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Abstract

In this thesis we present a novel topological duality for not-necessarily-distributive residuated lattice

ordered groupoids by modifying a recent duality for bounded lattices established by Bezhanishvili

et al. (2024). Our duality establishes a natural connection between the algebraic semantics of

substructural logics and the operational frame semantics originating in the work of Ono and Komori

(1985), Humberstone (1987), and Došen (1989). This allow us to the further generalize the original

completeness theorems for the operational semantics and to gain insight into the success of canonical

model style proofs that were utilized. In particular we adapt a notion of persistence from Bezhanishvili

et al. (2024) and show that the canonical model style proofs in Ono and Komori (1985), Humberstone

(1987), and Došen (1989) can be explained by an analysis given in terms of algebraic completeness,

topological duality, and the salient notion of persistence. We also explore the duality in its own right

and obtain topological representations of the lattice of congruences and products of residuated lattices.
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Chapter 1

Introduction

In the semantics of modal logic, topological dualities between categories of modal algebras and

categories of modal spaces have played a central role in the development of the field [8, 10]. On one

hand, these dualities have pragmatic purpose; they unify the available algebraic and model theoretic

methods used to address questions about modal logics and their semantics. On the other hand, dualities

have an explanatory purpose since they offer alternative perspectives on, and clarify why, the methods

of one semantics or another are successful.

A paradigm case of the sort of insight duality can provide is the clarity it casts on canonical

model completeness proofs with respect to Kripke frames. It is known that the canonical model of

a normal modal logic comes with a natural modal space topology and that this modal space is the

dual of Lindenbaum algebra of the same logic. This fact can then be coupled with what is sometimes

called d-persistence, which is the property that if a formula is valid in a modal space, then it is also

valid in the underlying Kripke frame of that modal space (see [8, 10]). Canonical model style Kripke

completeness proofs can then be understood in virtue of three distinct steps: algebraic completeness,

duality, and d-persistence. For more details we refer the reader to [8] and [10] for a proof of the

Sahlqvist Completeness Theorem using topological duality - one of the most celebrated results in modal

logic.

For non-classical logics, and in particular logics with algebraic semantics given in terms of residuated

lattices, topological dualities have received varying degrees of attention. These dualities are often

obtained by extending a duality for the lattice reducts of the algebras in question. For example, dualities

for distributive residuated lattices tend to build on Priestley duality [11, 21]. A very successful instance

of this strategy is the duality between Heyting algebras and Esakia Spaces [16]. Another more general

method has been to modify Priestley spaces with a ternary relation [36]. For not-necessarily-distributive

residuated lattices, dualities are obtained by building on dualities for bounded lattices. An illustrative

example is Allwein and Dunn’s [2] extension of Urquhart’s topological representation of lattices to a

representation of various residuated algebras [35]. Another are the dualities given in terms of canonical

extensions [20, 15]. These are early examples, but a great number of dualities for various classes of

residuated lattices could be listed, many building on various dualities for bounded lattices [5]. Another

notable representation for residuated lattices is provided by residuated frames [17].

In just the same way that topological duality theory has clarified the Kripke semantics of modal

logic, Esakia duality and dualities for other residuated lattices have offered the same sort of insight

into the Kripke semantics of intuitionistic logic, Routley-Meyer semantics for relevance logics, and the

semantics of various other substructural logics [36]. Despite these developments, a notable family of
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statebased semantics developed most maturely by in the work of Ono and Komori [32], Humberstone

[23], and Došen [13], and often referred to as the operational semantics for substructural logics, have

received no attention from the perspective of topological duality theory. Despite there not being a true

topological duality, results in [32] and [37] suggest its possibility. Ono and Komori used the frames of

their semantics to obtain embedding theorems for integral commutative residuated lattices in [32]. And

more recently Weiss characterized a means of turn so-called Dunn-monoids into a kind of operational

frame and vice versa [37]. This being said, neither of these results characterize a full duality and

actually only partially characterize a dual-adjunction between a category of algebras and a class of

frames for which no notion of morphism has previously been developed.

At their core, the semantics of Ono and Komori, Humberstone, and Došen, henceforth the OKHD-

semantics, are a state based semantics similar to the standard Kripke semantics of modal or intuitionistic

logic. So sentences are evaluated at states and proposition are construed as a regions of a structured

set of those states. However, unlike Kripke semantics, the OKHD-semantics trades relational structure

for operational structure and employs the idea of an algebra of states. The most general formulation of

this idea that salient to this thesis appeared in [13], where the frames considered are pointed semilattice

ordered groupoids with the special property that the groupoid operation distributes over the semilattice

operation. The key insight that prompted the development of the these semantics was that disjunction

could be interpreted as an intensional connective i.e. one whose satisfaction at state is determined by

facts about other states of the model the and the way that each of these states are related. With this

insight it became possible to prove ”Kripke Style” completeness theorems for non-distributive logics.

In this thesis we present a novel topological duality for not-necessarily-distributive residuated lattice

ordered groupoids by modifying a recent duality for bounded lattices established by Bezhanishvili et al.

in [6]. In much the same way that the various dualities mentioned above link algebraic semantics to

model theoretic semantics, our duality establishes a natural connection between the algebraic semantics

of substructural logics and the operational frame semantics originating in the work of Ono and Komori

[32], Humberstone [23], and Došen [13]. This connection will allow us to the further generalize the

completeness theorems in [32, 23, 13] and to gain insight into the success of canonical model style

proofs present in these papers. In particular we adapt the notion of Π1-persistence from [6] and show

that the canonical model style proofs in [32, 23, 13] can be explained by an analysis similar to the one

given for canonical modal logics above.

Chapter 2 reminds the reader of preliminary notions regarding lattice expansions, residuated

lattice ordered groupoids or rℓ-groupoids, and provides an introduction to L-spaces developed by the

authors of [6].

Chapter 3 expands the theory of L-spaces by developing a general set of tools that ground

the technical developments of the chapters to come. In particular, we provide a characterization of

products and coproducts of L-spaces. Specifically, we obtain the some what counterintuitive result that

products of L-spaces with a special notion of inclusion have the universal property of coproducts in the

category of L-spaces(Theorem 3.1.10). We then this to obtain a topological representation of monotone

lattice expansion (Theorem 3.2.7) and, more generally, a duality between the category of lattices with

monotone operations as morphisms and the category of L-spaces with special continuous relations

(Theorem 3.2.11). This chapter ends with some simple results characterzing the dual relations of join

and meet preserving operations and provides a new representation of Modal Lattices and a discussion

of how we can recover the representation of modal lattices presented by the authors of [6].
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The importance of this chapter is twofold. From the conceptual point of view it provides a very

general common framework for understanding both the results from later chapters and the results for

the original work on L-spaces and modal lattices developed by the authors of [6]. At the technical

level, the duality theorem proved in Theorem 3.2.7 is key to the Π1-preservation results proved in the

following chapter.

Chapter 4 uses the results of Chapter 3 to generalize the representation of completions of modal

lattices by Bezhanishvili et al. [6] to all monotone lattice expansions. In particular, we show that the

filter, ideal, and Π1-completion of a monotone lattice expansion is representable by families of filters in

the L-space that is dual to that lattice expansion (Theorem 4.2.3). We then use this representation to

obtain a general result on the preservation of identities through the Π1-completion (Theorem 4.3.5).

This result generalizes the persistence results for modal lattices in [6] and will be applied to the case of

rℓ-groupoids in Chapter 6.

Chapter 5 makes the move from the general representation theory of Chapter 3 and Chapter

4 to two categories of spaces that will occupy our attention for the rest of the thesis. In particular

we introduce NRL-spaces and RML-spaces and morphisms for both types of spaces. RML-spaces

are modifications of ternary relational instances of the spaces used to represent lattice expansions in

Chapter 3. NRL-spaces are essentially topological versions of the frames used by the OKHD-semantics.

We show this connection in detail by showing that the topology free reduct of an NRL-spaces is an

OKHD-frame (Proposition 5.2.11). We then show that the category of RML-spaces and NRL-spaces are

equivalent (Theorem 5.3.1). The chapter ends by showing the operations that witness the equivalence

between RML-spaces and NRL-spaces do not generalize to an equivalence between the category of

OKHD-frames and the category of what we call RML-frames.

This chapter is primarily of conceptual importance since it connects the general theory of L-

spaces with additional continuous relations from Chapters 3 and 4 to the frames underlying the

OKHD-semantics and the spacial objects we study the rest of the thesis.

Chapter 6 introduces our duality theory for rℓ-groupoids. We demonstrate that the category of

NRL-spaces is dually equivalent to the category of rℓ-groupoids (Theorem 6.1.10). As an immediate

corollary we also obtain duality between the category of RML-spaces and rℓ-groupoids. We then

restrict the NRL-space duality to obtain duality for residuated lattices, FL-algebras, and Involutive

residuated lattices and provide a number of other explicit correspondences between certain algebraic

identities and topological properties. In the last section we obtain a representation of the Π1-completion

of an rℓ-groupoid and use the preservation theorem from Chapter 4 to characterize some classes of

rℓ-groupoid that are closed under the Π1-completion.

Chapter 7 reviews basic substructural logic and the OKHD-semantics and then uses the dualities

and Π1-persistence results obtained in Chapter 6 to provide both topological and frame based complete-

ness for a wide range of substructural logics. In particular, we show every substructural logic extending

a very minimal base logic that we call the Non-associative Positive Full Lambek Calculus or NFL+ is

complete with with respect to a new topological semantics given in terms of NRL and RML-spaces

(Theorem 7.4.3 and Theorem 7.4.4). We then adapt the notion of Π1-persistence from Bezhanishvili et

al. [6] and show that every logic axiomatized by sequents in specific signature is complete with respect

to a class of OKHD-frames (Theorem 7.4.8) and a class of RML-frames (Theorem 7.4.9). These results

generalize completeness proofs of Ono and Komori [32], Humberstone [23], and Došen [13] and also

the completeness results reported recently in [37]. The chapter ends with of a discussion of how our
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duality bears the canonical model style completeness proofs of Ono and Komori [32], Humberstone

[23], and Došen [13].

Chapter 8 extends the Theory of NRL-space duality in two directions and provides logical

applications for each. While the logical results are either not novel or adapt existing results, they

come with novel proofs that exploit the topological semantics given in terms of NRL-spaces. The first

development for the theory of NRL-spaces is a representation of congruences of a residuated lattice in

the dual space of that residuated lattice (Theorem 8.1.4). We use this representation to characterize the

subspaces of NRL-spaces (Proposition 8.1.8 and Theorem 8.1.12). The logical application of the latter

developments is a new proof of the Parameterize Local Deduction Theorem for the Positive Full Lambek

calculus FL+ using the topological semantics of Chapter 7. The second development to NRL-space

duality is a characterization of products and coproducts of NRL-spaces and a representation theorem

for products of rℓ-groupoids. The logical application provided by these results is a characterization of

when a substructural logic extending NFL+ has the disjunction property.

The contributions made by this thesis are summarized by the following list:

• A topological representation theorem for monotone lattice expansions.

• A characterization of a large class of identities that are preserved through the Π1-completion of a

lattice expansion.

• A novel topological duality for rℓ-Groupoids, Residuated Lattices, and FL-algebras.

• A characterization of classes of rℓ-Groupoids that are closed under the Π1-completion.

• Topological semantics for substructural logics.

• A duality theoretic explication of the OKHD-semantics of substructural logics with logical

applications.

• A representation of the lattice of congruences of residuated lattices and a characterization of

subspaces of NRL-spaces.

• A novel proof of the Parameterized Local Deduction Theorem using topological semantics.

• A characterization of coproducts of NRL-spaces and a topological representation of products of

rℓ-Groupoids.

• A characterization of substructural logic with the disjunction property using topological semantics.
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Chapter 2

Preliminaries

In this chapter we introduce the algebraic that are and topological structures that are the focus

of this thesis. In particular, Section 2.1 reviews the definitions of semilattices, lattices, and lattice

expansions and then rℓ-groupoids, residuated lattices, and FL-algebras. In section 2.2 and we point to

the topological notions we use and we review the L-space duality developed by Bezhanishvili et al. in

[6].

We note that through out the preliminaries and thesis we assume familiarity with basic notions

from catgeory theory such as the notions of an opposite category, a (contravariant) functors between

categories, adjunctions, (dual) isomorphisms, products, coproducts, and concrete categories. We

recommend [3] for a refresher.

2.1 Algebra

In this section we introduce the algebras we study in this thesis. We assume familiarity with the

basic concepts of universal algebra including the notions of homomorphisms subalgebras, products,

congruences, and free algebras. We also assume fundamental results like the isomorphism theorems.

Finally, while knowledge of clones is not necessary, they will be remarked on and will be used to explain

the Π1-preservation result we obtain in Chapter 4. For introductory material on any of the topics

listed above, see either the classic [9] or the more recent [4].

2.1.1 Lattices and Lattice Expansions

We begin by defining semilattices and lattices and then discuss lattice expansions. We provide the

definition for completeness but assume basic properties without mention throughout the thesis.

Definition 2.1.1. A ∗-semilattice is an algebra S = (S, ∗, e) where ∗ is associative, commutative, and

idempotent and a ∗ e = a for all a ∈ S.

We can always define two possible orders on a semilattice S = (S, ∗, e) . When we define the order

by a ≤ b iff a ∗ b = a we refer to ∗ as meet and e as top and call S a meet semilattice. If we define the

order by a ≤ b iff a ∗ b = b, then we refer to ∗ as join and e as bottom and call S a join semilattice.

Definition 2.1.2. A (bounded) lattice is an algebra L = (L,∧,∨,⊤,⊥) where both (L,∧,⊤) and

(L,∨,⊥) are semilattices and the absorbtion laws hold:

a = a ∧ (b ∨ a) a = a ∨ (b ∧ a).
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The standard order on the lattice L is defined a ≤ b iff a ∧ b = a iff a ∨ b = b.

We say an n-ary operation f : L1 × ...× Ln → K between lattices is monotone if it preserves the

defined order in each coordinate.

Definition 2.1.3. Let f : L1 × ...× Ln → K be n-ary operation between lattices. f is monotone if for

any a⃗, b⃗ ∈ L1 × ...× Ln, if for each i ≤ n: a⃗(i) ≤ b⃗(i), then f (⃗a) ≤ f (⃗b).

For example, if f is binary, then if a ≤ c and b ≤ d, then f(a, b) ≤ f(c, d). We now define lattice

expansions and monotone lattice expansions.

Definition 2.1.4. (Lattice Expansions) A lattice expansion (L, F ) is a lattice L with an additional

family of operations F . We say that (L, F ) is monotone if for each n-ary operation f ∈ F is monotone.

Homomorphism for semilattice, lattices, and lattice expansions are defined in the usual way. We

denote the category of lattices with lattice homomorphisms by Lat.

Semilattice and Lattice as Ordered Sets. It is well known that lattice and semilattices have

ordere theoretic definitions. From the perspective of order theory, a meet semilattice is a partial order

with maximal element ⊤ where every two elements a, b have a greatest lower bound, for which we

write a ∧ b. A complete semilattice is partial order with greatest lowerbounds
∧
T for all subsets T . A

(bounded) lattice is a bounded partial ordered with a least upped bound and greatest lower bound for

each pair of elements, which we denote by a ∨ b and a ∧ b respectively. A complete lattice is a partial

order with least upper bounds and greatest lower bounds for all subsets. Every complete semilattice

is a complete lattice. An element of a complete c lattice C is called compact if for each T ⊆ C, if

c ≤
∨
T , then there is a finite T0 ⊆ T such that c ≤

∨
T0. A algebraic lattice is a complete lattice

lattice where every element is the join of compact elements.

Upsets, Filters, and Ideals. For a subset U ⊆ P where P is a partial order, ↑P (U) = {x ∈ P | ∃y ∈
U(y ≤ x)}. When U = {x} for some x ∈ P , we just write ↑P (x). We will drop the subscript P if the

where the operation is being calculated is clear. An upset is subset U of a partial order such that

↑U = U . A filter of a meet semilattice is a non-empty upward closed subset that is also closed under

meets. Given a subset T ⊆ S of a semilattice, [T ) = ↑{a1∧ ...∧an | a1, ...an ∈ T} is the filter generated

by T . A filter of the form ↑x is called principal. For any given meet semilattice S we will denote the

collection of all filters of S by Fi(S). Dually, an ideal of a join semilattice is a non-empty downward

closed subset that is also closed under joins. For a join semilattice S, the set of all ideals is Id(S).

2.1.2 Residuated Lattice Expansions

We we define eℓ-groupoids, resisduated lattices, and FL-algebras. For a thorough introduction to

residuated structures see [24] or [19]. We note that we only consider bounded alegbras here, which is

not standard. So when we say residuated lattice, we mean a bounded residuated lattice.

Definition 2.1.5. A pointed residuated lattice ordered groupoid or simply pointed rℓ-groupoid G =

(G,∧,∨,⊤,⊥, ·, \, /, e) an algebra where (G,∧,∨,⊤,⊥) is a lattice, · : G×G→ G is a binary monotone

operation, e is a designated element, and ·, \, and / jointly satisfy the residual law:

b ≤ a\c⇐⇒ a · b ≤ c⇐⇒ a ≤ c/b

8



Note that pointed rℓ-groupoids have an equational definition and so form a variety (see Lemma 2.3

in [24]).

Example 2.1.6. Let (S, ·, e) be a pointed groupoid. Then (P(S),∩,∪, S, ∅, ◦,⊆, \, /) is a pointed

rℓ-groupoid such that A ◦ B = {a · b | a ∈ A & b ∈ B}, A\B = {b ∈ S | ∀a ∈ A(a · b ∈ B}, and
A/B = {b ∈ S | ∀b ∈ B, a · b ∈ A} for each A,B ⊆ S.

We say an rℓ-groupoid is unital if e is a identity for · i.e. if e · a = a and a · e = a. An rℓ-gropoid is

integral if e = ⊤. An rℓ-groupoid is said to be associative or commutative if · satisfies the associative

or commutative laws, respectively. A residuated lattice is a unital rℓ-groupoid where · is associative. If
· is commutative, then for all a, b, a\b = b/a, so we denote the application of either of these operations

to two elements of the algebra by ′a→ b′.

Note that in any rℓ-groupoid we have that · distributes over ∨.

a · (b ∨ c) = (a · b) ∨ (a · c) and (b ∨ c) · a = (b · a) ∨ (c · a)

We also always have that a · ⊥ = ⊥ = ⊥ · a and ⊥\a = ⊤ = a/⊥.

By adding an additional constant f to the signature of a residuated lattice, we obtain what is called

an FL-algebra. An FL-algebra L = (L,∧,∨,⊤,⊥, ·, \, /, e, f) is a residuated lattice with the additional

designated element f . These algebras are the used to provide the algebraic semantics of the Full Lambek

Calculus. Finally, an Involutive Residuated Lattice is an Fl-algebra L = (L,∧,∨,⊤,⊥, ·, \, /, e, f) with
the property that both of the following identities hold:

f/(a\f) = a (f/a)\f = a.

We now list some useful properties or rℓ-groupoids.

Proposition 2.1.7. In any rℓ-groupoid G, if X,Y ⊆ G and
∧
Y and

∨
X exist, then:∨

X\y =
∧
x∈X

(x\y) y/
∨
X =

∧
x∈X

(y/x)

x\
∧
Y =

∧
y∈Y

(x\y)
∧
Y/x =

∧
y∈Y

(y/x).

We also have the following.

Proposition 2.1.8. In any associative rℓ-groupoid the following identities and their mirror images

hold:

(1) (a\b) · z ≤ x\(y · z),
(2) a\b ≤ (c · a)\(c · b),
(3) (a\b) · (b\c) ≤ a\c,
(4) (a · b)\c ≤ b\(a\c), and
(5) a\(c/b) = (a\c)/b.

The properties mentioned above and more are discussed in detail in [24] and [19].

For any of the signature we consider, a homomorphism is a structure preserving function in the

usual sense (see [9] or [4]). For future reference, we denote the category of pointed rℓ-groupoids with

their homomorphisms by RLG. The category of residuated lattices will be RL and the category of

FL-algebras will be FLAlg.
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2.2 Topologies and L-spaces

We also assume familiarity with basic definitions from topology such as the notions of a basis, a

subbase, subspaces, products, and compactness. For an introduction to the topology necessary for

this thesis we recommend [11]. For a general introduction to topology see [29]. For completeness we

include the definition of topological spaces and continuous functions.

Definition 2.2.1. A topological space X = (X, τ) is a pair consisting of set X and a family τ ⊆ P(X)

where:

(1) X, ∅ ∈ τ ,

(2) if S ⊆ τ , then
⋃
S ∈ τ , and

(3) if U, V ∈ τ , then U ∩ V ∈ τ .

Element of τ are called the open sets of X and complements of elements of τ are called closed. If

U ∈ τ and X − U ∈ τ , then U is said to be clopen.

Morphisms between topologies are called continuous functions. For a function f : X → Y between

sets, we define f−1[U ] = {x ∈ X | fx ∈ U} for U ⊆ Y and f [V ] = {fx ∈ Y | x ∈ V } for V ⊆ X.

Definition 2.2.2. Let X = (X, τ) and Y = (Y, σ) be topological spaces. A continuous function

f : X → Y between topological spaces is function f : X → Y such that for each U ∈ σ, f−1[U ] ∈ τ .

2.2.1 L-spaces and Topological Duality for Bounded Lattices

We now introduce L-spaces and the duality between the category of L-spaces and the category

of lattics developed by Bezhanishvili et al. [6]. We also recommend the [5] for a general review of

duality theory for lattices and the connection between L-space duality and other prominent dualities

for lattices. This section is fundamental to the entire thesis and we will often refer back to this section

in the proofs we provide in the chapters to come. We refer the reader to [6] and [5] for proofs.

Definition 2.2.3. An L-space X = (X,⋏, 1, τ) is a compact 0-dimensional semilattice ordered

topological space that satisfies the HMS-separation and two addition constraints:

(1) ∀x, y ∈ X, if x ̸≤ y, then there is a clopen filter U such that x ∈ U and y ̸∈ U .

(2) (▽-closure) If U, V are clopen filters, then U▽V := {z ∈ X | ∃x, y(x ∈ U & y ∈ V & x⋏y ≤ z)}
is clopen as well,

(3) {1} is clopen.

A topological spaces (X, τ) is 0-dimensional if τ has a basis of clopens. Condition one is referred to

as the HMS-separation axioms. We note that U▽V is the least filter containing the union of filters U

and V . An HMS-space is an L-space without the requirement that the clopen filters be closed under ▽.

Another important piece of notation is that Ficlp(X) is used to denote the set of all clopen filters of X.

We also write Fi(X) for the set of all filters of X, Fik(X) for the closed filters, and Fio(X) for the

open filters of an L-space.

Morphism between L-spaces are continuous semilattice homomorphisms with a special back condi-

tion.

Definition 2.2.4. (L-space morphism)

An L-space morphism f : X → Y is a continuous semi-lattice homomorphism that satisfies the

following two constraints:
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i) for all x ∈ X, fx = 1Y iff x = 1X

ii) for all x′, y′ ∈ Y and z ∈ X, If x′ ⋏Y y
′ ≤ fz, then there are x, y ∈ X such that x⋏X y ≤ z and

x′ ≤ fx and y′ ≤ fy.

The category of L-spaces together with L-space morphisms is denoted LSp. The dual equivalence

of Lat and LSp is derived from the followingpropositions. Lemma 2.2.5 encodes the operations of

transforming an L-space into a corresponding lattice and lattice into a corresponding L-space.

Lemma 2.2.5. (Between L-spaces and Lattices)

(1) Let X be an L-space, then LX = (Ficlp(X),∩,▽, X, {1}) is lattice, and

(2) If L = (L,∧,∨,⊤,⊥) is a bounded lattice, then XL = (Fi(L),∩, L, τL) in an L-space where τL

is generated by the subbase {ϕ(a) | a ∈ L} ∪ {X − ϕ(a) | a ∈ L} and ϕ(a) = {x ∈ Fi(L) | a ∈ x}.

A proof can be found in [6], particularly in Theorem 2.14. We note that ϕ(a) = ↑XG
(↑G(a)). In

general we use will always use LX to denote the lattice clopen filters of an L-space X and XL to

denote the L-spaces on the filters of a lattice L. It is worth noting that while the move from lattices to

L-spaces is similar to the way a Stone space or Priestly space is constructed from it’s corresponding

dual algebra, it is also importantly different. Unlike the construction of a Stone space or Priestly space,

rather than topologizing the collection of prime filters, the collection of all filters is topologized with a

suitable subbase.

At the level of morphisms, the action of the inverse of an L-space morphism on clopen filters is

a lattice homomorphism. Similarly, the inverse of a lattice homomorphism’s action on its filters is a

L-space morphism. The following lemma records this precisely.

Lemma 2.2.6. (Bewteen Morphisms)

(1) If f : X → Y is a L-space morphism, then f−1 : LY → {LX} is a lattice homomorphism, and

(2) if f : L→ K is a lattice homomorphism, then f−1 : XK → XL is an L-space morphism.

Proofs can be found in [6] in Proposition 2.5 and 2.6. By combining Lemma 2.2.5 and Lemma

2.2.6, we define two functors LSp → Lat and Lat → LSp defined by the operations implicit in these

lemmas.

X 7−→ LX L 7−→ XL

f 7−→ f−1 g 7−→ g−1

These functors witness not only a dual adjunction between the categories Lat and LSp, but also a

full dual equivalence. The following lemma provides us with the means to recognize this.

Lemma 2.2.7. (The Units are Isomorphisms)

(1) If L is a lattice, then ϕL : L→ LXL
) is a lattice isomorphism,

(2) If X is an L-space, then ηX : X → XLX
is an L-space homeomorphism where ηX(x) = {U ∈

Ficlp(X) | x ∈ U}.

We can now state the theorem that the category Lat of lattices is dual to the category of LSp of

L-spaces.

Theorem 2.2.8. The category Lat of lattices is dually isomorphic to the category of LSp of L-spaces.

11



The above theorem grounds all of the developments of this thesis.

Finally, we state a few useful lemmas regarding properties of closed and clopen filters. We use

these properties repeatedly throughout the thesis and sometimes without reference. A particularly

useful fact is the following. We make heavy use of the fact that (i) and (ii) are equivalent.

Lemma 2.2.9. Let X = (X,⋏, 1, τ) be an L-space and U be a filter of X. Then the following conditions

are equivalent: i) U is closed, ii) U is principle, and iii) U is the interesection of clopen filters.

We do not provide a proof here. A proof can be found at Lemma 2.8 in [6].

Another useful lemma allows us to separate points in the space from closed downsets using clopen

filters.

Lemma 2.2.10. Let X be an L-space. If D is a closed downset and y ̸∈ D, then there is a clopen

filter containing y which is disjoint from D.

Proof. The complement X −D of D is an open upset and can therefore be written as a union
⋃

i∈I Ui

of clopen filters {Ui}i∈I . Since y ̸∈ D, this means then that y ∈
⋃

i∈I Ui and so there is some i ∈ I

such that y ∈ Ui. And since X −D =
⋃

i∈I Ui, it means that Ui ∩D = ∅.

We now have a simple reformulation of compactness.

Lemma 2.2.11. Let V be an open set and {Ui | i ∈ I} be a family of closed sets of a compact

topological space X. If
⋂
{Ui | i ∈ I} ⊆ V , then there is a finite J ⊆ I such that

⋂
{Ui | i ∈ J} ⊆ V .

The last lemma we employ relates of the semilattice structure of an L-space to the topology of that

L-space in a useful way.

Lemma 2.2.12. Let X be an L-space and U be a clopen filter of X. If x ⋏ y ∈ U , then there are

clopen filters V and U such that V ▽W ⊆ U and x ∈ V and y ∈W .

Proof. Let U be a clopen filter of X and suppose that x ⋏ y ∈ U . Then ↑x ⋏ y = ↑x△↑y ⊆ U .

However, by Lemma 2.2.9, ↑x =
⋂
{V ′ ∈ Ficlp(X) | x ∈ V ′} and ↑y =

⋂
{W ′ ∈ Ficlp(X) | y ∈ W ′}.

Since↑x△↑y ⊆ U , we have that both
⋂
{V ′ ∈ Ficlp(X) | x ∈ V ′} ⊆ U and

⋂
{W ′ ∈ Ficlp(X) | y ∈

W ′} ⊆ U . But then by compactness, there are clopen filters V and W such that x ∈ V and y ∈ W

and V ▽W ⊆ U.

Then last thing we would like to remark on is that the semilattice that underlies an L-space also

always complete. This fact is proved in both [6] in Lemma and [5].

Lemma 2.2.13. Let X = (X,⋏, 1, τ) be an L-space then for all S ⊆ X, the meet of S exists in X.

This conclude the preliminaries.
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Chapter 3

Products of L-Spaces and the

Representation of Monotone Operations

This chapter expands the theory of L-spaces originating in [6] by demonstrating a representation

of arbitrary n-ary monotone operations between lattices as n+1-ary relations between L-spaces. The

point of such a general result is to provide the setting in which we obtain our representation and

duality results for rℓ-groupoids and residuated lattices in Chapter 6 and ultimately to derive the

OKHD-semantics discussed in the introduction and in Chapter 7. In addition, the results reported in

this chapter are analogous to the general representation of monotone operations obtained by Moshier

and Jipsen in [27, 28] to study duality for lattice expansions. So in addition to generalizing aspects of the

representation of modal lattices in [6] to apply to rℓ-groupoids and the semantics of subtructural logics,

this chapter shows that theory of L-spaces is equally well suited for the study of lattice expansions and

that these studies can be carried out in a style familiar to Jónsson and Tarski’s famous representation

of boolean algebras with operators [25].

In more detail, this chapter is structured as follows. We begin in Section 3.1 with a characterization

of products and coproducts in the category of L-spaces (Theorem 3.1.10). This phrasing is a bit

misleading since it will turn out that products of L-spaces actually play the role of coproducts. This will

be discussed more thoroughly below. These results then naturally leads to a concrete representation

of products of lattices (Theorem 3.1.11). In Section 3.2, we use the latter developments to obtain a

representation of n+1-ary monotone operations between lattices by special continuous relations among

L-spaces that we call filter continuous relations (Theorem 3.2.6). As an immediate corollary we obtain a

representation theorem for all lattice expansions. We then demonstrate a duality between the category

of lattices with monotone operations as morphisms and a category of L-spaces with filter continuous

relations between them (Theorem 3.2.11). Finally, Section 3.3 observes some correspondences between

properties of the filter continuous relations and their corresponding operations on the algebras of filters

of L-spaces. In particular we characterize the filter continuous relations the correspond to meet and

join preserving operations and then show how we can recover L-space morphisms from these properties.

Notably, the representation of meet preserving operations is peculiar and contrasts the one given in

[6]. To make this difference clear we remark on how to represent to modal lattices and how we could

potentially recover the representation given by the authors of [6].
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3.1 Duality for Products

We begin with the characterization of products and coproducts of L-spaces. Perhaps counterin-

tuitively, we show that products of L-spaces and a special notion of inclusion into the product, have

the universal property of coproducts. We then show how this characterization can be used to give a

concrete topological representation of products of lattices. The next section will employ these results

as a tool for obtaining the representation of monotone operations. In Chapter 8, we will extend

these results to obtain characterizations of coproducts of the dual spaces of rℓ-groupoids and then a

representation theorem for products of rℓ-groupoids.

3.1.1 (Co)Products of L-Spaces

One way of forming coproducts of L-spaces is by freely generating meets on the disjoint union of a

(finite) family of L-spaces and then equipping this structure with an appropriate topology. However, it

turns out that this free construction corresponds to simply taking the direct product of the underlying

operational structures and equipping that structure with the product topology. Coproducts of L-spaces

are then simply cartesian products at the object level. While this may appear counterintuitive, the

role of a cartesian product as a coproduct can be explained in virtue of the semi-lattice structure

underlying a given L-space.

As an example, let us consider the direct product X × Y of two semi-lattices, X and Y . There

are inclusion homomorphisms γX : X → X × Y and γY : Y → X × Y for both semi-lattices such that

γX(x) = (x, 1Y ) and γY (y) = (1X , y). The images of these maps form copies of X and Y inside X × Y .

This corresponds roughly to the disjoint union of the X and Y after being quotiented so as to agree on

what the top element is. What would be freely generated meets are then identified with the meets of

pairs coming from γX [X] and γY [Y ]. For example, given γX(x) ∈ γX [X] and γY (y) ∈ γY [Y ], the meet

of these two objects γX(x)⋏ γY (y) = (x, y).

In the remainder of this section we define products of L-spaces and show that the category of L-

spaces is closed under finte products. We then demonstrate that products of L-spaces also play the role

of coproducts in the category of L-spaces. While this is enough to conclude that the duals of products

coincide with products of their duals spaces, we given a concrete description of the homeomorphism

between the dual of a products of the lattice expansions we have been entertaining ourselves with and

the products of duals of these algebras. It is important to note that our duality results for products

only apply to finite products.

Let us now define direct products of semilattices In this definition we consider arbitrary products

but we will restrict attention to finite products once we consider topologies on these structures.

Definition 3.1.1. (Direct Products of Semilattices)

Let {Xi = (Xi,⋏i, 1i)}i∈I be a family semilattices.

The direct product
∏

i∈I Xi = (
∏

i∈I Xi,∧, 1) is defined such that:

1)
∏

i∈I Xi = {α : I →
⋃

i∈I Xi | ∀i ∈ I(α(i) ∈ Xi)},
2) ⋏ is defined such that for i ∈ I: α ∧ β is the function such that (α ∧ β)(i) = α(i) ∧i β(i) , and

3) the top 1 is defined as the function 1(i) = 1i.

For each i ∈ I, pi is the projection map where pi(α) = α(i).

In addition, for each i we define the inclusion map γi : Xi → X so that γi(x) is the function such

that (γi(x))(i) = x and for all j ̸= i, (γi(x))(j) = 1j.
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When it is convenient we will conflate
∏

i∈I Xi with the cartesian product of sets Xi and think of

the operations and constants as being defined pointwise. The following lemma states that each the

inclusions maps γi are essentially injective L-space morphisms without necessarily being continuous

since we are not yet considering topologies. We omit proof since the γi[X] is easily see to be a copy of

X in the product.

Lemma 3.1.2. Each inclusion map γi : Xi →
∏

i∈I Xi is an injective semilattice homomorphisms that

satisfies the following back condition: If α⋏ β ≤ γiz, then there are x, y ∈ X such that x⋏X y ≤ z and

α ≤ fx and β ≤ fy.

In addition to essentially being L-space morhisms, the inclusion γj : Xi →
∏

i∈I Xi enjoys the

property of being right adjoint to the projection pj :
∏

i∈I Xi → Xj . We again omit proofs in this case

since the argument is quite straight forward.

Lemma 3.1.3. (Adjunction Property) Let {Xi}i∈I be a family of semilattices. Let X =
∏

i∈I Xi. Then

for all i, then projection map pi is left adjoint to the inclusion map γi:

pi(α) ≤ x⇐⇒ α ≤ γi(x).

A simple but useful property of the previous lemma is the following.

Lemma 3.1.4. Let {Xi}i∈I be a family of semilattices. Let X =
∏

i∈I Xi and suppose that S ⊆ X is

upward closed. Then γ−1
i [S] = pi[S].

Proof. Let S ⊆ X be upward closed. Let x ∈ γ−1
i [S]. Then γi(x) ∈ S. pi(γi(x)) ∈ pi[S]. But since

x = pi(γi(x)) (see definitionnitions), we have that x ∈ pi[S]. For the other inclusion if x ∈ pi[S], there

is some α ∈ S such that pi(α) = x. By the adjunction property, it follows that α ≤ γi(x). Therefore,

since S is upward closed, we have that γi(x) ∈ S and thus that x ∈ γ−1
i [s]. We can therefore conclude

that γ−1
i [S] = pi[S].

We now reach the final lemma regarding products of semilattices which we will make extensive use

of. We show that products commute with the operation of taking filters.

Lemma 3.1.5. Let {Xi}i∈I be a family of semilattices.

(1) Suppose that x ∈ Fi(
∏

i∈I Xi), then pi[x] ∈ Fi(Xi),

(2) Suppose that for each i ∈ I we have some xi ∈ Fi(Xi), then Πi∈Ixi ∈ Fi(
∏

i∈I Xi), and

3) if I is finite, then Fi(
∏
Xi) and

∏
Fi(Xi) are in bijective correspondence.

Proof. For (1), suppose that x ∈ Fi(
∏

i∈I Xi). clearly, 1i ∈ pi[x]. For meet closure, let a, b ∈ pi[x].

Then there are α and β in x such that α(i) = a and β(i) = b. Since x is filter we have that α ∧ β ∈ x.

Therefore a ∧ b = α(i) ∧ β(i) = (α ∧ β)(i) ∈ pi[x]. For upward closure, let a ∈ pi[x] and a ≤ b. If

a ∈ pi[x], there is some α ∈ x such that α(i) = a. If follows that the function β ∈
∏
Si defined such

that β(j) = α(j) for all j ̸= i and β(i) = b is such that α ≤ β. Therefore, β ∈ x and so b ∈ pi[x]. We

conclude that pi[x] is a filter.

For (2), suppose that for each i ∈ we have some xi ∈ Fi(Xi). define x = Πi∈Ixi. Surely 1∏Si
∈ x.

Now let α, β ∈ x. For all i, (α ∧ β)(i) = α(i) ∧ β(i) ∈ xi. Therefore α ∧ β ∈ x. For upward closure,

suppose that α ∈ x and α ≤ β. Then for all i ∈ I, α(i) ∈ xi and α(i) ≤ β(i). So for all i ∈ I, β(i) ∈ xi.

So β ∈ x, as desired. We conclude that x is a filter.
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Finally, for (3) recall that we consider I to be finite. Also beware we conflate the definition of

products as containing choice functions and the definition of products as containing sequences. Then

we define the maps λ : Fi(
∏
Xi) →

∏
Fi(Xi) and λ

∗ :
∏

Fi(Xi) → Fi(
∏
Xi) such that

λ(x) = ⟨pi[x]⟩i∈I λ∗(⟨xi⟩i∈I) = Πxi.

λ and λ∗ are well defined in virtue of parts (1) and (2) of this lemma. We need to show that λ and

λ∗ are inverses of one another and therefore need to show λ∗(λ(x)) = x and λ(λ∗(⟨xi⟩i∈I)) = ⟨xi⟩i∈I .
For the identity λ(λ∗(⟨xi⟩i∈I)) = ⟨xi⟩i∈I , we note that λ(λ∗(⟨xi⟩i∈I)) = ⟨pi[Πxi]⟩i∈I = ⟨xi⟩i∈I

because for each i ∈ I, xi = pi[Πxi].

For the identity λ∗(λ(x)) = x, we note that the inclusion x ⊆ λ∗(λ(x)) is essentially by definition.

For the other inclusion, let α ∈ λ∗(λ(x)) for some filter x ∈ Fi(
∏
Xi). If α ∈ λ∗(λ(x)) =

∏
pi[x], then

α(i) ∈ pi[x] for each i. However, if α(i) ∈ pi[x] for each i ∈ I, then there is some βi ∈ x such that

βi(i) = α(i) for each i ∈ I. So since βi ≤ γi(α(i)) for each i ∈ I and x is upward closed, γ(α(i)) ∈ x

for each i ∈ I. However, because I is finite and γi(α(i)) ∈ x for each i ∈ I, the fact that x is closed

under meets implies that
∧
γi(α(i)) ∈ x. However as α =

∧
γi(α(i)), we may conclude that α ∈ x and

thus that α ∈ λ∗(λ(x)) ⊆ x.

With each of the previous lemma available, let us now formally define the coproducts of L-spaces.

Definition 3.1.6. (Products of L-spaces.) Let {(Xi, τi)i}i∈I be a family of L-spaces.

The Product
∏

i∈I Xi = (X, τ) is defined such that X =
∏

i∈I Xi and τ is the product topology on

X.

We now state a useful fact that states that the product topology is generated by a subbase consisting

of products of subassic elements of the topologies on the factors.

Lemma 3.1.7. Let {(Xi, τi)i}i∈I be a family of L-spaces. Then

SP := {
∏

i∈I Ui | Ui ∈ Ficlp(Xi) & |{i | Ui ̸= Xi}| < ℵ0}
∪ {X − (

∏
i∈I Ui) | Ui ∈ Ficlp(Xi) & |{i | Ui ̸= ∅}| < ℵ0}

is a subbase for the product topology on {(Xi, τi)i}i∈I .

Proof. In general fact from topology is that given a collection of topologies {Yi}i∈I where for each

i ∈ I, we have a subbase Si for Yi, a the collection defined by subsituting Si for Ficlp(Xi) in the

definition of SP is a subbase for the product topology. Since Ficlp(Xi) ∪ {X − U | U ∈ Ficlp(Xi)} is a

subbase for each L-space Xi, we are ensured that SP is a subbase for the product of L-spaces.

We now restrict attention to finite products and obtain our first result of this section. In particular

we show that the the category of L-spaces is closed under finite products.

Proposition 3.1.8. A finite product of L-spaces is an L-space.

Proof. Let {(Xi, τi)i}i≤n be a finite family of L-spaces and let
∏

i≤nXi = (X, τ) be the product

topology.

Given the previous Lemma, which essentially asserts that the product topology has a basis of

clopens, and the fact that products preserve compactness, we need to check that HMS-separation holds

and that the clopen filters of the product topology are closed ▽.
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(HMS-separation) Suppose that α ̸≤ β. Then there is some i such that α(i) ̸≤ β(i). Then by

HMS-separation in Xi, there is a clopen filter U in Xi such that α(i) ∈ U and β(i) ̸∈ U . It follows

that α ∈
∏

j≤n Vj but β ̸∈
∏

j≤n Vj , where
∏

j≤n Vj is such that Vi = U and for all j ≠ i, Vj = Xj . It

is also a ready consequence that
∏

j≤n Vj is a clopen filter (See Lemma 3.1.7 and Lemma 3.1.5).

(Closure of Clopen Filters under ▽) A straight forward argument shows that
∏

i≤n Ui▽
∏

i≤n Vi =∏
i≤n(Ui▽Vi). Since

∏
i≤n(Ui▽Vi) is clopen in the product topology, so is

∏
i≤n Ui▽

∏
i≤n Vi = U▽V .

(1 is clopen) The last thing we need to check is that 1 is clopen. This is ensured again by the

subbase lemma and the fact that {1} =
∏
{1Xi}.

Lemma 3.1.9. {(X, τi)i}i∈I be a family of L-spaces. Let X =
∏

i∈I Xi be the product. Then for all

i ∈ I, γi : Xi → X is an L-space morphism.

We now show that the inclusion morphisms a L-space morphisms (See Definition 2.2.4 for a

reminder).

Proof. In virtue of Lemma 3.1.2, we just need to check that γi is continuous. However, it then suffices

to check that if U is a clopen filter of X =
∏

i∈I Xi, then γ
−1
i [U ] is a clopen filter of Xi. However, in

virtue of Lemma 3.1.4, we have that γ−1
i [U ] = pi[U ]. So since U necessarily of the form

∏
j∈I Vj for a

choice of Vj ⊆ Xj for each j ∈ I, we have that γ−1
i [U ] = pi[U ] = pi[

∏
j∈I Vj ] = Vi, which is a clopen

filter of Xi.

We now arrive at one of the main results of this section. We show that the products of L-spaces

also play the role of coproducts in the category of L-spaces. This ambiguity is what will later allow use

to given our topological representation of products of lattices.

Theorem 3.1.10. (Universal Property of Coproducts) Let {(X, τi)i}i≤n and Y be a finite collection of

L-spaces. Suppose that for each i ≤ n, there is an L-space morphism gi : Xi → Y . Then there exists a

map g :
∏

i≤nXi → Y that uniquely satisfies g(γi(x)) = gi(x) for all x ∈ Xi and i ≤ n.

Proof. Let {(X, τi)i}i≤n and Y be (r)ℓG-spaces. Suppose that for each i ≤ n, there is some L-

space morphism gi : Xi → Y . Recall that (r)ℓG-spaces have all meets (Lemma 2.2.13). We define

g :
∏

i≤nXi → Y such that:

g(α) =
k

i≤n

gi(α(i)).

In virtue of this definition it is immediate that g(γi(x)) = gi(x). For uniqueness with respect to

this property, we recall also that L-space morphisms preserve meets. Let h :
∏

i≤nXi → Y be a map

such that h(γi(x)) = gi(x) for all x ∈ Xi and i ∈ I. Let α ∈
∏

i≤nXi. We claim h(α) = g(α) and

therefore that h = g. Note that for all i ≤ n, gi(α(i)) = h(γ(α(i))) by assumption. So we have:

g(α) =
c
gi(α(i)) =

c
h(γi(α(i)))) = h(

c
γi(α(i))) = h(α).

We must now check the various conditions for g an L-space morphism (see Definition 2.2.4).
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For meet preservation:

g(α⋏ β) =
k

i≤n

gi(α(i)⋏ β(i))

=
k

i≤n

gi(α(i))⋏ gi(β(i)))

=
k

i≤n

gi(α(i))⋏
k

i≤n

gi(β(i)))

= g(α)⋏ g(β).

For the back condition, suppose that x⋏ y ≤ g(α) =
c

i≤n gi(α(i)). We need to show that there

are β and γ such that β ⋏ γ ≤ α and x ≤ g(β) and y ≤ g(γ). If x⋏ y ≤
c

i≤n gi(α(i)), then for each

i ≤ n, x⋏ y ≤ gi(α(i)). By the back condition for each i ≤ n, for each i ≤ n there are xi and yi such

that xi ⋏ yi ≤ α(i) and x ≤ gi(xi) and y ≤ gi(yi). Define β and γ such that β(i) = xi and γ(i) = yi for

each i ≤ n. Then β ⋏ γ ≤ α and x ≤ g(β) and y ≤ g(γ), as desired.

Finally, we need to check that our map g is continuous. Given that each gi is continuous, it is

sufficient to show that for each clopen filter U in Y , then
∏

i≤n g
−1
i [U ] = g−1[U ]. The following chain

equivalences proves this.

α ∈
∏
i≤n

g−1
i [U ] ⇐⇒ ∀i ≤ n : gi(α(i)) ∈ U

⇐⇒ g(α) =
k

i≤n

gi(α(i)) ∈ U

⇐⇒ α ∈ g−1[U ].

The first and last equivalence are by definition. The second equivalence follows from U being a

filter and so being closed under meets. Having shown that g meets the requirements to be an L-space

morphism in Definition 2.2.4, we conclude our proof.

We have just shown the possibly counterintuitive result that products of L-spaces play the role

of coproducts in the category of L-spaces. In the next section we exploit this fact to provide a

representation of products of lattices.

3.1.2 A Representation for Products of Lattices

We now give a concrete representation of products of lattice in virtue of products of their dual

L-spaces. This representation may be counter intuitive. But in light of the discussion at the beginning

of the previous section, the results of the previous section, and particularly the demonstration that

products of L-spaces with their inclusion maps have the universal property of coproducts (Theorem

3.1.10), this result becomes slightly more natural.

Theorem 3.1.11. Let {Li}i≤n be a finite family of lattices. Then:

X∏
i≤n Li

∼=
∏
i≤n

XLi

Proof. Recall the bijection λ : X∏
i≤n Li

→
∏

i≤nXLi from part 3 of Lemma 3.1.5. λ was defined so
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that λ(x) = ⟨pi[x]⟩i∈I . In order to demonstrate the claim, it is sufficient for us to show that λ is an

L-space morphism (see definition 2.2.4).

For meet preservation, it is sufficient to show that for each i ∈ I, pi[x∩y] = pi[x]∩pi[y] because then
λ(x ∩ y) = ⟨pi[x ∩ y]⟩i∈I = ⟨pi[x] ∩ pi[y]⟩i∈I = ⟨pi[x]⟩i∈I ⋏ ⟨pi[y]⟩i∈I = λ(x)⋏ λ(y). So let a ∈ pi[x ∩ y].
then there is some α ∈ x ∩ y such that α(i) = a. But then a ∈ pi[xi] ∩ pi[y]. For the other inclusion,

suppose that a ∈ pi[x− ∩pi[y]. Then there are α ∈ x and β ∈ y such that a = α(i) = β(i). But then

α ≤ γi(a) and β ≤ γi(a). Therefore, since both x and y are upward closed we have that γi(a) ∈ x ∩ y.
There we obtain a ∈ pi[x ∩ y], as desired.

For the back condition associated with ⋏, let x⋏ y ≤ λ(z) where x = ⟨xi⟩i∈I and y = ⟨yi⟩i∈I . Note
the fact that λ preserves meets and is bijective implies that λ’s inverse λ∗ does too. So we have that

λ∗x⋏ λ∗y = λ(x⋏ y) ≤ z. Thus we have shown that that λ satisfies the back condition.

Finally, for continuity, let U be a clopen filter of
∏

i≤nXLi . We must show that λ∗[U ] is clopen in

X∏
i≤n Li

. For notations sake, let us have that L =
∏

i≤n Li. If U is a clopen filter of
∏

i≤nXLi
, then

there are a1, ..., an such that U =
∏

i≤n ϕLi(ai) (see Lemma 3.1.7 ). We claim that λ∗[U ] = ϕL(⟨ai⟩i≤n.

So let λ∗(⟨xi⟩i≤n) ∈ λ∗[U ]. Then since U =
∏

i≤n ϕLi(ai), for each i ≤ n xn ∈ ϕLi(ai). Therefore,

⟨ai⟩i≤n ∈ λ∗(⟨xi⟩i≤n) and so λ∗(⟨xi⟩i≤n) ∈ ϕL(⟨ai⟩i≤n). For the other direction, let x ∈ ϕL(⟨ai⟩i≤n).

Then pi[x] ∈ ϕLi(ai) for each i ≤ n. This then implies that λ(x) ∈
∏

i≤n ϕLi(ai) and so since

x = λ∗(λ(x)) we can conclude that x ∈ λ∗[U ], as desired. We therefore have shown that λ is continuous

and so meets all of the requirements of being an L-space morphism.

Corollary 3.1.12. Let {Li}i≤n be a finite family of lattices, then: ϕL1(a1) × ... × ϕLn(an)
∼=

ϕ∏Li≤n
((a1, .., an)).

Proof. Corollary of 3.1.11, in particular the case of showing λ is continuous, and the fact that by

duality the salient lattices of clopen sets are isomorphic.

We now move to the representation of monotone operations, which will make essentail use of the

representation of products we have just given.

3.2 The General Representation for Monotone Operations

In [27, 28] and [22], which provide spectral style dualities for lattices and posets respectively,

representations of monotonic functions between lattices are given. In this section we extend the L-space

duality in a similar way by showing that every monotone n-ary operation between lattices can be

represented as an n+1-ary relation between the duals of those lattices. We then obtain a representation

theorem for all monotone lattice expansions and then generalize the L-spaces duality. Some of the

results presented in this section are direct generalizations of those reported in [6] and do not provide

significant theoretical advancements. This being said, generalizing to the case of n-ary operations will

set the stage for chapters to come and provide the means of proving a general result on what sorts of

identities can be preserved through the Π1-completion.

We begin in Section 3.2.1 by defining filter continuous relations. In Section 3.2.2 we will show in

Theorem 3.2.6 that every operation between lattices is represented uniquely by some filter continuous

relation. This leads naturally to a representation theorem for all monotone lattice expansions in

Corollary 3.2.7. We end this section with some remarks on the relation of this representation result to

the dualities in [6]. Finally, in Section 3.2.3 will show in Theorem 3.2.11 that the category of lattices
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with monotone operations is dual to the category of the L-spaces with filter continuous relations as

morphisms. These results will be key to those regarding completions and persistence in the following

sections of the chapter.

3.2.1 Filter Continuous Relations

Definition 3.2.1. Let {Xi = (Xi,⋏i, 1i, τi)}i≤n∪{Y = (Y,⋏, 1, τ)} be a family of L-spaces with n ∈ N.

Suppose that R ⊆ Y ×X1 × ..×Xn.

We say that R is filter continuous if it satisfies the following conditions:

(Clopen compatible) R(y, x1, .., xn) iff for all in and Ui ∈ Ficlp(Xi): If xi ∈ Ui, then y ∈
F [U1, ..., Un]{y ∈ Y | ∃x1 ∈ U1...∃xn ∈ Un(R(y, x1, .., xn)}, and

(Clopen-continuous) If Ui ∈ Ficlp(Xi) for each i ≤ n, then FR[U1, .., Un] is in Ficlp(Y ).

Note that in the case that R is binary, FR[U ] = R−1[U ].

We will now provide two lemmas we make use in the following pages. The first, Lemma 3.2.2,

provides some useful properties of filter continuous relations. The second, Lemma 3.2.3, will made use

of in two important places. The first is to show that the composition of filter continuous relations is a

filter continuous relation in Lemma 3.2.8. The second is to show that the various completions we are

interested in when applied to monotone lattice expansions can be represented in the dual space of the

lattice being completed (Lemma 4.2.2 and Theorem 4.2.3).

Lemma 3.2.2. (Properties of Filter Continuity)

Let {Xi = (Xi,⋏i, 1i, τi)}i≤n ∪ {Y = (Y,⋏, 1, τ)} be a family of L-spaces with n ∈ N. Suppose that

R ⊆ Y ×X1 × ..×Xn.

If R is clopen-compatible, then it satisfies each of the following properties:

i) (Order Compatibility) If R(y, x1, .., xn), y ≤ y′, and x′i ≤ xi for each i ≤ n, we have R(y′, x′1, .., x
′
n),

ii) (⋏-Compatibility) If R(yj , xj1, ..xjn) for all j ∈ J , then R(
c
yj ,

c
xj1, ..,

c
xjn).

iii) (Point Closed) For all y ∈ Y , R[y] = {(x1, .., xn) | R(y, x1, .., xn)} is closed in the product topology

P = (
∏

i≤nXi,⋏P , 1P , τP ).

iv) (Boundedness) For all i ≤ n and xi ∈ Xi, R(1, x1, .., xn).

Proof. We prove each claim in turn:

(Order Compatiblity) Suppose that R(y, x1, .., xn), y ≤ y′, and x′i ≤ xi for each i ≤ n. Suppose

now that for Ui ∈ Ficlp(Xi) we have x′i ∈ Ui. Then clearly by upward closure of the Ui’s, we have that

xi ∈ Ui for each i ≤ n. Therefore, by clopen compatibility and the assumption that R(y, x1, .., xn),

we have y ∈ FR[U1, .., Un] and thus by upward closure again, which is guaranteed by the fact that

FR[U1, .., Un] is a filter, we have that y′ ∈ FR[U1, .., Un]. This then implies again by clopen compatibility

that R(y′, x′1, .., x
′
n), as desired.

(⋏-Compatibility) An analogous argument holds but relies on the fact that clopen filters are closed

under arbitrary meets (which follows from the fact that closed filters are principal. See Lemma 2.2.9).
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(Point-Closure) We claim that

{(x1, .., xn) | R(y, x1, ..., xn)} =
⋂

{Xn − (
∏
i≤n

Ui) | Ui ∈ Ficlp(Xi) & y ̸∈ FR[U1, .., Un]}.

(⊆) suppose that (x1, .., xn) ∈ {(x′1, .., x′n) | R(y, x′1, ..., x′n)} and y ̸∈ FR[U1, .., Un] for some clopen

filters Ui ∈ Ficlp(Xi). Then R(y, x1, .., xn). So by clopen-compatibility of R, we have that there is

some i ≤ n such that xi ̸∈ Ui. It follows that then that (x1, .., xn) ∈ Xn − (
∏

i≤n Ui), as desired.

(⊇) We reason contrapositively. Suppose that it is not the case that (x1, .., xn) ∈ {(x′1, .., x′n) |
R(y, x′1, ..., x

′
n)} and therefore that not R(y, x1, .., xn). It follows by clopen compatability that for each

i ≤ n there is some Ui ∈ Ficlp(Xi) such that xi ∈ Ui for each i ≤ n but y ̸∈ FR[U1, .., Un]. It follows

then that (x1, .., xn) /∈
⋂
{Xn − (

∏
i≤n Ui) | Ui ∈ Ficlp(Xi) & y ̸∈ FR[U1, .., Un]}.

Finally we are ensured that
⋂
{Xn − (

∏
i≤n Ui) | Ui ∈ Ficlp(Xi) & y ̸∈ FR[U1, .., Un]} is a closed

set in the product topology because (
∏

i≤n Ui) is clopen in the product topology by Lemma 3.1.7.

(Boundedness) By clopen continuity, for all i ≤ n and all xi ∈ Xi and Ui ∈ Ficlp(Xi) such

that xi ∈ Ui, we have that 1 ∈ F [U1, .., Un]. Therefore by clopen compatibility, we have that

R(1, x1, .., xn).

Our second lemma shows how FR extends from the clopen filters to the closed filters and filters of

an L-space. This lemma is essentially the same as Lemma 4.18 in [6].

Lemma 3.2.3. Let R ⊆ X × Y1 × ...× Yn be a filter-continuous relation between L-spaces X and Yi

for i ≤ n. Then:

1) For all closed filter C1, .., Cn of Y: FR[C1, .., Cn] =
⋂
{FR[U1, .., Un] | Ui ∈ Ficlp(Yi) & Ci ⊆ Ui},

2) For all filters U1, .., Un of Y: FR[U1, .., Un] =
`
{FR[C1, .., Cn] | Ci ∈ Fik(Yi) & Ci ⊆ Ui}.

Proof. The proof of this lemma is a direct generalization of the proof of Lemma 4.18 in [6].

For (1), let C1, .., Cn be closed filters of Y. The inclusion FR[C1, .., Cn] ⊆
⋂
{FR[U1, .., Un] | Ui ∈

Ficlp(Yi) & Ci ⊆ Ui} is immediate from monotonicity of FR. For the other inclusions suppose that

x ̸∈ FR[C1, .., Cn]. Then R[x] ∩ (C1 × ...× Cn) = ∅. Since R[x] is a closed downset, by lemmas 2.2.9

and 2.2.10 we obtain that there is some clopen filter U1 × ...× Un where Ui ∈ Ficlp(Yi) (See Lemma

3.1.7 for subbase products.) and C1× ...×Cn ⊆ U1× ...×Un and R[x]∩ (U1× ...×Un) = ∅. Therefore,
we have that x ̸∈ FR[U1, .., Un] for some U1, .., Un such that for i ≤ n, Ui ∈ Ficlp(Yi) and Ci ⊆ Ui.

And thus we arrive at the conclusion that x ̸∈
⋂
{FR[U1, .., Un] | Ui ∈ Ficlp(Yi) & Ci ⊆ Ui}.

For (2), The inclusion
`
{FR[C1, .., Cn] | Ci ∈ Fik(Yi) & Ci ⊆ Ui} ⊆ FR[U1, .., Un] is immediate

by monotonicity of FR. For the other inclusion, let x ∈ RR[U1, .., Un]. Then there are yi ∈ Ui such

that R(x, y1, .., yn). By Lemma 2.2.9, ↑yi is closed for each i ≤ n. Since R(x, y1, .., yn), it follows that

x ∈ FR[↑y1, .., ↑yn]. Therefore, the preceding two sentences implt that x ∈
`
{FR[C1, .., Cn] | Ci ∈

Fik(Yi) & Ci ⊆ Ui} as desired.

With Lemmas 3.2.2 and 3.2.3 in hand, we turn to the representation of monotone operations by

filter-continuous relations and then the duality result showing the category of lattice with monotone

operations is dual to the category of the L-spaces with filter continuos relations among them.
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3.2.2 The Representation of Monotone Operations

We will show in Theorem 3.2.6 that for every monotone operation f : L1 × ...× Ln → K between

lattices, there is a unique filter continuous relation Rf among some L-spaces so that the following

diagram commutes.

L1 × ...× Ln LXL1
× ...× LXLn

K KXK

ϕL1×...×Ln

f FRf

ϕK

So if f : L1 × ...× Ln → K is an n-ary operation between bounded lattices. We can canonically

define a relation Rf ⊆ XK ×XL1 × ...×XLn between the filters of K and the L1 up through Ln as

follows.

For all y ∈ XK and xi ∈ XLIi, Rf (y, x1, .., xn) iff if a1 ∈ x1, .., an ∈ xn, then f(a1, .., an) ∈ y.

Lemma 3.2.4. (Filter Continuity)

Let f : L1 × ... × Ln → K be an n-ary operation between bounded lattices. Then the relation

Rf ⊆ XK ×XL1 × ...×XLn is filter continuous.

Proof. We demonstrate the two conditions of filter continuity as follows:

(Clopen Compatability) The direction from left to right follows in virtue of the definition of FRf
[·].

For the direction from right to left we must rely on the equivalence between a ∈ x and x ∈ ϕ(a).

(Clopen Continuous) We show that FRf
[ϕL1(a1), .., ϕLn(an)] = ϕK(f(a1, .., an), which via the

isomorphisms ϕK between K and Ficlp(XK) and ϕLi between Li and Ficlp(Xi) for i ≤ n, respectively,

will establish the desired result.

(⊆) Suppose that y ∈ FRf
[ϕL1(a1), .., ϕLn(an)]. Then for each i ≤ n, there is some xi ∈ ϕKi(ai)

such that Rf (y, x1, .., xn). However, if xi ∈ ϕKi(ai), then ai ∈ xi for each i ≤ n. Therefore by the

definitionnition of Rf , f(a1, .., an) ∈ y. This in turn implies that y ∈ ϕ(f(a1, ..an)), as desired.

(⊇) Suppose that y ∈ ϕK(f(a1, .., an)), then f(a1, .., an) ∈ y. Note that for each i ≤ n, ↑(ai) ∈
ϕ(ai). fro each i ≤ n suppose that there is a bi such that ai ≤ bi. Then f(a1, .., an) ≤ f(b1, .., bn)

by monotonicity and so f(b1, .., bn) ∈ y. Therefore, Rf (y, ↑(a1), .., ↑(an)), which in turn implies

y ∈ FRf
[ϕL1(a1), .., ϕLn(an)].

We provide a supporting lemma which will allow us to show the uniqueness of Rf with respect to

the property expressed by the diagram above.

Lemma 3.2.5. Suppose that S,R ⊆ XK ×XL1 × ...×XLn are filter continuous relations, then S ⊆ R

iff for all a1 ∈ L1,.., and an ∈ Ln, FS [ϕ(a1), .., ϕ(an)] ⊆ FR[ϕ(a1), .., ϕ(an)].

Proof. For the direction from left to right, the argument is straightforward. From right to left, we reason

contrapositively. Suppose that S ̸⊆ R, then is a sequence (y, x1, .., xn) ∈ S where (y, x1, .., xn) ̸∈ R.

This means that (x1, .., xn) ∈ S[y] but (x1, .., xn) ̸∈ R[y]. However, R[y] is a closed downset in virtue of

Lemma 3.2.2 (in particular point closedness and order compatibility) and R[y] excludes (x1, .., xn). So

by Lemma 2.2.10, there is a clopen filter U = ϕL1(a1)×, .., ϕLn(an) of
∏

i≤nXL1 such that (x1, .., xn ∈ U

and R[x] ∩ U = ∅. But then y ∈ FS [ϕL1(a1), ., ϕLn(an)] but x ̸∈ FR[ϕL1(a1), ., ϕLn(an)]. Therefore

FS [ϕ(a1), .., ϕ(an)] ̸⊆ FR[ϕ(a1), .., ϕ(an)].
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The above proof is accomplished in terms of the method used by Gehrke and van Gool to represent

join preserving functions in in [21]. We are now in a position to conclude the remain result of this

section. The preceding lemmas allow us to show that every monotone lattice operation corresponds

uniquely to a filter continuous relation between relevant L-spaces.

Theorem 3.2.6. (Representation of Monotone Maps) Let f : L1 × ...×Ln → K be a monotone lattice

map. Then Rf is the unique n+1-ary filter-continuous relation on XK ×XL1 × ...×XLn such that

ϕK(f(a1, .., an)) = FR[ϕL1(a), .., ϕLn(an)].

Proof. In virtue of the lemma 3.2.4 we only need to show that thatRf uniquely satisfies FR[ϕL1(a), .., ϕLn(an)] =

ϕK(f(a1, .., an)). However the previous Lemma 3.2.5 implies this rather directly. Suppose that

S ⊆ XK × XL1 × .. × XLn and suppose that FS [ϕL1(a1), .., ϕLn(an)] = ϕK(f(a1, .., an). Then

FS [ϕL1(a1), .., ϕLn(an)] = ϕK(f(a1, .., an) = FR[ϕL1(a1), .., ϕLn(an)]. Then by lemma 3.2.5, S =

Rh.

One corollary of the representation of monotone maps given in the previous theorem is that every

monotone lattice expansion (L, {fi}i∈I) is isomorphic to (Ficlp(XL), {FRfi
}i∈I).

Corollary 3.2.7. (Representation for Monotone Lattice Expansions) Every monotone lattice expansion

(L, {fi}i∈I) is isomorphic to the clopen filters of an L-space X = (X, {Ri}i∈I) equipped with a family

of filter continuous relations {Ri}i∈I .

Proof. Note that the lattice isomorphism ϕ : L → Ficlp(XL) is also a homomorphism with re-

spect to each operation fi. In particular, in virtue of Theorem 3.2.6, we have ϕK(f(a1, .., an)) =

FR[ϕL1(a), .., ϕLn(an)].

We conclude this section. In the next we prove a generalization of L-space duality.

3.2.3 Duality for the Category of Lattices with Monotone Operations

A more general consequence of Theorem 3.2.6 is that the category Lat(O) of lattices with monotone

operations as morphisms is dual to the category LSp(FC) of L-spaces with filter-continuous relations

as morphisms. This is a generalization of the L-space duality of Bezhanishvili et al. [6] and we will

informally discuss how to recover L-space duality in the following section.

To demonstrate that LSp(FC) is indeed a category, we must identify a means of composing filter

continuous relations. To do this, we will utilize the fact that each n+ 1-ary filter-continuous relation is

equivalent to binary one. In particular, given an n+1-ary filter-continuous relation R ⊆ Y ×X1×..×Xn

we define the corresponding binary filter continuous relations Rb ⊆ Y × (X1 × .. ×Xn) (notice the

brackets) in the natural way:

Rb(y, x) ⇐⇒ R(y, x(1), .., x(n)).

The fact the Rb is filter continuous follows from Theorem 3.1.11, which tells us that the operations

mapping lattices to L-spaces and L-spaces to lattices commute with products. This ambiguity between

n+ 1-ary relations and binary relations will allow us treat composition of morphisms in LSp(FC) as

ordinary relation composition. So given filter continuous relations R ⊆ X × Y and S ⊆ Y ×X: we

define the composition R ∗ S of R and S in the usual way:
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R ∗ S = {(x, y) ∈ X × Z | ∃y ∈ Y ((x, y) ∈ R & (y, z) ∈ S))}.

Finally, it is worth noting that given an n-ary monotone operation f : L1 × ...× Ln → K we can

think of the relation Rf :⊆ XK×XL1×...×XLn and its binary counterpart Rb
f ⊆ XK×(XL1×...×XLn)

as being equivalent to the binary relation R′
f ⊆ XK ×XL1×...×Ln . In essence this boils down to the

following diagram commuting.

XK XK

XL1 × ...×XLn X(L1×...×Ln)

id

Rb
f

R′
f

∼=

With all of these considerations in mind, let us now prove the final lemmas needed to show that

the categories Lat(O) and LSp(FC) are dually equivalent. In particular, we will check that really

forms LSp(FC) a category in Lemma 3.2.10. To obtain this fact, we will first prove Lemma 3.2.8,

which guarantees that the composition of filter continuous relations are filter continuous. We will then

show how to turn L-space morphisms into filter continuous relations in Lemma 3.2.9. This allows us to

characterize the identity morphisms in LSp(FC) and leads to the fact that LSp is a subcategory of

LSp(FC).

Lemma 3.2.8. Let X, Y, and Z be L-spaces and R ⊆ X × Y and S ⊆ Y × Z be filter continuous

relations. Then:

1) for all filters U ∈ Fi(Z), FR∗S [U ] = FR ∗ FS [U ], and

2) R ∗ S is a filter continuous relation.

Proof. Let R ⊆ X × Y and S ⊆ Y × Z be filter continuous relations.

For (1), Let U be a filter of Z. Let x ∈ FR∗S [U ]. Then there is some z ∈ U such that (x, z) ∈ R ∗S.
But then there is a y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S. But then y ∈ FS [U ] and x ∈ FR[FS [U ]].

So FR∗S [U ] ⊆ FR[FS [U ]]. On the other hand, let x ∈ FR[FS [U ]]. Then there is some y ∈ FS [U ] such

that (x, y) ∈ R. But if y ∈ FS [U ], there is some z ∈ U such that (y, z) ∈ S. It then follows that

(x, z) ∈ R ∗ S and x ∈ FR∗S [U ].

For (2), we need to show both condition of Definition 3.2.1 hold of R ∗ S.
(Clopen Compatibility) One direction of this condition is by definition. For the nontrivial direction,

suppose that for all V ∈ Ficlp(Z), if z ∈ V , then z ∈ FR∗S [V ]. We need to show that (x, z) ∈ R ∗ S.
Let us define y =

c
(FS [↑z]).

Claim 1: (y, z) ∈ S. To show this, Let U ∈ Ficlp(Z) and suppose that z ∈ U . Since ↑z ⊆ U ,

we have that FS [↑z] ⊆ FS [U ]. It then follows from the fact that U is closed, and therefore principal

(Lemma 2.2.9), that y =
c
(FS [↑z]) ∈ Fs[U ]. Therefore, by (Clopen Compatibility) of S, (y, z) ∈ S.

Claim 2: (x, y) ∈ R. To show this we will show that for all U ∈ Ficlp(Y), if y ∈ U , then x ∈ FR[U ]

and use clopen compatibility of R. So let U ∈ Ficlp(Y) and suppose that y ∈ U . Since ↑z is closed,

by Lemma 3.2.3, FS [↑z] =
⋂
{FS [V ] | V ∈ Ficlp(Z) & z ∈ V }. Therefore, by Lemma 2.2.9 we have

↑y = FS [↑z] and by the assumption that y ∈ U , we have
⋂
{FS [V ] | V ∈ Ficlp(Z) & z ∈ V } ⊆ U . But

then because U is clopen, by compactness we obtain that there are V1, .., Vn such that z ∈
⋂

i≤n Vi for

each i ≤ n and
⋂

i≤n FS [Vi] ⊆ U . Now by our assumption that for all V ∈ Ficlp(Z), if z ∈ V , then

z ∈ FR∗S [V ] and the fact that z ∈
⋂

i≤n Vi, we have that x ∈ FR∗S [
⋂

i≤n Vi]. But from (1) we then
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have that x ∈ FR[FS [
⋂

i≤n Vi]]. So from the monotonicity of FR and FS we have:

FR[FS [
⋂
i≤n

Vi]] ⊆ FR[
⋂
i≤n

FSVi]] ⊆ FR[U ].

We may therefore conclude that x ∈ FR[U ]. So by generalizing on U , we obtain from clopen

compatibility of R that (x, y) ∈ R, as desired.

It then follows from (Claim 1) and (Claim 2) that (x, z) ∈ R ∗ S, as we wished to show. We

therefore conclude that R ∗ S is clopen compatible.

(Clopen Continuity) Let UFiclp(Z). By the clopen continuity of R and S, we have that FR ∗FS [U ] ∈
Ficlp(X). By (1) FR∗S [U ] = FR ∗ FS [U ], so FR∗S [U ] is a clopen filter. Thus R ∗ S is clopen continuous.

Let us now show that each L-space morphism can be turned into a filter continuous relation.

Lemma 3.2.9. Let f : X → Y be an L-space morphism, then

Rf :=
⋃

{↑x× ↓fx | x ∈ X}

is a filter continuous relation.

Proof. We will first show that for all filters U of Y, FRf [U ] = f−1[U ]. Let U be a filter of Y. For

the inclusion FRf [U ] ⊆ f−1[U ], let x ∈ FRf [U ]. Then there is some y ∈ U such that (x, y) ∈ Rf . If

(x, y) ∈ Rf , then by definition of f there is some z ∈ X such that z ≤ x and y ≤ fz. So since f is an

L-space morphism, and is therefore monotone, y ≤ fz ≤ fx. But then since y ∈ U and U is upward

closed, fx ∈ U and so x ∈ f−1[U ], as desired. For the other inclusion f−1[U ] ⊆ FRf [U ], let x ∈ f−1[U ].

Then (x, fx) ∈ Rf and fx ∈ U . Therefore x ∈ FRf [U ].

We now show that Rf is filter continuous. We have two conditions to check (See Definition 3.2.4).

For the condition of clopen-continuity, whenever U is a clopen filter of Y, FRf [U ] = f−1[U ] is clopen

since f is a L-space morphism. For the condition of clopen-compatibility, we must check the non trivial

direction. So suppose that for all clopen filters U of Y , if y ∈ U , then x ∈ FRf [U ]. We must show that

(x, y) ∈ Rf . By the hypothesis that for all clopen filters U of Y , if y ∈ U , then x ∈ FRf [U ], we obtain

that x ∈
⋂
{FRf [V ] | V ∈ Ficlp(Y) & y ∈ V }. But by the fact that ↑y is closed (Lemma 2.2.9), we

obtain from Lemma 3.2.3 that FRf [↑y] =
⋂
{FRf [V ] | V ∈ Ficlp(Y) & y ∈ V }. So x ∈ FRf [↑y]. But

above we showed that for all filters V , FRf [V ] = f−1[V ], and so in particular that FRf [↑y] = f−1[↑y].
So x ∈ f−1[↑y] implying that y ≤ fx. However, if y ≤ fx, then (x, y) ∈ ↑x× ↓fx ⊆ Rf , as desired.

We can therefore conclude that Rf is filter continuous.

Lemma 3.2.10. LSp(FC) is a category.

Proof. By Lemma 3.2.8 we are ensured that the composition of filter continuous relations are filter

continuous. Therefore the morphisms of LSp(FC) are closed under composition. Therefore, all that is

left to do is to confirm the existence of identity morphisms. Using Lemma 3.2.9, which gives a recipe

for transforming L-space morphisms into filter continous relations, we have the following definition.

Let Y be an L-space, then Rid
Y ⊆ Y × Y is defined:

Rid
Y =

⋃
{↑y × ↓y | y ∈ Y }.
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By Lemma 3.2.9, Rid
X is filter continuous since id : Y → Y is an L-space morphism. We now check

that for any filter continuous relations R ⊆ X × Y and R′ ⊆ Y × Z, we have that:

R ∗Rid
Y = R Rid

Y ∗R′ = R′.

For showing R ∗Rid
Y = R, note that R ⊆ R ∗Rid

Y is immediate since for any (x, y) ∈ R, (y, y) ∈ Rid
Y.

For the other inclusion, let (x, z) ∈ R ∗ Rid
Y. Then there is some z′ ∈ Y such that (x, z′) ∈ R and

(z′, z) ∈ Rid
Y. However, if (z′, z) ∈ Rid

Y, then there is some y ∈ Y such that z ≤ y ≤ z′. But since R is

filter continuous and therefore is order compatibility (See Lemma 3.2.2), (x, z′) ∈ R and z ≤ y ≤ z′

imply that (x, z) ∈ R. Therefore, We may conclude that R ∗Rid
Y = R.

Showing that Rid
Y ∗R′ = R′ holds follows by similar argument.

We now arrive at the main result of the section. We show that the category of lattices and monotone

operations is dual to the category of L-spaces with filter continuous relations. This Theorem lays

the foundations for some of the results we will see through out the thesis and generalizes the L-space

duality of [6]. The key application of this result will be to demonstrating a preservation theorem for

the Π1-completion in Chapter 4.

Theorem 3.2.11. The categories Lat(O) and LSp(FC) are dually equivalent.

Proof. The object part of our duality follows from the object part of the L-space duality (Theorem ??).

The duality at the level of morphisms holds because the categories Lat(O) and LSp(FC) are both

concrete and because Lemma 3.2.6 guarantees that for each monotone operation f : L1,×...×Ln → K,

Rf is the unique n+1-ary filter continuous relation such that ϕK(f(a1, .., an)) = FR[ϕL1(a), .., ϕLn(an)].

3.3 Some Correspondences for Filter Continuous Relations

We end this chapter with some observations regarding the representation of operations that preserve

meets or joins. This will allow us to make the relationship between L-space morphisms and filter

continuous relations more precise. We then discuss how to obtain the representation theorem for modal

lattices in [6] from the representation theory developed here.

3.3.1 Preservation of Joins and Meets

In general, an operation f : L1 × ... × Ln → K corresponding to a filter continuous relation

R ⊆ XK ×XL1 × ...×XLn will preserve joins at some coordinate i ≤ n if and only if we have:

(Reflection) If R(y, ..xi−1, z ⋏ z′, xi+1, ..xn), then there are t, t′ ∈ XLi such that t⋏ t′ ≤ y and

R(t, ..xi−1, z, xi+1, ..xn) and R(t
′, ..xi−1, z

′, xi+1, ..xn).

We call this property reflection. Let us state and show this correspondence more precisely in the

case when R is binary. Recall that [T ) = ↑{a1 ∧ ... ∧ an | a1, .., an ∈ T} denotes the filter generated by

a subset T of a semilattice.

Proposition 3.3.1. For all lattices K and L and monotone functions f : L → K for all a, b ∈ L,

f(a ∨ b) = f(a) ∨ f(b) if and only if for all x ∈ XK and y′, z′ ∈ XL :
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(Reflection) If Rf (x, y
′ ⋏ z′), then there are y, z ∈ XK such that y ⋏ z ≤ x and Rf (y, y

′) and Rf (z, z
′).

Proof. Suppose that for all a, b ∈ L, f(a ∨ b) = f(a) ∨ f(b). Now suppose that Rf (x, y
′ ⋏ z′). Let

us define y := [f [y′]) and z := [f [z′]). It is clear that Rf (y, y
′) and Rf (z, z

′). Let us now show that

y ⋏ z ≤ x. So suppose that c ∈ [fy′) ∩ [fz′). Then there are a1, .., an ∈ y′ and b1, .., bm ∈ z′ such that∧
i≤n fai ≤ c and

∧
i≤m fbi ≤ c. Since f is monotone, it follows that both f(

∧
i≤n ai) ≤

∧
i≤n fai and

f(
∧

i≤m bi) ≤
∧

i≤m fbi. We therefore obtain from join preservation:

f(
∧
i≤n

ai ∨
∧
i≤m

bi) = f(
∧
i≤n

ai) ∨ f(
∧
i≤m

bi) ≤
∧
i≤n

fai ∨
∧
i≤m

fbi ≤ c.

But we have that
∧

i≤n ai ∨
∧

i≤m bi ∈ y′ ∩ z′ and thus that f(
∧

i≤n ai ∨
∧

i≤m bi) ∈ f [y′ ∩ z′]. We

therefore can conclude that c ∈ [f [y′ ∩ z′]). Now, from the supposition that R(x, y′ ⋏ z′), we also

have f [y′ ∩ z′] ⊆ x by definition of Rf and of ⋏. It then follows from the fact that x is filter that

[f(y′ ⋏ z′]) ⊆ x. So because c ∈ [f(y′ ⋏ z′]), we also have that c ∈ x and thus that [fy′) ∩ [fz′) ⊆ x.

We may therefore conclude that y ⋏ z ≤ x.

For the other direction, suppose that for all x ∈ XK and y′, z′ ∈ XL : If Rf (x, y
′ ⋏ z′), then there

are y, z ∈ XK such that y ⋏ z ≤ x and Rf (y, y
′) and Rf (z, z

′). Let us first show that FRf
[U▽V ] =

FRf
[U ]▽FRf

[V ]. The inclusion FRf
[U ]▽FRf

[V ] ⊆ FRf
[U▽V ] follows by monotonicity and the fact that

▽ is join. So let x ∈ FRf
[U▽V ]. Then there is some x′ ∈ U▽V such that R(x, x′). If x′ ∈ U▽V , then

there are y′ ∈ U and z′ ∈ V such that y′ ⋏ z′ ≤ x′. By Lemma 3.2.2, R(x, y′ ⋏ z′). So by assumption

we have that there are filters y, z such that R(y, y′) and R(z, z′) and y ⋏ z ≤ x. But then y ∈ FRf
[U ]

and z ∈ FRf
[V ] and x ∈ FRf

[U ]▽FRf
[V ], as desired.

Now since ϕL and ϕK are both isomorphism and FRf
∗ ϕL = ϕK ∗ f , we conclude that f(a ∨ b) =

fa ∨ fb.

The more general case follows from a very similar argument. Let us now consider meet preserving

operations.

An odd feature of the representation we have provided in this chapter is that the dual relation of

all monotone operations are defined in a uniform way, even those operations that preserve meets. In

the case of a unary operation f , the binary relation Rf on the relevant dual spaces was defined by

Rf (x, y) iff f [y] ⊆ x.

While in the case of join preserving operations this is standard fare, the fact the meet preserving

operations are represented this way too is unusual. To clarify this situation, let us provide the condition

guaranteeing when the operation FR associated with some filter continuous relations R preserves meets

in some coordinate.

In the most general case, a operation f : L1 × ...× Ln → K corresponding to a filter continuous

relation R ⊆ XK ×XL1 × ...×XLn preserves meets at some coordinate i ≤ n if and only if we have:

(Idealization) If Rf (y, ..xi−1, x, xi+1, ..xn) and Rf (y, ..xi−1, x
′, xi+1, ..xn), then there is some w ∈ Xi

such that x ≤ w and x′ ≤ w and Rf (y, ..xi−1, w, xi+1, ..xn).

We call this property idealization because the set {z ∈ Xi | Rf (y, ..xi−1, z, xi+1, ..xn)} forms an

ideal of Xi.

Let us state and show this correspondence more precisely in the case when R is binary.
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Proposition 3.3.2. For all lattices K and L and monotone functions f : L → K for all a, b ∈ L,

f(a ∧ b) = f(a) ∧ f(b) if and only if for all x ∈ XK and y, z ∈ XL,

(Idealization) If R(x, y) and R(x, z), then there is some w ∈ XL such that y ≤ w and z ≤ w and

R(x,w).

Proof. Suppose that for all a, b ∈ L, f(a ∧ b) = fa ∧ fb. Let R(x, y) and R(x, z). Defined w := [y ∪ z).
We show that R(x,w). So let a ∈ [y ∪ z). we will show that fa ∈ x. If a ∈ [y ∪ z), then because y

and z are both filters, we find b ∈ y and c ∈ z such that b ∧ c ≤ a. But because b ∈ y and c ∈ z and

R(x, y) and R(x, z), we have that fb ∈ x and fc ∈ x and so fb ∧ fb ∈ x. So since b ∧ c ≤ a, we obtain

fb ∧ fc = f(b ∧ c) ≤ fa. Therefore, fa ∈ x, as desired. We can therefore conclude that R(x,w).

Suppose that for all x ∈ XK and y, z ∈ XL, if R(x, y) and R(x, z), then there is some w ∈ XL such

that y ≤ w and z ≤ w and R(x,w). We show that FRF
[U ∩ V ] = FRF

[U ] ∩ FRF
[V ]. The inclusion

FRF
[U ∩V ] ⊆ FRF

[U ]∩FRF
[V ] is by monotonicity and the fact that ∩ is meet. For the other inclusion,

let x ∈ FRF
[U ] ∩ FRF

[V ]. The there are y ∈ U and z ∈ V such that R(x, y) and R(x, z). By our

assumption, there is some w ∈ XL such that y ≤ w and z ≤ w and R(x,w). So w ∈ U ∩ V and

x ∈ FRf
[U ∩ V ].

Since ϕL and ϕK are both isomorphism and FRf
∗ϕL = ϕK ∗f , we conclude that f(a∧ b) = fa∧fb.

With Propositions 3.3.1 and 3.3.2 in hand, we can describe those filter continuous relations whose

dual operations between lattices is a homomorphism.

Proposition 3.3.3. Let X and Y be L-spaces. Let R ⊆ X×Y be a filter continuous relation. Then the

function FR : LY → LX is a lattice homomorphism if and only if R satisfies the following conditions:

(Reflection) If Rf (x, y
′ ⋏ z′), then there are y, z ∈ XK such that y ⋏ z ≤ x and Rf (y, y

′) and Rf (z, z
′),

(Idealization) If R(x, y) and R(x, z), then there is a w ∈ XL such that y ≤ w and z ≤ w and R(x,w),

(Isolation) xR1 iff x = 1, and

(Totality) For all x ∈ X, there is a y ∈ Y such that R(x, y).

Proof. The property of Isolation holds iff FR[{1Y}] = {1X}. Totality holds iff FR[Y ] = X. Join and

meet preservation correspondences follow from Propositions 3.3.1 and 3.3.2, respectively.

We could now compose L-space duality with the previous proposition to obtain that every L-space

morphism corresponds to a filter continous relations with the properties reflection, idealization, isolation,

and totality. Let us now show how to turn a binary filter continuous relation with these properties

directly into an L-space morphism. Recall for the next lemma that all L-space X are also complete

lattices. We will denote the join by
b
.

Lemma 3.3.4. Let X and Y be L-spaces. Let R ⊆ X × Y be a filter continuous relation satisfying

idealization. For all x ∈ X,
b
R[x] ∈ R[x].

Proof. To prove this lemma, by Theorem 3.2.11 we may assume that there lattices L and K such that

XL = Y and XK = X. By proposition 3.3.2 and Theorem 3.2.11 we also obtain that there is some meet

preserving f : L → K such that R = Rf . We recall that
b
R[x] =

⋃
{[y1 ∪ .. ∪ yn) | y1, ..., yn ∈ R[x]}.

So let a ∈
b
R[x]. Then there are y1, .., yn ∈ R[x] such that a ∈ [y1 ∪ .. ∪ yn). Since R[x] is an ideal,

we obtain that [y1 ∪ .. ∪ yn) ∈ R[x]. So by definition of R, we have that fa ∈ x. We therefore can

conclude that
b
R[x] ∈ R[x].
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Proposition 3.3.5. Let X and Y be L-spaces. Let R ⊆ X × Y be a filter continuous relation.

Suppose that R satisfies reflection, idealization, isolation, and totality. Then fR : X → Y defined

fR(x) =
b
R[x] is an L-space morphism.

Proof. For a reminder of the what an L-space morphism is, see Definition 2.2.4. For meet preservation,

note that Y is not only a complete lattice but is also algebraic. It follows the from the fact that R[x]

is an ideal, and therefore directed, that fR(x ⋏ y) =
b
R[x ⋏ y] =

b
R[x] ⋏

b
R[y] = fR(x) ⋏ fR(y)

(see exercise 6 in section 4 of [9].) By isolation fR(x) = 1 iff x = 1. For the back condition of an

L-space morphism, we use reflection. Finally, for continuity, let U be a clopen filter of Y. We claim

that f−1
R [U ] = FR[U ]. So let x ∈ f−1

R [U ]. Then fR(x) =
b
R[x] ∈ U . By Lemma 3.3.4, we have that

b
R[x] ∈ U ∈ R[x] and so x ∈ FR[U ]. For the other direction, let x ∈ FR[U ]. then there is some y ∈ U

such that R(x, y). But clearly y ≤
b
R[x]. So

b
R[x] ∈ U . We therefore have that x ∈ f−1

R [U ]. We

conclude that fR is an L-space morphism.

3.3.2 Recovering Modal L-spaces

Given the results above, and in particular proposition 3.3.2, it is clear that the natural way to

represent the Modal Lattices of [6] in terms our representation of lattice expansions departs significantly

from that of [6]. In particular, in [6] the □ and ♢ of a modal algebra are represented by a common

relation while in our representation both operators will be associated with a distinct relations. Since

the spaces of [6] are less complex in terms of the number relations and adhere to a more standard way

of representing □ and ♢, it is worth considering how to recover their representation from ours.

Let us first recall the definition of modal lattice as presented in [6].

Definition 3.3.6. A modal lattice L = (L,□,♢) is a bounded lattice with two unary operations

validating the following identities:

□(a ∧ b) = □a ∧□b □⊤ = ⊤ ♢⊥ = ⊥

♢a ≤ ♢(a ∨ b) ♢a ∧□b ≤ ♢(a ∧ b).

We now provide the necessary and sufficient conditions for the algebra of clopen filters of an L-space

equipped with two filter continuous relations to be a modal lattice. To this end we define FC-modal

L-spaces.

Definition 3.3.7. An FC-modal L-space X = (X,S,R) is an L-space X with pair of filter continuous

relations satisfying:

(S-Idealization) If S(x, y) and S(x, z), then there is a w ∈ XL such that y ≤ w and z ≤ w and S(x,w),

(Joint-idealization) If R(x, y) and S(x, z), then there is a w ∈ XL such that y ≤ w and z ≤ w and

R(x,w),

(S-totality) For all x ∈ X, there is some y ∈ Y such that S(x, y), and

(R-isolation) R(x, 1) iff x = 1.

The following proposition shows that the algebra of clopen filters of an FC-modal L-space is a

modal lattice.

Proposition 3.3.8. Let X = (X,S,R) be FC-modal L-space, then LX = (Ficlp(X), FS , FR) is a modal

lattice.
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Proof. By proposition 3.3.2, and the assumption of (S-idealization) we know that FS [U ∩ V ] =

FR[U ] ∩ FR[V ]. By Proposition 3.3.3 and the assumption (S-totality) and (R-isolation) we obtain

that FS [Y ] = X and FR[{1Y}] = {1X}. Since FR is monotone we have FR[U ] ⊆ FR[U▽V ]. Finally,

for FR[U ] ∩ FS [V ] ⊆ FR[U ∩ V ]. Let x ∈ FR[U ] ∩ FS [V ]. Then there are y ∈ U and z ∈ V such that

R(x, y) and S(x, z). By the assumption of condition (joint-idealization), we have that there is some

w ∈ X such that y ≤ w and z ≤ w and R(x,w). Since y ∈ U and z ∈ V , w ∈ U ∩V . So x ∈ FR[U ∩V ],

as desired.

We now show that all modal lattices are represented with an L-space with two filter continuous

relations and some extra conditions.

Proposition 3.3.9. Every modal lattice is isomorphic to the modal lattice of clopen filters LX of some

FC-modal L-space X = (X,S,R).

Proof. Let L = (L,□,♢) be a modal lattice. By theorem 3.2.7, the representation theorem for monotone

lattice expansions, we obtain that L is isomorphic to LXL
.

By Propositions 3.3.2 and 3.3.3 we obtain that conditions (S-idealization), (S-totality), and (R-

isolation) hold in XL. We just need to check (Joint-idealization). So let R♢(x, y) and R□(x, z). Defined

w := [y∪z). We claim that R♢(x,w). So let a ∈ w. We will show fa ∈ x. If a ∈ w = [y∪z), then there

are b ∈ y and c ∈ z such that b ⋏ c ≤ a. If b ∈ y and c ∈ z, then from the assumption R♢(x, y) and

R□(x, z), we have that ♢b ∈ x and □c ∈ x. So ♢b∧□c ∈ x. But ♢b∧□c ≤ ♢(b∧ c) and ♢(b∧ c) ≤ ♢a,

so ♢a ∈ x, as desired. We conclude that R♢(x,w).

The last thing we do in this section is show how to turn an FC-modal L-space into a modal L-space

as defined in [6]. Recall the definition of modal L-space from [6].

Definition 3.3.10. A modal L-space X = (X,R, τ) is an L-space (X, τ) with a relation R such that:

(1) R(x, 1) iff x = 1

(2) if U is a clopen filter, then ♢RU = R−1[U ] and □RU = {x | R[x] ⊆ U} are clopen filters, and

(3) R(x, y) iff (a) if y ∈ U , then x ∈ ♢R[U ] and (b) if x ∈ □RU , then y ∈ U .

Let us observe an important fact about relations with idealization. If X is an L-space and S ⊆ X×X
is a filter continuous relation that satisfies idealization, then we can define a new relation R+ ⊆ X ×X:

S+(x, y) if and only if, for all clopen filters U , if x ∈ FS [U ], then y ∈ U .

The operations □S+ and FS coincide. In particular, for all clopen filters U we have FS [U ] =

□S+U = {x | S+[x] ⊆ U}. To see this, let x ∈ □S+U . Then S+[x] ⊆ U . Now note that in virtue of S

having the idealization property,
b
S[x] ∈ S+[x]. This is the case because whenever x ∈ FS [U ], then

there is some y ∈ U such that S(x, y). However, since y ≤
b
S[x] and, by idealization,

b
S[x] ∈ S[x]

(See proof of proposition 3.3.5). Therefore, by definition of S+, we have
b
S[x] ∈ S+[x]. We therefore

get from the assumption that x ∈ □S+ , that
b
S[x] ∈ U and x ∈ FS [U ]. Conversely, suppose that

x ∈ FS [U ]. We must show that S+[x] ⊆ U . So let S+(x, y). By definition, for all all clopen filters V , if

x ∈ FS [V ], then y ∈ V . So obtain that y ∈ U . We therefore, conclude that S+[x] ⊆ U and thus that

x ∈ □S+U .

We just remarked on how to transform filter continuous S relations with idealization into another

relation S+ whose □+ coincides with FR. We can now propose that how this could provide a way to
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turn FC-modal L-spaces with pairs of filter continous relations into modal L-spaces with their single

relation.

Conjecture 3.3.11. Let X = (X,R1, S) be an FC-modal L-space. The X = (X,R2) is a modal

L-space where R2 = R1 ∩ S+.

Remark 3.3.12. Reductions in the Number of Relations

One consequence of the previous conjecture is that certain assumptions about how different filter

continuous relations interact are sufficient to permit us to reduce two relations into one. Identifying

a general method for reducing the number of relations along the lines of the one conjectured above

would be a valuable tool for simplifying the representation of lattice expansions.

3.4 Conclusion

The theory supplied in this chapter is the general setting that grounds many of the results and

developments to come. In particular, we will use the this theory to derive the OKHD-semantics and

duality for rℓ-groupoids in chapters 5 and 6, respectively. In summary, this chapter we began in Section

3.1 with a characterization of products and coproducts of L-spaces (Theorem 3.1.10) and then used

this characterization to obtain a representation of products of lattices (Theorem 3.1.11). Afterwards,

in Section 3.2, we applied the latter developments to obtain a general representation of monotone

operations between lattices and showed that each n-ary monotone operation between lattices could be

represented by a unique n+ 1-ary filter continuous relation (Theorem 3.2.6). Then in Section 3.2.3 we

showed that the category of lattice with monotone operations as morphisms is dually equivalent to

the category of L-spaces with filter continuous relations as morphisms (Theorem 3.2.11). Finally, in

Section 3.3, we described the filter continuous relations that correspond to meet and join preserving

operations and suggested a strategy to recover the modal L-spaces of [6].

In the next chapter we develop the representation of completions of monotone lattice expansions in

their dual L-spaces and extend the persistence results of [6] to arbitrary signatures that are interpreted

to monotone operations. Our proof of this fact depends essentially on the duality between lattices with

monotone operations and L-spaces with filter continuous relations.
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Chapter 4

The Topological Representation of

Completions and Π1-Preservation

In this chapter we extend the topological representations of completions of modal lattices in [6] by

exploiting the representation of monotone operations obtained in the previous chapter. We then use

what is developed in this chapter and the last to show a general preservation result with respect to the

Π1-completion, again generalizing the specific case of modal lattices considered in [6]. In particular, we

generalize Theorem 4.30 in [6] which shows every identity for modal lattice is preserved through the

Π1-completion. We obtain this generalization via an alternative proof that exploits the developments

made in the previous chapter.

4.1 Completions of Monotone Lattice Expansions

We begin by reminding the reader of the definition of a completion of a poset P, which is simply

complete lattice that contains a copy of P.

Definition 4.1.1. A completion (C, e) of a partial order P is a complete lattice C together with an

embedding e : P → C with the property that a ≤ b if and only if e(a) ≤ e(b).

Of special interest to us will be the Π1 completion of a lattice, introduce in by Gehrke and Priestly

in [20]. The Π1 completion of a lattice L is defined as the composition of the ideal completion with the

filter completion of L. Let us define the filter, ideal, and Π1 completions.

Definition 4.1.2. Let L be a lattice, then we define:

(1) Filter Completion, (fe(L), α : L → fe(L)), such that fe(L) := (Fi(L),≤fe) where x ≤fe y iff y ⊆ x

and α(a) =↑L (a),

(2) Ideal Completion, (ie(L), β : L → ie(L)), such that ie(L) := (Id(L),≤ie) where x ≤ie y iff x ⊆ y

and β(a) =↓L (a), and

(3) Π1-Completion, (Π1(L), π : L → Π1(L)), such that Π1(L) := ie(fe(L)) and π(a) = {x ∈ fe(L) | a ∈
x} =↓fe(L) (↑L (a)).

Note that the joins are defined in terms of the closure operator that maps a set to the least filter or

ideal containing it. Often we will treat L as a subset/sublattice of Π1(L), fe(L), and ie(L). This will

be especially convenient when comparing elements that are in the image of the one of the embeddings

with other elements of the completion. Similarly, we treat fe(L) as a sublattice of Π1(L). We also
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define the closed elements K(Π1(L) of Π1(L) as the set {
∧
T | T ⊆ L}. It is not hard to see that

fe(L) = K(Π1(L)).

4.1.1 Extending Monotone Operations

In this section we define the extension of a monotone operation to the filter, ideal, and Π1-

completions and show that the definition of these extensions guarantee that an monotone lattice

expansion is a subalgebra of any one of the salient completions. As remarked on above, to lighten

notation we will treat L as a subset of Π1(L), fe(L), and ie(L).

Definition 4.1.3. (Extensions of functions between lattices) Let f : L → K be a function between

lattices. We define the extension of f to the relevant completion as follows:

f fe(x) :=
∧

{f(a) | x ≤fe a & a ∈ L} (4.1)

f ie(x) :=
∨

{f(a) | a ≤ie x & a ∈ L} (4.2)

fΠ1(x) :=
∨

{
∧

{f(a) | y ≤ a & a ∈ L} | y ∈ K(Π1(L)) & y ≤ x} (4.3)

Before going further, we will show that the filter, ideal, and Π1-completion commutes with products.

Note that in the trivial case when f is nullary, i.e. a constant, f fe = fΠ1 =
∧
{a | f ≤ a & a ∈ L} = f .

Lemma 4.1.4. The filter, ideal, and Π1-completions commute with finite products:

fe(L1)× ..× fe(Ln) ∼= fe(L1 × ..× Ln) (4.4)

ie(L1)× ..× ie(Ln) ∼= ie(L1 × ..× Ln) (4.5)

Π1(L1)× ..×Π1(Ln) ∼= Π1(L1 × ..× Ln). (4.6)

Proof. The case of the filter completion follows directly from Lemma 3.1.5, which shows that filters

commute with products for meet semilattices. An order dual argument shows that the products also

commute with ideal completions. Composing these facts and recalling that Π1(L) ∼= ie(fe(L), we obtain

that Π1-completion also commutes with products.

Remark 4.1.5. Given that products commute with the Π1-completion, it is possible to view the extension

of maps to completions in an alternative and often more tangible way. For example, we can treat

fΠ1 : Π1(L1× ...×Ln) → Π1(K) as essentially the same as a map fΠ1 : Π1(L1)× ...×Π1(Ln) → Π1(K)

defined below.

ffc(x1, .., xn) :=
∧

{f(a1, .., an) | ∀j ≤ n(xj ≤fe aj & aj ∈ L)}

f ic(x1, .., xn) :=
∨

{f(a1, .., an) | ∀j ≤ n(aj ≤ie xj & aj ∈ L)}

fΠ1(x1, .., xn) :=
∨

{
∧

{f(a1, ..an) | (yj ≤Π1 aj) & ai ∈ L} | yj ∈ K(Π1(L)) & yj ≤ xj}

From here on out we will use these maps interchangeably.

We now consider two examples. The first comes from [6] while the second is important for the

chapters to come.
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Example 4.1.6. (Modal Lattices)

Our first example is the case of modal lattices, which is presented from [6]. Given a modal lattice

L = (L,□), the schema from definition 4.1.3 prescribes us the following definition of the modal box

operation thevarious completions we have considered.

□fex :=
∧

{α(□a) | x ≤ α(a) }

□iex :=
∨

{β(□a) | α(a) ≤ x }

□Π1x :=
∨

{
∧

{π(□a) | a ∈ L & y ≤ α(a)} | y ∈ K(Π1(L)) & y ≤ x}

Example 4.1.7. (ℓ-groupoids)

Our second example is the case of lattice ordered groupoids.

x ·fe y :=
∧

{α(a · b) | x ≤ α(a) & y ≤ α(b)}efe = α(e),

x ·ie y :=
∨

{β(a · b) | β(a) ≤ x & β(b) ≤ y}eie = β(e),

x1 ·Π1 x2 :=
∨

{
∧

{π(a1 · a2) | ai ∈ L & yi ≤ α(ai)} | yi ∈ K(Π1(L)) & yi ≤ xi}eΠ1 = π(efe).

It is straightforward to check that for any monotone lattice expansion L the embeddings α : L →
fe(L), and β : L → ie(L), and π : L → Π1(L) are all homomorphism with respect to the operations of

L. And since Π1(L) ∼= ie(fe(L), we also obtain that fe(L) is a subalgebra of Π1(L).

Lemma 4.1.8. Let L = (L, {fi}i∈I) be a monotone lattice expansion. Then for each fi, each

a1, .., an ∈ L, and each e ∈ {α, β, π}, we have that e(f(a1, .., an)) = fCi (e(a1), .., e(an)).

Proof. We show that case of α : L → fe(L) and note that the case of β has an order dual argument

and the case of π follows in virtue of π = β∗α.

4.2 The Representation of Completions

Similar to the situation in Priestly based dualities, various completions of a lattice L can be

identified with lattices of subsets of the dual space XL of L. In [6] the authors of demonstrated an

analogous result by showing that the filter completion of L corresponds to the lattice of closed filters

Fik(XL) of L’s dual space, the ideal completion corresponds to the lattice of open filters Fio(XL) of

L’s dual space, and that the Π1 completion of L corresponds to the lattice of all filters Fi(XL) of L’s

dual space. This is summarized precisely in the following lemma from [6].

Lemma 4.2.1. Let L be a lattice and XL be its dual L-space, then

fe(L) ∼= Fik(XL) ie(L) ∼= Fio(XL) Π1(L) ∼= Fi(XL).

The operations that witness each of the isomorphisms as they will be useful in what is to come.

We define ϕ : fe(L) → Fik(XL) such that given an element c of fe(L), the corresponding closed filter

ϕ(c) of XL is defined

ϕ(a) =
⋂

{ϕ(a) | c ≤fe a}.
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Similarly, we define ϕ : ie(L) → Fio(XL) which given an element c of ie(L), returns the corresponding

open filter

ϕ(c) =
h

{ϕ(c) |a ≤ie c }

.

Finally, the correspondence between Π1(L) and Fi(XL) is witnessed by the map ϕ̂ : Π1(L) →
Fi(XL). So given an element c ∈ Π1(L) we define ϕ̂(c) such that

ϕ̂(c) =
h

{
⋂
a∈T

ϕ(a) | T ⊆ L &
∧
T ≤ c}.

Beyond just showing the above correpsondence, the authors of [6] extended this result and showed

the representation holds for all positive modal lattices as well. The following Lemma generalizes this

result of[6] by extending it to all monotone lattice expansions. This is accomplished by showing that

the operations defined in 4.1.3 agree with the operations defined in terms of filter continuous relations

on the dual of that monotone lattice expansion.

Lemma 4.2.2. Let f : L1 × ...× Ln → K be a monotone operation between lattices, then the following

diagrams commute.

Fik(XL1)× ...×Fik(XLn) Fik(XK) Fi(XL1)× ...×Fi(XLn) Fi(XK)

fe(L1)× ...× fe(Ln) fe(K) Π1(L1)× ...×Π1(Ln) Π1(K)

FRf

[ϕL1
,..,ϕLn

] ϕK

FRf

[ϕ̂L1
,..,ϕ̂Ln ] ϕ̂K

f fe fΠ1

Proof. Let f : L1 × ...× Ln → K be a monotone operation between lattices. Suppose for notation’s

sake that ϕL = [ϕL1
, .., ϕLn

] and ϕ̂L = [ϕ̂L1 , .., ϕ̂Ln ]

Claim 1: FRf
∗ ϕL = ϕK ∗ f fe.

Proof of claim 1: Let c1 ∈ fe(L1), .., cn ∈ fe(Ln), then:

FRf
[ϕL1

c1, .., ϕLn
c1] =

⋂
{FRf

[ϕL1(a1)...ϕLn(an)] | ϕLi
ci ⊆ ϕLi(ai) & ai ∈ Li}

=
⋂

{ϕK(f(a1, .., an) | ϕLi
ci ⊆ ϕLi(ai) & ai ∈ L}

= ϕK
(∧

{f(a1, .., an) | ci ≤ ai & ai ∈ Li}
)

= ϕK(f fe(c1, .., cn)).

The first identity holds by appeal to Lemma 3.2.3, which describes the extension of FRf
to closed

filters. The second identity holds in virtue of Theorem 3.2.6, which shows that ϕK(f(a1, .., an)) =

FRf
[ϕL1(a1)...ϕLn(an)]. The third identity follows from the fact that ϕ is a complete lattice isomorphism.

Finally, the fourth identity holds in virtue of the definition of f fe in Remark 4.1.5.

Claim 2: FRf
∗ ϕ̂L = ϕ̂K ∗ fΠ.

Proof of claim 2: The proof is essentially the same as for claim 1. Let d1 ∈ Π1(L1), .., dn ∈ Π1(Ln),
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then:

FRf
[ϕ̂L1(d1), .., ϕ̂Ln(d1)] =

h
{FRf

[C1, .., Cn] | Ci ⊆ ϕ̂Li(di) & Ci ∈ FiK(XL1)}

=
h

{ϕK(f fe(c1, .., cn) | ϕ̂Li(ci) ⊆ ϕLi(di) & ci ∈ fe(Li)}

= ϕ̂K
(∨

{f(a1, .., an) | ci ≤ di & ci ∈ K(Π1(Li))}
)

= ϕ̂K(f fe(d1, .., dn)).

The first, third, and fourth identities hold for more or less the same reasons that they did in the proof

of Claim 1. The second identity holds in virtue of Claim 1 and the fact that ϕK : fe(K) → Fik(XK) is

an isomorphism.

Theorem 4.2.3. For all monotone lattice expansions L = (L, {fi}i∈I):

(Π1(L), {fΠ1
i }i∈I) ∼= (Fi(XL), {FRfi

}i∈I).

Proof. The isomorphisms ϕ : fe(L) → Fik(XL) and ϕ̂ : Π1(L) → Fi(XL) are guaranteed to be

homomorphisms of the relevant type by an application of Lemma 4.2.2 to the operation fi for each

i ∈ I.

4.3 Π1-Persistence

In the study of completions, one of the most common questions to ask is what sort of properties are

preserved through a given completion. In particular given an (ordered) algebra, are the identities valid in

that algebra also valid in its completion? A very notable answer to this question for canonical extensions

was answered in logical form for Boolean Algebras with Operators by the Sahlqvist Completeness

theorems [7, 10]. An algebraic proof of Sahlqvist Canonicity was later given by Jónsson in [26]. More

generally, this question has been answered in similar fashion for arbitrary lattice expansions (See [19]

chapter 6). In the context of Π1-completions and lattice expansions, we show that for any identity

between positive terms is preserved through the Π1-completion where a positive term is a term built

up from basic operation symbols that are evaluated as monotone operations.

Definition 4.3.1. (Positive Terms and Identities) Let τ be a type of algebras with a definable order.

A positive term of type τ is a term t where each of the basic operations f comprising t is such that for

each algebra A of type τ , fA is a monotone operation on A. T+
τ (V ) is the set of positive terms of type

τ over the set of variables V . A positive identity t ≈ s is an identity between terms s and t.

At a high level, our method is analogous to that of [26] and can be explained with reference to

clones. In particular, we basically show that the operation (−)Π1 mapping monotone operations of

some lattice L to monotone operations on Π1(L) is a clone homomorphism between clones generated

by the set of all monotone operations ML on L and the set of monotone operations MΠ1(L) on Π1(L)

36



and with the special property that the following diagram commutes.

T+
τ (X)

CloL(ML) CloΠ1(L)(MΠ1(L))

(−)L
(−)Π1(L)

(−)Π1

That is just to say that for each positive term t, we have that (tL)Π1 = tΠ1(L). This is shown in

Lemma 4.3.4 while the fact that (−)Π1 is essentially a clone homomorphism follows from Lemma 4.3.2

and Lemma 4.3.3, which jointly show that (−)Π1 commutes with generalized compositions of monotone

operations. It then follows quickly that any positive identity s ≈ t will be persistent through the

Π1-completion since if L ⊨ s ≈ t, then sΠ1(L) = (sL)Π1 = (tL)Π1 = tΠ1(L) and so Π1(L) ⊨ s ≈ t.

While the previous paragraph explains our proof method at a very high level, and without reference

to the representation of monotone operations developed in the previous chapter, at the level of

particulars, the representation in Theorem 3.2.6 and the duality proved in Theorem 3.2.11 are key to

showing that the operation (−)Π1 is behaves like a clone homomorphism. This essentially comes down

to our demonstration that L-spaces and Filter continuous relations form a category dually isomorphic

to the category of lattices with monotone operations in Theorem 3.2.11.

We now prove two of the main lemmas needed to show our persistence theorem. These lemmas follow

in virtue of the representation of the Π1-completion demonstrated in Theorem 4.2.3. Recall that given

a collection of the n-ary operations {fi : An → B}i≤m we define the operation [f1, .., fm] : An → Bm

such that [f1, .., fm](a1, .., an) = (f1((a1, .., an)), .., fm(a1, .., an)). This in the operation induced by the

universal property of products.

Lemma 4.3.2. Let L and K be lattices and {fi : Ln → K}i≤m be a collection of n-ary monotone

operations. Then ([f1, .., fm])Π1 = [fΠ1
1 , .., fΠ1

m ].

Proof. This fact follows from the universal property of products and the fact that we have identified

Π1(K
m) with (Π1(K))m.

We now show that the extension of an operation to the Π1 completion commutes with function

composition.

Lemma 4.3.3. Let L, K, and A be lattices and f : L → K and g : K → A be a pair of monotone

operations. Then (g∗f)Π1 = gΠ1∗fΠ1.

Proof. Using properties of the dual representation of f and g we have:

(g ∗ f)Π = ϕ̂L ∗ FRg∗f ∗ ϕ̂−1
A (Lemma 4.2.2)

= ϕ̂L ∗ FRg ∗ FRf
∗ ϕ̂−1

A (Lemma 3.2.8)

= ϕ̂L ∗ FRg ∗ ϕ̂−1
K ∗ fΠ (Lemma 4.2.2)

= gΠ ∗ fΠ. (Lemma 4.2.2)

Lemma 4.3.4. Let L be a lattice expansion of type τ and t be a positive term of the same type, then

(tL)Π1 = tΠ1(L)
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Proof. The proof proceeds by induction on the complexity of tL. The base case is covered by considering

when either tL is a projection or a constant. If tL : Ln → L is a projection, then by the identification

of (Π1(L))
n with Πn(L

n), we are ensured that (tL)Π1 = tΠ1(L).

In the case that tL is a constant c, we have by definition

tΠ1(L) = tL =
∧

{a | c ≤ a & a ∈ L} = (tL)Π1 .

For the inductive step we must consider the case where tL = g∗[f1, .., fn]. By Lemma 4.3.3, which

shows that composition commutes with the extension of operations to the Π1-completion, we have:

(g∗[f1, .., fn])Π1 = (g)Π1∗([f1, .., fn])Π1

Howver we can then apply Lemma 4.3.2, which tells use that ([f1, .., fn])
Π1 = [fΠ1

1 , .., fΠ1
n ], to

obtain:

(g)Π1∗([f1, .., fn])Π1 = (g)Π1∗[fΠ1
1 , .., fΠ1

n ].

But then clearly we have that (tL)Π1 = tΠ1(L) in virtue of:

(tL)Π1 = (g∗[f1, .., fn])Π1 = (g)Π1∗[fΠ1
1 , .., fΠ1

n ] = tΠ1(L).

We conclude for all positive terms that (tL)Π1 = tΠ1(L), as desired.

Given an algebraic type τ , we say L is a τ -subalgebra of B to stress that L is a subalgebra of B

with respect to the operation of τ . We now prove our preservation theorem for positive idenities.

Theorem 4.3.5. Let L = (L, {fi}i∈I) be a lattice expansion of type τ where L is a τ -subalgebra of

Π1(L). Let t ≈ s be a positive identity of type τ . Then L ⊨ t ≈ s iff Π1(L) ⊨ t ≈ s.

Proof. Suppose that L ⊨ s ≈ t, then by Lemma 4.3.4 we have sΠ1(L) = (sL)Π1 = (tL)Π1 = tΠ1(L) and

so Π1(L) ⊨ s ≈ t

An immediate corollary of this fact is that any class of monotone lattice expansions defined by

positive identities is closed under the Π1-completion.

Corollary 4.3.6. Let K be a class of lattice expansions of type τ that are defined by a set of positive

identities. Suppose further that for each A ∈ K, A is a τ -subalgebra of Π1(A). Then if L ∈ K, then

Π1(L) ∈ K

Our persistence result relies on the representability of the Π1-completion and possibility of forming

an algebra of relations to represent a clone. It would be interesting to attempt to generalize this

method by defining a more general algebra of relations on an L-space.

4.4 Conclusion

In this short chapter we applied the duality and representation theory developed in Chapter 3 to

provide representations of the filter, ideal, and Π1-completions of a lattice expansion (Theorem 4.2.3).

We then use this representation to provide a proof of the fact that all identities between positive terms

are preserved through the Π1-completion (Theorem 4.3.5). We will apply and adapt this result later to

the case of rℓ-groupoids.
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Chapter 5

From Topologies To Frames

The present chapter makes the move from L-spaces with filter continuous relations to what we call

NRL-spaces, and then further to the OKHD-frames that undergird the semantics of Ono and Komori,

Humberstone, and Došen. This chapter is therefore largely a conceptual contribution to the project of

this thesis. It brings us from the very general picture established in Chapter 3 to the special case of of

the topologies and the semantics that will entertain us in the chapters to come. Despite its conceptual

nature, this chapter introduces NRL-spaces, which will be the focus of the next three chapters, and

contains some key lemmas regarding these objects.

More specifically, in section 5.1 we provide the requirements for the clopen filters of an L-spaces

equipped with a filter continuous to form and rℓ-groupoid. The specific class of objects we define here

are called RML-spaces (See definition 5.1.1). Section 5.2 then introduces NRL-spaces, which can be

seen as topological versions of the OKHD-frames, which were discussed briefly in the introduction and

will be discussed in detail in Chapter 7. We show this fact in more precision in Proposition 5.2.11 by

demonstrating that every NRL-space is also in an OKHD-frame. Next, in Section 5.3, we show that

the category of NRL-spaces and RML-spaces are equivalent. In conjunction, the results of sections

5.2 and 5.3 guide us from the most general perspective of L-spaces and filter continuous relations to

the semantics of substructural logics given in terms of OKHD-frames. We see these developments

as showing how to derive the OKHD-semantics from the general theory of filter continuous relations.

Finally, in Section 5.4, we define another class frames obtained by omitting the topological properties

of an RML-space. We will call these frames RML-frames. We show that the functors that witness

the equivalence between NRL-spaces and RML-space do not generalize to an equivalence between

OKHD-frames and RML-frames. We note that a semantics in terms of these frame is possible and will

be remarked on further in Chapter 7 on completeness via duality.

5.1 Residuation and Filter Continuous Relations

In this section we focus on the case of ternary filter continuous relations and add sufficient conditions

to guarantee that that algebra of clopen filters form a pointed rℓ-groupoid (See Definition 2.1.5). These

structures start us on the path to deriving the OKHD-semantics from the general theory of filter

continuous relations.

We define Residuated Merge L-Spaces or simply RML-Spaces, as L-spaces with a ternary filter

continuous relation and some additional conditions for that relation.
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Definition 5.1.1. A Residuated Merge L-Space or simply RML-Space is a tuple X = (X, 1,⋏, R, T, τ)

where (X, 1,⋏, τ) is an L-space, T is a clopen filter, and R ⊆ X3 is a ternary filter continuous relation

satisfying the following five constraints:

If U, V , are clopen, then so are U\RV = {z | ∀xy((y ∈ U & Rxyz) → x ∈ V )} and U\RV =

{y | ∀xz((z ∈ U & Rxyz) → x ∈ V )} are as well,

2a) If R(z, u⋏ u′, y), then there are t, t′ ∈ X such that t⋏ t′ ≤ z and Rtuy and Rt′u′y,

2b) If R(z, y, u⋏ u′, ), then there are t, t′ ∈ X such that t⋏ t′ ≤ z and Rtyu and Rt′yu′,

3a) For all x, y ∈ X, if Ry1x, then y = 1, and finally

3b) For all x, y ∈ X, if Ryx1, then y = 1.

Jointly, these condition are sufficient to guarantee that clopen filters of a salient RML-space are

closed under the operation FR, which we will henceforth denote by ◦R in the ternary case, and the

operations \R and /R. We therefore obtain the following fact.

Corollary 5.1.2. Let X = (X, 1,⋏, R, τ) be an RML-space. Then (Ficlp(X),∩,▽, X, {1}, ◦R, \R, /R, T )
is a pointed rℓ-groupoid.

Proof. In virtue of the definition of filter continuous relations, U ◦R V = FR[U, V ] is a clopen filter.

The fact that this algebra is pointed by T follows from the fact that T is a clopen filter. Finally, if

we can show that U\RV and U/RV are filters whenever U, V are, by condition (1) of the definition of

RML-spaces we obtain that if U, V are clopen filters, then so are U\RV and U/RV .

So let us show that when U, V are filters, then so are U\RV and U/RV . Let us just consider the

case of U\RV . For upward closure, let z ≤ z′ and z ∈ U\RV . Now suppose that y ∈ U and Rxyz′.

By the order compatibility property of a filter continuous relation (see proposition 3.2.2), we then

have that Rxyz. So since z ∈ U\RV and y ∈ U , we have that x ∈ V . We therefore conclude that

z′ ∈ U\RV . For ⋏-closure, let z, z′ ∈ U\RV . Suppose that y ∈ U and R(x, y, z ⋏ z′). By the condition

(2b) from the definition of an RML-space, we obtain that there are t, t′ such that t⋏ t′ ≤ x and Rtyz

and Rt′yz′. However, by the assumption that z, z′ ∈ U\RV , we obtain that t, t′ ∈ V . Since V is a

filter, t ⋏ t′ ∈ V and thus x ∈ V , as desired. We conclude that z ⋏ z′ ∈ U\RV . Finally, if Rxy1, by

condition (3b) from the definition of an RML-space x = 1 ∈ V , so 1 ∈ U\RV .

The last thing we need to do is check that ◦R, \R, and /R form a residuated family. The

demonstration of this follows by a standard argument. For good faith, let us show that U◦R ⊆ W

iff V ⊆ U\RW . Suppose that U◦R ⊆ W and z ∈ V . Now let y ∈ U and suppose that Rxyz. Then

x ∈ U◦R ⊆ W . Therefore, z ∈ U\RW and thus V ⊆ U\RW . Conversely, suppose that V ⊆ U\RW .

Now let x ∈ U ◦R V . Then there are y ∈ U and z ∈ V such that Rxyz. However, if z ∈ V , then

z ∈ U\RW . So from Rxyz, we obtain that x ∈W , as desired. We conclude that U◦R ⊆W .

Since we would like to form a category of these objects, we have the following definition of morphisms

between RML-spaces. The definition provided here guarantees that their inverses are rℓ-groupoid

homomorphism between salient rℓ-groupoids of clopen filters.

Definition 5.1.3. (M-space Morphism) An RML-space Morphism (X,⋏, 1, R, τ) → (X ′,⋏′, 1′, R′, τ ′)

is an L-space morpshism f : (X,⋏, 1) → (X ′,⋏′, 1′) satisfying the following additional constraints.

1) if Rzxy, then R′f(z)f(x)f(y),

2) If Rf(z)x′y′, then there are x, y ∈ X such that Rzxy, x′ ≤ f(x), and y′ ≤ f(y),
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3) if R′fz′(x)y′, then there are y, z ∈ X such that Rzxy, y′ ≤ f(y), and f(z) ≤ z′,

4) if Rz′′x′f(y), then there are x, z ∈ X such that Rxyz, x′ ≤ f(x), and f(z) ≤ z′,

We will denote the category of Merge L-spaces and morphisms with MLSp.

In the next section we turn to what we refer to as NRL-spaces, which we will show to essentially

be topological OKHD-frames. This will bring us one step closer to the explication of the the OKHD-

semantics in terms of L-spaces and filter continuous relations.

5.2 NRL-Spaces and OKHD-Frames

We now arrive at the definitions of NRL-spaces their relation to OKHD-frames. The main result of

the next few pages will be the demonstration that NRL-spaces are essentially OKHD-frames with an

L-space topology. More precisely, by forgetting the topology of an NRL-space we obtain an OKHD-

frame. Demonstrating this fact will be the focus of the following few pages. In the next section we will

show how to derive NRL-spaces from the RML-spaces presented at the end of the last section. We

therefore will establish the connection between the L-spaces and filter-continuous relations and the

semantics of substructural logics developed by Ono and Komori, Humberstone, and Došen.

Definition 5.2.1. An NRL-space X = (X,⋏, 1,⊗, ε, τ) is such that (X,⋏, 1, τ) is an L-spaces,

⊗ : X ×X → X is a groupoid operation, ε is a designated element and:

(1) For all clopen filters U, V , U ◦X V = ↑({x⊗y | x ∈ U & y ∈ V }), U\XV = {y | ∀x ∈ U(x⊗y ∈
V )}, and V/XU = {x | ∀y ∈ U(x⊗ y ∈ V )} are clopen filters (see below),

(2) ↑ε is clopen, and

(2) x⊗ y ≤ z iff for all U, V ∈ Fclop(X), if x ∈ U and y ∈ V , then z ∈ U ◦X V .

Let us consider two examples.

Example 5.2.2. We define X = (N∪ {ω},⋏, 1X,⊗, εX, τ) so that n⋏m := min(n,m), 1X := ω, and

n⊗m := n+m, and εX := 0. Finally, we generate τ by the subbase {↑n | n ∈ N∪{ω}}∪{↓n | n ∈ N∪
{ω}}∪{∅}. To see that the clopen filters are closed under \ and /, note that ↑n\↑m = ↑m/↑n = ↑(n−m).

We now consider another example. We essentially stack the above NRL-space on top of the lattice

M3 and equip the structure with an appropriate topology.

Example 5.2.3. We define Y = (Y,⋏, 1Y,⊗, εY, τY) such that Y = {a, b, c,⊥} ∪ N ∪ {ω}. The

semilattice structure is depicted below in the diagram on the following page. So 1Y = ω. ⊗ is defined

by the following.

x⊗ y =

x+ y, if x, y ∈ N ∪ {ω},

x⋏ y, otherwise.

We define εY := 0, just as in the previous example. Note however that εY is not an identity element

for ⊗. Finally, the topology τY on Y is generated by the subbase: {↑x | x ∈ Y } ∪ {Y − ↑x | x ∈ Y }.
Note that U\V and U/V are clopen filters when U and V are. This shown by checking cases.

If U, V ⊆ N ∪ {ω}, then we reason as in the previous example. If V ⊆ N ∪ {ω} and U = ↑x for

x ∈ {a, b, c}, then we can show that ↑x\V ⊆ ↑x. But since ↑x is a linear order, we are ensured that

↑x\V is principal and thus a clopen filter. If instead U ⊆ N ∪ {ω} and V = ↑x for x ∈ {a, b, c}, we
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claim that {a, b, c}−{x} ̸⊆ U\V . Therefore we have that U\V ⊆ V and so is principal. In both U = ↑x
and V = ↑y some x, y ∈ {a, b, c}, it follows that U\V = V/U = U . Finally, if V is any subset and

U = ↑⊥, then ↑⊥\V = V . Finally, if U is any subset and V = ↑⊥, then U\↑⊥ = ↑⊥. So in all cases

we have shown that if U, V are clopen filters, then so are U\V and U/V .

0

1

n

ω

b

⊥

a c

Figure 1. This is semi lattice structure of the NRL space in the present example.

A lemma useful for showing that NRL-spaces have an underlying OKHD-frame structure is that the

clopen filters of an NRL-space forms a pointed rℓ-groupoid. This is also the key to our representation

and duality results presented later in this chapter.

Proposition 5.2.4. For any NRL-space X, the algebra LX = (Ficlp(X),∩,▽, X, {1}, ◦X , \X , /X , ↑ε)
is a pointed rℓ-groupoid.

Proof. Since we are ensured by the definition of an NRL-space that ◦X , \X , and /X are well defined

operations on Ficlp(X), we just need to check that \X and /X satisfy the residual law with respect to

◦X . In particular, we need to show for all clopen filters U, V, and W :

U ◦X V ⊆W ⇐⇒ U ⊆W/XV ⇐⇒ V ⊆ U\XW.

We only show that U ◦X V ⊆ W iff V ⊆ U\XW noting that the equivalence U ◦X V ⊆ W iff

U ⊆W/XV has a similar proof.

So suppose that U ◦X V ⊆ W and let y ∈ V and x ∈ U . Clearly, x ⊗ y ∈ U ◦X V . So by

the assumption U ◦X V ⊆ W , we have that x ⊗ y ∈ W . Then generalizing on x, we conclude that

y ∈ U\XW and then that V ⊆ U\XW . For the other direction, suppose that V ⊆ U\XW and let

z ∈ U ◦X V . Then there are x ∈ U and y ∈ V such that x⊗ y ≤ z. By the assumption V ⊆ U\XW ,

y ∈ U\XW . So by definition of \X , x⊗ y ∈W. But since W is upward closed, we obtain that z ∈W .

We therefore conclude that U ◦X V ⊆W , as desired.

Now, in order to show that NRL-spaces all posses OKHD-frame structure, we will need a few more

lemmas. The first lemma, Lemma 5.2.5, is an analogue of Lemma 3.2.3 that showed how to extend the

operations on filters associated with filter continuous relations to closed filters. It can be seen as an

equivalent to condition (3) defining NRL-spaces.

Lemma 5.2.5. Let X be an rℓG-space. Let U, V be closed filters of X, then

U ◦X V =
⋂
{U ′ ◦X V ′ | U ′, V ′ ∈ Ficlop(X) & U ⊆ U ′, V ⊆ V ′}.

42



Proof. Essentially follows immediately from condition (3) of the definition of an NRL-space (Definition

5.2.1) and Lemma 2.2.9. By Lemma 2.2.9, U and V are principal if they are closed filters. So there are

x, y ∈ X such that ↑x = U and ↑y = V . The identity we are trying show then becomes:

↑x ◦X ↑y =
⋂

{U ◦ V | U, V ∈ Ficlp(X) & x ∈ U & y ∈ V }.

However, since ↑x ◦X ↑y = ↑(x⊗ y), this is essentially equivalent to condition (3) of the definition

of an NRL-space (Definition 5.2.1).

The second lemma we need is a consequence of Lemma 5.2.5 and provides a useful condition for

finding clopen filters of the form U ◦ V . This lemma is analogous to Lemma 2.2.12

Lemma 5.2.6. If If X = (X,⋏, 1,⊗, ε, τ) is an NRL-space and U is a clopen filter of X, then: if

x⊗ y ∈ U , there are clopen filters V and W such that x ∈ V and y ∈W and V ◦W ⊆ U .

Proof. Let x ⊗ y ∈ U . From Lemma 2.2.9 and HMS-separation, we know in general that for each

w ∈ X, ↑w =
⋂
{U ′ ∈ Ficlp(X) | w ∈ U ′}. Therefore by Lemma 5.2.5 we have that⋂

{V ′ ◦W ′ | V ′,W ′ ∈ Ficlp(X) & x ∈ V ′ & y ∈W ′}

=
⋂

{V ′ ∈ Ficlp(X) | x ∈ V ′} ◦
⋂

{W ′ ∈ Ficlp(X) | y ∈W ′}

= ↑x ◦ ↑y

⊆ U

It follows from compactness that there are V ′
1 , ..., V

′
n with x ∈ V ′

i and W ′
1, ..,W

′
n with y ∈W ′

i such

that
⋂
{V ′

i ◦W ′
i | i ≤ n} ⊆ U . But then from monotonicity of ◦, we have⋂

{V ′
i | i ≤ n} ◦ {W ′

i | i ≤ n} ⊆
⋂

{V ′
i ◦W ′

i | i ≤ n} ⊆ U.

However, since both
⋂
{V ′

i | i ≤ n} and
⋂
{W ′

i | i ≤ n} are clopen filters, we may generalize and

establish that there are clopen filters V and W such that x ∈ V and y ∈W and V ◦W ⊆ U .

Our third lemma is quite simple and tells us that the ⊗ is monotone with respect to the order ≤.

It is another consequence of condition (3) of the definition of an NRL-space.

Lemma 5.2.7. If X = (X,⋏,⊗, 1, τ) is an NRL-space, then: if x ≤ y and x′ ≤ y′, then x⊗y ≤ x′⊗y′.

Proof. Let x ≤ y and x′ ≤ y′. Let x ∈ U and x′ ∈ V . If x ∈ U and x′ ∈ V , then y ∈ U and

y′ ∈ U . So y ⊗ y ∈ U ◦ V . Generalizing on U and V , condition (3) of Definition 5.2.1 implies that

x⊗ x′ ≤ y ⊗ y′.

Let us now define OKHD-frames and provide a few examples.

Definition 5.2.8. (OKHD-frames)

An OKHD-frame X = (X,⋏, 1,⊗, ε) is structure where (X,⋏, 1) is a semilattice, (X,⊗, ε) is a

pointed groupoid, and (1) and (2) govern the relationship between ⋏, ⊗, and 1.

(1) x⊗ (y ⋏ z) = (x⊗ y)⋏ (x⊗ z) and (y ⋏ z)⊗ x = (y ⊗ x)⋏ (z ⊗ x), and

(2) x⊗ 1 = 1 = 1⊗ x.
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Before defining models on OKHD-frames, we provide the following examples of an OKHD-frame.

Example 5.2.9. (The Tropical Semiring is an OKHD-frame) The Min-Tropical Semiring is the algebra

(R ∪ {∞},⊕,∞,⊗, 0) where a⊕ b := min(a, b) and a⊗ b = a+ b. the Min-Tropical Semiring can be

seen as an OKHD-frame since (R ∪ {∞},⊕,∞) is a semilattice, (R ∪ {∞},⊗, 0) is a monoid, and:

(1) x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) and (y ⊕ z)⊗ x = (y ⊗ x)⊕ (z ⊗ x), and

(2) x⊗∞ = ∞ = ∞⊗ x.

Note that this example cannot carry an NRL-space topology since the underlying semilattice of an

L-space is always complete.

A less natural non-distributive example can formed by gluing copies of the positive extended reals

R+ ∪ {∞} at 0 and ∞. In the following we use R+ = {k ∈ R | 0 < k}

Example 5.2.10. Define X = R+
0 ⊎R+

1 ∪ {0,∞} and define ⋏ and ⊗ such that:

n⋏m =

min(n,m), if n,m ∈ R+
i ∪ {0,∞},

0, if n ∈ Ri and m ∈ Rj and i ̸= j.

n⊗m =

n+m, if n,m ∈ Ri ∪ {∞},

∞, if n ∈ Ri and m ∈ Rj and i ̸= j,

Having seen a few examples, we now show that all NRL-spaces are additionally OKHD-frames,

a fact that begins to formally establish the connection bwteen the semantics of Ono and Komori,

Humberstone, and Došen’s and the theory of L-spaces and filter continuous relations developed in this

thesis. This result is not only conceptually significant but is also technically useful. We will often refer

back to this property of NRL-spaces in subsequent chapters.

Proposition 5.2.11. If X = (X,⋏, 1,⊗, ε, τ) is an NRL-space, then (X,⋏, 1,⊗, ε) is an OKHD-frame.

Proof. For condition (1) of the definition of an OKHD-frame, let us just show x⊗(y⋏z) = (x⊗y)⋏(x⊗z)
, noting that the other identity follows from a very similar argument. The inequality, x⊗ (y ⋏ z) ≤
(x⊗y)⋏(x⊗z) is a straight forward consequence of Lemma 5.2.7. To show (x⊗y)⋏(x⊗z) ≤ x⊗(y⋏z),

Let U be a clopen filter and suppose that (x ⊗ y) ⋏ (x ⊗ z) ∈ U . If we can show x ⊗ (y ⋏ z) ∈ U ,

then by HMS-separation we will obtain the desired inequality. By lemma 2.2.12, there are clopen

filters V and W such that V ▽W ⊆ U and x ⊗ y ∈ V and x ⊗ z ∈ W . Now, by the similar lemma,

Lemma 5.2.6, we find clopen filters V1, V2 and W1,W2 such that x ∈ V1 and x ∈ W1 and y ∈ V2 and

z ∈W2 and V1 ◦V2 ⊆ V and W1 ◦W2 ⊆W . It follows that (Y ◦V2)▽(Y ◦W2) ⊆ U where Y = V1 ∩W1

and that (x ⊗ y) ⋏ (x ⊗ z) ∈ (Y ◦ V2)▽(Y ◦W2). However, since x ∈ Y , y ∈ V2, and z ∈ W2, we

also have that x ⊗ (y ⋏ z) ∈ Y ◦ (W2▽V2). Therefore, since the clopen filters of X form a pointed

rℓ-groupoid (see Proposition 5.2.4), we have that (Y ◦ V2)▽(Y ◦W2) = Y ◦ (W2▽V2) and thus that

Y ◦ (W2▽V2) ⊆ U . So it follows that x⊗ (y ⋏ z) ∈ U . Finally, by generalizing on U , we may conclude

that (x⊗ y)⋏ (x⊗ z) ≤ x⊗ (y ⋏ z) by contraposing HMS-separation.

Forcondition (2), let x ∈ X. From Lemma 2.2.9 we know that ↑x =
⋂
{U ∈ Ficlp(X) | x ∈ U}. By

Lemma 5.2.5 we then have that

{1} ◦X
⋂

{U ∈ Ficlp(X) | x ∈ U} =
⋂

{{1} ◦X U(X) U ∈ Ficlp & | x ∈ U}.
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However, since Ficlp(X) forms an rℓ-groupoid with {1} as the bottom element, for all clopen filters

U : {1} ◦X U = {1} . So
⋂
{{1} ◦X U(X) U ∈ Ficlp & | x ∈ U} = {1} and thus we have the following.

x⊗ 1 =
k(

{1} ◦X
⋂

{U ∈ Ficlp(X) | x ∈ U}
)

=
k

{1}

= 1.

This concludes our proof.

We now demonstrate one more useful property relating the order to ⊗ and then show that the

algebra of all filters of an NRL-space also form a pointed rℓ-groupoid.

Lemma 5.2.12. Let X = (X,⋏,⊗, 1, τ) be an OKHD-frame, then: if x⊗ y ≤ z and x′ ⊗ y′ ≤ z′, then

(x⋏ x′)⊗ (y ⋏ y′) ≤ z ⊗ z′.

Proof. For (3), suppose that x ⊗ y ≤ z and x′ ⊗ y′ ≤ z′. Then (x ⊗ y) ⋏ (x′ ⊗ y′) ≤ z ⊗ z′ by the

monotonicity of ⊗ (Lemma 5.2.7) . But we have that x⋏ x′ ≤ x, x′ and y ⋏ y′ ≤ y, y′. So again by the

monotonicity of ⊗, x⋏ x′ ⊗ (y ⋏ y′) ≤ (x⊗ y)⋏ (x′ ⊗ y′). Therefore x⋏ x′ ⊗ (y ⋏ y′) ≤ z ⊗ z′.

We can now show that the operation ◦X , \X , and /X are well defined on not only clopen filters,

which is by definition, but is generally defined for the filters of an NRL-space.

Lemma 5.2.13. If U and V are filters of an OKHD-frame, then so are:

(i) U ◦X V = ↑({x⊗ y | x ∈ U & y ∈ V }),
(ii) U\XV = {y | ∀x ∈ U(x⊗ y ∈ V )}, and
(iii) U/XV = {x | ∀y ∈ U(x⊗ y ∈ V )}.

Proof. We will only show the cases of (i) and (ii) since (iii) is essentially the same as (ii).

We begin with (i). For upward closure, let x ∈ U ◦X V and suppose that x ≤ x′. If x ∈ U ◦X V ,

then there are y ∈ U and z ∈ V such that y ⊗ z ≤ x. Therefore y ⊗ z ≤ x′ and so x′ ∈ U ◦X V . For

⋏-closure, suppose that x, x′ ∈ U ◦X V . There are y, y′ ∈ U and z, z′ ∈ V such that y ⊗ z ≤ x and

y′ ⊗ z′ ≤ x′. Therefore, (y ⊗ z)⋏ (y′ ⊗ z′) ≤ x⋏ x′. But then in virtue of the fact that ⊗ is monotone,

we have that (y⋏′ y)⊗ (z⋏ z′) ≤ (y⊗ z)⋏ (y′⊗ z′) ≤ x⋏x′ (see (2) in the preceding lemma). But since

y ⋏ y′ ∈ U and z ⋏ z′ ∈ V , we obtain that x⋏ x′ ∈ U ◦X V , as desired. Finally, to ensure 1 ∈ U ◦X V ,

note that 1 ∈ U , 1 ∈ V , and 1⊗ 1 ≤ 1. It follows that 1 ∈ U ◦X V .

Let us now consider the case of U\XV . For upward closure, let y ∈ U\XV and suppose that y ≤ y′.

Now suppose that x ∈ U . Since y ∈ U\XV , we have that x⊗ y ∈ V . Because x⊗ y ≤ x⊗ y′ and V is

a filter, we also have x ⊗ y′ ∈ V . Therefore, y′ ∈ U\XV . For ⋏-closure, let y, y′ ∈ U\XV . Suppose

that x ∈ U . Then x⊗ y and x⊗ y′ are both elements of V . Therefore x⊗ (y⋏ y′) = x⊗ y⋏ x⊗ y′ ∈ V

because V is filter. Finally, we are guaranteed that 1 ∈ U\XV since 1 ∈ U and 1⊗ 1 = 1 ∈ V .

The case of V/XU is nearly identical to that of U\XV .

Proposition 5.2.14. Let X be an NRL-space, then Fi(X) forms a pointed rℓ-groupoid with respect to

the operations ◦X , \X , and /X and the designated element ↑εX .

Proof. In virtue of Lemma 5.2.13, the operations ◦X , \X , and /X are well defined because they always

return filters when applied to filters. The fact that ◦X , \X , and /X jointly satisfy the residual law
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follows from the proof of Proposition 5.2.4. Since we did not rely on clopeness in our demonstration of

the residual law in that context, we are ensured it also holds here.

In the next section we show how the Definition of NRL-spaces can be derived from the more general

picture of filter continuous relations presented in the previous chapter. To this end we define morphisms

between NRL-spaces as follows.

Definition 5.2.15. An NRL-space morphism f : X → Y is an L-space morphism that satisfies the

following conditions:

(⊗-forth) f(x)⊗′ f(y) ≤ f(x⊗ y),

(⊗-back) If x′ ⊗′ y′ ≤ f(z), then there are x, y ∈ X such that x′ ≤ fx, y′ ≤ fy, and x⊗ y ≤ z,

(/-back) if fx⊗′ y′ ≤ z′, then there are y, z ∈ X such that y′ ≤ fy, fz ≤ z′, and x⊗ y ≤ z,

(\-back) if x′ ⊗′ fy ≤ z′, then there are x, z ∈ X such that x′ ≤ fx, fz ≤ z′, and x⊗ y ≤ z,

(ε-forth) ε′ ≤ f(ε), and

(ε-back) if ε′ ≤ fx, then ε ≤ x.

5.3 The Equivalence of NRL-spaces with RML-spaces

In this section we show how to obtain NRL-spaces from RML-spaces and therefore how we can

understand NRL-spaces in terms of our more general understanding of L-spaces with filter continuous

relations.

Theorem 5.3.1. The the category NRLSp is equivalent to the category RMLSp.

Proof. In order to show the equivalence we will describe functors F : NRLSp → RMLSp and

G : RMLSp → NRLSp and demonstrate that they are inverse to one another.

Let us first describe the functor F : NRLSp → MLSp, which is quite straight forward. We

start at the level of objects. Given NRL-space X = (X,⋏, 1,⊗, ε, τ), we can define an M-space

F (X) = (X,⋏, 1, R⊗, T, τ) such that T = ↑ε and

R⊗zxy iff x⊗ y ≤ z.

Let us show that F (X) is a M-space. That (X,⋏, 1, τ) is an L-space and that T is a clopen filter

are both immediate from the definition of an NRL-space. We just need to check that R⊗ is a residuated

filter continuous relation.

First, we show that R⊗ is filter continuous (Definition 3.2.1). For Clopen Continuity, we have that

for all clopen filters of X, U ◦X V = U ◦R⊗ V where we recall that U ◦X V = ↑{x⊗ y | x ∈ U & y ∈ V }
and U ◦R⊗ V = {z | ∃x ∈ U∃y ∈ V (R⊗(z, x, y))}. So since Ficlp(X) is closed under ◦X by definition

of an NRL-space, we have that Ficlp(X) is also closed under ◦R. For Clopen Compatibility we again

note that that ◦X = ◦R. In virtue this and the second condition in Definition 5.2.1 we are done.

Second, to show that R⊗ is residuated we first observe that U\XV = U\R⊗V and U/XV = U/R⊗V

for all clopen filters U and V . This takes care of condition (1) from Definition ??. For condition (2),

suppose that R⊗(z, x⋏ x′, y). Then (x⋏ x′)⊗ y ≤ z by definition of R⊗. However, from Proposition

5.2.11 we have that x⊗ y⋏x′⊗ y ≤ (x⋏x′)⊗ y. So then x⊗ y⋏x′⊗ y ≤ z. Therefore, by generalizing

on x ⊗ y and x′ ⊗ y respectively, we have found t and t′ such that t ⋏ t′ ≤ z and R⊗(t, x, y) and
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R⊗(t
′, x′, t). The other case for condition (2) relies on a similar argument. Finally, to show condition

(3) of Definition ??, If R⊗(z, 1, y), then 1⊗ y ≤ z. But from Proposition 5.2.11, 1⊗ y = 1 and so 1 = z.

Having shown that R⊗ is a residuated filter continuous relation, we can conclude that F (X) is in

fact a RML-space.

Now for morphisms. Given a morphism f in NRLSp, we define F (f) to simply be f itself. The

conditions required by definition 5.1.3 are met almost immediately in virtue of the properties associated

with being an NRL-space morphism (See Def. 5.2.15).

Let us now describe the functor G : MLSp → NRLSp. Beginning at the level of objects, let

X = (X,⋏, 1, R, T, τ) be a RML-space. Then we define G(X) = (X,⋏, 1,⊗, ετ) such that ε =
c
T and

x⊗ y =
k

{z | Rzxy}.

That the conditions (1) and (2) listed below hold, which are the defining conditions of an NRL-space,

follows in virtue of the fact that R is filter-continuous (Definition 3.2.1).

(1) For all U, V ∈ Ficlp(X), U ◦X V ∈ Ficlp(X), and

(2) x⊗R y ≤ z iff for all U, V ∈ Fclop(X), if x ∈ U and y ∈ V , then z ∈ U ◦X V ,

We therefore conclude that G(X) is a NRL-space.

Now for morphisms, let g be a morphism in the category RMLSp. G(g) := g. That g is a

morphism in NRLSp follows quickly from the definitions of morphisms and of ⊗R.

Having described our functors F : NRLSp → RMLSp and G : RMLSp → NRLSp, to establish

equivalence requires us to check that G(F (X)) ∼= X and F (G(Y)) ∼= Y for any X in NRLSp and Y

in RMLSp. However, this is quickly confirmed by showing that:

(1) x⊗ y = x⊗R⊗ y, and

(2) Rzxy iff R⊗Rzyx

since at the level of the L-space component of these objects nothing has changed in the moves

made between NRLSp and RMLSp. At the level of morphisms, by F and G are identities, so it is

trivial that FG(g) = g anf GF (f) = f .

We have just shown an equivalence between the category of NRL-spaces and a category of L-spaces

with modified ternary filter continuous relations, which we called RML-spaces. In the previous section

we showed that in Proposition 5.2.11 that by forgetting the topology of an NRL-space we obtain an

OKHD-frame. Therefore, the composition of these two operations, first moving from L-spaces with

filter continuous relations to NRL-spaces and then moving to OKHD-frames sketches the path from

the our general theory of L-spaces and FC-relations to the semantics of substructural logics. In the

final section of this chapter, we show that the category of frames that undergird RML-spaces is not

equivalent to the category of the OKHD-frames.

5.4 The Non-Equivalence of OKHD-frames and RML-frames

In this final section of the chapter we show that functor F : NRLSp → RMLSp and G :

RMLSp → NRLSp do not also general tp an equivalence between the category of OKHD-frames

and and the category of RML-frames, which are the class of objects obtain from RML-spaces when

the topological conditions that defined them are ignored. In particular, we show that there is an
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RML-frame X = (X,⋏, 1, R, T ) whose ternary relation R is not definable by Rxyz iff y ⊗ z ≤ x for

any groupoid operation, ⊗ : X ×X → X.

Let us define RML-frame in detail.

Definition 5.4.1. A Residuated Merge L-frame or RML-frame X = (X,⋏, 1, R, T ) is semilattice

(X,⋏, 1) equipped with a special subset T and a ternary relations R ⊆ X3 that satisfies the following

constraints:

(1) If Rxyz and x ≤ x′, then Rx′yz,

(2) If Rxyz and Ruvw, then R(x⋏ u)(y ⋏ v)(z ⋏ w),

(3) If Rz(x⋏ x′)y, then there are t, t′ ∈ X such that Rtxy and Rt′x′y and t⋏ t′ ≤ z,

(4) If Rzx(y ⋏ y′), then there are t, t′ ∈ X such that Rtxy and Rt′xy′ and t⋏ t′ ≤ z,

(5) For all x, y ∈ X, if Rx1y, then x = 1,

(6) For all x, y ∈ X, if Rxy1, then x = 1.

A consequence of (1) and (2) is the following fact.

Lemma 5.4.2. For any RML-frame X = (X, 1,⋏, R, T ), If Rxyz and x ≤ x′ and y′ ≤ y and z′ ≤ z,

then Rx′y′z′.

We have the following definition of morphisms between RML-frames.

Definition 5.4.3. An RML-frame Morphsim (X,⋏, 1, R) → (X ′,⋏′, 1′, R′) is a semi lattice homomor-

phism f : (X,⋏, 1) → (X ′,⋏′, 1′) satisfying the following additional constraints.

(1) if x⋏ y ≤ f(z), then there are x, y ∈ X such that x⋏ y ≤ z and x′ ≤ f(x) and y′ ≤ f(y),

(2) if Rxyz, then R′f(x)f(y)f(z),

(3) If Rx′y′f(z), then there are x, y ∈ X such that x′ ≤ f(x) and y′ ≤ f(y) and Rxyz,

(4) if R′f(x)y′z′, then there are y, z ∈ X such that Rxyz, y′ ≤ f(y), and f(z) ≤ z′, and

(5) if R′x′f(y)z′, then there are x, z ∈ X such that Rxyz, x′ ≤ f(x), and f(z) ≤ z′,

(6) x ∈ TX iff fx ∈ TY .

We denote the category of RML-frames together with RML-frame morphisms with RMLFrm. We

now show that every OKHD-frame is can be turned into an RML-frame.

Proposition 5.4.4. For every OKHD-frame X = (X,⋏, 1,⊗, ε), the structure X⊗ = (X,⋏, 1, S⊗, ↑ε)
such that S⊗xyz iff y ⊗ z ≤ x is an RML-frame.

Proof. We prove each condition in the definition of RML-frames (Definition 5.4.1).

Condition (1): suppose that S⊗xyz and x ≤ x′. Then y ⊗ z ≤ x ≤ x′. Therefore S⊗x′yz. Condition

(2): Suppose that If S⊗xyz and S⊗uvw. Then y ⊗ z ≤ x and v ⊗ w ≤ u. However, in virtue of the

monotonicity of ⊗ we have (y⋏v)⊗(z⋏w) ≤ (y⊗z)⋏(v⊗w) ≤ x⋏u. Therefore S⊗(x⋏u)(y⋏v)(z⋏w).

For Conditions (3), (4), (5), and (6), see the proof of the equivalence of NRL-spaces and RML-spaces

in Theorem 5.3.1.

Despite the equivalence between NRL-spaces and RML-spaces demonstrated in the last section,

there is no equivalence in the case of OKHD-frames and RML-frames. The following proposition shows

by way of example that there is an RML-frame that is not an OKHD-frame.

Proposition 5.4.5. There is an RML-frame X = (X, 1,⋏, R, T ) such that there is no OKHD-frame

Y such that Y ⊗ = X (Where Y ⊗ is defined as in Proposition 5.4.4).
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Proof. Consider the RML-frame N = (N ∪ {ω},⋏, 0, R, T ) where x ⋏ y is defined as max(x, y) as

calculated in ω + 1, 0 is the top element, T = N ∪ {ω} and R = {(x, y, z) | y = z = ω & x ∈
N} ∪ {(x, y, z) |y, z ∈ N ∪ {ω} & x = 0}. The semi-lattice structure is depicted in figure 1. Note why

the meet is counter intuitively defined as max.

For showing that this structure is actually an RML frame, conditions (1) and (2) of the definition

of an RML-frame (Definition 5.4.1) are straightforwardly verified. Similarly, the cases of conditions (5)

and (6) are also almost immediate. The conditions (3) and (4) are also easy to check, but we will at

least demonstrate (3) here and note that the argument for (4) is almost the same. So let Rx(y ⋏ y′)z.

Then either (a) y ⋏ y′ = z = ω and x ∈ N or (b) y ⋏ y′, z ∈ N ∪ {ω} and x = 0. In the case of (a), If

y ⋏ y′ = ω, then either y = ω or y′ = ω. If y = ω, then define t := x and t′ := 0. Then it is almost

immediate by definition of R that Rtyz and Rt′y′z and that t⋏ t′ ≤ x. We similarly find t and t′ if

y′ = ω. We therefore conclude that there t, t′ such that Rtyz and Rt′y′z and t⋏ t′ ≤ x. In the case of

(b), then y ⋏ y′, z ∈ N ∪ {ω} and x = 0. So simply define t = t′ = 0. It is immediate that Rtyz and

Rt′y′z and t⋏ t′ ≤ x, so we are done.

Now suppose for contradiction that there is some operation ⊗ : N2 → N such that S⊗ = R. Given

that S⊗xyz holds iff x⊗ y ≤ z, we obtain for all n ∈ N that ω ⊗ ω ≤ n. But
c
N exists in N and is ω.

So we have that ω ⊗ ω ≤
c
N = ω. And thus we have that S⊗ωωω. But then by the assumption that

S⊗ = R, we reach a contradiction since R be definition is not such that Rωωω.

It is therefore the case that there is no OKHD-frame Y such that Y ⊗ = X.

0

1

2

n

ω

Figure 2. This is semi lattice structure of the merge frame defined in the proof of 5.4.5. In this semi

lattice, x⋏ y is defined as max(x, y) as calculated in (ω + 1,≤).

We have just shown that not every RML-frame can be obtained from an OKHD-frame via the

functor (−)⊗. We now consider the question of whether we can characterize the class of merge frames

that do give rise to OKHD-frames via the operation we have been considering. The following proposition

suffices to answer this question.

Proposition 5.4.6. Suppose that X = (X,⋏, 1, R, T ) is RML-frame, then: for all x, y ∈ X both
c
{w | Rxyw} exists in X and Rxy

c
{w | Rxyw} iff there is a sG-frame XR = (X,⋏,⊗R, 1) where

(XR)
⊗R = X (See Proposition 5.4.4 for definition of (-)⊗).

Proof. We define x ⊗R y =
c
{z | Rxyz}. In virtue of proposition 5.4.4 we just need to check that

when X = (X,⋏, 1, R, T ) is residuated, ⊗-⋏-distribution holds and that 1 is an absorbing element.

For ⊗-⋏-distribution, note that in virtue of the monotonicity of ⊗R, we have immediately that

x⊗R (y ⋏ y′) ≤ (x⊗R y)⋏ (x⊗R y
′).

Now for the other inequality, note that x ⊗R (y ⋏ y′) =
c
{z | Rx(y ⋏ y′)z} and that R(x, (y ⋏

y′),
c
{z | Rx(y ⋏ y′)z}). By condition 2 of the definition of a residuated L-frame, there are t, t′ ∈ X
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such that Rxyt and Rxy′t′ and t ⋏ t′ ≤
c
{z | Rx(y ⋏ y′)z}. But this implies that x ⊗R y ≤ t and

x⊗ y′ ≤ t′. So we have that

(x⊗R y)⋏ (x⊗ y′) ≤ t⋏ t′ ≤
k

{z | Rx(y ⋏ y′)z} = x⊗R (y ⋏ y′).

We can therefore conclude that ⊗-⋏-distribution holds.

Now, to see that 1 is absorbing, x⊗1 =
c
{y | Rx1y} = 1 by the condition (3) of an RML-frame.

We have just shown that the functors that witness the equivalence between NRLSp and RMLSp

do not generalize to an equivalence between the category of OKHD-frames and RML-frames.

5.5 Conclusion

In this chapter we discussed the move from the general theory of L-spaces with filter continuous

relations to RML-spaces and NRL-spaces and then to OKHD-frames and RML-frames. We showed in

Proposition 5.2.11 that every NRL-space is also an OKHD-frame. We then show that the category of

RML-spaces and NRL–spaces is equivalent and thereby have demonstrated how to derive OKHD-frames

from the general theory of L-spaces with filter continuous relations.
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Chapter 6

Duality for Residuated Lattices

In this chapter we develop a point-set topological duality for not-necessarily-distributive residuated

lattice ordered groupoids and similar algebras by extending a the recent duality for bounded lattices

obtained by Bezhanishvili et.al [6] and introduced in detail in section 2.2 of Chapter 2. We show that

the category of pointed rℓ-groupoids (see Definition 2.1.5) is dually isomorphic to the category of

NRL-spaces (See definition 5.2.1). We then restrict to duality to obtain dualities for residuated lattices,

FL-algebras, and involutive residuated lattices and consider some explicit correspondences between

algebraic identities and topological properties. These results constitute some of the main contributions

of this thesis. Coupled with the connections between NRL-spaces and OKHD-frames established in

Chapter 5, these results will allow us to directly connect the algebraic semantics of substructural logics

to topological semantics presented in the next chapter and the OKHD-semantics.

The chapter is structured as follows. In Section 6.1, we prove that that category on NRL-spaces is

dually isomorphic to the category of rℓ-groupoids. We also derive duality with respect to RML-spaces.

We end the section by considering a number of correspondences between algebraic identities and

properties of NRL-spaces and RML-spaces. In Section 6.2, we explicitly prove dualitities for residuated

lattices and FL-algebras in terms of special classes of NRL-spaces called RL-spaces and FL-spaces,

respectively. Then in Section 6.3, we show duality for involutive residuated lattices and a class of spaces

we call Involutive FL-spaces. Finally, is Section 6.4, we show that the representation of monotone

lattice expansions can be extended to rℓ-groupoids and give a characterization of classes of rℓ-groupoids

that are closed under the Π1-completion.

The following table summarize some of the noteworthy dualities from this chapter.

Algebras Spaces Theorem 6.1.10

rℓ-Groupoids NRL-Spaces Theorem 6.1.10

Residuated Lattices RL-Spaces Theorem 6.2.3

FL-algebras FL-Spaces Theorem 6.2.7

Involutive Residuated Lattices Involutive FL-spaces Theorem 6.3.8

In addition we obtain duality for many other important classes of each of these algebras defined for

example by weakening, idempotence, commutativity and so on.
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6.1 Topological Duality for Pointed rℓ-Groupoids

In the last chapter we defined NRL-spaces. We showed that that by forgetting the topology of

an NRL-space we obtain a OKHD-frame in Proposition 5.2.11 and that the category of NRL-spaces

is equivalent to the categeory of RML-spaces, in Theorem 5.3.1. Together, these results allow us to

understand the frames used in the semantics of Ono and Komori [32], Humberstone[23], and Došen

[13] in terms of our general theory of L-spaces with filter continuous relations.

In this section we connect NRL-spaces to the algebraic semantics of substructural logics by

demonstrating a duality between the category of NRL-spaces and the category of pointed rℓ-groupoids.

We then use the equivalence between NRL-spaces and RML-spaces to derive another duality and

representation theorem.

Let us recall the definition of NRL-space.

Definition 6.1.1. An NRL-space X = (X,⋏, 1,⊗, ε, τ) is such that (X,⋏, 1, τ) is an L-spaces,

⊗ : X ×X → X is a groupoid operation, ε is a designated element and:

(1) For all clopen filters U, V , U ◦X V , U\XV , and V/XU are clopen filters (see below),

(2) ↑ε is clopen, and

(3) x⊗ y ≤ z iff for all U, V ∈ Fclop(X), if x ∈ U and y ∈ V , then z ∈ U ◦X V .

In the above definition we have that U ◦X V = ↑({x⊗ y | x ∈ U & y ∈ V }) and U\XV = {y | ∀x ∈
U(x⊗ y ∈ V )} and V/XU = {x | ∀y ∈ U(x⊗ y ∈ V )}.

Of importance to showing that the category or NRL-spaces is dually equivalent to the categoty of

rℓ-groupoids, we showed in Proposition 5.2.4 that the lattice of clopen filters of an NRL-space forms

an rℓ-groupoid. In particular we demonstrated for any NRL-space X = (X,⋏, 1,⊗, ε, τ), the algebra

LX = (Ficlp((X),∩,▽, X, {1}, ◦, \, /, ↑ε) was a pointed rℓ-groupoid. We restate the proposition here

and reference the reader to the proof in the previous chapter (Proposition 5.2.4)

Proposition 6.1.2. For any NRL-space X, the algebra GX = (Ficlp(X),∩,▽, X, {1}, ◦X , \X , /X , ↑ε)
is a pointed rℓ-groupoid.

With an operation X 7→ GX moving use from NRL-spaces to pointed rℓ-groupoids, proving duality

will amount to characterizing the inverse of this operation and showing how to contravariantly transform

morphisms from one category into morphisms of the other. With this goal in mind, the following

proposition encodes the operation taking us from rℓ-groupoids to NRL-spaces. We will later show that

this operation is inverse to the operation X 7→ GX.

Proposition 6.1.3. (Pointed rℓ-groupoids to NRL-Spaces)

For every pointed rℓ-groupoid G = (G,∨,∧,⊤,⊥, ·, \, /, e), then XL = (Fi(G),∩, G,⊗G, ↑e, τ) is an

NRL-space where τ is generated by the subbase S:

S := {ϕ(a) | a ∈ L} ∪ {X − ϕ(a) | a ∈ L}

Proof. We note that the operation x⊗G y := ↑{a · b | a ∈ x & b ∈ y} is well defined on the collection

of filters in virtue of a proof similar to the one given in Lemma ??.

Given L-space duality (Theorem 2.2.8) we know that the topology τ on XG is the L-space dual of

the lattice (G,∨,∧,⊤,⊥). We therefore only need to check that conditions (1)-(3) from the definition of

NRL-spaces hold. However, again by Theorem 2.2.8, we know ϕG : G→ LXG
is a lattice isomorphism,
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so it is sufficient to check that ϕ is also a pointed rℓ-groupoid isomorphism since this will imply that

the clopen filters are closed under the operation ◦X , \X , and X and contain ↑X(↑Ge). In particular,

we must check that ϕ(a · b) = ϕ(a) ◦XG
ϕ(b) and ϕ(a\b) = ϕ(a)\ϕ(b) and ϕ(a/b) = ϕ(a)/ϕ(b) and finally

that ϕ(e) = ↑X(↑Ge).
Starting with the simplest case, we show ϕ(e) = ↑X(↑Ge). The subscript on ↑ indicates where the

operation is calculated. Let x ∈ ϕ(e). Then e ∈ x and so ↑e ⊆ x. This implies that x ∈ ↑X(↑Ge), as
desired. Let x ∈ ↑X(↑Ge). Then e ∈ ↑Ge ⊆ x. So x ∈ ϕ(e).

For ϕ(a·b) = ϕ(a)◦XG
ϕ(b), a simple argument can be given by noting that ↑G(a)⊗G↑G(b) = ↑G(a·b)

and the fact that by L-space duality, ϕ(c) = ↑XG
(↑G(c)) for every c ∈ G. Again, the subscript on ↑

indicates where the operation is calculated.

For ϕ(a\b) = ϕ(a)\ϕ(b). Suppose that y ∈ ϕ(a\b). Let x ∈ ϕ(a) and suppose that x ◦ y ⊆ z. Then

a · (a\b) ∈ z, so b ∈ z. For the other inclusion we reason by contraposition. Suppose that y ̸∈ ϕ(a\b).
We show that there are filters x and z such that a ∈ x and x ◦ y ⊆ z but b ̸∈ z, which implies that

y ̸∈ ϕ(a)\ϕ(b). Therefore, we define X = ↑(a) and z = {c | ∃a′ ∈ y (a · a′ ≤ c)}.
To see that z = {c | ∃a′ ∈ y (a · a′ ≤ c)} is indeed a filter, let c0, c1 ∈ z. Then there are b0 and b1

in y such that a · b0 ≤ c0 and a · b1 ≤ c1 hold. But then b0 ∧ b1 ∈ y and so a · (b0 ∧ b1) ∈ y. But given

that the following two identities hold, we may infer that c0 ∧ c1 ∈ z.

(1) a · (b0 ∧ b1) ≤ a · b0 ≤ c0 (2) a · (b0 ∧ b1) ≤ a · b1 ≤ c

Now, we must also check that x ◦ y ⊆ z holds. So take a0 ∈ x and b0 ∈ y. Then because a · b ∈ z

and a · b0 ≤ a0 · b0, we have that a0 · b0 ∈ z, as desired. Finally, suppose that b ∈ z, then there is some

c ∈ y such that a · c ≤ b. But then c ≤ a\b and so a\b ∈ y, contradicting our assumption. Therefore,

we may conclude that b ̸∈ z. We have therefore shown that there are filters x and z such that a ∈ x

and x ◦ y ⊆ z but b ̸∈ z, and thus that y ̸∈ ϕ(a)\ϕ(b).
For ϕ(a/b) = ϕ(a)/ϕ(b), we note that the argument is nearly identical to the preceding one.

Finally, for condition (3), the direction from left to right is straight forwardly implied by the fact

that clopen filters are upsets. From right to left, suppose that for all U, V ∈ Fclop(X), if x ∈ U and

y ∈ V , then z ∈ U ◦R V . Now let c ∈ x⊗G y. Then there are a ∈ x and b ∈ y such that a · b ≤ c. But

then x ∈ ϕ(a) and y ∈ ϕ(b) and z ∈ ϕ(a) ◦X ϕ(b) ⊆ ϕ(c). But if z ∈ ϕ(c), then c ∈ z, as desired.

Aside from taking us one step closer to our desired duality result, the above proposition also leads

to a demonstration of the fact that every rℓ-groupoid can be represented as the alegbra of filters of

some NRL-space.

Theorem 6.1.4. (Representation of pointed rℓ-groupoids)

Every pointed rℓ-groupoid G, there is an NRL-space X such that G is isomorphic Ficlp(X).

Proof. In virtues of the proof of 6.1.3 every rℓ-groupoid G, it is the case that ϕG : G→ Ficlp(XG).

The propositions 6.1.3 and 6.1.2 provide operations G → GX and X → GX We now turn to

morphisms between NRL-spaces.

Definition 6.1.5. An NRL-space morphism f : X → Y is an L-space morphism that satisfies the

following conditions:

(⊗-forth) f(x)⊗′ f(y) ≤ f(x⊗ y),
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(⊗-back) If x′ ⊗′ y′ ≤ f(z), then there are x, y ∈ X such that x′ ≤ fx, y′ ≤ fy, and x⊗ y ≤ z,

(/-back) if fx⊗′ y′ ≤ z′, then there are y, z ∈ X such that y′ ≤ fy, fz ≤ z′, and x⊗ y ≤ z,

(\-back) if x′ ⊗′ fy ≤ z′, then there are x, z ∈ X such that x′ ≤ fx, fz ≤ z′, and x⊗ y ≤ z,

(ε-forth) ε′ ≤ f(ε), and

(ε-back) if ε′ ≤ fx, then ε ≤ x.

Lemma 6.1.6. If f : X → Y is an NRL-space morphism, then f−1 : GY → GX is a pointed

rℓ-groupoid homomorphism.

Proof. In virture of Lemma ??, which proves that f−1 is a lattice homomorphism, we just need to

check that f−1 preserves the groupoid operations and the designated element ↑ε.
If x ∈ f−1(U ◦Y V ) then, f(x) ∈ U ◦ V , and then further there are y ∈ U and z ∈ V such that

y ⊗ z ≤ f(x). By the back condition of f , there are x′ and y′ such that x ≤ fx′ and y ≤ fy′ and

x′ ⊗X y′ ≤ x. But then x′ ∈ f−1(U) and y′ ∈ f−1(V ) since U and V are upward closed. It then follows

that x ∈ f−1(U) ◦X f−1(V ). Therefore, f−1(U ◦Y V ) ⊆ f−1(U) ◦X f−1(V ). For the other inclusion,

use the forth condition of f .

We now need to show f−1 preserves the residual operations \ and /. Let us show the case

of f−1(U\Y V ) = f−1(U)\Xf−1(V )noting that the case of / is similar. Let y ∈ f−1(U\Y V ). Let

x ∈ f−1(U) and suppose that x ⊗X y ≤ z. By the fact that f is a ℓG-space morphism, we have

that f(x) ⊗Y f(y) ≤ f(z). We also have f(x) ∈ U and f(y) ∈ U\Y U , so f(z) ∈ V . Therefore

we have that z ∈ f−1(V ), as desired. So f−1(U\Y V ) ⊆ f−1(U)\Xf−1(V ). On the other hand, let

y ∈ f−1(U)\Xf−1(V ). Let x ∈ U and suppose that x ⊗Y f(y) ≤ z. Then by condition two in

the definition of rℓG-space morphism, we have that there are x′, z′ ∈ X such that x ≤ f(x′) and

f(z′) ≤ z and x′ ⊗ y ≤ z′. However, since x ∈ U , f(x′) ∈ U , and thus x′ ∈ f−1(U). This then

implies in conjunction with the fact that x′ ⊗ y ≤ z′ and y ∈ f−1(U)\Xf−1(V ), that z′ ∈ f−1(V ) and

therefore that f(z′) and z are elements of V . We may then conclude that f(y) ∈ U\Y V and thus that

y ∈ f−1(U\Y V ), as desired. We have therefore shown that f−1(U\Y V ) = f−1(U)\Xf−1(V ).

Finally, we check that the f−1 preserves the designated element, ↑ε i.e. f−1(↑Y (εY )) = ↑X(εX).

For one inclusion, use the condition that if εY ≤ fx, then εX ≤ x. For the other inclusion, use the fact

that εY ≤ f(εX).

We therefore, conclude that f−1 is a pointed rℓ-groupoid homomorphism.

Lemma 6.1.7. let G = (G,∨,∧,⊤, ,⊥, ·, \, /) be an rl-groupoid, then If d ≤ b, then c/b ≤ c/d.

Proof. Suppose that d ≤ b. Then c/b · d ≤ c/b · b ≤ c. But then c/b ≤ c/d.

Lemma 6.1.8. f : G → H is rl-groupoid homomorphism, then f−1 : XH → XG is a NRL-space

morphism.

Proof. let f : G → H be a ℓ-groupoid homomorphism. By L-space duality, f−1 is a L-space mprhism.

We just show that f−1 : XH → XG satisfies the conditions from the defintion of an NRL-space

morphism.

(⊗-forth) let x ◦H y ≤ z and suppose that c ∈ f−1(x)⊗G f
−1(y). Then there are a ∈ f−1(x) and

b ∈ f−1(y) such that a · b ≤ c. But then f(a) ·f(b) = f(a · b) ≤ f(c). So since f(a) ∈ x and f(b) ∈ y, we

have that f(a) · f(b) ∈ x ◦H y and thus f(c) ∈ x ◦H y. Therefore we obtain that c ∈ f−1(x ◦H y) ⊆ f(z),

as desired.
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(⊗-back) Suppose that x′ ⊗G y′ ≤ f−1(z). f [x′] and f [y′] are both closed under taking meets,

so ↑f [x′] and ↑f [y′] are both filters. It follows quickly that x′ ≤ f−1(↑f [x′]) and y′ ≤ f−1(↑f [y′]).
Now let c ∈ ↑f [x′] ◦H ↑f [y′]. then there are a ∈ ↑f [x′] and b ∈ ↑f [y′] such that a · b ≤ c. But

if a ∈ ↑f [x′] and b ∈ ↑f [y′], then there f(a′) ∈ f [x′] and f(b′) ∈ f [y′] such that f(a′) ≤ a. So

f(a′ · b′) = f(a′) · f(b′) ≤ a · b ≤ c. But a′ ∈ x′ and b′ ∈ y′, so a′ · b′ ∈ f−1(z), which in turn implies

that f(a′ cot b′) ∈ z and then that c ∈ z, as desired.

(/-Back) suppose that f−1(x) ⊗G y′ ⊆ z′. We define y = ↑f [y′]. We argued above that such a

set is a filter and we also showed that y′ ⊆ f−1(y). In contrast, we define z = x ◦H ↑f [y′]. It is

then trivial that x ◦H y ≤ z. We just need to show then that f−1(z) ⊆ z′. So let c ∈ f−1(x) =

f−1(x ◦H ↑f [y′]) = f−1(x) ◦H f−1(↑f [y′]). Then there are a ∈ f−1(x) and b ∈ f−1(↑f [y′]) such that

a · b ≤ c. Therefore f(a) ∈ x and f(b) ∈ ↑f [y′] and f(a) · f(b) ≤ f(c). And hence f(a) ≤ f(c)/f(b)

and thus f(c)/f(b) ∈ x. But if f(b) ∈ ↑f [y′], then there is a d ∈ y′ such that f(d) ≤ f(b). So by

Lemma 6.1.7, f(c)/f(b) ≤ f(c)/f(d). So we obtain that f(c)/f(d) ∈ x. But then f(c/d) ∈ x and hence

c/d ∈ f−1(x). Now recall that we had that d ∈ y′, so c/d · d ∈ f−1(x) ⊗G y
′, which in turn implies

that c ∈ f−1(x)⊗G y
′ finally that c ∈ z′ because of our assumption that f−1(x)⊗G y

′ ⊆ z′.

We have therefore shown from the assumption that f−1(x)⊗G y
′ ⊆ z′ that there are y, z ∈ X such

that x⊗ y ⊆ z, y′ ⊆ f(y), and f(z) ⊆ z′, as was required.

For the condition (\-back), we note that the proof is sufficiently similar to the one given for (/-back)

for us to omit.

Finally for the conditions associated with ε, the forth condition follows quickly. For the back

condition, suppose that εXG
⊆ f−1(x) for x ∈ XH . Clearly then eG ∈ f−1(x) and so eH = f(eG) ∈ x.

But then εK = ↑(eK) ⊆ x, as desired.

We therefore conclude that the f−1 is a NRL-space morphism.

Before stating and proving the duality result of this section, we recall the following lemma which

we proved in the previous chapter in Lemma 5.2.6.

Lemma 6.1.9. If If X = (X,⋏, 1,⊗, ε, τ) is an NRL-space and U is a clopen filter of X, then: if

x⊗ y ∈ U , there are clopen filters V and W such that x ∈ V and y ∈W and V ◦W ⊆ U .

With the lemma available, we prove duality between NRL-spaces and rℓ-groupoids.

Theorem 6.1.10. The category NRL is dually isomorphic to the category RLG.

Proof. By L-space duality, there is a L-space homeomorphism ηX : X → XGX
where GX is the

ℓ-groupoid of clopen filters of X. To check check that ηX is also an NRL-space homeomorphism, it is

sufficient to check that εX and εXLX
and the respective groupoid operations agree w.r.t to ηX i.e. that

ηX(εX) = εXGX
and that ηX(x⊗y) = ηX(x)◦XGX

ηX(y). Recall that ηX(x) = {U ∈ Ficlp(X) | ↑x ⊆ U}.
To show ηX(εX) = εXGX

we have:

ηX(εX) = {U ∈ Ficlp(X) | ↑X(εX) ⊆ U} (6.1)

= ↑GX
(↑X(εX)) (6.2)

= εXGX
. (6.3)

Note the identity in (1) holds by definition. The step to (2) is merely a rewriting. The last step to

(3) holds again by definition since ↑X(εX) is a designated element of GX.
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To show ηX(x⊗ y) = ηX(x) ◦XGX
ηX(y) we reason as follows. The direction from right to left is

more or less straight forward. Let U ∈ ηX(x) ◦XGX
ηX(y). Then then there are V ⊇ ↑x and W ⊇ ↑y

such that W ◦X V ⊆ U , which are both clopen filters. But then since x ∈W and y ∈ V , x ◦ y ∈ U and

hence ↑(x⊗ y) ⊆ U . Therefore ηX(x) ◦XGX
ηX(y) ⊆ ηX(x⊗ y).

For the other direction, suppose that U ∈ ηX(x⊗ y). Then x⊗ y ∈ U . By Lemma 6.1.9, we have

that there are clopen filters V and W such that x ∈ V and y ∈W and V ◦W ⊆ U. But then V ∈ ηX(x)

and W ∈ ηX(y). So we conclude that U ∈ ηX(x)⊗ ηX(y), as desired.

Now, by the proof of Theorem 6.1.4, we are also ensured that the map ϕG : G → GXG
is an

isomorphism.

We have thus shown duality at the level of objects. It follows then by Theorem 2.2.8 and the fact

that both of the salient categories are concrete that we also have duality at the level of morphisms.

We have concluded that a duality exists between the category of pointed rℓ-groupoids and the

category of NRL-spaces. In virtue of the equivalence between the category of NRL-spaces and the

category of RML-spaces established in the previous section (Theorem 5.3.1), we obtain another duality

and representation theorem for pointed rℓ-groupoids.

Theorem 6.1.11. (RML-Space Duality) The category of rℓ-groupoids is dually isomorphic to the

category of RML-spaces.

Proof. By Theorem 6.1.10 we have that RLGop ∼= NRLSp. By Theorem 5.3.1 we have NRLSp ∼=
RMLSp. Therefore RLGop ∼= RMLSp, as claimed.

Additionally, we obtain the following representation theorem. This result will enable another

completeness theorem when we consider logical applications in Chapter 7.

Theorem 6.1.12. (Representation Theorem) Every pointed rℓ-groupoid is isomorphic to the algebra

of clopen filters of some RML-space.

Proof. Let G be a pointed rℓ-groupoid. By theorem 6.1.4, G is isomorphic to the algebra of clopen

filters GXG
of the NRL-space XG. In virtue of the proof of Theorem 5.3.1, we obtain that algebra of

clopen filters of the RML-space F (XG) (See Theorem 5.3.1 for definition of F ) and GXG
are isomorphic

as pointed rℓ-groupoids. It follows that G is isomorphic as an rℓ-groupoid to the algebra of clopen

filters of the RML-space F (XG).

We conclude with a remark on how to generalize the results to various reducts of pointed rℓ-

groupoids.

Remark 6.1.13. (Reducts of rℓ-groupoids)

Given our duality proof it is possible to extract a number of other dualities for reducts of pointed

rℓ-groupoids. This includes non-pointed rℓ-groupoids by removing the requirement of a designated

element ε from the definition of an NRL-space. By only requiring the clopen filters to be closed under

one of \X and /X we can obtain dualities for algebras with only a left or right residual. These could

be useful in the semantics of relevance logics like the system of entailment, E. Going further, we

can also obtain duality just for ℓ-groupoids by non-longer requiring the clopen filters to be closed

under the operations \X and /X . However, to guarantee that the algebra of clopen filters satisfies the

identities a · (b ∨ c) = (a · b) ∨ (a · c) and (b ∨ c) · a = (b · a) ∨ (c · a), we require that the duals satisfy
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(x⊗ y)⋏ (x⊗ z) ≤ x⊗ (y ⋏ z) and (y ⊗ x)⋏ (z ⊗ x) ≤ (y ⋏ z)⊗ x. Similar remarks hold for obtaining

dualities with respect to generalizations of RML-spaces.

6.1.1 Some Correspondences Between Identities and Properties of Dual Spaces

We list some noteworthy correspondences between identities that hold in an rℓ-groupoid and

properties of ⊗ that hold in the dual space of that algebra. These correspondences lead to dualities for

many other class of pointed rℓ-groupoids that have been studied in the literature. We then examine

analagous correspondences in in terms of RML-space.

The correspondences for · and ⊗ are very similar to those for the logics presented by Došen in [13].

Proposition 6.1.14. (Correspondences) For any pointed rℓ-groupoid G with dual NRL-space XG we

have the following correspondences between properties of · and ⊗ and properties of e and ε.

Properties of · Properties of ⊗
a · (b · c) ≤ (a · b) · c (x⊗ y)⊗ z ≤ x⊗ (y ⊗ z)

(a · b) · c ≤ a · (b · c) x⊗ (y ⊗ z) ≤ (x⊗ y)⊗ z

a · b ≤ b · a x⊗ y ≤ y ⊗ x

a ≤ a · a x⊗ x ≤ x

a · a ≤ a x ≤ x⊗ x

a · b ≤ a x ≤ x⊗ y

b · a ≤ a x ≤ y ⊗ x

a ≤ a · b x⊗ x ≤ y

a ≤ b · a y ⊗ x ≤ x

Properties of e Properties of ε

a ≤ e ◦ a ε⊗ x ≤ x

a ≤ a ◦ e x⊗ ε ≤ x

e ◦ a ≤ a x ≤ ε⊗ x

a ◦ e ≤ a x ≤ x⊗ ε

Proof. In the interest of space will only show a selection of these correspondences acknowledging that

the other proofs are quite simple and or similar. First let us consider the correspondence between

a · (b · c) ≤ (a · b) · c and (x⊗ y)⊗ z ≤ x⊗ (y ⊗ z).

Let G be a pointed rℓ-groupoid. Suppose that for all a, b, c ∈ G, we have that a · (b · c) ≤ (a · b) · c.
Now let x, y, z ∈ XG let d ∈ (x⊗ y)⊗ z. Then there a, b, c ∈ G such that (a · b) · c ≤ d and a ∈ x, b ∈ y,

and c ∈ z. By assumption, a · (b · c) ≤ (a · b) · c and so a · (b · c) ≤ d. It follows that d ∈ x⊗ (y ⊗ z), as

desired.

For the other direction of the correspondence, let X be an NRL space and suppose that for all

x, y, z ∈ X, (x⊗ y)⊗ z ≤ x⊗ (y⊗ z). Now let U, V,W ∈ Ficlp(X). By almost the exact same reasoning

as in the previous paragraph, if w ∈ U ◦ (V ◦W ), then there are x ∈ U , y ∈ V , and z ∈W such that

x⊗ (y ⊗ z) ≤ w. But the (x⊗ y)⊗ z ≤ w and so w ∈ (U ◦ V ) ◦W .

For our second sample we consider the correspondence between a · e ≤ a and ε ⊗ x ≤ x. Let G

be a pointed rℓ-groupoid and suppose for all a ∈ G that a · e ≤ a. Now let x ∈ XG and suppose that

a ∈ x. We recall that ε = ↑Ge, so since a · e ≤ a we obtain that a ∈ x ◦ ε.
The other direction of the correspondence follows by an analogous argument.
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In addition to correspondences between properties of an rℓ-groupoid and it’s dual NRL-space, we

also obtain correspondences with respect to its dual RML-space. These are standard conditions from

the literature on relevance logic and Routley-Meyer frames [33]. We record a few here.

Definition 6.1.15. We say that a RML-space X = (X,⋏, 1, R, T, τ) satisfies:

Permutation iff ∀xyz(Rzxt→ Rzxy)),

Right Rebracketing iff ∀xyzts(Rtxs & Rsyz → ∃w(Rwxy & Rtwz)),

Left Rebracketing iff ∀xyzts(Rtsz & Rsxy → ∃w(Rwyz & Rtxw)),

Right Omission iff ∀xyz(Rzxy → y ≤ z),

Left Omission iff ∀xyz(Rzxy → x ≤ z).

We may represent the Right-rebracketing condition graphically as follows.

• t

•x • s

•y • z

=⇒
∃w

• t

•w • z

•x •y

We then have the following proposition that records properties of an algebra and its dual space.

Proposition 6.1.16. Let G = (G,∧,∨,⊤,⊥, ·, \, /, e) be an rℓ-groupoid and let X = (X,⋏, 1, R, T, τ)

be the RML-space dual to G, then we have that follows table of correspondences:

Properties of · Properties of R

a · b ≤ b · a R satisfies Permutation

a · (b · c) ≤ (a · b) · c R satisfies Right-Rebracketing

(a · b) · c ≤ a · (b · c) R satisfies Left-Rebracketing

a · b ≤ a R satisfies Right Omission

b · a ≤ a R satisfies Left Omission

Proof. As with the correspondences between · and ⊗, we will only provide a sample here. In particular

we will verify the correspondence between (a · b) · c ≤ a · (b · c) and R satisfies Right-Rebracketing.

So suppose that G satisfies n a · (b · c) ≤ (a · b) · c for all a, b, c ∈ G. Suppose for elements of X, the

dual of G, that Rtxs and Rsyz. Define w to be x⊗ y. It follows immediately that Rwxy. Now we

must show that Rtwz. So let d ∈ w and c ∈ z. Then there are a ∈ x and b ∈ y such that a · b ≤ d. So

by monotonicity of ·, we have that (a · b) · c ≤ d · c. But since a · (b · c) ∈ t, in virtue of the assumptions

that Rtxs and Rsyz, and the fact that a · (b · c) ≤ (a · b) · c, we arrive at the conclusion that d · c ∈ t.

Therefore we have found that Rtwz as desired. We therefore conclude that Right-rebracketing holds.

For the other direction, suppose that Right-rebracketing holds. Let U, V,W be clopen filters of the

RML-space X. let t ∈ U ◦ (V ◦W ). Then there is some x ∈ U and s ∈ V ◦W such that Rtxs. If

w ∈ V ◦W , then there are y ∈ V and z ∈W such that Rsyz. By Right-rebracketing, there is some w

such that Rwxy and Rtwz. There we obtain that w ∈ U ◦ V and that t ∈ (U ◦ V ) ◦W , as desired.
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To ensure that designated clopen filter T of an RML-space behaves as an identity element for ◦R
in the algebra of (clopen) filters, we can the following condition inspired by the notion of a T-set from

Restall [33].

Definition 6.1.17. We say that an RML-space X = (X, 1,⋏, R, T, τ) satisfies:

Left-Interjection iff ∀y, z(y ≤ z ↔ ∃x ∈ T (Rzxy), and

Right-Interjection iff ∀x, z(x ≤ z ↔ ∃y ∈ T (Rzxy).

We then obtain the following correspondences.

Proposition 6.1.18. Let G = (G,∧,∨,⊤,⊥, ·, \, /, e) be an rℓ-groupoid and let X = (X,⋏, 1, R, T, τ)

be the RML-space dual to G, then we have that follows table of correspondences:

Properties of G Properties of X

a · e = a X satisfies Right-Interjection

e · a = a X satisfies Left-Interjection

In the next sections we will combine some of the facts we have just seen to obtain dualities for

residuated lattices, FL-algebras, and Involutive algebras

6.2 Duality for Residuated Lattices and FL-Algebras

In the semantics of substructural logic, Residuated Lattices and FL-algebras are likely the most

studied type of algebra. In this section we show how the various dualities presented throughout this

chapter can be combined and extended to give dualities and representation theorems for Residuated

Lattices and FL-algebras. We begin by defining RL-spaces, which are the NRL-space duals to residuated

lattices. They are simply NRL-spaces where ε is an identity element for ⊗ and ⊗ is associative. We

then define FL-spaces, which extend RL-spaces with a new constant µ that will generate a designated

element in algebra of clopen filters and will make that algebra an FL-algebra.

Definition 6.2.1. An RL-space X = (X,⋏, 1,⊗, ε, τ) is an NRL-space where:

x⊗ (y ⊗ z) = (x⊗ y)⊗ z and x⊗ ε = x = ε⊗ x

Theorem 6.2.2. (Representation of Residuated Lattices) For every residuated lattice, L, there is a

RL-space X such that L is isomorphic to Ficlp(X).

Proof. The proof of this fact follows from the representation theorem for rℓ-groupoids provided in

Theorem 6.1.4 and the correspondence results in Proposition 6.1.14.

Theorem 6.2.3. The category of residuated lattices RLat is dually isomorphic to the category of

RL-spaces, RLSp

Proof. Follows immediately from Theorem 6.1.10, which established the duality between pointed

rℓ-groupoids and NRL-spaces, and Lemma 6.1.14 which establishes the fact that associativity of a

rℓ-groupoid corresponds to associativity of ⊗ in the dual space and similarly that when e is an identity

element in an rℓ-groupoid, then ε is too.
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We note that analogous dualities are obtainable in virtue of RML-spaces by combining the duality

result from Theorem 6.1.11 with the correspondence results for RML-spaces in 6.1.16 and 6.1.18.

From here, we extend even further to obtain the analogous results for FL-algebras.

Definition 6.2.4. An FL-space X = (X,⋏, 1,⊗, ε, τ, µ) is an RL-space where µ is additional designated

element and has the property that ↑µ is a clopen filter.

The definition of morphism extends that of NRL-space morphisms by adding some additional

conditions for µ.

Definition 6.2.5. FL-space morphisms f : X → Y are NRL-space morphism satisfying the following

two conditions:

(µ-forth) µY ≤ f(µX), and

(µ-back) if µY ≤ fx, then µX ≤ x for all x ∈ X.

Note that the above condition are the same as those for ε. Simple arguments show that FL-space

morphism correspond to FL algebra homomorphism.

Lemma 6.2.6. (Between Morphisms)

(1) If f : G → H is FL algebra homomorphism, then f−1 : XH → XG is a FL-space morphism.

(2) If f : X → Y is an FL-space morphism., then f−1 : GY → GX is an FL algebra homomorphism.

Proof. The proof of this lemma extends the argument showing the analagous correspondence for

NRL-space morphisms and rℓ-groupoid homomorphisms in lemmas ?? and ??. All that remains to be

checked pertains to µ. However, the arguments for these properties follows from the same arguemnts

for the case of ε.

We can then prove duality.

Theorem 6.2.7. (Duality for FL-algebras) The category of FL-algebras FLAlg is dually isomorphic

to the category of FL-spaces, FLSp.

Proof. In virtue of Theorem 6.2.3, which establishes duality for residuated lattices, we need to check

that XL is an FL-space when L is an FL-algebra and conversely that LX is an FL-algebra when X

is an FL-space. Then to prove duality, we only need to check that ϕL : L → LXL
is an FL-algebra

homomorphism when L is an Fl-algebra and that ηX : X → XLX
is a FL-space morphism when X is

an FL-space.

So let L is an FL-algebra. XL is an RL-space in virtue of Theorem 6.2.3. We then define µ := ↑L(f)
in XL. ↑XL

µ = ↑XL
(↑(f)) = ϕL(f), so ↑XL

is a clopen filter. We conclude then that XL is an FL-space.

Conversely, if X is an FL-space, then LX is an FL-algebra since ↑µ is a clopen filter.

Now, for showing ϕL : L → LXL
is an FL-algebra homomorphism, we have that ϕL(f) =

↑XL
(↑(f)) = ↑XL

µ.

Last but not least, we must check that ηX : X → XLX
is a FL-space morphism for all FL-spaces X.

Theorem 6.2.8. For every FL-algebra, L, there is a FL-space X such that L is isomorhic to Ficlp(X).

Proof. Corollary of the proof of the duality theorem for FL-algebras in Theorem 6.2.7.
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6.3 Duality for Involutive Residuated Lattices

The final class of algebras we study duality for is the variety of Involutive Residuated Lattices.

Having already proved duality for FL-algebras, then main task of this chapter is therefore to find a

condition on FL-spaces that guarantees that an FL-algebra is involutive if and only if its dual space

satisfies the relevant condition. In much the same way that preceding dualities for residuated lattices

can be extended to provide duality fro Heyting Algebras, the duality presented here can be extended

to give duality for Boolean algebras, even if it is not the most elegant duality.

Before defining Involutive FL-spaces, we prove a lemma about a relation definable in all FL-spaces.

Proposition 6.3.1. Let X = (X,⋏, 1,⊗, ε, µ) be an FL-space (definition 6.2.4). define a relation

C ⊆ X ×X such that:

xCy ⇐⇒ µ ̸≤ x⊗ y.

Then C satisfies the following properties:

Proof. It is easy to check that C satisfies all of the conditions to be a compatibility frame. For example,

if x⋏ yCz, then µ ̸≤ (x⋏ y)⊗ z = x⊗ z ⋏ y ⊗ z. Therefore, either µ ̸≤ x⊗ z or µ ̸≤ y ⊗ z. And thus

either xCz or yCz. The other conditions follow readily.

Let us define ∼CU := {x ∈ X | ∀y(xCy → y ̸∈ U)} and similarly, ¬CU := {x ∈ X | ∀y(yCx→ y ̸∈
U)}.

Lemma 6.3.2. Let X = (X,µ) be an FL-space. Then we also obtain ¬CU = U\↑µ and ∼C U = ↑µ/U .

Proof. Let us show ¬CU = U\↑µ noting that the other identity has an analogous proof. Let x ∈ ¬CU .

Now suppose that y ⊗ x ≤ z and that y ∈ U . We need that µ ≤ z. If y ∈ U and x ∈ ∼CU , then y ̸ Cx
and thus µ ≤ y ⊗ x. But this then immediately implies that µ ≤ z, which is what we needed to show.

It follows that x ∈ U\ ↑ µ. For the other inclusion, let x ∈ U\↑µ. Suppose that yCx. We need that

y ̸∈ U . If we suppose for contradiction that y ∈ U , then we obtain from the assumption that x ∈ U\↑µ
that µ ≤ y ⊗ x. But this contradicts the supposition that Suppose that yCx. So y ̸∈ U , as desired. It

is then the case that x ∈ ¬CU .

Definition 6.3.3. Let X be an FL-space and suppose that C is defined as above. We say an element

x ∈ X is C-separable if x ̸= 1 and both of the following hold.

∀y(x ̸≤ y → ∃z(yCz & ↑x ∩ C−1[z] = ∅)), and,
∀y(x ̸≤ y → ∃z(zCy & ↑x ∩ C[z] = ∅)).

Definition 6.3.4. We say an FL-space X is involutive if for all clopen filters U ,
c
U is C-separable.

Lemma 6.3.5. If X is an involutive FL-space, then LX is an involutive residuated lattice.

Proof. We define and C as in Proposition 6.3.1. We need to check that for all clopen filters U :

∼¬U ⊆ U and ¬∼U ⊆ U.

Let us show ∼¬U ⊆ U noting that the other case of double negation elimination follows from an

analagous proof. Suppose that y ∈ ∼¬U ⊆ U for some clopen filter U . Now let x =
c
U (it follows

that ↑x = U). Suppose for contradiction that y ̸∈ U . Then x ̸≤ y. Therefore, by the conditions that

define an involutive split space, there is some z such that yCz and C−1[z] = ∅. If y ∈ ∼¬U ⊆ U , then
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z ̸∈ ¬U . Therefore, there is some w ∈ U = ↑x such that such that wCz. But this is impossible given

that ↑ x ∩ C−1[z] = ∅. We conclude that y ∈ U , as desired.

Lemma 6.3.6. If L is an involutive residuated lattice, then XL is an involutive FL-space.

Proof. Let L be an involutive residuated lattice and suppose that XL = (Fi(L), τ) is its dual space
with C defined as above. Now suppose that x ̸= 1 and that ↑Xx is clopen. We will just show

∀y(x ̸≤ y → ∃z(yCz & ↑x ∩ C−1[z] = ∅))

noting that the other condition has an almost identical proof. Suppose that x ̸≤ y. it follows that

there is some a ∈ L such that ↑La = x (clopen sets of an L-space are always of the form ↑X(↑La)) and
that there is some b ∈ x such that b ̸∈ y. Now define z := ↑L(∼ a). We first claim that yCz. So let

∼c ∈ ↑L(∼a) = z. We will show that c ̸∈ y. If ∼ c ∈ ↑L(∼a), then ∼a ≤ ∼c. Therefore we have that

c = ¬∼c ≤ ¬∼a = a since L is involutive. It follows that c ≤ b since a ≤ b (recall x = ↑La and b ∈ x).

But since b ̸∈ y we obtain c ̸∈ y, as desired.

We now claim that C−1[z]∩↑X(x) = ∅. Suppose otherwise. Then there is some w ∈ C−1[z]∩↑X(x).

Therefore wCz and ↑a = x ⊆ w. So a ∈ w and thus ¬∼a ∈ w. But since wCz, we then obtain that

¬a ̸∈ z = ↑(∼ a), which is a contradiction. Therefore, we conclude that C−1[z] ∩ ↑X(x) = ∅.

With the various lemmas we have just proved, we arrive at the following representation theorem

for involutive residuated lattices.

Theorem 6.3.7. (Representation Theorem for Involutive Residuated Lattices)

For every involutive residuated lattice L, there is an involutive FL-space X such that L is isomorphic

to the involutive residuated lattice of clopen filters LX.

Proof. Follows from Theorem 6.2.8, which establishes that every FL-algebra is representable by the

alegrba of clopen filters of some FL-space and then Lemma 6.3.6

Finally, we arrive at our final explicit duality theorem.

Theorem 6.3.8. (Duality for Involutive Residuated Lattices) The category of involutive residuated

lattices is dually equivalent to the category of involutive FL-spaces.

Proof. The duality between FL-algebras and FL-space of Theorem 6.2.7 restricts to a duality between

involutive residuated lattices and Involutive FL-spaces in virtue of Theorem 6.3.7.

Just as with rℓ-groupoids, residuated lattices, and FL-algebras, the correspondence results in

Proposition 6.1.14 allow us to explicitly characterize a number of other varieties of involutive residuated

lattices. Of particular note by adding contraction, weakening, and commutativity to the axioms

of involutive residuated lattices we define Boolean algebras. Therefore, adding the corresponding

properties to an involutive FL-space gives rise to spaces whose algebra of clopen filters are a Boolean

algebra.
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6.4 The Π1-Completion of rℓ-Groupoids

In Chapter 4, we showed that the Π1-completion of a lattice expansion L could be represented by

the algebra of all filters in the dual L-space of L. In this section we very briefly extend the topological

representation of the Π1-completion of monotone lattice expansions to the case of rℓ-groupoids. As a

consequence we obtain a fairly general result on Π1-persistent classes of rℓ-groupoids.

In Chapter 7 we will apply this persistence result to obtain a general completeness theorem with

respect to the OKHD-semantics and a semantics based on RML-frames.

Definition 6.4.1. Let G = (G, ·, \, /e) be a pointed ℓ-groupoid, we define the following operations on

Π1(G):

x1 ·Π1 x2 :=
∨

{
∧

{π(a1 · a2) | ai ∈ L & yi ≤ α(ai)} | yi ∈ K(Π1(L)) & yi ≤ xi} eΠ1 = e.

x\Π1y :=
∨

{z ∈ Π1(L) | x ·Π1 z ≤ y} y/Π1x :=
∨

{z ∈ Π1(L) | z ·Π1 x ≤ y}.

We must check that the definition of operations are defined in a way that yields an rℓ-groupoid.

Lemma 6.4.2. If G is a unital rℓ-groupoid, then Π1(G) = (Π1(G), ·Π1 , \Π1 , /Π1 , eΠ1) is a pointed

rℓ-groupoid.

Proof. It is sufficient to check that Π(G) has the property that for all S ⊆ Π(G) and x ∈ Π(G) that:

x ·Π1
∨
S =

∨
{x ·Π1 y | y ∈ S} and

∨
S ·Π1 x =

∨
{y ·Π1 x | y ∈ S}.

Given Theorem 4.2.3 in Chapter 4, we are ensured that the ℓ-groupoid reduct of G is isomorphic

to ℓ-groupoid reduct of Fi(XG) where in this case XG is the NRL-space dual to G (Note that the

algebra of filters of the dual NRL-space coincides with the dual NRL-space so we can choose either

in this argument). We can therefore check the identities in question hold in Fi(XG) and infer that

they hold in Π1(G). Let us show U ◦
`
S =

`
{U ·Π1 V | V ∈ S} where {U} ∪ S ⊆ Fi(XG). The

inequality
`
{U ·Π1 V | V ∈ S} ≤ U ◦

`
{V | V ∈ S} is an immediate consequence of monotonicity. For

the other inequality, let x ∈ U ·Π1
`
S. There are y ∈ U and z ∈

`
S such that y ⊗ z ≤ x. However,

if z ∈
`
S =

⋃
{V1▽..▽Vn | ∀i ≤ n(Vi ∈ S)}, then there is a finite subset S0 ⊆ S such that z ∈

`
S0.

But then x ∈ U ◦
`
S0 =

`
{U ·Π1 V | V ∈ S0} ⊆

`
{U ·Π1 V | V ∈ S}, as desired.

It the follows by a standard argument that Π1(G) is a residuated lattice.

We can now show the following representation theorem for the Π1-completion of

Theorem 6.4.3. Let (L, ·, e) be a pointed rℓ-groupoid and let XL be its dual NRL-space, then:

(Π1(L), ·Π1 , \Π1 , /Π1 , eΠ1) ∼= (Fi(XL), ◦, \, /, ↑ε).

Proof. We must show that the isomorphism ϕ̂ : Π1(G) → Fi(XG) from Chapter 4 extends to an rℓ-

groupoid isomorphism. In virtue of Theorem 4.2.1 Chapter 4, we know that ϕ̂(x ·Π1 y) = ϕ̂(x)◦ ϕ̂(y). So
it suffices to show ϕ̂(x\Π1y) = ϕ̂(x)\ϕ̂(y) and ϕ̂(x/Π1y) = ϕ̂(x)/ϕ̂(y). Let us show ϕ̂(x\Π1y) = ϕ̂(x)\ϕ̂(y)
noting that the case of / is nearly identical.

In virtue of the definition of \Π1 , the fact that ϕ̂ preserves arbitrary joins, and that ϕ̂ is bijective,

we have

ϕ̂(x\Π1y) = ϕ̂(
∨

{z ∈ Π1(L) | x ·Π1 z ≤ y}) =
h

{U | ϕ̂(x) ◦ U ≤ ϕ̂(y)}.
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A standard argument shows that
`
{U | ϕ̂(x) ◦ U ≤ ϕ̂(y)} satisfies the residual law with respect to ◦.

However, since operations satisfying the residual law with respect to ◦ are unique, we arrive at the fact

that ϕ̂\ϕ̂(y) =
`
{U | ϕ̂(x) ◦ U ≤ ϕ̂(y)}. It follows then that ϕ̂(x\Π1y) = ϕ̂(x)\ϕ̂(y), as desired.

Given the previous two facts, we are ensured that Π1(G) is genuinely a completion of G. We record

this fact in the following corollary.

Corollary 6.4.4. If G is a unital rℓ-groupoid, then π : G → Π1(G) is a unital rℓ-groupoid embedding.

Proof. Note that π = ϕ̂−1 ∗ ϕ and that ϕ̂−1 ∗ ϕ is an embedding.

By combining the topological representation for the Π1-completion of rℓ-groupoids we just obtained

in Theorem 6.4.3 with the Π1-persistence results of Chapter 4, we obtain the following persistence

result for pointed rℓ-groupoids.

Theorem 6.4.5. Let t and s be terms in the signature {e,⊤,⊥, ·,∧,∨} and let G be an rℓ-groupoid.

If G ⊨ s ≈ t, the Π1(G) ⊨ s ≈ t.

Proof. A direct consequence of Theorem 4.3.5 and the topological representation of the Π1-completion

of rℓ-groupoids.

As an immediate corollary we can provide a sufficient condition for class of rℓ-groupoids to be

closed under the Π1-completion.

Corollary 6.4.6. Let K be a class of rℓ-groupoid defined by a set of identities in the signature

{e,⊤,⊥, ·,∧,∨}, then if G ∈ K, then Π1(G) ∈ K.

Finally, we show that there is a class of residuated lattices that is not closed under the Π1-completion.

Proposition 6.4.7. There is a class of residuated lattices that is not closed under the Π1-completion.

Proof. It is well know that the filter completion fe(()B) of a boolean algebra B need not be a boolean

algebra. Since fe(()B) embeds into Π1(B), we conclude that Π1(B) need not be a boolean algebra.

Therefore, the class of boolean algebra is not closed under the Π1-completion.

In the next section we use our duality to obtain representations for products of pointed rℓ-groupoids

and representations for congruences of residuated lattices.

6.5 Conclusion

In this chapter we have obtained various duality results for a range of variants of residuated

lattices. In particular, we showed that the category of rℓ-groupoids is dually isomorphic to the

category of NRL-spaces. Using the equivalence between NRL-spaces and RML-spaces we also derived

a duality with respect to RML-spaces. We the restricted this duality to obtain dualities for residuated

lattices, FL-algebras, and involutive residuated lattices. The following diagram summarizes these

results. Horizontal arrows represent categorical inclusions while vertical arrows represent category

isomorphisms.
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NRLSp RLSp FLSp InFLSp

RMLSp

RLGop RLop FLop InRLop

In addition, from Proposition 6.1.14, each of these dualities was explicitly shown to restrict to

classes defined by commutativity, weakening, and contraction. Finally, in Section 6.4 we showed

that the Π1-completion of rℓ-groupoids are representable in their dual NRL-spaces and use the Π1-

preservation results from Chapter 4 to obtain some sufficient conditions for an identity in the signature

of rℓ-groupoids to be preserved through the Π1-completion.
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Chapter 7

The OKHD-Semantics, and

Completeness via Duality

In this chapter we begin our exploration of how L-space duality and more particularly the duality

and Π1-persistence results from Chapter 6 can be applied to the semantics of substructural logics. We

combine the duality for rℓ-groupoids, the notion of Π1-persistence developed by the authors of [6],

and the connection between between NRL-spaces and OKHD-frames to obtain a general completeness

theorem with respect to the operational semantics for substructural logics developed by Ono and

Komori [32], Humberstone [23], and Došen [13].

The chapter is structured as follows. We begin in Section 7.1 by reviewing the substructural

logics and their algebraic semantics. In particular, we introduce the logic NFL+, which is the logic of

rℓ-groupoids. In Section 7.2 we introduce the operational semantics of Ono and Komori, Humberstone,

and Došen or, more succinctly, OKHD-semantics. We then introduce morphisms between OKHD-frames

and show how they preserve and reflect satisfaction and validity. We will use these facts in the following

chapter. We then briefly define the RML-frame based semantics in Section 7.3, which is more closely

aligned with theory of filter continous relations developed in Chapter 3. In Section 7.4 we arrive at

the main results of the chapter. First, in Theorem 7.4.3, we show that all extensions of NFL+ are

complete with respect to a class of NRL-spaces. This is a simple consequence of alegbraic completenes

and NRL-space duality. An analogous topological completeness theorem is also demonstrated with

respect to RML-spaces. We then show in Theorem 7.4.7 that all sequents that do not contain the

connectives \ and / are Π1-persistent in the sense that if they are valid in an NRL-space, then they are

also valid in the underlying OKHD-frame of that NRL-space. This leads to the general completeness

result reported in Theorem 7.4.8. Finally, in Section 7.5 we discuss how the canonical model style

proofs from the original papers from Ono and Korori, Humberstone, and Došen can be analyzed in

terms of the completeness-via-duality methodology.

7.1 Substructural Logics

In this section we define the Positive Non-Associative Full Lambek Calculus, NFL+, and characterize

some of its extensions. The reason we call this positive is because we do not include the ”falsity

constant” f , which is ususally included in the full Lambek Calculus. In [12], Dǒsen denotes NFL+ by

GL. NFL+ is one of the weakest logics with the additive connectives ∧ and ∨, the residuated family
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of connectives \, and /, and the truth constant t. Below we give sequent style natural deduction rules

that characterize the logic NFL+. These rules are inspired by the proof theory introduced in Restall’s

introductory book on substructural logic [33]. Dǒsen’s original characterization of NFL+ was given as

a Gentzen system with left and right rules for each connective. While Gentzen systems are often proof

theoretically convenient, our considerations are primarily model theoretic and we therefore prefer the

more intuitive set of rules presented below. For a thorough introduction to substructural logics see

either [33] or [19].

The language L is built from atomic expressions Prop = {p1, p2, p3, ..} and the connectives I have

already listed above.

Definition 7.1.1. Language L

φ := || p | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ • φ | φ\φ | φ/φ | t ||

We denote the set of all such expression by L. The objects denoted by Γ,∆ and Σ below are called

structures. They are built out of formulas and the punctuation mark −;−.

Definition 7.1.2. L-Structures Str(L).

Γ := || φ | Γ; Γ ||

We denote the set of all structures by Str(L). A context Γ[·] is structure with a special atom · that
intuitively represents an empty position in Γ meant for substituting. Γ[∆] is the structure obtained by

substituting ∆ for · in the context Γ[·].

Finally, a sequent is a pair Γ ⇒ φ where Γ ∈ Str(L) and φ ∈ L.

We now define the basic logic NFL+. For us a logic is a set of sequents. Intuitively, a logic is

simply a collection of argument pairs that are deemed acceptable.

Definition 7.1.3. The Logic NFL+ is the least set of sequents all instances of axiom schemas

(Ax) φ⇒ φ (Ax⊤) Γ ⇒ ⊤ (Ax⊥) Γ[⊥] ⇒ φ

and closed under the rules:

(∧-outr)
Γ ⇒ φ ∧ ψ
Γ ⇒ φ

(∧-outl)
Γ ⇒ φ ∧ ψ
Γ ⇒ ψ

(∨-inr)
Γ ⇒ φ

Γ ⇒ φ ∨ ψ
(∨-outl)

Γ ⇒ ψ

Γ ⇒ φ ∨ ψ

(∧-in) Γ ⇒ φ Γ ⇒ ψ

Γ ⇒ φ ∧ ψ
(∨-out) Γ[φ] ⇒ χ Γ[ψ] ⇒ χ

Γ[∆] ⇒ χ

(/-in)
Γ;φ ⊢ ψ
Γ ⊢ ψ/φ

(/-out)
Γ ⊢ φ/ψ ∆ ⊢ ψ

Γ;∆ ⊢ φ

(\-in) φ; Γ ⊢ ψ
Γ ⊢ φ\ψ

(\-out) Γ ⊢ φ\ψ ∆ ⊢ φ
∆;Γ ⊢ ψ
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(•-in) Γ ⊢ φ ∆ ⊢ ψ
Γ;∆ ⊢ φ • ψ

(•-out) Γ ⊢ φ • ψ ∆[φ;ψ] ⊢ ξ
∆[Γ] ⊢ ξ

(Cut)
Γ ⇒ φ ∆[φ] ⇒ ψ

∆[Γ] ⇒ ψ

To define extension of NFL+ we either add axioms or structural rules. Structural rules allow for

control over how the structures on the left hand side of a sequent relate to the formulas on the right

hand side. Intuitively, structural rules are a means of premise management and govern the relationship

between premise and conclusion. We list a few common structural rules below.

(a)
Θ[Γ; (∆;Σ)] ⇒ φ

Θ[(Γ;∆);Σ] ⇒ φ
(ac)

Θ[(Γ;∆);Σ] ⇒ φ

Θ[Γ; (∆;Σ)] ⇒ φ
(e)

Σ[Γ;∆] ⇒ φ

Σ[∆; Γ] ⇒ φ

(wr)
Σ[Γ] ⇒ φ

Σ[Γ;∆] ⇒ φ
(wl)

Σ[∆] ⇒ φ

Σ[Γ;∆] ⇒ φ
(c)

Γ[∆;∆] ⇒ φ

Γ[∆] ⇒ φ

(t-inl)
Γ ⇒ φ

Γ ⇒ t • φ
(t-inr)

Γ ⇒ φ

Γ ⇒ φ • t

(t-outl)
Γ[t; ∆] ⇒ φ

Γ[∆] ⇒ φ
(t-outr)

Γ[∆; t] ⇒ φ

Γ[∆] ⇒ φ

While adding structural rules is the most common way of defining an extension of NFL+, for our

purposes it will be more convenient to define extensions by adding axioms. Each system defined by

adding some collection of the structural rules above can be equivalently characterized by adding a

corresponding collection of the axioms listed below.

(a) φ • (ψ • ξ) ⇒ (φ • ψ) • ξ (ac) (φ • ψ) • ξ ⇒ φ • (ψ • ξ) (e) φ • ψ ⇒ ψ • φ

(wr) φ • ψ ⇒ φ (wl) φ • ψ ⇒ ψ (c) φ⇒ φ • φ

(t-in1) φ • t⇒ φ (t-in2) t • φ⇒ φ (t-out1) φ⇒ φ • t (t-out2) φ⇒ t • φ.

We now define an extension of NFL+ as a set of sequents that contains the axioms of NFL+ is

closed under the rules of NFL+.

Definition 7.1.4. An extension of NFL+ is a collection of sequents L such that NFL+ ⊆ L and such

that L is closed under the rules from Definition 7.1.3. We say that set of sequents S axiomatizes L is

L is the least set of sequents obtain by closing NFL+ ∪ S under the rules from Definition 7.1.3.

Let us remark on some well know extensions of NFL+. We recover the Full Lambek calculus FL+

by extending NFL+ with the axioms a and ac and all of the rules for t1. By adding the structural

rule e to FL+ thus obtaining FLe, we obtain a fragment of linear logic. By adding back all of the

axioms listed above we recover Intuitionistic Propositional Logic, IPL. In general, we denote extensions

of NFL by some collection of axioms r1, ..rn where each rule ri is among {a, ac, wr, wl, e, c} with

NFLr1,..,rn . We will shorten NFLa,ac to FL.

1FL has an additional constant f but we will ignore this for now.
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7.1.1 Algebraic Semantics

In this section we briefly recall the algebraic semantics of the substructural substuctural logics in

terms of rℓ-groupoids. We first define algebraic models and then define the Lindenbaum algebra of an

extension of NFL+.

Definition 7.1.5. An rℓ-groupoid model is a pair (G, σ) where G is an rℓ-groupoid and σ : Prop→ G.

We extend σ to a homomorphism σ+ : L → G as follows:

σ+(φ ∧ ψ) = σ+(φ) ∧ σ+(ψ) σ+(φ ∨ ψ) = σ+(φ) ∨ σ+(ψ),

σ+(φ • ψ) = σ+(φ) · σ+(ψ) σ+(t) = e

σ+(φ\ψ) = σ+(φ)\σ+(ψ) σ+(φ/ψ) = σ+(φ)/σ+(ψ),

σ+(⊤) = ⊤ σ+(⊥) = ⊥,

σ+(Γ;∆) = σ+(Γ) · σ+(∆).

We say that an rℓ-groupoid model (G, σ) satisfies a sequent Γ ⇒ φ and write G, σ ⊨ Γ ⇒ φ if

σ+(Γ) ≤G σ+(φ). We say a rℓ-groupoid validates a sequent Γ ⇒ φ and write G ⊨ Γ ⇒ φ if very every

valuation σ : Prop → G, G, σ ⊨ Γ ⇒ φ. Finally, we say that a class K of rℓ-groupoids validates a

sequent Γ ⇒ φ and write K ⊨ Γ ⇒ φ if for all G ∈ K, G ⊨ Γ ⇒ φ.

We now define the Lindenbaum Algebra of an extension of NFL+. It is simply the congruence of

the language with respect to interderivability in the salient logic.

Definition 7.1.6. Let L be an extension of NFL+. The Lindenbaum algebra ΛL = (/≡L,∧,∨,⊤,⊥, ·, \, /, e)
of L is defined such that L/≡L = {[φ]θL | φ ∈ L} and φθLψ iff φ ⇒ ψ ∈ L and ψ ⇒ φ ∈ L. The

algebraic operations are then defined:

[φ]θL ∧ [ψ]θL := [φ ∧ ψ]θL [φ]θL ∨ [ψ]θL := [φ ∨ ψ]θL ,

[φ]θL · [ψ]θL := [φ · ψ]θL e = tθL

[φ]θL\[ψ]θL := [φ\ψ]θL [φ]θL/[ψ]θL := [φ/ψ]θL ,

⊤ = ⊤θL ⊥ = ⊥θL

Using the construction of a Lindenbaum Algebra and the fact that each sequent corresponds to

an algerbaic identity, it is possible to show that every extension L of NFL+ is complete with respect

to a class of rℓ-groupoids. In particular, we can think of each formula of the logical language L as

an algebraic term and each sequent ψ ⇒ φ as the identity φ ∧ ψ = φ. In general, given a sequent α,

we write α∗ for the corresponding identity. Likewise, given a set of sequents S, the set of identities

corresponding to elements of S is denoted S∗.

Theorem 7.1.7. (Algrbraic Completeness) Let L be an extension of NFL+. Let KL be that class of

algebras validating all of the identities in L∗.

If KL ⊨ Γ ⇒ φ, then Γ ⇒ φ ∈ L.

Proof. We only sketch a proof since the result is standard. Suppose that Γ ⇒ φ ̸∈ L. Then ΛL ̸⊨ Γ ⇒ φ.

However, ΛL ⊨ L and it is then simple to show that ΛL ⊨ L∗. We are therefore done. Note that in

particular Λ+
NFL is an rℓ-groupoid.
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In the next section we define the OKHD-semantics in detail and introduce morphisms between

OKHD-frames and models.

7.2 The OKHD-semantics

In this section we define the operational OKHD-semantics. The OKHD-semantics are a form

of frame based semantics developed for possibly non-distributive substructural logics that emerged

independently in the work of Hiroakira Ono and Komori [32], Humberstone [23], and Kosta Dǒsen

[13]. The key insight that made these semantics work is the treatment of disjunction as an intensional

connective; an insight that opened the door to frame based semantics for non-distributive logics.

Definition 7.2.1. (OKHD-frames)

An OKHD-frame X = (X,⋏, 1,⊗, ε) is structure where (X,⋏, 1) is a semilattice, (X,⊗, ε) is a

pointed groupoid, and (1) and (2) govern the relationship between ⋏, ⊗, and 1.

(1) x⊗ (y ⋏ z) = (x⊗ y)⋏ (x⊗ z) and (y ⋏ z)⊗ x = (y ⊗ x)⋏ (z ⊗ x), and

(2) x⊗ 1 = 1 = 1⊗ x.

We provided some example of OKHD-frames in Chapter 5 in Examples 5.2.9 and 5.2.10.

We define models based on OKHD-frames equipping frames with valuations. A valuation V : At→
Fi(X) is a mapping from the atomic expressions At of the language to the filters of the structure

Fi(X). A OKHD-model is a OKHD-frame equipped with a valuation.

Satisfaction in a model is then given by the following rules.

Definition 7.2.2. (Satisfaction)

X,V, x ⊩ p iff x ∈ V (p)

X,V, x ⊩ φ ∧ ψ iff X,V, x ⊩ φ and X,V, x ⊩ ψ

X, V, x ⊩ φ ∨ ψ iff there are y, z ∈ X such that y ⋏ z ≤ x and X,V, y ⊩ φ and X,V, z ⊩ ψ

X, V, x ⊩ φ • ψ iff there are y, z ∈ X such that y ⊗ z ≤ x and X,V, y ⊩ φ and X,V, z ⊩ ψ.

X,V, x ⊩ φ\ψ iff for all y ∈ X, if X,V, y ⊩ φ, then X,V, y ⊗ x ⊩ ψ

X, V, x ⊩ ψ/φ iff for all y ∈ X, if X,V, y ⊩ φ, then X,V, x⊗ y ⊩ ψ

X, V, x ⊩ t iff ε ≤ x.

X,V, x ⊩ ⊤ iff x ∈ X

X,V, x ⊩ ⊥ iff x = 1.

Finally, we have satisfaction for structures and sequents.

X,V, x ⊩ Γ;∆ iff there are y, z ∈ X such that y ⊗ z ≤ x and X,V, y ⊩ Γ and X,V, z ⊩ ∆,

X,V, x ⊩ Γ ⇒ φ iff if X,V, x ⊩ X, then X,V, x ⊩ φ.

We that a formula, structure, or sequent α is valid in an OKHD-frame X, written X ⊨ α if for

each valuation V : Prop → Fi(X) and each x ∈ X, X, V, x ⊩ α. Finally, we say that a class K of

OKHD-frames validates a sequent Γ ⇒ φ and write K ⊨ Γ ⇒ φ if for all X ∈ K, X ⊨ Γ ⇒ φ.

For a formula or structure we α also define JαKM = {x ∈ X | M, x ⊩ α} for the set of points

which satisfy φ in the model M = (X,V ). Often we omit the subscript M when confusion won’t arise.

We can then restate validity for a sequent: a sequent Γ ⇒ φ is valid in an OKHD-frame X if for all

valuations V : Prop → Fi(XX), JΓK ⊆ JφK. An important feature of the these semantics is that in

each model M = (X,V ), the function J·K : L → P(X) uniquely extends V : Prop→ Fi(X) in such a

way that guarantees that JφK is always a filter.
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Lemma 7.2.3. (Heredity) For all formulas φ and all models M = (X, V ), JφKM is a filter of X.

A proof of this fact can be found in [30] or [13]. We note finally, that the logic NFL+ is sound

with respect to the class of all OKHD-semantics.

Proposition 7.2.4. NFL+ is sound with respect to the class of all OKHD-semantics: If Γ ⇒ φ ∈
NFL+, then for all OKHD-models M, JΓKM ⊆ JφKM.

A simple correspondence theory holds between sequents and frame conditions. The following table

summarizes these results, which can be found in [13].

Sequents Frame Conditions

φ • (ψ • χ) ⇒ (φ • ψ) • χ ∀xyz((x⊗ y)⊗ z ≤ x⊗ (y ⊗ z))

(φ • ψ) • χ⇒ φ • (ψ • χ) ∀xyz(x⊗ (y ⊗ z) ≤ (x⊗ y)⊗ z)

φ • ψ ⇒ ψ • φ ∀xy(x⊗ y = y ⊗ x)

φ⇒ φ • φ ∀x(x⊗ x ≤ x)

φ • ψ ⇒ φ ∀xy(x ≤ x⊗ y)

ψ • φ⇒ φ ∀xy(y ≤ x⊗ y)

φ⇒ t • φ ∀x(ε⊗ x ≤ x)

φ⇒ φ • t ∀x(x⊗ ε ≤ x)

t • φ⇒ φ ∀x(x ≤ ε⊗ x)

φ • t⇒ φ ∀x(x ≤ x⊗ ε)

We now move on to consider morphisms between models and frames and their effect on the

preservation of satisfaction and validity.

7.2.1 Morphisms, Models, and Frames

In this section we introduce morphisms between OKHD-frames and models and prove some simple

facts about the preservation of satisfaction and validity along these morphisms. As far as we know, the

morphisms introduced here do not appear elsewhere in the literature. We find this surprising given

that in the case of classical modal logic, much of the frame and model theory relies on the notion of

p-morphism. Despite not being especially deep results, we hope that the consequences of these what is

proved in this section and what is proved in the sections to come at least open the door to a wider

array of applications.

Let us begin with morphisms between frames. Morphisms between OKHD-frames are essentially

defined in virtue of NRL-space morphisms without the requirement of continuity.

Definition 7.2.5. (OKHD-frame Morphism) Suppose that X = (X,⋏, 1,⊗, ε) and Y = (Y,⋏′, 1′,⊗′, ε′)

are OKHD-frames. An OKHD-frame morphism is a semilattice homomorphism f : X → Y satisfying

the following additional properties.

(1-backandforth) f(x) = 1′ iff x = 1.

(⋏-back) If x′ ⋏′ y′ ≤ f(z), then there are x, y ∈ X such that x′ ≤ fx, y′ ≤ fy, and x⋏ y ≤ z,

(⊗-forth) f(x)⊗′ f(y) ≤ f(x⊗ y),

(⊗-back) If x′ ⊗′ y′ ≤ f(z), then there are x, y ∈ X such that x′ ≤ fx, y′ ≤ fy, and x⊗ y ≤ z,

(/-back) if fx⊗′ y′ ≤ z′, then there are y, z ∈ X such that y′ ≤ fy, fz ≤ z′, and x⊗ y ≤ z,

(\-back) if x′ ⊗′ fy ≤ z′, then there are x, z ∈ X such that x′ ≤ fx, fz ≤ z′, and x⊗ y ≤ z,
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(ε-forth) ε′ ≤ f(ε), and

(ε-back) if ε′ ≤ fx, then ε ≤ x.

Given that a OKHD-morphism essentially is essentiall an NRL-space morphism without continuity,

we obtain that follows simple fact in virtue of the results from the chapter on the duality. In particular

we obtain that the inverse image of any filter is again a filter.

Lemma 7.2.6. Let f : X → Y be an OKHD-frame morphism, then f−1 : Fi(Y ) → Fi(X) is well

defined.

In order to extend this definition to OKHD-Models, we require in loose terms of that the models

agree on the valuations of propositional letters with respect to a given morphism. More precisely, we

require for each p ∈ Prop that V (p) = f−1(V ′(p)). This leads to the following definition.

Definition 7.2.7. (OKHD-Model Morphism) Let M = (X,V ) and N = (X ′, V ′) be OKHD-Models. An

OKHD-Model morphism f : M → N is a OKHD-frame morphism f : X → X ′ such that V = f−1 ∗ V ′.

In the above definition ∗ denotes function composition. Having defined the notions of morphism for

frame and models respectively, we will now show how our morphism can preserve semantic properties

like satisfaction and validity.

Let us first restrict attention to OKHD-Model morphisms. By considering OKHD-Model morphisms

and weakening our validity to satisfaction we obtain the following proposition which states that all

given a morphism f : M → N, x and fx satisfy all of the same formulas.

Proposition 7.2.8. (Preservation of Satisfaction) Suppose that f : M → N and x ∈ M is an

OKHD-Model morphism, then M, x ⊩ φ if and only if N, fx ⊩ φ.

Proof. The proof proceeds by an induction on the complexity of φ. In the interest of space and not

repeating what has been done in [6], we will inly show the cases for • and \.
Let M = (X,V ) and N = (X ′, V ′) and suppose that f : M → N is OKHD-Model morphism.

Case •: Suppose that M, x ⊩ φ • ψ. Then there are y, z ∈ X such that y ⊗ z ≤ x and M, y ⊩ φ

and M, z ⊩ ψ. By IH we obtain that N, fy ⊩ φ and N, fz ⊩ ψ. But in virtue of ⊗-forth condition and

monotonicity of f , we have fy⊗ fz ≤ f(y⊗ z) ≤ fx. Therefore N, fx ⊩ φ •ψ, as desired. Suppose for

the converse that N, fx ⊩ φ • ψ. Then there are y′, z′ ∈ X ′ such that y′ ⊗ z′ ≤ fx and N, y′ ⊩ φ and

N, z′ ⊩ ψ.. By the ⊗-back condition there are y, z ∈ X such that y ⊗ z ≤ x, y′ ≤ fy, and z′ ≤ fz. By

persistence of φ and ψ, we obtain that N, fy ⊩ φ and N, fz ⊩ ψ. So the IH guarantees that M,y ⊩ φ

and M, z ⊩ ψ. So it follows from the fact that y ⊗ z ≤ x that we can conclude M, x ⊩ φ • ψ.

Case \: Suppose that M, y ⊩ φ\ψ. Suppose that x′ ⊗ fy ≤ z and that N, x′ ⊩ φ for y′, z′ ∈ X ′.

We need to show that N, z′ ⊩ ψ. By the \-back condition there are x, z ∈ X such that x⊗ y ≤ z and

y′ ≤ fy and fz ≤ z′. By persistence and the IH we have that M, x ⊩ φ and so given that M, y ⊩ φ\ψ
and x⊗y ≤ z, we obtain by the semantics of \ that M, z ⊩ ψ. Then again by the IH and persistence we

obtain that N, z′ ⊩ ψ and conclude that N, fy ⊩ φ\ψ.. For the converse, suppose that N, fy ⊩ φ\ψ.
Suppose that x⊗ y ≤ z for x, z ∈ X. Then by the ⊗-forth condition and monotonicity of f we have

that fx⊗ fy ≤ fz. It then follows by IH that N, fx ⊩ φ and so by the semantics of \ that N, fz ⊩ ψ.

So by IH we have that M, z ⊩ ψ and can conclude that M, y ⊩ φ\ψ.

72



We now consider the more general case of arbitrary OKHD-frame morphisms and demonstrate

some of their properties. In particular, we will show that validity is reflected by injective OKHD-frame

morphisms and is preserved by surjective frame morphisms. A lemma for accomplishing this goal

follows. It provides a useful condition guaranteeing that a frame morphisms reflect satisfaction. It will

be used in the proof showing that injective frame morphisms reflect validity.

Lemma 7.2.9. Let (X,V ) and (Y, V ′) be models, f : X → Y be a frame embedding, and φ be any

sentence in L. If for all p ∈ Prop, V ′(p) =↑ f [V (p)], then (Y, V ′), fx ⊩ φ iff (X,V ), x ⊩ φ.

Proof. We can show this by simply showing that f−1[V ′(p)] = V (p), and thus that f : (X, V ) → (Y, V ′)

is an OKHD-model morphism. We then may apply Proposition 7.2.8. By definition of V ′, we have

f−1[V ′(p)] = f−1[↑f [V (p)]]. So the inclusion V (p) ⊆ f−1[V ′(p)] is straightforward. For the other

inclusion, let fx ∈ ↑f [V (p)]. Then there is some y ∈ V (p) such that fy ≤ fx. Since f is injective and

preserves ⋏, we have that y ≤ x and thus that x ∈ V (p).

We now show that OKHD frame-morphisms have the properties mentioned above; namely reflection

and preservation of validty for injections and surjections, respectively.

Proposition 7.2.10. ()

(1) Suppose that f : X → Y is an injective OKHD-frame Morphism. If Y ⊨ φ, then X ⊨ φ.

(2) Suppose that f : X → Y is a surjective OKHD-frame Morphism . If X ⊨ φ, then Y ⊨ φ.

Proof. (1) Suppose that f : X → Y is an embedding and that Y ⊨ φ. Let V : Prop→ Fi(X). Define

V ′ : Prop→ Fi(Y ) as V ′(p) =↑ (f [V (p)]). By the fact that Y ⊩ φ, (Y, V ′), fx ⊩ φ. By Lemma 7.2.9

we have immediately that (X,V ), x ⊩ φ. Generalizing on V and x, we have show that X ⊨ φ.

(2) Suppose that f : X → Y is a surjective OKHD-frame morphism and that φ is valid on X: X ⊨ φ.

Now, let V ′ : Prop→ Fi(Y ) be a valuation and suppose that x′ ∈ Y . We must show (Y, V ′), fx ⊨ φ.

Define V : Prop → Fi(X) such that V := f−1 ∗ V ′, where ∗ is function composition. Given the

definition of V , we are ensured that f is an OMH-model morphism from (X,V ) to (Y, V ′). However

given the sujectivity of f we know there is some x ∈ X such that fx = x′. So in virtue of Proposition

7.2.8 we obtain that (X,V ), x ⊨ φ iff (Y, V ′), fx ⊨ φ. But of course we assumed that X ⊨ φ, so then

(X,V ), x ⊨ φ and therefore (Y, V ′), fx ⊨ φ, as desired. Generalizing on x′ and V ′, we may conclude

that Y ⊨ φ.

The facts we just proved are essential for the applications of the semantics we provide. We use

them in both the characterization of the Disjunction Property and the new proof of the local deduction

theorem. In the following section we will use duality to prove completeness give sufficient condition to

guarantee that the algebraic completeness guarantees completeness on a class of OKHD-frames.

7.3 The RML-Frame Based Semantics

We briefly remark on the RML-frame based semantics. The semantics can be see as following

through with a suggestion to generalize the OKHD-semantics by Dunn and Hardegree in [14]. We

defined RML-frames in the last section of Chapter 5 in Definition RML-frame. In the interest of

Space we do not repeat the definition here. We define a model M = (X, V ) to be an RML-frame

X = (X,⋏, 1, R, T ) equipped with a valuation V : Prop → Fi(X). The satisfaction conditions for
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the language L differ from the OKHD-semantics only for the connectives •, \, /, the constant t,

and the punctuation mark −;−. In particular we have that given a RML-model M = (X, V ) with

X = (X,⋏, 1, R, T ):

M, x ⊩ ϕ • ψ iff there are y, z ∈ X such that Rxyz and M, y ⊩ ϕ and M, z ⊩ ψ.

M, x ⊩ ϕ\ψ iff for all y ∈ X, if M, y ⊩ ϕ and Rzyx, then M, z ⊩ ψ

M, x ⊩ ψ/ϕ iff for all y ∈ X, if M, y ⊩ ϕ and Rzxy, then M, z ⊩ ψ,

M, x ⊩ t iff x ∈ T .

And for the punctuation we have:

M, x ⊩ Γ;∆ iff there are y, z ∈ X such that Rxyx and M, y ⊩ Γ and M, z ⊩ ∆.

The semantics have the property of persistence. The proof can be adapted from the one for the

OKHD-semantics.

Lemma 7.3.1. (Persistence) For all formulas φ and all models M = (X,V ), JφKM is a filter of X.

We can also adapt straight forwardly the results of preservations of validity and satisfaction for

RML-frame morphisms.

Remark 7.3.2. (Sahlqvist Correspondence)

It is noteworthy that the Sahlqvist style correspondence results of [6] and the Thesis [] are readily

adapted to this setting for positive formulas.

7.4 Completeness via Duality

In this section we use duality to derive various completeness theorems. In Theorem 7.4.3 we prove

topological completeness for every extension of NFL. We then adapt this result to for a topoligical

completeness theorem with respect to RML-spaces. Following our topological completeness theorem,

we adapt an argument from [6] in order to give a generalization of existing completeness theorems with

respect to OKHD-frames. In particular, we adapt the notion of a Π1-persistent sequent from [6] (see

Definition 7.4.6) and then show that any sequent in the signature only containing the propositional

constants t, f , ⊤, and ⊥, and the connectives ∨, ∧, and • is Π1-persistent. Finally, in Theorems 7.4.8

and 7.4.9 we show how Π1-persistence guarantees completeness with respect to OKHD-frames and for

any extension of NFL axiomatized by sequents in a Π1-persistent signature. As far as we are aware,

general completeness theorem with respect OKHD-frames have only gone as far as logics axiomatized

by sequents in the signature consisting of • and t [30]. Our results therefore provide a significant

generalization of existing completeness theorems.

7.4.1 Topological Completeness

We begin with topological completeness via our topological duality. Let us first define topological

models.

Definition 7.4.1. A Topological Model M = (X, V ) is a pair consisting of an NRL-space X = (X, τ)

and clopen-valuation V : Prop→ Ficlp(X).

Satisfaction in a topological model is defined exactly the same as it is in ordinary OKHD-Models

(see Definition 7.2.2). Validity in topological space is defined with respect to clopen valuations and

validity in a class of spaces is defined with respect to validity in all frames of that class.
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Definition 7.4.2. We say that Γ ⇒ φ is topologically-valid in an NRL-space and write X ⊨ Γ ⇒ φ iff

for every clopen valuation V : Prop→ Ficlp(X) and every point x ∈ X: X, V, x ⊩ Γ ⇒ φ.

We say that Γ ⇒ φ is topologically-valid in a class K of NRL-spaces and write K ⊨ Γ ⇒ φ iff for

all X ∈ K, X ⊨ Γ ⇒ φ.

We define two operations Log(−) and TopNRL(−). For a class K of NRL-spaces Log(K) = {Γ ⇒
φ | K ⊨ Γ ⇒ φ}. That is, Log(K) is the set of sequents valid on every member of K. Likewise, for

a set of sequents S, TopNRL(S) = {X | X is an NRL-space and X ⊨ S}. In English, TopNRL(S) is
the set of NRL-spaces that validate every sequent in S. It is not hard to see that these operations

define a Galois connection between classes of NRL-spaces and sets of sequents. We will show that

every extension of NFL is complete with respect to TopNRL(L). Our completeness theorem essentially

characterizes every extension of NFL as a fixed point of the composite operation Log(TopNRL(−)).

In more standard terms, this notion of completeness means that if a sequent is valid on all topological

spaces of a logic, then that logic proves that sequent.

Theorem 7.4.3. Every extension L of NFL is complete with respect to a class of NRL-spaces. In

particular we have:

L = Log(TopNRL(L)).

Proof. Suppose that Γ ⇒ φ is not in L. By algebraic completeness, there is an algebraic model (K, σ)

of L such that (K, σ) ̸⊨ Γ ⇒ φ. We can define a clopen valuation V := ϕ ∗ σ on the dual space XL

of K by composing the isomorphism ϕ : K → Ficlp(XK) with σ : Prop → K. It is straight forward

that ϕ ◦ σ+ = J−K. It then follows from (K, σ) ̸⊨ Γ ⇒ φ that JXK ̸⊆ JφK and therefore that there is

some x ∈ X such that X, V, x ⊩ Γ but X, V, x ̸⊩ φ. It follows that Γ ⇒ φ is not in Log(TopNRL(L))

and therefore that L is complete with respect to TopNRL(L). Moreover, it readily follows then that

L = Log(TopNRL(L)), as desired.

The last thing we do in this section before moving to completeness with respect to frame based

semantics is to a completeness theorem with respect to RML-spaces. RML-space model M = (X, V )

of the substructural language L is a RML-model (see Section 7.3) where X = (X, τ) is an RML-space

and V : Prop→ Ficlp(X) is a clopen valuation. We note that TopRML(−) is the operation mapping

classes of sequents to RML-space models and Log(−) is essentially as above.

Theorem 7.4.4. Every extension L of NFL is complete with respect to a class of NRL-spaces. In

particular we have:

L = Log(TopRML(L)).

Proof. Recall that there is an isomorphism G : RMLSp → NRLSp. We claim that G[TopRML(L)] =

TopNRL(L). So let X ∈ G[TopRML(L)]. Then there is some Y ∈ TopRML(L) such that G(Y) = X.

A straightforward induction then shows that the for clopen valuations V : Prop → Fi(Y), every

x ∈ X, and every φ ∈ L:
Y, V, x ⊩ φ if and only if X, V, x ⊩ φ

Then G−1(X) ∈ TopRML. Therefore we also obtain that

Y ⊨ Γ ⇒ φ if and only if X ⊨ Γ ⇒ φ

for all Γ ⇒ φ ∈ L. We then can conclude that X ∈ TopNRL(L).
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The converse is shown by a similar argument.

This concludes the section on topological semantics and completeness. In the next section we apply

these results to obtain completeness theorems with respect to the OKHD-semantics.

7.4.2 Frame Completeness and Π1-Persistence

In this section we prove completeness with respect to OKHD-frames and RML-frames by combing

the topological completeness theorems in the previous section with the Π1-persistence results for

rℓ-groupoids demonstrated at the end of Chapter 6. To begin we show completeness of NFL+ with

respect to the class of all OKHD-frames. In definition 7.4.6 we define the notion of Π1-persistence

appropriate to the setting of our topological semantics and the OKHD-semantics. Using this definition,

the Π1-preservation Theorem 6.4.5, and topological completeness, we obtain the general completeness

theorem in Theorem 7.4.8 for OKHD-semantics. Finally, we use Theorem 7.4.8 and the fact that we

can always obtain an RML-frame from an OKHD-frame to show an analogous completeness theorem

with respect to RML-frames.

In Chapter 5 we showed in Proposition 5.2.11 that by forgetting the topology of an NRL-space we

are left with an OKHD-frame. We therefore recover the following fundamental completeness theorem

proved by Dǒsen in [13] by way of our duality theory.

Theorem 7.4.5. NFL+ is complete with respect of the class of all OKHD-frames.

Proof. If Γ ⇒ φ is not provable in NFL+, then by Theorem 7.4.3, there is a NRL-space X, a clopen

valuation V : Prop → Ficlp(X), and an element x ∈ X such that X, V, x ⊩ Γ and X, V, x ̸⊩ φ. By

Proposition 5.2.11 from chapter 5.2.11, we X is also an OKHD-frame and thus we are done.

Let us know define the notion of Π1-persistence. This is the logical analogue of an identity being

preserved through the Π1-completion.

Definition 7.4.6. We say a sequent Γ ⇒ φ is Π1-persistent if for any NRL-space (X, τ), if Γ ⇒ φ is

topologically-valid in X = (X,⋏, 1,⊗, ε, τ), then Γ ⇒ φ is valid in the OKHD-frame (X,⋏, 1,⊗, ε).

We now arrive at one of the main results of this section.

Theorem 7.4.7. Every sequent in the signature {t,⊤,⊥,∨,∧, •} is Π1-persistent.

Proof. Let X = (X, τ) be an NRL-space. Let Γ ⇒ φ be a sequent in the signature {t,⊤,⊥,∨,∧, •}
that is topologically-valid in X. This implies that LX ⊨ Γ ⇒ φ since any valuation on LX can be

transformed into a clopen valuation for X anf vise versa. With out loss of generality, we may assume

that Γ is a single formula ψ2 and we may treat ψ ⇒ φ as an identity ψ∧φ = φ in the algebraic language

corresponding to L. So the fact that ψ ⇒ φ is in LX means in algebraic language that LX ⊨ ψ∧φ = φ.

However, by Theorem 6.4.5, which assert that identities in the signature {t,⊤,⊥,∨,∧, •} are preserved

through the Π1-completion, we have that Π1(LX) ⊨ ψ ∧ φ = φ. So by the representation theorem

(Theorem 6.4.3) for the Π1-completion of rℓ-groupoids, we also have that Fi(X) ∼= Π1(LX). Now, let

V : Prop→ Fi(X) be valuation for the underlying OKHD-frame of X and let x ∈ X. From the fact

that Π1(LX) ⊨ ψ∧φ = φ and Fi(X) ∼= Π1(LX), we obtain that JψK ⊆ JφK. We may therefore conclude

that X, V, x ⊨ ψ ⇒ φ. Generalizing on V , we obtain that Γ ⇒ φ is valid in X as an OKHD-frame.

2Γ ⇒ φ is interderivable with ψ ⇒ φ when ψ is obtained from Γ by substituting • for −;−.
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We are finally in a position to provide our general completeness theorems. Just as in the case of

logics and NRL-space, we define two operations Log(−) and OKHD(−) that map classes of frames to

set of sequents and classes of sequents to classes of frames, respectively. More precisely, for a class K of

OKHD-frames, we define Log(K) = {Γ ⇒ φ | K ⊨ Γ ⇒ φ}. On the other hand given a set of sequents

S, we define OKHD(S) = {X | X ⊨ S & X is an OKHD-frame}.

Theorem 7.4.8. Every extension of L of NFL+ that is axiomatixed by a set of sequents S in the

signature {t,⊤,⊥,∨,∧, •} is complete with respect to a class of OKHD-frames. In particular we have:

L = Log(OKHD(L))

Proof. Clearly L ⊆ Log(OKHD(L)). Fir the other inclusion let us reason contrapositively. Suppose

that Γ ⇒ φ ̸∈ L. Then by Theorem 7.4.3, which demonstrates topological completeness, we obtain

that there is some NRL-space X such that X ⊨ L but X ̸⊨ Γ ⇒ φ. It follows that the OKHD-frame

underlying X also fails to validate Γ ⇒ φ. However, since L is axiomatized by S, which was assumed to

consist only of sequents in the signature {t,⊤,⊥,∨,∧, •}, we conclude from Theorem 7.4.7 that X ⊨ L

as an OKHD-frame. The OKHD-frame X is therefore in OKHD(L) but Γ ⇒ φ ̸∈ Log(OKHD(L)), as

desird. We therefore conclude that L = Log(OKHD(L)).

In light of the previous theorem, we obtain an analogous theorem with respect to the RML-frame

semantics. Let us define RML(S) = {X |X ⊨ S & X is an RML-frame}.

Corollary 7.4.9. Every extension of L of NFL+ that is axiomatixed by a set of sequents S in the

signature {t,⊤,⊥,∨,∧, •} is complete with respect to a class of RML-frames. In particluar, we have

L = Log(RML(L))

Proof. Recall the operation F : OKHD → RMLFr from Chapter 5 defined by sending an OKHD-

frame X = (X,⋏, 1,⊗, ε) to the RML-frame F(X) = (X,⋏, 1, R⊗, T ) where T = ↑ε and R⊗xyz holds

iff y ⊗ z ≤ x. It is easy to show that for all sequents Γ ⇒ φ:

X ⊩ Γ ⇒ φ if and only if F(X) ⊩ Γ ⇒ φ.

Now let L be an extension of NFL+ axiomatized by sequents S in the signature {t,⊤,⊥,∨,∧, •}.
Suppose that Γ ⇒ ψ ̸∈ L. Then by Theorem 7.4.8, there is some OKHD-frame X such that X ⊨ S but

X ̸⊨ Γ ⇒ φ. It then follows that both F(X) ⊨ S and F(X) ̸⊩ Γ ⇒ φ. It follows that F(X) ∈ RML(L)

and thus that Γ ⇒ φ ̸∈ Log(RML(L))

7.5 Analyzing Canonical Model Style Proofs

In this final section of the chapter we discuss how we can understand the success of the canonical

model style completeness proofs of Ono and Komori [32], Humberstone [23], and Dǒsen [13] in terms

of the completeness theorems we obtained in the previous section. In particular, we discuss how

to explicate the notion canonicity implicit in the results of Ono and Komori, Humberstone, and

Dǒsen in terms of algebraic completeness, topological duality, and Π1-persistence. We will begin by

defining canonical models of some extensions L of NFL+. We will then observe that there is a natural
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NRL-space topology on these models and that these topologies are the duals of the Lindenbaum

Algebras/free algebras associated with the logic L. Using this insight, we can then explain then success

of the canonical model style completeness proofs from [32, 23, 13] in virtue of the notions topological

completeness via duality and Π1-persistence.

7.5.1 Canonical Models and Topologies

Canonical models for NFL and its extensions can be constructed by definitionning appropriate

operations on the set of all deductively closed sets of sentences of the language L. In fact, more

generally, given a set Propκ of propositional letters of cardinality κ, we may define a language Lκ. So

the language L we defined in Section 7.1 is simply Lℵ0 .

First, given a set u of sentences in the language Lκ, where κ is some cardinal, we define the deductive

closure of u with respect to extension L of NFL by ClL⊢ (u) = {ϕ | ∃V ⊆ω u(
∧
V ⊢L ϕ)}. Here ⊆ω is

the finite subset relation. A set u of L expressions is called deductively closed if ClL⊢ (u) = u.

Definition 7.5.1. (Canonical Model for an Extension L of NFL)

The canonical model Mκ
L = (XL,⋏L, 1L,⊗L, εL, V L) is defined such that

∗ XL = {u ⊆ Lκ | ClL⊢ (u) = u & u ̸= ∅},
∗ u⋏L v = u ∩ v
∗ 1L = L
∗ u⊗L v = {ϕ ∈ L | ∃ψ ∈ u∃χ ∈ v(ψ • χ ⊢L ϕ)}
∗ εL = {ϕ | t ⊢L ϕ}
∗ V L : Propκ → P(WL) such that V L(p) = {u ∈WL | p ∈ u}.

When κ = ℵ0, we just write ML for Mℵ0
L . We denote the underlying frame (XL,⋏L, 1L,⊗L, εL) of

a canonical model with Xκ
L.

A standard truth lemma is provable with respect to these models. For a proof of this fact see [13],

for example.

Lemma 7.5.2. (Truth Lemma) Let L be an extension of NFL+. Then for every ϕ ∈ Lκ:

ϕ ∈ u iff Mκ
L, u ⊩ ϕ

As with standard canonical model constructions in modal logic, the canonical frame Xκ
L carries a

topology. In particular, we may equip Xκ
L with a topology τL generated by the subbase {JϕKV L | ϕ ∈

Lκ} ∪ {XL − JϕKV L | ϕ ∈ Lκ}. We call (Xκ
L, τ

L) the canonical topological frame and (Mκ
L, τ

L) the

topological canonical model. Note that that this topological model is well defined since V L(p) is

subbasic and thus clopen.

Again in parallel with ordinary modal logic, we can show that the canonical topology (Xκ
L, τ

L) is

the essentially the same as the dual NRL-space of the Lindenbaum Algebra ΛL := L/≡L of a extension

L of NFL+.

Proposition 7.5.3. For each extension L of NFL+: (Xκ
L, τ

L) ∼= XΛL
.

Proof. We will only sketch the proof here. The relevant NRL-space isomorphism f : (Xκ
L, τ

L) → XAL

is defined such that f(u) = u/θL where u/θL := {[φ]θL | φ ∈ Lκ}. The inverse is defined by taking the

union of the a filter of ΛL. A precise proof that f is a bijective function satisfying the conditions of an

NRL-space morphism can be adapted from Lemma 8.1.11 proved in the section duality for congruences.
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To show that f is continuous, it is enough to show that φ ∈ Lκ, f−1[ϕΛL
(φ/≡L)] = JφKV L . The

following chain of equivalences witnesses fact.

x ∈ f−1[ϕΛL
(φ/≡L)] ⇐⇒ fu ∈ ϕΛL

(φ/≡L)

⇐⇒ φ/≡L ∈ fu

⇐⇒ φ ∈ u

⇐⇒ u ∈ JφKV L .

The second equivalence holds in virtue of the definition of ϕΛL
. The third equivalence holds by the

definition of f . The last equivalence holds in virtue of the truth lemma.

Having observed that the homeomorphism between the dual NRL-spaces of Lindenbaum alegbras

and canonical topologies, we record a useful lemma we will make use of in the following chapter. We

note that every OKHD-frame embeds into a topological canonical frame.

Lemma 7.5.4. Suppose that L is a complete extension of NFL. Every OKHD-frame for the logic L

embeds into a (topological) canonical frame in Fr(L).

Proof. Every rℓ-groupoid is the homomorphic image image of a free rℓ-groupoid. The duals of free

rℓ-groupoid are precisely the canonical topological frames in the category dual to the algebras of L. If

X is an OKHD-frame for the logic L. Fi(X) forms an rℓ-groupoid. Fi(X) is the homomorphic image

of a free rℓ-groupoid F. It follows from NRL-space duality that XFi(X) embeds into the NRL-space

XF. What remains to be shown is that X embeds into XFi(X). However, this is witnessed by the map

eX : X → XFi(X) defined by eX(x) = {U ∈ Fi(X) | x ∈ U}. Showing it is an OKHD-frame morphism

is somewhat straight forward and is similar to the non-topological parts of the proof showing ηX is a

NRL-space morphism in Theorem 6.1.10.

We end this section by observing that the above lemma guarantees the the caetgory of NRL-spaces

fully determines the category of OKHD-frames.

Proposition 7.5.5. Every OKHD frame embeds into an NRL-space.

We now move on to discuss how Π1-persistence together with the correspondence between Linden-

baum/free algebras and canonical models clarifies existing canonical model style completeness theorems

with respect to the OKHD-semantics.

7.5.2 Completeness and Canonicity

In the terminology and notation of this chapter, canonical model style completeness proofs of Ono

and Komori, Humberstone, and Dǒsen are demonstrated by showing that the canonical frame XL is

a member of OKHD(L), which is the class of all OKHD-frames validating the sequents of L. Let us

define the following notion of a canonical logic, which appears to generalize the notion of canonicity

implicit in [32, 23, 13].

Definition 7.5.6. An extension L of NFL+ is OKHD-canonical if the canonical frame XL is an

element of OKHD(L).
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Using algebraic completeness, the dual correspondence between free/Lindenbaum algebras and

topological canonical models, and the characterization of Π1-persistent sequents, let us show how a

OKHD-canonicity can be derived. Specifically, we observe that each of the logics considered in the

articles [32, 23, 13] and more recently by [37] are axiomatized by sequents built up using connectives

among •,∨,∧, t,⊤ and ⊥. In virtue of algebraic completeness, the Lindebaum algebras of these logics

all validate the axioms of the logic. By the correspondence between Lindenbaum algebras and canonical

topological frames, we also obtain the axioms of these logics are topologically valid in the canonical

frame. Finally, since the axioms of all these logics are in the appropriate signature, we are ensured by

Π1-persistence that canonical frames validate the salient logical axioms as OKHD-frames. We have

therefore explained the OKHD-canonicity of these logics as promised.

Let us consider a concrete example of the this process. Consider the logic LBCC studied by Ono

and Komori in [32]. LBCC is essentially Intuitionistic Propositional Logic without distributivity or

contraction. We can view this logic as NFL+ extended with the following four axioms.

φ • (ψ • θ) ⇒ (φ • ψ) • θ φ • ψ ⇒ ψ • φ φ • ψ ⇒ φ ϕ⇒ φ • t.

By algebraic completeness and the correspondence between the Lindenbaum algebra and the

canonical frame we have that the axioms of LBCC are topologically valid in XLBCC
. Now, since each

of the axioms of LBCC are Π1-persistent, we also obtain that the axioms of LBCC are valid in XLBCC

as an OKHD frame and thus that XLBCC
is an element of OKHD(LBCC).

We summarize this example and the preceding discussion with the following proposition and the

fact that all of the logics in [32, 23, 13] and more recently by [37] are axiomatized by Π1-persistent

axioms.

Proposition 7.5.7. If an extension L of NFL+ is axiomatized by a Π1-persistent set S of sequents,

then L is OKHD-canonical.

Proof. By algebraic completeness, ΛL ⊨ S. By proposition 7.5.3, S is topologically valid in (XL, τL).

By Π1-persistence, XL ∈ OKHD(L).

7.6 Conclusion

In this chapter we used topological duality developed in the previous chapters to study the semantics

of substructural logics. In particular we show how NRL-spaces and RML-spaces could be used to

obtain topological semantics for substructural logics and how the topological semantics and the notion

of Π1-persistence could be used to generalize and understand existing OKHD-frame completeness

theorems from articles like [32, 23, 13, 37].
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Chapter 8

Expanding the Theory of NRL-spaces

This chapter extends the theory of NRL-space duality in two directions and then provides logical

applications for both developments. The first development, in Section 8.1, regards congruences of

residuated lattices from the perspective of NRL-space duality. We begin by demonstrating the lattice of

congruences of any residuated lattice L is isomorphic to the lattice of positive, central, idempotents of

the RL-space dual to L (Theorem 8.1.4). We use this representation to obtain a useful characterization of

subspaces of RL-spaces (Proposition 8.1.8 and Theorem 8.1.12). We then apply our dual representation

of congruences, and in particular the insights it provides into determining subspaces, to give a new

proof of the parameterized local deduction theorem for the logic FL+. The second development to the

theory of L-spaces provided in this chapter is the characterization of products and coproducts and

then a representation theorem for products of rℓ-groupoids. After proving our representation we use

our insight into the coproducts of NRL-spaces to demonstrate a simple characterization of when a

substructural logic has the disjunction property.

We note that the logical results of this chapter are not particularly novel results. It is well known

that the parameterized local deduction theorem holds for FL+. Further, in light of the duality theory

we have developed in the present chapter and in Chapter 6, our characterization of logics with the

disjunction property can be seen as a dualization of an existing algebraic characterization. However,

this is not really the point of providing them here. Rather their inclusion is intended as proof of

concept for the duality theory of NRL-spaces. We wish to stress this point since this is the primary

contribution of this chapter.

8.1 The Dual Representation of Congruences and the Parameterized

Local Deduction Theorem

Our first extension of the theory of NRL-space duality is a representation of congruences of

rℓ-groupoids in their dual NRL-spaces. We then apply this representation to a new proof of the

Parameterized Local Deduction Theorem for the logic FL+.

8.1.1 The Dual Representation of Congruences

Congruences are of central importance in universal algebra and algebraic logic. We will show

that the congruences of a residuated lattices correspond to a special collection of points in their dual

RL-spaces and that this correspondence leads to useful and tangible insights regarding subspaces of
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RL-spaces. Specifically, Theorem 8.1.4 shows that lattice of congruences of some residuated lattice

is isomorphic to the lattice of positive, central, idempotent elements (see Definition 8.1.2) of its dual

RL-space. Then Theorem 8.1.12 shows that every subspace of an NRL-space can be defined in virtue

of single positive central idempotent element. In virtue of these results, in the following section we will

show that we can obtain a novel proof of the parameterized local deduction theorem for logic FL+.

A Representation of Congruences

We begin by recalling some basic facts about the correspondence between congruences and a special

sort of filter, which we will call congruence filters. Although presented in a slightly different form,

proofs of the following results can be found in [19] in section 3.6. The more concise summary below

adapted from [1].

Recall the left and right conjugates λu(a) = u\au ∧ e and ρu(a) = ua/u ∧ e.

Definition 8.1.1. Let L be a residuated lattice. A congruence filter F is a filter of L such that (1)

e ∈ F , (2) if a, b ∈ F , then ab ∈ F , and (3) if a ∈ F and u ∈ L then λu(a), ρu(a) ∈ F .

The value of this definition is that for any residuated lattice, the congruence filters of that algebra

form a lattice isomorphic to its lattice of congruences. More formally stated, for any residuated lattice

L, Con(L) is isomorphic to the lattice FiCon(L) of congruence filters of L. The operations that

witness this isomorphism are

θ 7→ Fθ =
⋃
{a/θ | e ≤ a} and F 7→ θF = {(a, b) | a\b, b\a ∈ F}

Every θ ∈ Con(L) and F ∈ FiCon(L). These operations are well defined in so far as Fθ =⋃
{a/θ | e ≤ a} is a congruence filter whenever θ ∈ Con(L) and θF = {(a, b) | a\b, b\a ∈ F} is a

congruence of L whenever F is a congruence filter of L.

Turning now to our representation of congruences in RL-spaces, we define the positive, central,

idempotent elements of an RL-space.

Definition 8.1.2. Let X be an RL-space. We say that that an element x is positive if εX ≤ x. We

say that x is idempotent if x⊗ x = x. Finally, we say x is central if for all y ∈ X x⊗ y = y ⊗ x.

We denote the set of all positive, central, idemotent elements of X by C+(X).

The set of all positive, central, idempotent elements C+(X) form a lattice. This lattice will turn

out to correspond exactly to the conruence filters of the algebra of clopen filters LX.

Proposition 8.1.3. Let X be an RL-space. Then the set of all positive, central, idempotent elements

C+(X) of X form a bounded distributive lattice (C+(X),⋏X ,⊗X , 1, εX) with ⋏X as meet, ⊗X as join,

ε as bottom, and 1 as top.

Proof. Distributivity follows straight from the defining condition on ⊗ and ⋏ in the definition of an

RL-space. Clearly, ε and 1 are the bounds. We will show that C+(X) is closed under ⋏ and ⊗. The

argument is simple but we produce it nevertheless. Let x, y ∈ C+(X). We begin with ⊗. To see that

x⊗y is positive, we have that ε = ε⊗ε ≤ x⊗y. For idempotence: x⊗y⊗x⊗y = x⊗x⊗y⊗y = x⊗y.
To show that x⊗ y is central let z ∈ X, then: z ⊗ x⊗ y = x⊗ z ⊗ y = x⊗ y ⊗ z.

Now, for ⋏ closure. Clearly if each x and y are positive, then x⋏ y is positive. For idempotence, in

one direction we have: (x ⋏ y) ⊗ (x ⋏ y) ≤ x ⊗ x ⋏ y ⊗ y = x ⋏ y for the other direction we by the
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fact that x⋏ y is positive we have x⋏ y ≤ (x⋏ y)⊗ (x⋏ y). For centrality, let z ∈ X, then we have

z ⊗ (x⋏ y) = (z ⊗ x)⋏ (z ⊗ y) = (x⊗ z)⋏ (y ⊗ z) = (x⋏ y)⊗ z.

Finally, in order to ensure that (C+(X),⋏X ,⊗X , 1, εX) is a lattice we must check the absorption

law holds. But this follows quickly from the fact that ε is bottom.

We now prove that the lattice of congruences of a residuated lattice L is isomorphic to the lattice

of positive, central, idempotent elements of the NRL-space XL. This is demonstrated by noticing that

the positive, central, idempotent elements of the NRL-space XL a simply the congruence filter of L.

Theorem 8.1.4. (Representation of Congruences) Let XL be an RL-space that is dual to L, then:

Con(L) ∼= C+(XL)

Proof. Let XL be an RL-space dual to L. We will show that FiCon(L) is equal to C+(XL) and then

infer from Proposition ?? that Con(L) ∼= C+(XL).

Let is first show that FiCon(L) ⊆ C+(XL). Let F ∈ FiCon(L). That F is positive follows directly

from the fact that the identity of L, e, is in F . That F is idempotent follows from closure under · and
because F is positive. Since F is closed under · we have that F ⊗ F ≤ F . Since F is positive, we have

that F ≤ F ⊗ F . To show that F is central, let x ∈ XL and suppose that a ∈ x⊗ F . We will show

that a ∈ F ⊗ x. If a ∈ x ⊗ F , then there are b ∈ x and c ∈ F such that b · c ≤ a. Since F is closed

under conjugates, we know that ρb(c) = b · c/b ∧ e ∈ F . So we have that (b · c/b) · b ∈ F ⊗ x. But

(b · c/b) · b ≤ b · c ≤ a, so a ∈ F ⊗ x. This shows that x⊗ F ≤ F ⊗ x. The argument for F ⊗ x ≤ x⊗ F

is exactly analogous except relies on the left conjugate λ.

Let us now show that C+(XL) ⊆ FiCon(L). So let c ∈ C+(X). We will show that c is a congruence

filter of L. Given that c is positive, we know e ∈ F . Since c is idempotent we know that c is closed

under ·. Finally, we must show that c is closed under conjugates. So a ∈ c and let b ∈ L. We need

to show that λb(a), ρb(a) ∈ c. We will show that ρb(a) ∈ c by showing c ∈ ϕ(ρb(a)). Recall that

ϕ(ρb(a)) = ϕ((b · a)/b ∧ e) = [ϕ(a · b)/Xϕ(b)] ∩ ϕ(e). Since c is positive we already have that c ∈ ϕ(e).

Now suppose that x ∈ ϕ(b). Let us show that c⊗ x ∈ ϕ(a · b) and thus showing that c ∈ ϕ(b · a)/Xϕ(b).
But clearly, if a ∈ c, then b · a ∈ x⊗ c. And by centrality of c then b · a ∈ c⊗ x and thus c⊗ x ∈ ϕ(a · b),
as desired. It follows that c ∈ ϕ(ρb(a)) and therefore that ρb(a) ∈ c. An analogous argument shows

that λb(a) ∈ c as well. We may therefore conclude that c ∈ FiCon(L).

Generalizing we conclude that FiCon(L) is equal to C+(XL) and then by Proposition ?? that

Con(L) ∼= C+(XL).

We have just demonstrated that the lattice of congruence of any residuated lattices is isomorphic

to the lattice of positive, central, idempotents of that residuated lattice’s dual RL-space.

Corollary 8.1.5. Let X be an RL-space: then LX is s.i. iff ↑(C+(X)− {εX}) is closed.

Corollary 8.1.6. Let X be an RL-space: then LX is simple iff for all x ∈ C+(X), either x = ε or

x = 1.
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The Determination of Subspaces by Members of C+(X)

In this section we show that every element x ∈ C+(X) determines a subspace Sub(x) and conversely

that every subspace arises this way. It is worth noting that that we only use topological properties to

show that every subspace is of the form Sub(x) for some x ∈ C+(X). The converse however holds also

at the level of frames.

The general definition of subspace has the following definition.

Definition 8.1.7. Let X be an RL-space. Then a subset Y of X is a subspace of X if Y is an RL-space

and if the inclusion i : Y → X is an injective RL-space morphism.

We can now show that the positive, central, idempotent elements of any RL-spaces determine the

subspaces of that RL-space.

Proposition 8.1.8. Let (X, τ) be a n RL-space and let c ∈ C+(X). Then Sub(c) = (Sub(c), σ) where

Sub(c) = {x ∈ X | x⊗ c = x} and the topology σ = {U ∩ Sub(c) | U ∈ τ} is a subspace of X.

Proof. Let c ∈ C+(X). Define Sub(c) := {x ∈ X | x⊗ c = x} the topology σ = {U ∩ Sub(c) | U ∈ τ}
on Sub(c). We show that Sub(c) is a subspace of X.

First let us show that Sub(c) = (Sub(c), σ) is an RL-space. That Sub(c) is closed under ⋏ and

⊗ and contains 1 follows quickly from the definition. For ⋏ closure, suppose that x, y ∈ Sub(c).

(x⋏ y)⊗ c = (x⊗ c)⋏ (y ⊗ c) = x⋏ y. So x⋏ y ∈ Sub(c). ⊗ closure also follows.

For HMS-separation, suppose that x ̸≤Y y. Then x ̸≤X y. Therefore, there is some a clopen filter

U of X such that x ∈ U but y ̸∈ U . Since U is clopen in X, U ∩ Y is clopen in Y and x ∈ U ∩ Y and

y ̸∈ U ∩ Y . Therefore, HMS-separation holds.

For compactness note that the collection

S := {U ∩ Y | U ∈ Ficlp(X)} ∪ {Y − (U ∩ Y ) | U ∈ Ficlp(X)}

forms a subbase for the topology σ. A more or less standard argument then guarantees compactness

of Sub(c).

Clearly, the inclusion i : Y → X is continuous since for any open U , i−(U) = U ∩ Sub(c), which is

open in σ. It remains to be shown that i has the properties of an RL-space morphism. To show this

the map c⊗− : X → Sub(c) is left adjoint to the inclusion i : Sub(c) → X:

c⊗ x ≤ y ⇔ x ≤ i(y)

for every x ∈ X and y ∈ Sub(c). In virtue of this, it is not hard to see that i is an NRL-space morphism.

Let us show the back condition for ⋏ and the back condition for \.
(⋏-back) Suppose that z ∈ Sub(c). Let x, y ∈ X and suppose that x⋏y ≤ i(z). Then c⊗(x⋏y) ≤ z in

virtue of the adjuction property. By idempotence (and centrality) of c, we have that c⊗x, c⊗y ∈ Sub(c).

By ⊗−⋏ distribution property we have that c⊗ x⋏ c⊗ y ≤ z. And again in virtue of the adjunction

property (or positivity of c) we have that x ≤ c⊗ x and y ≤ c⊗ y. Therefore we ahve found x′ := c⊗ x

and y′ := c ⊗ y such that x′ ⋏ y′ ≤ z and x ≤ i(x′) and y ≤ i(y′). Therefore i satisfies the ⋏-back

condition.

(\-back). Let z ∈ Sub(c) and suppose that x⊗ y ≤ z for some x, y ∈ X. Define z′ := (c⊗ x)⊗ y.

We obtain z′ = (c ⊗ x) ⊗ y = x ⊗ (c ⊗ y) = x ⊗ y ≤ z by centrality and the fact that y ∈ Sub(c).
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Further, we have that x ≤ c⊗ x. Finally, it is by definition that (c⊗ x)⊗ y ≤ z′. So we have found

some x′ := c⊗ x and z′ such that x′ ⊗ y ≤ z′ and x ≤ i(x′) and i(z′) ≤ z and have obtained the back

condition for \. The other morphism conditions follow by similar reasoning.

We may therefore conclude that Sub(c) is in fact a subspace of X.

The converse of the above can be shown. Specifically, we will show that all subspaces of an

NRL-space can be defined in terms of a positive, central, idempotent element. First we observe the

following few lemmas and the definition of a θ-invariant filter. This definition will provide more insight

into how to think of Sub(x) from the algebraic side of the duality.

Definition 8.1.9. (θ-Invariant Filters) Let L be a residuated lattice and suppose that x is a filter of

L. We say that x is θ-invariant if a ∈ x and aθb, then b ∈ x.

We know that for any congruence θ of L that Fθ is a positive, central, idempotent element in virtue

of Theorem 8.1.4. It turns out that Sub(Fθ) corresponds precisely to the θ-invariant filters of L. While

this fact is primarily useful for proving that subspaces are determined by elements of C+(X), we find it

interesting in its own right since it characterize an element x of XL with the property that x⊗ Fθ = x

in virtue of the internal structure of x.

Lemma 8.1.10. Let L be a residuated lattice and let θ ∈ Con(L), then:

x ∈ Sub(Fθ) if and only if x is θ-invariant.

Proof. Let x ∈ Sub(Fθ). Suppose that a ∈ x and aθb. If aθb, then b\a ∈ Fθ in virtue of the

correspondence between congruence-filters and congruences (See remarks below 8.1.1). So a · a\b ∈
x⊗ Fθ = x. However since a · a\b ≤ b, we then obtain b ∈ x. Therefore, x is θ-invariant.

Let x be θ-invariant. Let a ∈ x⊗Fθ. Then there are b ∈ x and c ∈ Fθ such that b · c ≤ a. If c ∈ Fθ,

then there is some d such that e ≤ d and cθd. We then obtain b · cθb · d. However, x⊗ ↑Le = x since

x ∈ XL and ↑Le = εXL
. So b · d ∈ x⊗↑Le = x. However, since we assumed that x was θ-invariant, this

implies that b · c ∈ x and then that a ∈ x since b · c ≤ a. We therefore have shown that x⊗Fθ ≤ x. The

other in equality follows since εX ≤ fθ. We concldue then that if x be θ-invariant, then x ∈ Sub(Fθ).

We have therefore shown that x ∈ Sub(Fθ) if and only if x is θ-invariant.

The above lemma gives us insight into the nature of the element of Sub(Fθ). The next lemma uses

these insights to bring us closer to the stated goal of showing that every subspace of an RL-spaces is of

the form Sub(c) for some positive, central, idempotent element of XL.

Lemma 8.1.11. Let L be a residuated lattice and suppose that θ ∈ Con(L). Then XL/θ
∼= Sub(Fθ).

Proof. Define f : XL/θ → Sub(Fθ) such that for each filter x ∈ XL/θ of L/θ, f(x) =
⋃
x. To see that

f is well defined we must check that fx is a filter of L and that is an element of Sub(Fθ). The first

part, checking that fx is a filter, is straight forward. To show that fx ∈ Sub(Fθ) we note that fx is

θ-invariant and then apply Lemma 8.1.10, which implies that if fx is θ-invariant, then fx ∈ Sub(Fθ).

It follows that f is well defined.

For surjectivity of f , we claim for each x ∈ Sub(Fθ) that x/θ := ↑{a/θ | a ∈ x} is filter and that

f(x/θ) = x. That x/θ is a filter follows from the fact that {a/θ | a ∈ x} is closed under meets. To see
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this, let a/θ, b/θ ∈ fx. Then there are c, d ∈ x such that c/θ ≤ a/θ and d/θ ≤ b/θ. It follows from the

fact that c ∧ d ∈ x and (c ∧ d)/θ = c/θ ∧ d/θ ≤ a/θ ∧ b/θ that a/θ ∧ b/θ ∈ fx, as desired.

Now let us show that f(x/θ) = x. Let us show the inclusion f(x/θ) ⊆ x. So let a ∈ f(x/θ). Then

a/θ ∈ x/θ. Therefore, there is some b ∈ x such that b/θ ≤ a/θ and thus a ∧ bθb. Now, by the fact that

x ∈ Sub(Fθ), we know by lemma 8.1.10 that x is θ-invariant. So a ∧ bθb together with b ∈ x implies

that a⋏ b ∈ x and therefore that a ∈ x, as desired. For the other inclusion, if a ∈ x, then a/θ ∈ x/θ

and so a ∈ f(x/θ). We therefore conclude that f(x/θ) = x.

For injectivity of f suppose that fx = fy. We have a/θ ∈ x iff a ∈ fx iff a ∈ fy iff a/θ ∈ x. So

x = y, as desired. We conclude that f is a bijection.

Having concluded that f is a bijection, we must show that f is also an NRL-space morphism. It is

sufficient to check that f preserves ⋏ and ⊗ and that f(εXL/θ
) = Fθ.

That f preserves ⋏ is almost immediate. Since taking unions is a monotone operation, f is

monotone. So f(x ∧ y) ≤ fx ∧ fy. If a ∈ fx ∧ fy, then aθ ∈ x and a/θ ∈ y and so a/θ ∈ x ∩ y.
Therefore, a ∈ f(x⋏ y).

We now show that f preserves ⊗. Let a ∈ f(x⊗ y). Then there are [b] ∈ x and [c] ∈ y such that

[b · c] ≤ [a]. Therefore, (b · c) ∧ aθb · c. However, if [b] ∈ x and [c] ∈ y, then b · c ∈ fx⊗ fy. And since

fx⊗ fy ∈ Sub(Fθ), we obtain from Lemma 8.1.10 that fx⊗ fy is θ-invariant. We then obtain from

(b · c) ∧ aθb · c that (b · c) ∧ a ∈ fx⊗ fy and then a ∈ fx⊗ fy, as desired. We have therefore shown

that f(x⊗ y) ≤ fx⊗ fy. The other inequality, fx⊗ fy ≤ f(x⊗ y) is straightforward.

We now observe that f(εXL/θ
) = Fθ. Let a ∈ f(εXL/θ

). Then e/θ ≤ a/θ. So eθa∧e and hence

a ∧ e ∈ Fθ. But since Fθ is upward closed, a ∈ Fθ. Now let a ∈ Fθ. Then there is some b ≥ e such

that aθb. But the e/θ ≤ b/θ = a/θ. So a/θ ∈ εXL/θ
and hence a ∈ f(εXL/θ

). We conclude that

f(εXL/θ
) = Fθ.

Finally, we check that f is continuous. So let U be a clopen filter of Sub(Fθ). Then there is a

clopen filter ϕL(a) of XL such that Sub(Fθ) ∩ ϕL(a) = U . We claim that f−1[U ] = ϕL/θ(a/θ). To see

this we provide the following chain of equivalences.

x ∈ f−[U ] ⇐⇒ fx ∈ U

⇐⇒ fx ∈ ϕL(a) ∩ Sub(Fθ)

⇐⇒ a ∈ fx & fx ∈ Sub(Fθ)

⇐⇒ a/θ ∈ x & x ∈ XL/θ

⇐⇒ x ∈ ϕL/θ(a/θ).

This concludes the proof that f is a RL-space homeomorphism and we can therefore conclude that

XL/θ
∼= Sub(Fθ).

The claim that all subspaces are determined by a member of C+(X) is a direct consequence of the

previous lemma.

Theorem 8.1.12. Let Y be a sub RL-space of X. Then there is some c ∈ C+(X) such that Sub(c) ∼= Y.

Proof. Use the first isomorphism theorem and the correspondence between congruences and elements

of C+(X). More particularly, if Y is a sub RL-space of X, then there is an injective NRL-space

morphism f : Y → X. By duality, f−1 : LX → LY is a surject residuated lattice homomorphism.
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Let Ff be the congruence filter of LX corresponding to the kernel of f . By the preceding lemma,

XLX/Ker(f)
∼= Sub(Ff ). However, by the first isomorphism theorem we have that LY

∼= LX/Ker(f).

Therefore, we may conclude that Y ∼= XLX/ker(f)
∼= Sub(Ff ), which demonstrates the statement of

this theorem.

A key insight of the previous theorems is that the elements of C+(X) correspond precisely to the

identity elements of the subspaces of X. We now move from congruences to products.

A Remark on Negative Central Idempotents of a residuated lattice

It is known that that for finite residuated lattices the lattice of congruences is isomorphic to the

lattice of negative central idempotents ([19], p198). Using our representation of the congruences

together with the relation our duality holds to the Π1-completion, we conjecture that we generalize

this result by showing that the lattice of congruences for any residuated lattices is isomorphic to the

lattice of closed negative central idempotents of the Π1-completion. Given that the the Π1 completion

of a finite lattice is itself, this fact can be seen as a direct generalization of the existing result.

8.1.2 The Parameterized Local Deduction Theorem

We now apply some of the theory developed in the previous section on the representation of

congruences to give a novel proof of the Parameterized Local Deduction Theorem (PLDT) for the logic

FL+. A key step of the proof uses a positive, central, idempotent element to identify a sub-space.

Algebraic proof can be found in [18]. A proof theoretic proof can be found in [19] starting on page 122.

It is important to note that in this section and the later section on the disjunction property we will

work with a notion of consequence we have yet to discuss. In particular, given an extension L of FL+,

the consequence relation ⊢L relates sets of formulas to a single formula and intuitively characterizes

truth preserving reasoning.

Definition 8.1.13. Let Γ ∪ {φ} of formulas and L be an extension of FL+. We write Γ ⊢L φ if

whenever t⇒ ψ is provable in L for each ψ ∈ Γ, then t⇒ φ is provable in L.

In general the usual deduction theorem does not hold for ⊢FL+ . This reflects the fact that ⊢FL+ is

a more flexible notion of consequence that allows weakening and some degree of commutativity in the

sense that {φ,ψ} proves both φ • ψ and ψ • φ with respect to ⊢FL+ . However, the generalization of

the deduction theorem PLDT does. The PLDT is stated in terms of conjungates, which are the logical

analogue of the algebraic notion we used in earlier in the section when studying congruences from the

perspective of our duality theory (see remarks preceding Definition 8.1.1). In particular the left and

right conjugates are defined respectively as λ(φ,ψ) := (φ\(ψ • φ)) ∧ t and ρ(φ,ψ) := ((φ • ψ)/φ) ∧ t.
An important property of these schemas is the potential of iterating them to form complex formulas.

Given a set of formulas φ1, .., φn, ψ, an iterated conjugate is a formula γ(ψ) of the form:

γ1(φ1, γ2(φ2, ..(γn(φn, ψ))..))

where γi is λ or ρ for each 0 < i ≤ n. We call the formulas φ1, .., φn parameters. Intuitively, conjugates

and iterated conjugates make the formulas they are applied to more flexible with regard to how they

combine with certain other formulas. In particular, the permit some degree of commutativity and

weakening.
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We can then state the PLDT for FL+ as follows.

Σ,∆ ⊢FL+ ϕ if and only if Σ ⊢FL+ Πn
i=1γi(ψi)\φ

For any collection of formulas Σ∪∆∪{φ} where ψ1, .., ψn ∈ ∆ and each γi is an iterated conjugate

containing parameters in the language LFL+ . We have written Πn
i=1ψi for the fusion ψ1 • ... • ψn. The

intuition here is that the relatively inflexible \ is only be able encode ⊢FL+-consequences by exploiting

the flexibility of the iterated conjugate formulas.

To prove the PDLT, we will require a few lemmas and definitions. The first lemma we require

regards fusions of iterated conjugates. An algebraic version of this is proved in [19].

Lemma 8.1.14. For any formulas φ and ψ1, .., ψn, the following are provable in FL+:

Πi≤nλ(φ, γi(ψi)) ⇒ λ(φ,Πi≤nγi(ψi)) Πi≤nρ(φ, γi(ψi)) ⇒ ρ(φ,Πi≤nγi(ψi)).

Proof. Proof proceeds by an induction on n. When n = 2 we have the following proof in which we have

assumed some FL+ provable sequents in order to make the proof more manageable and provide the

essential steps. The assumed sequents are preceded by vertical dots to indicate that they are provable.

...
λ(φ,ψ1) • λ(φ,ψ2) ⇒ (φ\ψ1 • φ) • (φ\ψ1 • φ)

...
(φ\ψ1 • φ) • (φ\ψ1 • φ) ⇒ φ\(ψ1 • ψ2 • φ)

λ(φ,ψ1) • λ(φ,ψ2) ⇒ φ\(ψ1 • ψ2 • φ)

...
λ(φ,ψ1) • λ(φ,ψ2) ⇒ t

λ(φ,ψ1) • λ(φ,ψ2) ⇒ φ\(ψ1 • ψ2 • φ) ∧ t
λ(φ,ψ1) • λ(φ,ψ2) ⇒ λ(φ, (ψ1 • ψ2))

The inductive step for this proof is carried out by a similar proof and the use of associativity of

fusion. The case for ρ is symmetric.

Now for some definitions. For a set of sentence ∆, we write γ(∆) to denote the set of finite

compositions of λ and ρ with parameters φi from the language.

γ(∆) = {γ1(φ1, γ2(φ2, ..(γn(φn, ψ))..)) | n ∈ ω & ψ ∈ ∆ & γi ∈ {λ, ρ} & φi ∈ LFL}

Similarly, π(∆) denotes the closure of ∆ under the fusion connective.

π(∆) = {ψ | φ1 • ... • φn ⇒ ψ is provable in FL+ & φ1, .., φn ∈ ∆}

Given a set of formulas ∆, the set π(γ(∆)) of formulas has some desirable features.

Lemma 8.1.15. Let ∆ be a set of formulas in the language of FL+:

1) if φ ∈ π(γ(∆)) and φ⇒ ψ is provable in FL+, then ψ ∈ π(γ(∆)),

3) If φ and ψ are in π(γ(∆)), then φ ∧ ψ ∈ π(γ(∆)), and

2) t ∈ π(γ(∆)).

Proof. (1) one follows from the cut rule. (3) is a consequences of the fact that if φ ∈ ∆, then

λ(t, φ) ∈ π(γ(∆)). But λ(t, φ) ⇒ φ ∧ t is provable in FL+, so by (1) we have t ∈ π(γ(∆)). Finally, (2)

follows from Lemma 8.1.14.
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To see this, if φ,ψ ∈ π(γ(∆)), then there are φ1, .., φn and ψ1, .., ψm in ∆ such that both

Πi≤nγi(φi) ⇒ φ Πi≤mγ
′
i(ψi) ⇒ ψ

are provable in FL+ when each γi and γ
′
j have parameters in the LFL+ . We also note that an easy

proof shows that if θ1 ⇒ θ2 is provable, then λ(χ, θ1) ⇒ λ(χ, θ2) is provable as well. We then have that

λ(t,Πi≤nγi(φi)) ⇒ λ(t, φ) λ(t,Πi≤mγ
′
i(ψi)) ⇒ λ(t, ψ)

are both provable in FL+. However, by Lemma 8.1.14 and the transitivity of ⇒ we then obtain that

Πi≤nλ(t, γi(φi)) ⇒ λ(t, φ) Πi≤mλ(t, γ
′
i(ψi)) ⇒ λ(t, ψ)

are also both provable in FL+. So the following is also provable.

Πi≤nλ(t, γi(φi)) •Πi≤mλ(t, γ
′
i(ψi)) ⇒ λ(t, φ) • λ(t, ψ)

Now, since λ(t, φ) • λ(t, ψ) ⇒ (φ∧ t) • (ψ ∧ t) and (φ∧ t) • (ψ ∧ t) ⇒ φ∧ψ are both prvable, we obtain

that

Πi≤nλ(t, γi(φi)) •Πi≤mλ(t, γ
′
i(ψi)) ⇒ φ ∧ ψ

is provable in FL+. So since Πi≤nλ(t, γi(φi)) •Πi≤mλ(t, γ
′
i(ψi)) ∈ π(γ(∆)), we conclude by (1) that

φ ∧ ψ ∈ π(γ(∆)) as well.

We now show that for any set of formulas ∆, the set π(γ(∆)) is a positive central idempotent of the

canonical frame. Positive central idempotents were defined in Definition 8.1.2 and are the idempotent

elements above an NRL-spaces identity element that commute with respect to ⊗ with all other elements

of the space.

Lemma 8.1.16. Let ∆ be a set of formulas in the language of FL+. Then π(γ(∆)) is a positive,

central, idempotent element in the canonical (topological) frame XFL+ i.e. π(γ(∆)) ∈ C+(XFL+).

Proof. See proof for representation of congruences (Theorem 8.1.4), it is analogous.

The Importance of the previous lemma is that sets of formulas of the form π(γ(∆)) have the

potential to determine submodels of the canonical model (See Theorem 8.1.12). We now demonstrate

the Parameterized Local Deduction Theorem for FL+.

Theorem 8.1.17. For an collection of formulas Σ ∪∆ ∪ {φ}:

Σ,∆ ⊢FL+ ϕ if and only if Σ ⊢FL+ Πn
i=1γi(ψi)\φ

Where ψ1, .., ψn ∈ ∆ such that each γi has parameters in the language LFL+.

Proof. From left to right: Suppose Σ,∆ ⊢FL+ φ. By soundness, we have that Σ,∆ ⊨FL+ φ. Suppose

also that t ⇒ θ is provable in FL+ for each element θ of Σ. The set x∆ := π(γ(∆)) is conjunction

closed and is closed under ⇒ , so is a member of the (topological) canonical model MFL+ of FL+. It is

also the case that ∆ ⊆ π(γ(∆)) and, because t ∈ π(γ(∆)), we have Σ ⊆ π(γ(∆)) because we assumed

t⇒ θ was provable in FL+ for each element θ of Σ. Therefore, by the truth lemma, MFL+ , x∆ ⊩ ∆∪Σ

89



(Lemma 7.5.2). Now, by Lemma 8.1.16, we also have that x∆ ∈ C+(MFL+). So by Theorem 8.1.8,

there is a sub-frame Sub(x∆) of MFL+ and there is also a valuation V : Prop→ Fi(Sub(x∆)) defined
so that V (p) = V FL+

(p)∩Sub(x∆). Clearly, i−1[V FL+
(p)] = V FL+

(p)∩Sub(x∆) = V (p), so the model

N∆ := (Sub(x∆), V ) is a well defined submodel of the canonical model MFL+ . Further, in virtue of

Proposition 7.2.8 applied to the inclusion morphism i : N → MFL+ , we obtain the that N∆, x∆ ⊩ ∆∪Σ.

But then since we assumed that Σ,∆ ⊨FL+ φ, we obtain N∆x∆ ⊩ φ. Therefore, an application of the

truth lemma yields that φ ∈ x∆ = π(γ(∆)). But if φ ∈ π(γ(∆)), then there ψ1, .., ψn ∈ ∆ such that

Πn
i=1γi(ψi) ⇒ φ is provable in FL+. We therefore obtain the conclusion that t⇒ Πn

i=1γi(ψi)\φ is also

provable in FL+. So we conclude that Σ ⊢FL+ Πn
i=1γi(ψi)\φ for some ψ1, .., ψn ∈ ∆ such that each γi

has parameters in the language LFL+

For the other direction we assume Σ ⊢FL+ Πn
i=1γi(ψi)\φ where ψ1, .., ψn ∈ ∆ and such that each γi

has parameters in the language LFL+ . More generally, we note that for any collections for formulas

Θ ∪ {ξ} ∪ {ζ}, if Θ ⊢ ξ and Θ ⊢ ζ, then Θ ⊢ ξ • ζ. Further we note that for any ξ and ζ, we

have ξ ⊢FL+ λ(ξ, ζ) and ξ ⊢FL+ ρ(ξ, ζ). Jointly we then obtain ∆ ⊢FL+ Πn
i=1γi(ψi) and thus that

Σ,∆ ⊢FL+ φ.

The following section develops a characterization of coproducts in the category of NRL-spaces

spaces and uses the NRL-space semantics to provide a new characterization of the disjunction property

for extensions of the logic NFL+.

8.2 Products of NRL-spaces and The Disjunction Property

In this section we first study (co)products of NRL-spaces and then apply our insights to obtain a

characterization of when an extension of NFL+ has the disjunction property.

8.2.1 Products of NRL-spaces

We now characterize the products and coproducts of NRL-spaces. To do so we build on the

definition of products of L-spaces and extend the associated results to the case of of NRL-spaces. In

particular, in Theorem 8.2.2 we show that finite products of NRL-spaces are again NRL-spaces. We

then show that products of NRL-spaces also play the role of coproducts in the category of NRL-spaces

(See Theorem 3.1.10). Specifically, we demonstrate that products of NRL-spaces have the universal

property of coproducts with respect to the inclusion morphisms introduced in Definition 3.1.1. This

is demonstrated in Theorem 8.2.4. Finally, in Theorem 8.2.4 we show that the NRL-space dual to a

product of rℓ-groupoids is homeomorphic to a (co)product of the NRL-spaces dual to the factors of

the salient product.

Now, let us begin by defining the products of NRL-spaces.

Definition 8.2.1. (Products of NRL-spaces.) Let {(Xi, τi)i}i∈I be a family of NRL-spaces.

The Product
∏

i∈I Xi = (X, τ) is defined such that:

1) (X, τ) is the product of the underlying L-spaces i.e. X =
∏
Xi of the semilattices defining each

Xi and τ is the product topology,

2) ⊗X : X ×X → X is defined pointwise i.e. α⊗ β : I →
⋃
Xi is the function defined such that

α⊗ β(i) = α(i)⊗ β(i), and

3) εX : I →
⋃
Xi is the function such that ε(i) = εXi.
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We recall the projections pi : X → Xi and the inclusions γi : Xi. The projections are defined as

usual and the inclusions were defined so that γi(x) is the function I →
⋃
Xi such that γi(x)(j) = 1Xj

for all j ≠ i and γi(x)(j) = x if j = i. We also remind the reader that in case of products of L-spaces,

the subbase SP was sufficient to generate the product topology of L-spaces. The same fact holds in the

case of NRL-spaces.

SP := {
∏

i∈I Ui | Ui ∈ Ficlp(Xi) & |{i | Ui ̸= Xi}| < ℵ0}
∪ {X − (

∏
i∈I Ui) | Ui ∈ Ficlp(Xi) & |{i | Ui ̸= ∅}| < ℵ0}

With these remarks in mind, we show that the category of NRL-spaces is closed under finite

products. This result builds directly off the analogous fact for L-spaces demonstrated in Theorem 3.1.8.

Proposition 8.2.2. A finite product of NRL-spaces is an NRL-space.

Proof. Let {(Xi, τi)i}i≤n be a finite family of NRL-spaces and let
∏

i≤nXi = (X, τ) be the product

topology.

In virtue of Theorem 3.1.8 from chapter 3,
∏

i≤nXi = (X, τ) is an L-space. We then just need to

check conditions (1) -(3) in Definition 5.2.1.

Beginning with the first condition, we must show that the set of clopen filters is closed under the

operations ◦X , \X and /X . So suppose that U and V are clopen filters of
∏

i≤nXi. In again virtue of

Lemma 3.1.7 and compactness we can show that any clopen filter is subbasic in SP . So U and V are

subbasic and therefore we have that U =
∏

i≤n Ui and V =
∏

i≤n Vi for some families of clopen filters

{Ui}i≤n and {Vi}i≤n where Ui, Vi ⊆ Xi for all i ∈ I.

(Closure under ◦) It is the case that
∏

i≤n Ui ◦
∏

i≤n Vi =
∏

i≤n(Ui ◦ Vi). To see this, let α ∈∏
i≤n Ui ◦

∏
i≤n Vi. Then there are β ∈

∏
i≤n Ui and β

′ ∈
∏

i≤n Vi such that β ⊗ β′ ≤ α. Therefore, for

all i ∈ I, β(i)⊗ β′(i) ∈ Ui ◦ Vi and β(i)⊗ β′(i) ≤ α(i). So it follows that α(i) ∈ Ui ◦ Vi for all i ∈ I and

thus that α ∈
∏

i≤n(Ui ◦ Vi). For the converse, let α ∈
∏

i≤n(Ui ◦ Vi). Then for all i ∈ I, α(i) ∈ Ui ◦ Vi.
It then follows rather α ∈

∏
i≤n Ui ◦

∏
i≤n Vi.

Now, if t
∏

i≤n Ui ◦
∏

i≤n Vi =
∏

i≤n(Ui ◦ Vi), then because
∏

i≤n(Ui ◦ Vi) is clopen in the product

topology, so is
∏

i≤n Ui▽
∏

i≤n Vi = U▽V .

(Closure under \ and /) Another straight forward argument confirms that
∏

i≤n Ui\
∏

i≤n Vi =∏
i≤n(Ui\Vi) and

∏
i≤n Ui/

∏
i≤n Vi =

∏
i≤n(Ui/Vi).

Condition (2) of an NRL-space requires that ↑ε is clopen. However, ↑ε =
∏

i≤n ↑ε(i) (again by the

definition of the subbase SP ). So since ↑ε(i) is clopen for each i ∈ U , ↑ε is clopen too.

Finally, for condition (3) in Definition 5.2.1, we show the nontrivial direction. Suppose that for

all clopen filters U and V of
∏

Xi that if β ∈ U and β′ ∈ V , then α ∈ U ◦ V . We need to show that

β ⊗ β′ ≤ α. First we will show that for each i ≤ n and each pair of clopen filters U ′ and V ′ in Xi that

β(i) ∈ U and β′(i) ∈ V , we have that α(i) ∈ U ◦ V . So let U ′ and V ′ be a pair of clopen filters in Xi

for some i ∈ I.
∏

i≤n Ui is a clopen filter with Ui = U ′ and Uj = Xj for each each j ≠ i. A similarly,∏
i≤n Vi is a clopen filter when with Vi = V ′ and Vj = Xj for each each j ̸= i. By construction, we get

that β ∈
∏

i≤n Ui and β
′ ∈

∏
i≤n Vi. Then by our assumption we obtain that α ∈

∏
i≤n Ui ◦

∏
i≤n Vi.

Because we have
∏

i≤n Ui ◦
∏

i≤n Vi =
∏

i≤n(Ui ◦ Vi), α(i) ∈ U ′ ◦ V ′, as desired. It then follows from

condition (3) of Definition 5.2.1 that β(i)⊗ β′(i) ≤ α(i) for all i ∈ I. And therefore that β ⊗ β′ ≤ α,

as desired.
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Having concluded that finite products of NRL-spaces are NRL-spaces, let us prove a lemma that

will support the proof of Theorem 8.2.4, which will show that products of NRLs-spaces have the

universal property of co products.

Lemma 8.2.3. {(X, τi)i}i∈I be a family of NRL-spaces. Let X =
∏

i∈I Xi be the product. Then for

all i ∈ I, γi : Xi → X is an NRL-space morphism.

Proof. In virtue of Lemma 3.1.9, we know that γi is an L-space morphism, so we just need to check

that γi meets the additional requirements of being a NRL-space morphism.

The (⊗-forth) condition is immediate since γi(x⊗ y) = γix⊗ γiy. For (⊗-back), let α⊗ β ≤ γi(x).

Then α(i)⊗ β(i) = α⊗ β(i) ≤ x. However, in virtue of the adjunction property of γi, α ≤ γi(α(i)) and

β ≤ γi(β(i)). So generalizing on α(i) and β(i), we verify the ⊗-back condition.

For (\-back), suppose that α⊗ γi(x) ≤ β. Then α(i)⊗ x ≤ β(i). By the adjunction property of γi,

α ≤ γi(α(i)). Now, note that for all j ̸= i, we have γi(x)(j) = 1Xj . It follows then that for all j ̸= i,

α(j) ⊗ γi(x)(j) = α(j) ⊗ 1Xj = 1Xj , since 1Xj is an absorbing element in any NRL-space. This in

turn implies that β(j) = 1Xj for all j ̸= i because of the assumption that α⊗ γi(x) ≤ β. We are then

ensured that γi(β(i)) = β, which is enough for us to conclude that (\-back) holds when we generalize

on α(i) and β(i). A similar argument guarantees that (/-back) is a also a property of γi.

Finally, we have the conditions (ε-forth) and (ε-back). For (ε-forth) it is by definition that

εX ≤ γi(εXi). For (ε-back), if εX ≤ γi(x), then εXi = εX(i) ≤ γi(x)(i) = x.

This concludes the proof that in addition to being an L-space morphism, γi is also an NRL-space

morphism for each i ∈ I.

We now arrive the main result of this section. We show that the products of NRL-spaces play the

role of co products in the category of NRL-spaces. This result extends Theorem 3.1.10, which showed

that products of L-spaces also possess the universal property of coproducts when the inclusions γi are

taken as the relevant inclusion morphism.

Proposition 8.2.4. (Universal Property of Coproducts) Let {(X, τi)i}i≤n and Y be a finite collection

of NRL-spaces. Suppose that for each i ≤ n, there is some NRL-space morphism gi : Xi → Y . Then

there exists a map g :
∏

i≤nXi → Y that uniquely satisfies g(γi(x)) = gi(x) for all x ∈ Xi and i ≤ n.

Proof. Let {X = (Xi, τi)i}i≤n and Y be NRL-spaces. Suppose we have X =
∏

Xi and that for each

i ≤ n, there is some NRL-space morphism gi : Xi → Y . Recall that NRL-spaces have all meets in

virtue of being L-spaces (Lemma 2.2.13). In Theorem 3.1.10 we defined g :
∏

i≤nXi → Y such that:

g(α) =
k

i≤n

gi(α(i)).

In virtue of this definition it was immediate that g(γi(x)) = gi(x). We also showed that g is an

L-space morphism and that g uniquely satisfied the property g(γi(x)) = gi(x). We must now check the

various conditions for g to be a morphism in the category of NRL-spaces. Specificlly, we just need to

check that the conditions for ⊗ and ε are met.

For (⊗-forth), we have:

g(α)⊗ g(β) =
k

i≤n

gi(α(i))⊗
k

i≤n

gi(β(i)) ≤
k

i≤n

(gi(α(i))⊗ gi(β(i) ≤
k

i≤n

(gi(α⊗ β(i))) = g(α⊗ β).
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For (⊗-back), the argument for (⋏-back) in the proof of Theorem 3.1.10 can be repurposed by

substituting ⋏ for ⊗.

Now, for (/-back) we reason as follows. Let x⊗ g(α) ≤ z. For each i ≤ n, by /-back for gi, there are

xi and zi such that x ≤ gi(xi) and g(zi) ≤ x⊗ gi(α(i)) and xi ⊗ α(i) ≤ zi. Define β, β′ : n+ 1 →
⋃
Xi

such that for all i ≤ n, β(i) = xi and β
′(i) = zi. It is immediate then that x ≤ g(β) and that β⊗α ≤ β′

since xi ⊗ α(i) ≤ zi. To show that g(β′) ≤ z. We note that g(β′) =
c

i≤n gi(zi) ≤ x ⊗ gj(α(j)) for

all j ≤ n. So we have that g(β′) ≤
c

i≤n x⊗ gj(α(j)). However, since n is finite, Lemma 5.2.11 tells

us that
c

i≤n x⊗ gj(α(j)) = x⊗
c

i≤n gi(α(i)) = x⊗ g(α). We obtain that g(β′) ≤ x⊗ g(α) ≤ z, as

desired. By generalizing on β and β′ we conclude that g satisfies the (/-back) condition.

A symmetric argument demonstrates (\-back) holds.
Finally, we consider the conditions (ε-forth) and (ε-back). For (ε-forth), we know by (ε-forth) for

each gi that εY ≤ gi(εXi). So we have that εY ≤
c

i≤n gi(εXi) = g(εX). For (ε-back), suppose that

εY ≤ g(α). Then for all i ≤ n, εY ≤ gi(α(i)). By (ε-back) for each gi we obtain that εXi ≤ α(i) for all

i ≤ n. We therefore arrive that the conclusion that εX ≤ α and thus that (ε-back) holsd for g.

Having checked these various conditions, we conclude that g is an NRL-space morphism and that

the universal property for coproducts holds for the NRL-space X =
∏

i≤nXi.

We have just shown that products of NRL-spaces play double duty as coproducts in the category

of NRL-spaces. This is essentially explained by the semilattice structure of NRL-spaces and thereby

the inclusion maps γi.

We now show in Theorem 8.2.5 that the NRL-space XG dual to a finite product of rℓ-groupoids

G =
∏

Gi is essentially the same as the product X =
∏

XGi
of NRL-spaces dual to each Gi.

Unlike in the case of L-spaces, where we gave a concrete description of the homeomorphism, we

will simply use the universal property of coproducts demonstrated in Proposition 8.2.4 to derive our

representation. The uniqueness of the isomorphism we obtain together with the fact that there is

a forgetful functor back to the category of L-spaces will ensure that the isomorphism has the same

concrete description as in Theorem 3.1.11. We therefore will obtain the insight and usefulness of a

concrete description, but without all the work.

Theorem 8.2.5. Let {Gi}i≤n be a finite family of rℓ-groupoids. Then:

X∏
i≤n Gi

∼=
∏
i≤n

XGi

Proof. Let {Gi}i≤n be a finite family of rℓ-groupoids. Let G =
∏

i≤nGi and let X =
∏

i≤nXGi
. In

virtue of the fact that RLGop ∼= NRL, we know thatXG satisfies the universal property of coproducts

in the category NRL. Standard reasoning then implies that XG
∼= X.

8.2.2 The Disjunction Property

We apply our definition of products of NRL-spaces to provide a characterization of when an extension

of the logic NFL+ has the disjunction property. We will then use our characterization to show some

particular logics with weakening have the disjunction property. In the setting of substructural logics,

the disjunction property can be stated as follows:
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Definition 8.2.6. Let L be an extension of NFL+. We say that L has the disjunction property if:

(DP) If ⊢L φ ∨ ψ, then ⊢L φ or ⊢L ψ.

Our characterization relies on what we call an ε-prime frame. An ε-prime frame (X,⋏, 1,⊗, ε) is
one where ε is ⋏-prime i.e. if x⋏ y ≤ ε, then x ≤ ε or y ≤ ε. With the concept of an ε-prime frame,

our semantic characterization of when a logic has the disjunction property is that a Logic L extending

NFL+ has the disjuction property iff the canonical model of L is ε-prime.

Definition 8.2.7. (ε-Prime Frames and Spaces)

An OKHD-frame X = (X,⋏, 1,⊗, ε) is ε-prime iff for all x, y ∈ X, if x ⋏ y ≤ ε, then x ≤ ε or

y ≤ ε. An NRL-space X is ε-prime if the underlying OKHD-frame of X is ε-prime.

Being an ε-prime frame is simply the dual notion to being a well-connected algebra (see [34, 31]).

From the logical perspective this fact amounts to the claim that the logic of a ε-prime frame has the

disjunction property.

Lemma 8.2.8. For any valuation V on an ε-prime OKHD-frame X = (X,⋏, 1,⊗, ε), if X,V, ε ⊩ ϕ∨ψ,
then X,V, ε ⊩ ϕ or X,V, ε ⊩ ψ.

Proof. Suppose that X,V, ε ⊩ ϕ ∨ ψ. Then there are x, y ∈ X such that x⋏ y ≤ ε and X.V, x ⊩ ϕ and

X,V, y ⊩ ψ. By well connectedness, either x ≤ ε or y ≤ ε. So since JϕK and JψK are both upwards

closed with respect to ≤, we have that either X,V, ε ⊩ ϕ or X,V, ε ⊩ ψ.

Lemma 8.2.9. If an extension L of NFL+ has the disjunction property, then any canonical model

ML of L is ε-prime.

Proof. Suppose that L has the disjunction property. We reason indirectly to show that ML is ε-prime.

Suppose form u, v ∈ XL that neither u ≤ εL nor v ≤ εL. Then there are ϕ ∈ u and ψ ∈ v such

that ϕψ ̸∈ εL. This in turn implies that neither t⇒ ϕ nor t⇒ ψ are provable in L and thus by the

disjunction property t⇒ ϕ ∨ ψ is not provable in L. This gives us that ϕ ∨ ψ ̸∈ εL. But ϕ ∨ ψ ∈ u ∩ v
since both ϕ ⇒ ϕ ∨ ψ and ψ ⇒ ϕ ∨ ψ are derivable in any extension of NFL. It thus follows that

u ∩ v ̸⊆ εL.

With the lemmas we just proved at our disposal, we now move to the main result of this section.

The result characterizes exactly when a logic has the disjunction property in terms of a property of the

class of frames that corresponds to that logic.

Theorem 8.2.10. An extensions L of NFL+ has the disjunction property iff for any two NRL-spaces X

and Y in the class space for L, there is a ε-prime NRL-space Z for L and an embedding f : X×Y → Z.

Proof. For the direction from right to left, suppose that for any topological two NRLs-paces X and

Y in the class of space for L, there is a ε-prime NRL-space Z for L) and an NRL-space embedding

f : X × Y → Z. Now suppose that neither t ⇒ ϕ nor t ⇒ ψ are provable in L. By completeness,

there are models M = (X, τ, V ) and N = (Y, σ, V ′) and elements x and y of those models such that

M, x ⊩ t and N, y ⊩ t but M, x ̸⊩ ϕ and N, y ̸⊩ ψ. Since M, x ⊩ t and N, y ⊩ t, we have that

εX ≤ x and εy ≤ y. By definition of the direct product of two NRL-spaces, εX×Y ≤ (1X , y) and

εX×Y ≤ (x, 1Y ). Now, by assumption there is an ε-prime NRL-space Z for L) and an NRL-space
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embedding f : X × Y → Z. So by the definition of an embedding, εZ ≤ f((x,⊤Y )) and εZ ≤ f(⊤X , y).

Now, from a frame preservation fact (Lemma 7.2.10) we know know that embeddings reflect validity

and therefore preserve refutation. So given that f and the maps w 7→ (w,⊤Y ) and w 7→ (⊤X , w) are

all embeddings, we have that (Z, V0), f((x,⊤Y )) ̸⊩ ϕ and (Z, V1), f((⊤X , y)) ̸⊩ ψ for some valuations

V0, V1 : Prop→ Fi(Z). It follows that when we define the valuation V2 such that V2(p) = V0(p)∩V1(p)
we also have (Z, V2), f((x,⊤Y )) ̸⊩ ϕ and (Z, V2), f((⊤X , y)) ̸⊩ ψ. So because εZ ≤ f((x,⊤Y )) and

εZ ≤ f(⊤X , y), we obtain (Z, V2), εZ ̸⊩ ϕ and (Z, V2), εZ ̸⊩ ψ. Finally, putting Lemma 8.2.8 to work,

we arrive at the conclusion that (Z, V2), εZ ̸⊩ ϕ ∨ ψ. By contraposition we have shown the disjunction

property for the logic L in question.

Now for the direction from right to left. Suppose that the logic L has the disjunction property.

Then the canonical frames of L are all ε-prime given Lemma 8.2.9. But by Lemma 7.5.4 any frame

of L embeds into canonical frame. So in particular, the product of any two frames will embed into a

ε-prime frame. Therefore we have shown what we wanted to show.

The above theorem’s proof provides us with the following corollary, which provides a different

perspective on when a substructural logic has the disjunction property. Such characterization may

be preferred since the one given in the antecedent theorem is just a dualization of the algebraic

characterization.

Corollary 8.2.11. An extension L of NFL has the disjunction property iff the canonical models of

the logic are ε-prime.

Proof. If a logic L extending NFL+ has the disjunction property, then by Lemma 8.2.8, the canonical

models of L are all ε-prime. Conversely, Assume that the canonical models of L are all ε-prime. by

Lemma 7.5.4, the product of any frames will embed into a canonical model. Therefore, by Theorem

8.2.10, we obtain that L has the disjunction property.

The Disjunction Property in Logics with Weakening

Let us denote an extension of NFL+ with weakening by NFL+
w . Based on the results in the

previous section and in particular Theorem 8.2.10 an easy method for showing an extension L of NFL+
w

presents itself. In particular, we may simply add a single point to the bottom of the product of two

topological frames and then ensure that the new point behaves like an identity for ⊗. This is similar

to the method used in modal logic where the disjoint union of two frames is given a new root.

Lemma 8.2.12. Let W be the class of NRL-space satisfying the conditions

∀xy(x ≤ x⊗ y) ∀xy(x ≤ x⊗ y)

then if X in K, then the NRL-space X∗ = ({∗} ⊕ X, τ∗) is in K where {∗} ⊕ X = ({∗} ⊎
X,⋏∗, 1∗,⊗∗, ε∗) is defined such that 1∗ = 1, ε∗ = ∗, and

y ⋏∗ x =

x⋏ y if x, y ∈ X

∗, if either x = ∗ or y = ∗
y ⊗∗ x =


x⊗ y if x, y ∈ X

x, if y = ∗,

y, if x = ∗.
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Finally, we have that τ∗ is the topology generated by the subbase where (−)c is calculated in {∗}⊕X:

S∗ = Ficlp(X) ∪ {U c | U ∈ Ficlp(X)} ∪ {↑∗} ∪ {(↑∗)c}.

Proof. We must check that for all x, y ∈ {∗}⊕X that x ≤ x⊗∗y and x ≤ y⊗∗x and x⊗∗ε∗ = x = ε∗⊗∗x.

But these are all almost immediate from the definition of ⊗∗ and ε∗ given above.

Let us now observe that X∗ is an NRL-space. X∗ is 0-dimensional in virtue of the definition of the

subbase S∗.

For compactness, let {Ui}i∈I ⊆ S∗ be a sub basic cover of X∗. We now have two cases to consider. In

the case that there is some i ∈ I, Ui = ↑∗, then trivially {↑∗} is itself a cover of X. If on the other hand

there is no i ∈ I such that Ui = ↑∗, then observe that the collection S∗∩X = {W ∩X | W ∈ Ficlp(X)}
is a subbase for X since it contains all clopen filters of X and their complements. So {Ui ∩X}i∈I is a

subbasic cover of X. By compactness of X, there is a finite J ⊆ I such that {Uj ∩X}j∈J is a cover X.

Further, since there must be some i such that ∗ ∈ Ui, this Ui must be equal to ({∗} ⊎X)− V for some

V ∈ Ficlp(X). We then have that the following collection {Uj}j∈J ∪ {Ui} is finite subcover of {Ui}i∈I .
For HMS-separation, let x ̸≤ y. If x, y ∈ X, then since HMS-separation holds in X and the fact all

clopen filters of X are clopen filters in X∗, we are done. If either x = ∗ or y = ∗, since X is a clopen

filter we are done.

We now must check that the clopen filters are closed under the operations ▽, ◦, \, and /. First note
there is only one new clopen filter in X∗, namely ↑∗. So we just need to consider the cases where we

are applying the operations in question to ↑∗. With this in mind, closure under ▽ is straightforward

since for any clopen filter U , ↑∗▽U = ↑∗. In contrast, ↑∗ ◦ U = U = U ◦ ↑∗ for all clopen filter U , so

again we are ensured that the closure condition holds. A simple argument shows for any clopen filter U

both U\↑∗ and ↑ ∗ /U are equal to ↑∗ since ↑∗ is the greatest clopen filter. In contrast, for any clopen

filter U both ↑ ∗ \U and U/↑∗ are equal to U by applying the fact that ↑∗ is the greatest clopen filter

and the axioms ∀xy(x ≤ x⊗ y) and ∀xy(x ≤ x⊗ y). The clopen filters are therefore closed under the

operations ▽, ◦, \, and /.
Finally, we must check that if for all clopen filters U, V : if x ∈ U and y ∈ V , then z ∈ U ◦ V , then

x⊗ y ≤ z. Suppose that none of x, y, or z are ∗. Then x, y, z ∈ X and so we can apply the relevant

condition in X to obtain that x⊗ y ≤ z. If either x = ∗, then x⊗ y = y. So suppose that y ̸≤ z for

contradiction. Then by HMS-separation there is some clopen filter U such that y ∈ U and z ̸∈ U . But

x ∈ ↑∗, so by assumption that for all clopen filters U, V : if x ∈ U and y ∈ V , then z ∈ U ◦ V , we

obtain that z ∈ ↑∗ ◦U ⊆ U , contradicting that we had z ̸∈ U . It follows that x⊗ y = y ≤ y, as desired.

Roughly the same argument holds when y = ∗. Finally, if z = ∗, then it is not hard to see that x = ∗
and y = ∗ must also be the case and so we are again in one of the above cases.

We therefore conclude that X∗ is an NRL-space.

Lemma 8.2.13. Let W be as in the previous lemma. If X ∈ W, then {∗} ∪ X is ε-prime and X

embeds into X∗.

Proof. For ε-primeness, note that ε∗ has exactly one element that covers it, namely εX
1. So, if

x⋏ y ≤ ε∗, then either x = ε∗ or y = ε∗.

For the embedding, note that the identity function will do. The fact the the indentity satisfies all

the morphism conditions isn’t hard to see and follows quickly. In the case of (⋏-back), slightly more

1x covers y iff y < x and there is no z such that y < z < x.
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care must be taken. the identity is continuous in virtue of our definition of the subbase, S∗.

Proposition 8.2.14. The logic NFL+
w has the disjunction property.

Proof. W is the class of NRL-space that corresponds to the logic NFL+
w . By Theorem 8.2.10, if

the product of any NRL-spaces for L embeds into an ε-prime NRL-space for L, then L has the

disjunction property. So by Lemma 8.2.13, which tells us every NRL-space in W embeds into an

ε-prime NRL-space, we conclude that NFL+
w has the disjunction property.

We give one more particular instance of a logic with weakening and the disjunction property. In

the section on canoncity at the end of Chapter 7, we remarked on the logic LBCC considered by Ono

and Komori [32], which was essentially characterized as intutitionistic logic without contraction or

alternatively, as FL+ with commutativity and weakening.

Proposition 8.2.15. LBCC has the disjunction property.

Proof. We need to check that operation ⊗ of {∗} ⊕X is associative and commutative whenever X

is. For commutativity, let x, y ∈ {∗} ⊕X. We just need to consider the case when x = ∗ since X is

assumed to be commutative. But then clearly, x ⊗ y = y = y ⊗ x. Another very simple argument

shows that ⊗ is associative.

This concludes the section on the disjunction property.

8.3 Conclusion

In this chapter we expanded the theory of NRL-spaces. First we proved a representation theorem

for the congruences of residuated latticesin their dual RL-spaces (Theorem 8.1.4) and used this to

obtain a characterization of subspaces of RL-spaces (Theorem 8.1.12). Second, we characterized

products and coproducts of NRL-spaces (Theorem 8.2.4) and then gave a representation theorem for

products of rℓ-groupoids (Theomem 8.2.5). We then applied these both of these developments to

obtain logic results like a new proof of the parameterized local deduction theorem (Theorem ??) and a

characterization of when an extensions of NFL+ has the disjunction property (Theorem 8.2.10) and

then gave a few specific examples of such logics (Propositions 8.2.14 and 8.2.15).
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Conclusion

In this thesis we developed a novel topological duality for rℓ-groupoids and showed how this duality

connects the theory of L-spaces developed by Bezhanishvili et al. [6] to the frame based semantics for

substructural logics originating in the work of Ono and Komori, Humberstone [23], and Dosen [13].

We began in Chapter 3 and Chapter 4 by extending the representation theorems and Π1 preservation

results from Bezhanishvili et al. [6] to all monotone lattice expansions. In Chapter 5 we introduced

NRL-spaces, RML-spaces, OKHD-frames, and RML-frames and established a number of connections

between these types of objects. Most importantly we showed how OKHD-frames can be obtain from

the general theory outlined in Chapter 3. In Chapter 6, we proved duality for the class of residuated

lattices with respect to both NRL-spaces and RML-spaces. We then showed how these results restricted

to obtain dualities for a number of other classes of residuated lattices. In Chapter 7 we reviewed

substructural logic and in particular the OKHD-semantics. We then used our duality to define a

topological semantics for substurctural logics and proved a general completeness theorem. Afterwards,

we adapted the notion on Π1-persistence to the setting of the OKHD-semantics and used duaity to

show a general completeness theorem with respect to OKHD-frames that subsumes existing results. We

ended the chapter with a discussion of how earlier canonical model style proofs could be understood

in terms of duality and Π1-persistence. Finally, in Chapter 8, we extend the theory of NRL-spaces.

First we obtained a dual representation of congruences of residuated lattices and a characterization of

subspaces. The we characterized products and coproducts of NRL-spaces and showed how this leads

to a representation for products of rℓ-groupoids. We then applied the development to first obtain a

new proof of the parameterized local deduction theorem and then a characterization of logics with the

disjunction property. There are many places the theory presented in this thesis could be extended.

• Generalizations of the representation of monotone operations and monotone lattice expansions

(Theorem 3.2.6 and Corollary 3.2.7) to include antitone operations as well.

• A characterization of identities on lattices expansions with antitione operations that are preserved

by the Π1-completion.

• A deeper study of the connection between the Π1-completion, the Σ1-completion, and the

canonical extension from the point of view of L-spaces.

• A generalization of the characterization of classes of rℓ-groupoids closed under the Π1-completion

(Theorem 6.4.5) and there by a generization of our completeness theorem with respect to the

OKHD-semantics (Theorem 7.4.8).

• The identification of interesting applications of the topological semantic to substructural logics.
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[13] K. Došen. Sequent-systems and groupoid models. ii. Studia Logica, 1989.

99

https://doi.org/10.1093/logcom/exab059
https://books.google.com/books?id=zLs8BAAAQBAJ
https://books.google.com/books?id=QXi3BZWoMRwC
https://books.google.com/books?id=QXi3BZWoMRwC
https://arxiv.org/abs/2502.21307
http://dx.doi.org/10.1016/j.apal.2023.103374
https://books.google.nl/books?id=gFEidNVDWVoC
https://books.google.nl/books?id=gFEidNVDWVoC
https://books.google.nl/books?id=dhgi5NF4RtcC
https://books.google.com/books?id=vVVTxeuiyvQC
https://books.google.com/books?id=vVVTxeuiyvQC
http://www.jstor.org/stable/20015389
http://www.jstor.org/stable/20015389


[14] J. M. Dunn and G. Hardegree. Algebraic Methods in Philosophical Logic. Oxford University

Press UK, Oxford, England, 2001.

[15] J. M. Dunn, M. Gehrke, and A. Palmigiano. Canonical extensions and relational completeness

of some substructural logics*. Journal of Symbolic Logic, 70:713 – 740, 2005. URL https:

//api.semanticscholar.org/CorpusID:7064638.

[16] L. Esakia, G. Bezhanishvili, W. Holliday, and A. Evseev. Heyting Algebras: Duality Theory.

Trends in Logic. Springer International Publishing, 2019. ISBN 9783030120962. URL https:

//books.google.com/books?id=OOCgDwAAQBAJ.

[17] N. GALATOS and P. JIPSEN. Residuated frames with applications to decidability. Transactions

of the American Mathematical Society, 365(3):1219–1249, 2013. ISSN 00029947. URL http:

//www.jstor.org/stable/23513444.

[18] N. Galatos and H. Ono. Algebraization, parametrized local deduction theorem and interpolation

for substructural logics over fl. Studia Logica: An International Journal for Symbolic Logic, 83

(1/3):279–308, 2006. ISSN 00393215, 15728730. URL http://www.jstor.org/stable/20016806.

[19] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: an algebraic glimpse at

substructural logics. 01 2007. ISBN 9780444521415.

[20] M. Gehrke and H. A. Priestley. Canonical extensions and completions of posets and lattices. Reports

Math. Log., 43:133–152, 2008. URL https://api.semanticscholar.org/CorpusID:15292383.

[21] M. Gehrke and S. van Gool. Topological duality for distributive lattices: Theory and applications,

2023. URL https://arxiv.org/abs/2203.03286.
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