesses
𝑦, 𝑧 with 𝑙𝑛 (𝑦) = Γ and 𝑙𝑛 (𝑧) = Δ, such that:

𝜑 ∈ Γ, 𝐶sup 𝑙𝑛 (𝑥) Γ Δ, ↑𝑛 𝑦 =↑𝑛 𝑥 ∪ {𝑦} ∪ (↑𝑛 𝑦 ∩ { 𝑤 | ↑𝑛 𝑤 ∩ ↑𝑛 𝑥 = ∅}),
𝜓 ∈ Δ, 𝑥 = sup≤𝑛

{𝑦, 𝑧}, ↑𝑛 𝑧 =↑𝑛 𝑥 ∪ {𝑧} ∪ (↑𝑛 𝑧 ∩ { 𝑤 | ↑𝑛 𝑤 ∩ ↑𝑛 𝑥 = ∅}).

Now let 𝑚 ≥ 𝑛. We show that 𝑦, 𝑧 also witness that (⟨sup⟩𝜑𝜓, 𝑥) is not a defect for
(𝑙𝑚,≤𝑚).

The previous lemma ensures that

↑𝑚 𝑦 =↑𝑚 𝑥 ∪ {𝑦} ∪ (↑𝑚 𝑦 ∩ { 𝑤 |↑𝑚 𝑤 ∩ ↑𝑚 𝑥 = ∅})

and
↑𝑚 𝑧 =↑𝑚 𝑥 ∪ {𝑧} ∪ (↑𝑚 𝑧 ∩ { 𝑤 | ↑𝑚 𝑤 ∩ ↑𝑚 𝑥 = ∅})

for every 𝑚 ≥ 𝑛.
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Since 𝑙𝑚 extends 𝑙𝑛, the only thing that remains to show is that 𝑥 stays the supremum of
{𝑦, 𝑧} throughout the construction; that is, for every 𝑚 ≥ 𝑛 we still have 𝑥 = sup𝑚{𝑦, 𝑧}. We
proceed by induction on 𝑚:

Base case: The claim holds for 𝑚 = 𝑛 by assumption.

Induction step: Assume 𝑥 = sup𝑚{𝑦, 𝑧}. We consider each possible repair that could be
carried out at stage 𝑚 + 1 and verify that it leaves the ordering of 𝑥, 𝑦, 𝑧 unchanged, hence
𝑥 = sup𝑚+1{𝑦, 𝑧}.

The cases of ⟨sup⟩-repair and ¬⟨sup⟩-repair are covered in Theorem 2.13 of [17], we
therefore only cover the two remaining repairs:

⟨inf⟩-repair: Assume (𝑙𝑚+1,≤𝑚+1) was obtained by repairing an ⟨inf⟩-defect for some
world 𝑠 by adding fresh states 𝑦𝑠 and 𝑧𝑠 to the domain of 𝑙𝑚 and extending
the inequality relation as described in the repair lemma

≤𝑚+1 = ≤𝑚 ∪ {(𝑢, 𝑦𝑠), (𝑢, 𝑧𝑠) : 𝑢 ≤ 𝑠} ∪ {(𝑧𝑠, 𝑧𝑠), (𝑦𝑠, 𝑦𝑠)}.

By induction hypothesis and the definition of ≤𝑚+1, the only candidates that
could now lie above {𝑦, 𝑧} but not above 𝑥 under ≤𝑚+1 are 𝑦𝑠 and 𝑧𝑠. Suppose
𝑦, 𝑧 ≤𝑚+1 𝑦𝑠. Then 𝑦, 𝑧 ≤𝑚 𝑠, hence 𝑥 ≤𝑚 𝑠 by the induction hypothesis and
therefore 𝑥 ≤𝑚+1 𝑦𝑠 by definition of ≤𝑚+1. The same reasoning applies to 𝑧𝑠,
so 𝑥 is still the least upper bound of {𝑦, 𝑧}.

¬⟨inf⟩-repair: Assume (𝑙𝑚+1,≤𝑚+1) was obtained by repairing a ¬⟨inf⟩-defect for worlds
𝑠, 𝑦𝑠, 𝑧𝑠 by introducing a fresh state 𝑑𝑠 such that 𝑙𝑚+1(𝑑𝑠) = 𝑙𝑚+1(𝑠) and

≤𝑚+1 = ≤𝑚 ∪ {(𝑑𝑠, 𝑢), (𝑑𝑠, 𝑣) : 𝑦𝑠 ≤𝑚 𝑢, 𝑧𝑠 ≤𝑚 𝑣} ∪ {(𝑑𝑠, 𝑑𝑠)}.

Any new upper bound of {𝑦, 𝑧} would have to be 𝑑𝑠 itself. But 𝑑𝑠 is below
any of the old worlds, not above them, so 𝑑𝑠 ≱𝑚+1 𝑦 and 𝑑𝑠 ≱𝑚+1 𝑧, so the
supremum of {𝑦, 𝑧} is still the same as before.

Thus 𝑥 is still the supremum of {𝑦, 𝑧} at stage 𝑚 + 1, completing the induction.
For every 𝑚 ≥ 𝑛 the same worlds 𝑦 and 𝑧 witness that (⟨sup⟩𝜑𝜓, 𝑥) does not constitute a

defect for (𝑙𝑚,≤𝑚). So in particular it does not constitute a defect for (𝑙𝜔 ,≤𝜔). □

Lemma 3.4.7. Let 𝑥 ∈ dom(𝑙𝑛) and ⟨inf⟩𝜑𝜓 ∈ 𝑙𝑛 (𝑥). If (⟨inf⟩𝜑𝜓, 𝑥) does not constitute a
defect for (𝑙𝑛,≤𝑛), then (⟨inf⟩𝜑𝜓, 𝑥) does not constitute a defect for (𝑙𝑚,≤𝑚) for any 𝑚 ≥ 𝑛,
thus showing that it does not constitute a defect in the limit (𝑙𝜔 ,≤𝜔).

Proof. The proof of this lemma is symmetric to the proof of the previous lemma. □

It remains to prove that any ¬⟨sup⟩- or ¬⟨inf⟩-defect that is repaired, remains repaired in
subsequent stages of the construction. For that we need an auxiliary lemma.

Lemma 3.4.8. Let 𝑛 ∈ 𝜔 and 𝑎, 𝑏 ∈ dom(𝑙𝑛). If 𝑏 ≰𝑛 𝑎 then for every 𝑚 ≥ 𝑛 : 𝑏 ≰𝑚 𝑎;
hence showing 𝑏 ≰𝜔 𝑎.

Proof. We show by induction that for every 𝑚 ≥ 𝑛 we also have 𝑏 ≰𝑚 𝑎.

Base case: The claim holds by assumption.
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Induction case: Assume 𝑏 ≰𝑚 𝑎. If (𝑙𝑚+1,≤𝑚+1) was obtained from (𝑙𝑚,≤𝑚) by carrying
out a ⟨sup⟩- or ¬⟨sup⟩-repair, the claim is proven in Theorem 2.13 from [17], we therefore
only cover the two remaining cases:

⟨inf⟩-repair: Assume (𝑙𝑚+1,≤𝑚+1) is obtained from (𝑙𝑚,≤𝑚) by repairing an ⟨inf⟩-defect
at a world 𝑥, introducing two fresh worlds 𝑦, 𝑧. This gives

≤𝑚+1 = ≤𝑚 ∪ {(𝑢, 𝑦), (𝑢, 𝑧) | 𝑢 ≤𝑚 𝑥}.

It follows that every 𝑢 ≤𝑚 𝑥 now has the two additional successors 𝑦, 𝑧 under
the updated ordering ≤𝑚+1. Since 𝑏 ≰𝑚 𝑎, the relation 𝑏 ≤𝑚+1 𝑎 could only
hold if 𝑎 = 𝑦 or 𝑎 = 𝑧; but that is impossible, because 𝑦 and 𝑧 are fresh.

¬⟨inf⟩-repair: If (𝑙𝑚+1,≤𝑚+1) is obtained from (𝑙𝑚,≤𝑚) by repairing a ¬⟨inf⟩-defect for
𝑥, 𝑦, 𝑧, one fresh state 𝑑 is added and

≤𝑚+1 = ≤𝑚 ∪ {(𝑑, 𝑢), (𝑑, 𝑣) | 𝑦 ≤𝑚 𝑢, 𝑧 ≤𝑚 𝑣}

Thus every element that was above 𝑦 or 𝑧 at stage 𝑚, has a new predecessor
𝑑 at stage 𝑚 + 1. No other inequalities are introduced. Because 𝑏 ≰𝑚 𝑎, the
only way to get 𝑏 ≰𝑚+1 𝑎 would be to have 𝑏 = 𝑑; but that is impossible
because 𝑑 is fresh. Hence 𝑏 ≰𝑚+1 𝑎 as required.

Hence 𝑏 ≰𝑚 𝑎 for every 𝑚 ≥ 𝑛. In particular, if there exists an 𝑛 ∈ 𝜔 with 𝑏 ≰𝑛 𝑎, then
𝑏 ≰𝜔 𝑎. □

With this lemma at hand, we can prove the two last auxiliary lemmas:

Lemma 3.4.9. If (¬⟨sup⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) does not constitute a defect for (𝑙𝑛,≤𝑛) for which
𝑥, 𝑦, 𝑧 ∈ dom(𝑙𝑛) and ¬⟨sup⟩𝜑𝜓 ∈ 𝑙𝑛 (𝑥), 𝜑 ∈ 𝑙𝑛 (𝑦), 𝜓 ∈ 𝑙𝑛 (𝑧), then (¬⟨sup⟩𝜑𝜓, 𝑥, 𝑦, 𝑧)
does not constitute a defect for (𝑙𝑚,≤𝑚) for any 𝑚 ≥ 𝑛, thus not for (𝑙𝜔 ,≤𝜔).

Proof. 𝑥 ≠ sup𝑛{𝑦, 𝑧} holds if either 𝑥 is not an upper bound of {𝑦, 𝑧} (i.e. 𝑦 ≰𝑛 𝑥 and / or
𝑧 ≰𝑛 𝑥), or it is an upper bound but there is 𝑢 ∈ 𝑊 such that 𝑢 ≥𝑛 𝑦, 𝑧 and 𝑥 ≰𝑛 𝑢. In case of
the former, it follows from Lemma 3.4.8 that 𝑦 ≰𝑚 𝑥 and / or 𝑧 ≰𝑚 𝑥. In case of the latter;
≤𝑛 ⊆ ≤𝑚 implies 𝑢 ≥𝑚 𝑦, 𝑧 and Lemma 3.4.8 yields 𝑥 ≰𝑚 𝑢. □

Lemma 3.4.10. If (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) does not constitute a defect for (𝑙𝑛,≤𝑛) for which
𝑥, 𝑦, 𝑧 ∈ dom(𝑙𝑛) and ¬⟨inf⟩𝜑𝜓 ∈ 𝑙𝑛 (𝑥), 𝜑 ∈ 𝑙𝑛 (𝑦),𝜓 ∈ 𝑙𝑛 (𝑧), then (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) does
not constitute a defect for (𝑙𝑚,≤𝑚) for any 𝑚 ≥ 𝑛, thus not for (𝑙𝜔 ,≤𝜔).

Proof. This lemma is proven symmetrically to the previous lemma. □

Using what we proved so far, we can derive the following lemma:

Lemma 3.4.11. If a tuple constitutes a defect at some stage 𝑛, but not at a later stage 𝑚 > 𝑛,
then it never constitutes a defect at any stage 𝑘 ≥ 𝑚.

Proof. Every tuple occurs in our enumeration of potential defects, so if a tuple is a defect at
stage 𝑛, it is repaired no later than at stage 𝑛 + 𝑖 + 1, where 𝑖 is its position in the list. Once
the repair has been completed, 3.4.6, 3.4.7, 3.4.9 and 3.4.10 guarantee that the defect is still
repaired at all subsequent stages. □
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We now prove that (𝑙𝜔 ,≤𝜔) does not contain any defects, thereby closing the final gap
in the proof of the truth lemma for labeled points 3.4.2.

Proof of Lemma 3.4.3. In [17, Theorem 2.13], the ⟨sup⟩ and ¬⟨sup⟩ cases are treated in
detail. The arguments for the ⟨inf⟩ and ¬⟨inf⟩ cases are analogous, but for the sake of
completeness we include them here:

⟨inf⟩-defect: Assume (⟨inf⟩𝜑𝜓, 𝑥) is the 𝑖-th in the enumeration of potential defects, with
𝑥 ∈ dom(𝑙𝜔) and ⟨inf⟩𝜑𝜓 ∈ 𝑙𝜔 (𝑥). Then there exists 𝑛 ∈ 𝜔 such that
𝑥 ∈ dom(𝑙𝑛) and ⟨inf⟩𝜑𝜓 ∈ 𝑙𝑛 (𝑥). By definition of the construction process
we have that for any 𝑚 ≥ 𝑛 it is the case that dom(𝑙𝑛) ⊆ dom(𝑙𝑚), so
𝑥 ∈ dom(𝑙𝑚) and ⟨inf⟩𝜑𝜓 ∈ 𝑙𝑚(𝑥) since the definition of 𝑙𝑚 extends 𝑙𝑛.
There are two possibilities:

– If (⟨inf⟩𝜑𝜓, 𝑥) does not constitute a defect for (𝑙𝑛,≤𝑛), then by
Lemma 3.4.7, it does not constitute a defect for (𝑙𝑚,≤𝑚) for any 𝑚 ≥ 𝑛
and thus not for (𝑙𝜔 ,≤𝜔).

– If (⟨inf⟩𝜑𝜓, 𝑥) does constitute a defect for (𝑙𝑛,≤𝑛) the construction
process repairs the 𝑖-th tuple no later than at stage 𝑛+ 𝑖 + 1. Lemma 3.4.7
then guarantees that the repair is permanent, so the tuple is not a defect
in any (𝑙𝑚,≤𝑚) for 𝑚 ≥ 𝑛 + 𝑖 + 1, and in particular not in the limit
(𝑙𝜔 ,≤𝜔).

¬⟨inf⟩-defect: Assume for contradiction that (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) constitutes a defect for
(𝑙𝜔 ,≤𝜔) and that it is the 𝑖-th defect in our enumeration. This means that

¬⟨inf⟩𝜑𝜓 ∈ 𝑙𝜔 (𝑥), 𝜑 ∈ 𝑙𝜔 (𝑦), 𝜓 ∈ 𝑙𝜔 (𝑧) and 𝑥 = inf
𝜔
{𝑦, 𝑧}.

It follows that there is 𝑛 ∈ 𝜔 such that

¬⟨inf⟩𝜑𝜓 ∈ 𝑙𝑛 (𝑥), 𝜑 ∈ 𝑙𝑛 (𝑦), 𝜓 ∈ 𝑙𝑛 (𝑧) and 𝑥 = inf
𝑛
{𝑦, 𝑧}.

This means that (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) constitutes a defect for (𝑙𝑛,≤𝑛). Since
(¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) is the 𝑖-th defect in our enumeration, the defect is re-
paired no later than at stage 𝑛 + 𝑖 + 1. From Lemma 3.3.2 it follows that
𝑥 ≠ inf𝑛+𝑖+1{𝑦, 𝑧}. From 𝑥 = inf𝑛{𝑦, 𝑧} it follows that 𝑥 ≤𝑛 𝑦, 𝑧, so
since ≤𝑛 ⊆ ≤𝑛+𝑖+1 we get that 𝑥 ≤𝑛+𝑖+1 𝑦, 𝑧. Since 𝑥 is not the infimum
at stage 𝑛 + 𝑖 + 1, there exists 𝑎 ∈ dom(𝑙𝑛+𝑖+1) with 𝑎 ≤𝑛+𝑖+1 𝑦, 𝑧 and
𝑎 ≰𝑛+𝑖+1 𝑥. Lemma 3.4.8 guarantees that this inequality still holds at the
limit stage: 𝑎 ≰𝜔 𝑥. Because ≤𝑛+𝑖+1 ⊆ ≤𝜔 , we also have 𝑎 ≤𝜔 𝑦, 𝑧, contra-
dicting 𝑥 = inf𝜔{𝑦, 𝑧}. Hence (¬⟨inf⟩𝜑𝜓, 𝑥, 𝑦, 𝑧) cannot constitute a defect
for (𝑙𝜔 ,≤𝜔). □

Thus, the completeness of TIL is now fully established.

3.5 soundness and completeness of til on preorders

Having established completeness of TIL on poset frames, a direct corollary is completeness
with respect to another class of frames, namely preorders. 𝔐 = (𝑊 ,≤,𝑉) is a preorder
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model if ≤ is a preorder on𝑊 . In this case, suprema and infima need not be unique, but can
come in clusters.

Definition 3.5.1 (Supremum and infimum in preorders). Let 𝔉 := ⟨𝑊 ,≤⟩ be a preorder and
𝑦, 𝑧 ∈ 𝑊 .

• An element 𝑥 ∈ 𝑊 is a quasi-supremum of {𝑦, 𝑧} (write 𝑥 ∈ sup{𝑦, 𝑧}) iff 𝑥 is an upper
bound of {𝑦, 𝑧} and 𝑥 ≤ 𝑤 for all upper bounds 𝑤 of {𝑦, 𝑧}.

• An element 𝑥 ∈ 𝑊 is a quasi-infimum of {𝑦, 𝑧} (write 𝑥 ∈ inf{𝑦, 𝑧}) iff 𝑥 is a lower
bound of {𝑦, 𝑧} and 𝑥 ≤ 𝑤 for all lower bounds 𝑤 of {𝑦, 𝑧}.

The semantics of the modal operators are then defined as:

Definition 3.5.2.

𝔐, 𝑥 ⊩ ⟨sup⟩𝜑𝜓 iff there exist 𝑦, 𝑧 ∈ 𝑊 s.t. 𝔐, 𝑦 ⊩ 𝜑, 𝔐, 𝑧 ⊩ 𝜓, and 𝑥 ∈ sup{𝑦, 𝑧},

𝔐, 𝑥 ⊩ ⟨inf⟩𝜑𝜓 iff there exist 𝑦, 𝑧 ∈ 𝑊 s.t. 𝔐, 𝑦 ⊩ 𝜑, 𝔐, 𝑧 ⊩ 𝜓, and 𝑥 ∈ inf{𝑦, 𝑧}.

With these new semantics at hand, we can define TIL on preorders.

Definition 3.5.3.

TILpre := {𝜑 ∈ L𝑇 | for every preorder model 𝔐 = (𝑊 ,≤,𝑉) and every 𝑥 ∈ 𝑊 :
𝔐, 𝑥 ⊩ 𝜑}

It is not difficult to show that the axiomatization we gave is also sound and complete with
respect to TILpre, as the following theorem shows:

Theorem 3.5.1.
TILpre = TIL = TIL

Proof. TILpre ⊆ TIL follows from the fact that every poset frame is also a preorder frame.
Since the soundness proof of TIL on poset frames carries over to preorders without signifi-
cant changes, we also derive that TIL ⊆ TILpre, which concludes the proof. □

This result provides yet another example of how modal information logics cannot differ-
entiate preorders from posets (see also [16, 18]).
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Following the outline of [17, Section 3], we prove decidability of TIL. Since the logic does
not have the finite model property (FMP) with respect to neither preorders nor posets (see
section 2.2 and [16, Section 1.2]), we show that it does have the FMP with respect to a
generalized class of frames. Again, we highlight the adjustments that have to be made to the
proofs in [17], to make them work in the new setting with two modal operators: ⟨inf⟩ and
⟨sup⟩.

In Section 4.1 we introduce the generalized frame class on which TIL will be interpreted
and derive first-order correspondents for all its axioms. Section 4.2 proves that TIL has the
FMP with respect to this class and works out the filtration argument that yields decidability.

4.1 generalized frames and first-order correspondents

As we have already mentioned, the canonical ternary relations𝐶sup and𝐶inf do not necessarily
match the order-theoretic supremum and infimum determined by the preorder they induce.
We investigate whether ⟨sup⟩ and ⟨inf⟩ can be reinterpreted via frame-correspondence
techniques on the class of all tuples

(𝑊 ,𝐶sup,𝐶inf),

where𝑊 is a set and 𝐶sup and 𝐶inf are arbitrary ternary relations on𝑊 .
Since the axioms of TIL are Sahlqvist, each has a first-order equivalent on these tuples

(𝑊 ,𝐶sup,𝐶inf) [21]. Concretely, for every axiom Ax in our axiomatization of TIL, we denote
by FOAx its first-order correspondent, i.e. a first-order sentence in the signature {𝐶sup,𝐶inf}
such that

(𝑊 ,𝐶sup,𝐶inf) ⊩ Ax ⇐⇒ (𝑊 ,𝐶sup,𝐶inf) ⊨3 FOAx

Building on the suprema-only correspondences of Lemma 3.1 of [17], we add matching
infimum clauses and introduce a new one for the (Sy.)-axiom.

Definition 4.1.1 (First-order frame conditions for TIL).

(FORe) := ∀𝑥
(
𝐶sup 𝑥 𝑥 𝑥 ∧𝐶inf 𝑥 𝑥 𝑥

)
(FO4’) := ∀𝑥, 𝑦, 𝑧, 𝑢, 𝑣

(
[𝐶sup 𝑥 𝑦 𝑧 ∧𝐶sup 𝑦 𝑢 𝑣 → ∃𝑤𝐶sup 𝑥 𝑢 𝑤]

∧ [𝐶inf 𝑥 𝑦 𝑧 ∧𝐶inf 𝑦 𝑢 𝑣 → ∃𝑤𝐶inf 𝑥 𝑢 𝑤]
)

(FOCo) := ∀𝑥, 𝑦, 𝑧
( [
𝐶sup 𝑥 𝑦 𝑧 → 𝐶sup 𝑥 𝑧 𝑦

]
∧

[
𝐶inf 𝑥 𝑦 𝑧 → 𝐶inf 𝑥 𝑧 𝑦

] )
(FODk1) := ∀𝑥, 𝑦, 𝑧

(
𝐶sup 𝑥 𝑦 𝑧 → 𝐶sup 𝑥 𝑥 𝑦

)
(FODk2) := ∀𝑥, 𝑦, 𝑧

(
𝐶inf 𝑥 𝑦 𝑧 → 𝐶inf 𝑥 𝑥 𝑦

)
3 In what follows, ‘⊨’ is used for frame validity of FO-sentences.
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(FOSy’) := ∀𝑥, 𝑦
( [
∃𝑧 𝐶sup 𝑥 𝑦 𝑧 → ∃𝑢 𝐶inf 𝑦 𝑥 𝑢

]
∧

[
∃𝑧 𝐶inf 𝑥 𝑦 𝑧 → ∃𝑢 𝐶sup 𝑦 𝑥 𝑢

] )
In addition to (FO4′) and (FOSy′), we introduce first-order sentences (FO4) and (FOSy)

that, while equivalent only modulo the other axioms, have a simpler form and are easier to
apply in arguments.

(FO4) := ∀𝑤, 𝑣, 𝑢
(
[𝐶sup 𝑤 𝑤 𝑣 ∧𝐶sup 𝑣 𝑣 𝑢 → 𝐶sup 𝑤 𝑤 𝑢]

∧ [𝐶inf 𝑤 𝑤 𝑣 ∧𝐶inf 𝑣 𝑣 𝑢 → 𝐶inf 𝑤 𝑤 𝑢]
)

(FOSy) := ∀𝑤, 𝑣
(
[𝐶sup 𝑤 𝑤 𝑣 → 𝐶inf 𝑣 𝑣 𝑤] ∧ [𝐶inf 𝑤 𝑤 𝑣 → 𝐶sup 𝑣 𝑣 𝑤]

)
Using standard frame correspondence proofs, we can show the following.

Theorem 4.1.1 (Sahlqvist correspondence for TIL).

(𝑊 ,𝐶sup,𝐶inf) ⊩ TIL ⇐⇒ (𝑊 ,𝐶sup,𝐶inf) ⊨ (FORe) ∧ (FO4) ∧
(FOCo) ∧ (FODk1) ∧ (FODk2) ∧ (FOSy).

For a proof see [10, Theorem 3.54].
Lastly, we use the first-order correspondents of the axioms of TIL to define the class of

tuples (𝑊 ,𝐶sup,𝐶inf) that satisfy them. We call this class C̃:

Definition 4.1.2.

C̃ :=
{
(𝑊 ,𝐶sup,𝐶inf) | (𝑊 ,𝐶sup,𝐶inf) ⊨ (FORe) ∧ (FO4)∧

(FOCo) ∧ (FODk1) ∧ (FODk2) ∧ (FOSy)
}

Any tuple that is an element of this class is called a C̃-frame.

4.2 finite model property and decidability

In order to prove that TIL is decidable, we first show that it has the finite model property.
Specifically, we will show that if a formula 𝜑 is not derivable in TIL, then there exists a
finite C̃-model that falsifies it. To do so, we need the following definitions:

Definition 4.2.1.

C̃𝐹 :=
{
(𝑊 ,𝐶sup,𝐶inf) ∈ C̃ | 𝑊 finite

}
,

Log(C̃) :=
{
𝜑 ∈ L𝑇 | (𝑊 ,𝐶sup,𝐶inf) ⊩ 𝜑 for every (𝑊 ,𝐶sup,𝐶inf) ∈ C̃

}
,

Log(C̃𝐹) :=
{
𝜑 ∈ L𝑇 | (𝑊 ,𝐶sup,𝐶inf) ⊩ 𝜑 for every (𝑊 ,𝐶sup,𝐶inf) ∈ C̃𝐹

}
.

From the fact that poset frames are special cases of C̃-frames together with Theorem 4.1.1,
we derive soundness and strong completeness of TIL with respect to the class C̃, so in
particular TIL = Log(C̃).

Theorem 4.2.1. TIL has the finite model property, that is, TIL = Log(C̃𝐹).
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Proof. We show Log(C̃𝐹) ⊆ Log(C̃) by contraposition. Assuming 𝜒 ∉ Log(C̃), we know
that there is a C̃-model (𝑊 ,𝐶sup,𝐶inf,𝑉) based on a C̃-frame such that (𝑊 ,𝐶sup,𝐶inf,𝑉) ⊮ 𝜒.
We turn (𝑊 ,𝐶sup,𝐶inf,𝑉) into a finite model that refutes 𝜒 by a filtration argument.

The first step is to further extend the notion of a set of formulas being subformula closed.
We introduce ⟨inf⟩ versions of the clauses (Com) and (S-P) already present in Definition 3.7
of [17] and we add a new (Symm) clause that keeps the set closed when ⟨sup⟩ and ⟨inf⟩ are
swapped:

Definition 4.2.2. A set of L𝑇 formulas Σ is C̃-closed if:

• It is subformula closed (Sub)

• If ⟨sup⟩𝜑𝜓 ∈ Σ then ⟨sup⟩𝜓𝜑 ∈ Σ and if ⟨inf⟩𝜑𝜓 ∈ Σ then ⟨inf⟩𝜓𝜑 ∈ Σ (Com)

• If ⟨sup⟩𝜑𝜓 ∈ Σ then P 𝜑 ∈ Σ (S-P)

• If ⟨inf⟩𝜑𝜓 ∈ Σ then F 𝜑 ∈ Σ (S-F)

• If ⟨sup⟩𝜑𝜓 ∈ Σ then ⟨inf⟩𝜑𝜓 ∈ Σ and if ⟨inf⟩𝜑𝜓 ∈ Σ then ⟨sup⟩𝜑𝜓 ∈ Σ (Symm)

Take Σ′ = {𝜒} and let Σ be the least extension of Σ′ such that it is C̃-closed. We claim
without proving that Σ is finite.

We construct a finite model out of (𝑊 ,𝐶sup,𝐶inf,𝑉) that also falsifies 𝜒. Define an
equivalence relation ∼Σ on𝑊 as:

𝑤 ∼Σ 𝑣 ⇐⇒ ∀𝜑 ∈ Σ
(
(𝑊 ,𝐶inf,𝐶sup,𝑉),𝑤 ⊩ 𝜑 ⇔ (𝑊 ,𝐶inf,𝐶sup,𝑉), 𝑣 ⊩ 𝜑

)
.

Let 𝑊Σ := {|𝑤 |Σ : 𝑤 ∈ 𝑊} be the set of states. To define the relations 𝐶Σ
sup |𝑤 | |𝑣 | |𝑢 |

and 𝐶Σ
inf |𝑤 | |𝑣 | |𝑢 |, consider the following. We ultimately want to show that the quotient

frame (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) lies in the class C̃𝐹 , so 𝐶Σ
sup and 𝐶Σ

inf must satisfy all first-order
correspondents listed above. Reflexivity (FORe) will follow once we show that 𝐶sup𝑤𝑣𝑢

implies 𝐶Σ
sup |𝑤 | |𝑣 | |𝑢 | and 𝐶inf𝑤𝑣𝑢 implies 𝐶Σ

inf |𝑤 | |𝑣 | |𝑢 |. Because the quotient map 𝑥 ↦→ |𝑥 |Σ
is surjective, this property lifts reflexivity to the quotient frame without further work.

Every other frame axiom is an implication. Take (FOSy) as an example:

𝐶sup𝑤𝑤𝑣 → 𝐶inf𝑣𝑣𝑤

is equivalent to
¬𝐶sup𝑤𝑤𝑣 ∨𝐶inf𝑣𝑣𝑤.

If the implication is true because ¬𝐶sup𝑤𝑤𝑣 is true, we cannot derive ¬𝐶Σ
sup |𝑤 | |𝑤 | |𝑣 | from

the fact that𝐶sup𝑤𝑤𝑣 implies𝐶Σ
sup |𝑤 | |𝑤 | |𝑣 |. The definition of 𝐶̃-closedness and the filtration

relations𝐶Σ
sup and𝐶Σ

inf are therefore designed to preserve the implications in the other axioms.
Thus, define

𝐶Σ
sup |𝑤 | |𝑣 | |𝑢 | ⇔ ∀ ⟨sup⟩𝜑𝜓 ∈ Σ :

(a) (𝑣 ⊩ 𝜑, 𝑢 ⊩ 𝜓) ⇒ 𝑤 ⊩ ⟨sup⟩𝜑𝜓
(b) (𝑣 ⊩ P 𝜑, 𝑢 ⊩ P𝜓) ⇒ 𝑤 ⊩ P 𝜑 ∧ P𝜓

(c) (𝑤 ⊩ 𝜑, 𝑣 ⊩ 𝜓) ⇒ 𝑣 ⊩ ⟨inf⟩𝜑𝜓
(d) (𝑤 ⊩ 𝜑, 𝑢 ⊩ 𝜓) ⇒ 𝑢 ⊩ ⟨inf⟩𝜑𝜓
(e) 𝑤 ⊩ F 𝜑 ⇒

(
𝑣 ⊩ F 𝜑 and 𝑢 ⊩ F 𝜑

)
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𝐶Σ
inf |𝑤 | |𝑣 | |𝑢 | ⇔ ∀ ⟨inf⟩𝜑𝜓 ∈ Σ :

(a) (𝑣 ⊩ 𝜑, 𝑢 ⊩ 𝜓) ⇒ 𝑤 ⊩ ⟨inf⟩𝜑𝜓
(b) (𝑣 ⊩ F 𝜑, 𝑢 ⊩ F𝜓) ⇒ 𝑤 ⊩ F 𝜑 ∧ F𝜓

(c) (𝑤 ⊩ 𝜑, 𝑣 ⊩ 𝜓) ⇒ 𝑣 ⊩ ⟨sup⟩𝜑𝜓
(d) (𝑤 ⊩ 𝜑, 𝑢 ⊩ 𝜓) ⇒ 𝑢 ⊩ ⟨sup⟩𝜑𝜓
(e) 𝑤 ⊩ P 𝜑 ⇒

(
𝑣 ⊩ P 𝜑 and 𝑢 ⊩ P 𝜑

)
and 𝑉Σ (𝑝) = {|𝑥 |Σ ∈ 𝑊Σ : 𝑥 ∈ 𝑉 (𝑝)} for all 𝑝 ∈ Σ.

Thus, if we can show that
(𝑊Σ,𝐶Σ

sup,𝐶Σ
inf) ∈ C̃𝐹 ,

and that
(𝑊Σ,𝐶Σ

sup,𝐶Σ
inf,𝑉Σ)

is a filtration of (𝑊 ,𝐶sup,𝐶inf,𝑉) through Σ (that is, for every 𝜑 ∈ Σ and every 𝑥 ∈ 𝑊 ,

(𝑊Σ,𝐶Σ
sup,𝐶Σ

inf,𝑉Σ), |𝑥 |Σ ⊩ 𝜑 ⇐⇒ (𝑊 ,𝐶sup,𝐶inf,𝑉), 𝑥 ⊩ 𝜑)

then the proof is complete.

Proposition 4.2.2. (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) ∈ C̃𝐹

Proof. We show that (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) satisfies all the frame correspondences:

• (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) ⊨ (FORe) follows from (𝑊 ,𝐶sup,𝐶inf) ⊩ (Re).

• (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) ⊨ (FOCo) follows from (Com)-closure of Σ and (𝑊 ,𝐶sup,𝐶inf) ⊩
(Co.).

• For (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) ⊨ (FODk1), assume 𝐶sup |𝑤 | |𝑣 | |𝑢 | and let ⟨sup⟩𝜑𝜓 ∈ Σ be arbi-
trary. We show that all clauses hold:

(a) Assume 𝑤 ⊩ 𝜑 and 𝑣 ⊩ 𝜓. From (Com)- and (S-P)-closure of Σ it follows that

⟨sup⟩𝜓⊤ = P𝜓 ∈ Σ.

(𝑊 ,𝐶sup,𝐶inf) ⊩ (Re) implies

𝑢 ⊩ ⟨sup⟩⊤⊤ = P⊤ and 𝑣 ⊩ ⟨sup⟩𝜓⊤ = P𝜓.

Then from 𝐶sup |𝑤 | |𝑣 | |𝑢 |(b) we get 𝑤 ⊩ P𝜓 ∧ P⊤, hence 𝑤 ⊩ P𝜓 = ⟨sup⟩𝜓⊤.
From (𝑊 ,𝐶sup,𝐶inf) ⊩ (Dk1) and 𝑤 ⊩ 𝜑 it follows that 𝑤 ⊩ ⟨sup⟩𝜑𝜓.

(b) Assume 𝑤 ⊩ P 𝜑 and 𝑣 ⊩ P𝜓. Again, since 𝑢 ⊩ P⊤, it follows from 𝑣 ⊩ P𝜓,
(Com)- and (S-P)-closure ofΣ (which implies P𝜓 ∈ Σ) and from𝐶sup |𝑤 | |𝑣 | |𝑢 |(b)
that 𝑤 ⊩ P𝜓 ∧ P⊤. Thus 𝑤 ⊩ P𝜓, so 𝑤 ⊩ P 𝜑 ∧ P𝜓.

(c) Assume 𝑤 ⊩ 𝜑, 𝑤 ⊩ 𝜓, then 𝑤 ⊩ ⟨inf⟩𝜑𝜓 follows directly from (𝑊 ,𝐶sup,𝐶inf) ⊩
(Re).

(d) Assume 𝑤 ⊩ 𝜑 and 𝑣 ⊩ 𝜓. 𝐶sup |𝑤 | |𝑣 | |𝑢 |(c) yields 𝑣 ⊩ ⟨inf⟩𝜑𝜓.
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(e) Assume 𝑤 ⊩ F 𝜑. Then 𝐶sup |𝑤 | |𝑣 | |𝑢 |(e) implies 𝑣 ⊩ F 𝜑 and 𝑢 ⊩ F 𝜑, so in
particular 𝑤 ⊩ F 𝜑 and 𝑣 ⊩ F 𝜑 .

• (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) ⊨ (FODk2) is shown in the same way as (𝑊 ,𝐶sup,𝐶inf) ⊨ (FODk1).

• For (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) ⊨ (FO4), assume 𝐶sup |𝑤 | |𝑤 | |𝑣 | and 𝐶sup |𝑣 | |𝑣 | |𝑢 | and let
⟨sup⟩𝜑𝜓 ∈ Σ be arbitrary. We show that all clauses hold:

(a) Assume 𝑤 ⊩ 𝜑 and 𝑢 ⊩ 𝜓. By (Com)- and (S-P)-closure of Σ we get

⟨sup⟩𝜓⊤ = P𝜓 ∈ Σ.

From
𝐶sup |𝑣 | |𝑣 | |𝑢 |(b) , 𝑢 ⊩ P𝜓 and 𝑣 ⊩ P⊤

it follows that 𝑣 ⊩ P𝜓. Then

𝐶sup |𝑤 | |𝑤 | |𝑣 |(b) , 𝑤 ⊩ P⊤ and 𝑣 ⊩ P𝜓

yield 𝑤 ⊩ P𝜓. Since (𝑊 ,𝐶sup,𝐶inf) ⊩ (Dk1), it follows from 𝑤 ⊩ ⟨sup⟩𝜓⊤ and
𝑤 ⊩ 𝜑 that 𝑤 ⊩ ⟨sup⟩𝜑𝜓.

(b) Assume 𝑤 ⊩ P 𝜑 and 𝑢 ⊩ P𝜓. Again, (Com)- and (S-P)-closure of Σ imply
P𝜓 ∈ Σ. So again from (Com)-closure we get ⟨sup⟩⊤𝜓 ∈ Σ. Since

𝑣 ⊩ ⟨sup⟩⊤⊤ , 𝑢 ⊩ ⟨sup⟩𝜓⊤,

it follows from 𝐶sup |𝑣 | |𝑣 | |𝑢 |(b) that 𝑣 ⊩ P𝜓.
By applying the exact same reasoning again but with 𝐶sup |𝑤 | |𝑤 | |𝑣 |, we get that
𝑤 ⊩ P𝜓 since 𝑣 ⊩ P𝜓. From 𝑤 ⊩ P 𝜑 we derive that 𝑤 ⊩ P 𝜑 ∧ P𝜓.

(c) Assume 𝑤 ⊩ 𝜑 and 𝑤 ⊩ 𝜓. Then 𝑤 ⊩ ⟨inf⟩𝜑𝜓 follows from (𝑊 ,𝐶sup,𝐶inf) ⊩
(Re).

(d) Assume 𝑤 ⊩ 𝜑 and 𝑢 ⊩ 𝜓. (Symm) and (S-F)-closure imply F 𝜑 ∈ Σ. Since
(𝑊 ,𝐶sup,𝐶inf) ⊩ (Re) and 𝑤 ⊩ 𝜑 imply 𝑤 ⊩ 𝐹𝜑, it follows from

𝐶sup |𝑤 | |𝑤 | |𝑣 |(e) and 𝑤 ⊩ F 𝜑

that 𝑣 ⊩ F 𝜑. We apply the same reasoning using

𝑣 ⊩ F 𝜑 and 𝐶sup |𝑣 | |𝑣 | |𝑢 |(e)

to get 𝑢 ⊩ F 𝜑. Then 𝑢 ⊩ 𝜓 and (𝑊 ,𝐶sup,𝐶inf) ⊩ (Dk2) yield 𝑢 ⊩ ⟨inf⟩𝜓𝜑. Since
(𝑊 ,𝐶sup,𝐶inf) ⊩ (Co.), it follows that 𝑢 ⊩ ⟨inf⟩𝜑𝜓

(e) Assume 𝑤 ⊩ F 𝜑 We already showed in (d) that this implies 𝑢 ⊩ F 𝜑.

• For (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf) ⊨ (FOSy), assume 𝐶sup |𝑤 | |𝑤 | |𝑣 | and let ⟨inf⟩𝜑𝜓 ∈ Σ be arbitrary.
Then by (Symm)-closure of Σ we have that ⟨sup⟩𝜑𝜓 ∈ Σ. We show that all clauses
hold:

(a) Assume 𝑣 ⊩ 𝜑 and 𝑤 ⊩ 𝜓. By (Com)-closure of Σ, it follows that ⟨sup⟩𝜓𝜑 ∈ Σ.

𝐶sup |𝑤 | |𝑤 | |𝑣 |(d) and (𝑊 ,𝐶sup,𝐶inf) ⊩ (Co.)
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yield 𝑣 ⊩ ⟨inf⟩𝜑𝜓
(b) Assume 𝑣 ⊩ F 𝜑 and 𝑤 ⊩ F𝜓. (Com)- and (S-F)-closure of Σ imply F𝜓 ∈ Σ.

From
𝐶sup |𝑤 | |𝑤 | |𝑣 |(e) and 𝑤 ⊩ F𝜓

it follows that 𝑣 ⊩ F𝜓. Hence 𝑣 ⊩ F 𝜑 ∧ F𝜓.
(c) Assume 𝑣 ⊩ 𝜑 and 𝑣 ⊩ 𝜓. Then 𝑣 ⊩ ⟨sup⟩𝜑𝜓 follows from (𝑊 ,𝐶sup,𝐶inf) ⊩

(Re).
(d) Assume 𝑣 ⊩ 𝜑 and 𝑤 ⊩ 𝜓. It follows from (S-P)-closure of Σ that P 𝜑 ∈ Σ.

𝐶sup |𝑤 | |𝑤 | |𝑣 |(a) , 𝑤 ⊩ ⊤ and 𝑣 ⊩ 𝜑

yield 𝑤 ⊩ ⟨sup⟩⊤𝜑. Since (𝑊 ,𝐶sup,𝐶inf) ⊩ (Co.) it follows that 𝑤 ⊩ ⟨sup⟩𝜑⊤.
Then

(𝑊 ,𝐶sup,𝐶inf) ⊩ (Dk1) , (𝑊 ,𝐶sup,𝐶inf) ⊩ (Co.) and 𝑤 ⊩ 𝜓

imply 𝑤 ⊩ ⟨sup⟩𝜑𝜓.
(e) Assume 𝑣 ⊩ P 𝜑. From (S-P)- and (Com)-closure it follows that ⟨sup⟩⊤𝜑 ∈ Σ.

Since
𝑤 ⊩ ⟨sup⟩⊤⊤ and 𝑣 ⊩ ⟨sup⟩𝜑⊤

it follows from 𝐶sup |𝑤 | |𝑤 | |𝑣 |(b) that 𝑤 ⊩ P 𝜑. □

Proposition 4.2.3. (𝑊Σ,𝐶Σ
sup,𝐶Σ

inf,𝑉Σ) is a filtration of (𝑊 ,𝐶sup,𝐶inf,𝑉) through Σ.

Proof. There are four things we need to show:

1. 𝐶Σ
sup |𝑤 | |𝑣 | |𝑢 | implies that for every ⟨sup⟩𝜑𝜓 ∈ Σ we have that 𝑣 ⊩ 𝜑 and 𝑢 ⊩ 𝜓 imply
𝑤 ⊩ ⟨sup⟩𝜑𝜓.

2. 𝐶Σ
inf |𝑤 | |𝑣 | |𝑢 | implies that for every ⟨inf⟩𝜑𝜓 ∈ Σ we have that 𝑣 ⊩ 𝜑 and 𝑢 ⊩ 𝜓 imply
𝑤 ⊩ ⟨inf⟩𝜑𝜓.

3. 𝐶sup𝑤𝑣𝑢 implies 𝐶Σ
sup |𝑤 | |𝑣 | |𝑢 |.

4. 𝐶inf𝑤𝑣𝑢 implies 𝐶Σ
inf |𝑤 | |𝑣 | |𝑢 |.

1. and 2. follow by definition of 𝐶Σ
sup and 𝐶Σ

inf.
To prove 3., we first make the following observations:

(𝑊 ,𝐶sup,𝐶inf),𝑤 ⊩ P 𝜑 ⇐⇒ ∃𝑣 ∈ 𝑊 : 𝐶sup𝑤𝑤𝑣 ∧ (𝑊 ,𝐶sup,𝐶inf), 𝑣 ⊩ 𝜑,

(𝑊 ,𝐶sup,𝐶inf),𝑤 ⊩ F 𝜑 ⇐⇒ ∃𝑣 ∈ 𝑊 : 𝐶inf𝑤𝑤𝑣 ∧ (𝑊 ,𝐶sup,𝐶inf), 𝑣 ⊩ 𝜑.

Assume 𝐶sup𝑤𝑣𝑢 and let ⟨sup⟩𝜑𝜓 ∈ Σ be arbitrary. We show that all clauses of
𝐶Σ

sup |𝑤 | |𝑣 | |𝑢 | hold:

(a) This clause follows by definition.

(b) Assume 𝑣 ⊩ P 𝜑 and 𝑢 ⊩ P𝜓. From (𝑊 ,𝐶sup,𝐶inf) ⊨ (FODk1) ∧ (FOCo) it follows
that𝐶sup𝑤𝑤𝑣 and𝐶sup𝑤𝑤𝑢. Thus, by our previous observation and by our assumptions,
𝑤 ⊩ P P 𝜑 ∧ P P𝜓. Then (𝑊 ,𝐶sup,𝐶inf) ⊩ (4), implies 𝑤 ⊩ P 𝜑 ∧ P𝜓.
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(c) Assume 𝑤 ⊩ 𝜑 and 𝑣 ⊩ 𝜓. From (𝑊 ,𝐶sup,𝐶inf) ⊨ (FODk1) ∧ (FOSy) it follows that
𝐶inf𝑣𝑣𝑤, which implies 𝑣 ⊩ ⟨inf⟩𝜓𝜑. (𝑊 ,𝐶sup,𝐶inf) ⊩ (Co) yields 𝑣 ⊩ ⟨inf⟩𝜑𝜓.

(d) This clause is proven in a similar fashion as (c), but additionally relying on
(𝑊 ,𝐶sup,𝐶inf) ⊨ (FOCo).

(e) Assume 𝑤 ⊩ F 𝜑. From (𝑊 ,𝐶sup,𝐶inf) ⊨ FODk1 ∧ FOSy, it follows that 𝐶inf𝑣𝑣𝑤.
By our observation, we have 𝑣 ⊩ F F 𝜑. Since (𝑊 ,𝐶sup,𝐶inf) ⊩ (4), it follows that
𝑣 ⊩ F 𝜑. The result for 𝑢 is obtained in a similar way, with an additional application
of (𝑊 ,𝐶sup,𝐶inf) ⊨ FOCo.

This finalizes the proof of 3.; 4. is proven similarly. □

This finishes the proof, showing that TIL = Log(C̃𝐹). □

We conclude that
TIL = TIL = Log(C̃𝐹).

Since TIL is a finitely axiomatizable normal modal logic that has the FMP, we conclude
that TIL is decidable (see Theorem 6.15 in [10]). Note that from TIL = TILpre, we immediately
get the same result for TILpre.



5 duality

Having worked out a sound and complete axiomatization of TIL on posets, we now want to
see how the same logic looks from an algebraic and topological point of view. The aim of
this chapter is to work out the Stone–Jónsson–Tarski duality between the categories

2B-BAO (Boolean algebras with two binary operators)

and
2T-MS (Modal spaces with two ternary relations),

and to check that this duality carries over unchanged when we restrict to the objects that
validate the axioms of TIL.

We assume familiarity with the usual categorical notions, that is, categories, functors,
and natural transformations. Readers who are not familiar with these concepts can consult
Awodey [1] and Mac Lane [19].

Sections 5.1 and 5.2 fix notation and recall a few less standard categorical facts that
we will need. Section 5.3 sets up the duality itself, shows how it restricts to the TIL-valid
subcategories, and ends with some brief comments.

5.1 algebraic notions

We begin on the algebraic side by introducing the objects and morphisms that form the
category 2B-BAO. Each object is a boolean algebra that interprets two binary modal operator
symbols, ⟨sup⟩ and ⟨inf⟩.

Definition 5.1.1 (Boolean algebra with two binary operators). Let 𝜎 = {⟨sup⟩, ⟨inf⟩} be a
modal similarity type. A boolean algebra with two binary operators is an algebra

𝔄 =
(
𝐴,∨,¬,⊥, ⟨sup⟩, ⟨inf⟩

)
such that

• (𝐴,∨,¬,⊥) is a boolean algebra,

• ⟨sup⟩ and ⟨inf⟩ are operations of arity 2 satisfying
– normality: ⟨sup⟩(⊥, 𝑏) = ⟨sup⟩(𝑎,⊥) = ⊥ and ⟨inf⟩(⊥, 𝑏) = ⟨inf⟩(𝑎,⊥) = ⊥,
– additivity in both arguments, i.e. ⟨sup⟩(𝑎1 ∨ 𝑎2, 𝑏) = ⟨sup⟩(𝑎1, 𝑏) ∨ ⟨sup⟩(𝑎2, 𝑏)

and ⟨sup⟩(𝑎, 𝑏1 ∨ 𝑏2) = ⟨sup⟩(𝑎, 𝑏1) ∨ ⟨sup⟩(𝑎, 𝑏2) and likewise for ⟨inf⟩.

Definition 5.1.2 (BAO-homomorphism). Let 𝔄 = (𝐴,∨,¬,⊥, ⟨sup⟩, ⟨inf⟩) and
𝔄′ = (𝐴′,∨′,¬′,⊥′, ⟨sup⟩′, ⟨inf⟩′) be two BAOs of the same similarity type. Then 𝑔 : 𝐴→
𝐴′ is a BAO-homomorphism if the following conditions hold:

• 𝑔 is a boolean homomorphism (i.e. a homomorphism from (𝐴,∨,¬,⊥) to
(𝐴′,∨′,¬′,⊥′)),

36
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• it preserves the modal operators: for every 𝑎, 𝑏 ∈ 𝐴

𝑔(⟨sup⟩(𝑎, 𝑏)) = ⟨sup⟩′(𝑔(𝑎), 𝑔(𝑏))

and similarly for ⟨inf⟩.

We are now ready to define the category we are interested in.

Definition 5.1.3 (The category 2B-BAO). 2B-BAO, the category of boolean algebras with
two binary operators, is the category whose objects are BAOs over the similarity type
{⟨sup⟩, ⟨inf⟩} and whose morphisms are BAO-homomorphisms.

Given a BAO 𝔄, an algebraic valuation is a map 𝑉 : P → 𝐴 that assigns propositional
variables to elements of the algebra. Let 𝑇𝑒𝑟 (P)𝜎 be the 𝜎-term algebra over the same
variable set. Every valuation 𝑉 extends uniquely to a BAO-homomorphism

𝑉̃ : 𝑇𝑒𝑟 (P)𝜎 → 𝐴,

as follows:
𝑉̃ (𝑝) = 𝑉 (𝑝) for every 𝑝 ∈ P

𝑉̃ (⊥) = ⊥

𝑉̃ (𝜑 ∨ 𝜓) = 𝑉̃ (𝜑) ∨ 𝑉̃ (𝜓)

𝑉̃ (¬𝜑) = ¬ 𝑉̃ (𝜑)

𝑉̃ (⟨sup⟩𝜑𝜓) = ⟨sup⟩ 𝑉̃ (𝜑) 𝑉̃ (𝜓)

𝑉̃ (⟨inf⟩𝜑𝜓) = ⟨inf⟩ 𝑉̃ (𝜑) 𝑉̃ (𝜓).

Write ⊤ := ¬⊥. We say that 𝔄 ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤ iff 𝑉̃ (𝜑) = ⊤ for every algebraic valuation
𝑉 . Likewise, 𝔄 ⊩𝐵𝐴𝑂 𝜑 ≤ 𝜓 iff 𝑉̃ (𝜑) ≤ 𝑉̃ (𝜓) for all 𝑉 , where the partial order ≤ is defined
by 𝑎 ≤ 𝑏 iff 𝑎 ∨ 𝑏 = 𝑏.

5.2 topological notions

We continue by introducing the objects and morphisms that form the category of modal
spaces with two ternary relations (2T-MS). We first recall some topological notions we will
use.

Definition 5.2.1. Let (𝑋 , 𝜏) be a topological space. Clop(𝑋) is the set of clopen subsets of
𝑋 , i.e. the subsets𝑈 of 𝑋 such that𝑈 ∈ 𝜏 and 𝑋 \𝑈 ∈ 𝜏.

Clop(𝑋) is a Boolean algebra under union, complement, and with ∅, 𝑋 as 0, 1.

Definition 5.2.2 (Stone space). Let (𝑋 , 𝜏) be a topological space. We say that (𝑋 , 𝜏) is a
Stone space if it is compact, Hausdorff and totally disconnected or, equivalently, a compact,
Hausdorff space with Clop(𝑋) as a basis.4

Definition 5.2.3 (Modal space). Let 𝑅1 and 𝑅2 be ternary relations, then (𝑋 , 𝜏, 𝑅1, 𝑅2) is a
modal space iff

4 For a proof of this equivalence see [15].
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• (𝑋 , 𝜏) is a Stone space,

• 𝑅𝑖 (𝑖 = 1, 2) satisfy
– point-closedness: 𝑅𝑖 [(𝑦, 𝑧)] := { 𝑥 ∈ 𝑋 | 𝑅𝑖𝑥𝑦𝑧} is closed for every (𝑦, 𝑧) ∈ 𝑋2,
– 𝑈1,𝑈2 ∈ Clop(𝑋) implies

𝑚𝑅𝑖
(𝑈1,𝑈2) :=

{
𝑥 ∈ 𝑋 | ∃𝑢1 ∈ 𝑈1, 𝑢2 ∈ 𝑈2 s.t. 𝑅𝑖𝑥𝑢1𝑢2

}
∈ Clop(𝑋).

Definition 5.2.4 (Continuous bounded morphism). Let (𝑋 , 𝜏, 𝑅1, 𝑅2) and (𝑋 ′, 𝜏′, 𝑅′
1, 𝑅′

2)
be two modal spaces with two ternary relations. Then 𝛼 : 𝑋 → 𝑋 ′ is a continuous bounded
morphism if the following holds:

• 𝑈 ∈ Clop(𝑋 ′) implies 𝛼−1(𝑈) ∈ Clop(𝑋),

• 𝑅𝑖 (𝑖 = 1, 2) satisfy
– 𝑅𝑖𝑥𝑥1𝑥2 implies 𝑅′

𝑖
𝛼(𝑥)𝛼(𝑥1)𝛼(𝑥2),

– If 𝑅′
𝑖
𝛼(𝑥)𝑥′1𝑥

′
2, then there exist 𝑥1, 𝑥2 ∈ 𝑋 such that 𝑅𝑖𝑥𝑥1𝑥2 and

𝛼(𝑥1) = 𝑥′1,𝛼(𝑥2) = 𝑥′2.

Definition 5.2.5 (The category 2T-MS). 2T-MS, the category of modal spaces with two
ternary relations 𝑅1 and 𝑅2, is the category whose objects are modal spaces (𝑋 , 𝜏, 𝑅1, 𝑅2)
and whose morphisms are continuous bounded morphisms.

A modal-space valuation on (𝑋 , 𝜏, 𝑅1, 𝑅2) is a map 𝑉 : P → Clop(𝑋). Truth is defined
as in ordinary Kripke semantics:

(𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 𝑝 iff 𝑥 ∈ 𝑉 (𝑝),
(𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 ¬𝜑 iff (𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊮𝑀𝑆 𝜑,

(𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 𝜑 ∧ 𝜓 iff (𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 𝜑 and
(𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 𝜓,

(𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 ⟨sup⟩𝜑𝜓 iff ∃𝑦 ∈ ⟦𝜑⟧𝑉 ,∃𝑧 ∈ ⟦𝜓⟧𝑉 such that 𝑅1𝑥𝑦𝑧,
(𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 ⟨inf⟩𝜑𝜓 iff ∃𝑦 ∈ ⟦𝜑⟧𝑉 ,∃𝑧 ∈ ⟦𝜓⟧𝑉 such that 𝑅2𝑥𝑦𝑧,

where ⟦𝜑⟧𝑉 := {𝑥 ∈ 𝑋 | (𝑋 , 𝜏, 𝑅1, 𝑅2,𝑉), 𝑥 ⊩𝑀𝑆 𝜑}.
Since Clop(𝑋) is closed under the boolean operations and, by Definition 5.2.3, under

𝑚𝑅𝑖
, it follows that ⟦𝜑⟧𝑉 ∈ Clop(𝑋) for all 𝜑 ∈ L𝑇 . We write (𝑋 , 𝜏, 𝑅1, 𝑅2) ⊩𝑀𝑆 𝜑 iff

⟦𝜑⟧𝑉 = 𝑋 for every valuation 𝑉 : P → Clop(𝑋).

5.3 the stone–jónsson–tarski duality

With the algebraic and topological groundwork in place, we can now state the Stone–Jónsson–
Tarski duality that links the categories 2B-BAO and 2T-MS. We define contravariant functors
𝐹 : 2B-BAO → 2T-MS and 𝐺 : 2T-MS → 2B-BAO, and we show that they form a dual
equivalence.
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On objects, the functor 𝐹 : 2B-BAO → 2T-MS sends a boolean algebra with operators
𝔄 =

(
𝐴,∨,¬,⊥, ⟨sup⟩, ⟨inf⟩

)
to its Stone dual 𝑋𝐴 = {𝑈 ⊆ 𝐴 : 𝑈 is an ultrafilter on 𝐴},

with the following topological basis of clopens:{
𝑎̂ | 𝑎 ∈ 𝐴

}
, 𝑎̂ :=

{
𝑈 ∈ 𝑋𝐴 | 𝑎 ∈ 𝑈

}
.

The relations 𝑅⟨sup⟩ and 𝑅⟨inf⟩ on 𝑋𝐴 are defined as follows:

𝑅⟨sup⟩𝐺𝐻𝐾 ⇔ ⟨sup⟩𝑎𝑏 ∈ 𝐺 for all 𝑎 ∈ 𝐻, 𝑏 ∈ 𝐾 ,

𝑅⟨inf⟩𝐺𝐻𝐾 ⇔ ⟨inf⟩𝑎𝑏 ∈ 𝐺 for all 𝑎 ∈ 𝐻, 𝑏 ∈ 𝐾 .

On morphisms it acts as follows: let 𝑔 : 𝐴 → 𝐴′ be a BAO-homomorphism, then we
define:

𝐹 (𝑔) : 𝑋𝐴′ −→ 𝑋𝐴

𝑉 ↦−→ {𝑎 ∈ 𝐴 | 𝑔(𝑎) ∈ 𝑉}.

Now let 𝐺 : 2T-MS → 2B-BAO be the functor that on objects sends a modal space
(𝑋 , 𝜏, 𝑅1, 𝑅2) to the boolean algebra with operators (Clop(𝑋),∪, \, ∅,𝑚𝑅1 ,𝑚𝑅2) where for
𝑈,𝑉 ∈ Clop(𝑋) we set

𝑚𝑅1 (𝑈,𝑉) =
{
𝑤 ∈ 𝑋 : ∃𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 s.t. 𝑅1𝑤𝑢𝑣

}
,

𝑚𝑅2 (𝑈,𝑉) =
{
𝑤 ∈ 𝑋 : ∃𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 s.t. 𝑅2𝑤𝑢𝑣

}
.

If 𝛼 : 𝑋 → 𝑋 ′ is a continuous bounded morphism. Then we define:

𝐺 (𝛼) : Clop(𝑋 ′) −→ Clop(𝑋)
𝑈 ↦−→ {𝑥 ∈ 𝑋 | 𝛼(𝑥) ∈ 𝑈}.

Theorem 5.3.1 (Duality theorem). The functors 𝐹 and 𝐺 constitute a dual equivalence
between the categories 2T-MS and 2B-BAO.

Proof. As shown in Theorem 5.76 and Propositions 5.79-5.80 of [10], 𝐹 and 𝐺 are well-
defined functors between 2T-MS and 2B-BAO. Theorem 5.28 in [22] asserts that 𝐹 and 𝐺
establish a dual equivalence between 2T-MS and 2B-BAO. □

5.4 restricting the functors

We are interested in those BAOs and modal spaces that are structures that validate the axioms
of TIL. We will consider the appropriate subcategories of the ones we just defined. We recall
the categorical notion of a (full) subcategory:

Definition 5.4.1. Let C be a category and let 𝑜𝑏(C) be the collections of objects of C. For
any two objects 𝐶1 and 𝐶2 in 𝑜𝑏(C) we denote with C(𝐶1,𝐶2) the collection of morphisms
between 𝐶1 and 𝐶2.

We say that U is a subcategory of C if 𝑜𝑏(U) ⊆ 𝑜𝑏(C) and for each 𝑈1,𝑈2 ∈ 𝑜𝑏(U)
U(𝑈1,𝑈2) ⊆ C(𝑈1,𝑈2) such that U is closed under composition and identity.

U is a full subcategory if U(𝑈1,𝑈2) = C(𝑈1,𝑈2) for all𝑈1,𝑈2 ∈ 𝑜𝑏(U).
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On the algebraic side, defining the appropriate subcategory amounts to requiring that the
two binary operations ⟨sup⟩ and ⟨inf⟩ satisfy equational versions of the axioms of TIL.

Definition 5.4.2 (TIL-BAO). Let TIL-BAO be the full subcategory of 2B-BAO consisting
of all BAOs 𝔄 (we will also call them TIL-algebras from now on) such that 𝔄 ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤
for all axioms 𝜑 of TIL as defined in Definition 3.1.1. I.e. for each such 𝜑 and every valuation
𝑉 : P → 𝐴 we have 𝑉̃ (𝜑) = ⊤. In the axioms of TIL 𝛼 → 𝛽 abbreviates ¬𝛼 ∨ 𝛽.

On the topological side we give a frame-style definition of the subcategory that matches
the first-order correspondents of TIL we spelled out in Section 4.1.5

Definition 5.4.3 (TIL-MS, frame-style). Let TIL-MS be the full subcategory of 2T-MS con-
sisting of all modal spaces (we will also call them TIL-spaces from now on) (𝑋 , 𝜏, 𝑅sup, 𝑅inf)
such that the ternary relations 𝑅sup and 𝑅inf satisfy the following conditions:

• 𝑅sup and 𝑅inf are reflexive6, commutative in the second and third argument and
transitive7.

• 𝑅sup and 𝑅inf satisfy (FODK1) and (FODK2): for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 it holds that
𝑅sup𝑥𝑦𝑧 ⇒ 𝑅sup𝑥𝑥𝑦 and 𝑅inf𝑥𝑦𝑧 ⇒ 𝑅inf𝑥𝑥𝑦.

• 𝑅sup and 𝑅inf are tense duals, that is for all 𝑥, 𝑦 ∈ 𝑋: 𝑅sup𝑥𝑥𝑦 ⇔ 𝑅inf𝑦𝑦𝑥.

Since the TIL axioms are Sahlqvist, they are d-persistent (Theorem 5.91 of [10]): if
(𝑋 , 𝜏, 𝑅1, 𝑅2) ⊩𝑀𝑆 𝜑, then the underlying frame (𝑋 , 𝑅1, 𝑅2) ⊩ 𝜑, where ⊩𝑀𝑆 quantifies
over 𝑉 : P → Clop(𝑋) and ⊩ over 𝑉 ′ : P → P(𝑋).

Combining this with the Sahlqvist frame correspondence result for the axioms of TIL
(see 4.1.1) the frame-style Definition 5.4.3 is equivalent to the following definition:

Definition 5.4.4 (TIL-MS, axiom-validity). Let TIL-MS be the full subcategory of 2T-MS
consisting of all modal spaces (𝑋 , 𝜏, 𝑅1, 𝑅2) such that (𝑋 , 𝜏, 𝑅1, 𝑅2) ⊩𝑀𝑆 𝜑 for all axioms
𝜑 of TIL as defined in Definition 3.1.1.

From now on we use the two representations interchangeably.

We check whether the dual equivalence between 2B-BAO and 2T-MS restricts to an
equivalence between TIL-BAO and TIL-MS. First, we check that the restricted functors

𝐹′ := 𝐹 ↾TIL-BAO, 𝐺′ := 𝐺 ↾TIL-MS

are well-defined.

Theorem 5.4.1. For every BAO 𝔄, modal space (𝑋 , 𝜏, 𝑅1, 𝑅2), and formula 𝜑 ∈ L𝑇 , with
𝐹 and 𝐺 as defined above,

𝔄 ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤ ⇐⇒ 𝐹 (𝔄) ⊩𝑀𝑆 𝜑, (4a)
(𝑋 , 𝜏, 𝑅1, 𝑅2) ⊩𝑀𝑆 𝜑 ⇐⇒ 𝐺 (𝑋 , 𝜏, 𝑅1, 𝑅2) ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤. (4b)

5 From now on we will use 𝑅sup and 𝑅inf because we are considering TIL-spaces. They correspond to 𝐶sup and
𝐶inf used in the mentioned section.

6 In this case reflexivity means that 𝑅sup𝑥𝑥𝑥 and 𝑅inf𝑥𝑥𝑥 hold for all 𝑥 ∈ 𝑋 in accordance with (FORe).
7 Transitivity is defined on the induced order by 𝑅sup and 𝑅inf, that is for all 𝑥, 𝑦 ∈ 𝑋: 𝑥 ≤ 𝑦 iff 𝑅sup𝑦𝑦𝑥 iff 𝑅inf𝑥𝑥𝑦

(see 3.2.1 for a proof that this equivalence holds). Transitivity then says that for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 if 𝑥 ≤ 𝑦 and
𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧.
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Proof. For a proof of this theorem we refer to [10, Proposition 5.24, Theorem 5.75]. □

It follows directly from Theorem 5.4.1 and the fact that TIL-BAO and TIL-MS are full
subcategories that the restricted functors 𝐹′ and 𝐺′ are well-defined.

Since 𝐹 and 𝐺 establish a dual equivalence between 2B-BAO and 2T-MS, there are
natural isomorphisms 𝜂 : 12B-BAO ⇒ 𝐺𝐹 and 𝜖 : 𝐹𝐺 ⇒ 12T-MS for which the triangle
identities hold (see page 85 of [19]). By the previous reasoning, it follows that if 𝔄 is
in TIL-BAO, then 𝐺𝐹 (𝔄) is in TIL-BAO. Thus the component 𝜂𝔄 : 𝔄 ⇒ 𝐺𝐹 (𝔄) is
a morphism inside TIL-BAO. We can therefore restrict 𝜂 object-wise to get a natural
isomorphism

𝜂′ : 1TIL-BAO ⇒ 𝐺′𝐹′.

The same reasoning can be given to restrict 𝜖 to a natural isomorphism 𝜖 ′ between 𝐹′𝐺′

and 1TIL-MS.
Since the components of 𝜂′ and 𝜖 ′ are unchanged, the triangle identities still hold. We

conclude the following.

Theorem 5.4.2. 𝐹′ and 𝐺′ constitute a dual equivalence between TIL-BAO and TIL-MS

5.5 corollaries

Having established these duality results, we give two applications. First we show that we can
lift the decidability results of Chapter 4 to the variety TIL-BAO, then we prove that every
normal extension 𝐿 of TIL is sound and complete with respect to a class of TIL-spaces.

Corollary 5.5.1 (FMP and decidability lift to the variety TIL-BAO). Since TIL has the
finite model property (Chapter 4), any non-theorem 𝜑 has a finite TIL-countermodel. This
countermodel can be turned into a finite modal space 𝑋 ∈ TIL-MS falsifying 𝜑. Then
𝐺 (𝑋) ∈ TIL-BAO and by Theorem 5.4.1 (4b), 𝐺 (𝑋) also falsifies 𝜑 ≈ ⊤. Since by con-
struction 𝐺 (𝑋) is also finite, it follows that the equational theory

Log(TIL-BAO) :=
{
𝜑 ∈ L𝑇 | 𝔄 ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤ for all 𝔄 ∈ TIL-BAO

}
is decidable.

Definition 5.5.1 (Normal extensions of TIL). Let TIL be the normal modal logic of Defini-
tion 3.1.1. A logic 𝐿 is a normal extension of TIL iff TIL ⊆ 𝐿 and 𝐿 is closed under modus
ponens, uniform substitution, and the generalization rules for [sup] and [inf]8.

Definition 5.5.2. For a normal extension 𝐿 of TIL, define the following full subcategories
of TIL-BAO and TIL-MS respectively:

TIL-BAO𝐿 :=
{
𝔄 ∈ TIL-BAO | 𝔄 ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤ for all 𝜑 ∈ 𝐿

}
,

TIL-MS𝐿 :=
{
(𝑋 , 𝜏, 𝑅sup, 𝑅inf) ∈ TIL-MS | (𝑋 , 𝜏, 𝑅sup, 𝑅inf) ⊩𝑀𝑆 𝜑 for all 𝜑 ∈ 𝐿

}
.

Theorem 5.5.2 (Soundness and completeness). For each normal extension 𝐿 of TIL, 𝐿 is
sound and complete with respect to the class of modal spaces TIL-MS𝐿 , that is

𝐿 = Log(TIL-MS𝐿),
8 To briefly recall the definition of generalization (see Definition 3.1.1): if ⊢ 𝜑 then ⊢ [inf]𝜑𝜓 for all 𝜑,𝜓 ∈ L𝑇

and similarly for [sup].
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where

Log(TIL-MS𝐿) :=
{
𝜑 ∈ L𝑇 | (𝑋 , 𝜏, 𝑅sup, 𝑅inf) ⊩𝑀𝑆 𝜑 for all

(𝑋 , 𝜏, 𝑅sup, 𝑅inf) ∈ TIL-MS𝐿

}
Proof. Soundness follows immediately from the definition of TIL-MS𝐿 .

For completeness we rely on algebraic completeness [10, Theorem 5.27]. It follows that
for all 𝜑 ∈ L𝑇 :

𝜑 ∈ 𝐿 ⇐⇒ 𝜑 ∈ Log(TIL-BAO𝐿),

where

Log(TIL-BAO𝐿) :=
{
𝜑 ∈ L𝑇 | 𝔄 ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤ for all 𝔄 ∈ TIL-BAO𝐿

}
.

Applying Theorem 5.4.1 we derive

𝔄 ⊩𝐵𝐴𝑂 𝜑 ≈ ⊤ ⇐⇒ 𝐹 (𝔄) ⊩𝑀𝑆 𝜑,

and similarly for 𝐺. It follows that Log(TIL-BAO𝐿) = Log(TIL-MS𝐿), hence

𝐿 = Log(TIL-MS𝐿). □

Summarizing, we have worked out the Stone–Jónsson–Tarski duality between BAOs
with two binary operators and modal spaces with two ternary relations. We showed that this
duality can be restricted to a duality between TIL-spaces and TIL-algebras and used this
correspondence to show that the variety of TIL-algebras is decidable and that every normal
extension 𝐿 of TIL is sound and complete with respect to a class of TIL-spaces.



6 til of minimal upper bounds and maximal lower
bounds

There are several natural extensions of TIL worth exploring. Knudstorp studies many inter-
esting extensions of MIL in [16]. A natural question is whether the techniques developed
there can be applied in the present setting.

One alteration of TIL that can be studied is tense information logic of minimal upper
bounds and maximal lower bounds (as opposed to least upper bound and greatest lower
bound). Taking inspiration from [18], it can be proven that changing the interpretation of the
modalities this way is, in fact, indistinguishable for the modal language. This chapter will
be devoted to proving that result.

6.1 definitions

We first give a formal definition of minimal upper bound and maximal lower bound.

Definition 6.1.1. Let 𝔉 = ⟨𝑊 ,≤⟩ be a poset and 𝑦, 𝑧 ∈ 𝑊 .

• An element 𝑥 ∈ 𝑊 is a minimal upper bound of {𝑦, 𝑧} if 𝑦 ≤ 𝑥 and 𝑧 ≤ 𝑥 (so 𝑥 is an
upper bound) and there is no upper bound strictly below 𝑥, i.e. for any 𝑤 ∈ 𝑊 that is
also an upper bound of {𝑦, 𝑧}, it holds that 𝑤 ≮ 𝑥. We write 𝑥 ∈ mub{𝑦, 𝑧}.

• An element 𝑥 ∈ 𝑊 is a maximal lower bound of {𝑦, 𝑧} if 𝑥 ≤ 𝑦 and 𝑥 ≤ 𝑧 (so 𝑥 is a
lower bound) and there is no lower bound strictly above 𝑥, i.e. for any 𝑤 ∈ 𝑊 that is
also a lower bound of {𝑦, 𝑧}, it holds that 𝑥 ≮ 𝑤. We write 𝑥 ∈ mlb{𝑦, 𝑧}.

Having these definitions at hand, we are ready to give alternative semantics for the
modalities ⟨sup⟩ and ⟨inf⟩ on posets. To distinguish this new semantics from the original
one, we will write ⊩𝑀 for the alternative interpretation:

𝔐, 𝑥 ⊩𝑀 ⟨sup⟩𝜑𝜓 iff ∃ 𝑦, 𝑧 ∈ 𝑊 s.t. 𝔐, 𝑦 ⊩𝑀 𝜑, 𝔐, 𝑧 ⊩𝑀 𝜓, 𝑥 ∈ mub{𝑦, 𝑧},

𝔐, 𝑥 ⊩𝑀 ⟨inf⟩𝜑𝜓 iff ∃ 𝑦, 𝑧 ∈ 𝑊 s.t. 𝔐, 𝑦 ⊩𝑀 𝜑, 𝔐, 𝑧 ⊩𝑀 𝜓, 𝑥 ∈ mlb{𝑦, 𝑧}.

Just like before, we can define the past / future looking diamond / box in the same way.
For example, the past looking diamond P is still definable as ⟨sup⟩𝜑⊤, with the following
semantics:

𝔐, 𝑥 ⊩𝑀 ⟨sup⟩𝜑⊤ iff ∃ 𝑦, 𝑧 ∈ 𝑊 s.t. 𝔐, 𝑦 ⊩𝑀 𝜑, 𝔐, 𝑧 ⊩𝑀 ⊤, 𝑥 ∈ mub{𝑦, 𝑧}.

Since 𝔐, 𝑥 ⊩𝑀 ⊤ always holds, it follows that 𝔐, 𝑥 ⊩𝑀 ⟨sup⟩𝜑⊤ if there is 𝑦 ∈ 𝑊 such
that 𝔐, 𝑦 ⊩𝑀 𝜑 and 𝑥 ∈ mub{𝑦, 𝑥}. Since 𝑥 ∈ mub{𝑦, 𝑥} iff 𝑦 ≤ 𝑥, this corresponds to the
semantics of P, just as we showed in Remark 2.1.2.

Definition 6.1.2. The modal logic if minimal upper bounds and maximal lower bounds is
denoted TILmin-max and defined as the set of all L𝑇 validities on poset frames:

43



44 til of minimal upper bounds and maximal lower bounds

TILmin-max :=
{
𝜑 ∈ L𝑇 | for every poset model 𝔐 = (𝑊 ,≤,𝑉) and every 𝑥 ∈ 𝑊 ,

𝔐, 𝑥 ⊩𝑀 𝜑
}
.

At first glance, it seems likely that changing the interpretation of the modalities will
change the logic. Consider, for example, the following model:

𝑦 ⊩ 𝑝 𝑧 ⊩ 𝑞

𝑥 𝑤

In this model the state 𝑥 fails ⟨inf⟩𝑝𝑞 in the least / greatest (standard) sense because
𝑥 ≠ inf{𝑦, 𝑧}, while it satisfies the same formula in the minimal / maximal sense because
𝑥 ∈ mlb{𝑦, 𝑧}.

Surprisingly, we will show that TIL = TILmin-max, and hence (because TIL = TIL) the
axiomatization presented in Section 3.1 is also sound and complete for TILmin-max. One
inclusion is not difficult to show:

Theorem 6.1.1. TIL ⊆ TILmin-max.

Proof. This comes down to showing TIL ⊆ TILmin-max, that is, we should check that
TILmin-max is a normal modal logic that validates all the axioms of TIL. Fortunately, the
proof of Theorem 3.1.1 applies in this setting. We show this for the (Dk2) axiom:

(Dk2) Assume 𝔐, 𝑥 ⊩𝑀 𝑝 ∧ ⟨inf⟩𝑞𝑟, so 𝔐, 𝑥 ⊩𝑀 𝑝 and there are 𝑦, 𝑧 such that 𝑥 ∈
mlb{𝑦, 𝑧} and 𝔐, 𝑦 ⊩𝑀 𝑞 and 𝔐, 𝑧 ⊩𝑀 𝑟. Since 𝑥 ∈ mlb{𝑥, 𝑦}, it follows that
𝔐, 𝑥 ⊩𝑀 ⟨inf⟩𝑝𝑞. □

6.2 proof strategy

To show the converse inclusion TILmin-max ⊆ TIL we follow the representation approach
of [18]. We argue contrapositively:

𝜑 ∉ TIL ⇒ 𝜑 ∉ TILmin-max.

Let 𝜑 ∈ L𝑇 and assume 𝜑 ∉ TIL. Then there exists a poset model 𝔐 = (𝑊 ,≤,𝑉) and 𝑥 ∈ 𝑊
with 𝔐, 𝑥 ⊮ 𝜑. We construct an extension

𝔐′ = (𝑊 ′,≤′,𝑉 ′) with 𝑊 ⊆ 𝑊 ′, ≤ ⊆ ≤′, 𝑉 ⊆ 𝑉 ′,

that still refutes 𝜑, but now under the minimal / maximal semantics; that is, 𝔐′, 𝑥 ⊮𝑀 𝜑.
The difficulty lies with formulas containing ⟨sup⟩ and ⟨inf⟩, as the example model we

gave above shows. We therefore want to define 𝔐′ so that the least upper bound / greatest
lower bound interpretation of ⟨sup⟩ and ⟨inf⟩ (denoted by ⊩) coincides with the minimal /
maximal interpretation (denoted by ⊩𝑀 ); that is,

∀ 𝑥 ∈ 𝑊 ′, ∀ 𝜑 ∈ L𝑇 : 𝔐′, 𝑥 ⊩ 𝜑 ⇔ 𝔐′, 𝑥 ⊩𝑀 𝜑 (5)

One direction of (5) is immediate:

𝑥 = sup{𝑦, 𝑧} ⇒ 𝑥 ∈ mub{𝑦, 𝑧}
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(and dually for infima). For the reverse implication, we must ensure that

𝑥 ∈ mub{𝑦, 𝑧} ⇒ 𝑥 = sup{𝑦, 𝑧}, (6)

𝑥 ∈ mlb{𝑦, 𝑧} ⇒ 𝑥 = inf{𝑦, 𝑧}, (7)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑊 ′. The main part of this chapter is devoted to constructing such an extension
for which (6) and (7) hold.

Next, the original worlds must preserve truth in the sup/inf interpretation:

𝔐, 𝑥 ⊩ 𝜑 ⇐⇒ 𝔐′, 𝑥 ⊩ 𝜑. (8)

Putting everything together, the refutation in the supremum / infimum semantics then
also holds under the minimal / maximal semantics:

𝔐, 𝑥 ⊮ 𝜑
(8)
=⇒ 𝔐′, 𝑥 ⊮ 𝜑

(5)
=⇒ 𝔐′, 𝑥 ⊮𝑀 𝜑. (9)

Hence 𝜑 ∉ TILmin-max, thus completing the contraposition.

6.2.1 Constructing the extending frame

As mentioned above, the difficult part of this construction is defining an extension of 𝔐

such that (6) and (7) hold. The issue is when a world 𝑥 is

• a minimal upper bound of 𝑦, 𝑧 without being their supremum, or

• a maximal lower bound of 𝑦, 𝑧 without being their infimum.

Because we must make sure that (8) holds, it does not work to turn such an 𝑥 into the
supremum / infimum of the two worlds in the new model. Instead, we make sure that it is no
longer the minimal / maximal bound in the extension 𝔐′.

For every triple (𝑥, 𝑦, 𝑧) that falls under one of the cases above, we add a new chain of
bounds below or above 𝑥:

• Upper-bound case: add an infinite descending chain

𝑥 > 𝑥0 > 𝑥1 > · · ·

with 𝑥𝑖 > 𝑦, 𝑧 for all 𝑖.

• Lower-bound case: add an infinite ascending chain

𝑥 < 𝑥0 < 𝑥1 < · · ·

with 𝑥𝑖 < 𝑦, 𝑧 for all 𝑖.
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This process is carried out step-by-step and is depicted below for the case in which 𝑥 is
a maximal lower bound of the set {𝑦, 𝑧}.

𝑦 𝑧

𝑥 𝑤

⇝

𝑦 𝑧

𝑥 𝑤

𝑥0

⇝

𝑦 𝑧

𝑥 𝑤

𝑥0 𝑤0

⇝

𝑦 𝑧

𝑥 𝑤

𝑥0 𝑤0

𝑥1 ⇝ · · · ⇝

𝑦 𝑧

𝑥 𝑤

𝑥0 𝑤0

𝑥1 𝑤1

The case in which 𝑥 is a minimal upper bound is shown in Section 3 of [18]: it is the
mirror image of the construction above.

After this process, 𝑥 is no longer minimal (or maximal) and hence the antecedent of (6)
(and dually of (7)) never holds for such an 𝑥, so the implication is vacuously true.

We add these ascending and descending chains for every witness to the failure of (6)
or (7) (possibly iterating the construction infinitely many times) to produce the required
extension 𝔐′.

As required by (8), all old worlds 𝑢 ∈ 𝑊 must keep their truth values under the original
semantics after the extension. Because 𝑥 will see all its copies, we must control the formulas
those copies satisfy and make sure that they satisfy the exact same formulas as 𝑥 itself.
Only making 𝑥 and its copies satisfy the same propositional variables is not enough: if
𝔐, 𝑥 ⊩ ⟨sup⟩𝜑𝜓 is witnessed by 𝑢, 𝑣 ≤ 𝑥, then since 𝑥0 is not the supremum of {𝑢, 𝑣} in the
picture above, 𝑥0 would not satisfy the same formulas as 𝑥.

We solve this by copying not only 𝑥 itself, but also its entire downset:

↓ 𝑥 =
{
𝑢 ∈ 𝑊 : 𝑢 ≤ 𝑥

}
.

A symmetric issue arises for infima: if 𝔐, 𝑥 ⊩ ⟨inf⟩𝜑𝜓, then every copy of 𝑥 must again be
the greatest lower bound of the same elements as 𝑥 itself. Therefore we also copy 𝑥’s upset:

↑ 𝑥 =
{
𝑢 ∈ 𝑊 : 𝑢 ≥ 𝑥

}
.

For each new 𝑥𝑛 we thus duplicate its entire context ↑ 𝑥 ∪ ↓ 𝑥, extend ≤ in the obvious way,
and lift the valuation:

𝑉 ′(𝑝) := 𝑉 (𝑝) ∪
{
𝑤𝑛 : 𝑤 ∈ 𝑉 (𝑝)

}
.

The diagram below illustrates one step of this copying process.



6.2 proof strategy 47

𝑦 𝑧

𝑥 ⊩ ⟨sup⟩𝜑𝜓 𝑤

𝑢 ⊩ 𝜑 𝑣 ⊩ 𝜓

𝑥0 ⊮ ⟨sup⟩𝜑𝜓

𝑦 𝑧

𝑥 ⊩ ⟨sup⟩𝜑𝜓 𝑤

𝑢 ⊩ 𝜑 𝑣 ⊩ 𝜓

𝑢0 ⊩ 𝜑 𝑣0 ⊩ 𝜓

𝑥0 ⊩ ⟨sup⟩𝜑𝜓

It turns out that this is still too naive. If 𝑢 in our model above satisfies ⟨inf⟩𝜑𝜓, witnessed
by 𝑎, 𝑏 ≥ 𝑢, then 𝑢0 would not satisfy the same formula. With P and F definable in our
language, we can reach every world in the same ‘comparability component’, i.e. every state
connected to the current one by a finite zigzag of ≤- and ≥-steps. We therefore copy the
entire model at each step9:

𝑦 𝑧

𝑥 𝑤

𝑢 ⊩ ⟨inf⟩𝜑𝜓 𝑣

𝑢0 ⊮ ⟨inf⟩𝜑𝜓 𝑣0

𝑥0

𝑎 ⊩ 𝜑 𝑏 ⊩ 𝜓

𝑦 𝑧

𝑥 𝑤

𝑢 ⊩ ⟨inf⟩𝜑𝜓 𝑣

𝑢0 ⊩ ⟨inf⟩𝜑𝜓 𝑣0

𝑥0 ⊩ ⟨sup⟩𝜑𝜓
𝑎0 ⊩ 𝜑 𝑏0 ⊩ 𝜓

𝑎 ⊩ 𝜑 𝑏 ⊩ 𝜓

Copying the entire set of worlds 𝑊 is almost enough, but one final hurdle remains.
Suppose 𝑢 ∈ ↑ 𝑦 and 𝑣 ∈ ↑ 𝑧 have infimum 𝑠 in𝑊 . By adding the new lower bound 𝑥0 under
𝑦, 𝑧, we also put 𝑥0 below 𝑢, 𝑣. Unless 𝑥0 ≤ 𝑠, 𝑠 is no longer the infimum of {𝑢, 𝑣}. This is
shown in the picture left below.

To solve this problem, we also connect 𝑥0 (and thus any point in its downset by transitivity)
to 𝑠. In general, every new lower bound of {𝑦, 𝑧} must be seen by all points in the least upset
containing {𝑦, 𝑧} closed under binary infima. Dually, every added upper bound of a set
{𝑦′, 𝑧′} must be seen by all points in the least downset containing {𝑦′, 𝑧′} closed under
binary suprema.

𝑦 𝑧

𝑥 𝑤

𝑢 𝑣

𝑠

𝑥0

𝑦 𝑧

𝑥 𝑤

𝑢 𝑣

𝑠

𝑥0

9 Strictly speaking it would be enough to only copy the ‘comparability component’ 𝑥 is part of, but for notational
convenience we copy the whole model.
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6.3 completeness proof

In the previous section we sketched the idea behind the completeness proof. We now pro-
vide the technical details, beginning with two lemmas that remove a minimal (respectively
maximal) upper (respectively lower) bound that is not a supremum (respectively infimum),
which we will call a defect. In the end, this guarantees (6) and (7). Concretely, from a given
frame 𝔉 = (𝑊 ,≤) we build a frame 𝔉′ = (𝑊 ′,≤′) in which the defect is repaired.

Definition 6.3.1. Let (𝑊 ,≤) be a poset. A triple (𝑥, 𝑦, 𝑧) ∈ 𝑊3 is a max-defect iff

𝑥 ∈ mub{𝑦, 𝑧} but 𝑥 ≠ sup{𝑦, 𝑧}.

Definition 6.3.2. Let (𝑊 ,≤) be a poset. A triple (𝑥, 𝑦, 𝑧) ∈ 𝑊3 constitutes a min-defect iff

𝑥 ∈ mlb{𝑦, 𝑧} but 𝑥 ≠ inf{𝑦, 𝑧}.

Our construction makes 𝔉 a p-morphic image of 𝔉′, thereby preserving validity under
the sup/inf semantics.

Definition 6.3.3. Let (𝑊 ,≤) and (𝑊 ′,≤′) be posets, and let 𝑓 : 𝑊 ′ → 𝑊 be a function. We
say that 𝑓 is a sup / inf p-morphism if the following hold:

(sup-forth) if 𝑥′ = sup′{𝑦′, 𝑧′}, then 𝑓 (𝑥′) = sup{ 𝑓 (𝑦′), 𝑓 (𝑧′)};
(inf-forth) if 𝑥′ = inf′{𝑦′, 𝑧′}, then 𝑓 (𝑥′) = inf{ 𝑓 (𝑦′), 𝑓 (𝑧′)};
(sup-back) if 𝑓 (𝑥′) = sup{𝑦, 𝑧}, then there exist 𝑦′, 𝑧′ ∈ 𝑊 ′ with 𝑓 (𝑦′) = 𝑦, 𝑓 (𝑧′) = 𝑧, and

𝑥′ = sup′{𝑦′, 𝑧′};
(inf-back) if 𝑓 (𝑥′) = inf{𝑦, 𝑧}, then there exist 𝑦′, 𝑧′ ∈ 𝑊 ′ with 𝑓 (𝑦′) = 𝑦, 𝑓 (𝑧′) = 𝑧, and

𝑥′ = inf′{𝑦′, 𝑧′}.

The following lemmas make precise the method by which we repair the two possible
defects identified above.

Lemma 6.3.1. Let (𝑊 ,≤) be a poset and (𝑥, 𝑦, 𝑧) ∈ 𝑊3 such that (𝑥, 𝑦, 𝑧) constitutes a
max-defect. Then there exists a poset (𝑊 ′,≤′) and a p-morphism 𝑓 : 𝑊 ′ → 𝑊 such that:

(1) 𝑊 ⊆ 𝑊 ′ and |𝑊 ′ | ≤ max{𝜔, |𝑊 |},

(2) ≤′ ∩ (𝑊 ×𝑊) = ≤,

(3) 𝑓 ↾𝑊 = id𝑊 ,

(4) for all 𝑢, 𝑣,𝑤 ∈ 𝑊 ,

𝑢 = sup{𝑣,𝑤} ⇒ 𝑢 =
′sup{𝑣,𝑤}, 𝑢 = inf{𝑣,𝑤} ⇒ 𝑢 =

′
inf{𝑣,𝑤}, 10

(5) 𝑥 ∉ mub′{𝑦, 𝑧}.

10 Since 𝑊 ⊆ 𝑊 ′, each element of 𝑊 is also present in 𝑊 ′. Thus, when we write 𝑢 = sup′{𝑣,𝑤} (respectively
𝑢 = inf′{𝑣,𝑤}), we mean that the elements 𝑢, 𝑣,𝑤 ∈ 𝑊 , considered as elements in𝑊 ′, still form the supremum
(infimum) of {𝑣,𝑤} with respect to the extended order ≤′.
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Lemma 6.3.2. Let (𝑊 ,≤) be a poset and (𝑥, 𝑦, 𝑧) ∈ 𝑊3 such that (𝑥, 𝑦, 𝑧) constitutes a
min-defect. Then there exists a poset (𝑊 ′,≤′) and a p-morphism 𝑓 : 𝑊 ′ → 𝑊 such that:

(1) 𝑊 ⊆ 𝑊 ′ and |𝑊 ′ | ≤ max{𝜔, |𝑊 |},

(2) ≤′ ∩ (𝑊 ×𝑊) = ≤,

(3) 𝑓 ↾𝑊 = id𝑊 ,

(4) for all 𝑢, 𝑣,𝑤 ∈ 𝑊 ,

𝑢 = sup{𝑣,𝑤} ⇒ 𝑢 =
′sup{𝑣,𝑤}, 𝑢 = inf{𝑣,𝑤} ⇒ 𝑢 =

′
inf{𝑣,𝑤},

(5) 𝑥 ∉ mlb′{𝑦, 𝑧}.

We now prove Lemma 6.3.2. Lemma 6.3.1 is proven symmetrically. The proof adapts
the strategy of Lemma 5.6 in [18] to our present setting, which includes the operator ⟨inf⟩
and a modified extension construction.

Proof of Lemma 6.3.2. Let

𝑊 ′ := 𝑊 ⊔ 𝑊 =
{
(𝑣, 0), (𝑣, 1) | 𝑣 ∈ 𝑊

}
, 𝑓 : 𝑊 ′ → 𝑊 , 𝑓 (𝑣, 𝑖) = 𝑣.

For 𝑦, 𝑧 ∈ 𝑊 let 𝐴(𝑦, 𝑧) be the least upset containing {𝑦, 𝑧} and closed under binary
infima:

𝐴(𝑦, 𝑧) :=
⋃
𝑛<𝜔

𝐴𝑛 (𝑦, 𝑧),

where

𝐴0(𝑦, 𝑧) := ↑ 𝑦 ∪ ↑ 𝑧, 𝐴𝑛+1(𝑦, 𝑧) := ↑
(
𝐴𝑛 (𝑦, 𝑧) ∪ {inf{𝑏𝑛, 𝑐𝑛} | 𝑏𝑛, 𝑐𝑛 ∈ 𝐴𝑛 (𝑦, 𝑧)}

)
.

Define the extended order ≤′ on𝑊 ′ by

(𝑣, 𝑖) ≤′ (𝑤, 𝑗) ⇐⇒ 𝑖 = 0 and 𝑣 ≤ 𝑤, (10a)

or 𝑖 = 𝑗 = 1 and 𝑣 ≤ 𝑤, (10b)

or 𝑖 = 1, 𝑗 = 0, 𝑤 ∈ 𝐴(𝑦, 𝑧), 𝑣 ∈↓ 𝑥. (10c)

We prove three claims:

Claim 6.3.3. (𝑊 ′,≤′) is a poset.

Claim 6.3.4. Conditions (1)–(5) of the lemma hold.

Claim 6.3.5. 𝑓 is an onto sup / inf p-morphism.

We first prove two auxiliary lemmas that will be needed to prove these claims.

Lemma 6.3.6. For every 𝑠 ∈ 𝐴(𝑦, 𝑧) we have 𝑥 < 𝑠.

Proof. Because 𝑥 ∈ mlb{𝑦, 𝑧} but 𝑥 ≠ inf{𝑦, 𝑧}, there exists 𝑤 ∈ 𝑊 such that 𝑤 ≤ 𝑦, 𝑧 but
𝑥 ≰ 𝑤 and 𝑤 ≰ 𝑥. We prove by induction on 𝑛 that

𝐴𝑛 (𝑦, 𝑧) ⊊ ↑ 𝑥 and 𝐴𝑛 (𝑦, 𝑧) ⊊ ↑ 𝑤.
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Base case: From 𝑥 ≤ 𝑦, 𝑧, 𝑤 ≤ 𝑦, 𝑧, 𝑥 ≰ 𝑤 and 𝑤 ≰ 𝑥 it follows that 𝑥 < 𝑦, 𝑧 and 𝑤 < 𝑦, 𝑧.
Hence

𝐴0(𝑦, 𝑧) = ↑ 𝑦 ∪ ↑ 𝑧 ⊊ ↑ 𝑥 and 𝐴0(𝑦, 𝑧) = ↑ 𝑦 ∪ ↑ 𝑧 ⊊ ↑ 𝑤.

Inductive case: Assume the claim for 𝐴𝑛 (𝑦, 𝑧). Let 𝑏𝑛, 𝑐𝑛 ∈ 𝐴𝑛 (𝑦, 𝑧) be such that inf{𝑏𝑛, 𝑐𝑛}
exists. By induction hypothesis

𝑏𝑛, 𝑐𝑛 ∈ 𝐴𝑛 (𝑦, 𝑧) ⊊ ↑ 𝑥 and 𝑏𝑛, 𝑐𝑛 ∈ 𝐴𝑛 (𝑦, 𝑧) ⊊ ↑ 𝑤

so 𝑥 ≤ 𝑏𝑛, 𝑐𝑛 and 𝑤 ≤ 𝑏𝑛, 𝑐𝑛. It follows that 𝑥 ≤ inf{𝑏𝑛, 𝑐𝑛} and 𝑤 ≤ inf{𝑏𝑛, 𝑐𝑛}. On the
other hand, since 𝑥 ≰ 𝑤 and 𝑤 ≰ 𝑥, it follows that the inequalities are strict. We conclude
that

𝐴𝑛+1(𝑦, 𝑧) ⊊ ↑ 𝑤 and 𝐴𝑛+1(𝑦, 𝑧) ⊊ ↑ 𝑥.

Thus
𝐴(𝑦, 𝑧) =

⋃
𝑛<𝜔

𝐴𝑛 (𝑦, 𝑧) ⊊ ↑ 𝑥,

which implies 𝑥 < 𝑠 for every 𝑠 ∈ 𝐴(𝑦, 𝑧). □

Lemma 6.3.7. The map 𝑓 is order-preserving.

Proof. Assume (𝑣, 𝑖) ≤′ (𝑤, 𝑗). We show 𝑣 = 𝑓 (𝑣, 𝑖) ≤ 𝑤 = 𝑓 (𝑤, 𝑗) by cases:

• 𝑖 = 0. By clause 10a of the definition of ≤′ we have 𝑣 ≤ 𝑤.

• 𝑖 = 𝑗 = 1. Clause 10b implies 𝑣 ≤ 𝑤.

• 𝑖 = 1, 𝑗 = 0 with 𝑤 ∈ 𝐴(𝑦, 𝑧) and 𝑣 ∈ ↓ 𝑥. Lemma 6.3.6 gives 𝑥 < 𝑤, and 𝑣 ≤ 𝑥 by
assumption, so 𝑣 ≤ 𝑤. □

Proof of Claim 6.3.3.
Reflexivity For any (𝑣, 𝑖) ∈ 𝑊 ′ the corresponding clause (10a if 𝑖 = 0 or 10b if 𝑖 = 1) gives
(𝑣, 𝑖) ≤′ (𝑣, 𝑖).
Transitivity: Suppose (𝑣, 𝑖) ≤′ (𝑤, 𝑗) and (𝑤, 𝑗) ≤′ (𝑢, 𝑘). Lemma 6.3.7 gives us 𝑣 ≤ 𝑤 ≤ 𝑢,
so since ≤ is transitive we get 𝑣 ≤ 𝑢.

• If 𝑖 = 0 or 𝑖 = 𝑘 = 1, (𝑣, 𝑖) ≤′ (𝑢, 𝑘) follows from clause 10a or 10b.

• If 𝑖 = 1 and 𝑘 = 0, we must show 𝑢 ∈ 𝐴(𝑦, 𝑧) and 𝑣 ∈ ↓ 𝑥.
1. If 𝑗 = 0 then it follows from (𝑣, 1) ≤′ (𝑤, 0), that 𝑤 ∈ 𝐴(𝑦, 𝑧) and 𝑣 ∈ ↓ 𝑥. From
𝑤 ≤ 𝑢 we get 𝑢 ∈ 𝐴(𝑦, 𝑧), since it is an upset.

2. If 𝑗 = 1 then (𝑤, 1) ≤′ (𝑢, 0) implies 𝑢 ∈ 𝐴(𝑦, 𝑧) and 𝑤 ∈ ↓ 𝑥. Because 𝑣 ≤ 𝑤,
also 𝑣 ∈ ↓ 𝑥, so (𝑣, 1) ≤′ (𝑢, 0).

Antisymmetry: Assume (𝑣, 𝑖) ≤′ (𝑤, 𝑗) and (𝑤, 𝑗) ≤′ (𝑣, 𝑖). If 𝑖 = 𝑗 , Lemma 6.3.7 gives
𝑣 ≤ 𝑤, hence 𝑣 = 𝑤 by antisymmetry of ≤.

If 𝑖 = 0 and 𝑗 = 1, it follows from (𝑤, 1) ≤′ (𝑣, 0) that 𝑣 ∈ 𝐴(𝑦, 𝑧) and 𝑤 ∈ ↓ 𝑥.
By Lemma 6.3.6 we get that 𝑤 ≤ 𝑥 < 𝑣. But then we derived a contradiction because
(𝑣, 0) ≤′ (𝑤, 1) implies that 𝑣 ≤ 𝑤 by Lemma 6.3.7. □

Proof of Claim 6.3.4. If we identify the set {(𝑣, 0) : 𝑣 ∈ 𝑊} ⊆ 𝑊 ′ with𝑊 , condition (1)–(3)
of Lemma 6.3.2 follow immediately.
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(4) Assume 𝑢 = sup{𝑣,𝑤}. We need to show that (𝑢, 0) = sup′{(𝑣, 0), (𝑤, 0)}. From
𝑣,𝑤 ≤ 𝑢, clause 10a gives (𝑣, 0), (𝑤, 0) ≤′ (𝑢, 0). If also (𝑣, 0), (𝑤, 0) ≤′ (𝑠, 𝑖) for
some (𝑠, 𝑖) ∈ 𝑊 ′, Lemma 6.3.7 yields 𝑣,𝑤 ≤ 𝑠, hence 𝑢 ≤ 𝑠, since 𝑢 = sup{𝑣,𝑤}.
Clause 10a then gives (𝑢, 0) ≤′ (𝑠, 𝑖). Thus (𝑢, 0) = sup′{(𝑣, 0), (𝑤, 0)}.
Now assume 𝑢 = inf{𝑣,𝑤}. Then from 𝑢 ≤ 𝑣,𝑤, it follows by 10a that (𝑢, 0) ≤′

(𝑣, 0), (𝑤, 0). Let (𝑠, 𝑖) ∈ 𝑊 ′ be arbitrary such that (𝑠, 𝑖) ≤′ (𝑣, 0), (𝑤, 0). By
Lemma 6.3.7 it follows that 𝑠 ≤ 𝑣,𝑤, so since 𝑢 = inf{𝑣,𝑤} we get 𝑠 ≤ 𝑢. We
need to show that (𝑠, 𝑖) ≤′ (𝑢, 0).

• If 𝑖 = 0, then by 10a it follows that (𝑠, 0) ≤′ (𝑢, 0).
• If 𝑖 = 1, we need to show that 𝑠 ∈ ↓ 𝑥 and 𝑢 ∈ 𝐴(𝑦, 𝑧). (𝑠, 1) ≤′ (𝑣, 0), (𝑤, 0)

implies 𝑠 ∈ ↓ 𝑥 and 𝑣,𝑤 ∈ 𝐴(𝑦, 𝑧). Since 𝐴(𝑦, 𝑧) is closed under binary infima
it follows that inf{𝑣,𝑤} = 𝑢 ∈ 𝐴(𝑦, 𝑧).

(5) By construction (𝑥, 0) ≤′ (𝑥, 1), and because 𝑦, 𝑧 ∈ 𝐴(𝑦, 𝑧) we have (𝑥, 1) ≤′

(𝑦, 0), (𝑧, 0). Hence (𝑥, 0) ∉ mlb′{(𝑦, 0), (𝑧, 0)}. □

Proof of Claim 6.3.5. 𝑓 is clearly onto, so it remains to verify the four p-morphism condi-
tions hold.

⟨sup⟩-forth Suppose (𝑢, 𝑖) = sup′{(𝑣, 𝑗), (𝑤, 𝑘)}. Then (𝑣, 𝑗), (𝑤, 𝑘) ≤′ (𝑢, 𝑖), so Lemma
6.3.7 gives 𝑣,𝑤 ≤ 𝑢. Let 𝑎 ∈ 𝑊 satisfy 𝑣,𝑤 ≤ 𝑎. By the definition of ≤′

we have (𝑣, 𝑗), (𝑤, 𝑘) ≤′ (𝑎, 1), hence (𝑢, 𝑖) = sup′{(𝑣, 𝑗), (𝑤, 𝑘)} implies
(𝑢, 𝑖) ≤′ (𝑎, 1), and another application of Lemma 6.3.7 yields 𝑢 ≤ 𝑎.

⟨inf⟩-forth Suppose (𝑢, 𝑖) = inf′{(𝑣, 𝑗), (𝑤, 𝑘)}. From (𝑢, 𝑖) ≤′ (𝑣, 𝑗), (𝑤, 𝑘), we get 𝑢 ≤
𝑣,𝑤 by Lemma 6.3.7. If 𝑎 ≤ 𝑣,𝑤, then (𝑎, 0) ≤′ (𝑣, 𝑗), (𝑤, 𝑘), so since (𝑢, 𝑖) =
inf′{(𝑣, 𝑗), (𝑤, 𝑘)} it follows that (𝑎, 0) ≤′ (𝑢, 𝑖) and therefore 𝑎 ≤ 𝑢. Thus
𝑢 = inf{𝑣,𝑤}.

⟨sup⟩-back Suppose 𝑓 (𝑢, 𝑖) = sup{𝑣,𝑤}.

– If 𝑖 = 0, then (𝑣, 0), (𝑤, 0) ≤′ (𝑢, 0). If (𝑣, 0), (𝑤, 0) ≤′ (𝑎, 𝑙) then
Lemma 6.3.7 gives 𝑣,𝑤 ≤ 𝑎, hence 𝑢 ≤ 𝑎 and clause 10a yields (𝑢, 0) ≤′

(𝑎, 𝑙).
– If 𝑖 = 1 we get (𝑣, 1), (𝑤, 1) ≤ (𝑢, 1). If (𝑣, 1), (𝑤, 1) ≤′ (𝑎, 𝑙), then
𝑙 = 1 implies 𝑣,𝑤 ≤ 𝑎. So since 𝑢 = sup{𝑣,𝑤} we get that 𝑢 ≤ 𝑎, hence
(𝑢, 1) ≤′ (𝑎, 1).
If 𝑙 = 0, then (𝑣, 1), (𝑤, 1) ≤′ (𝑎, 0) implies 𝑎 ∈ 𝐴(𝑦, 𝑧) and 𝑣,𝑤 ∈ ↓ 𝑥.
Since 𝑢 = sup{𝑣,𝑤}, and 𝑣,𝑤 ≤ 𝑥, it follows that 𝑢 ≤ 𝑥, so (𝑢, 1) ≤′ (𝑎, 0).

⟨inf⟩-back Suppose 𝑓 (𝑢, 𝑖) = inf{𝑣,𝑤}.

– If 𝑖 = 0, then (𝑢, 0) ≤′ (𝑣, 0), (𝑤, 0). If (𝑎, 𝑙) ≤′ (𝑣, 0), (𝑤, 0), we get
𝑎 ≤ 𝑣,𝑤 by an application of Lemma 6.3.7. So from 𝑢 = inf{𝑣,𝑤} it
follows that 𝑎 ≤ 𝑢. If 𝑙 = 0, clause 10a gives (𝑎, 0) ≤ (𝑢, 0).
If 𝑙 = 1, then (𝑎, 1) ≤′ (𝑣, 0), (𝑤, 0) implies 𝑎 ∈ ↓ 𝑥 and 𝑣,𝑤 ∈ 𝐴(𝑦, 𝑧).
Because 𝑢 = inf{𝑣,𝑤} we have 𝑢 ∈ 𝐴(𝑦, 𝑧), so (𝑎, 1) ≤′ (𝑢, 0).

– Assume 𝑖 = 1, then (𝑢, 1) ≤′ (𝑣, 1), (𝑤, 1). If (𝑎, 𝑙) ≤′ (𝑣, 1), (𝑤, 1), then
𝑎 ≤ 𝑣,𝑤, so 𝑎 ≤ 𝑢 and (𝑎, 𝑙) ≤′ (𝑢, 1). □
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This finalizes the proof of Lemma 6.3.2. □

To prove that
𝑇 𝐼𝐿 ⊃ TILmin-max

we need one more lemma showing that we can repair all max- and min-defects that a given
poset may contain.

Lemma 6.3.8. Let (𝑊 ,≤) be a poset. Then (𝑊 ,≤) is the p-morphic image of a poset (𝑊 ′,≤′)
that contains no max- or min-defects.

Proof. Fix a countable set𝑈 disjoint from𝑊 . For convenience we assume that𝑊 is countable
(the uncountable case can be handled by a standard transfinite recursion).

Enumerate all triples (𝑥, 𝑦, 𝑧) ∈ (𝑊 ∪𝑈)3 and set (𝑊 ,≤) = (𝑊0,≤0). Given (𝑊𝑛,≤𝑛),
let (𝑥′, 𝑦′, 𝑧′) be the least triple in the enumeration that is still a max- or min-defect in
(𝑊𝑛,≤𝑛).

• If it is a max-defect, apply Lemma 6.3.1 to obtain (𝑊𝑛+1,≤𝑛+1) such that 𝑥′ ∉

mub≤𝑛+1{𝑦′, 𝑧′}.

• If it is a min-defect, apply Lemma 6.3.2 to obtain (𝑊𝑛+1,≤𝑛+1) such that 𝑥′ ∉

mlb≤𝑛+1{𝑦′, 𝑧′}.
Clause (1) of the cited lemmas ensures that |𝑊𝑛+1 | ≤ max{𝜔, |𝑊𝑛 |}, so new points can be
chosen from𝑈. Each application produces a p-morphism

𝑓𝑛+1 : (𝑊𝑛+1,≤𝑛+1) → (𝑊𝑛,≤𝑛)

that acts as the identity on 𝑊𝑛 (condition (3) in the cited lemmas). Since compositions of
p-morphisms are p-morphisms, we can define

𝑓 ∗𝑛+1 := 𝑓 ∗𝑛 ◦ 𝑓𝑛+1 : (𝑊𝑛+1,≤𝑛+1) → (𝑊0,≤0) = (𝑊 ,≤).

Finally, set
(𝑊𝜔 ,≤𝜔) :=

(⋃
𝑛∈N

𝑊𝑛,
⋃
𝑛∈N

≤𝑛

)
and

𝑓 ∗𝜔 :=
⋃
𝑛∈N

𝑓 ∗𝑛 : (𝑊𝜔 ,≤𝜔) → (𝑊0,≤0) = (𝑊 ,≤).

We reason as follows:

1. (𝑊𝜔 ,≤𝜔) is a poset. Each ≤𝑛+1 extends ≤𝑛 and agrees with it on𝑊𝑛 by clause (2) of
Lemmas 6.3.1 and 6.3.2, so the union ≤𝜔 is again a partial order on𝑊𝜔 .

2. 𝑓 ∗𝜔 is a surjective p-morphism. We first show that 𝑓 ∗𝜔 is a function. Let 𝑥 ∈ 𝑊𝜔 and
let 𝑛 be least such that 𝑥 ∈ 𝑊𝑛. For any 𝑚 ≥ 𝑛 𝑓𝑚 restricts to the identity on all𝑊𝑘’s
such that 𝑘 < 𝑚, so 𝑓 ∗𝑚(𝑥) = 𝑓 ∗

𝑚−1(𝑥) = · · · = 𝑓 ∗𝑛 (𝑥). Thus the union
⋃

𝑚 𝑓 ∗𝑚 assigns
a unique value to 𝑥, since 𝑓 ∗𝑛 does, showing that 𝑓 ∗𝜔 is a well-defined function.
𝑓 ∗𝜔 is onto since 𝑓1 ↾ 𝑊 = Id𝑊 and 𝑊 ⊆ 𝑊𝜔 . Moreover, it follows that 𝑓 ∗𝜔 satisfies
both ⟨sup⟩- and ⟨inf⟩-forth from condition (2) of Lemmas 6.3.1 and 6.3.2 and the fact
that each 𝑓 ∗𝑛 satisfies both forth conditions. For the back conditions we use that each
𝑓 ∗𝑛 satisfies the back conditions, together with condition (3) of the before mentioned
lemmas.
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3. No defects remain. Every potential defect appears in the enumeration and is repaired
at a certain stage in the recursive process. Once a defect is repaired, clause (2) and (5)
of Lemmas 6.3.1 and 6.3.2 ensure that it stays repaired. □

Theorem 6.3.9.
𝑇 𝐼𝐿 = TILmin-max

Proof. The inclusion 𝑇 𝐼𝐿 ⊆ TILmin-max was proven in Theorem 6.1.1. For the converse
assume 𝜑 ∉ TIL. Then there exists a poset model 𝔐 = (𝑊 ,≤,𝑉) such that 𝔐 ⊮ 𝜑.

By Lemma 6.3.8 there is a poset (𝑊 ′,≤′) without defects and a surjective p-morphism

𝑓 : (𝑊 ′,≤′) → (𝑊 ,≤).

Put
𝑉 ′(𝑝) :=

{
𝑤′ ∈ 𝑊 ′ | 𝑓 (𝑤′) ∈ 𝑉 (𝑝)

}
, 𝔐′ = (𝑊 ′,≤′,𝑉 ′).

Because p-morphisms preserve truth, 𝔐′ ⊮ 𝜑. Since (𝑊 ′,≤′) contains no max- or min-
defects, the ordinary sup / inf semantics and the max / min semantics coincide on 𝔐′, so
also 𝔐′ ⊮𝑀 𝜑. Hence 𝜑 ∉ TILmin-max, showing TILmin-max ⊆ 𝑇 𝐼𝐿. □

Thus the logic of minimal upper bounds (‘incomparable fusions’) and maximal lower
bounds (‘incomparable common information’) is the same as standard TIL under the supre-
mum / infimum semantics.



7 translating wpl to til

So far the language of TIL has been interpreted on posets and preorders, structures in which
suprema and infima need not exist. A natural next step (already explored by Wang and Wang
in [23, 24]) is to move to lattices, where any two elements possess both a supremum and an
infimum. In this chapter we follow this direction too.

Translations between logics are a way to reveal connections, bridging the worlds between
different logics and this way enabling techniques and results to be imported and exported.
Their importance was recently emphasized in a LIRA seminar by van Benthem [6]. Classic
examples include Gödel’s embedding of intuitionistic logic into S4 [13] (see also [12] for a
textbook proof) and the standard translation of modal formulas into first-order logic [9] and,
an example more related to the subject of this thesis, the translation of truth maker logic into
modal information logic [5]. Here we study the relationship between TIL (over lattices) and
weak positive logic (WPL). The latter has the same language as positive logic (namely the
negation- and implication-free fragment of classical propositional logic), but it does not, in
general, satisfy the distributivity axiom.

Building on the partial translation sketched in [7], we provide a full, faithful translation
from the ⊥-free fragment of WPL into an extended version of TIL and discuss the additional
expressivity gained through this enrichment.

7.1 wpl and til on lattices

We begin by spelling out tense information logic over lattices.

7.1.1 TIL on lattices

Definition 7.1.1. A lattice model for the language L𝑇 is a poset (𝑋 , 𝑅) in which for every
pair of elements 𝑥, 𝑦 ∈ 𝑋 both a supremum (alternatively called join) and an infimum
(alternatively called meet) exist. We write

𝑥 ⋎ 𝑦 := sup{𝑥, 𝑦}, 𝑥 ⋏ 𝑦 := inf{𝑥, 𝑦}.

Equivalently, a lattice can be described as a triple (𝑋 ,⋏,⋎), where ⋏,⋎ : 𝑋2 → 𝑋 are
operations satisfying commutativity, associativity, idempotence, and absorption. A lattice is
bounded if there are elements 0, 1 ∈ 𝑋 such that 0 ≤ 𝑎 and 𝑎 ≤ 1 for all 𝑎 ∈ 𝑋 . We then
write (𝑋 , 0, 1,⋏,⋎).

Every lattice (𝑋 , 0, 1,⋏,⋎) induces a partial order ≤ defined by

𝑥 ≤ 𝑦 ⇐⇒ 𝑥 ⋏ 𝑦 = 𝑥 (equivalently, 𝑥 ⋎ 𝑦 = 𝑦),

which is also the way to show that the two definitions are equivalent.

A notion we will use extensively in this chapter is that of filters on lattices.

Definition 7.1.2. A filter on a lattice (𝑋 , 0, 1,⋏,⋎) is a subset 𝐹 ⊆ 𝑋 that is

54



7.1 wpl and til on lattices 55

• non-empty,

• upward closed: 𝑥 ∈ 𝐹 and 𝑥 ≤ 𝑦 imply 𝑦 ∈ 𝐹,

• closed under meet: 𝑥, 𝑦 ∈ 𝐹 implies 𝑥 ⋏ 𝑦 ∈ 𝐹.

The semantics for TIL on lattices is identical to the semantics of TIL on posets, as
presented in Definition 2.1.4. For notational convenience, we write

𝔐, 𝑥 ⊩𝐿 𝜑

to mean that the formula 𝜑 ∈ L𝑇 is true at the world 𝑥 ∈ 𝑋 of the lattice model 𝔐 =

(𝑋 , 1, 0,⋏,⋎,𝑉).

Definition 7.1.3 (TIL on lattices).

𝑇 𝐼𝐿lat :=
{
𝜑 ∈ L𝑇 | for every lattice model 𝔐 = (𝑋 , 1, 0,⋏,⋎,𝑉) and every

𝑥 ∈ 𝑋 , 𝔐, 𝑥 ⊩𝐿 𝜑
}

As mentioned before, Wang and Wang [23, 24] give a finite axiomatization of TIL over
lattices for a hybrid language with supremum and infimum operators as well as nominals.
Since the class of lattices is first-order definable [23, Definition 7], and the formulas of𝑇 𝐼𝐿lat
can be translated into first-order logic through the standard translation [10, Definition 2.45],
it follows that 𝑇 𝐼𝐿lat is recursively enumerable [10, Lemma 6.32], hence axiomatisable.

What remains open is an axiomatization in our non-hybrid language L𝑇 : Wang and
Wang show that uniqueness of joins / meets is not definable in the non-hybrid language [24,
Theorem 25], which motivates their move to the hybrid setting. We therefore state the
following open problem.
Open Problem 7.1.1 (Axiomatise non-hybrid TIL over lattices). Find a sound and complete
axiomatization of TIL over lattices without hybrid features. Moreover, can we find a finite
axiomatization or is it not finitely axiomatizable?

7.1.2 WPL

As mentioned before, WPL is the name for positive logic that is not necessarily distribu-
tive. [7] studies this logic and it is from this paper that we take the following definitions and
results.

Definition 7.1.4. Let L𝑊 be the language of weak positive logic, generated by the grammar

𝜑 ::= 𝑝 | ⊤ | ⊥ | 𝜑 ∧ 𝜓 | 𝜑 ∨ 𝜓

Logics based on L𝑊 are defined as sets of consequence pairs, i.e. expressions of the
form 𝜑 ⊴ 𝜓 where 𝜑 and 𝜓 are formulas in L𝑊 .
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Definition 7.1.5. Let WPL be the smallest set of consequence pairs containing the following
axioms

𝑝 ⊴ ⊤ ⊥ ⊴ 𝑝

𝑝 ⊴ 𝑝
𝑝 ⊴ 𝑞 𝑞 ⊴ 𝑟

𝑝 ⊴ 𝑟

𝑝 ∧ 𝑞 ⊴ 𝑝 𝑝 ∧ 𝑞 ⊴ 𝑞
𝑟 ⊴ 𝑝 𝑟 ⊴ 𝑞

𝑟 ⊴ 𝑝 ∧ 𝑞

𝑝 ⊴ 𝑝 ∨ 𝑞 𝑞 ⊴ 𝑝 ∨ 𝑞
𝑝 ⊴ 𝑟 𝑞 ⊴ 𝑟

𝑝 ∨ 𝑞 ⊴ 𝑟

and closed under uniform substitution.

Algebraically, this is the positive fragment of bounded lattice logic: the connectives
are interpreted as the lattice operations. The calculus above is sound and complete for the
algebraic (lattice) semantics [7, Thm. 3.5].

The frame semantics for this logic are defined as follows:

Definition 7.1.6. An L-model is a bounded lattice (𝑋 , 1, 0,⋏,⋎) with a valuation

𝑉 : P −→ F (𝑋 , 1, 0,⋏,⋎)11,

that assigns to each propositional variable 𝑝 ∈ P a filter of (𝑋 , 1, 0,⋏,⋎).

Definition 7.1.7. The interpretation of an L𝑊 -formula 𝜑 at a state 𝑥 in an L-model 𝔐 =

(𝑋 , 1, 0,⋏,⋎,𝑉) (which we will denote by ⊩𝑊 to distinguish it from the semantics of TIL)
is defined recursively as follows:

𝔐, 𝑥 ⊩𝑊 ⊤ always

𝔐, 𝑥 ⊩𝑊 ⊥ iff 𝑥 = 1

𝔐, 𝑥 ⊩𝑊 𝑝 iff 𝑥 ∈ 𝑉 (𝑝)
𝔐, 𝑥 ⊩𝑊 𝜑 ∧ 𝜓 iff 𝔐, 𝑥 ⊩𝑊 𝜑 and 𝔐, 𝑥 ⊩𝑊 𝜓

𝔐, 𝑥 ⊩𝑊 𝜑 ∨ 𝜓 iff ∃𝑦, 𝑧 ∈ 𝑋 s.t. 𝔐, 𝑦 ⊩𝑊 𝜑,𝔐, 𝑧 ⊩𝑊 𝜓 and 𝑦 ⋏ 𝑧 ≤ 𝑥

With these semantics at hand we can define weak positive logic on lattices:

Definition 7.1.8.

𝑊𝑃𝐿lat :=
{
𝜑 ∈ L𝑊 | for every L-model 𝔐 = (𝑋 , 1, 0,⋏,⋎,𝑉) and every 𝑥 ∈ 𝑋 :

𝔐, 𝑥 ⊩𝑊 𝜑
}

Soundness and completeness of WPL for the frame semantics follow from [7, Thm. 3.22].

11 F (𝑋 , 1, 0,⋏,⋎) denotes the set of all filters on the lattice (𝑋 , 1, 0,⋏,⋎).
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7.2 translating wpl to til

Bezhanishvili et al. sketch in [7] a partial translation

𝑇 : L𝑊 → L𝑇 .

The translation they propose is motivated by the close match between the semantics of
disjunction in WPL and the semantics of the ⟨inf⟩-operator in TIL. The only difference is
that, for 𝜑∨𝜓 to hold at 𝑥 in an L-model, it suffices that the meet of the worlds that witness 𝜑
and 𝜓 lies below 𝑥. Since the past-looking diamond is definable in TIL, let

𝑇 (𝜑 ∨ 𝜓) := P (⟨inf⟩𝑇 (𝜑)𝑇 (𝜓)).

This section will be devoted to defining a suitable translation function 𝑇 and proving that
for every consequence pair 𝜑 ⊴ 𝜓:

𝜑 ⊩𝑊 𝜓 ⇐⇒ 𝑇 (𝜑) ⊩𝑇 𝑇 (𝜓). (11)

To that end we first establish the following lemma by structural induction over 𝜑:

(𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝜑 ⇐⇒ (𝐿,𝑉), 𝑥 ⊩𝑇 𝑇 (𝜑) (12)

for all lattice models (𝐿,𝑉)12, all 𝑥 ∈ 𝐿, and all 𝜑 ∈ L𝑊 , where

𝜌 :
(
P 𝑉−−→ P(𝑋)

)
↦−→

(
P

𝜌𝑉
−−−→ F (𝑋 , 1, 0,⋏,⋎)

)
. (13)

is a function that sends a TIL subset–valuation to a WPL filter–valuation.
Concretely, we want to find a schema 𝜒(𝑎) such that

𝜌𝑉 (𝑝) :=
{
𝑥 ∈ 𝑋 | (𝐿,𝑉), 𝑥 ⊩𝑇 𝜒(𝑝)

}
∈ F (𝐿) for all propositional 𝑝.

Defining 𝑇 on propositional variables by 𝑇 (𝑝) := 𝜒(𝑝) then yields the base case of (12):

(𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝑝 ⇔ 𝑥 ∈ 𝜌𝑉 (𝑝) ⇔ (𝐿,𝑉), 𝑥 ⊩𝑇 𝜒(𝑝) ⇔ (𝐿,𝑉), 𝑥 ⊩𝑇 𝑇 (𝑝).

In accordance with the definition of filters, we must have 𝜌𝑉 (𝑝) closed under finite meets.
However, L𝑇 can only speak about a binary meet witness via ⟨inf⟩. To capture arbitrary
finite meets inside the logic, we therefore enrich the language with two modalities:

𝔐, 𝑥 ⊩𝑇 ⟨inf∗⟩𝜑𝜓 iff ∃𝑦1, . . . , 𝑦𝑛, 𝑧1, . . . , 𝑧𝑚 for 𝑚, 𝑛 ≥ 1 such that
∀𝑦𝑖 : 𝑦𝑖 ⊩𝑇 𝜑, ∀𝑧 𝑗 : 𝑧 𝑗 ⊩𝑇 𝜓,
and 𝑥 = inf{𝑦1, . . . , 𝑦𝑛, 𝑧1, . . . , 𝑧𝑚}.

𝔐, 𝑥 ⊩𝑇 ⟨sup∗⟩𝜑𝜓 iff ∃𝑦1, . . . , 𝑦𝑛, 𝑧1, . . . , 𝑧𝑚 for 𝑚, 𝑛 ≥ 1 such that
∀𝑦𝑖 : 𝑦𝑖 ⊩𝑇 𝜑, ∀𝑧 𝑗 : 𝑧 𝑗 ⊩𝑇 𝜓,
and 𝑥 = sup{𝑦1, . . . , 𝑦𝑛, 𝑧1, . . . , 𝑧𝑚}.

12 Here 𝐿 = (𝑋 , 1, 0,⋏,⋎)
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We write L𝑇∗ for this extension of L𝑇 .
Remark 7.2.1. For proving (12), it would actually suffice to add a unary finite-meet operator

𝔐, 𝑥 ⊩𝑇 ⟨𝑖⟩𝜑 iff ∃𝑦1, . . . , 𝑦𝑛 for 𝑛 ≥ 1 such that ∀𝑦𝑖 : 𝑦𝑖 ⊩𝑇 𝜑
and 𝑥 = inf{𝑦1, . . . , 𝑦𝑛}.

Also the “finite-join” operator ⟨sup∗⟩ is not required. We nevertheless introduce both
binary operators because

• the unary versions are immediate special cases:

𝔐, 𝑥 ⊩𝑇 ⟨𝑖⟩𝜑 ⇐⇒ 𝔐, 𝑥 ⊩𝑇 ⟨inf∗⟩𝜑𝜑,

and

• we want to keep studying the structures we interpret the language on (later we will
also interpret it on posets again) in a symmetric way.

First, we show that these operators are not definable in L𝑇 .

Proposition 7.2.2. L𝑇∗ is strictly more expressive on lattices than L𝑇 .

Proof. Define recursively a function 𝐵 : L𝑇 → N measuring an upper bound for the number
of distinct witnesses a formula ever needs in any model.

Definition 7.2.1.
𝐵(𝑝) = 1,
𝐵(¬𝜑) = 𝐵(𝜑),

𝐵(𝜑 ∧ 𝜓) = 𝐵(𝜑) + 𝐵(𝜓),
𝐵
(
⟨sup⟩(𝜑,𝜓)

)
= 𝐵(𝜑) + 𝐵(𝜓),

𝐵
(
⟨inf⟩(𝜑,𝜓)

)
= 𝐵(𝜑) + 𝐵(𝜓).

Assume, for contradiction, that the operator ⟨inf∗⟩ is definable in L𝑇 . This means that
there exists a schema 𝛽(𝑝, 𝑞) ∈ L𝑇 , such that

𝔐, 𝑥 ⊩𝑇 ⟨inf∗⟩𝜑𝜓 ⇐⇒ 𝔐, 𝑥 ⊩𝑇 𝛽(𝜑,𝜓) (14)

holds for all models 𝔐, 𝑥 ∈ 𝔐 and 𝜑,𝜓 ∈ L𝑇∗ . Let 𝑛 := 𝐵(𝛽(𝑝, 𝑝)) and consider the lattice

𝑋 := P({0, . . . , 𝑛}), ⋎ := ∪, ⋏ := ∩, 0 := ∅, 1 := {0, . . . , 𝑛},

together with the valuation

𝑉 (𝑝) :=
{
{1, . . . , 𝑛}, {0, 2, . . . , 𝑛}, . . . , {0, . . . , 𝑛 − 1}

}
.

At the point 0 = ∅ we have 𝔐, 0 ⊩𝑇 ⟨inf∗⟩𝑝𝑝, witnessed by the set

{1, . . . , 𝑛}, {0, 2, . . . , 𝑛}, . . . , {0, . . . , 𝑛 − 1}

of size 𝑛+ 1. No set of witnesses of size less than or equal to 𝑛 suffices. Because 𝐵(𝛽(𝑝, 𝑝)) =
𝑛, the formula 𝛽(𝑝, 𝑝) cannot be satisfied at 0, contradicting (14). Hence ⟨inf∗⟩ (and, by a
symmetrical argument ⟨sup∗⟩) is not expressible in L𝑇 . □
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Definition 7.2.2. Given a lattice model 𝔐 = (𝐿,𝑉), let

𝜌𝑉 (𝑝) :=
{
𝑥 ∈ 𝑋 | 𝔐, 𝑥 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝 ∨ ¬F P 𝑝

}
Claim 7.2.3. For every valuation 𝑉 and propositional variable 𝑝, the set 𝜌𝑉 (𝑝) is a filter
on 𝐿.

Proof. Let 𝔐 = (𝐿,𝑉).
(Non-emptiness) If 𝑉 (𝑝) ≠ ∅, then 𝔐, 𝑥 ⊩𝑇 𝑝 implies 𝔐, 𝑥 ⊩𝑇 ⟨inf∗⟩𝑝𝑝, so 𝔐, 𝑥 ⊩𝑇

P ⟨inf∗⟩𝑝𝑝, thus 𝑥 ∈ 𝜌𝑉 (𝑝) and 𝜌𝑉 (𝑝) ≠ ∅.
If𝑉 (𝑝) = ∅, then𝔐, 𝑥 ⊮ 𝑝 for every 𝑥 ∈ 𝑋 . It follows that𝔐, 1 ⊩𝑇 ¬F P 𝑝, so 1 ∈ 𝜌𝑉 (𝑝),

thus 𝜌𝑉 (𝑝) ≠ ∅.

(Upward-closedness) Assume 𝑥 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝 ∨ ¬F P 𝑝 and 𝑦 ≥ 𝑥. Then
𝑥 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝 implies there is 𝑢 ≤ 𝑥 such that 𝑢 ⊩𝑇 ⟨inf∗⟩𝑝𝑝. By transitivity it follows
that 𝑢 ≤ 𝑦, so 𝑦 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝.

If on the other hand 𝑥 ⊩𝑇 ¬F P 𝑝 this implies 𝑉 (𝑝) = ∅, thus 𝜌𝑉 (𝑝) = 𝑋 . It follows that
𝑦 ∈ 𝜌𝑉 (𝑝).

(Closed under meet) Assume 𝑥 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝 and 𝑦 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝. It follows that there
exists 𝑢 ≤ 𝑥 such that 𝑢 ⊩𝑇 ⟨inf∗⟩𝑝𝑝 and 𝑣 ≤ 𝑦 such that 𝑣 ⊩𝑇 ⟨inf∗⟩𝑝𝑝, thus there are
𝑦1, ..., 𝑦𝑛 and 𝑧1, ..., 𝑧𝑚 such that 𝑦𝑖 ⊩𝑇 𝑝, 𝑧𝑖 ⊩𝑇 𝑝, 𝑢 = inf{𝑦1, ..., 𝑦𝑛} and 𝑣 = inf{𝑧1, ..., 𝑧𝑚}.
Then 𝑢⋏ 𝑣 = inf{𝑦1, ..., 𝑦𝑛, 𝑧1, ..., 𝑧𝑚}, so 𝑢⋏ 𝑣 ⊩𝑇 ⟨inf∗⟩𝑝𝑝. From 𝑢 ≤ 𝑥 and 𝑣 ≤ 𝑦 it follows
that 𝑢 ⋏ 𝑣 ≤ 𝑥 ⋏ 𝑦, so 𝑥 ⋏ 𝑦 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝.

If 𝑥 ⊩𝑇 ¬F P 𝑝 or 𝑦 ⊩𝑇 ¬F P 𝑝, we get that 𝑉 (𝑝) = ∅, so 𝜌𝑉 (𝑝) = 𝑋 , so 𝑥 ⋏ 𝑦 ∈
𝜌𝑉 (𝑝). □

Remark 7.2.4. Definition 7.2.2 is not the only way to map subset–valuations to filter–
valuations (e.g. the trivial choice 𝜌𝑉 (𝑝) = 𝑋 = { 𝑥 | 𝔐, 𝑥 ⊩𝑇 ⊤ } also yields a filter). That
we use Definition 7.2.2 is motivated as follows:

First of all, note that if 𝑉 (𝑝) is a filter (thus non-empty), the first part of the disjunction
(i.e. 𝑃⟨inf∗⟩𝑝𝑝) guarantees that 𝜌𝑉 (𝑝) = 𝑉 (𝑝). More generally, if 𝑉 (𝑝) is non-empty, then
{𝑥 ∈ 𝑋 | 𝔐, 𝑥 ⊩ P ⟨inf∗⟩𝑝𝑝} is the least filter containing 𝑉 (𝑃):

Upward-closedness and closure under meet follow from similar reasoning as in the proof
of Claim 7.2.3. Moreover, let 𝐻 be a filter containing 𝑉 (𝑝) and let 𝑥 ∈ 𝑋 be such that
𝔐, 𝑥 ⊩ P ⟨inf∗⟩𝑝𝑝. If 𝔐, 𝑥 ⊩ P ⟨inf∗⟩𝑝𝑝, it follows that there is a world 𝑢 ≤ 𝑥 such that
𝔐, 𝑢 ⊩ ⟨inf∗⟩𝑝𝑝. Then 𝔐, 𝑢 ⊩ ⟨inf∗⟩𝑝𝑝 iff there are 𝑢1, . . . , 𝑢𝑛 such that 𝑢𝑖 ⊩ 𝑝 and
𝑢 = sup{𝑢1, . . . , 𝑢𝑛}. Since 𝑉 (𝑝) ⊆ 𝐻, it follows that 𝑢1, . . . , 𝑢𝑛 ∈ 𝐻. By closure under
meet and upward closedness, it follows that 𝑥 ∈ 𝐻, so {𝑥 ∈ 𝑋 | 𝔐, 𝑥 ⊩ P ⟨inf∗⟩𝑝𝑝} ⊆ 𝐻.

The second part of the conjunct in the definition of 𝑇 (𝑝) (i.e. ¬𝐹𝑃𝑝) is motivated to
guarantee that 𝜌𝑉 (𝑝) is never empty, which is required for it to be a filter. Assume𝑉 (𝑝) = ∅,
this implies that there is also no 𝑥 ∈ 𝑋 such that 𝔐, 𝑥 ⊩𝑇 P ⟨inf∗⟩𝑝𝑝, so without the second
part we would get that 𝜌𝑉 (𝑝) = ∅. But since 𝑉 (𝑝) = ∅, and since 𝔐 is a model based on a
lattice, it follows that for all 𝑥 ∈ 𝑋 it holds that 𝔐, 𝑥 ⊩𝑇 ¬𝐹𝑃𝑝, so 𝜌𝑉 (𝑝) = 𝑋 . Thus 𝜌𝑉 (𝑝)
is non-empty.

To give a full translation between L𝑊 and L𝑇 , every formula needs to be translated. We
already reasoned how disjunction and propositional variables should be translated. It turns
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out that it is not evident how to translate the falsum symbol of L𝑊 . Since 𝔐, 𝑥 ⊩𝑊 ⊥ ⇔
𝑥 = 1, a translation into TIL requires a formula 𝜑1 ∈ L𝑇 such that

𝔐, 𝑥 ⊩𝑇 𝜑1 ⇐⇒ 𝑥 = 1. (15)

Such a formula does not exist, which we will show by a bisimulation argument.

Definition 7.2.3 (Bisimulation). Let 𝔐 and 𝔐′ be two lattice models. A non-empty binary
relation 𝑍 ⊆ 𝑋 × 𝑋 ′ is a bisimulation between 𝔐 and 𝔐′ iff

• 𝑥𝑍𝑥′ implies that 𝑥 and 𝑥′ satisfy the same propositional formulas, and

• 𝑍 satisfies the back- and forth-conditions as stipulated in 6.3.3.

Proposition 7.2.5. There is no formula 𝜑1 ∈ L𝑇 satisfying (15).

Proof. Consider the following two lattice models of TIL:

1′

𝔐1 1 𝑤′ 𝔐2

0 0′

Set 𝑉 (𝑝) := {1} and 𝑉 ′(𝑝) := {1′,𝑤′}. The relation 𝑍 := {(1, 1′), (1,𝑤′), (0, 0′)} is a
bisimulation as defined in 7.2.3. It follows that 1 and 𝑤′ satisfy the same L𝑇 formulas. But
1 is the top element and 𝑤′ is not, so the top element is undefinable in L𝑇 . Hence (15) is
impossible. □

This makes defining a complete translation difficult. We could add a constant for ⊥ and
shift to hybrid logic, but we will not explore this direction in this thesis. Instead, we will
restrict the translation to the falsum-free fragment of L𝑊 , which we denote by L−

𝑊
.

Definition 7.2.4. Define 𝑇 : L−
𝑊

→ L𝑇 by

𝑇 (𝑝) = P (⟨inf∗⟩ 𝑝 𝑝) ∨ ¬F P 𝑝,
𝑇 (⊤) = ¬⊥,

𝑇 (𝜑 ∧ 𝜓) = 𝑇 (𝜑) ∧𝑇 (𝜓),
𝑇 (𝜑 ∨ 𝜓) = P (⟨inf⟩ 𝑇 (𝜑) 𝑇 (𝜓)).

We will prove that if we leave ⊥ out of the picture, we have a full and faithful translation.
This is a corollary of the following lemma, which captures (12).

Lemma 7.2.6. Let 𝑇 : L−
𝑊

→ L𝑇 be as defined above, then for all 𝜑 ∈ L−
𝑊

and all lattice
models 𝔐 = (𝐿,𝑉) (where 𝐿 denotes a lattice (𝑋 , 1, 0,⋏,⋎)):

(𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝜑 ⇐⇒ (𝐿,𝑉), 𝑥 ⊩𝑇 𝑇 (𝜑)
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Proof. We give a proof by induction on the complexity of 𝜑.
Base case: (𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝑝 holds iff

𝑥 ∈ 𝜌𝑉 (𝑝) =
{
𝑥 ∈ 𝑋 | 𝔐, 𝑥 ⊩𝑇 P (⟨inf∗⟩𝑝𝑝) ∨ ¬F P 𝑝

}
.

Thus 𝑥 ∈ 𝜌𝑉 (𝑝) iff 𝔐, 𝑥 ⊩𝑇 𝑇 (𝑝), which is what we needed to show.

The case 𝜑 := ⊤ follows directly from the semantics and the definition of ⊤.

Inductive case: The case where 𝜑 := 𝜓1 ∧ 𝜓2 follows directly by induction hypothesis.

Assume 𝜑 := 𝜓1 ∨ 𝜓2. Then (𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝜓1 ∨ 𝜓2 implies

∃𝑦, 𝑧 ∈ 𝑋 such that (𝐿, 𝜌𝑉), 𝑦 ⊩𝑊 𝜓1, (𝐿, 𝜌𝑉), 𝑧 ⊩𝑊 𝜓2 and 𝑦 ⋏ 𝑧 ≤ 𝑥.

It follows by induction hypothesis that (𝐿,𝑉), 𝑦 ⊩𝑇 𝑇 (𝜓1) and (𝐿,𝑉), 𝑧 ⊩𝑇 𝑇 (𝜓2), so since
𝑦 ⋏ 𝑧 ≤ 𝑥 it follows that

(𝐿,𝑉), 𝑥 ⊩𝑇 P (⟨inf⟩𝑇 (𝜑)𝑇 (𝜓)) = 𝑇 (𝜓1 ∨ 𝜓2)

The converse direction follows in a similar way. □

Theorem 7.2.7. For all consequence pairs 𝜑 ⊴ 𝜓 with 𝜑,𝜓 ∈ L−
𝑊

:

𝜑 ⊩𝑊 𝜓 ⇐⇒ 𝑇 (𝜑) ⊩𝑇 𝑇 (𝜓)

Proof. Let 𝜑 ⊴ 𝜓 be an arbitrary consequence pair with 𝜑,𝜓 ∈ L−
𝑊

and assume 𝜑 ⊩𝑊 𝜓. Let
𝔐 = (𝐿,𝑉) be an arbitrary lattice model and let 𝑥 ∈ 𝑋 be arbitrary. Assume 𝔐, 𝑥 ⊩𝑇 𝑇 (𝜑).
Then 𝜌𝑉 is a filter valuation on 𝐿 and by an application of Lemma 7.2.6 it follows that
(𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝜑, so by assumption (𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝜓. Applying Lemma 7.2.6 again yields
(𝐿,𝑉), 𝑥 ⊩𝑇 𝑇 (𝜓).

Conversely, assume 𝑇 (𝜑) ⊩𝑇 𝑇 (𝜓), let 𝔐 = (𝐿,𝑉) be an arbitrary L-model, let 𝑥 ∈ 𝑋
be arbitrary and assume (𝐿,𝑉), 𝑥 ⊩𝑊 𝜑. Then (𝐿,𝑉) is also a lattice model and 𝜌𝑉 = 𝑉

since 𝑉 is already a filter valuation. By an application of Lemma 7.2.6 it follows that
(𝐿,𝑉), 𝑥 ⊩𝑇 𝑇 (𝜑), so by assumption (𝐿,𝑉), 𝑥 ⊩𝑇 𝑇 (𝜓). Applying Lemma 7.2.6 again
yields (𝐿, 𝜌𝑉), 𝑥 ⊩𝑊 𝜓 and since 𝜌𝑉 = 𝑉 we get the desired result. □

7.3 translating wpl to til with ⊥

Even though we showed that the top element is not definable in the language of TIL, we
can still give a full translation of WPL (including ⊥) into TIL by making the translation
relative to a consequence pair. To this end, let 𝜑 ⊴ 𝜓 be an arbitrary consequence pair with
𝜑,𝜓 ∈ L𝑊 . We define a translation function 𝑇𝜑,𝜓 : L𝑊 → L𝑇 as follows.

Definition 7.3.1. For propositional letters 𝑝, ⊤, ∧ and ∨, 𝑇𝜑,𝜓 is defined in the same way as
𝑇 of Definition 7.2.4. Additionally, let 𝑞 ∈ P be such that 𝑞 ∉ Prop(𝜑,𝜓), we define

𝑇𝜑,𝜓 (⊥) =
∧

𝑝∈Prop(𝜑,𝜓)∪{𝑞}
P ⟨inf∗⟩

(
¬P 𝑝 → ¬F P 𝑝, ¬P 𝑝 → ¬F P 𝑝

)
,

where Prop(𝜑,𝜓) is the set of all propositional letters that occur in 𝜑 and 𝜓.
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We want to show

𝑇𝜑,𝜓 (𝜑) ⊩𝑇 𝑇𝜑,𝜓 (𝜓) ⇐⇒ 𝜑 ⊩𝑊 𝜓.

For the right-to-left direction we argue by contraposition. Suppose there is a lattice model
(𝐿,𝑉) and 𝑥 ∈ 𝐿 such that (𝐿,𝑉), 𝑥 ⊩𝑇 𝑇𝜑,𝜓 (𝜑) yet (𝐿,𝑉), 𝑥 ⊮𝑇 𝑇𝜑,𝜓 (𝜓). We now construct
an L-model from (𝐿,𝑉) as follows. Because ⊥ is true only at the top element of an L-model,
we collapse all points of 𝐿 that satisfy 𝑇𝜑,𝜓 (⊥) into a single class. Concretely, let ∼ be the
equivalence relation that identifies exactly the points satisfying 𝑇𝜑,𝜓 (⊥) and leaves all other
points distinct, and write |𝑦 | for the ∼–class of 𝑦 ∈ 𝐿. On the set {|𝑦 | | 𝑦 ∈ 𝐿} we then
define meet and join operations ⋏∼,⋎∼ (see below) and verify that they make this set into a
lattice whose top element is the class of the 𝑇𝜑,𝜓 (⊥)–points. Defining an appropriate filter
valuation on this lattice gives us an L-model in which the ∼-class of 𝑥 satisfies 𝜑 and refutes
𝜓, as required.

Let (𝐿,𝑉) be a lattice model. Define the following equivalence relation on 𝐿:

𝑥 ∼ 𝑦 ⇐⇒


𝑥 ⊩ 𝑇𝜑,𝜓 (⊥) and 𝑦 ⊩ 𝑇𝜑,𝜓 (⊥),

or

𝑥 ⊮ 𝑇𝜑,𝜓 (⊥) and 𝑥 = 𝑦.

On the set {|𝑥 | | 𝑥 ∈ 𝐿} we define the following meet and join operations and claim that
it defines a lattice:

• |𝑥 | ⋎∼ |𝑦 | = |𝑥 ⋎ 𝑦 |

• |𝑥 | ⋏∼ |𝑦 | =


|𝑥 ⋏ 𝑦 |, if |𝑥 | ≠ |1| ≠ |𝑦 |,

|𝑥 |, if |𝑦 | = |1|,

|𝑦 |, if |𝑥 | = |1|.

The join is well-defined since ⟦𝑇𝜑,𝜓 (⊥)⟧ is an upset and the meet is well-defined by
definition.

Claim 7.3.1. (𝐿/∼,⋏∼,⋎∼) is a lattice with |1| as top element and |0| as bottom element.

Proof. We first show that |1| is the top element and |0| is the bottom element:

|𝑥 | ⋎∼ |1| = |1|, |𝑥 | ⋎∼ |0| = |𝑥 | by definition of ⋎∼,
|𝑥 | ⋏∼ |1| = |𝑥 |, |𝑥 | ⋏∼ |0| = |0| by definition of ⋏∼ .

Showing that the lattice laws hold is straightforward. The only more involved cases are the
two absorption rules:

• |𝑥 | = |𝑥 | ⋎∼ ( |𝑥 | ⋏∼ |𝑦 |)
– holds if |𝑥 | ≠ |1| ≠ |𝑦 |;
– if |𝑥 | = |1|, then |𝑥 | ⋏∼ |𝑦 | = |𝑦 | and |1| ⋎∼ |𝑦 | = |1| = |𝑥 |;
– if |𝑦 | = |1|, then |𝑥 | ⋏∼ |𝑦 | = |𝑥 | and |𝑥 | ⋎∼ |𝑥 | = |𝑥 |.
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• |𝑥 | = |𝑥 | ⋏∼ ( |𝑥 | ⋎∼ |𝑦 |)
– holds if |𝑥 | ≠ |1| ≠ |𝑦 |;
– if |𝑥 | = |1|, then |𝑥 | ⋏∼ ( |𝑦 | ⋎∼ |𝑥 |) = |𝑦 | ⋎∼ |𝑥 | = |𝑥 |;
– if |𝑦 | = |1|, then |𝑥 | ⋎∼ |𝑦 | = |𝑦 | and |𝑥 | ⋏∼ |𝑦 | = |𝑥 |. □

Denote by Sub(𝜑,𝜓) the set of subformulas of 𝜑 and 𝜓. We will need the following
auxiliary lemma for later proofs.

Lemma 7.3.2. Let 𝜒 ∈ Sub(𝜑,𝜓) be arbitrary. Then

𝑦 ⊩𝑇 𝑇𝜑,𝜓 (⊥) ⇒ 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (𝜒)

Proof. We give a proof by structural induction over 𝜒.
Base case: The case of 𝜒 := ⊥ is trivial.

If 𝜒 := ⊤, then 𝑇𝜑,𝜓 (⊤) = ¬⊥ and the statement follows by the semantics of ⊥ in TIL.
For 𝜒 := 𝑟 we need to show that

𝑦 ⊩𝑇
∧

𝑝∈Prop(𝜑,𝜓)∪{𝑞}
P ⟨inf∗⟩(¬P 𝑝 → ¬F P 𝑝, ¬P 𝑝 → ¬F P 𝑝) ⇒

𝑦 ⊩𝑇 P ⟨inf∗⟩𝑟𝑟 ∨ ¬F P 𝑟.

Since 𝑟 ∈ Prop(𝜑,𝜓), we can assume that 𝑦 ⊩𝑇 P ⟨inf∗⟩(¬P 𝑟 → ¬F P 𝑟, ¬P 𝑟 → ¬F P 𝑟).
If 𝑉 (𝑟) = ∅ it follows that 𝑦 ⊩𝑇 ¬F P 𝑟, so 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (𝑟). If 𝑉 (𝑟) ≠ ∅ we reason as follows.
𝑦 ⊩𝑇 P ⟨inf∗⟩(¬P 𝑟 → ¬F P 𝑟, ¬P 𝑟 → ¬F P 𝑟) implies that there exist 𝑦1, ..., 𝑦𝑛 ∈ ⟦¬P 𝑟 →
¬F P 𝑟⟧ such that inf{𝑦1, ..., 𝑦𝑛} ≤ 𝑦. If there exist 𝑖 ∈ {1, ..., 𝑛} such that 𝑦𝑖 ⊩𝑇 ¬P 𝑟, it
follows that 𝑦𝑖 ⊩𝑇 ¬F P 𝑟, so since 𝐿 is a lattice it follows that 𝑉 (𝑟) = ∅, which is in
contradiction with our assumption.

It follows that 𝑦𝑖 ⊩𝑇 P 𝑟 for all 𝑖 ∈ {1, ..., 𝑛}. This implies that there exist 𝑦′1, ..., 𝑦′𝑛 such
that 𝑦′

𝑖
≤ 𝑦𝑖 and 𝑦′

𝑖
⊩𝑇 𝑟 for all 𝑖 ∈ {1, . . . , 𝑛}. Since inf{𝑦′1, ..., 𝑦′𝑛} ≤ inf{𝑦1, ..., 𝑦𝑛} ≤ 𝑦 it

follows that 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (𝑟).
Inductive cases: The case where 𝜒 := 𝜒1 ∧ 𝜒2 follows from the induction hypothesis.
Assume 𝜒 := 𝜒1 ∨ 𝜒2. Since 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (⊥), it follows by the induction hypothesis

that 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (𝜒1) and 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (𝜒2). Since 𝑦 ≤ 𝑦 and 𝑦 = inf{𝑦, 𝑦} it follows that
𝑦 ⊩𝑇 P ⟨inf⟩𝑇𝜑,𝜓 (𝜒1) 𝑇𝜑,𝜓 (𝜒2) = 𝑇𝜑,𝜓 (𝜒1 ∨ 𝜒2). □

We now consider the lattice (𝐿/∼,⋏∼,⋎∼, |1|, |0|) as a model of WPL. We define the
following valuation on (𝐿/∼,⋏∼,⋎∼, |1|, |0|):

𝜌′𝑉 (𝑝) =
{
|𝑥 | ∈ 𝐿/∼ | (𝐿,𝑉), 𝑥 ⊩𝑇 𝑇𝜑,𝜓 (𝑝)

}
(16)

Remark 7.3.3. Note that the definition of 𝜌′𝑉 might not be well-defined if 𝑉 (𝑟) ≠ ∅ for any
𝑟 ∉ Prop(𝜑,𝜓). We prove that in that case we can define an alternative valuation 𝑉 ′ that
evaluates all subformulas of 𝜑 and 𝜓 the same as 𝑉 , which is what we need for our purposes.

Proposition 7.3.4. Let 𝐿 be a lattice and let 𝑉 and 𝑉 ′ be subset valuations on 𝐿. If 𝑉 and 𝑉 ′

agree on all propositional letters in 𝜑, then for any subformula 𝜒 of 𝜑 and any 𝑥 ∈ 𝐿 it holds
that

(𝐿,𝑉), 𝑥 ⊩𝑇 𝜒 ⇐⇒ (𝐿,𝑉 ′), 𝑥 ⊩𝑇 𝜒
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Proof. By structural induction over 𝜒. □

We argue that the definition of (16) is a well-defined filter valuation. For any 𝑝 ∈
Prop(𝜑,𝜓) it follows from Lemma 7.3.2 that for all 𝑥 ∈ ⟦𝑇𝜑,𝜓 (⊥)⟧ and for all 𝑝 ∈ Prop(𝜑,𝜓)
it is the case that 𝑥 ⊩ 𝑇𝜑,𝜓 (𝑝).

For any 𝑝 ∉ Prop(𝜑,𝜓), we may assume by Remark 7.3.3 that 𝑉 (𝑝) = ∅. This implies
that (𝐿,𝑉), 𝑥 ⊩ ¬F P 𝑝, so (𝐿,𝑉), 𝑥 ⊩ 𝑇𝜑,𝜓 (𝑝) for all 𝑥 ∈ 𝐿. It follows that 𝑥, 𝑦 ∈ ⟦𝑇𝜑,𝜓 (⊥)⟧
implies that

(𝐿,𝑉), 𝑥 ⊩ 𝑇𝜑,𝜓 (𝑝) ⇐⇒ (𝐿,𝑉), 𝑦 ⊩ 𝑇𝜑,𝜓 (𝑝)

for any 𝑝 ∈ P.
It follows from similar reasoning as in Claim 7.2.3 that 𝜌′𝑉 is a filter valuation.

We can now prove the following lemma.

Lemma 7.3.5. For all 𝜒 ∈ Sub(𝜑,𝜓)

(𝐿,𝑉), 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (𝜒) ⇐⇒ (𝐿/∼, 𝜌′𝑉), |𝑦 | ⊩𝑊 𝜒

Proof. We give a proof by induction on the complexity of 𝜒.

Base case: The case 𝜒 := ⊤ follows by the semantics.
If 𝜒 := ⊥, then (𝐿,𝑉), 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (⊥) iff |𝑦 | = |1| iff (𝐿/∼, 𝜌′𝑉), |𝑦 | ⊩𝑊 ⊥ by the

semantics of WPL.
For 𝜒 := 𝑝 the claim follows by definition of 𝜌′𝑉 .

Inductive case: The case where 𝜒 := 𝜒1 ∧ 𝜒2 follows from the induction hypothesis.
Assume 𝜒 := 𝜒1 ∨ 𝜒2. For the left-to-right direction, assume (𝐿,𝑉), 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (𝜒1 ∨ 𝜒2).

Since 𝑇𝜑,𝜓 (𝜒1 ∨ 𝜒2) = P ⟨inf⟩𝑇𝜑,𝜓 (𝜒1)𝑇𝜑,𝜓 (𝜒2) this means there exist 𝑦1 and 𝑦2 such that

(𝐿,𝑉), 𝑦1 ⊩𝑇 𝑇𝜑,𝜓 (𝜒1), (𝐿,𝑉), 𝑦2 ⊩𝑇 𝑇𝜑,𝜓 (𝜒2) and 𝑦1 ⋏ 𝑦2 ≤ 𝑦.

By induction hypothesis we get that

(𝐿/∼, 𝜌′𝑉), |𝑦1 | ⊩𝑊 𝜒1 and (𝐿/∼, 𝜌′𝑉), |𝑦2 | ⊩𝑊 𝜒2.

The claim would follow if we showed that |𝑦1 | ⋏∼ |𝑦2 | ≤∼13 |𝑦 |, i.e. ( |𝑦1 | ⋏∼ |𝑦2 |) ⋏∼ |𝑦 | =
|𝑦1 | ⋏∼ |𝑦2 |. We distinguish cases:

• If |𝑦1 | ≠ |1| ≠ |𝑦2 |, then |𝑦1 | ⋏∼ |𝑦2 | = |𝑦1 ⋏ 𝑦2 |. Assume |𝑦 | = |1|, then |𝑦1 ⋏ 𝑦2 | ⋏∼
|1| = |𝑦1 ⋏ 𝑦2 |.
If |𝑦 | ≠ |1|, then |𝑦1 ⋏ 𝑦2 | ⋏∼ |𝑦 | = | (𝑦1 ⋏ 𝑦2) ⋏ 𝑦 | = |𝑦1 ⋏ 𝑦2 | since 𝑦1 ⋏ 𝑦2 ≤ 𝑦.

• Assume |𝑦1 | = |1| and |𝑦2 | ≠ |1|, then |𝑦1 | ⋏∼ |𝑦2 | = |𝑦2 |. Assume |𝑦 | = |1|, then
( |𝑦1 | ⋏∼ |𝑦2 |) ⋏∼ |𝑦 | = |𝑦2 | ⋏∼ |𝑦 | = |𝑦2 |.
Assume |𝑦 | ≠ |1|. We get that ( |𝑦1 | ⋏∼ |𝑦2 |) ⋏∼ |𝑦 | = |𝑦2 | ⋏∼ |𝑦 | = |𝑦2 ⋏ 𝑦 |. Since
|𝑦2 ⋏ 𝑦 | ⋎∼ |𝑦 | = | (𝑦2 ⋏ 𝑦) ⋎ 𝑦 | = |𝑦 | by definition of ⋎∼ and absorption, it follows
that |𝑦2 ⋏ 𝑦 | ≤∼ |𝑦 |, which is what we needed to show.

• The case where |𝑦1 | ≠ 1 and |𝑦2 | = |1| is analogous.

13 Where ≤∼ is the ordering induced by ⋏∼ or equivalently by ⋎∼
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• Lastly, assume |𝑦1 | = |1| = |𝑦2 |. Since ⟦𝑇𝜑,𝜓 (⊥)⟧ is a filter, it follows that 𝑦 ∈
⟦𝑇𝜑,𝜓 (⊥)⟧, so |𝑦 | = 1 and the claim follows.

For the right-to-left direction, assume (𝐿/∼, 𝜌′𝑉), |𝑦 | ⊩𝑊 𝜒1 ∨ 𝜒2. This implies there are
|𝑦1 |, |𝑦2 | such that

(𝐿/∼, 𝜌′𝑉), |𝑦1 | ⊩𝑊 𝜒1, (𝐿/∼, 𝜌′𝑉), |𝑦2 | ⊩𝑊 𝜒2 and |𝑦1 | ⋏∼ |𝑦2 | ≤∼ |𝑦 |.

By induction hypothesis it follows that

(𝐿,𝑉), 𝑦1 ⊩𝑇 𝑇𝜑,𝜓 (𝜒1) and (𝐿,𝑉)𝑦2 ⊩𝑇 𝑇𝜑,𝜓 (𝜒2).

We need to show that 𝑦1 ⋏ 𝑦2 ≤ 𝑦. We distinguish cases:

• If |𝑦 | = |1|, then (𝐿,𝑉), 𝑦 ⊩ 𝑇𝜑,𝜓 (⊥), so by Lemma 7.3.2 we get that (𝐿,𝑉), 𝑦 ⊩
𝑇𝜑,𝜓 (𝜒1 ∨ 𝜒2).

• If |𝑦 | ≠ |1|, |𝑦1 | ≠ |1| ≠ |𝑦2 |, then since |𝑦1 | ∧∼ |𝑦2 | ≤∼ |𝑦 |, it follows that ( |𝑦1 | ⋏
|𝑦2 |) ⋏ |𝑦 | = | (𝑦1 ⋏ 𝑦2) ⋏ 𝑦 | = |𝑦1 ⋏ 𝑦2 |, so as |𝑦1 ⋏ 𝑦2 | is a singleton, it follows that
(𝑦1 ⋏ 𝑦2) = 𝑦, so we are done.

• If |𝑦 | ≠ |1| ≠ |𝑦1 |, |𝑦2 | = |1|, then |𝑦1 | ⋏∼ |𝑦2 | = |𝑦1 |, thus from

|𝑦1 | = |𝑦1 | ⋏∼ |𝑦2 | = ( |𝑦1 | ⋏∼ |𝑦2 |) ⋏∼ |𝑦 | = |𝑦1 | ⋏∼ |𝑦 |,

it follows that 𝑦1 ⋏ 𝑦 = 𝑦1, so 𝑦1 ≤ 𝑦. We conclude that 𝑦1 ⋏ 𝑦2 ≤ 𝑦. □

With all the groundwork in place we can prove the main theorem of this section.

Theorem 7.3.6. Let 𝜑 ⊴ 𝜓 be an arbitrary consequence pair with 𝜑,𝜓 ∈ L𝑊 . Let 𝑇𝜑,𝜓 be
as in Definition 7.3.1, then

𝑇𝜑,𝜓 (𝜑) ⊩𝑇 𝑇𝜑,𝜓 (𝜓) ⇐⇒ 𝜑 ⊩𝑊 𝜓.

Proof. ⇒ We show that

𝜑 ⊮𝑊 𝜓 =⇒ 𝑇𝜑,𝜓 (𝜑) ⊮𝑇 𝑇𝜑,𝜓 (𝜓). (17)

By assumption there exists a lattice 𝐿, 𝑥 ∈ 𝐿 and a filter valuation 𝑉 on 𝐿 such that

(𝐿,𝑉), 𝑥 ⊩𝑊 𝜑 yet (𝐿,𝑉), 𝑥 ⊮𝑊 𝜓.

Consider the L-model (𝐿,𝑉 ′), where 𝑉 ′(𝑝) = 𝑉 (𝑝) for 𝑝 ≠ 𝑞 and 𝑉 ′(𝑞) = 1. As 𝑞 ∉

Prop(𝜙,𝜓), it still holds that (𝐿,𝑉 ′), 𝑥 ⊩𝑊 𝜑 and (𝐿,𝑉 ′), 𝑥 ⊮𝑊 𝜓.
Now consider (𝐿,𝑉 ′) as a TIL-model. We prove by structural induction over 𝜒 that for

all 𝑦 ∈ 𝐿 and 𝜒 ∈ Sub(𝜑,𝜓) it holds that

(𝐿,𝑉 ′), 𝑦 ⊩𝑊 𝜒 ⇐⇒ (𝐿,𝑉 ′), 𝑦 ⊩𝑇 𝑇𝜙,𝜓 (𝜒).

Base case: The case where 𝜒 := ⊤ follows by the semantics.
Assume 𝜒 := ⊥, then

(𝐿,𝑉 ′), 𝑦 ⊩𝑊 ⊥ ⇐⇒ 𝑦 = 1.
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On the other hand we claim that

(𝐿,𝑉 ′), 𝑦 ⊩𝑇 𝑇𝜑,𝜓 (⊥) ⇐⇒ 𝑦 = 1.

Since 𝑉 ′(𝑞) = {1}, 1 is the only element of 𝐿 such that (𝐿,𝑉 ′), 1 ⊩𝑇 ¬P 𝑞 → ¬F P 𝑞. For
let 𝑧 ∈ 𝐿 be such that 𝑧 ≠ 1. Then 𝑧 < 1, so (𝐿,𝑉 ′), 𝑧 ⊩𝑇 ¬P 𝑞, while (𝐿,𝑉 ′), 𝑧 ⊩𝑇 F P 𝑞. It
follows that 1 is the only element such that

(𝐿,𝑉 ′), 1 ⊩𝑇
∧

𝑝∈Prop(𝜑,𝜓)∪{𝑞}
P ⟨inf∗⟩(¬P 𝑝 → ¬F P 𝑝,¬P 𝑝 → ¬F P 𝑝) = 𝑇𝜑,𝜓 (⊥).

Assume 𝜒 := 𝑝. Then (𝐿,𝑉 ′), 𝑦 ⊩𝑊 𝑝 iff (𝐿,𝑉 ′), 𝑦 ⊩𝑇 𝑝, since both models have the
same valuation and (𝐿,𝑉 ′), 𝑦 ⊩𝑇 𝑝 iff (𝐿,𝑉 ′), 𝑦 ⊩𝑇 𝑇 (𝑝) since 𝑉 ′ is a filter valuation.

Inductive case: The case where 𝜒 := 𝜒1 ∧ 𝜒2 follows from the induction hypothesis.
Assume 𝜒 := 𝜒1 ∨ 𝜒2, then (𝐿,𝑉 ′), 𝑦 ⊩𝑊 𝜒1 ∨ 𝜒2 iff there are 𝑦1, 𝑦2 ∈ 𝐿 such that

𝑦1 ⋏ 𝑦2 ≤ 𝑦, (𝐿,𝑉 ′), 𝑦1 ⊩𝑊 𝜒1 and (𝐿,𝑉 ′), 𝑦2 ⊩𝑊 𝜒2. By induction hypothesis it follows
that (𝐿,𝑉 ′), 𝑦1 ⊩𝑇 𝑇𝜑,𝜓 (𝜒1) and (𝐿,𝑉 ′), 𝑦2 ⊩𝑇 𝑇𝜑,𝜓 (𝜒2), so since 𝑦1 ⋏ 𝑦2 ≤ 𝑦 it follows
that

(𝐿,𝑉 ′), 𝑦 ⊩𝑇 P (⟨inf⟩𝑇𝜑,𝜓 (𝜒1)𝑇𝜑,𝜓 (𝜒2)) = 𝑇𝜑,𝜓 (𝜒1 ∨ 𝜒2).

The other direction is proven similarly, which finishes the induction proof.
We conclude that (17) holds which finishes this direction of the proof.

⇐ We show that
𝑇𝜑,𝜓 (𝜑) ⊮𝑇 𝑇𝜑,𝜓 (𝜓) =⇒ 𝜑 ⊮𝑊 𝜓. (18)

By assumption there exists a lattice 𝐿, 𝑥 ∈ 𝐿 and subset valuation 𝑉 on 𝐿 such that

(𝐿,𝑉), 𝑥 ⊩𝑇 𝑇𝜑,𝜓 (𝜑) yet (𝐿,𝑉), 𝑥 ⊮ 𝑇𝜑,𝜓 (𝜓).

It follows from Lemma 7.3.5 that (𝐿/∼, 𝜌′𝑉), |𝑥 | ⊩𝑊 𝜑 and (𝐿/∼, 𝜌′𝑉), |𝑥 | ⊮𝑊 𝜓, which
proves (18). □

We conclude that even though the top element of a lattice is not definable in the language
of TIL, we can nevertheless define a translation of WPL into TIL that is relative to a
consequence pair.

7.4 back to posets

In order to give a full and faithful translation of the bottom-free fragment of WPL into TIL
on lattices, we extended the language of TIL with two binary operators. These operators can
also be interpreted on posets.

We therefore switch our attention back to posets and explore what the consequences are
of interpreting the ∗ modalities on posets.

Definition 7.4.1.

𝑇 𝐼𝐿∗ =
{
𝜑 ∈ L∗

𝑇 | for every poset model 𝔐 = (𝑊 ,≤,𝑉) and every 𝑥 ∈ 𝑊 ,
𝔐, 𝑥 ⊩ 𝜑

}



7.4 back to posets 67

Even though the proof of Proposition 7.2.2 lifts to posets, we give an alternative proof
that exploits the fact that not all binary suprema exist in posets.

Proposition 7.4.1. L𝑇∗ is strictly more expressive on posets than L𝑇 .

Proof. Consider the following two poset models where the worlds satisfy all and only the
proposition letters shown.

𝔐

𝑥

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑏1 ⊩ 𝑝 𝑏2 ⊩ 𝑝 𝑏3 ⊩ 𝑝

𝑥′ 𝑥′′

𝔐′ 𝑎′1 𝑎′2 𝑎′3 𝑎′4 𝑎′5 𝑎′6 𝑎′′1 𝑎′′2 𝑎′′3 𝑎′′4 𝑎′′5 𝑎′′6

𝑏1 ⊩ 𝑝 𝑏2 ⊩ 𝑝 𝑏3 ⊩ 𝑝 ,

We define a bisimulation between 𝔐 and 𝔐′ as defined in 7.2.3 as follows:

𝑥 𝑍 𝑥′, 𝑥′′

𝑎𝑖 𝑍 𝑎
′
𝑖 , 𝑎

′′
𝑖 (1 ≤ 𝑖 ≤ 6)

𝑏𝑖 𝑍 𝑏
′
𝑖 (1 ≤ 𝑖 ≤ 3)

Since
𝔐, 𝑥 ⊩ ⟨sup∗⟩𝑝𝑝,

but
𝔐′, 𝑥′ ⊮ ⟨sup∗⟩𝑝𝑝,

it follows that ⟨sup∗⟩ is not definable in L𝑇 . □

7.4.1 Modal operations on posets

In this section we explore how TIL can be viewed as a modal lens on partial orders. With the
basic modalities already present inL𝑇 we can define four natural operations on posets, two of
which go beyond the operations we can define with just the forward- and backward-looking
operators of (tensed) S4.
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Fix a poset model 𝔐 = (𝑊 ,≤,𝑉). For every 𝜑 ∈ L∗
𝑇

we write

⟦𝜑⟧𝔐 :=
{
𝑥 ∈ 𝑊 | 𝔐, 𝑥 |= 𝜑

}
for the truth set (or extension) of 𝜑.

Definition 7.4.2. For 𝐴, 𝐵 ⊆ 𝑊 define

↓ 𝐴 =
{
𝑥 ∈ 𝑊 | 𝑥 ≤ 𝑎 for some 𝑎 ∈ 𝐴

}
,

↑ 𝐴 =
{
𝑥 ∈ 𝑊 | 𝑎 ≤ 𝑥 for some 𝑎 ∈ 𝐴

}
,

sup(𝐴, 𝐵) =
{

sup{𝑎, 𝑏} | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵
}
,

inf (𝐴, 𝐵) =
{

inf{𝑎, 𝑏} | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵
}
.

Note that even if 𝐴 and 𝐵 are closed under suprema, sup(𝐴, 𝐵) need not be, which is
shown by the following example:

Example 7.4.2. Consider the following poset.

𝑥

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6

𝑎 𝑏 𝑎′ 𝑏′

The subsets 𝐴 = {𝑎, 𝑏,𝑚2} and 𝐵 = {𝑎′, 𝑏′,𝑚5} are closed under suprema since sup{𝑎, 𝑏} =
𝑚2 and sup{𝑎′, 𝑏′} = 𝑚5. On the other hand,

sup(𝐴, 𝐵) = 𝑏𝑖𝑔𝑙{𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6
}

is not suprema closed since sup{𝑚1,𝑚3} = 𝑥 ∉ sup{𝐴, 𝐵}.

Lemma 7.4.3. Let 𝔐 = (𝑊 ,≤,𝑉) be a poset model. For any formulas 𝜑,𝜓 ∈ L∗
𝑇

we have

↓ ⟦𝜑⟧𝔐 = ⟦F 𝜑⟧𝔐 ,

↑ ⟦𝜑⟧𝔐 = ⟦P 𝜑⟧𝔐 ,

sup
(
⟦𝜑⟧𝔐 , ⟦𝜓⟧𝔐

)
= ⟦⟨sup⟩𝜑𝜓⟧𝔐 ,

inf
(
⟦𝜑⟧𝔐 , ⟦𝜓⟧𝔐

)
= ⟦⟨inf⟩𝜑𝜓⟧𝔐 .

Proof. It is easy to check that the definitions are correct. As an example we verify two:

• 𝑥 ∈ ↓ ⟦𝜑⟧𝔐 iff there is 𝑦 ∈ ⟦𝜑⟧𝔐 such that 𝑥 ≤ 𝑦, which by the semantics of F 𝜑 is
exactly the case if 𝑥 ⊩ F 𝜑, so in other words 𝑥 ∈ ⟦F 𝜑⟧𝔐 .

• 𝑥 ∈ inf
(
⟦𝜑⟧𝔐 , ⟦𝜓⟧𝔐

)
iff there are 𝑦 ∈ ⟦𝜑⟧𝔐 , 𝑧 ∈ ⟦𝜓⟧𝔐 such that 𝑥 = inf{𝑦, 𝑧}. By

the semantics of ⟨inf⟩ this corresponds exactly to 𝑥 ⊩ ⟨inf⟩𝜑𝜓, so 𝑥 ∈ ⟦⟨inf⟩𝜑𝜓⟧𝔐 . □
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With the new modalities, we can define the finite-supremum closure operator. Formally,
given a set 𝑋 and a subset 𝐴 ⊆ 𝑋 , this operation is defined as follows:

Clfin : P(𝑋) → P(𝑋)
𝐴 ↦→ {sup{𝑆} : ∅ ≠ 𝑆 ⊆ 𝐴 such that 𝑆 is finite}

We prove the following.

Proposition 7.4.4. Let 𝜑,𝜓 ∈ L∗
𝑇

be arbitrary, then

Clfin(⟦𝜑⟧ ∪ ⟦𝜓⟧) = ⟦⟨sup∗⟩𝜑𝜓 ∨ ⟨sup∗⟩𝜑𝜑 ∨ ⟨sup∗⟩𝜓𝜓⟧

Proof. To prove the left to right inclusion, let 𝑥 ∈ Clfin(⟦𝜑⟧ ∪ ⟦𝜓⟧) be arbitrary, then
there is finite non-empty 𝑆 ⊆ ⟦𝜑⟧ ∪ ⟦𝜓⟧ such that 𝑥 = sup{𝑆}. Assume 𝑆 ∩ ⟦𝜑⟧ ≠ ∅ and
𝑆 ∩ ⟦𝜓⟧ ≠ ∅, then there exist 𝑦1, ..., 𝑦𝑛 ∈ ⟦𝜑⟧ (i.e. 𝔐, 𝑦𝑖 ⊩ 𝜑) and 𝑧1, ..., 𝑧𝑚 ∈ ⟦𝜓⟧ (i.e.
𝔐, 𝑧𝑖 ⊩ 𝜓) such that 𝑥 = sup{𝑦1, ..., 𝑦𝑛, 𝑧1, ..., 𝑧𝑚}. It follows that 𝑥 ⊩ ⟨sup∗⟩𝜑𝜓. In case
𝑆 ∩ ⟦𝜑⟧ = ∅ it follows that 𝑥 ⊩ ⟨sup∗⟩𝜓𝜓 and 𝑆 ∩ ⟦𝜓⟧ = ∅ yields 𝑥 ⊩ ⟨sup∗⟩𝜑𝜑.

For the right to left inclusion, let 𝑥 ∈ ⟦⟨sup∗⟩𝜑𝜓 ∨ ⟨sup∗⟩𝜑𝜑 ∨ ⟨sup∗⟩𝜓𝜓⟧ be arbitrary.
Assume 𝔐, 𝑥 ⊩ ⟨sup∗⟩𝜑𝜓. Then there exits 𝑦1, ..., 𝑦𝑛 ∈ ⟦𝜑⟧ and 𝑧1, ..., 𝑧𝑚 ∈ ⟦𝜓⟧ such that
𝑥 = sup{𝑦1, ..., 𝑦𝑛, 𝑧1, ..., 𝑧𝑚}. It follows that 𝑥 ∈ Clfin(⟦𝜑⟧ ∪ ⟦𝜓⟧). If 𝑥 ⊩ ⟨sup∗⟩𝜑𝜑, we get
that there exist 𝑦1, ..., 𝑦𝑛 ∈ ⟦𝜑⟧ such that 𝑥 = sup{𝑦1, ..., 𝑦𝑛}, so 𝑥 ∈ Clfin(⟦𝜑⟧ ∪ ⟦𝜓⟧). The
case where 𝑥 ⊩ ⟨sup∗⟩𝜓𝜓 is handled similarly. □

In conclusion, the extension L∗
𝑇

lets us define several natural operations on posets directly
at the formula level. There are still many interesting directions to explore from here, some
of which are discussed in the next section.
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In this thesis we study tense information logic, an extension of modal information logic with
a second modality: the infimum operator.

Following the outline and proofs of [16], we presented an axiomatization of TIL on
posets that only links ⟨sup⟩ and ⟨inf⟩ through a standard axiom of temporal logic, thereby
answering an open question posed by van Benthem in [4]. We extended the completeness
proof for MIL in [16] using the step-by-step method and showed that this result extends
to TIL on preorder frames as well. We proved that TIL enjoys the FMP with respect to a
generalized class of frames, thereby establishing decidability of the logic and answering yet
another question posed in [3].

Next, we studied tense information logic from an algebraic and topological perspective.
We worked out the Stone–Jónsson–Tarski duality between the category of Boolean algebras
with two binary operators (2B-BAO) and the category of modal Stone spaces with two
ternary relations (2T-MS) and checked that this duality carries over unchanged when we
restrict to the objects that validate the axioms of TIL.

Continuing our study of TIL, we examined whether the logic remains sound, complete
and decidable when we change the semantics of the modal operators ⟨sup⟩ and ⟨inf⟩: instead
of interpreting them via the least upper bound and greatest lower bound, we define them with
respect to minimal upper bounds and maximal lower bounds. Applying a modified version
of the representation method of [18], we proved that no modal principle is valid under one
interpretation but not the other. In particular, we showed that TIL and its variant based
on minimal / maximal bounds can be axiomatized by, and are sound and complete with
respect to, the same set of axioms. Tense information logic with minimal / maximal bounds
shares the informational interpretation of TIL. However, instead of uniqueness, multiple
incomparable bounds and thus merges and states containing most common information can
exist.

Connecting TIL with other modal logics, the last chapter worked out a translation of the
⊥-free fragment of weak positive logic into tense information logic interpreted on lattices,
starting from the translation suggested in [7]. To make this translation work, we extended TIL
with two binary *-modalities that take witness sets of any finite size in order to define meet-
closure of filters in the logic. Moreover, by defining a translation relative to a consequence
pair 𝜑 ⊴ 𝜓 and using a fresh propositional letter 𝑞 ∉ Prop(𝜑,𝜓) in the translation of ⊥, we
obtained a full and faithful translation of WPL including ⊥ into the extended version of TIL.

Extending the logic with these modalities turned out to have interesting implications. If
we interpret the extended language on posets, the supremum and infimum closure operators
are definable, thus going beyond the operators that are definable with only the past-/future-
looking modalities of (tensed) S4. There seem to be many interesting directions one could
go from here, of which some will be discussed in the following section.
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8.1 further research

During the investigation of TIL, multiple open problems and directions for further research
presented themselves. We briefly discuss those that seem most interesting.

8.1.1 Informational implication

In [16], Knudstorp studies different alterations of modal information logic, one of which is
MIL of minimal upper bounds. In Chapter 6 we lifted this result to the setting of TIL with
two modalities.

Another extension that is studied in [16] is an enrichment of the language with the
‘informational implication’. Since the ⟨sup⟩ and ⟨inf⟩ operators behave in many ways like
a ‘meet’ operator, it is natural to consider their residuals. We therefore enrich the language
(denoting the result with L⊃𝑇 ) with the informational implications ⊃sup and ⊃inf, interpreted
on posets as follows:

𝔐, 𝑥 ⊩ 𝜑 ⊃sup 𝜓 iff ∀𝑢, 𝑣 ∈ 𝑊 , if 𝔐, 𝑢 ⊩ 𝜑 and 𝑣 = sup{𝑢, 𝑥} then 𝔐, 𝑣 ⊩ 𝜓,

𝔐, 𝑥 ⊩ 𝜑 ⊃inf 𝜓 iff ∀𝑢, 𝑣 ∈ 𝑊 , if 𝔐, 𝑢 ⊩ 𝜑 and 𝑣 = inf{𝑢, 𝑥} then 𝔐, 𝑣 ⊩ 𝜓.

Definition 8.1.1. Let TIL⊃ be the logic of all L⊃𝑇 validities on poset frames, that is

TIL⊃ =
{
𝜑 ∈ L⊃𝑇 | for every poset model 𝔐 = (𝑊 ,≤,𝑉) and every 𝑥 ∈ 𝑊 ,

𝔐, 𝑥 ⊩ 𝜑
}
.

In [17], Knudstorp presents an axiomatization of MIL extended with ⊃sup and uses
bulldozing and representation theorems to prove soundness and completeness. The same
approach seems to apply without problems to TIL⊃ , but one preliminary result turns out to
be difficult to show: does introducing residuals increase expressive power? At this moment
it remains an open problem whether ⊃sup and ⊃inf are definable in the original language.

8.1.2 Axiomatization of TIL*

In Chapter 7 we extended TIL with two additional binary modalities that capture infima
and suprema of sets of states of any finite size. The new operators quantify over finite but
unbounded sets of witnesses. This raises the possibility that 𝑇 𝐼𝐿∗ is not compact (compare
for example PDL’s non-compactness proof [10]). Whether or not the logic is compact is an
open question. A further direction of research is to prove or refute that the logic is compact
and, depending on the result, choose a strategy for finding an axiomatization and prove that
it is sound and complete.

8.1.3 Operations on posets

In Section 7.4.1 we studied how TIL can be used as a modal lens on posets. We showed that
the supremum and infimum closure operators are definable in the extended language L∗.
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Several other operations on posets might also be definable. One natural candidate is the
filter-closure operation. Given a poset (𝑊 ,≤), let

𝐹𝑖 : P(𝑊) −→ P(𝑊)

send a set 𝐴 ⊆ 𝑊 to the least filter containing 𝐴. A first attempt to define this operator in L∗
looks as follows:

𝐹𝑖
(
⟦𝜑⟧𝔐 ∪ ⟦𝜓⟧𝔐

)
:= ⟦P ⟨inf∗⟩ 𝜑𝜓 ∨ P ⟨inf∗⟩ 𝜑𝜑 ∨ P ⟨inf∗⟩ 𝜓𝜓⟧𝔐 .

Unfortunately, this definition does not apply in the current setting, since in posets suprema /
infima do not necessarily exist. It motivates the introduction of a filter modality. Determining
its exact definition and expressive power is an open problem and an interesting direction for
further work.
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