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Abstract

In this thesis we present a novel topological duality for not-necessarily-distributive residuated lattice
ordered groupoids by modifying a recent duality for bounded lattices established by Bezhanishvili
et al. (2024). Our duality establishes a natural connection between the algebraic semantics of
substructural logics and the operational frame semantics originating in the work of Ono and Komori
(1985), Humberstone (1987), and Dosen (1989). This allow us to the further generalize the original
completeness theorems for the operational semantics and to gain insight into the success of canonical
model style proofs that were utilized. In particular we adapt a notion of persistence from Bezhanishvili
et al. (2024) and show that the canonical model style proofs in Ono and Komori (1985), Humberstone
(1987), and Dosen (1989) can be explained by an analysis given in terms of algebraic completeness,
topological duality, and the salient notion of persistence. We also explore the duality in its own right

and obtain topological representations of the lattice of congruences and products of residuated lattices.
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Chapter 1

Introduction

In the semantics of modal logic, topological dualities between categories of modal algebras and
categories of modal spaces have played a central role in the development of the field [8, 10]. On one
hand, these dualities have pragmatic purpose; they unify the available algebraic and model theoretic
methods used to address questions about modal logics and their semantics. On the other hand, dualities
have an explanatory purpose since they offer alternative perspectives on, and clarify why, the methods
of one semantics or another are successful.

A paradigm case of the sort of insight duality can provide is the clarity it casts on canonical
model completeness proofs with respect to Kripke frames. It is known that the canonical model of
a normal modal logic comes with a natural modal space topology and that this modal space is the
dual of Lindenbaum algebra of the same logic. This fact can then be coupled with what is sometimes
called d-persistence, which is the property that if a formula is valid in a modal space, then it is also
valid in the underlying Kripke frame of that modal space (see [8, 10]). Canonical model style Kripke
completeness proofs can then be understood in virtue of three distinct steps: algebraic completeness,
duality, and d-persistence. For more details we refer the reader to [8] and [10] for a proof of the
Sahlgvist Completeness Theorem using topological duality - one of the most celebrated results in modal
logic.

For non-classical logics, and in particular logics with algebraic semantics given in terms of residuated
lattices, topological dualities have received varying degrees of attention. These dualities are often
obtained by extending a duality for the lattice reducts of the algebras in question. For example, dualities
for distributive residuated lattices tend to build on Priestley duality [11, 21]. A very successful instance
of this strategy is the duality between Heyting algebras and Esakia Spaces [16]. Another more general
method has been to modify Priestley spaces with a ternary relation [36]. For not-necessarily-distributive
residuated lattices, dualities are obtained by building on dualities for bounded lattices. An illustrative
example is Allwein and Dunn’s [2] extension of Urquhart’s topological representation of lattices to a
representation of various residuated algebras [35]. Another are the dualities given in terms of canonical
extensions [20, 15]. These are early examples, but a great number of dualities for various classes of
residuated lattices could be listed, many building on various dualities for bounded lattices [5]. Another
notable representation for residuated lattices is provided by residuated frames [17].

In just the same way that topological duality theory has clarified the Kripke semantics of modal
logic, Esakia duality and dualities for other residuated lattices have offered the same sort of insight
into the Kripke semantics of intuitionistic logic, Routley-Meyer semantics for relevance logics, and the

semantics of various other substructural logics [36]. Despite these developments, a notable family of



statebased semantics developed most maturely by in the work of Ono and Komori [32], Humberstone
[23], and Dosen [13], and often referred to as the operational semantics for substructural logics, have
received no attention from the perspective of topological duality theory. Despite there not being a true
topological duality, results in [32] and [37] suggest its possibility. Ono and Komori used the frames of
their semantics to obtain embedding theorems for integral commutative residuated lattices in [32]. And
more recently Weiss characterized a means of turn so-called Dunn-monoids into a kind of operational
frame and vice versa [37]. This being said, neither of these results characterize a full duality and
actually only partially characterize a dual-adjunction between a category of algebras and a class of
frames for which no notion of morphism has previously been developed.

At their core, the semantics of Ono and Komori, Humberstone, and Dosen, henceforth the OKHD-
semantics, are a state based semantics similar to the standard Kripke semantics of modal or intuitionistic
logic. So sentences are evaluated at states and proposition are construed as a regions of a structured
set of those states. However, unlike Kripke semantics, the OKHD-semantics trades relational structure
for operational structure and employs the idea of an algebra of states. The most general formulation of
this idea that salient to this thesis appeared in [13], where the frames considered are pointed semilattice
ordered groupoids with the special property that the groupoid operation distributes over the semilattice
operation. The key insight that prompted the development of the these semantics was that disjunction
could be interpreted as an intensional connective i.e. one whose satisfaction at state is determined by
facts about other states of the model the and the way that each of these states are related. With this

insight it became possible to prove ”Kripke Style” completeness theorems for non-distributive logics.

In this thesis we present a novel topological duality for not-necessarily-distributive residuated lattice
ordered groupoids by modifying a recent duality for bounded lattices established by Bezhanishvili et al.
in [6]. In much the same way that the various dualities mentioned above link algebraic semantics to
model theoretic semantics, our duality establishes a natural connection between the algebraic semantics
of substructural logics and the operational frame semantics originating in the work of Ono and Komori
[32], Humberstone [23], and Dosen [13]. This connection will allow us to the further generalize the
completeness theorems in [32, 23, 13] and to gain insight into the success of canonical model style
proofs present in these papers. In particular we adapt the notion of II;-persistence from [6] and show
that the canonical model style proofs in [32, 23, 13] can be explained by an analysis similar to the one

given for canonical modal logics above.

Chapter 2 reminds the reader of preliminary notions regarding lattice expansions, residuated
lattice ordered groupoids or r¢-groupoids, and provides an introduction to L-spaces developed by the
authors of [6].

Chapter 3 expands the theory of L-spaces by developing a general set of tools that ground
the technical developments of the chapters to come. In particular, we provide a characterization of
products and coproducts of L-spaces. Specifically, we obtain the some what counterintuitive result that
products of L-spaces with a special notion of inclusion have the universal property of coproducts in the
category of L-spaces(Theorem 3.1.10). We then this to obtain a topological representation of monotone
lattice expansion (Theorem 3.2.7) and, more generally, a duality between the category of lattices with
monotone operations as morphisms and the category of L-spaces with special continuous relations
(Theorem 3.2.11). This chapter ends with some simple results characterzing the dual relations of join
and meet preserving operations and provides a new representation of Modal Lattices and a discussion

of how we can recover the representation of modal lattices presented by the authors of [6].



The importance of this chapter is twofold. From the conceptual point of view it provides a very
general common framework for understanding both the results from later chapters and the results for
the original work on L-spaces and modal lattices developed by the authors of [6]. At the technical
level, the duality theorem proved in Theorem 3.2.7 is key to the II;-preservation results proved in the
following chapter.

Chapter 4 uses the results of Chapter 3 to generalize the representation of completions of modal
lattices by Bezhanishvili et al. [6] to all monotone lattice expansions. In particular, we show that the
filter, ideal, and II;-completion of a monotone lattice expansion is representable by families of filters in
the L-space that is dual to that lattice expansion (Theorem 4.2.3). We then use this representation to
obtain a general result on the preservation of identities through the IIj-completion (Theorem 4.3.5).
This result generalizes the persistence results for modal lattices in [6] and will be applied to the case of

ré-groupoids in Chapter 6.

Chapter 5 makes the move from the general representation theory of Chapter 3 and Chapter
4 to two categories of spaces that will occupy our attention for the rest of the thesis. In particular
we introduce NRL-spaces and RML-spaces and morphisms for both types of spaces. RML-spaces
are modifications of ternary relational instances of the spaces used to represent lattice expansions in
Chapter 3. NRL-spaces are essentially topological versions of the frames used by the OKHD-semantics.
We show this connection in detail by showing that the topology free reduct of an NRL-spaces is an
OKHD-frame (Proposition 5.2.11). We then show that the category of RML-spaces and NRL-spaces are
equivalent (Theorem 5.3.1). The chapter ends by showing the operations that witness the equivalence
between RML-spaces and NRL-spaces do not generalize to an equivalence between the category of
OKHD-frames and the category of what we call RML-frames.

This chapter is primarily of conceptual importance since it connects the general theory of L-
spaces with additional continuous relations from Chapters 3 and 4 to the frames underlying the

OKHD-semantics and the spacial objects we study the rest of the thesis.

Chapter 6 introduces our duality theory for rf-groupoids. We demonstrate that the category of
NRL-spaces is dually equivalent to the category of rf-groupoids (Theorem 6.1.10). As an immediate
corollary we also obtain duality between the category of RML-spaces and rf-groupoids. We then
restrict the NRL-space duality to obtain duality for residuated lattices, FL-algebras, and Involutive
residuated lattices and provide a number of other explicit correspondences between certain algebraic
identities and topological properties. In the last section we obtain a representation of the II;-completion
of an rf-groupoid and use the preservation theorem from Chapter 4 to characterize some classes of

r{-groupoid that are closed under the II;-completion.

Chapter 7 reviews basic substructural logic and the OKHD-semantics and then uses the dualities
and II;-persistence results obtained in Chapter 6 to provide both topological and frame based complete-
ness for a wide range of substructural logics. In particular, we show every substructural logic extending
a very minimal base logic that we call the Non-associative Positive Full Lambek Calculus or NFL™ is
complete with with respect to a new topological semantics given in terms of NRL and RML-spaces
(Theorem 7.4.3 and Theorem 7.4.4). We then adapt the notion of II;-persistence from Bezhanishvili et
al. [6] and show that every logic axiomatized by sequents in specific signature is complete with respect
to a class of OKHD-frames (Theorem 7.4.8) and a class of RML-frames (Theorem 7.4.9). These results
generalize completeness proofs of Ono and Komori [32], Humberstone [23], and Dosen [13] and also

the completeness results reported recently in [37]. The chapter ends with of a discussion of how our



duality bears the canonical model style completeness proofs of Ono and Komori [32], Humberstone
[23], and Dosen [13].

Chapter 8 extends the Theory of NRL-space duality in two directions and provides logical
applications for each. While the logical results are either not novel or adapt existing results, they
come with novel proofs that exploit the topological semantics given in terms of NRL-spaces. The first
development for the theory of NRL-spaces is a representation of congruences of a residuated lattice in
the dual space of that residuated lattice (Theorem 8.1.4). We use this representation to characterize the
subspaces of NRL-spaces (Proposition 8.1.8 and Theorem 8.1.12). The logical application of the latter
developments is a new proof of the Parameterize Local Deduction Theorem for the Positive Full Lambek
calculus FL™ using the topological semantics of Chapter 7. The second development to NRL-space
duality is a characterization of products and coproducts of NRL-spaces and a representation theorem
for products of rf-groupoids. The logical application provided by these results is a characterization of

when a substructural logic extending NFL™ has the disjunction property.

The contributions made by this thesis are summarized by the following list:

A topological representation theorem for monotone lattice expansions.

A characterization of a large class of identities that are preserved through the IIy-completion of a

lattice expansion.

A novel topological duality for r¢-Groupoids, Residuated Lattices, and FL-algebras.

A characterization of classes of r¢-Groupoids that are closed under the II;-completion.

Topological semantics for substructural logics.

A duality theoretic explication of the OKHD-semantics of substructural logics with logical

applications.

e A representation of the lattice of congruences of residuated lattices and a characterization of

subspaces of NRL-spaces.

A novel proof of the Parameterized Local Deduction Theorem using topological semantics.

A characterization of coproducts of NRL-spaces and a topological representation of products of

r{-Groupoids.

A characterization of substructural logic with the disjunction property using topological semantics.



Chapter 2

Preliminaries

In this chapter we introduce the algebraic that are and topological structures that are the focus
of this thesis. In particular, Section 2.1 reviews the definitions of semilattices, lattices, and lattice
expansions and then r/-groupoids, residuated lattices, and FL-algebras. In section 2.2 and we point to
the topological notions we use and we review the L-space duality developed by Bezhanishvili et al. in
[6].

We note that through out the preliminaries and thesis we assume familiarity with basic notions
from catgeory theory such as the notions of an opposite category, a (contravariant) functors between
categories, adjunctions, (dual) isomorphisms, products, coproducts, and concrete categories. We

recommend [3] for a refresher.

2.1 Algebra

In this section we introduce the algebras we study in this thesis. We assume familiarity with the
basic concepts of universal algebra including the notions of homomorphisms subalgebras, products,
congruences, and free algebras. We also assume fundamental results like the isomorphism theorems.
Finally, while knowledge of clones is not necessary, they will be remarked on and will be used to explain
the II;-preservation result we obtain in Chapter 4. For introductory material on any of the topics

listed above, see either the classic [9] or the more recent [4].

2.1.1 Lattices and Lattice Expansions

We begin by defining semilattices and lattices and then discuss lattice expansions. We provide the

definition for completeness but assume basic properties without mention throughout the thesis.

Definition 2.1.1. A x-semilattice is an algebra S = (S, *, e) where * is associative, commutative, and

idempotent and a x e = a for alla € S.

We can always define two possible orders on a semilattice S = (.S, *,¢e) . When we define the order
by a < b iff a x b = a we refer to * as meet and e as top and call S a meet semilattice. If we define the

order by a < b iff a x b = b, then we refer to * as join and e as bottom and call S a join semilattice.

Definition 2.1.2. A (bounded) lattice is an algebra L = (L,A,V, T, L) where both (L,A, T) and

(L,V, L) are semilattices and the absorbtion laws hold:

a=aA(bVa) a=aV (bAa).



The standard order on the lattice L is defined a < biff aANb=a iff aV b =0.
We say an n-ary operation f :Lj X ... x L, — K between lattices is monotone if it preserves the

defined order in each coordinate.

Definition 2.1.3. Let f: L; x ... x L, — K be n-ary operation between lattices. f is monotone if for
any @,b € Ly X ... X Ly, if for each i < n: a(i) < b(i), then f(@) < f(b).

For example, if f is binary, then if a < ¢ and b < d, then f(a,b) < f(c,d). We now define lattice

expansions and monotone lattice expansions.

Definition 2.1.4. (Lattice Expansions) A lattice expansion (L, F') is a lattice L with an additional

family of operations F'. We say that (L, F) is monotone if for each n-ary operation f € F is monotone.

Homomorphism for semilattice, lattices, and lattice expansions are defined in the usual way. We

denote the category of lattices with lattice homomorphisms by Lat.

Semilattice and Lattice as Ordered Sets. It is well known that lattice and semilattices have
ordere theoretic definitions. From the perspective of order theory, a meet semilattice is a partial order
with maximal element T where every two elements a,b have a greatest lower bound, for which we
write a A b. A complete semilattice is partial order with greatest lowerbounds A 7T for all subsets 7. A
(bounded) lattice is a bounded partial ordered with a least upped bound and greatest lower bound for
each pair of elements, which we denote by a V b and a A b respectively. A complete lattice is a partial
order with least upper bounds and greatest lower bounds for all subsets. Every complete semilattice
is a complete lattice. An element of a complete ¢ lattice C is called compact if for each T' C C, if
¢ < /T, then there is a finite Ty C T such that ¢ < \/Ty. A algebraic lattice is a complete lattice

lattice where every element is the join of compact elements.

Upsets, Filters, and Ideals. For a subset U C P where P is a partial order, 1p(U) = {x € P |y €
U(y < x)}. When U = {z} for some x € P, we just write Tp(x). We will drop the subscript P if the
where the operation is being calculated is clear. An upset is subset U of a partial order such that
TU = U. A filter of a meet semilattice is a non-empty upward closed subset that is also closed under
meets. Given a subset 7' C S of a semilattice, [T') = M{ai1 A...Aay, | a1, ...a,, € T} is the filter generated
by T. A filter of the form 1z is called principal. For any given meet semilattice S we will denote the
collection of all filters of S by Fi(S). Dually, an ideal of a join semilattice is a non-empty downward

closed subset that is also closed under joins. For a join semilattice S, the set of all ideals is Zd(S).

2.1.2 Residuated Lattice Expansions

We we define ef-groupoids, resisduated lattices, and FL-algebras. For a thorough introduction to
residuated structures see [24] or [19]. We note that we only consider bounded alegbras here, which is

not standard. So when we say residuated lattice, we mean a bounded residuated lattice.

Definition 2.1.5. A pointed residuated lattice ordered groupoid or simply pointed ré-groupoid G =
(G, A\, V, T, L\, /,e) an algebra where (G, A\, V, T, L) is a lattice, - : G x G — G is a binary monotone

operation, e is a designated element, and -, \, and / jointly satisfy the residual law:

b<a\c<=a-b<c<a<c/b



Note that pointed r¢-groupoids have an equational definition and so form a variety (see Lemma 2.3
in [24]).
Example 2.1.6. Let (S,-,e) be a pointed groupoid. Then (P(S),N,U,S,0,0,C,\,/) is a pointed
rl-groupoid such that Ao B ={a-b|a€c A& be B}, AB={be S|VaecAla-bec B}, and
A/B={beS|VbeB, a-be A} for each A,BCS.

We say an rf-groupoid is unital if e is a identity for - i.e. if e-a = a and a-e = a. An rf-gropoid is
integral if e = T. An r/f-groupoid is said to be associative or commutative if - satisfies the associative
or commutative laws, respectively. A residuated lattice is a unital r¢-groupoid where - is associative. If
- is commutative, then for all a,b, a\b = b/a, so we denote the application of either of these operations
to two elements of the algebra by 'a — b'.

Note that in any rf-groupoid we have that - distributes over V.

a-(bve)=(a-b)V(a-c)and (bVc)-a=(b-a)V(c-a)

We also always have that a- L =1 =1 -aand L\a=T =a/L.

By adding an additional constant f to the signature of a residuated lattice, we obtain what is called
an FL-algebra. An FL-algebra L = (L,\,V, T, L, \,/,e, f) is a residuated lattice with the additional
designated element f. These algebras are the used to provide the algebraic semantics of the Full Lambek
Calculus. Finally, an Involutive Residuated Lattice is an Fl-algebra L = (L, A,V, T, L,-,\,/, e, f) with
the property that both of the following identities hold:

f/(a\f) =a (f/a)\f = a.

We now list some useful properties or r¢-groupoids.

Proposition 2.1.7. In any rl-groupoid G, if X, Y C G and \Y and \/ X exist, then:

VxX\w= A =\ v/ X =\ (y/x)

zeX zeX
AAY = A @\) AY/z= N\ /o).
yey yeyY

We also have the following.

Proposition 2.1.8. In any associative rl-groupoid the following identities and their mirror images
hold:

(1) (a\b) -z < a\(y - 2),

(2) a\b < (c-a)\(c-b),

(3) (a\b) - (b\¢) < alc,

(4) (a-b)\c < b\(a\c), and

(5) a\(c/b) = (a\c)/b.

The properties mentioned above and more are discussed in detail in [24] and [19].

For any of the signature we consider, a homomorphism is a structure preserving function in the
usual sense (see [9] or [4]). For future reference, we denote the category of pointed r¢-groupoids with
their homomorphisms by RLG. The category of residuated lattices will be RL and the category of
FL-algebras will be FLAIg.



2.2 Topologies and L-spaces

We also assume familiarity with basic definitions from topology such as the notions of a basis, a
subbase, subspaces, products, and compactness. For an introduction to the topology necessary for
this thesis we recommend [11]. For a general introduction to topology see [29]. For completeness we

include the definition of topological spaces and continuous functions.

Definition 2.2.1. A topological space X = (X, T) is a pair consisting of set X and a family 7 C P(X)
where:

(1) X,0 e,

(2)if S C 1, then|JS €7, and

(3)if U,V €T, then UNV €.

Element of 7 are called the open sets of X and complements of elements of 7 are called closed. If
Uerand X —U € 7, then U is said to be clopen.

Morphisms between topologies are called continuous functions. For a function f : X — Y between
sets, we define f~ U] ={z € X | fr €U} for UCY and f[V]={fr €Y |z €V} for VCX.

Definition 2.2.2. Let X = (X,7) and Y = (Y,0) be topological spaces. A continuous function
f: X =Y between topological spaces is function f: X — Y such that for each U € o, f71U] € 7.

2.2.1 L-spaces and Topological Duality for Bounded Lattices

We now introduce L-spaces and the duality between the category of L-spaces and the category
of lattics developed by Bezhanishvili et al. [6]. We also recommend the [5] for a general review of
duality theory for lattices and the connection between L-space duality and other prominent dualities
for lattices. This section is fundamental to the entire thesis and we will often refer back to this section

in the proofs we provide in the chapters to come. We refer the reader to [6] and [5] for proofs.

Definition 2.2.3. An L-space X = (X, A,1,7) is a compact O0-dimensional semilattice ordered
topological space that satisfies the HMS-separation and two addition constraints:

(1)Vz,y € X, if v £y, then there is a clopen filter U such that x € U and y ¢ U.

(2) (V-closure) If U,V are clopen filters, then UVV :={z € X | r,y(zr e U & yeV &ax iy <z)}

is clopen as well,

(3) {1} is clopen.

A topological spaces (X, 7) is 0-dimensional if 7 has a basis of clopens. Condition one is referred to
as the HMS-separation axioms. We note that UVV is the least filter containing the union of filters U
and V. An HMS-space is an L-space without the requirement that the clopen filters be closed under V.
Another important piece of notation is that Fi.,,(X) is used to denote the set of all clopen filters of X.
We also write Fi(X) for the set of all filters of X, Fiy(X) for the closed filters, and Fi,(X) for the
open filters of an L-space.

Morphism between L-spaces are continuous semilattice homomorphisms with a special back condi-

tion.

Definition 2.2.4. (L-space morphism)
An L-space morphism f : X — Y is a continuous semi-lattice homomorphism that satisfies the

following two constraints:
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i) forallz € X, fr =1y iff t = 1x
i) forall ',y €Y and z € X, If ' Ay y < fz, then there are x,y € X such that x Ax y < z and
v’ < fr and y' < fy.

The category of L-spaces together with L-space morphisms is denoted LSp. The dual equivalence
of Lat and LSp is derived from the followingpropositions. Lemma 2.2.5 encodes the operations of

transforming an L-space into a corresponding lattice and lattice into a corresponding L-space.

Lemma 2.2.5. (Between L-spaces and Lattices)

(1) Let X be an L-space, then Lx = (Fiqp(X),N, v, X, {1}) is lattice, and

(2) If L= (L,A\,V,T,1) is a bounded lattice, then Xy, = (Fi(L),N, L,71) in an L-space where Tr,
is generated by the subbase {¢(a) | a € L} U{X — ¢(a) | a € L} and ¢(a) = {z € Fi(L) | a € z}.

A proof can be found in [6], particularly in Theorem 2.14. We note that ¢(a) = Tx,(T¢(a)). In
general we use will always use Lx to denote the lattice clopen filters of an L-space X and Xy, to
denote the L-spaces on the filters of a lattice L. It is worth noting that while the move from lattices to
L-spaces is similar to the way a Stone space or Priestly space is constructed from it’s corresponding
dual algebra, it is also importantly different. Unlike the construction of a Stone space or Priestly space,
rather than topologizing the collection of prime filters, the collection of all filters is topologized with a
suitable subbase.

At the level of morphisms, the action of the inverse of an L-space morphism on clopen filters is
a lattice homomorphism. Similarly, the inverse of a lattice homomorphism’s action on its filters is a

L-space morphism. The following lemma records this precisely.

Lemma 2.2.6. (Bewteen Morphisms)
1) If f : X = Y is a L-space morphism, then f~' : Ly — {Lx} is a lattice homomorphism, and
(
(2) if f: L — K is a lattice homomorphism, then f~!: Xy — Xy, is an L-space morphism.

Proofs can be found in [6] in Proposition 2.5 and 2.6. By combining Lemma 2.2.5 and Lemma
2.2.6, we define two functors LSp — Lat and Lat — LSp defined by the operations implicit in these

lemmas.

X +— Lx L+— Xj,

fr— gr—rg !

These functors witness not only a dual adjunction between the categories Lat and LSp, but also a

full dual equivalence. The following lemma provides us with the means to recognize this.

Lemma 2.2.7. (The Units are Isomorphisms)

(1) If L is a lattice, then ¢r, : L — Lx, ) is a lattice isomorphism,

(2) If X is an L-space, then nx : X — Xy, is an L-space homeomorphism where nx(x) = {U €
Fiap(X) | 2 €U},

We can now state the theorem that the category Lat of lattices is dual to the category of LSp of

L-spaces.

Theorem 2.2.8. The category Lat of lattices is dually isomorphic to the category of LSp of L-spaces.
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The above theorem grounds all of the developments of this thesis.
Finally, we state a few useful lemmas regarding properties of closed and clopen filters. We use
these properties repeatedly throughout the thesis and sometimes without reference. A particularly

useful fact is the following. We make heavy use of the fact that (i) and (ii) are equivalent.

Lemma 2.2.9. Let X = (X, A, 1,7) be an L-space and U be a filter of X. Then the following conditions

are equivalent: 1) U is closed, i) U is principle, and iii) U is the interesection of clopen filters.

We do not provide a proof here. A proof can be found at Lemma 2.8 in [6].
Another useful lemma allows us to separate points in the space from closed downsets using clopen
filters.

Lemma 2.2.10. Let X be an L-space. If D is a closed downset and y & D, then there is a clopen

filter containing y which is disjoint from D.

Proof. The complement X — D of D is an open upset and can therefore be written as a union (J;c; U;
of clopen filters {U;}ics . Since y € D, this means then that y € |J;c; U; and so there is some i € [
such that y € U;. And since X — D = |J,c; U;, it means that U; N D = ().

O

We now have a simple reformulation of compactness.

Lemma 2.2.11. Let V be an open set and {U; | i € I} be a family of closed sets of a compact
topological space X. If ({U; | i € I} C 'V, then there is a finite J C I such that (\{U; |ie€ J} CV.

The last lemma we employ relates of the semilattice structure of an L-space to the topology of that

L-space in a useful way.

Lemma 2.2.12. Let X be an L-space and U be a clopen filter of X. If x Ay € U, then there are
clopen filters V. and U such that VVW CU andxz €V andy € W.

Proof. Let U be a clopen filter of X and suppose that £ A y € U. Then Tz A y = Tty C U.
However, by Lemma 2.2.9, tz = ({V’ € Figp(X) | z € V'} and 1y = ({W' € Figp(X) | y € W'}
Sincetz Aty C U, we have that both ({V' € Figp(X) |z € V'} C U and ([{W' € Figp(X) |y €
W'} C U. But then by compactness, there are clopen filters V and W such that z € V and y € W
and VVW C U. ]

Then last thing we would like to remark on is that the semilattice that underlies an L-space also

always complete. This fact is proved in both [6] in Lemma and [5].
Lemma 2.2.13. Let X = (X, A,1,7) be an L-space then for all S C X, the meet of S exists in X.

This conclude the preliminaries.
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Chapter 3

Products of L-Spaces and the

Representation of Monotone Operations

This chapter expands the theory of L-spaces originating in [6] by demonstrating a representation
of arbitrary n-ary monotone operations between lattices as n+1-ary relations between L-spaces. The
point of such a general result is to provide the setting in which we obtain our representation and
duality results for rf-groupoids and residuated lattices in Chapter 6 and ultimately to derive the
OKHD-semantics discussed in the introduction and in Chapter 7. In addition, the results reported in
this chapter are analogous to the general representation of monotone operations obtained by Moshier
and Jipsen in [27, 28] to study duality for lattice expansions. So in addition to generalizing aspects of the
representation of modal lattices in [6] to apply to r¢-groupoids and the semantics of subtructural logics,
this chapter shows that theory of L-spaces is equally well suited for the study of lattice expansions and
that these studies can be carried out in a style familiar to Jonsson and Tarski’s famous representation
of boolean algebras with operators [25].

In more detail, this chapter is structured as follows. We begin in Section 3.1 with a characterization
of products and coproducts in the category of L-spaces (Theorem 3.1.10). This phrasing is a bit
misleading since it will turn out that products of L-spaces actually play the role of coproducts. This will
be discussed more thoroughly below. These results then naturally leads to a concrete representation
of products of lattices (Theorem 3.1.11). In Section 3.2, we use the latter developments to obtain a
representation of n+1-ary monotone operations between lattices by special continuous relations among
L-spaces that we call filter continuous relations (Theorem 3.2.6). As an immediate corollary we obtain a
representation theorem for all lattice expansions. We then demonstrate a duality between the category
of lattices with monotone operations as morphisms and a category of L-spaces with filter continuous
relations between them (Theorem 3.2.11). Finally, Section 3.3 observes some correspondences between
properties of the filter continuous relations and their corresponding operations on the algebras of filters
of L-spaces. In particular we characterize the filter continuous relations the correspond to meet and
join preserving operations and then show how we can recover L-space morphisms from these properties.
Notably, the representation of meet preserving operations is peculiar and contrasts the one given in
[6]. To make this difference clear we remark on how to represent to modal lattices and how we could

potentially recover the representation given by the authors of [6].
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3.1 Duality for Products

We begin with the characterization of products and coproducts of L-spaces. Perhaps counterin-
tuitively, we show that products of L-spaces and a special notion of inclusion into the product, have
the universal property of coproducts. We then show how this characterization can be used to give a
concrete topological representation of products of lattices. The next section will employ these results
as a tool for obtaining the representation of monotone operations. In Chapter 8, we will extend
these results to obtain characterizations of coproducts of the dual spaces of r¢-groupoids and then a

representation theorem for products of rf-groupoids.

3.1.1 (Co)Products of L-Spaces

One way of forming coproducts of L-spaces is by freely generating meets on the disjoint union of a
(finite) family of L-spaces and then equipping this structure with an appropriate topology. However, it
turns out that this free construction corresponds to simply taking the direct product of the underlying
operational structures and equipping that structure with the product topology. Coproducts of L-spaces
are then simply cartesian products at the object level. While this may appear counterintuitive, the
role of a cartesian product as a coproduct can be explained in virtue of the semi-lattice structure
underlying a given L-space.

As an example, let us consider the direct product X x Y of two semi-lattices, X and Y. There
are inclusion homomorphisms vx : X — X x Y and 7y : Y — X x Y for both semi-lattices such that
vx(z) = (z,1y) and vy (y) = (1x,y). The images of these maps form copies of X and Y inside X x Y.
This corresponds roughly to the disjoint union of the X and Y after being quotiented so as to agree on
what the top element is. What would be freely generated meets are then identified with the meets of
pairs coming from vx[X] and vy [Y]. For example, given vx(z) € vx[X] and vy (y) € yv[Y], the meet
of these two objects yx(z) A vy (y) = (z,y).

In the remainder of this section we define products of L-spaces and show that the category of L-
spaces is closed under finte products. We then demonstrate that products of L-spaces also play the role
of coproducts in the category of L-spaces. While this is enough to conclude that the duals of products
coincide with products of their duals spaces, we given a concrete description of the homeomorphism
between the dual of a products of the lattice expansions we have been entertaining ourselves with and
the products of duals of these algebras. It is important to note that our duality results for products
only apply to finite products.

Let us now define direct products of semilattices In this definition we consider arbitrary products

but we will restrict attention to finite products once we consider topologies on these structures.

Definition 3.1.1. (Direct Products of Semilattices)
Let {X; = (X, Ai, 1;) bier be a family semilattices.

The direct product [[,c; Xi = ([[;c; Xi, A, 1) is defined such that:

DL Xi={a: I = U Xi | VieI(a(i) € Xi)},

2) A is defined such that for i € I: oo A\ B is the function such that (a A B)(i) = a(i) A; 5(7) , and

3) the top 1 is defined as the function 1(i) = 1;.

For each i € I, p; is the projection map where p;(a) = a(3).

In addition, for each i we define the inclusion map ~; : X; — X so that v;(x) is the function such
that (v (2))(i) = & and for all j £, ((x))(G) = 1;.

14



When it is convenient we will conflate []..; X; with the cartesian product of sets X; and think of

el
the operations and constants as being defined pointwise. The following lemma states that each the
inclusions maps ; are essentially injective L-space morphisms without necessarily being continuous
since we are not yet considering topologies. We omit proof since the ~;[X] is easily see to be a copy of

X in the product.

Lemma 3.1.2. Each inclusion map v; : X; — [[;c; Xi is an injective semilattice homomorphisms that
satisfies the following back condition: If a A B < ~;z, then there are x,y € X such that x Ax y < z and
a < froand B < fy.

In addition to essentially being L-space morhisms, the inclusion v; : X; — [[,c; X; enjoys the
property of being right adjoint to the projection p; : [],c; Xi — X;. We again omit proofs in this case

since the argument is quite straight forward.

Lemma 3.1.3. (Adjunction Property) Let {X;}icr be a family of semilattices. Let X = [[;c; Xi. Then

for all i, then projection map p; is left adjoint to the inclusion map ~;:
pi(a) <z <= a < ().

A simple but useful property of the previous lemma is the following.

Lemma 3.1.4. Let {X;}icr be a family of semilattices. Let X = [[,c; Xi and suppose that S C X is
upward closed. Then v; '[S] = p;[S].

Proof. Let S C X be upward closed. Let z € 4; '[S]. Then 7;(z) € S. pi(vi(z)) € p;[S]. But since
x = pi(vi(z)) (see definitionnitions), we have that = € p;[S]. For the other inclusion if x € p;[S], there
is some «a € S such that p;(«) = z. By the adjunction property, it follows that o < ;(x). Therefore,
since S is upward closed, we have that v;(x) € S and thus that x € v; ![s]. We can therefore conclude
that ; '[S] = p[S]. O

We now reach the final lemma regarding products of semilattices which we will make extensive use

of. We show that products commute with the operation of taking filters.

Lemma 3.1.5. Let {X;}ier be a family of semilattices.
(1) Suppose that x € Fi([[,c; Xi), then p;[z] € Fi(X;),
(2) Suppose that for each i € I we have some x; € Fi(X;), then Iicrz; € Fi(]];c; Xi), and
3) if I is finite, then Fi(][ X;) and [[ Fi(X;) are in bijective correspondence.

Proof. For (1), suppose that x € Fi(][,c; Xs). clearly, 1; € p;[z]. For meet closure, let a,b € p;[z].
Then there are @ and § in x such that a(i) = a and (i) = b. Since z is filter we have that a A g € z.
Therefore a A b = a(i) A B(i) = (o A B)(i) € pi[x]. For upward closure, let a € p;[x] and a < b. If
a € pi[z], there is some a € x such that a(i) = a. If follows that the function g € [[S; defined such
that 8(j) = a(y) for all j # ¢ and (i) = b is such that o < 8. Therefore, 5 € x and so b € p;[x]. We

conclude that p;[z] is a filter.

For (2), suppose that for each i € we have some x; € Fi(X;). define x = ;e ;. Surely 1y, € 2.
Now let «, 5 € z. For all i, (a A 5)(i) = a(i) A B(i) € z;. Therefore a A f € z. For upward closure,
suppose that « € z and o < 8. Then for all i € I, a(i) € x; and «(i) < (). So for all i € I, (i) € z;.
So B € x, as desired. We conclude that x is a filter.
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Finally, for (3) recall that we consider I to be finite. Also beware we conflate the definition of
products as containing choice functions and the definition of products as containing sequences. Then
we define the maps A : Fi([[ X;) — [[ Fi(X;) and X\* : [[ Fi(X;) — Fi(]] Xi) such that

M) = (pilz])ier N ((@i)ier) = M.

A and \* are well defined in virtue of parts (1) and (2) of this lemma. We need to show that A and
A* are inverses of one another and therefore need to show A*(A(x)) = = and A(AN*((z;)ier)) = (®i)icr-

For the identity A(A*({x;)icr)) = (i)icr, we note that N N*((z;)icr)) = (pilllai])ier = (Ti)ier
because for each i € I, x; = p;[Ilz;].

For the identity A*(A(x)) = x, we note that the inclusion  C A\*(\(x)) is essentially by definition.
For the other inclusion, let a € A*(\(x)) for some filter z € Fi([] X;). If a € A*(A(x)) = [ [ pi[x], then
a(i) € p[z] for each i. However, if a(i) € p;[x] for each i € I, then there is some 3! € x such that
Bi(i) = a(i) for each i € I. So since 3’ < v;(a(i)) for each i € I and z is upward closed, v(a(i)) € =
for each i € I. However, because [ is finite and 7;(«(i)) € x for each i € I, the fact that z is closed
under meets implies that A v;(«(i)) € . However as a = A vi(a(i)), we may conclude that o € x and
thus that o € A*(A\(z)) C @. O

With each of the previous lemma available, let us now formally define the coproducts of L-spaces.

Definition 3.1.6. (Products of L-spaces.) Let {(X;, 7;),}ier be a family of L-spaces.
The Product [[;c; X; = (X, 7) is defined such that X = [[;c; Xi and 7 is the product topology on
X.

We now state a useful fact that states that the product topology is generated by a subbase consisting

of products of subassic elements of the topologies on the factors.

Lemma 3.1.7. Let {(X;,7i);}ier be a family of L-spaces. Then

Sp = A{llie; Ui | Ui € Fiap(Xi) & [{i | Us # Xi}| < Ro}
UA{X — (ILes Ui) | Ui € Fiap(Xs) & {i | Ui # 0} < Ro}

is a subbase for the product topology on {(X;,7:), tier-

Proof. In general fact from topology is that given a collection of topologies {Y;};c;r where for each
i € I, we have a subbase S; for Y;, a the collection defined by subsituting S; for Fig,(X;) in the
definition of Sp is a subbase for the product topology. Since Fic,(X;) U{X —U | U € Figp(Xs)} is a

subbase for each L-space X;, we are ensured that Sp is a subbase for the product of L-spaces. O

We now restrict attention to finite products and obtain our first result of this section. In particular

we show that the the category of L-spaces is closed under finite products.
Proposition 3.1.8. A finite product of L-spaces is an L-space.

Proof. Let {(Xj,7;),}i<n be a finite family of L-spaces and let [[,., X; = (X,7) be the product
topology. B

Given the previous Lemma, which essentially asserts that the product topology has a basis of
clopens, and the fact that products preserve compactness, we need to check that HMS-separation holds

and that the clopen filters of the product topology are closed V.
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(HMS-separation) Suppose that o £ 8. Then there is some i such that «(i) £ §(i). Then by
HMS-separation in X;, there is a clopen filter U in X; such that «(i) € U and 5(i) ¢ U. It follows
that a € [, V; but 8 € [[;, Vj, where [[,,, V; is such that V; = U and for all j # 4, V; = X;. It

is also a ready consequence that [[._, V; is a clopen filter (See Lemma 3.1.7 and Lemma 3.1.5).

j<n
(Closure of Clopen Filters under V) A straight forward argument shows that [[,., UiV [[,c, Vi =
[[i<,(UiVV;). Since [],.,,(U;VV;) is clopen in the product topology, so is [[,,, UiV [[;<, Vi = UVV.
(1 is clopen) The last thing we need to check is that 1 is clopen. This is ensured again by the

subbase lemma and the fact that {1} = [[{1x,}. O

Lemma 3.1.9. {(X,7;),}icr be a family of L-spaces. Let X = [[;c; X; be the product. Then for all
1 €1, v X; — X is an L-space morphism.

We now show that the inclusion morphisms a L-space morphisms (See Definition 2.2.4 for a

reminder).

Proof. In virtue of Lemma 3.1.2, we just need to check that ~; is continuous. However, it then suffices
to check that if U is a clopen filter of X = [[..; X;, then ;U] is a clopen filter of X;. However, in

virtue of Lemma 3.1.4, we have that ~; '[U] = p;[U]. So since U necessarily of the form [Ije; Vj for a
choice of V; C X, for each j € I, we have that v; '[U] = p;[U] = pillljer Vs] = Vi, which is a clopen
filter of X;. ]

We now arrive at one of the main results of this section. We show that the products of L-spaces
also play the role of coproducts in the category of L-spaces. This ambiguity is what will later allow use

to given our topological representation of products of lattices.

Theorem 3.1.10. (Universal Property of Coproducts) Let {(X,7;),}i<n and Y be a finite collection of
L-spaces. Suppose that for each i < n, there is an L-space morphism g; : X; — Y. Then there exists a
map g : [[;<,, Xi =Y that uniquely satisfies g(vi(x)) = gi(z) for all x € X; and i <n.

Proof. Let {(X,7;),}i<n and Y be (r){G-spaces. Suppose that for each i < n, there is some L-
space morphism ¢; : X; — Y. Recall that (r)¢G-spaces have all meets (Lemma 2.2.13). We define
9 [li<, Xi =Y such that:

g(a) = \ gi(e()).

i<n
In virtue of this definition it is immediate that g(v;(z)) = g;(x). For uniqueness with respect to
this property, we recall also that L-space morphisms preserve meets. Let h: [[,.,, X; =Y be a map
such that h(y;(z)) = gi(x) for all x € X; and i € I. Let o € [];,, Xi. We claim h(a) = g(v) and
therefore that h = g. Note that for all i < n, g;(a(i)) = h(v(a(i)))_by assumption. So we have:

g9(@) = N gi(a(i)) = A h(vi(a(i))) = h(Avi(a(i)) = h(a).

We must now check the various conditions for g an L-space morphism (see Definition 2.2.4).
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For meet preservation:

CMA,B Agz ))

= A gi(a(i)) A gi(B(3)))
= Agz Agz
= g(a) A g(B).

For the back condition, suppose that A y < g(a) = \;<,, 9i(a(i)). We need to show that there
are f and 7 such that S A v < a and z < g(f) and y < g(fy)i. If 2 Xy < \;<, 9i(a(i)), then for each
i<n,z Ay <gi(a(i)). By the back condition for each ¢ < n, for each i < n there are x; and y; such
that 2; A y; < a(i) and = < g;(z;) and y < ¢;(y;). Define § and v such that 8(i) = z; and (i) = y; for
each i <n. Then f Ay < «aand z < g(f) and y < g(7y), as desired.

Finally, we need to check that our map g is continuous. Given that each g; is continuous, it is
sufficient to show that for each clopen filter U in Y, then [],, g; '[U] = ¢~ [U]. The following chain

equivalences proves this.
ac]]g'lUl<=Vi<n: gi(a(i)) €U

— A\ gila(i) €U

i<n

— acg U]

The first and last equivalence are by definition. The second equivalence follows from U being a
filter and so being closed under meets. Having shown that g meets the requirements to be an L-space

morphism in Definition 2.2.4, we conclude our proof. ]

We have just shown the possibly counterintuitive result that products of L-spaces play the role
of coproducts in the category of L-spaces. In the next section we exploit this fact to provide a

representation of products of lattices.

3.1.2 A Representation for Products of Lattices

We now give a concrete representation of products of lattice in virtue of products of their dual
L-spaces. This representation may be counter intuitive. But in light of the discussion at the beginning
of the previous section, the results of the previous section, and particularly the demonstration that
products of L-spaces with their inclusion maps have the universal property of coproducts (Theorem

3.1.10), this result becomes slightly more natural.

Theorem 3.1.11. Let {L;}i<, be a finite family of lattices. Then:

XHign L; = H XLi

i<n

Proof. Recall the bijection A : Xy f, — Hign X, from part 3 of Lemma 3.1.5. A was defined so
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that A(x) = (p;[x])icr. In order to demonstrate the claim, it is sufficient for us to show that X is an
L-space morphism (see definition 2.2.4).

For meet preservation, it is sufficient to show that for each i € I, p;[xNy| = p;[z] Np;]y] because then
M Ny) = (pilz N yl)ier = pilz] N pilyl)ier = wilz])ier A Pilyl)ier = Mz) L A(y). So let a € pi[z Ny
then there is some o € z Ny such that «(i) = a. But then a € p;[z;] N p;[y]. For the other inclusion,
suppose that a € p;[x — Np;[y]. Then there are o € x and f € y such that a = a(i) = §(i). But then
a < v;(a) and 8 < 7;(a). Therefore, since both z and y are upward closed we have that v;(a) € x Ny.
There we obtain a € p;[x Nyl, as desired.

For the back condition associated with A, let z A y < A(z) where x = (x;);cr and y = (y;)ic1. Note
the fact that A preserves meets and is bijective implies that A\’s inverse A* does too. So we have that
Nz A Xy = Az L y) < z. Thus we have shown that that A satisfies the back condition.

Finally, for continuity, let U be a clopen filter of [[,.,, Xr,. We must show that \*[U] is clopen in
X[1,., ;- For notations sake, let us have that L = Hl;n L;. If U is a clopen filter of HZ»S” Xi,, then
there are ay, ..., a, such that U = [[,.,, ¢1,(a;) (see Lemma 3.1.7 ). We claim that \*[U] = ¢r,((@i)i<n-
So let \*((x;)i<n) € A*[U]. Then since U = [li<n ¢1;(ai), for each i < n z,, € ér,(a;). Therefore,
(ai)i<n € N ((xi)i<n) and so X*((x4)i<n) € ¢1.((@i)i<n). For the other direction, let x € ¢r,({a;)i<n)-
Then p;[z] € ¢1,(a;) for each i < n. This then implies that A(z) € [],., ¢r,(a;) and so since
x = X*(A(z)) we can conclude that x € \*[U], as desired. We therefore have shown that \ is continuous

and so meets all of the requirements of being an L-space morphism. ]

Corollary 3.1.12. Let {L;}i<n be a finite family of lattices, then: ¢r,(a1) X ... x ¢, (an) =
¢HLi§n((ala--’an)).

Proof. Corollary of 3.1.11, in particular the case of showing A is continuous, and the fact that by

duality the salient lattices of clopen sets are isomorphic. O

We now move to the representation of monotone operations, which will make essentail use of the

representation of products we have just given.

3.2 The General Representation for Monotone Operations

In [27, 28] and [22], which provide spectral style dualities for lattices and posets respectively,
representations of monotonic functions between lattices are given. In this section we extend the L-space
duality in a similar way by showing that every monotone n-ary operation between lattices can be
represented as an n—+1-ary relation between the duals of those lattices. We then obtain a representation
theorem for all monotone lattice expansions and then generalize the L-spaces duality. Some of the
results presented in this section are direct generalizations of those reported in [6] and do not provide
significant theoretical advancements. This being said, generalizing to the case of n-ary operations will
set the stage for chapters to come and provide the means of proving a general result on what sorts of
identities can be preserved through the II;-completion.

We begin in Section 3.2.1 by defining filter continuous relations. In Section 3.2.2 we will show in
Theorem 3.2.6 that every operation between lattices is represented uniquely by some filter continuous
relation. This leads naturally to a representation theorem for all monotone lattice expansions in
Corollary 3.2.7. We end this section with some remarks on the relation of this representation result to

the dualities in [6]. Finally, in Section 3.2.3 will show in Theorem 3.2.11 that the category of lattices
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with monotone operations is dual to the category of the L-spaces with filter continuous relations as
morphisms. These results will be key to those regarding completions and persistence in the following

sections of the chapter.

3.2.1 Filter Continuous Relations

Definition 3.2.1. Let {X; = (Xi, A4, 1i, 7) hi<n U{Y = (Y, A, 1,7)} be a family of L-spaces with n € IN.
Suppose that RCY x X1 X .. X X,,.

We say that R is filter continuous if it satisfies the following conditions:

(Clopen compatible) R(y,x1,..,xyn) iff for all in and U; € Figp(X;): If 2; € U;, then y €
FlU1, ..U {y €Y | 3z, € U;y... 3z, € Uy(R(y, x1,..,24)}, and
(Clopen-continuous) If U; € Fiep(X;) for each i < n, then FrlUy,..,Uy] is in Figy(Y).

Note that in the case that R is binary, Fg[U] = R~[U].

We will now provide two lemmas we make use in the following pages. The first, Lemma 3.2.2,
provides some useful properties of filter continuous relations. The second, Lemma 3.2.3, will made use
of in two important places. The first is to show that the composition of filter continuous relations is a
filter continuous relation in Lemma 3.2.8. The second is to show that the various completions we are
interested in when applied to monotone lattice expansions can be represented in the dual space of the

lattice being completed (Lemma 4.2.2 and Theorem 4.2.3).

Lemma 3.2.2. (Properties of Filter Continuity)

Let {X; = (Xi, X, Li, 7)) bi<n U{Y = (Y, A, 1,7)} be a family of L-spaces with n € IN. Suppose that
RCY x X7 x..xX,.

If R is clopen-compatible, then it satisfies each of the following properties:

i) (Order Compatibility) If R(y, 1, ..,xn), y < Y, and x; < z; for each i < n, we have R(y', 2}, ..,x}),

ii) (A-Compatibility) If R(y;,zj1,..xjn) for all j € J, then R(\ yj, A j1,--s \ Tjn)-

iii) (Point Closed) For ally € Y, Rly] = {(z1,..,2n) | R(y,x1,..,xy)} is closed in the product topology
P = (HiSnXi,Ap, 1p,7’p).

iv) (Boundedness) For all i <n and xz; € X;, R(1,z1,..,%y).

Proof. We prove each claim in turn:

(Order Compatiblity) Suppose that R(y,z1,..,2,), y <y, and z, < z; for each i < n. Suppose
now that for U; € Figp(X;) we have fo € U;. Then clearly by upward closure of the U;’s, we have that
x; € U; for each i < n. Therefore, by clopen compatibility and the assumption that R(y, 1, .., zy),
we have y € Fg[U,..,U,] and thus by upward closure again, which is guaranteed by the fact that
Fg[Un, ..,U,] is a filter, we have that ¢’ € Fr[U, .., U,]. This then implies again by clopen compatibility
that R(y', 2}, ..,x}), as desired.

oy dp

(A-Compatibility) An analogous argument holds but relies on the fact that clopen filters are closed

under arbitrary meets (which follows from the fact that closed filters are principal. See Lemma 2.2.9).
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(Point-Closure) We claim that

{(z1,.,zn) | Ry, z1,...,xn)} = ﬂ{X" — (H Us) | Ui € Fiap(Xs) & y & Fr(Uy, .., Upl}.

i<n

(C) suppose that (z1,..,2,) € {(2},..,2}) | R(y,2},...,2),)} and y &€ Fgr[Uy, .., U,] for some clopen
filters U; € Ficyp(X;). Then R(y,x1,..,2,). So by clopen-compatibility of R, we have that there is
some ¢ < n such that z; ¢ U;. It follows that then that (z1,..,z,) € X" — ([[,<,, Ui), as desired.

(D) We reason contrapositively. Suppose that it is not the case that (z1, ?a:n) € {(2h,...2]) |

R(y,},...,x})} and therefore that not R(y,x1,..,x,). It follows by clopen compatability that for each
i < n there is some U; € Figy,(X;) such that ; € U; for each i < n but y & Fg[U,..,U,]. It follows
then that (z1,..,25) € ({X" — (I[;<, Ui) | Ui € Fiap(Xs) & y & FrlU, .., Unl}.

Finally we are ensured that ﬂ{E(" — ([Li<n Ui) | Ui € Fiap(X;) & y & Fr[Ui, .., Un]} is a closed

set in the product topology because (stn U;) is clopen in the product topology by Lemma 3.1.7.

(Boundedness) By clopen continuity, for all ¢ < n and all z; € X; and U; € Figp(X;) such
that z; € U;, we have that 1 € F[Uy,..,U,]. Therefore by clopen compatibility, we have that
R(1,z1,..,xy). O

Our second lemma shows how Fr extends from the clopen filters to the closed filters and filters of

an L-space. This lemma is essentially the same as Lemma 4.18 in [6].

Lemma 3.2.3. Let RC X x Y] X ... X Y, be a filter-continuous relation between L-spaces X and Y;
fori <n. Then:
1) For all closed filter C1, ..,Cp of Y: FR[Ch,..,Cp] = (W{Fr[U1,..,Uys] | Ui € Fiap(Y;) & C; C Ui},
2) For all filters Uy,..,U, of Y: Fg[Ui,..,U,] = V{Fg[C1,..,Cy] | C; € Fir(Y;) & C; CU;}.

Proof. The proof of this lemma is a direct generalization of the proof of Lemma 4.18 in [6].

For (1), let C14,..,Cy, be closed filters of Y. The inclusion Fg[C4,..,Cy] C ({Fr[U1,..,Un] | U; €
Fiap(Y;) & C; C U;} is immediate from monotonicity of Fr. For the other inclusions suppose that
z &€ Fgp[C1,..,Cy]. Then R[z] N (Cy x ... x Cp,) = 0. Since R[z] is a closed downset, by lemmas 2.2.9
and 2.2.10 we obtain that there is some clopen filter Uy x ... x U, where U; € Figp,(Y;) (See Lemma
3.1.7 for subbase products.) and Cy x ... x C,, C Uy X ... X U, and R[z] N (U X ... x Up,) = 0. Therefore,
we have that « ¢ Fgr[Ui,..,U,] for some Uy, ..,U, such that for i < n, U; € Fiqy(Y;) and C; C U;.
And thus we arrive at the conclusion that « & (\{Fr[Ui,..,U,] | Ui € Figp(Y;) & C; C Us}.

For (2), The inclusion \/{Fg[C1,..,Cy] | C; € Fir(Y;:) & C; C U;} C Fg[Uy,..,U,] is immediate
by monotonicity of Fg. For the other inclusion, let € Rg[U1,..,U,]. Then there are y; € U; such
that R(x,y1,..,yn). By Lemma 2.2.9, 1y, is closed for each ¢ < n. Since R(z,yi1,..,yn), it follows that
x € Fr[Ty1,..,Tyn]. Therefore, the preceding two sentences implt that x € \/{Fg[C1,..,Cy] | C; €
Fip(Y;) & C; C U;} as desired. d

With Lemmas 3.2.2 and 3.2.3 in hand, we turn to the representation of monotone operations by
filter-continuous relations and then the duality result showing the category of lattice with monotone

operations is dual to the category of the L-spaces with filter continuos relations among them.
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3.2.2 The Representation of Monotone Operations

We will show in Theorem 3.2.6 that for every monotone operation f : L; x ... x L, = K between
lattices, there is a unique filter continuous relation Ry among some L-spaces so that the following

diagram commutes.

¢L X...XL
Ly % ... x L, “ Ly, X . x Lx,

] b

K ox > KXK

So if f: Ly x ... x L, — K is an n-ary operation between bounded lattices. We can canonically
define a relation Ry C Xk x Xp,, X ... X X, between the filters of K and the L; up through L, as

follows.
For all y € Xk and x; € Xppi, Ry(y, @1, .., xp) iff if a1 € z1,..,a, € xp, then f(a1,..,a,) € y.

Lemma 3.2.4. (Filter Continuity)
Let f : Ly x ... x L, = K be an n-ary operation between bounded lattices. Then the relation
Ry C Xk X X, X ... x Xy, 18 filter continuous.

Proof. We demonstrate the two conditions of filter continuity as follows:
(Clopen Compatability) The direction from left to right follows in virtue of the definition of Fg,[-].

For the direction from right to left we must rely on the equivalence between a € x and x € ¢(a).

(Clopen Continuous) We show that Fg,[¢r,(a1),..,¢L,(an)] = éx(f(a1,..,an), which via the
isomorphisms ¢x between K and Figy(Xg) and ¢r, between L; and Fig,(X;) for i < n, respectively,
will establish the desired result.

(S) Suppose that y € Fr,[ér,(a1), .., ¢L,(an)]. Then for each i < n, there is some z; € ¢, (a;)
such that R¢(y,x1,..,2,). However, if z; € ¢k, (a;), then a; € x; for each i < n. Therefore by the
definitionnition of Ry, f(a1,..,a,) € y. This in turn implies that y € ¢(f(a1,..ay)), as desired.

(D) Suppose that y € ¢x(f(a1,..,a,)), then f(ai,..,a,) € y. Note that for each i < n, 1(a;) €
¢(a;). fro each i < n suppose that there is a b; such that a; < b;. Then f(ai,..,an) < f(b1,..,b,)
by monotonicity and so f(b1,..,b,) € y. Therefore, Rs(y,1(a1),..,T(an)), which in turn implies
y € Fr;lor,(a1), ., o1, (an)]. O

We provide a supporting lemma which will allow us to show the uniqueness of Ry with respect to

the property expressed by the diagram above.

Lemma 3.2.5. Suppose that S, R C Xk x Xy, X ... x X1, are filter continuous relations, then S C R
iff for all ay € Lq,.., and ay, € Ly, Fs[¢p(ar),..,d(an)] C Frlo(ar), .., o(an)].

Proof. For the direction from left to right, the argument is straightforward. From right to left, we reason
contrapositively. Suppose that S € R, then is a sequence (y,x1,..,z,) € S where (y,z1,..,2,) € R.
This means that (z1,..,2,) € S[y| but (z1, .., z,) € Rly]. However, R[y] is a closed downset in virtue of
Lemma 3.2.2 (in particular point closedness and order compatibility) and R[y| excludes (z1, .., zy). So
by Lemma 2.2.10, there is a clopen filter U = ¢r,, (a1) X, .., ¢1,, (an) of [ [,,, X1, such that (z1,..,2, € U
and R[z)]NU = 0. But then y € Fg[¢r,(a1),.,¢1, (a,)] but = & FR[g_bLl(al), &1, (an)]. Therefore
Fs[$(ar), -, dlan)] € Frld(ar), -, dlan)]. 0
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The above proof is accomplished in terms of the method used by Gehrke and van Gool to represent
join preserving functions in in [21]. We are now in a position to conclude the remain result of this
section. The preceding lemmas allow us to show that every monotone lattice operation corresponds

uniquely to a filter continuous relation between relevant L-spaces.

Theorem 3.2.6. (Representation of Monotone Maps) Let f : Ly X ... x L,, = K be a monotone lattice
map. Then Ry is the unique n+1-ary filter-continuous relation on Xg x Xy, X ... x X, such that

¢K(f((11, 0 an)) = FR[CbLl (a)7 s DL, (an)]

Proof. In virtue of the lemma 3.2.4 we only need to show that that Ry uniquely satisfies Fr[¢r, (a), .., 1, (an)] =
o (f(ai,..,ay)). However the previous Lemma 3.2.5 implies this rather directly. Suppose that
S C Xk x Xp, x .. x X, and suppose that Fg[¢r,(a1),..,¢r,(an)] = ¢x(f(a1,..,a,). Then

Fs[or,(a1),.., 01, (an)] = ¢x(f(a1,..,an) = Frlér,(a1),..,ér,(an)]. Then by lemma 3.2.5, S =
Ry,. O

One corollary of the representation of monotone maps given in the previous theorem is that every

monotone lattice expansion (L, { f; }icr) is isomorphic to (Ficp(XwL), {FRfi}z‘eI)-

Corollary 3.2.7. (Representation for Monotone Lattice Expansions) Every monotone lattice expansion
(L,{fi}icr) is isomorphic to the clopen filters of an L-space X = (X,{R;}icr) equipped with a family

of filter continuous relations {R;}icr.

Proof. Note that the lattice isomorphism ¢ : L — Fig,(Xy,) is also a homomorphism with re-

spect to each operation f;. In particular, in virtue of Theorem 3.2.6, we have ¢x(f(a1,..,a,)) =
Frlor,(a), .., oL, (an)]. O

We conclude this section. In the next we prove a generalization of L-space duality.

3.2.3 Duality for the Category of Lattices with Monotone Operations

A more general consequence of Theorem 3.2.6 is that the category Lat(O) of lattices with monotone
operations as morphisms is dual to the category LSp(IFC) of L-spaces with filter-continuous relations
as morphisms. This is a generalization of the L-space duality of Bezhanishvili et al. [6] and we will
informally discuss how to recover L-space duality in the following section.

To demonstrate that LSp(IFC) is indeed a category, we must identify a means of composing filter
continuous relations. To do this, we will utilize the fact that each n + 1-ary filter-continuous relation is
equivalent to binary one. In particular, given an n+ l-ary filter-continuous relation R C Y x X1 x.. x X,
we define the corresponding binary filter continuous relations R* C Y x (X x .. x X,,) (notice the

brackets) in the natural way:

Rb(y,x) <~ R(y,z(1),..,z(n)).

The fact the R is filter continuous follows from Theorem 3.1.11, which tells us that the operations
mapping lattices to L-spaces and L-spaces to lattices commute with products. This ambiguity between
n + l-ary relations and binary relations will allow us treat composition of morphisms in LSp(FC) as
ordinary relation composition. So given filter continuous relations R C X x Y and S CY x X: we

define the composition R * S of R and .S in the usual way:
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RxS={(z,y) e XxZ|JyeY((z,y) € R& (y,2) € 9))}.

Finally, it is worth noting that given an n-ary monotone operation f : L; X ... X L, — K we can
think of the relation Ry :C Xy x X, x...x Xr,, and its binary counterpart Rl} C Xgx(Xp, x..xXpr,)
as being equivalent to the binary relation R} C Xk X X1,x..xL,- In essence this boils down to the

following diagram commuting.

XK < id y XK

b
R, é équ

XL, X ... x X, +—=— X(L1><...><Ln)

With all of these considerations in mind, let us now prove the final lemmas needed to show that
the categories Lat(0O) and LSp(IFC) are dually equivalent. In particular, we will check that really
forms LSp(IFC) a category in Lemma 3.2.10. To obtain this fact, we will first prove Lemma 3.2.8,
which guarantees that the composition of filter continuous relations are filter continuous. We will then
show how to turn L-space morphisms into filter continuous relations in Lemma 3.2.9. This allows us to
characterize the identity morphisms in LSp(IFC) and leads to the fact that LSp is a subcategory of
LSp(FC).

Lemma 3.2.8. Let X, Y, and Z be L-spaces and R C X XY and S CY x Z be filter continuous
relations. Then:
1) for all filters U € Fi(Z), Fr«s|U] = Fr = Fg[U], and

2) Rx S is a filter continuous relation.

Proof. Let RC X xY and S CY x Z be filter continuous relations.

For (1), Let U be a filter of Z. Let © € Frys[U]. Then there is some z € U such that (x,z) € R« S.
But then there is a y € Y such that (z,y) € R and (y,z) € S. But then y € Fg[U] and x € Fr[Fs[U]].
So Fr.«s[U] C Fr[Fs[U]]. On the other hand, let x € Fr[Fs[U]]. Then there is some y € Fg[U] such
that (z,y) € R. But if y € Fg[U], there is some z € U such that (y,z) € S. It then follows that
(r,2) € R+ S and = € Frys|U].

For (2), we need to show both condition of Definition 3.2.1 hold of R % S.

(Clopen Compatibility) One direction of this condition is by definition. For the nontrivial direction,
suppose that for all V' € Fig,(Z), if z € V, then z € Frys[V]. We need to show that (z,2) € R*S.
Let us define y = A (Fs[Tz]).

Claim 1: (y,z) € S. To show this, Let U € Fiyy(Z) and suppose that z € U. Since 1z C U,
we have that Fg[tz] C Fg[U]. It then follows from the fact that U is closed, and therefore principal
(Lemma 2.2.9), that y = A(Fs[1z]) € F5[U]. Therefore, by (Clopen Compatibility) of S, (y, z) € S.

Claim 2: (z,y) € R. To show this we will show that for all U € Fi,(Y), if y € U, then x € Fg[U]
and use clopen compatibility of R. So let U € Fig,(Y) and suppose that y € U. Since 1z is closed,
by Lemma 3.2.3, Fs[tz] = ({Fs[V] | V € Figp(Z) & z € V}. Therefore, by Lemma 2.2.9 we have
1y = Fs[Tz] and by the assumption that y € U, we have (\{Fs[V] | V € Fiqy(Z) & z € V} CU. But
then because U is clopen, by compactness we obtain that there are Vi, .., V;, such that z € (), V; for
each i < n and (,.,, Fs[Vi] C U. Now by our assumption that for all V' € Fiy,(Z), if z E_V, then
z € Fres[V] and the fact that z € Ni<n Vi, we have that x € Fgres[();<,, Vi]. But from (1) we then
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have that € Fr[Fs[);<,, Vi]]- So from the monotonicity of Fr and Fis we have:

i<n

FrlFs[(| Vill € Frl() FsVill € FrlU].

i<n i<n

We may therefore conclude that x € Fr[U]. So by generalizing on U, we obtain from clopen
compatibility of R that (x,y) € R, as desired.
It then follows from (Claim 1) and (Claim 2) that (z,z) € R« S, as we wished to show. We

therefore conclude that R * S is clopen compatible.

(Clopen Continuity) Let UFig,(Z). By the clopen continuity of R and S, we have that Fr* Fg[U] €
Fiap(X). By (1) Fres[U] = Fr* Fs[U], so Frys|U] is a clopen filter. Thus R * S is clopen continuous.
O

Let us now show that each L-space morphism can be turned into a filter continuous relation.

Lemma 3.2.9. Let f: X — Y be an L-space morphism, then

R = J{tz x Lfz | v € X}

is a filter continuous relation.

Proof. We will first show that for all filters U of Y, Fpr[U] = f~1[U]. Let U be a filter of Y. For
the inclusion Fpr[U] C f~1[U], let x € Frs[U]. Then there is some y € U such that (v,y) € R/. If
(x,y) € R, then by definition of / there is some z € X such that z < z and y < fz. So since f is an
L-space morphism, and is therefore monotone, y < fz < fz. But then since y € U and U is upward
closed, fz € U and so z € f~[U], as desired. For the other inclusion f~1[U] C Fp[U], let z € f~1[U].
Then (z, fz) € Rf and fr € U. Therefore x € Fp[U].

We now show that R/ is filter continuous. We have two conditions to check (See Definition 3.2.4).
For the condition of clopen-continuity, whenever U is a clopen filter of Y, Fgs[U] = f~1[U] is clopen
since f is a L-space morphism. For the condition of clopen-compatibility, we must check the non trivial
direction. So suppose that for all clopen filters U of Y, if y € U, then = € Fgs[U]. We must show that
(z,y) € R/. By the hypothesis that for all clopen filters U of Y, if y € U, then & € Fgs[U], we obtain
that € {Frs[V] | V € Fiap(Y) & y € V}. But by the fact that 1y is closed (Lemma 2.2.9), we
obtain from Lemma 3.2.3 that Fps[1y] = (W{Frs[V] |V € Figp(Y) & y € V}. So x € Frs[ty]. But
above we showed that for all filters V', Fgr[V] = f~1[V], and so in particular that Fp[ty] = f~1[1y].
So z € f~'[ty] implying that y < fz. However, if y < fz, then (z,y) € Tz x | fx C R, as desired.

We can therefore conclude that R/ is filter continuous. O

Lemma 3.2.10. LSp(IFC) is a category.

Proof. By Lemma 3.2.8 we are ensured that the composition of filter continuous relations are filter
continuous. Therefore the morphisms of LSp(IFC) are closed under composition. Therefore, all that is
left to do is to confirm the existence of identity morphisms. Using Lemma 3.2.9, which gives a recipe
for transforming L-space morphisms into filter continous relations, we have the following definition.
Let Y be an L-space, then R%C{l CY xY is defined:

Ry = J{tyxly|yev}.
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By Lemma 3.2.9, Rgg is filter continuous since id : Y — Y is an L-space morphism. We now check
that for any filter continuous relations R C X x Y and R’ CY x Z, we have that:

R+RY =R RYxR =R.

For showing R * R%C{l = R, note that R C R % R%‘{i is immediate since for any (z,y) € R, (y,y) € R%‘(i.
For the other inclusion, let (z,2) € R* Ri. Then there is some 2z’ € Y such that (z,2') € R and
(¢, 2) € Ri&. However, if (2/,2) € Ri, then there is some y € Y such that 2 <y < 2’. But since R is
filter continuous and therefore is order compatibility (See Lemma 3.2.2), (z,2') € Rand z <y < 2/
imply that (z,z) € R. Therefore, We may conclude that R * R = R.

Showing that R x R’ = R’ holds follows by similar argument. O

We now arrive at the main result of the section. We show that the category of lattices and monotone
operations is dual to the category of L-spaces with filter continuous relations. This Theorem lays
the foundations for some of the results we will see through out the thesis and generalizes the L-space
duality of [6]. The key application of this result will be to demonstrating a preservation theorem for

the IIj-completion in Chapter 4.
Theorem 3.2.11. The categories Lat(O) and LSp(IFC) are dually equivalent.

Proof. The object part of our duality follows from the object part of the L-space duality (Theorem ?7?).
The duality at the level of morphisms holds because the categories Lat(O) and LSp(IFC) are both
concrete and because Lemma 3.2.6 guarantees that for each monotone operation f: L1, X... x L, = K,
Ry is the unique n + l-ary filter continuous relation such that ¢x (f(a1,..,an)) = Frlér,(a), .., oL, (an)].

O

3.3 Some Correspondences for Filter Continuous Relations

We end this chapter with some observations regarding the representation of operations that preserve
meets or joins. This will allow us to make the relationship between L-space morphisms and filter
continuous relations more precise. We then discuss how to obtain the representation theorem for modal

lattices in [6] from the representation theory developed here.

3.3.1 Preservation of Joins and Meets

In general, an operation f : L; x ... x L, — K corresponding to a filter continuous relation

R C Xg x X1, X ... x Xr, will preserve joins at some coordinate ¢ < n if and only if we have:

(Reflection) If R(y,..xi—1,2z A 2/, i1, ..2y), then there are t,t’ € X, such that ¢t A t/ <y and

/ /
R(t,..wi—1,2,Tit1,--xn) and R(t,..xi—1, 2", 211, .- Tn).

We call this property reflection. Let us state and show this correspondence more precisely in the
case when R is binary. Recall that [T') = t{a1 A ... Aay, | a1,..,a, € T} denotes the filter generated by

a subset T of a semilattice.

Proposition 3.3.1. For all lattices K and L and monotone functions f : L — K for all a,b € L,
flaVvb) = f(a)V f(b) if and only if for all x € Xk and ¢/, 2" € X, :
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(Reflection) If Ry(x,y A 2'), then there are y,z € X such that y A z < x and R¢(y,y’) and R¢(z, 7).

Proof. Suppose that for all a,b € L, f(aVb) = f(a) V f(b). Now suppose that R¢(z,y" A 2’). Let
us define y := [f[y/]) and z := [f[z/]). It is clear that R¢(y,y’) and R¢(z,2"). Let us now show that
y A z < x. So suppose that ¢ € [fy') N [fz’). Then there are ay,..,a, €y and by, .., b,, € 2’ such that
Ni<n fai < cand A\, fbi < c. Since f is monotone, it follows that both f(A,<, ai) < A,<,, fa; and
f( f\igm bi) < Nicm f?)i. We therefore obtain from join preservation: B B

FNaiv \b)=f(Na)v i b) < N\ faiv N\ foi<e

i<n i<m i<n i<m i<n i<m

But we have that A, a; V \;<,,bi € ¥ Nz and thus that f(A,., @ V N\;<,,bi) € fly N2]. We
therefore can conclude that ¢ € [f[y' N 2']). Now, from the suppo_sition that R(z,y A 2'), we also
have fly' Nz2'] C x by definition of Ry and of A. It then follows from the fact that z is filter that
[f (¥ A 2']) C 2. So because ¢ € [f(y' A 2']), we also have that ¢ € x and thus that [fy") N [fz') C .
We may therefore conclude that y A z < .

For the other direction, suppose that for all z € X and v/, 2 € X, : If Ry(z,y’ A 2'), then there
are y,z € Xx such that y A 2 < x and Ry(y,y’) and Ry(z,2'). Let us first show that Fr [UVV] =
FR,[U]VFg,[V]. The inclusion Fg,[U]VFg,[V] C Fg,[UVV] follows by monotonicity and the fact that
V is join. So let x € Fg,[UVV]. Then there is some 2’ € UVV such that R(z,2’). If 2 € UVV, then
there are ¢y € U and 2’ € V such that 3y A 2’ < a’. By Lemma 3.2.2, R(z,y’ A 2’). So by assumption
we have that there are filters y, z such that R(y,y’) and R(z,2') and y A z < z. But then y € Fg,[U]
and z € Fg,[V] and = € Fg,[U]VFR,[V], as desired.

Now since ¢r, and ¢k are both isomorphism and Fg, * ¢r, = ¢k * f, we conclude that f(a Vb) =
fa Vv fb. O

i<m

The more general case follows from a very similar argument. Let us now consider meet preserving
operations.

An odd feature of the representation we have provided in this chapter is that the dual relation of
all monotone operations are defined in a uniform way, even those operations that preserve meets. In

the case of a unary operation f, the binary relation Ry on the relevant dual spaces was defined by

Ry(z,y) iff fly] C =

While in the case of join preserving operations this is standard fare, the fact the meet preserving
operations are represented this way too is unusual. To clarify this situation, let us provide the condition
guaranteeing when the operation Fr associated with some filter continuous relations R preserves meets
in some coordinate.

In the most general case, a operation f : L; x ... x L,, = K corresponding to a filter continuous

relation R C X X X, x ... x X, preserves meets at some coordinate ¢ < n if and only if we have:

(Idealization) If Rf(y,..xi—1, %, Tit1,..xn) and R¢(y, ..xi—1, 2, Tit1,..@y), then there is some w € X;
such that z < w and 2’ < w and Rf(y, L1, Wy Tig 1, Ty

We call this property idealization because the set {z € X; | Rf(y, ..%i—1,2, Tit1,..2n)} forms an
ideal of X;.

Let us state and show this correspondence more precisely in the case when R is binary.
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Proposition 3.3.2. For all lattices K and L and monotone functions f : L — K for all a,b € L,
flaAnb)= f(a) A f(b) if and only if for all x € Xk and y,z € X,

(Idealization) If R(x,y) and R(x,z), then there is some w € X, such that y < w and z < w and
R(z,w).

Proof. Suppose that for all a,b € L, f(a Ab) = fa A fb. Let R(z,y) and R(z, z). Defined w := [y U 2).
We show that R(xz,w). So let a € [y U z). we will show that fa € z. If a € [y U z), then because y
and z are both filters, we find b € y and ¢ € z such that b A ¢ < a. But because b € y and ¢ € z and
R(z,y) and R(z,z), we have that fb €  and fc € z and so fb A fb € x. So since b A ¢ < a, we obtain
foA fe= f(bAc) < fa. Therefore, fa € x, as desired. We can therefore conclude that R(z,w).
Suppose that for all z € X and y,z € Xy, if R(x,y) and R(z, z), then there is some w € X, such
that y < w and z < w and R(z,w). We show that Fr,[U NV] = Fg.[U] N Fg,.[V]. The inclusion
Fr.[lUNV]| C Fg,|[U]NFgr,[V] is by monotonicity and the fact that N is meet. For the other inclusion,
let © € Fr,[U] N Fg.[V]. The there are y € U and z € V such that R(x,y) and R(z,z). By our
assumption, there is some w € X such that y < w and z < w and R(z,w). So w € UNV and
x € Fr,[UNV].
Since ¢, and ¢k are both isomorphism and Fg, * ¢1, = ¢k * f, we conclude that f(aAb) = fa A fb.
O

With Propositions 3.3.1 and 3.3.2 in hand, we can describe those filter continuous relations whose

dual operations between lattices is a homomorphism.

Proposition 3.3.3. Let X and Y be L-spaces. Let R C X XY be a filter continuous relation. Then the
function Fr : Ly — Lx is a lattice homomorphism if and only if R satisfies the following conditions:
(Reflection) If R¢(z,y’ A 2'), then there are y,z € X such that y A z < x and R¢(y,y’) and Rf(z,2'),
(Idealization) If R(z,y) and R(z,z), then there is a w € X, such that y < w and z < w and R(z,w),
(Isolation) xR1 iff x =1, and

(Totality) For all x € X, there is a y € Y such that R(x,y).

Proof. The property of Isolation holds iff Fr[{1y}] = {1x}. Totality holds iff Fr[Y] = X. Join and

meet preservation correspondences follow from Propositions 3.3.1 and 3.3.2, respectively. O

We could now compose L-space duality with the previous proposition to obtain that every L-space
morphism corresponds to a filter continous relations with the properties reflection, idealization, isolation,
and totality. Let us now show how to turn a binary filter continuous relation with these properties
directly into an L-space morphism. Recall for the next lemma that all L-space X are also complete
lattices. We will denote the join by Y.

Lemma 3.3.4. Let X and Y be L-spaces. Let R C X XY be a filter continuous relation satisfying
idealization. For all x € X, YR[z] € R]x].

Proof. To prove this lemma, by Theorem 3.2.11 we may assume that there lattices L and K such that
X1, =Y and Xk = X. By proposition 3.3.2 and Theorem 3.2.11 we also obtain that there is some meet
preserving f : L — K such that R = Ry. We recall that Y R[z] = U{[y1 U .. Uyn) | ¥1,....Yn € R[z]}.
So let a € Y R[z]. Then there are yi, .., y, € R[z] such that a € [y1 U.. Uy,). Since R[z] is an ideal,
we obtain that [y U.. Uyy,) € R[x]. So by definition of R, we have that fa € . We therefore can
conclude that Y R[z] € R[z]. O
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Proposition 3.3.5. Let X and Y be L-spaces. Let R C X XY be a filter continuous relation.
Suppose that R satisfies reflection, idealization, isolation, and totality. Then fr : X — Y defined
fr(xz) =Y R[z] is an L-space morphism.

Proof. For a reminder of the what an L-space morphism is, see Definition 2.2.4. For meet preservation,
note that Y is not only a complete lattice but is also algebraic. It follows the from the fact that R[x]
is an ideal, and therefore directed, that fr(z A y) = Y Rz A y] = Y R[z] A Y Rly] = fr(z) A fr(y)
(see exercise 6 in section 4 of [9].) By isolation fr(x) = 1 iff x = 1. For the back condition of an
L-space morphism, we use reflection. Finally, for continuity, let U be a clopen filter of Y. We claim
that f'[U] = Fgr[U]. So let x € f5'[U]. Then fr(z) =Y R[z] € U. By Lemma 3.3.4, we have that
Y Rlz] € U € R[x] and so x € Fg[U]. For the other direction, let z € Fr[U]. then there is some y € U
such that R(z,y). But clearly y < Y R[z]. So Y R[z] € U. We therefore have that = € f;'[U]. We

conclude that fr is an L-space morphism. O

3.3.2 Recovering Modal L-spaces

Given the results above, and in particular proposition 3.3.2, it is clear that the natural way to
represent the Modal Lattices of [6] in terms our representation of lattice expansions departs significantly
from that of [6]. In particular, in [6] the O and ¢ of a modal algebra are represented by a common
relation while in our representation both operators will be associated with a distinct relations. Since
the spaces of [6] are less complex in terms of the number relations and adhere to a more standard way
of representing [1 and ¢, it is worth considering how to recover their representation from ours.

Let us first recall the definition of modal lattice as presented in [6].

Definition 3.3.6. A modal lattice L = (L,[0,0) is a bounded lattice with two unary operations

validating the following identities:
O(anb) =0anDb arT =T oL =1

Oa < O(aVb) QaNOb < O(aAD).

We now provide the necessary and sufficient conditions for the algebra of clopen filters of an L-space
equipped with two filter continuous relations to be a modal lattice. To this end we define FC-modal

L-spaces.

Definition 3.3.7. An FC-modal L-space X = (X, S, R) is an L-space X with pair of filter continuous
relations satisfying:

(S-Idealization) If S(x,y) and S(z, z), then there is a w € X, such that y < w and z < w and S(z,w),
(Joint-idealization) If R(x,y) and S(x,z), then there is a w € X, such that y < w and z < w and
R(z,w),

(S-totality) For all x € X, there is some y € Y such that S(z,y), and

(R-isolation) R(x,1) iff v = 1.

The following proposition shows that the algebra of clopen filters of an FC-modal L-space is a

modal lattice.

Proposition 3.3.8. Let X = (X, S, R) be FC-modal L-space, then Lx = (Ficp(X), Fs, Fr) is a modal

lattice.
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Proof. By proposition 3.3.2, and the assumption of (S-idealization) we know that Fs[U N'V] =
Fr[U] N Fr[V]. By Proposition 3.3.3 and the assumption (S-totality) and (R-isolation) we obtain
that Fg[Y] = X and Fr[{1v}] = {1x}. Since Fg is monotone we have Fr[U] C Fr[UVV]. Finally,
for FRIU] N Fg[V] C Fr[U NV]. Let x € Fr[U] N Fg[V]. Then there are y € U and z € V such that
R(z,y) and S(zx, z). By the assumption of condition (joint-idealization), we have that there is some
w € X such that y < w and z < w and R(z,w). Sincey € Uand z € V,w e UNV. Soz € FRlUNV],

as desired. O

We now show that all modal lattices are represented with an L-space with two filter continuous

relations and some extra conditions.

Proposition 3.3.9. Every modal lattice is isomorphic to the modal lattice of clopen filters Lx of some
FC-modal L-space X = (X, S, R).

Proof. Let L = (L,0, Q) be a modal lattice. By theorem 3.2.7, the representation theorem for monotone
lattice expansions, we obtain that L is isomorphic to Lx, .

By Propositions 3.3.2 and 3.3.3 we obtain that conditions (S-idealization), (S-totality), and (R-
isolation) hold in Xy,. We just need to check (Joint-idealization). So let Ry(z,y) and Ro(z, z). Defined
w = [yUz). We claim that R (z,w). Solet a € w. We will show fa € z. If a € w = [yUz), then there
are b € y and ¢ € z such that b A ¢ < a. If b € y and ¢ € z, then from the assumption Ry(z,y) and
Ro(x, z), we have that Ob € x and Oe € z. So ObAOc € . But ObAOe < O(bAc¢) and O(bAc) < Qa,
so Qa € z, as desired. We conclude that Ry (x,w). O

The last thing we do in this section is show how to turn an FC-modal L-space into a modal L-space
as defined in [6]. Recall the definition of modal L-space from [6].

Definition 3.3.10. A modal L-space X = (X, R, T) is an L-space (X, T) with a relation R such that:
(1) R(z,1) iff x =1
(2) if U is a clopen filter, then OpU = R™[U] and OgU = {x | R[x] C U} are clopen filters, and
(3) R(z,y) iff (a) if y € U, then x € Or[U] and (b) if v € OrU, theny € U.

Let us observe an important fact about relations with idealization. If X is an L-space and S C X x X

is a filter continuous relation that satisfies idealization, then we can define a new relation RT™ C X x X:
ST (z,y) if and only if, for all clopen filters U, if x € Fg[U], then y € U.

The operations Og+ and Fg coincide. In particular, for all clopen filters U we have Fg[U] =
Og+U = {x | ST[z] C U}. To see this, let z € Og+U. Then ST[z] C U. Now note that in virtue of S
having the idealization property, Y S[z] € S*[z]. This is the case because whenever = € Fs[U], then
there is some y € U such that S(x,y). However, since y <Y S[z] and, by idealization, Y S[z] € S[z]
(See proof of proposition 3.3.5). Therefore, by definition of ST, we have Y S[z] € S*[z]. We therefore
get from the assumption that x € Og+, that Y S[z] € U and = € Fs[U]. Conversely, suppose that
x € Fg[U]. We must show that S*[z] C U. So let ST (x,y). By definition, for all all clopen filters V| if
x € Fg[V], then y € V. So obtain that y € U. We therefore, conclude that S*[z] C U and thus that
r € Ug+U.

We just remarked on how to transform filter continuous S relations with idealization into another

relation ST whose [+ coincides with Fr. We can now propose that how this could provide a way to
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turn FC-modal L-spaces with pairs of filter continous relations into modal L-spaces with their single

relation.

Conjecture 3.3.11. Let X = (X, Ry, S) be an FC-modal L-space. The X = (X, Ra) is a modal
L-space where Ry = RN S™T.

Remark 3.3.12. Reductions in the Number of Relations

One consequence of the previous conjecture is that certain assumptions about how different filter
continuous relations interact are sufficient to permit us to reduce two relations into one. Identifying
a general method for reducing the number of relations along the lines of the one conjectured above

would be a valuable tool for simplifying the representation of lattice expansions.

3.4 Conclusion

The theory supplied in this chapter is the general setting that grounds many of the results and
developments to come. In particular, we will use the this theory to derive the OKHD-semantics and
duality for r¢-groupoids in chapters 5 and 6, respectively. In summary, this chapter we began in Section
3.1 with a characterization of products and coproducts of L-spaces (Theorem 3.1.10) and then used
this characterization to obtain a representation of products of lattices (Theorem 3.1.11). Afterwards,
in Section 3.2, we applied the latter developments to obtain a general representation of monotone
operations between lattices and showed that each n-ary monotone operation between lattices could be
represented by a unique n + l-ary filter continuous relation (Theorem 3.2.6). Then in Section 3.2.3 we
showed that the category of lattice with monotone operations as morphisms is dually equivalent to
the category of L-spaces with filter continuous relations as morphisms (Theorem 3.2.11). Finally, in
Section 3.3, we described the filter continuous relations that correspond to meet and join preserving
operations and suggested a strategy to recover the modal L-spaces of [6].

In the next chapter we develop the representation of completions of monotone lattice expansions in
their dual L-spaces and extend the persistence results of [6] to arbitrary signatures that are interpreted
to monotone operations. Our proof of this fact depends essentially on the duality between lattices with

monotone operations and L-spaces with filter continuous relations.
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Chapter 4

The Topological Representation of

Completions and II;-Preservation

In this chapter we extend the topological representations of completions of modal lattices in [6] by
exploiting the representation of monotone operations obtained in the previous chapter. We then use
what is developed in this chapter and the last to show a general preservation result with respect to the
I1;-completion, again generalizing the specific case of modal lattices considered in [6]. In particular, we
generalize Theorem 4.30 in [6] which shows every identity for modal lattice is preserved through the
I1;-completion. We obtain this generalization via an alternative proof that exploits the developments

made in the previous chapter.

4.1 Completions of Monotone Lattice Expansions

We begin by reminding the reader of the definition of a completion of a poset P, which is simply

complete lattice that contains a copy of P.

Definition 4.1.1. A completion (C,e) of a partial order P is a complete lattice C together with an
embedding e : P — C with the property that a < b if and only if e(a) < e(b).

Of special interest to us will be the II; completion of a lattice, introduce in by Gehrke and Priestly
in [20]. The II; completion of a lattice L is defined as the composition of the ideal completion with the

filter completion of L. Let us define the filter, ideal, and II; completions.

Definition 4.1.2. Let L be a lattice, then we define:
(1) Filter Completion, (fe(L),a : L — fe(L)), such that fe(L) := (Fi(L), <I*) where z <je y iff y C =
and aa) =1L, (a),
(2) Ideal Completion, (ie(L), : L — ie(L)), such that ie(L) := (Zd(L), <i.) where x <* y iff v C y
and B(a) =l (a), and
(3) II;-Completion, (II; (L), 7 : L — II; (L)), such that II;(L) := ie(fe(L)) and w(a) = {x € fe(L) | a €
v} =l (T (a)).

Note that the joins are defined in terms of the closure operator that maps a set to the least filter or
ideal containing it. Often we will treat L as a subset/sublattice of II; (L), fe(L), and ie(L). This will

be especially convenient when comparing elements that are in the image of the one of the embeddings

with other elements of the completion. Similarly, we treat fe(L) as a sublattice of II;(L). We also
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define the closed elements K (II; (L) of II;(L) as the set { AT | T C L}. It is not hard to see that
fe(L) = K(ILi(L)).

4.1.1 Extending Monotone Operations

In this section we define the extension of a monotone operation to the filter, ideal, and II;-
completions and show that the definition of these extensions guarantee that an monotone lattice
expansion is a subalgebra of any one of the salient completions. As remarked on above, to lighten

notation we will treat L as a subset of II; (L), fe(L), and ie(L).

Definition 4.1.3. (Extensions of functions between lattices) Let f : L — K be a function between

lattices. We define the extension of f to the relevant completion as follows:

f@) == N{f(a) | v <sea & a € L} (4.1)
fe@) =\{f@|a<iz &aecl} (4.2)
M@ =\/{\{f@) |y<a&acl}|yeK(L) &y <} (4.3)

Before going further, we will show that the filter, ideal, and II;-completion commutes with products.
Note that in the trivial case when f is nullary, i.e. a constant, f* = fl = Afa | f<a & ac L} = f.

Lemma 4.1.4. The filter, ideal, and I1;-completions commute with finite products:

fe(Lq) X .. x fe(Ly) = fe(Ly x .. X Ly) (4.4)
ie(Ly) x .. x ie(Ly) =ie(Ly X .. X Ly) (4.5)
Hl(Ll) X .. X Hl(Ln) = Hl(Ll X .. X Ln) (46)

Proof. The case of the filter completion follows directly from Lemma 3.1.5, which shows that filters
commute with products for meet semilattices. An order dual argument shows that the products also
commute with ideal completions. Composing these facts and recalling that II; (L) = ie(fe(L), we obtain

that II;-completion also commutes with products.
O

Remark 4.1.5. Given that products commute with the Iy -completion, it is possible to view the extension
of maps to completions in an alternative and often more tangible way. For example, we can treat
Iy (L X .. X Ly) — T (K) as essentially the same as a map 1 : Ty (Ly) x ... x 1 (Ly,) — T (K)
defined below.

e, /\{f ai, ., an) | Vi <n(zj < a; & a; € L)}

Fwr, o an) = \[{f (a1, .., an) | Vi < nla; <ie x; & a; € L)}

le(fﬂlw-afEn = V{1, a) | (yj <m, aj) & ai € L} | y; € K(IL(L)) & y; < 25}
From here on out we will use these maps interchangeably.

We now consider two examples. The first comes from [6] while the second is important for the

chapters to come.
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Example 4.1.6. (Modal Lattices)
Our first example is the case of modal lattices, which is presented from [6]. Given a modal lattice
L = (L,0), the schema from definition 4.1.3 prescribes us the following definition of the modal box

operation thevarious completions we have considered.

D¢z = A{a(@a) | 2 < afa) }
Oz == \/{8(0a) | a(a) <z }
DMz = \/{\{r(Qa) |a € L & y < a(a)} |y € K (L)) & y <}

Example 4.1.7. (¢-groupoids)

Our second example is the case of lattice ordered groupoids.

x-fey::/\{a(a-b) | 2 < afa) & y < afb)}el® =«
zy:=\/{Bla-b) | Bla) <z & B(b) < y}e™ = B(e),
oy Mg = \[{\{m(a1-a2) | e € L & yi < afai)} | yi € KI(L)) & y; < mike™ = m(ef®),

It is straightforward to check that for any monotone lattice expansion L the embeddings o : L —
fe(L), and 8 : L — ie(L), and 7 : L — II;(L) are all homomorphism with respect to the operations of
L. And since II; (L) = ie(fe(L), we also obtain that fe(L) is a subalgebra of II; (L).

Lemma 4.1.8. Let L = (L,{fi}icr) be a monotone lattice expansion. Then for each f;, each
ai,..,an € L, and each e € {a, 8,7}, we have that e(f(a1,..,an)) = fC(e(ar), .., e(an)).

Proof. We show that case of o : L — fe(L) and note that the case of § has an order dual argument

and the case of 7 follows in virtue of m = Bx*a. O

4.2 The Representation of Completions

Similar to the situation in Priestly based dualities, various completions of a lattice L can be
identified with lattices of subsets of the dual space Xy, of L. In [6] the authors of demonstrated an
analogous result by showing that the filter completion of L corresponds to the lattice of closed filters
Fir(Xy) of L’s dual space, the ideal completion corresponds to the lattice of open filters Fi,(Xr,) of
L’s dual space, and that the II; completion of L corresponds to the lattice of all filters Fi(Xy,) of L’s

dual space. This is summarized precisely in the following lemma from [6].

Lemma 4.2.1. Let L be a lattice and Xy, be its dual L-space, then

fQ(L) = ]:’L]g(XL) ie(L) = fio(XL) Hl(L) = ./T"Z(XL)

The operations that witness each of the isomorphisms as they will be useful in what is to come.
We define ¢ : fe(L) — Fiy(Xy) such that given an element c of fe(L), the corresponding closed filter

@(c) of Xy, is defined
#(a) ={o(a) | ¢ <je a}.
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Similarly, we define ¢ : ie(L) — Fi,(X1) which given an element c of ie(L), returns the corresponding

open filter

o) = V{o(e) la <ic e }

Finally, the correspondence between II;(L) and Fi(Xy,) is witnessed by the map ¢ : I (L) —
Fi(XpL). So given an element ¢ € I1; (L) we define QAﬁ(c) such that

olc) =\{[) ¢ | TCL& \NT <c}

a€T
Beyond just showing the above correpsondence, the authors of [6] extended this result and showed
the representation holds for all positive modal lattices as well. The following Lemma generalizes this
result of[6] by extending it to all monotone lattice expansions. This is accomplished by showing that
the operations defined in 4.1.3 agree with the operations defined in terms of filter continuous relations

on the dual of that monotone lattice expansion.

Lemma 4.2.2. Let f: L; x ... x L, = K be a monotone operation between lattices, then the following

diagrams commute.

F F
Fig(Xp,) % oo X Fir(Xp,) ——L s Fip(X) Fi(Xp,) % o x Fi(Xp,) ——2 s Fi(Xg)
[¢L17~,¢L,L]h h@ [&l,“,&n{ }TK
fe(L1) X ... X fe(Ly) — fe(K) I (L1) X ... x Hy(Ly,) — I (K)

Proof. Let f: Ly x ... x L, — K be a monotone operation between lattices. Suppose for notation’s

sake that gL = [ale --aaLn] and qu = [$L17 ) $Ln]
Claim 1: Fg, xdp = g * fIe.
Proof of claim 1: Let ¢; € fe(L1), .., ¢, € fe(Ly,), then:

Fgr,[¢p,c1,.,0p,¢1] = ﬂ{FRf (01, (a1)...01,(an)] | dp,¢i € ¢1,(a;) & a; € L}
=(Wox(far,..,an) | ¢p,ci C ér,(ai) & a; € L}
= b (N\{f(ar,an) | e < a; & a; € Li})
= br ([T (et cn)).
The first identity holds by appeal to Lemma 3.2.3, which describes the extension of Fg, to closed
filters. The second identity holds in virtue of Theorem 3.2.6, which shows that ¢x(f(ai,..,an)) =

Fr,[¢r,(a1)..-¢1, (an)]. The third identity follows from the fact that ¢ is a complete lattice isomorphism.
Finally, the fourth identity holds in virtue of the definition of f7* in Remark 4.1.5.

Claim 2: FRf * $L = (;K * fH.
Proof of claim 2: The proof is essentially the same as for claim 1. Let dy € II;(Ly),..,d, € II1(Ly),
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then:

Fr (b1, (d1), .. 61, (d1)] = \J{FR, [C1, ..., Cn] | Ci € 1,(d;) & Ci € Fig(Xv,)}
= V{ox(F(c1, s cn) | br,(ci) C bL,(di) & ¢ € Fe(Li)}
= o (\/{f(a1, . an) | ¢ < di & ¢; € K(Iy(Ly))})
= o (f*(dr, .. dn)).

The first, third, and fourth identities hold for more or less the same reasons that they did in the proof
of Claim 1. The second identity holds in virtue of Claim 1 and the fact that ¢y : fe(K) — Figp(Xk) is

an isomorphism. O

Theorem 4.2.3. For all monotone lattice expansions L = (L,{f;}icr):

(I (L), { " Yier) 2 (Fi(X1), {Fry, Yier)-

Proof. The isomorphisms ¢ : fe(L) — Fip(Xy,) and o : IT;(L) — Fi(Xy,) are guaranteed to be
homomorphisms of the relevant type by an application of Lemma 4.2.2 to the operation f; for each
1€l O

4.3 II;-Persistence

In the study of completions, one of the most common questions to ask is what sort of properties are
preserved through a given completion. In particular given an (ordered) algebra, are the identities valid in
that algebra also valid in its completion? A very notable answer to this question for canonical extensions
was answered in logical form for Boolean Algebras with Operators by the Sahlqvist Completeness
theorems [7, 10]. An algebraic proof of Sahlqvist Canonicity was later given by Jénsson in [26]. More
generally, this question has been answered in similar fashion for arbitrary lattice expansions (See [19]
chapter 6). In the context of IIj-completions and lattice expansions, we show that for any identity
between positive terms is preserved through the II;-completion where a positive term is a term built

up from basic operation symbols that are evaluated as monotone operations.

Definition 4.3.1. (Positive Terms and Identities) Let T be a type of algebras with a definable order.
A positive term of type T is a term t where each of the basic operations f comprising t is such that for
each algebra A of type T, fA is a monotone operation on A. TH(V) is the set of positive terms of type

T over the set of variables V. A positive identity t = s is an identity between terms s and t.

At a high level, our method is analogous to that of [26] and can be explained with reference to
clones. In particular, we basically show that the operation (—)™ mapping monotone operations of
some lattice L to monotone operations on II; (L) is a clone homomorphism between clones generated

by the set of all monotone operations My, on L and the set of monotone operations M, (1) on I1; (L)
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and with the special property that the following diagram commutes.

(=) @)

Clor,(My,) W Clol‘[l(L)(Mnl(L))

That is just to say that for each positive term ¢, we have that (%) = 1@ This is shown in
Lemma 4.3.4 while the fact that (—)™ is essentially a clone homomorphism follows from Lemma 4.3.2
and Lemma 4.3.3, which jointly show that (—)™ commutes with generalized compositions of monotone
operations. It then follows quickly that any positive identity s = ¢ will be persistent through the
IT;-completion since if L s ~ t, then s/1(l) = (s1) = (¢L)h = (L) and so I (L) E s ~ t.

While the previous paragraph explains our proof method at a very high level, and without reference
to the representation of monotone operations developed in the previous chapter, at the level of
particulars, the representation in Theorem 3.2.6 and the duality proved in Theorem 3.2.11 are key to

showing that the operation (—)m

is behaves like a clone homomorphism. This essentially comes down
to our demonstration that L-spaces and Filter continuous relations form a category dually isomorphic
to the category of lattices with monotone operations in Theorem 3.2.11.

We now prove two of the main lemmas needed to show our persistence theorem. These lemmas follow
in virtue of the representation of the II;-completion demonstrated in Theorem 4.2.3. Recall that given
a collection of the n-ary operations {f; : A™ — B}i<;, we define the operation [f1,.., ] : A — B™
such that [f1, .., fm](a1, .., an) = (f1((a1, ..y an)), -y fm(a1,..,ay)). This in the operation induced by the

universal property of products.

Lemma 4.3.2. Let L and K be lattices and {f; : L™ — K}i<m be a collection of n-ary monotone
operations. Then ([f1, .., fm])™ = [fI, .., 1]

Proof. This fact follows from the universal property of products and the fact that we have identified
I, (K™) with (II; (K))™. O
We now show that the extension of an operation to the II; completion commutes with function

composition.

Lemma 4.3.3. Let L, K, and A be lattices and f : L — K and g : K — A be a pair of monotone
operations. Then (g*f)nl = gy fIh

Proof. Using properties of the dual representation of f and g we have:

Lemma 4.2.2
Lemma 3.2.8
Lemma 4.2.2

(9% )" =r* Fry., x4
= ¢p* Fr, * Fr, ="
:(;SL*FRg*qS;(l*fH

:gn*fn.

( )
( )
( )
( )

Lemma 4.2.2

O

Lemma 4.3.4. Let L be a lattice expansion of type T and t be a positive term of the same type, then
(tL)Hl — tl'Il(L)
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Proof. The proof proceeds by induction on the complexity of t“. The base case is covered by considering
when either t is a projection or a constant. If t : L™ — L is a projection, then by the identification
of (I (L))™ with II,(L"), we are ensured that (tL)1 = ¢1(L),

In the case that t& is a constant ¢, we have by definition
@) — b — /\{a lc<a&acL}= ("1,

For the inductive step we must consider the case where t& = gx[f1, .., f»]. By Lemma 4.3.3, which

shows that composition commutes with the extension of operations to the II;-completion, we have:

(g*[fla e anHI - (g)Hl*([fh ° fn])nl

Howver we can then apply Lemma 4.3.2, which tells use that ([f1,.., fu])'* = | Pl, . fI o

obtain:

() ([ oes fal)™ = () LA S

But then clearly we have that (t¥)1 = #1() in virtue of:

(E) = (el f1y o ful) ™ = ()Tl oy 0] = gT0CED,
We conclude for all positive terms that (%) = @) a5 desired. B

Given an algebraic type 7, we say L s a 7-subalgebra of B to stress that L is a subalgebra of B

with respect to the operation of 7. We now prove our preservation theorem for positive idenities.

Theorem 4.3.5. Let L = (L,{fi}ic1) be a lattice expansion of type T where L is a T-subalgebra of
I1;(L). Lett = s be a positive identity of type 7. Then LE t ~ s iff II;(L) F t =~ s.

Proof. Suppose that L F s ~ t, then by Lemma 4.3.4 we have s = (s1)Ih = (¢ = ¢1(L) apd
sollI(L)Fs~t O

An immediate corollary of this fact is that any class of monotone lattice expansions defined by

positive identities is closed under the II;-completion.

Corollary 4.3.6. Let IC be a class of lattice expansions of type T that are defined by a set of positive
identities. Suppose further that for each A € K, A is a T-subalgebra of 111(A). Then if L € K, then
(L) e K

Our persistence result relies on the representability of the II;-completion and possibility of forming
an algebra of relations to represent a clone. It would be interesting to attempt to generalize this

method by defining a more general algebra of relations on an L-space.

4.4 Conclusion

In this short chapter we applied the duality and representation theory developed in Chapter 3 to
provide representations of the filter, ideal, and II;-completions of a lattice expansion (Theorem 4.2.3).
We then use this representation to provide a proof of the fact that all identities between positive terms
are preserved through the II;-completion (Theorem 4.3.5). We will apply and adapt this result later to

the case of rf-groupoids.
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Chapter 5
From Topologies To Frames

The present chapter makes the move from L-spaces with filter continuous relations to what we call
NRL-spaces, and then further to the OKHD-frames that undergird the semantics of Ono and Komori,
Humberstone, and Dosen. This chapter is therefore largely a conceptual contribution to the project of
this thesis. It brings us from the very general picture established in Chapter 3 to the special case of of
the topologies and the semantics that will entertain us in the chapters to come. Despite its conceptual
nature, this chapter introduces NRL-spaces, which will be the focus of the next three chapters, and
contains some key lemmas regarding these objects.

More specifically, in section 5.1 we provide the requirements for the clopen filters of an L-spaces
equipped with a filter continuous to form and rf-groupoid. The specific class of objects we define here
are called RML-spaces (See definition 5.1.1). Section 5.2 then introduces NRL-spaces, which can be
seen as topological versions of the OKHD-frames, which were discussed briefly in the introduction and
will be discussed in detail in Chapter 7. We show this fact in more precision in Proposition 5.2.11 by
demonstrating that every NRL-space is also in an OKHD-frame. Next, in Section 5.3, we show that
the category of NRL-spaces and RML-spaces are equivalent. In conjunction, the results of sections
5.2 and 5.3 guide us from the most general perspective of L-spaces and filter continuous relations to
the semantics of substructural logics given in terms of OKHD-frames. We see these developments
as showing how to derive the OKHD-semantics from the general theory of filter continuous relations.
Finally, in Section 5.4, we define another class frames obtained by omitting the topological properties
of an RML-space. We will call these frames RML-frames. We show that the functors that witness
the equivalence between NRL-spaces and RML-space do not generalize to an equivalence between
OKHD-frames and RML-frames. We note that a semantics in terms of these frame is possible and will

be remarked on further in Chapter 7 on completeness via duality.

5.1 Residuation and Filter Continuous Relations

In this section we focus on the case of ternary filter continuous relations and add sufficient conditions
to guarantee that that algebra of clopen filters form a pointed r¢-groupoid (See Definition 2.1.5). These
structures start us on the path to deriving the OKHD-semantics from the general theory of filter
continuous relations.

We define Residuated Merge L-Spaces or simply RML-Spaces, as L-spaces with a ternary filter

continuous relation and some additional conditions for that relation.
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Definition 5.1.1. A Residuated Merge L-Space or simply RML-Space is a tuple X = (X, 1, A, R, T, T)
where (X, 1, A, 7) is an L-space, T is a clopen filter, and R C X3 is a ternary filter continuous relation

satisfying the following five constraints:

If U,V, are clopen, then so are U\RV = {z | Vay((y € U & Rzyz) — x € V)} and U\RV =
{y | Vez((z € U & Rzxyz) —» x € V)} are as well,

2a) If R(z,u A u',y), then there are t,t' € X such that t A t' < z and Rtuy and Rt'u'y,

2b) If R(z,y,u A u',), then there are t,t' € X such that t A t' < z and Rtyu and Rt'yu’,

3a) For all z,y € X, if Rylx, then y = 1, and finally

3b) For all x,y € X, if Ryxl, theny = 1.

Jointly, these condition are sufficient to guarantee that clopen filters of a salient RML-space are
closed under the operation Fr, which we will henceforth denote by og in the ternary case, and the

operations \ i and /g. We therefore obtain the following fact.

Corollary 5.1.2. Let X = (X, 1, A, R, 7) be an RML-space. Then (Fiey(X),N,V, X, {1},0r,\r, /g, T)

s a pointed rl-groupoid.

Proof. In virtue of the definition of filter continuous relations, U op V' = Fg[U, V] is a clopen filter.
The fact that this algebra is pointed by T follows from the fact that 7T is a clopen filter. Finally, if
we can show that U\rV and U/RV are filters whenever U,V are, by condition (1) of the definition of
RML-spaces we obtain that if U,V are clopen filters, then so are U\rV and U/rV.

So let us show that when U,V are filters, then so are U\gV and U/grV. Let us just consider the
case of U\rV. For upward closure, let z < 2’ and z € U\gV. Now suppose that y € U and Rxyz'.
By the order compatibility property of a filter continuous relation (see proposition 3.2.2), we then
have that Rxzyz. So since z € U\RV and y € U, we have that € V. We therefore conclude that
2 € U\RV. For A-closure, let 2,2’ € U\rV. Suppose that y € U and R(z,y,z A 2’). By the condition
(2b) from the definition of an RML-space, we obtain that there are ¢,¢ such that ¢ A ¢ < x and Rtyz
and Rt'yz'. However, by the assumption that 2,2’ € U\gV, we obtain that ¢, € V. Since V is a
filter, t A ¢’ € V and thus x € V, as desired. We conclude that z A 2’ € U\rV. Finally, if Rzyl, by
condition (3b) from the definition of an RML-space x =1 € V,so 1 € U\RV.

The last thing we need to do is check that og, \g, and /r form a residuated family. The
demonstration of this follows by a standard argument. For good faith, let us show that Uor C W
ifft V- C U\rW. Suppose that Uogr C W and z € V. Now let y € U and suppose that Rxyz. Then
x € Uogp C W. Therefore, z € U\gW and thus V' C U\rW. Conversely, suppose that V' C U\rW.
Now let © € U og V. Then there are y € U and z € V such that Rxyz. However, if z € V, then
z € U\rRW. So from Rzyz, we obtain that x € W, as desired. We conclude that Uor C W. [

Since we would like to form a category of these objects, we have the following definition of morphisms
between RML-spaces. The definition provided here guarantees that their inverses are ré-groupoid

homomorphism between salient r¢-groupoids of clopen filters.

Definition 5.1.3. (M-space Morphism) An RML-space Morphism (X, \,1, R, 7) — (X', \',1', R/, )
is an L-space morpshism [ : (X, A, 1) — (X', A", 1") satisfying the following additional constraints.

1) if Rzxy, then R f(2)f(x)f(y),
2) If Rf(2)x'y’, then there are x,y € X such that Rzxy, ' < f(x), and y' < f(y),
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3) if R'f2'(x)y', then there are y,z € X such that Rzxy, y' < f(y), and f(z) < 2/,
4) if RZ"2' f(y), then there are x,z € X such that Rxyz, ' < f(z), and f(z) < 2/,

We will denote the category of Merge L-spaces and morphisms with MLSp.
In the next section we turn to what we refer to as NRL-spaces, which we will show to essentially
be topological OKHD-frames. This will bring us one step closer to the explication of the the OKHD-

semantics in terms of L-spaces and filter continuous relations.

5.2 NRL-Spaces and OKHD-Frames

We now arrive at the definitions of NRL-spaces their relation to OKHD-frames. The main result of
the next few pages will be the demonstration that NRL-spaces are essentially OKHD-frames with an
L-space topology. More precisely, by forgetting the topology of an NRL-space we obtain an OKHD-
frame. Demonstrating this fact will be the focus of the following few pages. In the next section we will
show how to derive NRL-spaces from the RML-spaces presented at the end of the last section. We
therefore will establish the connection between the L-spaces and filter-continuous relations and the

semantics of substructural logics developed by Ono and Komori, Humberstone, and Dosen.

Definition 5.2.1. An NRL-space X = (X, A,1,®,e,7) is such that (X, A,1,7) is an L-spaces,
®: X x X = X is a groupoid operation, € is a designated element and:

(1) For all clopen filters UV, UoxV =1{z@y |z €U &yeV}),U\xV ={y |Vz e U(z®y €
V)}, and V/xU ={x |Vy e U(x ®y € V)} are clopen filters (see below),

(2) te is clopen, and

(2) x@y < ziff for al U,V € Foop(X), ifc €U andy €V, then z € Uox V.

Let us consider two examples.

Example 5.2.2. We define X = (NU{w}, A, 1x,®,ex,7T) so that n A m := min(n,m), 1x := w, and
n®@m :=n+m, and ex := 0. Finally, we generate T by the subbase {tn | n € NU{w}}U{In | n € NU
{w}}U{0}. To see that the clopen filters are closed under \ and /, note that tTn\Tm = tm/tn = T(n—m).

We now consider another example. We essentially stack the above NRL-space on top of the lattice

Mj3 and equip the structure with an appropriate topology.

Example 5.2.3. We define Y = (Y, A, 1y, ®,ev,Ty) such that Y = {a,b,c, L} UN U {w}. The
semilattice structure is depicted below in the diagram on the following page. So 1y = w. ® is defined

by the following.

x4y, ifr,y € NU{w},
rRYy =
x Ay, otherwise.
We define ey := 0, just as in the previous example. Note however that ey is not an identity element
for ®. Finally, the topology Ty on'Y is generated by the subbase: {tz | x € Y} U{Y —tzx |z € Y}.
Note that U\V and U/V are clopen filters when U and V are. This shown by checking cases.
If U,V C N U {w}, then we reason as in the previous example. If V. C N U {w} and U = Tz for
z € {a,b,c}, then we can show that Tx\V C tx. But since Tz is a linear order, we are ensured that
12\V is principal and thus a clopen filter. If instead U C NU {w} and V =tz for x € {a,b,c}, we
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claim that {a,b,c} —{x} € U\V. Therefore we have that U\V C V and so is principal. In both U = Tz
and V =Ty some x,y € {a,b,c}, it follows that U\V = V/U = U. Finally, if V is any subset and
U=1L, then tL\V = V. Finally, if U is any subset and V =1L, then U\TL =71L. So in all cases
we have shown that if U,V are clopen filters, then so are U\V and U/V'.

ow
I
)
+n
I
I
I

1

Figure 1. This is semi lattice structure of the NRL space in the present example.

A lemma useful for showing that NRL-spaces have an underlying OKHD-frame structure is that the
clopen filters of an NRL-space forms a pointed rf-groupoid. This is also the key to our representation

and duality results presented later in this chapter.

Proposition 5.2.4. For any NRL-space X, the algebra Lx = (Fiqp(X),N, vV, X, {1},0x,\x, /x,Te)

s a pointed rl-groupoid.

Proof. Since we are ensured by the definition of an NRL-space that ox, \x, and /x are well defined
operations on Fig,,(X), we just need to check that \ x and /x satisfy the residual law with respect to

ox. In particular, we need to show for all clopen filters U, V, and W
Uox VCW<«=UCW/xV <<V CU\xW.

We only show that Uox V C W iff V C U\xW noting that the equivalence U ox V' C W iff
U C W/xV has a similar proof.

So suppose that Uox V C W and let y € V and o € U. Clearly, z ®y € Uox V. So by
the assumption U ox V C W, we have that x ® y € W. Then generalizing on x, we conclude that
y € U\xW and then that V' C U\ xW. For the other direction, suppose that V' C U\xW and let
z € Uox V. Then there are x € U and y € V such that x ® y < z. By the assumption V C U\ xW,
y € U\xW. So by definition of \ x, z ® y € W. But since W is upward closed, we obtain that z € W.
We therefore conclude that U ox V C W, as desired. O

Now, in order to show that NRL-spaces all posses OKHD-frame structure, we will need a few more
lemmas. The first lemma, Lemma 5.2.5, is an analogue of Lemma 3.2.3 that showed how to extend the
operations on filters associated with filter continuous relations to closed filters. It can be seen as an

equivalent to condition (3) defining NRL-spaces.

Lemma 5.2.5. Let X be an r€G-space. Let U,V be closed filters of X, then

Uox V={UoxV'|U V'€ Figep(X) &UCU', VCV'}.
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Proof. Essentially follows immediately from condition (3) of the definition of an NRL-space (Definition
5.2.1) and Lemma 2.2.9. By Lemma 2.2.9, U and V are principal if they are closed filters. So there are
x,y € X such that tz = U and Ty = V. The identity we are trying show then becomes:

troxty=({UoV |UV € Figy(X) &z €U & yeV}

However, since Tz ox 1y = 1(x ® y), this is essentially equivalent to condition (3) of the definition
of an NRL-space (Definition 5.2.1).
]

The second lemma we need is a consequence of Lemma 5.2.5 and provides a useful condition for

finding clopen filters of the form U o V. This lemma is analogous to Lemma 2.2.12

Lemma 5.2.6. If If X = (X, A\,1,®,¢e,7) is an NRL-space and U is a clopen filter of X, then: if
x®y € U, there are clopen filters V and W such that x € V andy e W and VoW CU.

Proof. Let t ® y € U. From Lemma 2.2.9 and HMS-separation, we know in general that for each
we X, tw={U"€ Figy(X) | we U'}. Therefore by Lemma 5.2.5 we have that

(YV oW | VW € Figy(X) &z eV &yeW'}
= (V' € Figp(X) |z € V'} o[ W' € Figp(X) | y € W'}

=tz oty
cU

It follows from compactness that there are V{,...,V, with € V/ and W{,.., W, with y € W/ such
that ({V/ o W/ | i <n} C U. But then from monotonicity of o, we have

(WV/ li<n}o{W/|i<n}C[ |V oW/ |i<n}CU.

However, since both ({V/ | i < n} and {W/ | i < n} are clopen filters, we may generalize and
establish that there are clopen filters V and W such that z € Vand y € W and VoW CU. O

Our third lemma is quite simple and tells us that the ® is monotone with respect to the order <.

It is another consequence of condition (3) of the definition of an NRL-space.
Lemma 5.2.7. If X = (X, A, ®,1,7) is an NRL-space, then: if x <y and 2’ <y, thenzy < 2’ Q.

Proof. Let < yand 2/ < y'. Let x € U and 2/ € V. If x € U and 2/ € V, then y € U and
y €U. Soy®y € UoV. Generalizing on U and V, condition (3) of Definition 5.2.1 implies that
rr <yy. O

Let us now define OKHD-frames and provide a few examples.

Definition 5.2.8. (OKHD-frames)
An OKHD-frame X = (X, A,1,®,¢) is structure where (X, A,1) is a semilattice, (X,®,¢) is a
pointed groupoid, and (1) and (2) govern the relationship between A, ®, and 1.
(1)z@yALz)=@y) A(z®z2) and (y L 2)@z=(y®@x) A (2@ 1), and
2)z1=1=1®x.
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Before defining models on OKHD-frames, we provide the following examples of an OKHD-frame.

Example 5.2.9. (The Tropical Semiring is an OKHD-frame) The Min-Tropical Semiring is the algebra
(RU {0}, ®,00,®,0) where a ® b := min(a,b) and a @ b= a+b. the Min-Tropical Semiring can be
seen as an OKHD-frame since (R U {oo}, ®,00) is a semilattice, (R U {oo}, ®,0) is a monoid, and:

()22 (ydz) =2y @(z®z) and (yd2)Rzx=(y®z) D (2 @), and

(2) x @00 =00=00®R .

Note that this example cannot carry an NRL-space topology since the underlying semilattice of an

L-space is always complete.

A less natural non-distributive example can formed by gluing copies of the positive extended reals
R* U {0} at 0 and co. In the following we use R™ = {k € R | 0 < k}

Example 5.2.10. Define X = R W R U {0,00} and define A and ® such that:

min(n,m), if n,m € R U {0, o0},
0, ifn € Ry and m € R; and i # j.

nikm=

n+m, if n,m € R; U {0},
nm =
oo, ifn € R; and m € R; and i # j,
Having seen a few examples, we now show that all NRL-spaces are additionally OKHD-frames,
a fact that begins to formally establish the connection bwteen the semantics of Ono and Komori,
Humberstone, and DosSen’s and the theory of L-spaces and filter continuous relations developed in this
thesis. This result is not only conceptually significant but is also technically useful. We will often refer

back to this property of NRL-spaces in subsequent chapters.
Proposition 5.2.11. If X = (X, A,1,®,e,7) is an NRL-space, then (X, A,1,®,¢) is an OKHD-frame.

Proof. For condition (1) of the definition of an OKHD-frame, let us just show z®(y Az) = (zQy) A (z®2)
, noting that the other identity follows from a very similar argument. The inequality, z ® (y A 2) <
(x®y) A (x®2) is a straight forward consequence of Lemma 5.2.7. To show (z®@y) A (z®2) < 2®(y A 2),
Let U be a clopen filter and suppose that (r @ y) A (z ® z) € U. If we can show z ® (y A 2) € U,
then by HMS-separation we will obtain the desired inequality. By lemma 2.2.12, there are clopen
filters V' and W such that VVW C U and z®y € V and z ® z € W. Now, by the similar lemma,
Lemma 5.2.6, we find clopen filters V1, Vo and Wy, Wy such that x € V1 and x € Wi and y € V5 and
z€Wyand VioVo CV and WypoWy C W. It follows that (Y o V2)V(Y o W) C U where Y = ViNW,
and that (z @ y) A (z ® 2) € (Y o V5)V(Y o Wy). However, since x € Y, y € Vo, and z € Wa, we
also have that z ® (y A z) € Y o (WVV3). Therefore, since the clopen filters of X form a pointed
ré-groupoid (see Proposition 5.2.4), we have that (Y o V5)V(Y o Ws) =Y o (WyVVs) and thus that
Y o (WaVVa) C U. So it follows that z ® (y A z) € U. Finally, by generalizing on U, we may conclude
that (z®y) A (r® 2) <2 ® (y A z) by contraposing HMS-separation.

Forcondition (2), let # € X. From Lemma 2.2.9 we know that Tz = ({U € Fiy,y(X) | € U}. By
Lemma 5.2.5 we then have that

{1} ox (U € Figp(X) | 2 € U} = ({1} ox UX) U € Figp & | x € U}.
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However, since Fig,(X) forms an rf-groupoid with {1} as the bottom element, for all clopen filters
U: {1} ox U ={1} . So ({1} ox U(X) U € Figp & | x € U} = {1} and thus we have the following.

r@1= |\ ({1} ox (U € Fiap(X) | x € U})
= \{1}

=1.

This concludes our proof. ]

We now demonstrate one more useful property relating the order to ® and then show that the

algebra of all filters of an NRL-space also form a pointed r¢-groupoid.

Lemma 5.2.12. Let X = (X, A,®,1,7) be an OKHD-frame, then: if v @y < z and 2’ @y’ < 2/, then
(zAr)@YAY)<z®Z2.

Proof. For (3), suppose that x @ y < z and 2’ ® ¥ < 2. Then (z®y) A (2’ ®@y') < 2 ® 2’ by the
monotonicity of ® (Lemma 5.2.7) . But we have that z A 2’ < x,2’ and y A ¢ <y,3’. So again by the
monotonicity of ®, z A2’ ® (y L y') < (z®@y) A (' ®y'). Therefore z A 2/ @ (y L y) < 2@ 2. O

We can now show that the operation ox, \x, and /x are well defined on not only clopen filters,

which is by definition, but is generally defined for the filters of an NRL-space.

Lemma 5.2.13. If U and V are filters of an OKHD-frame, then so are:
(J)Uox V=1{z@y|zelU&yecV},
(ii)) U\xV ={y | Ve e U(z®y € V)}, and
(i) U/xV ={z |Vye Uz @y cV)}.

Proof. We will only show the cases of (i) and (ii) since (iii) is essentially the same as (ii).

We begin with (i). For upward closure, let © € U ox V and suppose that z < a’. f x € Uox V,
then there are y € U and z € V such that y ® z < z. Therefore y ® 2 < 2’ and so 2’ € U ox V. For
A-closure, suppose that x,2’ € U ox V. There are y,y € U and z,2’ € V such that y ® 2 < z and
y' @2 < a'. Therefore, (y® z) A (v ® 2’) < a A 2/. But then in virtue of the fact that ® is monotone,
we have that (y A y)@ (2 L 2)) < (y®2) A (¥ @2") <z A2’ (see (2) in the preceding lemma). But since
y Ay €U and z A 2/ € V, we obtain that A 2’ € U ox V, as desired. Finally, to ensure 1 € Uoyx V,
note that 1€ U, 1€ V,and 1®1 < 1. It follows that 1 € Uox V.

Let us now consider the case of U\ x V. For upward closure, let y € U\ xV and suppose that y < /.
Now suppose that x € U. Since y € U\xV, we have that z @ y € V. Because x @ y <z ®y' and V is
a filter, we also have © ® y' € V. Therefore, y' € U\xV. For A-closure, let y,3' € U\xV. Suppose
that x € U. Then x ® y and = ® ¢ are both elements of V. Therefore z® (y A y') =z@yilz@y €V
because V is filter. Finally, we are guaranteed that 1 € U\xV since l € U and 1®1=1€ V.

The case of V/xU is nearly identical to that of U\xV. O

Proposition 5.2.14. Let X be an NRL-space, then Fi(X) forms a pointed rl-groupoid with respect to

the operations ox, \x, and /x and the designated element Tex.

Proof. In virtue of Lemma 5.2.13, the operations ox, \x, and /x are well defined because they always

return filters when applied to filters. The fact that ox, \ x, and /x jointly satisfy the residual law
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follows from the proof of Proposition 5.2.4. Since we did not rely on clopeness in our demonstration of

the residual law in that context, we are ensured it also holds here. ]

In the next section we show how the Definition of NRL-spaces can be derived from the more general
picture of filter continuous relations presented in the previous chapter. To this end we define morphisms

between NRL-spaces as follows.

Definition 5.2.15. An NRL-space morphism f : X — Y is an L-space morphism that satisfies the
following conditions:

(©-forth) f(x) @ f(y) < f(z®y),

(®-back) If 2’ @y < f(z), then there are z,y € X such that ' < fx, vy < fy, and x @y < z,

(/-back) if fx @y <2, then there are y,z € X such that y' < fy, fz <z, andz®y < z,
(\-back) if ' @ fy < 2, then there are x,z € X such that 2’ < fx, f2 <2, andx @y < z,
(e-forth) e < f(g), and
(e-back) if € < fx, then e < x.

5.3 The Equivalence of NRL-spaces with RML-spaces

In this section we show how to obtain NRL-spaces from RML-spaces and therefore how we can
understand NRL-spaces in terms of our more general understanding of L-spaces with filter continuous

relations.
Theorem 5.3.1. The the category NRLSp is equivalent to the category RMLSP.

Proof. In order to show the equivalence we will describe functors F' : NRLSp — RMLSp and
G : RMLSp — NRLSp and demonstrate that they are inverse to one another.

Let us first describe the functor F' : NRLSp — MLSp, which is quite straight forward. We
start at the level of objects. Given NRL-space X = (X, A,1,®,¢e,7), we can define an M-space
F(X)= (X, A,1,Rg, T, 7) such that T'= e and

Regzzyif r @y < 2.

Let us show that F'(X) is a M-space. That (X, A, 1,7) is an L-space and that T is a clopen filter
are both immediate from the definition of an NRL-space. We just need to check that Rg is a residuated

filter continuous relation.

First, we show that Rg is filter continuous (Definition 3.2.1). For Clopen Continuity, we have that
for all clopen filters of X, Uox V = U or, V where we recall that Uox V =z @y |2 e U &ycV}
and Uog, V ={z | Jx € Uy € V(Rg(z,x,y))}. So since Fi,(X) is closed under ox by definition
of an NRL-space, we have that Fiu,(X) is also closed under og. For Clopen Compatibility we again
note that that ox = og. In virtue this and the second condition in Definition 5.2.1 we are done.

Second, to show that Ry is residuated we first observe that U\xV = U\gr,V and U/xV = U/gr,V
for all clopen filters U and V. This takes care of condition (1) from Definition ??. For condition (2),
suppose that Rg(z,x A 2’,y). Then (z A ') ® y < z by definition of Rg. However, from Proposition
5.2.11 we have that t @y A2/ @y < (z A 2') ®y. So then z @y A 2/ ® y < 2. Therefore, by generalizing
on z ® y and 2’ ® y respectively, we have found ¢ and ¢’ such that t A ' < z and Rg(t,z,y) and
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Rg (t',2',t). The other case for condition (2) relies on a similar argument. Finally, to show condition
(3) of Definition ??, If Rg(z,1,y), then 1 ® y < z. But from Proposition 5.2.11, 1 ® y = 1 and so 1 = z.
Having shown that Rg is a residuated filter continuous relation, we can conclude that F'(X) is in
fact a RML-space.
Now for morphisms. Given a morphism f in NRLSp, we define F(f) to simply be f itself. The
conditions required by definition 5.1.3 are met almost immediately in virtue of the properties associated
with being an NRL-space morphism (See Def. 5.2.15).

Let us now describe the functor G : MLSp — NRLSp. Beginning at the level of objects, let
X = (X, A, 1,R,T,7) be a RML-space. Then we define G(X) = (X, A,1,®,e7) such that e = A\ T" and

TRY = A{z | Rzay}.

That the conditions (1) and (2) listed below hold, which are the defining conditions of an NRL-space,
follows in virtue of the fact that R is filter-continuous (Definition 3.2.1).

(1) For all U,V € Figp(X), Uox V € Figy(X), and

(2) z@ry <zifffor all U,V € Fupp(X),if x €U and y € V, then z € U ox V,

We therefore conclude that G(X) is a NRL-space.

Now for morphisms, let g be a morphism in the category RMLSp. G(g) := g. That g is a
morphism in NRLSp follows quickly from the definitions of morphisms and of ®pg.

Having described our functors F': NRLSp — RMLSp and G : RMLSp — NRLSp, to establish
equivalence requires us to check that G(F(X)) 2 X and F(G(Y)) 2Y for any X in NRLSp and Y
in RMLSp. However, this is quickly confirmed by showing that:

(1) r®y == @Ry y, and

(2) Rzzy iff Rg,zyx

since at the level of the L-space component of these objects nothing has changed in the moves
made between NRLSp and RMLSp. At the level of morphisms, by F' and G are identities, so it is
trivial that F'G(g) = g anf GF(f) = f. O

We have just shown an equivalence between the category of NRL-spaces and a category of L-spaces
with modified ternary filter continuous relations, which we called RML-spaces. In the previous section
we showed that in Proposition 5.2.11 that by forgetting the topology of an NRL-space we obtain an
OKHD-frame. Therefore, the composition of these two operations, first moving from L-spaces with
filter continuous relations to NRL-spaces and then moving to OKHD-frames sketches the path from
the our general theory of L-spaces and FC-relations to the semantics of substructural logics. In the
final section of this chapter, we show that the category of frames that undergird RML-spaces is not

equivalent to the category of the OKHD-frames.

5.4 The Non-Equivalence of OKHD-frames and RML-frames

In this final section of the chapter we show that functor F' : NRLSp — RMLSp and G :
RMLSp — NRLSp do not also general tp an equivalence between the category of OKHD-frames
and and the category of RML-frames, which are the class of objects obtain from RML-spaces when

the topological conditions that defined them are ignored. In particular, we show that there is an
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RML-frame X = (X, A, 1, R,T) whose ternary relation R is not definable by Rxyz iff y ® z < z for
any groupoid operation, ® : X x X — X.
Let us define RML-frame in detail.

Definition 5.4.1. A Residuated Merge L-frame or RML-frame X = (X, A, 1, R, T) is semilattice
(X, A, 1) equipped with a special subset T and a ternary relations R C X? that satisfies the following
constraints:

(1) If Rxyz and x < ', then Rx'yz,

(2) If Rxyz and Ruvw, then R(x A u)(y A v)(z A w),

(3) If Rz(x A x')y, then there are t,t' € X such that Rtxy and Rt'x'y and t At < z,

(4) If Rzx(y X '), then there are t,t' € X such that Rtxy and Rt'zy and t A t' < z,

(5) For all x,y € X, if Rxly, then x =1,

(6) For all x,y € X, if Rxyl, then x = 1.

A consequence of (1) and (2) is the following fact.

Lemma 5.4.2. For any RML-frame X = (X,1, \, R, T), If Rzyz and x < 2’ and y <y and 2’ < z,
then Rx'y'z'.

We have the following definition of morphisms between RML-frames.

Definition 5.4.3. An RML-frame Morphsim (X, A,1, R) — (X', A', 1", R") is a semi lattice homomor-
phism f: (X, A, 1) = (X', A, 1) satisfying the following additional constraints.

(1) if © Ly < f(z), then there are x,y € X such that x Ay < z and 2’ < f(x) and y' < f(y),

(2) if Rayz, then R f(2)f(5)(2),

(3) If Rx'y' f(z), then there are x,y € X such that ' < f(x) and y' < f(y) and Rxyz,

(4) if R f(x)y'Z’, then there are y,z € X such that Rryz, vy < f(y), and f(z) <2/, and

(5) if R'2'f(y)z', then there are x,z € X such that Rxyz, ©’ < f(x), and f(z) < 2/,

(6) x € Tx iff fx € Ty.

We denote the category of RML-frames together with RML-frame morphisms with RMLFrm. We

now show that every OKHD-frame is can be turned into an RML-frame.

Proposition 5.4.4. For every OKHD-frame X = (X, A,1,®,¢), the structure X® = (X, A,1, 5%, 1¢)
such that S®zxyz iff y ® z < = is an RML-frame.

Proof. We prove each condition in the definition of RML-frames (Definition 5.4.1).

Condition (1): suppose that S®zyz and z < 2’. Then y ® 2 < x < 2/. Therefore S®z'yz. Condition
(2): Suppose that If S®xyz and S®uvw. Then y ® z < x and v ® w < u. However, in virtue of the
monotonicity of ® we have (y Av)®(z Aw) < (y®2z) A (v@Ow) < z Au. Therefore S®(x Au)(y Av)(zAw).
For Conditions (3), (4), (5), and (6), see the proof of the equivalence of NRL-spaces and RML-spaces
in Theorem 5.3.1. O

Despite the equivalence between NRL-spaces and RML-spaces demonstrated in the last section,
there is no equivalence in the case of OKHD-frames and RML-frames. The following proposition shows

by way of example that there is an RML-frame that is not an OKHD-frame.

Proposition 5.4.5. There is an RML-frame X = (X, 1, A, R, T) such that there is no OKHD-frame
Y such that Y® = X (Where Y? is defined as in Proposition 5.4.4).
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Proof. Consider the RML-frame N = (INU {w}, A,0,R,T) where x A y is defined as max(z,y) as
calculated in w + 1, 0 is the top element, T = N U {w} and R = {(z,9,2) |y = 2z = w & x €
N} U{(z,y,2) |ly,z € NU{w} & x = 0}. The semi-lattice structure is depicted in figure 1. Note why
the meet is counter intuitively defined as max.

For showing that this structure is actually an RML frame, conditions (1) and (2) of the definition
of an RML-frame (Definition 5.4.1) are straightforwardly verified. Similarly, the cases of conditions (5)
and (6) are also almost immediate. The conditions (3) and (4) are also easy to check, but we will at
least demonstrate (3) here and note that the argument for (4) is almost the same. So let Rx(y A ¢/)z.
Then either (a) y Ay =z=wand z € Nor (b) y L ¢,z € NU{w} and = 0. In the case of (a), If
y Ay = w, then either y = w or ¢y = w. If y = w, then define ¢t := z and ¢’ := 0. Then it is almost
immediate by definition of R that Rtyz and Rt'y’z and that ¢ A ¢’ < z. We similarly find ¢ and ¢’ if
y' = w. We therefore conclude that there ¢, ¢ such that Rtyz and Rt'y’z and t A t' < z. In the case of
(b), then y A ¢/, 2 € NU{w} and x = 0. So simply define t = ¢’ = 0. It is immediate that Rtyz and

Rt'y'z and t At/ < x, so we are done.

Now suppose for contradiction that there is some operation ® : N2> — N such that S® = R. Given
that S®zyz holds iff z ® y < 2, we obtain for all n € IN that w ® w < n. But A\ IN exists in N and is w.
So we have that w @ w < A IN = w. And thus we have that S®www. But then by the assumption that
S® = R, we reach a contradiction since R be definition is not such that Rwww.

It is therefore the case that there is no OKHD-frame Y such that Y® = X. O

-
S

o - --0----
S

Y

Figure 2. This is semi lattice structure of the merge frame defined in the proof of 5.4.5. In this semi

lattice, x A y is defined as max(z,y) as calculated in (w+ 1, <).

We have just shown that not every RML-frame can be obtained from an OKHD-frame via the
functor (—)®. We now consider the question of whether we can characterize the class of merge frames
that do give rise to OKHD-frames via the operation we have been considering. The following proposition

suffices to answer this question.

Proposition 5.4.6. Suppose that X = (X, A, 1,R,T) is RML-frame, then: for all x,y € X both
Mw | Rzyw} ezists in X and Rrxy \{w | Rxyw} iff there is a sG-frame Xr = (X, A, ®g, 1) where
(XR)®®R = X (See Proposition 5.4.4 for definition of (-)°).

Proof. We define z ®py = A{z | Rzyz}. In virtue of proposition 5.4.4 we just need to check that
when X = (X, A, 1, R, T) is residuated, ®- A-distribution holds and that 1 is an absorbing element.
For ®-A-distribution, note that in virtue of the monotonicity of ®r, we have immediately that
@R (YLY) < (xOrY) A (z®RY).
Now for the other inequality, note that x @ (y A ') = A{z | Rz(y A ¢')z} and that R(z, (y A
v ), A{z | Rx(y A y')z}). By condition 2 of the definition of a residuated L-frame, there are t,t’ € X
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such that Rzyt and Rxy't' and t At/ < A{z | Rz(y A y')z}. But this implies that x ®g y < t and
x®y <t. So we have that

(z@ry) A (z@y) <t At < \{z| Re(y L y)z} =z @R (y L Y).
We can therefore conclude that ®-A-distribution holds.

Now, to see that 1 is absorbing, 2®1 = A{y | Rzly} = 1 by the condition (3) of an RML-frame. [

We have just shown that the functors that witness the equivalence between NRLSp and RMLSp

do not generalize to an equivalence between the category of OKHD-frames and RML-frames.

5.5 Conclusion

In this chapter we discussed the move from the general theory of L-spaces with filter continuous
relations to RML-spaces and NRL-spaces and then to OKHD-frames and RML-frames. We showed in
Proposition 5.2.11 that every NRL-space is also an OKHD-frame. We then show that the category of
RML-spaces and NRL-spaces is equivalent and thereby have demonstrated how to derive OKHD-frames

from the general theory of L-spaces with filter continuous relations.
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Chapter 6

Duality for Residuated Lattices

In this chapter we develop a point-set topological duality for not-necessarily-distributive residuated
lattice ordered groupoids and similar algebras by extending a the recent duality for bounded lattices
obtained by Bezhanishvili et.al [6] and introduced in detail in section 2.2 of Chapter 2. We show that
the category of pointed ré-groupoids (see Definition 2.1.5) is dually isomorphic to the category of
NRL-spaces (See definition 5.2.1). We then restrict to duality to obtain dualities for residuated lattices,
FL-algebras, and involutive residuated lattices and consider some explicit correspondences between
algebraic identities and topological properties. These results constitute some of the main contributions
of this thesis. Coupled with the connections between NRL-spaces and OKHD-frames established in
Chapter 5, these results will allow us to directly connect the algebraic semantics of substructural logics
to topological semantics presented in the next chapter and the OKHD-semantics.

The chapter is structured as follows. In Section 6.1, we prove that that category on NRL-spaces is
dually isomorphic to the category of rf-groupoids. We also derive duality with respect to RML-spaces.
We end the section by considering a number of correspondences between algebraic identities and
properties of NRL-spaces and RML-spaces. In Section 6.2, we explicitly prove dualitities for residuated
lattices and FL-algebras in terms of special classes of NRL-spaces called RL-spaces and FL-spaces,
respectively. Then in Section 6.3, we show duality for involutive residuated lattices and a class of spaces
we call Involutive FL-spaces. Finally, is Section 6.4, we show that the representation of monotone
lattice expansions can be extended to rf-groupoids and give a characterization of classes of r¢-groupoids
that are closed under the II;-completion.

The following table summarize some of the noteworthy dualities from this chapter.

Algebras Spaces Theorem 6.1.10
r{-Groupoids NRL-Spaces Theorem 6.1.10
Residuated Lattices RL-Spaces Theorem 6.2.3
FL-algebras FL-Spaces Theorem 6.2.7
Involutive Residuated Lattices | Involutive FL-spaces | Theorem 6.3.8

In addition we obtain duality for many other important classes of each of these algebras defined for

example by weakening, idempotence, commutativity and so on.

o1



6.1 Topological Duality for Pointed r/-Groupoids

In the last chapter we defined NRL-spaces. We showed that that by forgetting the topology of
an NRL-space we obtain a OKHD-frame in Proposition 5.2.11 and that the category of NRL-spaces
is equivalent to the categeory of RML-spaces, in Theorem 5.3.1. Together, these results allow us to
understand the frames used in the semantics of Ono and Komori [32], Humberstone[23], and Dosen
[13] in terms of our general theory of L-spaces with filter continuous relations.

In this section we connect NRL-spaces to the algebraic semantics of substructural logics by
demonstrating a duality between the category of NRL-spaces and the category of pointed rf-groupoids.
We then use the equivalence between NRL-spaces and RML-spaces to derive another duality and
representation theorem.

Let us recall the definition of NRL-space.

Definition 6.1.1. An NRL-space X = (X, A,1,®,e,7) is such that (X, A,1,7) is an L-spaces,
®: X x X = X is a groupoid operation, € is a designated element and:

(1) For all clopen filters U,V, Uox V, U\xV, and V/xU are clopen filters (see below),

(2) te is clopen, and

(3) x @y < ziff for all U,V € Fuop(X), ifv €U andy €V, then z € Uox V.

In the above definition we have that Uox V =1({z @y |2 e U &y e V})and U\xV ={y | Vz €
UrzeyeV)land V/xU ={z |VyeU(z®@yc V)}.

Of importance to showing that the category or NRL-spaces is dually equivalent to the categoty of
ré-groupoids, we showed in Proposition 5.2.4 that the lattice of clopen filters of an NRL-space forms
an rf-groupoid. In particular we demonstrated for any NRL-space X = (X, A,1,®,¢,7), the algebra
Lx = (Fiap((X),N, Vv, X, {1},0,\,/,Te) was a pointed r/-groupoid. We restate the proposition here

and reference the reader to the proof in the previous chapter (Proposition 5.2.4)

Proposition 6.1.2. For any NRL-space X, the algebra Gx = (Fiqp(X),N, vV, X, {1},0x,\x, /x,T€)

18 a pointed rl-groupoid.

With an operation X — Gx moving use from NRL-spaces to pointed r¢-groupoids, proving duality
will amount to characterizing the inverse of this operation and showing how to contravariantly transform
morphisms from one category into morphisms of the other. With this goal in mind, the following
proposition encodes the operation taking us from rf-groupoids to NRL-spaces. We will later show that

this operation is inverse to the operation X — Gx.

Proposition 6.1.3. (Pointed r{-groupoids to NRL-Spaces)
For every pointed r¢-groupoid G = (G,V,\, T, L, \,/,e), then Xy, = (Fi(G),N,G,R¢, Te,T) is an
NRL-space where T is generated by the subbase S:

S:={¢a) | a € L}U{X — ¢(a) [a € L}

Proof. We note that the operation z gy :=1{a-b|a €z & b € y} is well defined on the collection
of filters in virtue of a proof similar to the one given in Lemma 77.

Given L-space duality (Theorem 2.2.8) we know that the topology 7 on X is the L-space dual of
the lattice (G, V, A, T, L). We therefore only need to check that conditions (1)-(3) from the definition of
NRL-spaces hold. However, again by Theorem 2.2.8, we know ¢ : G — Lx, is a lattice isomorphism,

52



so it is sufficient to check that ¢ is also a pointed rf-groupoid isomorphism since this will imply that
the clopen filters are closed under the operation oy, \x, and _X and contain 1y (1e). In particular,
we must check that ¢(a-b) = ¢(a) ox, ¢(b) and ¢(a\b) = ¢(a)\¢(b) and ¢(a/b) = ¢(a)/P(b) and finally
that ¢(e) = Tx(Tge).

Starting with the simplest case, we show ¢(e) = 1x(Tge). The subscript on 1 indicates where the
operation is calculated. Let z € ¢(e). Then e € x and so Te C z. This implies that z € Ty (15e), as
desired. Let x € Tx(1ze). Then e € toe C z. So x € ¢(e).

For ¢(a-b) = ¢(a)ox, ¢(b), a simple argument can be given by noting that 14(a)®c1Tq(b) = tg(a-b)
and the fact that by L-space duality, ¢(c) = Tx,(T¢(c)) for every ¢ € G. Again, the subscript on 1
indicates where the operation is calculated.

For ¢(a\b) = ¢(a)\¢(b). Suppose that y € ¢p(a\b). Let = € ¢(a) and suppose that x oy C z. Then
a-(a\b) € z,s0 b € z. For the other inclusion we reason by contraposition. Suppose that y & ¢(a\b).
We show that there are filters  and z such that ¢ € x and z oy C 2z but b € 2z, which implies that
y & ¢(a)\¢(b). Therefore, we define X =1(a) and z ={c | Jd' €y (a-d’ < ¢)}.

To see that z = {c | 3’ € y (a-d’ <¢)} is indeed a filter, let ¢o,c; € z. Then there are by and by
in y such that a - by < ¢g and a - by < ¢; hold. But then by A by € y and so a - (bg A by) € y. But given

that the following two identities hold, we may infer that co A ¢1 € 2.

(1)@-([)0/\()1)§CL-1)0§CO (2)@-(60/\bl)§a-b1§c

Now, we must also check that x oy C z holds. So take ag € z and by € y. Then because a -b € z
and a - by < ag - by, we have that ag - by € 2z, as desired. Finally, suppose that b € z, then there is some
¢ € y such that a - ¢ < b. But then ¢ < a\b and so a\b € y, contradicting our assumption. Therefore,
we may conclude that b € z. We have therefore shown that there are filters z and z such that a € x
and x oy C z but b ¢ z, and thus that y & ¢(a)\p(b).

For ¢(a/b) = ¢(a)/p(b), we note that the argument is nearly identical to the preceding one.

Finally, for condition (3), the direction from left to right is straight forwardly implied by the fact
that clopen filters are upsets. From right to left, suppose that for all U,V € Fyop(X), if € U and
yeV,then z€UorV. Now let ¢ € x ®g y. Then there are a € x and b € y such that a-b < c. But
then x € ¢(a) and y € ¢(b) and z € ¢(a) ox ¢(b) C ¢(c). But if z € ¢(c), then ¢ € z, as desired. I

Aside from taking us one step closer to our desired duality result, the above proposition also leads
to a demonstration of the fact that every rf-groupoid can be represented as the alegbra of filters of

some NRL-space.

Theorem 6.1.4. (Representation of pointed rl-groupoids)
Every pointed rl-groupoid G, there is an NRL-space X such that G is isomorphic Ficpy(X).

Proof. In virtues of the proof of 6.1.3 every r/-groupoid G, it is the case that ¢ : G — Fip(Xg). O

The propositions 6.1.3 and 6.1.2 provide operations G — Gx and X — Gx We now turn to

morphisms between NRL-spaces.

Definition 6.1.5. An NRL-space morphism f : X — Y is an L-space morphism that satisfies the

following conditions:

(®2-forth) f(z) @ f(y) < f(z ®@y),
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(®-back) If 2’ @' y' < f(z), then there are x,y € X such that 2’ < fx, v < fy, and z @y < z,
-back) if fx @'y < 2, then there are y,z € X such that iy’ < z2<Z, andx @y < z

(/ y <7, v, y' < fy, : y <z,

(\-back) if ' @ fy < 2, then there are x,z € X such that 2’ < fx, fz2 <2, andx @y < z,

(e-forth) e < f(g), and

(e-back) if &' < fx, then e < x.

Lemma 6.1.6. If f : X — Y is an NRL-space morphism, then f~' : Gy — Gx is a pointed

rl-groupoid homomorphism.

Proof. In virture of Lemma ??, which proves that f~! is a lattice homomorphism, we just need to
check that f~! preserves the groupoid operations and the designated element 7e.

If # € f~Y(U oy V) then, f(x) € U oV, and then further there are y € U and z € V such that
y ® 2z < f(z). By the back condition of f, there are 2’ and 3’ such that < f2/ and y < fy’ and
' ®xy <z Butthen 2’ € f~1(U) and v/ € f~1(V) since U and V are upward closed. It then follows
that x € f~1(U) ox f~%(V). Therefore, f~1(U oy V) C f~Y(U) ox f~1(V). For the other inclusion,
use the forth condition of f.

We now need to show f~! preserves the residual operations \ and /. Let us show the case
of f~HU\yV) = f~YU)\xf *(V)noting that the case of / is similar. Let y € f~*(U\yV). Let
x € f~Y(U) and suppose that * @y y < 2. By the fact that f is a /G-space morphism, we have
that f(z) ®y f(y) < f(z). We also have f(z) € U and f(y) € U\yU, so f(z) € V. Therefore
we have that z € f~1(V), as desired. So f~Y(U\yV) C f~1(U)\xf (V). On the other hand, let
y € fYU)\xf 1 (V). Let € U and suppose that r ®y f(y) < z. Then by condition two in
the definition of r/G-space morphism, we have that there are 2/, 2" € X such that = < f(2’) and
f(z') < z and 2’ ® y < 2/. However, since x € U, f(z') € U, and thus 2/ € f~}(U). This then
implies in conjunction with the fact that 2’ @ y < 2’ and y € f~H(U)\xf~1(V), that 2’ € f~1(V) and
therefore that f(z') and z are elements of V. We may then conclude that f(y) € U\yV and thus that
y € f~YU\yV), as desired. We have therefore shown that f~1(U\yV) = f~HU)\xf~1(V).

Finally, we check that the f~! preserves the designated element, te i.e. f~1(1y(cy)) = Tx(ex).
For one inclusion, use the condition that if ey < fx, then ex < x. For the other inclusion, use the fact
that ey < f(ex).

We therefore, conclude that f~! is a pointed r¢-groupoid homomorphism. O
Lemma 6.1.7. let G = (G,V,A, T,,L,-,\,/) be an ri-groupoid, then If d < b, then ¢/b < c/d.
Proof. Suppose that d <b. Then ¢/b-d < ¢/b-b < c. But then ¢/b < ¢/d. O

Lemma 6.1.8. f : G — H is rl-groupoid homomorphism, then f~' : Xy — Xg s a NRL-space

morphism.

Proof. let f : G — H be a (-groupoid homomorphism. By L-space duality, f~! is a L-space mprhism.
We just show that f~! : Xy — Xg satisfies the conditions from the defintion of an NRL-space
morphism.

(®-forth) let z oy y < z and suppose that ¢ € f~1(x) ®¢ f~1(y). Then there are a € f~!(z) and
b€ f~1(y) such that a-b < c. But then f(a)- f(b) = f(a-b) < f(c). So since f(a) € z and f(b) € y, we
have that f(a)- f(b) € x oy y and thus f(c) € x og y. Therefore we obtain that ¢ € f~(z oy y) C f(2),

as desired.
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(®-back) Suppose that @’ ®@¢ v’ < f~(2). f[2'] and f[y/] are both closed under taking meets,
so 1f[2'] and 1£[y] are both filters. It follows quickly that 2’ < f=1(1f[2']) and o/ < f=L(1f[¥]).
Now let ¢ € 1f[z'] oy Tf[y]. then there are a € 1f[z'] and b € 1f[y/] such that a-b < ¢. But
if a € 1f[2'] and b € 17f[¢/], then there f(a') € f[z/] and f(V') € f[y/] such that f(a') < a. So
fla-v)=f(a)-ft)<a-b<ec Butad €z’ and ¥/ €y, soa’ -b € f~1(2), which in turn implies
that f(a’ cotb’) € z and then that ¢ € z, as desired.

(/-Back) suppose that f~1(z) ®g v’ C 2. We define y = 1f[y/]. We argued above that such a
set is a filter and we also showed that 3’ C f~1(y). In contrast, we define z = x oy Tf[y]. It is
then trivial that z oy y < z. We just need to show then that f=!(z) C 2. Solet c € f~1(z) =
fHzog tfly]) = f~Hx) oy f1(1f[¥]). Then there are a € f~(z) and b € f~1(1f[/]) such that
a-b < c. Therefore f(a) € x and f(b) € 1f[y'] and f(a)- f(b) < f(c). And hence f(a) < f(c)/f(b)
and thus f(c)/f(b) € x. But if f(b) € 1f[¢/], then there is a d € 3 such that f(d) < f(b). So by
Lemma 6.1.7, f(c)/f(b) < f(c)/f(d). So we obtain that f(c)/f(d) € x. But then f(c/d) € x and hence
c/d € f~1(x). Now recall that we had that d € ¢/, so ¢/d-d € f~'(z) ®¢ %', which in turn implies
that ¢ € f~1(x) ®¢ 9/ finally that ¢ € 2’ because of our assumption that f~!(z) ®g vy’ C 2.

We have therefore shown from the assumption that f~!(z) ®g ¢’ C 2/ that there are 3, z € X such
that 2@y C 2z, ¥’ C f(y), and f(2) C 2/, as was required.

For the condition (\-back), we note that the proof is sufficiently similar to the one given for (/-back)
for us to omit.

Finally for the conditions associated with e, the forth condition follows quickly. For the back
condition, suppose that ex, C f~1(z) for x € Xpg. Clearly then eg € f~1(z) and so ey = f(eq) € .
But then ex = 1(ex) C z, as desired.

We therefore conclude that the f~! is a NRL-space morphism.

]

Before stating and proving the duality result of this section, we recall the following lemma which

we proved in the previous chapter in Lemma 5.2.6.

Lemma 6.1.9. If If X = (X, A\,1,®,¢e,7) is an NRL-space and U is a clopen filter of X, then: if
x @y € U, there are clopen filters V and W such that x € V andy e W and VoW CU.

With the lemma available, we prove duality between NRL-spaces and r¢-groupoids.
Theorem 6.1.10. The category NRL is dually isomorphic to the category RLG.

Proof. By L-space duality, there is a L-space homeomorphism nx : X — Xgyx where Gx is the

£-groupoid of clopen filters of X. To check check that nx is also an NRL-space homeomorphism, it is

sufficient to check that ex and ¢ X1y and the respective groupoid operations agree w.r.t to nx i.e. that

nx(ex) = exg, and that nx (z®y) = nx(z)ox, nx(y). Recall that nx(z) = {U € Figp(X) [tz C U}.
To show nx(ex) = EXg, We have:

nx(ex) ={U € Fiqp(X) | Tx(ex) CU} (6.1)
= Tax (Tx(ex)) (6.2)
= EXGX. (6.3)

Note the identity in (1) holds by definition. The step to (2) is merely a rewriting. The last step to
(3) holds again by definition since 1y (cx) is a designated element of Gx.
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To show nx (z ® y) = nx(x) ox4, nx(y) we reason as follows. The direction from right to left is
more or less straight forward. Let U € nx(z) OXg, NX (y). Then then there are V' O tz and W D 1y
such that W ox V' C U, which are both clopen filters. But then since x € W and y € V, zoy € U and
hence 1(z ® y) C U. Therefore nx(z) ox,  nx(y) € nx(z ®@y).

For the other direction, suppose that U € nx(x ® y). Then x ® y € U. By Lemma 6.1.9, we have
that there are clopen filters V' and W such that z € V and y € W and VoW C U. But then V € nx(z)
and W € nx(y). So we conclude that U € nx(x) ® nx(y), as desired.

Now, by the proof of Theorem 6.1.4, we are also ensured that the map ¢g : G — Gx, is an
isomorphism.

We have thus shown duality at the level of objects. It follows then by Theorem 2.2.8 and the fact

that both of the salient categories are concrete that we also have duality at the level of morphisms. [

We have concluded that a duality exists between the category of pointed r¢-groupoids and the
category of NRL-spaces. In virtue of the equivalence between the category of NRL-spaces and the
category of RML-spaces established in the previous section (Theorem 5.3.1), we obtain another duality

and representation theorem for pointed r/-groupoids.

Theorem 6.1.11. (RML-Space Duality) The category of ré-groupoids is dually isomorphic to the
category of RML-spaces.

Proof. By Theorem 6.1.10 we have that RLG? =2 NRLSp. By Theorem 5.3.1 we have NRLSp =
RMLSp. Therefore RLG = RMLSp, as claimed. O

Additionally, we obtain the following representation theorem. This result will enable another

completeness theorem when we consider logical applications in Chapter 7.

Theorem 6.1.12. (Representation Theorem) FEvery pointed rl-groupoid is isomorphic to the algebra
of clopen filters of some RML-space.

Proof. Let G be a pointed r¢-groupoid. By theorem 6.1.4, G is isomorphic to the algebra of clopen
filters Gx of the NRL-space Xg. In virtue of the proof of Theorem 5.3.1, we obtain that algebra of
clopen filters of the RML-space F'(Xg) (See Theorem 5.3.1 for definition of ') and Gx,, are isomorphic
as pointed rf-groupoids. It follows that G is isomorphic as an rf-groupoid to the algebra of clopen
filters of the RML-space F(Xqg). O

We conclude with a remark on how to generalize the results to various reducts of pointed r¢-

groupoids.
Remark 6.1.13. (Reducts of r{-groupoids)

Given our duality proof it is possible to extract a number of other dualities for reducts of pointed
rl-groupoids. This includes non-pointed rf-groupoids by removing the requirement of a designated
element ¢ from the definition of an NRL-space. By only requiring the clopen filters to be closed under
one of \ x and /x we can obtain dualities for algebras with only a left or right residual. These could
be useful in the semantics of relevance logics like the system of entailment, E. Going further, we
can also obtain duality just for ¢-groupoids by non-longer requiring the clopen filters to be closed
under the operations \ x and /x. However, to guarantee that the algebra of clopen filters satisfies the
identities a- (bVe) =(a-b)V(a-c¢)and (bVc)-a= (b-a)V (c-a), we require that the duals satisfy
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Ry A(z®2)<z®(yAiz)and (yRz) A (2®2) < (y A z) ®z. Similar remarks hold for obtaining

dualities with respect to generalizations of RML-spaces.

6.1.1 Some Correspondences Between Identities and Properties of Dual Spaces

We list some noteworthy correspondences between identities that hold in an rf-groupoid and
properties of ® that hold in the dual space of that algebra. These correspondences lead to dualities for
many other class of pointed r¢-groupoids that have been studied in the literature. We then examine
analagous correspondences in in terms of RML-space.

The correspondences for - and ® are very similar to those for the logics presented by Dosen in [13].

Proposition 6.1.14. (Correspondences) For any pointed r{-groupoid G with dual NRL-space Xg we

have the following correspondences between properties of - and ® and properties of e and €.

Properties of - Properties of ®
a-(b-c)<(a-b)-c|(z®y)®2<zd (YR 2)
(@-b)-c<a-(bc) | 2®0@y®z)<(zRy) =z

a-b<b-a TRY<YRw
a<a-a rR®xr < T
a-a<a r<zr®x
a-b<a r<z®Y
b-a<a r<y®x
a<a-b rR@r <y
a<b-a YRz <zx
Properties of e | Properties of €
a<eoa eRr<zx
a<laoe rRe<x
eoa<a r<e@u
aoe<a r<r®e

Proof. In the interest of space will only show a selection of these correspondences acknowledging that
the other proofs are quite simple and or similar. First let us consider the correspondence between
a-(b-c)<(a-b)-cand (zRY)R2<rQ (Y 2).

Let G be a pointed r¢-groupoid. Suppose that for all a,b,c € G, we have that a- (b-¢c) < (a-b)-c.
Now let x,y,2 € Xg let d € (x ®y) ® z. Then there a,b,c € G such that (a-b)-¢c < danda € x, b € y,
and ¢ € z. By assumption, a- (b-¢) < (a-b)-candsoa-(b-c) < d. It follows that d € x ® (y ® 2), as
desired.

For the other direction of the correspondence, let X be an NRL space and suppose that for all
z,y,2 € X, (z0y)®z <x®(y®=z). Now let U, V,W € Fig,(X). By almost the exact same reasoning
as in the previous paragraph, if w € U o (V o W), then there are x € U, y € V, and z € W such that
r®(y®z) <w. But the (z®@y)®@z<wandsow € (UoV)oW.

For our second sample we consider the correspondence between a-e¢ < a and e ® x < z. Let G
be a pointed r¢-groupoid and suppose for all a € G that a - e < a. Now let z € Xg and suppose that
a € x. We recall that € = fe, so since a - e < a we obtain that a € x o¢.

The other direction of the correspondence follows by an analogous argument. O
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In addition to correspondences between properties of an rf-groupoid and it’s dual NRL-space, we
also obtain correspondences with respect to its dual RML-space. These are standard conditions from

the literature on relevance logic and Routley-Meyer frames [33]. We record a few here.

Definition 6.1.15. We say that a RML-space X = (X, A, 1, R, T, T) satisfies:
Permutation iff Vryz(Rzaxt — Rzxy)),

Right Rebracketing iff Vryzts(Rtxs & Rsyz — Jw(Rwzy & Rtwz)),

Left Rebracketing iff Veyzts(Rtsz & Rsry — Jw(Rwyz & Rtzw)),

Right Omission iff Veyz(Rzxy — y < z),

Left Omission iff Veyz(Rzxy — x < z).

We may represent the Right-rebracketing condition graphically as follows.

t t

Yy z x Yy

We then have the following proposition that records properties of an algebra and its dual space.

Proposition 6.1.16. Let G = (G, A,V, T, L,-\,/,e) be an rl-groupoid and let X = (X, A, 1, R, T, 1)
be the RML-space dual to G, then we have that follows table of correspondences:

Properties of - Properties of R
a-b<b-a R satisfies Permutation
a-(b-c)<(a-b)-c| R satisfies Right-Rebracketing
(a-b)-c<a-(b-c)| R satisfies Left-Rebracketing
a-b<a R satisfies Right Omission
b-a<a R satisfies Left Omission

Proof. As with the correspondences between - and ®, we will only provide a sample here. In particular
we will verify the correspondence between (a-b)-c < a- (b-c) and R satisfies Right-Rebracketing.
So suppose that G satisfiesn a- (b-¢) < (a-b)-c for all a,b,c € G. Suppose for elements of X, the
dual of G, that Rtxs and Rsyz. Define w to be z ® y. It follows immediately that Rwzy. Now we
must show that Rtwz. So let d € w and ¢ € z. Then there are a € x and b € y such that a-b < d. So
by monotonicity of -, we have that (a-b)-c < d-c. But since a- (b-c) € t, in virtue of the assumptions
that Rtxs and Rsyz, and the fact that a- (b-¢) < (a-b) - ¢, we arrive at the conclusion that d - ¢ € t.
Therefore we have found that Rtwz as desired. We therefore conclude that Right-rebracketing holds.
For the other direction, suppose that Right-rebracketing holds. Let U, V, W be clopen filters of the
RML-space X. let t € U o (V o W). Then there is some € U and s € V o W such that Rtxs. If
w € V oW, then there are y € V and z € W such that Rsyz. By Right-rebracketing, there is some w
such that Rwzy and Rtwz. There we obtain that w € U oV and that t € (UoV)o W, as desired. [
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To ensure that designated clopen filter T" of an RML-space behaves as an identity element for op
in the algebra of (clopen) filters, we can the following condition inspired by the notion of a T-set from
Restall [33].

Definition 6.1.17. We say that an RML-space X = (X, 1, A\, R, T, T) satisfies:
Left-Interjection iff Yy, z(y < z +» Jx € T(Rzxy), and
Right-Interjection iff Vx, z(x < z <> Jy € T(Rzzy).

We then obtain the following correspondences.

Proposition 6.1.18. Let G = (G, A,V, T, L,-,\,/,e) be an ré-groupoid and let X = (X, A, 1, R, T, T)
be the RML-space dual to G, then we have that follows table of correspondences:

Properties of G Properties of X
a-e=a X satisfies Right-Interjection
e-a=a X satisfies Left-Interjection

In the next sections we will combine some of the facts we have just seen to obtain dualities for

residuated lattices, FL-algebras, and Involutive algebras

6.2 Duality for Residuated Lattices and FL-Algebras

In the semantics of substructural logic, Residuated Lattices and FL-algebras are likely the most
studied type of algebra. In this section we show how the various dualities presented throughout this
chapter can be combined and extended to give dualities and representation theorems for Residuated
Lattices and FL-algebras. We begin by defining RL-spaces, which are the NRL-space duals to residuated
lattices. They are simply NRL-spaces where ¢ is an identity element for ® and ® is associative. We
then define FL-spaces, which extend RL-spaces with a new constant p that will generate a designated

element in algebra of clopen filters and will make that algebra an FL-algebra.
Definition 6.2.1. An RL-space X = (X, A\,1,®,¢,7) is an NRL-space where:
rR@YR2)=(2Ry)QzadrRe=r=cQx

Theorem 6.2.2. (Representation of Residuated Lattices) For every residuated lattice, L, there is a
RL-space X such that L is isomorphic to Ficp,(X).

Proof. The proof of this fact follows from the representation theorem for rf-groupoids provided in

Theorem 6.1.4 and the correspondence results in Proposition 6.1.14. O

Theorem 6.2.3. The category of residuated lattices RLat s dually isomorphic to the category of
RL-spaces, RLSp

Proof. Follows immediately from Theorem 6.1.10, which established the duality between pointed
ré-groupoids and NRL-spaces, and Lemma 6.1.14 which establishes the fact that associativity of a
ré-groupoid corresponds to associativity of ® in the dual space and similarly that when e is an identity

element in an rf-groupoid, then ¢ is too. ]
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We note that analogous dualities are obtainable in virtue of RML-spaces by combining the duality
result from Theorem 6.1.11 with the correspondence results for RML-spaces in 6.1.16 and 6.1.18.

From here, we extend even further to obtain the analogous results for FL-algebras.

Definition 6.2.4. An FL-space X = (X, A, 1,®,e, 7, p) is an RL-space where i is additional designated
element and has the property that Tu is a clopen filter.

The definition of morphism extends that of NRL-space morphisms by adding some additional

conditions for u.

Definition 6.2.5. FL-space morphisms f: X — Y are NRL-space morphism satisfying the following
two conditions:

(u-forth) py < f(ux), and
(u-back) if py < fz, then ux <z for allz € X.

Note that the above condition are the same as those for . Simple arguments show that FL-space

morphism correspond to FL algebra homomorphism.

Lemma 6.2.6. (Between Morphisms)
(1) If f : G — H is FL algebra homomorphism, then f~1: Xy — Xq is a FL-space morphism.
(2) If f : X =Y is an FL-space morphism., then f~' : Gy — Gx is an FL algebra homomorphism.

Proof. The proof of this lemma extends the argument showing the analagous correspondence for
NRL-space morphisms and rf-groupoid homomorphisms in lemmas ?? and ??7. All that remains to be
checked pertains to u. However, the arguments for these properties follows from the same arguemnts

for the case of ¢. O
We can then prove duality.

Theorem 6.2.7. (Duality for FL-algebras) The category of FL-algebras FLAlg is dually isomorphic
to the category of FL-spaces, FLSp.

Proof. In virtue of Theorem 6.2.3, which establishes duality for residuated lattices, we need to check
that Xy, is an FL-space when L is an FL-algebra and conversely that Lx is an FL-algebra when X
is an FL-space. Then to prove duality, we only need to check that ¢, : L — Lx, is an FL-algebra
homomorphism when L is an Fl-algebra and that nx : X — X, is a FL-space morphism when X is
an FL-space.

So let L is an FL-algebra. Xy, is an RL-space in virtue of Theorem 6.2.3. We then define p := 1 (f)
in Xp. Tx, 1= "Tx,(1(f)) = ¢r(f), so Tx, is a clopen filter. We conclude then that Xy, is an FL-space.

Conversely, if X is an FL-space, then Lx is an FL-algebra since Ty is a clopen filter.

Now, for showing ¢ : L — Lx, is an FL-algebra homomorphism, we have that ¢r(f) =

Last but not least, we must check that nx : X — Xy, is a FL-space morphism for all FL-spaces X.

O
Theorem 6.2.8. For every FL-algebra, L, there is a FL-space X such that L is isomorhic to Ficp,(X).

Proof. Corollary of the proof of the duality theorem for FL-algebras in Theorem 6.2.7. O
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6.3 Duality for Involutive Residuated Lattices

The final class of algebras we study duality for is the variety of Involutive Residuated Lattices.
Having already proved duality for FL-algebras, then main task of this chapter is therefore to find a
condition on FL-spaces that guarantees that an FL-algebra is involutive if and only if its dual space
satisfies the relevant condition. In much the same way that preceding dualities for residuated lattices
can be extended to provide duality fro Heyting Algebras, the duality presented here can be extended
to give duality for Boolean algebras, even if it is not the most elegant duality.

Before defining Involutive FL-spaces, we prove a lemma about a relation definable in all FL-spaces.

Proposition 6.3.1. Let X = (X, A, 1,®,¢e,u) be an FL-space (definition 6.2.4). define a relation
C C X x X such that:
2Cy<—=puLrey.

Then C' satisfies the following properties:

Proof. 1t is easy to check that C satisfies all of the conditions to be a compatibility frame. For example,
if x AyCz, then p £ (r Ay) ®z=2® 2z A y® z. Therefore, either 4 £ x @ z or p £ y ® z. And thus
either xC'z or yC'z. The other conditions follow readily. O

Let us define ~cU = {x € X | Vy(zCy — y ¢ U)} and similarly, =cU := {z € X | Vy(yCx — y &
U)}.

Lemma 6.3.2. Let X = (X, ) be an FL-space. Then we also obtain ~cU = U\tp and ~c U = 1Tpu/U.

Proof. Let us show =¢cU = U\1Tu noting that the other identity has an analogous proof. Let z € —~¢U.
Now suppose that y @ x < z and that y € U. We need that y < z. If y € U and x € ~cU, then y Cz
and thus p < y ® . But this then immediately implies that p < z, which is what we needed to show.
It follows that « € U\ 1 p. For the other inclusion, let € U\Tu. Suppose that yCz. We need that
y & U. If we suppose for contradiction that y € U, then we obtain from the assumption that z € U\1Tu
that p < y ® x. But this contradicts the supposition that Suppose that yCz. So y & U, as desired. It
is then the case that x € —-¢U. ]

Definition 6.3.3. Let X be an FL-space and suppose that C' is defined as above. We say an element
x € X is C-separable if x # 1 and both of the following hold.

Vy(z £y — 32(yCz & tx N C~ Yz = 0)), and,
Vy(z £y — 32(2Cy & tz N C[z] = 0)).

Definition 6.3.4. We say an FL-space X is involutive if for all clopen filters U, \U is C-separable.
Lemma 6.3.5. If X is an involutive FL-space, then Lx is an involutive residuated lattice.

Proof. We define and C' as in Proposition 6.3.1. We need to check that for all clopen filters U:
~=U CU and -~U CU.

Let us show ~—=U C U noting that the other case of double negation elimination follows from an
analagous proof. Suppose that y € ~—=U C U for some clopen filter U. Now let x = AU (it follows
that 1z = U). Suppose for contradiction that y &€ U. Then x £ y. Therefore, by the conditions that
define an involutive split space, there is some z such that yCz and C~![z] = . If y € ~=U C U, then
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z & =U. Therefore, there is some w € U = 1z such that such that wCz. But this is impossible given
that T2 N C~![z] = 0. We conclude that y € U, as desired. O

Lemma 6.3.6. If L is an involutive residuated lattice, then Xy, is an involutive FL-space.

Proof. Let L be an involutive residuated lattice and suppose that Xy, = (Fi(L), 7) is its dual space
with C defined as above. Now suppose that x # 1 and that Ty is clopen. We will just show

Vy(z £y — F2(yCz &tz N C7 2] = 0))

noting that the other condition has an almost identical proof. Suppose that z £ y. it follows that
there is some a € L such that T;a = z (clopen sets of an L-space are always of the form 1y (1,a)) and
that there is some b € x such that b ¢ y. Now define z := 1 (~ a). We first claim that yCz. So let
~c € 1 (~a) = z. We will show that ¢ € y. If ~ ¢ € 1, (~a), then ~a < ~c. Therefore we have that
¢ = ~~c < =~a = a since L is involutive. It follows that ¢ < b since a < b (recall z = 1a and b € z).
But since b € y we obtain ¢ ¢ y, as desired.

We now claim that C~1[z] N1y (z) = 0. Suppose otherwise. Then there is some w € C~1[2] N1y ().
Therefore wCz and Ta = x C w. So a € w and thus —~a € w. But since wCz, we then obtain that
—a ¢ z = T(~ a), which is a contradiction. Therefore, we conclude that C~1[z] N1y (z) = 0. O]

With the various lemmas we have just proved, we arrive at the following representation theorem

for involutive residuated lattices.

Theorem 6.3.7. (Representation Theorem for Involutive Residuated Lattices)
For every involutive residuated lattice L, there is an involutive FL-space X such that L is isomorphic

to the involutive residuated lattice of clopen filters Lix.

Proof. Follows from Theorem 6.2.8, which establishes that every FL-algebra is representable by the
alegrba of clopen filters of some FL-space and then Lemma 6.3.6 O

Finally, we arrive at our final explicit duality theorem.

Theorem 6.3.8. (Duality for Involutive Residuated Lattices) The category of involutive residuated

lattices is dually equivalent to the category of involutive FL-spaces.

Proof. The duality between FL-algebras and FL-space of Theorem 6.2.7 restricts to a duality between

involutive residuated lattices and Involutive FL-spaces in virtue of Theorem 6.3.7. ]

Just as with rf-groupoids, residuated lattices, and FL-algebras, the correspondence results in
Proposition 6.1.14 allow us to explicitly characterize a number of other varieties of involutive residuated
lattices. Of particular note by adding contraction, weakening, and commutativity to the axioms
of involutive residuated lattices we define Boolean algebras. Therefore, adding the corresponding
properties to an involutive FL-space gives rise to spaces whose algebra of clopen filters are a Boolean

algebra.
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6.4 The I[I;-Completion of r/-Groupoids

In Chapter 4, we showed that the ITi-completion of a lattice expansion L could be represented by
the algebra of all filters in the dual L-space of L. In this section we very briefly extend the topological
representation of the II;-completion of monotone lattice expansions to the case of ré-groupoids. As a
consequence we obtain a fairly general result on II;-persistent classes of r/-groupoids.

In Chapter 7 we will apply this persistence result to obtain a general completeness theorem with

respect to the OKHD-semantics and a semantics based on RML-frames.

Definition 6.4.1. Let G = (G, -, \, /e) be a pointed £-groupoid, we define the following operations on
Hl(G):

o1 My = \/{\{m(a1-a2) | i €L & yi < afa))} |y € K(IL(L) &y <} M =e.

\My = \/{zem(L) | zT 2 <y} y/Ma=\/{zem(@L) | Mz <y}
We must check that the definition of operations are defined in a way that yields an rf-groupoid.

Lemma 6.4.2. If G is a unital r-groupoid, then 11;(G) = (II;(G), -1, \, /1L et} s g pointed
r-groupoid.

Proof. Tt is sufficient to check that II(G) has the property that for all S C II(G) and x € II(G) that:

m-Hl\/S:\/{LE-Hly|y€S}and \/S-Hla::\/{y-nlm\yES}.

Given Theorem 4.2.3 in Chapter 4, we are ensured that the ¢-groupoid reduct of G is isomorphic
to ¢-groupoid reduct of Fi(Xg) where in this case Xg is the NRL-space dual to G (Note that the
algebra of filters of the dual NRL-space coincides with the dual NRL-space so we can choose either
in this argument). We can therefore check the identities in question hold in Fi(Xqg) and infer that
they hold in ITy (G). Let us show Uo VS = V{U !V | V € S} where {U} US C Fi(Xg). The
inequality V{U -V |V € S} <UoV{V | V € S} is an immediate consequence of monotonicity. For
the other inequality, let = € U -1 {/ S. There are y € U and z € \/ S such that y ® z < 2. However,
if ze VS =U{Wv..vV, | Vi <n(V; € S)}, then there is a finite subset Sy C S such that z € \/ Sp.
But then 2 € UoVSo = V{U- MV | Ve S} CV{U MV |V e S} as desired.

It the follows by a standard argument that IT; (G) is a residuated lattice. O

We can now show the following representation theorem for the ITi-completion of

Theorem 6.4.3. Let (L,-,e) be a pointed rl-groupoid and let Xy, be its dual NRL-space, then:
(M (L), M\, /T ey = (Fi(XL), 0,\, /, ).

Proof. We must show that the isomorphism ¢ : II,(G) = Fi(Xqg) from Chapter 4 extends to an r/¢-
groupoid isomorphism. In virtue of Theorem 4.2.1 Chapter 4, we know that g/b\(a: gy = éb\(:n) o éﬁ\(y) So
it suffices to show ¢(z\"'y) = ¢(z)\@(y) and ¢(z/My) = ¢(x)/P(y). Let us show ¢(z\"y) = ¢(z)\¢(y)
noting that the case of / is nearly identical.

In virtue of the definition of \''*, the fact that $ preserves arbitrary joins, and that 5 is bijective,

we have

oa\"y) = d(\/{z e (L) | =M 2 < y}) = J{U | $(x) o U < ()}
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A standard argument shows that \/{U | qg(x) oU < qg(y)} satisfies the residual law with respect to o.

However, since operations satisfying the residual law with respect to o are unique, we arrive at the fact

that p\p(y) = V{U | ¢(x) o U < ¢(y)}. It follows then that ¢(z\"y) = d(x)\B(y), as desired.
0

Given the previous two facts, we are ensured that I1;(G) is genuinely a completion of G. We record

this fact in the following corollary.
Corollary 6.4.4. If G is a unital rl-groupoid, then m : G — II1(G) is a unital rl-groupoid embedding.
Proof. Note that 7 = q?fl * ¢ and that &5*1 * ¢ is an embedding. O

By combining the topological representation for the II;-completion of rf-groupoids we just obtained
in Theorem 6.4.3 with the II;-persistence results of Chapter 4, we obtain the following persistence

result for pointed rf-groupoids.

Theorem 6.4.5. Let t and s be terms in the signature {e, T, L, -, A\,V} and let G be an rl-groupoid.
IfGEs~t, thell1(G) F s~ t.

Proof. A direct consequence of Theorem 4.3.5 and the topological representation of the IIj-completion

of rf-groupoids. O

As an immediate corollary we can provide a sufficient condition for class of rf-groupoids to be

closed under the II;-completion.

Corollary 6.4.6. Let K be a class of rl-groupoid defined by a set of identities in the signature
{e, T, L,-,A\,V}, then if G € K, then II;(G) € K.

Finally, we show that there is a class of residuated lattices that is not closed under the II;-completion.
Proposition 6.4.7. There is a class of residuated lattices that is not closed under the Il;-completion.

Proof. 1t is well know that the filter completion fe(()B) of a boolean algebra B need not be a boolean
algebra. Since fe(()B) embeds into II;(B), we conclude that II;(B) need not be a boolean algebra.

Therefore, the class of boolean algebra is not closed under the II;-completion. O

In the next section we use our duality to obtain representations for products of pointed r¢-groupoids

and representations for congruences of residuated lattices.

6.5 Conclusion

In this chapter we have obtained various duality results for a range of variants of residuated
lattices. In particular, we showed that the category of rf-groupoids is dually isomorphic to the
category of NRL-spaces. Using the equivalence between NRL-spaces and RML-spaces we also derived
a duality with respect to RML-spaces. We the restricted this duality to obtain dualities for residuated
lattices, FL-algebras, and involutive residuated lattices. The following diagram summarizes these
results. Horizontal arrows represent categorical inclusions while vertical arrows represent category

isomorphisms.
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NRLSp +—— RLSp +— FLSp «+—— InFLSp

—

RMLSp

.

RLG? ¢—— RL%® +—— FL% ¢<—— InRL%

In addition, from Proposition 6.1.14, each of these dualities was explicitly shown to restrict to
classes defined by commutativity, weakening, and contraction. Finally, in Section 6.4 we showed
that the II;-completion of rf-groupoids are representable in their dual NRL-spaces and use the II;-
preservation results from Chapter 4 to obtain some sufficient conditions for an identity in the signature

of ré-groupoids to be preserved through the II;-completion.
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Chapter 7

The OKHD-Semantics, and

Completeness via Duality

In this chapter we begin our exploration of how L-space duality and more particularly the duality
and IIi-persistence results from Chapter 6 can be applied to the semantics of substructural logics. We
combine the duality for r¢-groupoids, the notion of II;j-persistence developed by the authors of [6],
and the connection between between NRL-spaces and OKHD-frames to obtain a general completeness
theorem with respect to the operational semantics for substructural logics developed by Ono and
Komori [32], Humberstone [23], and Dosen [13].

The chapter is structured as follows. We begin in Section 7.1 by reviewing the substructural
logics and their algebraic semantics. In particular, we introduce the logic NFL™, which is the logic of
ré-groupoids. In Section 7.2 we introduce the operational semantics of Ono and Komori, Humberstone,
and Dogen or, more succinctly, OKHD-semantics. We then introduce morphisms between OKHD-frames
and show how they preserve and reflect satisfaction and validity. We will use these facts in the following
chapter. We then briefly define the RML-frame based semantics in Section 7.3, which is more closely
aligned with theory of filter continous relations developed in Chapter 3. In Section 7.4 we arrive at
the main results of the chapter. First, in Theorem 7.4.3, we show that all extensions of NFL™ are
complete with respect to a class of NRL-spaces. This is a simple consequence of alegbraic completenes
and NRL-space duality. An analogous topological completeness theorem is also demonstrated with
respect to RML-spaces. We then show in Theorem 7.4.7 that all sequents that do not contain the
connectives \ and / are IIj-persistent in the sense that if they are valid in an NRL-space, then they are
also valid in the underlying OKHD-frame of that NRL-space. This leads to the general completeness
result reported in Theorem 7.4.8. Finally, in Section 7.5 we discuss how the canonical model style
proofs from the original papers from Ono and Korori, Humberstone, and DoSen can be analyzed in

terms of the completeness-via-duality methodology.

7.1 Substructural Logics

In this section we define the Positive Non-Associative Full Lambek Calculus, NFL™, and characterize
some of its extensions. The reason we call this positive is because we do not include the ”falsity
constant” f, which is ususally included in the full Lambek Calculus. In [12], Désen denotes NFL™ by
GL. NFL™ is one of the weakest logics with the additive connectives A and V, the residuated family
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of connectives \, and /, and the truth constant ¢. Below we give sequent style natural deduction rules
that characterize the logic NFL™. These rules are inspired by the proof theory introduced in Restall’s
introductory book on substructural logic [33]. Désen’s original characterization of NFL™ was given as
a Gentzen system with left and right rules for each connective. While Gentzen systems are often proof
theoretically convenient, our considerations are primarily model theoretic and we therefore prefer the
more intuitive set of rules presented below. For a thorough introduction to substructural logics see
either [33] or [19].

The language £ is built from atomic expressions Prop = {p1, p2, ps, ..} and the connectives I have

already listed above.

Definition 7.1.1. Language L

e=lp|TILleAp|leVe|pep |\ | e/e]|t]

We denote the set of all such expression by £. The objects denoted by I'; A and ¥ below are called

structures. They are built out of formulas and the punctuation mark —; —.

Definition 7.1.2. L-Structures Str(L).
=l |0

We denote the set of all structures by Str(L£). A context I'[] is structure with a special atom - that
intuitively represents an empty position in I" meant for substituting. I'[A] is the structure obtained by

substituting A for - in the context I'[-].
Finally, a sequent is a pair I' = ¢ where I" € Str(£) and ¢ € L.

We now define the basic logic NFLT. For us a logic is a set of sequents. Intuitively, a logic is

simply a collection of argument pairs that are deemed acceptable.
Definition 7.1.3. The Logic NFL™ is the least set of sequents all instances of axiom schemas
(Az) ¢ = ¢ (AzT)T =T (AzLl) T[L] = ¢

and closed under the rules:

(n-out) L2 E0E reou) L 28
(A-in) L :;i . /\F f ¥ (V-out) L[] =>F>[<A] :>F>[<¢] = X
(-in) FEE (ow) TEEL L BEY
(\-in) m N-out) LT SOX;/’P . f i
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) The Abg . Thpey  Alpig]F¢
(i) —TAFpeu (o-out) NG
(o) L= A=

Al =9

To define extension of NFL™T we either add axioms or structural rules. Structural rules allow for
control over how the structures on the left hand side of a sequent relate to the formulas on the right
hand side. Intuitively, structural rules are a means of premise management and govern the relationship

between premise and conclusion. We list a few common structural rules below.

(a) 2IL(AY)] = ¢ () OlT5A)N = ¢ () Z5Al= ¢
O[IA)E] = ¢ O (AsX)] = ¢ E[A T = ¢
(w") Y[l = (wl) YAl = (¢) LA A] = ¢
Y[ A] = ¢ LAl = ¢ LAl = ¢
. I'=s e . I'= e
(t-in') '=teyp (t-in) '=pet
(t-outl) M (t_outr) M
IA] = ¢ LAl =

While adding structural rules is the most common way of defining an extension of NFL™, for our
purposes it will be more convenient to define extensions by adding axioms. Each system defined by
adding some collection of the structural rules above can be equivalently characterized by adding a

corresponding collection of the axioms listed below.

(a) po(pel) = (perp) el (a%) (porp) el = e (hef) (e) pop = ey
(W) potp = (W) pop = (©p=pop

(t-iny) p ot = ¢ (t-ing) tep = ¢ (t-out1) ¢ = p et (t-oute) ¢ = t e p.

We now define an extension of NFL™ as a set of sequents that contains the axioms of NFL™T is
closed under the rules of NFL*.

Definition 7.1.4. An exstension of NFL™ is a collection of sequents L such that NFL™ C L and such
that L is closed under the rules from Definition 7.1.3. We say that set of sequents S azxiomatizes L is

L is the least set of sequents obtain by closing NFL™ US under the rules from Definition 7.1.8.

Let us remark on some well know extensions of NFLT. We recover the Full Lambek calculus FL*
by extending NFL™ with the axioms a and a¢ and all of the rules for t!. By adding the structural
rule e to FL™ thus obtaining FL,., we obtain a fragment of linear logic. By adding back all of the
axioms listed above we recover Intuitionistic Propositional Logic, IPL. In general, we denote extensions
of NFL by some collection of axioms 71, ..r,, where each rule r; is among {a,a®, w",w', e,c} with
NFL,,, ,,. We will shorten NFL, 4 to FL.

'FL has an additional constant f but we will ignore this for now.
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7.1.1 Algebraic Semantics

In this section we briefly recall the algebraic semantics of the substructural substuctural logics in
terms of r¢-groupoids. We first define algebraic models and then define the Lindenbaum algebra of an
extension of NFL™.

Definition 7.1.5. An r{-groupoid model is a pair (G, o) where G is an rl-groupoid and o : Prop — G.

We extend o to a homomorphism o© : L — G as follows:

o (e AY) =0T (p) Aot (1) o (e V) =0T (p) Vo (y),
o (pe) =0t (p)-aT () o (t)=e

o (P\Y) = o (p)\o T (¥) o (p/¥) =" (p) /ot (¥),
ot (M =T ot(L) =1,

ot (T;A) =0"(I) - o (A).

We say that an rf-groupoid model (G, o) satisfies a sequent I' = ¢ and write G,0 F I' = ¢ if
oT(T) <g ot (p). We say a rl-groupoid validates a sequent I' = ¢ and write G E ' = ¢ if very every
valuation o : Prop — G, G,o0 F I' = . Finally, we say that a class K of rf-groupoids validates a
sequent I' = p and write CFI' = p ifforal Ge £, GE I = ¢.

We now define the Lindenbaum Algebra of an extension of NFL*. It is simply the congruence of

the language with respect to interderivability in the salient logic.

Definition 7.1.6. Let L be an extension of NFLT. The Lindenbaum algebra Ay, = (/=p,A,V, T, L,-\,/,€)
of L is defined such that L/=1, = {[¢lo, | ¢ € L} and pLy iff p = 1 € L and ¢ = ¢ € L. The

algebraic operations are then defined:

[plog A [Yloy = [0 A dlay [Ploy, V [Woy = [0V Plog,
[Ploy, - [Vay, = [ - Vlay, e =ty

[Pl \[Woy, = [e\Ploy [Plon/[W]er, = /Yoy,

T =T, 1L =14

Using the construction of a Lindenbaum Algebra and the fact that each sequent corresponds to
an algerbaic identity, it is possible to show that every extension L of NFL™ is complete with respect
to a class of rf-groupoids. In particular, we can think of each formula of the logical language L as
an algebraic term and each sequent ¥ = ¢ as the identity ¢ A ¥ = . In general, given a sequent «,
we write ax for the corresponding identity. Likewise, given a set of sequents S, the set of identities

corresponding to elements of S is denoted S*.

Theorem 7.1.7. (Algrbraic Completeness) Let L be an extension of NFLT. Let Ky, be that class of

algebras validating all of the identities in L*.
If KL, ET = ¢, then ' = ¢ € L.

Proof. We only sketch a proof since the result is standard. Suppose that I' = ¢ & L. Then Ay, F T' = .
However, Ar, E L and it is then simple to show that Ay, F Lx. We are therefore done. Note that in

particular A;IFL is an rf-groupoid. O
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In the next section we define the OKHD-semantics in detail and introduce morphisms between
OKHD-frames and models.

7.2 The OKHD-semantics

In this section we define the operational OKHD-semantics. The OKHD-semantics are a form
of frame based semantics developed for possibly non-distributive substructural logics that emerged
independently in the work of Hiroakira Ono and Komori [32], Humberstone [23], and Kosta Dosen
[13]. The key insight that made these semantics work is the treatment of disjunction as an intensional

connective; an insight that opened the door to frame based semantics for non-distributive logics.

Definition 7.2.1. (OKHD-frames)
An OKHD-frame X = (X, A,1,®,¢) is structure where (X, A,1) is a semilattice, (X,®,¢) is a
pointed groupoid, and (1) and (2) govern the relationship between A, ®, and 1.
(1)z@yArz)=@y) A(z®2) and (y L 2)@z=(y@x) A (2@ 1), and
2)z1l=1=1®x.

We provided some example of OKHD-frames in Chapter 5 in Examples 5.2.9 and 5.2.10.

We define models based on OKHD-frames equipping frames with valuations. A valuation V : At —
Fi(X) is a mapping from the atomic expressions At of the language to the filters of the structure
Fi(X). A OKHD-model is a OKHD-frame equipped with a valuation.

Satisfaction in a model is then given by the following rules.

Definition 7.2.2. (Satisfaction)
X, V,xlkpiff x € V(p)
X Vel Ay iff X, V,x Ik and X, V,z IF
X, V.x Ik @V iff there are y,z € X such that y A z < x and X,V ylF ¢ and X, V,z IF ¥
X, V,x I e iff there are y,z € X such that y® z <z and X,V,ylF o and X,V, z IF 1.
X, Vx Ik o\ iff for ally € X, if X, V,y It ¢, then X, Vy @ z |k ¢
X, Vixl-y/piff forally € X, if X, V,yl- ¢, then X, V,x @y -
X, V,xl-tiffe <.
X VzelbTiffeeX
X, Vixlk L iff e =1.
Finally, we have satisfaction for structures and sequents.
X, V,xlF T A iff there are y,z € X such that y®@ z < x and X, V,ylF T and X,V,z IF A,
X ValkT = pifif X,V,zlF X, then X, V,x I ¢.

We that a formula, structure, or sequent « is valid in an OKHD-frame X, written X F « if for
each valuation V : Prop — Fi(X) and each z € X, X, V,z IF a. Finally, we say that a class K of
OKHD-frames validates a sequent I' = ¢ and write CEI' = g ifforall X e K, X EFI' = ¢.

For a formula or structure we « also define [a]m = {z € X | M,z IF a} for the set of points
which satisfy ¢ in the model M = (X, V). Often we omit the subscript M when confusion won’t arise.
We can then restate validity for a sequent: a sequent I' = ¢ is valid in an OKHD-frame X if for all
valuations V' : Prop — Fi(XX), [I'] C [¢]. An important feature of the these semantics is that in
each model M = (X, V), the function [-] : £ — P(X) uniquely extends V : Prop — Fi(X) in such a
way that guarantees that [¢] is always a filter.
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Lemma 7.2.3. (Heredity) For all formulas ¢ and all models M = (X, V), [¢]m is a filter of X.

A proof of this fact can be found in [30] or [13]. We note finally, that the logic NFL™ is sound
with respect to the class of all OKHD-semantics.

Proposition 7.2.4. NFL" is sound with respect to the class of all OKHD-semantics: If T’ = ¢ €
NFL™, then for all OKHD-models M, [I']am C [¢]m-

A simple correspondence theory holds between sequents and frame conditions. The following table

summarizes these results, which can be found in [13].

Sequents Frame Conditions
po(ex)=(po)ex | Vayz((z®y) @2z <z®(y® 2))
(po)ox=pe(Pex) | Vayz(z2@(y®2) < (z@Y)®2)

pop=Pep Vry(z @y =y Qx)

p=peyp Ve(r @z < x)

po =y Vay(z <z ®y)

Yep=p Vayly <z ®y)

p=teyp Ve(e @z < x)

po=pet Ve(zr®@e < x)

tep= ¢ Ve(r <e®x)

pet= Ve(x <z ®e)

We now move on to consider morphisms between models and frames and their effect on the

preservation of satisfaction and validity.

7.2.1 Morphisms, Models, and Frames

In this section we introduce morphisms between OKHD-frames and models and prove some simple
facts about the preservation of satisfaction and validity along these morphisms. As far as we know, the
morphisms introduced here do not appear elsewhere in the literature. We find this surprising given
that in the case of classical modal logic, much of the frame and model theory relies on the notion of
p-morphism. Despite not being especially deep results, we hope that the consequences of these what is
proved in this section and what is proved in the sections to come at least open the door to a wider
array of applications.

Let us begin with morphisms between frames. Morphisms between OKHD-frames are essentially

defined in virtue of NRL-space morphisms without the requirement of continuity.

Definition 7.2.5. (OKHD-frame Morphism) Suppose that X = (X, A,1,®,¢) and Y = (Y, A, 1/, &', &)
are OKHD-frames. An OKHD-frame morphism is a semilattice homomorphism f : X — Y satisfying
the following additional properties.
(1-backandforth) f(x) =1" iff v = 1.
(A-back) If ' X'y < f(2), then there are x,y € X such that 2’ < fz, vy < fy, and x Ay < z,
(®-forth) f(z) @ f(y) < fz®@y),
(®-back) If 2’ @' y' < f(z), then there are x,y € X such that 2’ < fx, v < fy, and z @y < z,
(/-back) if fx @'y <2/, then there are y,z € X such that y' < fy, f2 <2, andx @y < z,
(\-back) if ' @ fy < 2/, then there are x,z € X such that ' < fz, fz2 <2, andz®y < z,
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(e-forth) e < f(g), and
(e-back) if € < fx, then e < x.

Given that a OKHD-morphism essentially is essentiall an NRL-space morphism without continuity,
we obtain that follows simple fact in virtue of the results from the chapter on the duality. In particular

we obtain that the inverse image of any filter is again a filter.

Lemma 7.2.6. Let f : X — Y be an OKHD-frame morphism, then f=' : Fi(Y) — Fi(X) is well
defined.

In order to extend this definition to OKHD-Models, we require in loose terms of that the models
agree on the valuations of propositional letters with respect to a given morphism. More precisely, we
require for each p € Prop that V(p) = f~1(V'(p)). This leads to the following definition.

Definition 7.2.7. (OKHD-Model Morphism) Let M = (X, V) and N = (X', V') be OKHD-Models. An
OKHD-Model morphism f : M — N is a OKHD-frame morphism f : X — X' such that V = f~'x V"',

In the above definition * denotes function composition. Having defined the notions of morphism for
frame and models respectively, we will now show how our morphism can preserve semantic properties
like satisfaction and validity.

Let us first restrict attention to OKHD-Model morphisms. By considering OKHD-Model morphisms
and weakening our validity to satisfaction we obtain the following proposition which states that all

given a morphism f: M — N, x and fz satisfy all of the same formulas.

Proposition 7.2.8. (Preservation of Satisfaction) Suppose that f : M — N and x € M is an
OKHD-Model morphism, then M, x I- ¢ if and only if N, fz IF ¢.

Proof. The proof proceeds by an induction on the complexity of . In the interest of space and not
repeating what has been done in [6], we will inly show the cases for e and \.

Let M = (X,V) and N = (X', V') and suppose that f: M — N is OKHD-Model morphism.

Case o: Suppose that M, z IF ¢ e 1. Then there are y,z € X such that y ® z < z and M,y IF ¢
and M, z IF . By IH we obtain that N, fy I ¢ and N, fz IF 4. But in virtue of ®-forth condition and
monotonicity of f, we have fy® fz < f(y®z) < fx. Therefore N, fz IF @ 01}, as desired. Suppose for
the converse that IN, fz I ¢ e ). Then there are ', 2’ € X’ such that v ® 2/ < fz and N,y I ¢ and
N, 2’ I 9.. By the ®-back condition there are y, 2z € X such that y ® z <z, v/ < fy, and 2’ < fz. By
persistence of ¢ and v, we obtain that N, fy I ¢ and N, fz IF ¢. So the IH guarantees that M,y IF ¢
and M, z IF ¢. So it follows from the fact that y ® z < x that we can conclude M, x |- ¢ e 1.

Case \: Suppose that M,y IF ¢\¢. Suppose that 2’ ® fy < z and that N, 2’ |- ¢ for ¢/, 2" € X’.
We need to show that N, 2’ I ¢). By the \-back condition there are z,z € X such that x ® y < z and
y' < fy and fz < 2. By persistence and the IH we have that M, z I ¢ and so given that M,y IF ¢\¢
and x ®y < z, we obtain by the semantics of \ that M, z I ¢). Then again by the TH and persistence we
obtain that N, 2’ IF ¢ and conclude that N, fy I ¢\1.. For the converse, suppose that N, fy IF p\¢.
Suppose that T ® y < z for x, z € X. Then by the ®-forth condition and monotonicity of f we have
that for ® fy < fz. It then follows by IH that N, fx I- ¢ and so by the semantics of \ that N, fz I ¢.
So by IH we have that M, z I 1) and can conclude that M,y I p\v. O
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We now consider the more general case of arbitrary OKHD-frame morphisms and demonstrate
some of their properties. In particular, we will show that validity is reflected by injective OKHD-frame
morphisms and is preserved by surjective frame morphisms. A lemma for accomplishing this goal
follows. It provides a useful condition guaranteeing that a frame morphisms reflect satisfaction. It will

be used in the proof showing that injective frame morphisms reflect validity.

Lemma 7.2.9. Let (X,V) and (Y, V') be models, f : X — Y be a frame embedding, and ¢ be any
sentence in L. If for all p € Prop, V'(p) =1 f[V(p)], then (Y, V'), fz Ik ¢ iff (X, V), zIF ¢.

Proof. We can show this by simply showing that f~'[V/(p)] = V(p), and thus that f : (X, V) — (Y, V")
is an OKHD-model morphism. We then may apply Proposition 7.2.8. By definition of V’, we have
YV (p)] = f IV (p)]]- So the inclusion V(p) C f~1[V'(p)] is straightforward. For the other
inclusion, let fz € 1f[V(p)]. Then there is some y € V(p) such that fy < fz. Since f is injective and
preserves A, we have that y < z and thus that = € V (p). O

We now show that OKHD frame-morphisms have the properties mentioned above; namely reflection

and preservation of validty for injections and surjections, respectively.

Proposition 7.2.10. ()
(1) Suppose that f : X — Y is an injective OKHD-frame Morphism. If Y F ¢, then X E ¢.
(2) Suppose that f : X — Y is a surjective OKHD-frame Morphism . If X E ¢, then Y E ¢.

Proof. (1) Suppose that f: X — Y is an embedding and that Y F ¢. Let V : Prop — Fi(X). Define
V' Prop — Fi(Y) as V'(p) =1 (f[V(p)]). By the fact that Y I ¢, (Y, V'), fa IF ¢. By Lemma 7.2.9
we have immediately that (X, V'), z IF ¢. Generalizing on V' and x, we have show that X F .

(2) Suppose that f : X — Y is a surjective OKHD-frame morphism and that ¢ is valid on X: X F ¢.
Now, let V' : Prop — Fi(Y) be a valuation and suppose that 2’ € Y. We must show (Y, V’), fx E ¢.
Define V : Prop — Fi(X) such that V := f=! % V' where * is function composition. Given the
definition of V', we are ensured that f is an OMH-model morphism from (X, V) to (Y,V’). However
given the sujectivity of f we know there is some x € X such that fx = 2’. So in virtue of Proposition
7.2.8 we obtain that (X,V),z F ¢ iff (Y, V'), fz E ¢. But of course we assumed that X F ¢, so then
(X,V),z E ¢ and therefore (Y, V'), fz & ¢, as desired. Generalizing on 2z’ and V', we may conclude
that Y F ¢. O

The facts we just proved are essential for the applications of the semantics we provide. We use
them in both the characterization of the Disjunction Property and the new proof of the local deduction
theorem. In the following section we will use duality to prove completeness give sufficient condition to

guarantee that the algebraic completeness guarantees completeness on a class of OKHD-frames.

7.3 The RML-Frame Based Semantics

We briefly remark on the RML-frame based semantics. The semantics can be see as following
through with a suggestion to generalize the OKHD-semantics by Dunn and Hardegree in [14]. We
defined RML-frames in the last section of Chapter 5 in Definition RML-frame. In the interest of
Space we do not repeat the definition here. We define a model M = (X, V) to be an RML-frame
X = (X, A, 1,R,T) equipped with a valuation V' : Prop — Fi(X). The satisfaction conditions for
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the language £ differ from the OKHD-semantics only for the connectives e, \, /, the constant t,
and the punctuation mark —; —. In particular we have that given a RML-model M = (X, V') with
X=X, ALRT):

M, z I ¢ e ¢ iff there are y, z € X such that Rryz and M,y I- ¢ and M, z IF 2.

M, z IF ¢\ iff for all y € X, if M,y IF ¢ and Rzyz, then M, z IF ¢

M,z I/ iff for all y € X, if M,y IF ¢ and Rzzxy, then M, z I 1),

M,zlFtif z €T.

And for the punctuation we have:

M, z IF I'; A iff there are y, z € X such that Rxyx and M,y IFT" and M, z IF A.

The semantics have the property of persistence. The proof can be adapted from the one for the
OKHD-semantics.

Lemma 7.3.1. (Persistence) For all formulas ¢ and all models M = (X, V), [¢]m is a filter of X.

We can also adapt straight forwardly the results of preservations of validity and satisfaction for

RML-frame morphisms.
Remark 7.3.2. (Sahlquist Correspondence)

It is noteworthy that the Sahlqvist style correspondence results of [6] and the Thesis [| are readily

adapted to this setting for positive formulas.

7.4 Completeness via Duality

In this section we use duality to derive various completeness theorems. In Theorem 7.4.3 we prove
topological completeness for every extension of NFL. We then adapt this result to for a topoligical
completeness theorem with respect to RML-spaces. Following our topological completeness theorem,
we adapt an argument from [6] in order to give a generalization of existing completeness theorems with
respect to OKHD-frames. In particular, we adapt the notion of a II;-persistent sequent from [6] (see
Definition 7.4.6) and then show that any sequent in the signature only containing the propositional
constants ¢, f, T, and L, and the connectives V, A, and e is II;-persistent. Finally, in Theorems 7.4.8
and 7.4.9 we show how Il;-persistence guarantees completeness with respect to OKHD-frames and for
any extension of NFL axiomatized by sequents in a IIj-persistent signature. As far as we are aware,
general completeness theorem with respect OKHD-frames have only gone as far as logics axiomatized
by sequents in the signature consisting of e and ¢ [30]. Our results therefore provide a significant

generalization of existing completeness theorems.

7.4.1 Topological Completeness

We begin with topological completeness via our topological duality. Let us first define topological

models.

Definition 7.4.1. A Topological Model M = (X, V) is a pair consisting of an NRL-space X = (X, 1)
and clopen-valuation V : Prop — Figp(X).

Satisfaction in a topological model is defined exactly the same as it is in ordinary OKHD-Models
(see Definition 7.2.2). Validity in topological space is defined with respect to clopen valuations and

validity in a class of spaces is defined with respect to validity in all frames of that class.
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Definition 7.4.2. We say that I' = ¢ is topologically-valid in an NRL-space and write X F T' = ¢ iff
for every clopen valuation V' : Prop — Fig,(X) and every point x € X: X, V,z IFT = .

We say that I' = ¢ is topologically-valid in a class K of NRL-spaces and write K F T' = ¢ iff for
al X e K, XETL = ¢.

We define two operations Log(—) and TopnrL(—). For a class K of NRL-spaces Log(K) = {T" =
¢ | CET = ¢}. That is, Log(K) is the set of sequents valid on every member of K. Likewise, for
a set of sequents S, TopnrL(S) = {X | X is an NRL-space and X F §}. In English, TopnrL(S) is
the set of NRL-spaces that validate every sequent in S. It is not hard to see that these operations
define a Galois connection between classes of NRL-spaces and sets of sequents. We will show that
every extension of NFL is complete with respect to TopNrL(L). Our completeness theorem essentially
characterizes every extension of NFL as a fixed point of the composite operation Log(TopNrL(—)).
In more standard terms, this notion of completeness means that if a sequent is valid on all topological

spaces of a logic, then that logic proves that sequent.

Theorem 7.4.3. Every extension L of NFL is complete with respect to a class of NRL-spaces. In

particular we have:
L = Log(Topnry(L)).

Proof. Suppose that I' = ¢ is not in L. By algebraic completeness, there is an algebraic model (K, o)
of L such that (K,o0) #T' = ¢. We can define a clopen valuation V' := ¢ * o on the dual space X,
of K by composing the isomorphism ¢ : K — Figp(Xk) with o : Prop — K. It is straight forward
that ¢ o o™ = [—]. Tt then follows from (K,o) ¥ T' = ¢ that [X] € [¢] and therefore that there is
some = € X such that X, V,z |- T but X, V,z I ¢. It follows that I = ¢ is not in Log(TopnrL(L))
and therefore that L is complete with respect to Topnrr(L). Moreover, it readily follows then that
L = Log(Topnry (L)), as desired. O

The last thing we do in this section before moving to completeness with respect to frame based
semantics is to a completeness theorem with respect to RML-spaces. RML-space model M = (X, V)
of the substructural language £ is a RML-model (see Section 7.3) where X = (X, 7) is an RML-space
and V' : Prop — Fiep(X) is a clopen valuation. We note that Toprarr,(—) is the operation mapping

classes of sequents to RML-space models and Log(—) is essentially as above.

Theorem 7.4.4. Every extension L of NFL is complete with respect to a class of NRL-spaces. In

particular we have:
L = Log(Toprmr(L)).

Proof. Recall that there is an isomorphism G : RMLSp — NRLSp. We claim that G[Toprmr(L)] =
TopnrL(L). So let X € G[ToprMmL(L)]. Then there is some Y € Toprmr (L) such that G(Y) = X.
A straightforward induction then shows that the for clopen valuations V : Prop — Fi(Y), every

x € X, and every ¢ € L:
Y.V xzlFpif and only if X, V,x I ¢

Then G~(X) € Toprmr. Therefore we also obtain that
YEI=gpifandonlyif XFI' = ¢
for all I' = ¢ € L. We then can conclude that X € TopnrL(L).
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The converse is shown by a similar argument. O

This concludes the section on topological semantics and completeness. In the next section we apply

these results to obtain completeness theorems with respect to the OKHD-semantics.

7.4.2 Frame Completeness and II;-Persistence

In this section we prove completeness with respect to OKHD-frames and RML-frames by combing
the topological completeness theorems in the previous section with the II;-persistence results for
rl-groupoids demonstrated at the end of Chapter 6. To begin we show completeness of NFL™ with
respect to the class of all OKHD-frames. In definition 7.4.6 we define the notion of II;-persistence
appropriate to the setting of our topological semantics and the OKHD-semantics. Using this definition,
the II;-preservation Theorem 6.4.5, and topological completeness, we obtain the general completeness
theorem in Theorem 7.4.8 for OKHD-semantics. Finally, we use Theorem 7.4.8 and the fact that we
can always obtain an RML-frame from an OKHD-frame to show an analogous completeness theorem
with respect to RML-frames.

In Chapter 5 we showed in Proposition 5.2.11 that by forgetting the topology of an NRL-space we
are left with an OKHD-frame. We therefore recover the following fundamental completeness theorem

proved by Dosen in [13] by way of our duality theory.
Theorem 7.4.5. NFL™ is complete with respect of the class of all OKHD-frames.

Proof. If ' = ¢ is not provable in NFL™, then by Theorem 7.4.3, there is a NRL-space X, a clopen
valuation V' : Prop — Fiq,(X), and an element z € X such that X, V,z |- I and X, V,z IV ¢. By
Proposition 5.2.11 from chapter 5.2.11, we X is also an OKHD-frame and thus we are done. O

Let us know define the notion of Ili-persistence. This is the logical analogue of an identity being

preserved through the II;-completion.

Definition 7.4.6. We say a sequent I' = ¢ is Iy -persistent if for any NRL-space (X, 1), if I' = ¢ is
topologically-valid in X = (X, A, 1,®,¢e,7), then T = ¢ is valid in the OKHD-frame (X, A,1,®,¢€).

We now arrive at one of the main results of this section.
Theorem 7.4.7. Every sequent in the signature {t, T, L,V A, o} is I1;-persistent.

Proof. Let X = (X, 7) be an NRL-space. Let I"' = ¢ be a sequent in the signature {¢t, T, L,V, A, o}
that is topologically-valid in X. This implies that Lx F I' = ¢ since any valuation on Lx can be
transformed into a clopen valuation for X anf vise versa. With out loss of generality, we may assume
that I is a single formula 12 and we may treat ¢ =  as an identity ¥ A = ¢ in the algebraic language
corresponding to £. So the fact that ¥ = ¢ is in Lx means in algebraic language that Lx F ¢ A ¢ = .
However, by Theorem 6.4.5, which assert that identities in the signature {¢, T, L, V, A, o} are preserved
through the IIj-completion, we have that II;(Lx) E ¢ A ¢ = ¢. So by the representation theorem
(Theorem 6.4.3) for the II;-completion of r¢-groupoids, we also have that Fi(X) = II;(Lx). Now, let
V : Prop — Fi(X) be valuation for the underlying OKHD-frame of X and let x € X. From the fact
that II; (Lx) F ¥ A = ¢ and Fi(X) = II;(Lx ), we obtain that [¢/] C [¢]. We may therefore conclude
that X, V,z F ¢ = ¢. Generalizing on V', we obtain that I' = ¢ is valid in X as an OKHD-frame. [

’I' = ¢ is interderivable with 1 = ¢ when 1) is obtained from I' by substituting e for —; —.

76



We are finally in a position to provide our general completeness theorems. Just as in the case of
logics and NRL-space, we define two operations Log(—) and OKHD(—) that map classes of frames to
set of sequents and classes of sequents to classes of frames, respectively. More precisely, for a class IC of
OKHD-frames, we define Log(K) ={I' = ¢ | CET' = ¢}. On the other hand given a set of sequents
S, we define OKHD(S) ={X | X F S & X is an OKHD-frame}.

Theorem 7.4.8. Ewvery extension of L of NFL' that is aziomatized by a set of sequents S in the
signature {t, T, L, V, A, e} is complete with respect to a class of OKHD-frames. In particular we have:

L = Log(OKHD(L))

Proof. Clearly L C Log(OKHD(L)). Fir the other inclusion let us reason contrapositively. Suppose
that I' = ¢ ¢ L. Then by Theorem 7.4.3, which demonstrates topological completeness, we obtain
that there is some NRL-space X such that X £ L but X #I' = ¢. It follows that the OKHD-frame
underlying X also fails to validate I' = ¢. However, since L is axiomatized by S, which was assumed to
consist only of sequents in the signature {¢, T, L, V, A, o}, we conclude from Theorem 7.4.7 that X F L
as an OKHD-frame. The OKHD-frame X is therefore in OKHD(L) but I' = ¢ ¢ Log(OKHD(L)), as
desird. We therefore conclude that L = Log(OKHD(L)). O

In light of the previous theorem, we obtain an analogous theorem with respect to the RML-frame
semantics. Let us define RML(S) = {X | X F S & X is an RML-frame}.

Corollary 7.4.9. Every extension of L of NFL™ that is ariomatized by a set of sequents S in the

signature {t, T, L,V, A, e} is complete with respect to a class of RML-frames. In particluar, we have
L = Log(RML(L))

Proof. Recall the operation F : OKHD — RMLFr from Chapter 5 defined by sending an OKHD-
frame X = (X, A,1,®,¢) to the RML-frame F(X) = (X, A, 1, R®,T) where T = t¢ and R®xyz holds
iff y ® z < x. It is easy to show that for all sequents I' = ¢:

X IFT' = ¢ if and only if F(X) IFT" = ¢.

Now let L be an extension of NFL™ axiomatized by sequents S in the signature {t, T, L,V, A, e}.
Suppose that I' = ¢ € L. Then by Theorem 7.4.8, there is some OKHD-frame X such that X £ § but
X FT' = ¢. It then follows that both F(X) F S and F(X) [ I' = ¢. It follows that F(X) € RML(L)
and thus that I' = ¢ ¢ Log(RML(L)) O

7.5 Analyzing Canonical Model Style Proofs

In this final section of the chapter we discuss how we can understand the success of the canonical
model style completeness proofs of Ono and Komori [32], Humberstone [23], and Dosen [13] in terms
of the completeness theorems we obtained in the previous section. In particular, we discuss how
to explicate the notion canonicity implicit in the results of Ono and Komori, Humberstone, and
Dosen in terms of algebraic completeness, topological duality, and II;-persistence. We will begin by

defining canonical models of some extensions L of NFL*. We will then observe that there is a natural
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NRL-space topology on these models and that these topologies are the duals of the Lindenbaum
Algebras/free algebras associated with the logic L. Using this insight, we can then explain then success
of the canonical model style completeness proofs from [32, 23, 13| in virtue of the notions topological

completeness via duality and II;-persistence.

7.5.1 Canonical Models and Topologies

Canonical models for NFL and its extensions can be constructed by definitionning appropriate
operations on the set of all deductively closed sets of sentences of the language L. In fact, more
generally, given a set Prop, of propositional letters of cardinality x, we may define a language L. So
the language £ we defined in Section 7.1 is simply Ly, .

First, given a set u of sentences in the language L., where x is some cardinal, we define the deductive
closure of u with respect to extension L of NFL by CIt(u) = {¢ | IV C,, w(AV Fr, ¢)}. Here C,, is

the finite subset relation. A set u of £ expressions is called deductively closed if CIF(u) = u.

Definition 7.5.1. (Canonical Model for an Extension L of NFL)

The canonical model MM = (XL, AL 1Y &L b VL) is defined such that
* XU ={uC L, | Cll(u) =u & u # 0},
u it v=unv

*

« 1L =L
sulv={pecL| I culxcu(pextyd)}
x el ={¢ |tk ¢}

*

VL Prop, — P(WY) such that V¥(p) = {u € WY | p € u}.
When k = Ng, we just write My, for S)JTI%O. We denote the underlying frame (X%, A1 14 @b £b) of

a canonical model with X{ .

A standard truth lemma is provable with respect to these models. For a proof of this fact see [13],

for example.
Lemma 7.5.2. (Truth Lemma) Let L be an estension of NFL™. Then for every ¢ € L,:
¢ e iff Mi,ul-¢

As with standard canonical model constructions in modal logic, the canonical frame X§, carries a
topology. In particular, we may equip Xj with a topology 7L generated by the subbase {[¢]y1 | ¢ €
L} U{XY —[¢]yr | ¢ € Li}. We call (X5, 7Y) the canonical topological frame and (9, 7Y) the
topological canonical model. Note that that this topological model is well defined since V¥ (p) is
subbasic and thus clopen.

Again in parallel with ordinary modal logic, we can show that the canonical topology (X7, L) is
the essentially the same as the dual NRL-space of the Lindenbaum Algebra Ay, := £L/=y, of a extension
L of NFL™.

Proposition 7.5.3. For each extension L of NFLT: (X5 71) 2 X,, .

Proof. We will only sketch the proof here. The relevant NRL-space isomorphism f : (X§, ) — Xa,
is defined such that f(u) = u/6y, where u/0, := {[¢]s. | ¢ € L"}. The inverse is defined by taking the
union of the a filter of Ay,. A precise proof that f is a bijective function satisfying the conditions of an

NRL-space morphism can be adapted from Lemma 8.1.11 proved in the section duality for congruences.
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To show that f is continuous, it is enough to show that ¢ € L£*, f~Y[pa, (¢/=L)] = [¢]yr. The

following chain of equivalences witnesses fact.

z € [ oay(p/=L)] <= fu € ¢a,(¢/=L)
<~ ¢/=L € fu
= pEu

<~ u € [p]yr.

The second equivalence holds in virtue of the definition of ¢, . The third equivalence holds by the

definition of f. The last equivalence holds in virtue of the truth lemma. O

Having observed that the homeomorphism between the dual NRL-spaces of Lindenbaum alegbras
and canonical topologies, we record a useful lemma we will make use of in the following chapter. We

note that every OKHD-frame embeds into a topological canonical frame.

Lemma 7.5.4. Suppose that L is a complete extension of NFL. Every OKHD-frame for the logic L

embeds into a (topological) canonical frame in Fr(L).

Proof. Every r{-groupoid is the homomorphic image image of a free rf-groupoid. The duals of free
rf-groupoid are precisely the canonical topological frames in the category dual to the algebras of L. If
X is an OKHD-frame for the logic L. Fi(X) forms an r¢-groupoid. Fi(X) is the homomorphic image
of a free rl-groupoid F. It follows from NRL-space duality that X r;x) embeds into the NRL-space
Xp. What remains to be shown is that X embeds into X r;x). However, this is witnessed by the map
ex : X = Xzjx) defined by ex(z) = {U € Fi(X) | z € U}. Showing it is an OKHD-frame morphism
is somewhat straight forward and is similar to the non-topological parts of the proof showing nx is a

NRL-space morphism in Theorem 6.1.10. 0

We end this section by observing that the above lemma guarantees the the caetgory of NRL-spaces

fully determines the category of OKHD-frames.
Proposition 7.5.5. Fvery OKHD frame embeds into an NRL-space.

We now move on to discuss how II;-persistence together with the correspondence between Linden-
baum/free algebras and canonical models clarifies existing canonical model style completeness theorems
with respect to the OKHD-semantics.

7.5.2 Completeness and Canonicity

In the terminology and notation of this chapter, canonical model style completeness proofs of Ono
and Komori, Humberstone, and Dosen are demonstrated by showing that the canonical frame X' is
a member of OKHD(L), which is the class of all OKHD-frames validating the sequents of L. Let us
define the following notion of a canonical logic, which appears to generalize the notion of canonicity
implicit in [32, 23, 13].

Definition 7.5.6. An extension L of NFLT is OKHD-canonical if the canonical frame X% is an
element of OKHD(L).
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Using algebraic completeness, the dual correspondence between free/Lindenbaum algebras and
topological canonical models, and the characterization of II;-persistent sequents, let us show how a
OKHD-canonicity can be derived. Specifically, we observe that each of the logics considered in the
articles [32, 23, 13] and more recently by [37] are axiomatized by sequents built up using connectives
among e, V, A, t, T and L. In virtue of algebraic completeness, the Lindebaum algebras of these logics
all validate the axioms of the logic. By the correspondence between Lindenbaum algebras and canonical
topological frames, we also obtain the axioms of these logics are topologically valid in the canonical
frame. Finally, since the axioms of all these logics are in the appropriate signature, we are ensured by
[I;-persistence that canonical frames validate the salient logical axioms as OKHD-frames. We have
therefore explained the OKHD-canonicity of these logics as promised.

Let us consider a concrete example of the this process. Consider the logic Lpcc studied by Ono
and Komori in [32]. Lpcc is essentially Intuitionistic Propositional Logic without distributivity or

contraction. We can view this logic as NFL™ extended with the following four axioms.

peo(peld) = (pey))el pe)=1peyp poY = b= pet.

By algebraic completeness and the correspondence between the Lindenbaum algebra and the
canonical frame we have that the axioms of Lycc are topologically valid in X1,5,,. Now, since each
of the axioms of Lpcc are Ilj-persistent, we also obtain that the axioms of Lpcc are valid in Xt,5o¢
as an OKHD frame and thus that X, is an element of OKHD(Lpcc).

We summarize this example and the preceding discussion with the following proposition and the
fact that all of the logics in [32, 23, 13] and more recently by [37] are axiomatized by II;-persistent

axioms.

Proposition 7.5.7. If an extension L of NFL™ is aziomatized by a I1;-persistent set S of sequents,
then L is OKHD-canonical.

Proof. By algebraic completeness, Ar, F S. By proposition 7.5.3, S is topologically valid in (X, 1,).
By II;-persistence, X1, € OKHD(L). O

7.6 Conclusion

In this chapter we used topological duality developed in the previous chapters to study the semantics
of substructural logics. In particular we show how NRL-spaces and RML-spaces could be used to
obtain topological semantics for substructural logics and how the topological semantics and the notion
of II;-persistence could be used to generalize and understand existing OKHD-frame completeness
theorems from articles like [32, 23, 13, 37].
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Chapter 8
Expanding the Theory of NRL-spaces

This chapter extends the theory of NRL-space duality in two directions and then provides logical
applications for both developments. The first development, in Section 8.1, regards congruences of
residuated lattices from the perspective of NRL-space duality. We begin by demonstrating the lattice of
congruences of any residuated lattice L is isomorphic to the lattice of positive, central, idempotents of
the RL-space dual to L (Theorem 8.1.4). We use this representation to obtain a useful characterization of
subspaces of RL-spaces (Proposition 8.1.8 and Theorem 8.1.12). We then apply our dual representation
of congruences, and in particular the insights it provides into determining subspaces, to give a new
proof of the parameterized local deduction theorem for the logic FL™. The second development to the
theory of L-spaces provided in this chapter is the characterization of products and coproducts and
then a representation theorem for products of rf-groupoids. After proving our representation we use
our insight into the coproducts of NRL-spaces to demonstrate a simple characterization of when a
substructural logic has the disjunction property.

We note that the logical results of this chapter are not particularly novel results. It is well known
that the parameterized local deduction theorem holds for FL™. Further, in light of the duality theory
we have developed in the present chapter and in Chapter 6, our characterization of logics with the
disjunction property can be seen as a dualization of an existing algebraic characterization. However,
this is not really the point of providing them here. Rather their inclusion is intended as proof of
concept for the duality theory of NRL-spaces. We wish to stress this point since this is the primary

contribution of this chapter.

8.1 The Dual Representation of Congruences and the Parameterized
Local Deduction Theorem
Our first extension of the theory of NRL-space duality is a representation of congruences of

ré-groupoids in their dual NRL-spaces. We then apply this representation to a new proof of the

Parameterized Local Deduction Theorem for the logic FL™T.

8.1.1 The Dual Representation of Congruences

Congruences are of central importance in universal algebra and algebraic logic. We will show
that the congruences of a residuated lattices correspond to a special collection of points in their dual

RL-spaces and that this correspondence leads to useful and tangible insights regarding subspaces of
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RL-spaces. Specifically, Theorem 8.1.4 shows that lattice of congruences of some residuated lattice
is isomorphic to the lattice of positive, central, idempotent elements (see Definition 8.1.2) of its dual
RL-space. Then Theorem 8.1.12 shows that every subspace of an NRL-space can be defined in virtue
of single positive central idempotent element. In virtue of these results, in the following section we will

show that we can obtain a novel proof of the parameterized local deduction theorem for logic FLT.

A Representation of Congruences

We begin by recalling some basic facts about the correspondence between congruences and a special
sort of filter, which we will call congruence filters. Although presented in a slightly different form,
proofs of the following results can be found in [19] in section 3.6. The more concise summary below
adapted from [1].

Recall the left and right conjugates A\, (a) = u\au A e and py(a) = ua/u A e.

Definition 8.1.1. Let L be a residuated lattice. A congruence filter F' is a filter of L such that (1)
ecF, (2)ifa,be F, thenabe F, and (3) if a € F and u € L then A\y(a), pu(a) € F.

The value of this definition is that for any residuated lattice, the congruence filters of that algebra
form a lattice isomorphic to its lattice of congruences. More formally stated, for any residuated lattice
L, Con(L) is isomorphic to the lattice Ficon(L) of congruence filters of L. The operations that

witness this isomorphism are
00— Fy=J{a/0 | e <a}and F s 0 = {(a,b) | a\b,b\a € F'}

Every 8 € Con(L) and F' € Ficon(L). These operations are well defined in so far as Fp =
U{a/6 | e < a} is a congruence filter whenever § € Con(L) and 0r = {(a,b) | a\b,b\a € F} is a
congruence of L whenever F' is a congruence filter of L.

Turning now to our representation of congruences in RL-spaces, we define the positive, central,

idempotent elements of an RL-space.

Definition 8.1.2. Let X be an RL-space. We say that that an element x is positive if ex < x. We
say that x is idempotent if © @ x = x. Finally, we say x is central if for ally e X t Ry =y ® .
We denote the set of all positive, central, idemotent elements of X by €T (X).

The set of all positive, central, idempotent elements €1 (X) form a lattice. This lattice will turn

out to correspond exactly to the conruence filters of the algebra of clopen filters Lx.

Proposition 8.1.3. Let X be an RL-space. Then the set of all positive, central, idempotent elements
¢H(X) of X form a bounded distributive lattice (€T (X), Ax,®x,1,ex) with Ax as meet, @x as join,

€ as bottom, and 1 as top.

Proof. Distributivity follows straight from the defining condition on ® and A in the definition of an
RL-space. Clearly, € and 1 are the bounds. We will show that €*(X) is closed under A and ®. The
argument is simple but we produce it nevertheless. Let z,y € €1 (X). We begin with ®. To see that
x ®y is positive, we have that ¢ = e®e < x®y. For idempotence: xRyRrQy =2rQRrRyRYy = xR Y.
To show that x ® y is central let z € X, then: 2 R2rQ®y=2R2Qy =2y ® 2.

Now, for A closure. Clearly if each  and y are positive, then x A y is positive. For idempotence, in

one direction we have: (z Ly)®@ (x Ly) <z @z A y®y =z Ay for the other direction we by the

82



fact that x A y is positive we have x A y < (z A y) ® (x A y). For centrality, let z € X, then we have
2@ @Ay =)L (20y)=(302) A (Y®2)=(xALy)® 2.
Finally, in order to ensure that (€*(X), Ax,®x,1,ex) is a lattice we must check the absorption
law holds. But this follows quickly from the fact that € is bottom.
[

We now prove that the lattice of congruences of a residuated lattice L is isomorphic to the lattice
of positive, central, idempotent elements of the NRL-space Xy,. This is demonstrated by noticing that

the positive, central, idempotent elements of the NRL-space Xy, a simply the congruence filter of L.

Theorem 8.1.4. (Representation of Congruences) Let Xy, be an RL-space that is dual to L, then:
Con(L) & ¢F(X)

Proof. Let Xy, be an RL-space dual to L. We will show that Fico, (L) is equal to €7 (Xy,) and then
infer from Proposition ?7? that Con(L) = €*(Xp,).

Let is first show that Figen(L) C €7(Xy). Let F € Ficon(L). That F is positive follows directly
from the fact that the identity of L, e, is in F'. That F' is idempotent follows from closure under - and
because F' is positive. Since F' is closed under - we have that FF ® F' < F. Since F is positive, we have
that F' < FF® F. To show that F' is central, let x € Xy, and suppose that ¢ € x ® F. We will show
that a € F®x. If a € x ® F, then there are b € x and ¢ € F such that b-c¢ < a. Since F' is closed
under conjugates, we know that py(c) = b-c/bAe € F. So we have that (b-c/b)-b e F®z. But
(b-¢c/b)-b<b-c<a,s0a€ F®x. Thisshows that z ® F < FF® x. The argument for Fz <z ® F

is exactly analogous except relies on the left conjugate A.

Let us now show that €7(X ;) C Ficon(L). So let ¢ € €7(X). We will show that ¢ is a congruence
filter of L. Given that ¢ is positive, we know e € F. Since ¢ is idempotent we know that ¢ is closed
under -. Finally, we must show that ¢ is closed under conjugates. So a € ¢ and let b € L. We need
to show that Ay(a),pp(a) € ¢. We will show that py(a) € ¢ by showing ¢ € ¢(pp(a)). Recall that
d(pp(a)) =o((b-a)/bAe) = [p(a-b)/xp(b)] N e(e). Since ¢ is positive we already have that ¢ € ¢(e).
Now suppose that z € ¢(b). Let us show that ¢ ® = € ¢(a - b) and thus showing that ¢ € ¢(b-a)/x¢(b).
But clearly, if a € ¢, then b-a € £ ® ¢. And by centrality of ¢ then b-a € ¢® x and thus c® z € ¢(a-b),
as desired. It follows that ¢ € ¢(pp(a)) and therefore that py(a) € ¢. An analogous argument shows
that A\p(a) € ¢ as well. We may therefore conclude that ¢ € Ficon(L).

Generalizing we conclude that Fice, (L) is equal to €7(X) and then by Proposition ?? that
Con(L) =2 ¢t (Xy). O

We have just demonstrated that the lattice of congruence of any residuated lattices is isomorphic

to the lattice of positive, central, idempotents of that residuated lattice’s dual RL-space.
Corollary 8.1.5. Let X be an RL-space: then Ly is s.i. iff 1(€T(X) — {ex}) is closed.

Corollary 8.1.6. Let X be an RL-space: then Lx is simple iff for all z € €7(X), either v = ¢ or

r=1.
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The Determination of Subspaces by Members of ¢ (X)

In this section we show that every element € €1 (X)) determines a subspace Sub(z) and conversely
that every subspace arises this way. It is worth noting that that we only use topological properties to
show that every subspace is of the form Sub(z) for some x € €*(X). The converse however holds also
at the level of frames.

The general definition of subspace has the following definition.

Definition 8.1.7. Let X be an RL-space. Then a subset’Y of X is a subspace of X if Y is an RL-space

and if the inclusion i : Y — X is an injective RL-space morphism.

We can now show that the positive, central, idempotent elements of any RL-spaces determine the

subspaces of that RL-space.

Proposition 8.1.8. Let (X,T) be a n RL-space and let ¢ € € (X). Then Sub(c) = (Sub(c), o) where
Sub(c) ={zr € X | x ® ¢ =z} and the topology o = {U N Sub(c) | U € 7} is a subspace of X.

Proof. Let ¢ € €7(X). Define Sub(¢) := {x € X | z ® ¢ = z} the topology o = {U N Sub(c) | U € 7}
on Sub(c). We show that Sub(c) is a subspace of X.

First let us show that Sub(c) = (Sub(c),0) is an RL-space. That Sub(c) is closed under A and
® and contains 1 follows quickly from the definition. For A closure, suppose that x,y € Sub(c).
(zAy)R@c=(zRc) A(y®c)=x Ay. Soz Ay € Sub(c). ® closure also follows.

For HMS-separation, suppose that x €y y. Then z £ x y. Therefore, there is some a clopen filter
U of X such that x € U but y € U. Since U is clopen in X, UNY isclopenin Y and z € UNY and
y € UNY. Therefore, HMS-separation holds.

For compactness note that the collection
S={UNY |Ue€FigpyX)}U{Y = (UNY) | U € Figp(X)}

forms a subbase for the topology o. A more or less standard argument then guarantees compactness
of Sub(c).

Clearly, the inclusion i : Y — X is continuous since for any open U, i~ (U) = U N Sub(c), which is
open in o. It remains to be shown that ¢ has the properties of an RL-space morphism. To show this
the map ¢ ® — : X — Sub(c) is left adjoint to the inclusion i : Sub(c) — X:

c@r<ysz<ily)

for every x € X and y € Sub(c). In virtue of this, it is not hard to see that 7 is an NRL-space morphism.
Let us show the back condition for A and the back condition for \.

(A-back) Suppose that z € Sub(c). Let x,y € X and suppose that z Ay < i(z). Then c®(xAy) < zin
virtue of the adjuction property. By idempotence (and centrality) of ¢, we have that c®z, c®y € Sub(c).
By ® — A distribution property we have that c® z A ¢ ® y < z. And again in virtue of the adjunction
property (or positivity of ¢) we have that x < ¢® z and y < ¢ ® y. Therefore we ahve found 2/ := c® z
and ¢ := ¢®y such that 2’ Ay < 2z and z < i(2’) and y < i(y’). Therefore i satisfies the A-back
condition.

(\-back). Let z € Sub(c) and suppose that z ® y < z for some z,y € X. Define 2’ := (¢®@ z) ®@ y.
We obtain 2/ = (¢®z)®y =2 ® (¢®y) = x ®y < z by centrality and the fact that y € Sub(c).
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Further, we have that 2 < ¢ ® . Finally, it is by definition that (¢ ® ) ® y < 2’. So we have found
some =’ := ¢ ® x and 2’ such that 2’ ® y < 2’ and x <i(2’) and i(z') < z and have obtained the back
condition for \. The other morphism conditions follow by similar reasoning.

We may therefore conclude that Sub(c) is in fact a subspace of X. O

The converse of the above can be shown. Specifically, we will show that all subspaces of an
NRL-space can be defined in terms of a positive, central, idempotent element. First we observe the
following few lemmas and the definition of a f-invariant filter. This definition will provide more insight
into how to think of Sub(z) from the algebraic side of the duality.

Definition 8.1.9. (0-Invariant Filters) Let L be a residuated lattice and suppose that x is a filter of
L. We say that x is 8-invariant if a € © and abb, then b € x.

We know that for any congruence 6 of L that Fy is a positive, central, idempotent element in virtue
of Theorem 8.1.4. It turns out that Sub(Fy) corresponds precisely to the #-invariant filters of L. While
this fact is primarily useful for proving that subspaces are determined by elements of €*(X), we find it
interesting in its own right since it characterize an element x of X with the property that + ® Fy =«

in virtue of the internal structure of z.
Lemma 8.1.10. Let L be a residuated lattice and let 8 € Con(L), then:
x € Sub(Fy) if and only if x is O-invariant.

Proof. Let x € Sub(Fy). Suppose that a € x and abfb. If afb, then b\a € Fp in virtue of the
correspondence between congruence-filters and congruences (See remarks below 8.1.1). So a - a\b €
r ® Fy = x. However since a - a\b < b, we then obtain b € x. Therefore, x is f-invariant.

Let x be f-invariant. Let a € x ® Fy. Then there are b € x and ¢ € Fy such that b-¢c < a. If ¢ € Fy,
then there is some d such that e < d and cfd. We then obtain b - ¢6b - d. However, x ® 13,e = x since
x € Xr, and e = ex,.. Sob-d € z®1e = x. However, since we assumed that o was 0-invariant, this
implies that b-c € x and then that a € x since b-c < a. We therefore have shown that z ® Fy < x. The
other in equality follows since ex < fy. We concldue then that if  be f-invariant, then = € Sub(Fy).

We have therefore shown that = € Sub(Fy) if and only if x is f-invariant.

O

The above lemma gives us insight into the nature of the element of Sub(Fp). The next lemma uses
these insights to bring us closer to the stated goal of showing that every subspace of an RL-spaces is of

the form Sub(c) for some positive, central, idempotent element of Xj,.
Lemma 8.1.11. Let L be a residuated lattice and suppose that 0 € Con(L). Then Xy, /9 = Sub(Fp).

Proof. Define f: Xp 5 — Sub(Fy) such that for each filter x € Xy, 9 of L/, f(x) = Jz. To see that
[ is well defined we must check that fxz is a filter of L and that is an element of Sub(Fy). The first
part, checking that fx is a filter, is straight forward. To show that fx € Sub(Fy) we note that fx is
f-invariant and then apply Lemma 8.1.10, which implies that if fz is f-invariant, then faz € Sub(Fy).
It follows that f is well defined.

For surjectivity of f, we claim for each z € Sub(Fy) that /0 :=1{a/6 | a € z} is filter and that
f(xz/0) = z. That x/0 is a filter follows from the fact that {a/0 | a € x} is closed under meets. To see
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this, let a/0,b/0 € fx. Then there are ¢,d € z such that ¢/0 < a/6 and d/6 < b/6. It follows from the
fact that cAd € x and (cAd)/0 =c/ONd/O < a/O ANb/O that a/0 ANb/O € fx, as desired.

Now let us show that f(x/0) = x. Let us show the inclusion f(z/6) C z. So let a € f(x/0). Then
a/0 € x/60. Therefore, there is some b € x such that b/0 < a/60 and thus a A b0b. Now, by the fact that
x € Sub(Fy), we know by lemma 8.1.10 that x is f-invariant. So a A bfb together with b € x implies
that a A b € z and therefore that a € z, as desired. For the other inclusion, if a € z, then a/0 € /0
and so a € f(z/0). We therefore conclude that f(z/6) = x.

For injectivity of f suppose that fr = fy. We have a/f € z iff a € fz iff a € fy iff a/0 € x. So
x =y, as desired. We conclude that f is a bijection.

Having concluded that f is a bijection, we must show that f is also an NRL-space morphism. It is
sufficient to check that f preserves A and ® and that f(ex, /9) = Fy.

That f preserves A is almost immediate. Since taking unions is a monotone operation, f is
monotone. So f(z Ay) < fx A fy. If a € fz A fy, then af € z and a/0 € y and so a/0 € xNy.
Therefore, a € f(z A y).

We now show that f preserves ®. Let a € f(z ® y). Then there are [b] € z and [c] € y such that
[b-c] < [a]. Therefore, (b-c) A abb-c. However, if [b] € z and [c] € y, then b-c € fr® fy. And since
fr® fy e Sub(Fp), we obtain from Lemma 8.1.10 that fx ® fy is #-invariant. We then obtain from
(b-c)ANabb-cthat (b-c)ANa € fx® fy and then a € fx ® fy, as desired. We have therefore shown
that f(x ® y) < fr ® fy. The other inequality, fz ® fy < f(z ® y) is straightforward.

We now observe that f(ex, ,) = Fp. Let a € f(ex,,,). Then e/6 < a/f. So eflaie and hence
a Ne € Fy. But since Fy is upward closed, a € Fy. Now let a € Fy. Then there is some b > e such
that afb. But the e/0 < b/6 = a/0. So a/0 € ex, , and hence a € f(ex,,). We conclude that
flexy,,) = Fo.

Finally, we check that f is continuous. So let U be a clopen filter of Sub(Fp). Then there is a
clopen filter ¢r,(a) of Xy, such that Sub(Fy) N ¢1,(a) = U. We claim that f~1[U] = ér/6(a/0). To see

this we provide the following chain of equivalences.

x€ fTU]l < fzxeU
< fx € ¢r(a) N Sub(Fy)
<= ac€ fr& fre Sub(Fy)
= af/fex & xeXyp

=z € ¢r(all).

This concludes the proof that f is a RL-space homeomorphism and we can therefore conclude that
XL/9 = SUb(Fg)
O

The claim that all subspaces are determined by a member of C*(X) is a direct consequence of the

previous lemma.
Theorem 8.1.12. LetY be a sub RL-space of X. Then there is some ¢ € € (X) such that Sub(c) =Y.

Proof. Use the first isomorphism theorem and the correspondence between congruences and elements
of €*(X). More particularly, if Y is a sub RL-space of X, then there is an injective NRL-space
morphism f : Y — X. By duality, f~' : Lx — Ly is a surject residuated lattice homomorphism.
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Let Fy be the congruence filter of Lx corresponding to the kernel of f. By the preceding lemma,
Xix /Ker(f) = Sub(Fy). However, by the first isomorphism theorem we have that Ly = Lx /Ker(f).
Therefore, we may conclude that Y = Xy, /per(y) = Sub(F}), which demonstrates the statement of
this theorem. O

A key insight of the previous theorems is that the elements of € (X) correspond precisely to the

identity elements of the subspaces of X. We now move from congruences to products.

A Remark on Negative Central Idempotents of a residuated lattice

It is known that that for finite residuated lattices the lattice of congruences is isomorphic to the
lattice of negative central idempotents ([19], p198). Using our representation of the congruences
together with the relation our duality holds to the II;-completion, we conjecture that we generalize
this result by showing that the lattice of congruences for any residuated lattices is isomorphic to the
lattice of closed negative central idempotents of the II;-completion. Given that the the IT; completion

of a finite lattice is itself, this fact can be seen as a direct generalization of the existing result.

8.1.2 The Parameterized Local Deduction Theorem

We now apply some of the theory developed in the previous section on the representation of
congruences to give a novel proof of the Parameterized Local Deduction Theorem (PLDT) for the logic
FLT. A key step of the proof uses a positive, central, idempotent element to identify a sub-space.
Algebraic proof can be found in [18]. A proof theoretic proof can be found in [19] starting on page 122.

It is important to note that in this section and the later section on the disjunction property we will
work with a notion of consequence we have yet to discuss. In particular, given an extension L of FL™T,
the consequence relation y, relates sets of formulas to a single formula and intuitively characterizes

truth preserving reasoning.

Definition 8.1.13. Let I' U {¢} of formulas and L be an extension of FLT. We write I' by, ¢ if
whenever t = ¥ is provable in L for each b € T', then t = ¢ is provable in L.

In general the usual deduction theorem does not hold for Fgy+. This reflects the fact that gy + is
a more flexible notion of consequence that allows weakening and some degree of commutativity in the
sense that {¢, 1} proves both ¢ e 1) and v e ¢ with respect to Fgp+. However, the generalization of
the deduction theorem PLDT does. The PLDT is stated in terms of conjungates, which are the logical
analogue of the algebraic notion we used in earlier in the section when studying congruences from the
perspective of our duality theory (see remarks preceding Definition 8.1.1). In particular the left and
right conjugates are defined respectively as A(p,¥) := (p\ (Y @ ©)) At and p(p, ) := ((p o) /) At.
An important property of these schemas is the potential of iterating them to form complex formulas.

Given a set of formulas ¢1, .., pn, ¥, an iterated conjugate is a formula (1)) of the form:

Y1(1,72(P2,5 - (Y0 (Pn, ¥))-.))

where ~y; is A or p for each 0 < ¢ < n. We call the formulas 1, .., ¢, parameters. Intuitively, conjugates
and iterated conjugates make the formulas they are applied to more flexible with regard to how they
combine with certain other formulas. In particular, the permit some degree of commutativity and

weakening.
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We can then state the PLDT for FL™T as follows.
Y, Atbpp+ ¢ if and only if ¥ Fpp+ ILvi(¥4)\¢

For any collection of formulas ¥ UA U {p} where 91, ..,1,, € A and each ~; is an iterated conjugate
containing parameters in the language Lpp+. We have written II}";4); for the fusion ¢ o ... @ 9),,. The
intuition here is that the relatively inflexible \ is only be able encode g +-consequences by exploiting
the flexibility of the iterated conjugate formulas.

To prove the PDLT, we will require a few lemmas and definitions. The first lemma we require

regards fusions of iterated conjugates. An algebraic version of this is proved in [19].

Lemma 8.1.14. For any formulas ¢ and 11, ..,1,, the following are provable in FL™:

Wi<n A, 7i(¥i)) = A, i<nyi(¥i) Wi<np(e,7i (i) = p(e, Hi<nyi(¥i))-

Proof. Proof proceeds by an induction on n. When n = 2 we have the following proof in which we have
assumed some FL™ provable sequents in order to make the proof more manageable and provide the

essential steps. The assumed sequents are preceded by vertical dots to indicate that they are provable.

Al 1) @ A(p,ha) = (P\1 o) e (P\h1 o)  (p\P1ep)e(p\th1ep) = p\(Y1 e ep) :
Alp, ¥1) @ A, 102) = ©\ (11 @ 92 @ ) A1) @ A, o) =t
Mo, ¥1) @ M, ¥2) = o\ (Y1 epp e ) At
A, 1) @ A, 102) = A, (Y1 @ 92))

The inductive step for this proof is carried out by a similar proof and the use of associativity of

fusion. The case for p is symmetric.
O]

Now for some definitions. For a set of sentence A, we write v(A) to denote the set of finite

compositions of A and p with parameters ¢; from the language.

Y(A) = {71(p1,72(02, - (Wlpn, ¥)) ) [ n€w &b e A&y €{\p} & ¢i € LrL}

Similarly, m(A) denotes the closure of A under the fusion connective.

T(A)={1 | p1e..0¢0, =1 is provable in FL* & o1, .., p, € A}
Given a set of formulas A, the set 7(y(A)) of formulas has some desirable features.

Lemma 8.1.15. Let A be a set of formulas in the language of FLT:
1) if p € m(y(A)) and ¢ = 1 is provable in LT, then 1) € w(y(A)),
3) If ¢ and ¢ are in w(y(A)), then p A € w(y(A)), and

2)t e m(v(4)).

Proof. (1) one follows from the cut rule. (3) is a consequences of the fact that if ¢ € A, then
A(t, ) € m(v(A)). But A(t, ) = ¢ At is provable in FLT, so by (1) we have t € w(y(A)). Finally, (2)

follows from Lemma 8.1.14.

88



To see this, if ¢, 1) € m(v(A)), then there are @1, .., p, and 91, .., ¥, in A such that both

i<ni(wi) = @ icmi (Vi) = ¢

are provable in FL™ when each ~; and 75 have parameters in the Lgp+. We also note that an easy

proof shows that if ; = 65 is provable, then \(, 01) = A(x, 62) is provable as well. We then have that

At Wi<nyi(wi)) = A, 9) At Mi<m i (i) = AL, 1))

are both provable in FLT. However, by Lemma 8.1.14 and the transitivity of = we then obtain that

i< A(E, (i) = AL, @) Mi<mA(t, 7 (¥5)) = A(t, %)

are also both provable in FLT. So the following is also provable.

Hiﬁn)‘(t7 71(9%)) i Hiﬁm)‘(t7 ’Yz/(wz)) = )‘<t7 90) i )‘(t7 ¢)

Now, since A(t, ) @ A(t,9) = (@ At)e () At) and (¢ At)e () At) = ¢ A1 are both prvable, we obtain
that

i< A(t, 7i(0i)) @ icm A(E, 7 (¢3)) = ¢ At
is provable in FLT. So since ILi<,A(¢,7i(:)) ® i< A(E, v () € m(v(A)), we conclude by (1) that
e AN € m(v(A)) as well. O

We now show that for any set of formulas A, the set 7(y(A)) is a positive central idempotent of the
canonical frame. Positive central idempotents were defined in Definition 8.1.2 and are the idempotent
elements above an NRL-spaces identity element that commute with respect to ® with all other elements

of the space.

Lemma 8.1.16. Let A be a set of formulas in the language of FLT. Then w(y(A)) is a positive,
central, idempotent element in the canonical (topological) frame Xgy+ i.e. m(y(A)) € €T (Xpp+)-

Proof. See proof for representation of congruences (Theorem 8.1.4), it is analogous. O

The Importance of the previous lemma is that sets of formulas of the form 7(y(A)) have the
potential to determine submodels of the canonical model (See Theorem 8.1.12). We now demonstrate
the Parameterized Local Deduction Theorem for FLT.

Theorem 8.1.17. For an collection of formulas XU AU {¢}:

Y, A Fpp+ ¢ if and only if ¥ Fpp+ I v (i) \¢
Where i1, ..,¢n € A such that each vy; has parameters in the language Lpp+.

Proof. From left to right: Suppose X, A Fgp+ ¢. By soundness, we have that 3, A Fpp+ ¢. Suppose
also that t = 6 is provable in FLT for each element 6 of 3. The set xa := 7(y(A)) is conjunction
closed and is closed under = , so is a member of the (topological) canonical model Mpy,+ of FLT. It is
also the case that A C w(y(A)) and, because t € w(y(A)), we have ¥ C 7(7y(A)) because we assumed
t = 0 was provable in FL™ for each element 6 of 3. Therefore, by the truth lemma, Mg+, zA IF AU
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(Lemma 7.5.2). Now, by Lemma 8.1.16, we also have that za € €*(9Mgg+). So by Theorem 8.1.8,
there is a sub-frame Sub(xa) of Mpy,+ and there is also a valuation V' : Prop — Fi(Sub(xa)) defined
so that V(p) = VFE (p) N Sub(za). Clearly, i [VFL (p)] = VFL' (p) N Sub(za) = V(p), so the model
Na := (Sub(xa), V) is a well defined submodel of the canonical model Mgy,+. Further, in virtue of
Proposition 7.2.8 applied to the inclusion morphism ¢ : 91 — Mgy, +, we obtain the that 9a, za IF AUX.
But then since we assumed that ¥, A Fpp+ ¢, we obtain 9laxa IF ¢. Therefore, an application of the
truth lemma yields that ¢ € za = w(7(A)). But if ¢ € w(7v(A)), then there 91, ..,1, € A such that
I ,7vi(¢;) = ¢ is provable in FLT. We therefore obtain the conclusion that ¢ = I ;v;(¢;)\¢ is also
provable in FL*. So we conclude that ¥ Fgp+ 177 (;)\p for some 1, ..,1, € A such that each v;
has parameters in the language Lpy+

For the other direction we assume X g+ II7 ;v (1);) \¢ where 1, .., € A and such that each ~;
has parameters in the language Lgg+. More generally, we note that for any collections for formulas
OU{tU{(},if ®F &and © F (, then © - £ o (. Further we note that for any ¢ and ¢, we
have £ Fpp+ A&, Q) and € Fpp+ p(€,¢). Jointly we then obtain A Fpp+ II7  7;(¢;) and thus that
Y, Abpp+ @ O

The following section develops a characterization of coproducts in the category of NRL-spaces
spaces and uses the NRL-space semantics to provide a new characterization of the disjunction property

for extensions of the logic NFL*.

8.2 Products of NRL-spaces and The Disjunction Property

In this section we first study (co)products of NRL-spaces and then apply our insights to obtain a

characterization of when an extension of NFL™ has the disjunction property.

8.2.1 Products of NRL-spaces

We now characterize the products and coproducts of NRL-spaces. To do so we build on the
definition of products of L-spaces and extend the associated results to the case of of NRL-spaces. In
particular, in Theorem 8.2.2 we show that finite products of NRL-spaces are again NRL-spaces. We
then show that products of NRL-spaces also play the role of coproducts in the category of NRL-spaces
(See Theorem 3.1.10). Specifically, we demonstrate that products of NRL-spaces have the universal
property of coproducts with respect to the inclusion morphisms introduced in Definition 3.1.1. This
is demonstrated in Theorem 8.2.4. Finally, in Theorem 8.2.4 we show that the NRL-space dual to a
product of r¢-groupoids is homeomorphic to a (co)product of the NRL-spaces dual to the factors of
the salient product.

Now, let us begin by defining the products of NRL-spaces.

Definition 8.2.1. (Products of NRL-spaces.) Let {(X;,7;);}icr be a family of NRL-spaces.

The Product [ [;c; X; = (X, 7) is defined such that:

1) (X, 7) is the product of the underlying L-spaces i.e. X =[] X; of the semilattices defining each
X, and T is the product topology,

2) @x : X x X = X is defined pointwise i.e. a® :1 — |JX; is the function defined such that
a® p(i) =a(i)® B(i), and

3)ex : I = |JX; is the function such that £(i) = e, .

7
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We recall the projections p; : X — X; and the inclusions ~; : X;. The projections are defined as
usual and the inclusions were defined so that 7;(x) is the function I — |J X; such that ~;(z)(j) = 1x;
for all j # ¢ and ~;(z)(j) = « if j = 7. We also remind the reader that in case of products of L-spaces,
the subbase Sp was sufficient to generate the product topology of L-spaces. The same fact holds in the
case of NRL-spaces.

Sp = {ILic; Ui | Us € Fiap(Xs) & [{i | Us # Xi}| < No}
UAX = ([Lies Ui) | Ui € Fiap(X;) & [{i | Ui # 0} < No}

With these remarks in mind, we show that the category of NRL-spaces is closed under finite

products. This result builds directly off the analogous fact for L-spaces demonstrated in Theorem 3.1.8.
Proposition 8.2.2. A finite product of NRL-spaces is an NRL-space.

Proof. Let {(X;,7;),}i<n be a finite family of NRL-spaces and let [],.,, X; = (X, 7) be the product
topology. -

In virtue of Theorem 3.1.8 from chapter 3, [[;.,, X; = (X, 7) is an L-space. We then just need to
check conditions (1) -(3) in Definition 5.2.1.

Beginning with the first condition, we must show that the set of clopen filters is closed under the

operations oy, \x and /x. So suppose that U and V are clopen filters of [[,., X;. In again virtue of

i<n
Lemma 3.1.7 and compactness we can show that any clopen filter is subbasic in Sp. So U and V are
subbasic and therefore we have that U = [[,,, U; and V =[]
{Us}i<n and {V;}i<n where Uy, V; C X; for all i € 1.

(Closure under o) It is the case that [[,., Ui o [[,«,, Vi = [[;<,,(Ui o Vj). To see this, let o €
[Li<, Uiolli<, Vi- Then there are 5 € [[,-, Ui and I 67Hi<n V; such that B ® " < a. Therefore, for
alli € I, B(i) @ B'(i) € U; o Vi and (i) ® B'(i) < a(i). So it follows that a(i) € U; o V; for all i € I and
thus that a € [[,-,,(U; o Vj). For the converse, let o € [],,, (Ui o V;). Then for all i € I, a(i) € U; o V;.
It then follows rather o € [L<,Uioll<, Vi B

Now, if t [[,«,, Uio[];<,, ‘Z = HK“EUi o V;), then because [[,-,,(U; o V;) is clopen in the product
topology, so is ﬁKn U;v Hi<n Vi = Uvv. B

(Closure under \ and / )7Another straight forward argument confirms that [[,., Ui\ [[;<, Vi =
[Ti<, (Ui\Vi) and [T, Ui/ Ticp Vi = [ (Ui/ Vi)

Condition (2) of an NRL-space requires that f¢ is clopen. However, 1e = HZ-S” Te(i) (again by the

i<n Vi for some families of clopen filters

definition of the subbase Sp). So since T&(i) is clopen for each i € U, Te is clopen too.

Finally, for condition (3) in Definition 5.2.1, we show the nontrivial direction. Suppose that for
all clopen filters U and V of [[ X; that if 5 € U and 8’ € V, then o € U o V. We need to show that
B ® B < a. First we will show that for each i < n and each pair of clopen filters U’ and V' in X; that
B(i) € U and p'(i) € V, we have that a(i) € Uo V. So let U and V' be a pair of clopen filters in X;
for some i € I. [],.,, Ui is a clopen filter with U; = U’ and U; = X for each each j # i. A similarly,
[l;<,, Vi is a clopen filter when with V; = V’ and V; = X for each each j # i. By construction, we get
that B € [li<, Ui and B’ € [[,<,, Vi- Then by our assumption we obtain that o € [[,,, Ui o [[,~,, Vi-
Because we have [Li<,Uio H;n Vi=1l<,(Uio Vi), a(i) € U o V', as desired. It then follows from
condition (3) of Definition 5.2.1 that ﬁ(i)_@) B'(i) < (i) for all i € I. And therefore that f ® 8’ < a,

as desired. O

i<n
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Having concluded that finite products of NRL-spaces are NRL-spaces, let us prove a lemma that
will support the proof of Theorem 8.2.4, which will show that products of NRLs-spaces have the

universal property of co products.

Lemma 8.2.3. {(X,7;),}icr be a family of NRL-spaces. Let X = [];.; X; be the product. Then for
alli €I, v : X; — X 4s an NRL-space morphism.

Proof. In virtue of Lemma 3.1.9, we know that ; is an L-space morphism, so we just need to check
that ~; meets the additional requirements of being a NRL-space morphism.

The (®-forth) condition is immediate since v;(z ® y) = viz ® v;y. For (®-back), let a ® 8 < 7;(x).
Then «a(i) ® B(i) = a® (i) < x. However, in virtue of the adjunction property of v;, @ < v;(«(i)) and
B <7i(B(i)). So generalizing on «(i) and (i), we verify the ®-back condition.

For (\-back), suppose that o ® 7;(x) < 8. Then «a(i) ® z < (i). By the adjunction property of ;,
a < v;(a(i)). Now, note that for all j # i, we have v;(7)(j) = 1x;,. It follows then that for all j # 1,
a(j) ® yi(x)(j) = a(j) ® 1x, = 1x;, since 1x, is an absorbing element in any NRL-space. This in
turn implies that 3(j) = 1x; for all j # i because of the assumption that a ®@ v;(z) < 8. We are then
ensured that 7;(3(i)) = 3, which is enough for us to conclude that (\-back) holds when we generalize
on «a(i) and B(i). A similar argument guarantees that (/-back) is a also a property of ;.

Finally, we have the conditions (e-forth) and (e-back). For (e-forth) it is by definition that
ex < 7i(ex;). For (e-back), if ex < 7;(x), then ex, = ex (i) < vi(z)(7) = x.

This concludes the proof that in addition to being an L-space morphism, ~; is also an NRL-space

morphism for each i € I. O

We now arrive the main result of this section. We show that the products of NRL-spaces play the
role of co products in the category of NRL-spaces. This result extends Theorem 3.1.10, which showed
that products of L-spaces also possess the universal property of coproducts when the inclusions ~; are

taken as the relevant inclusion morphism.

Proposition 8.2.4. (Universal Property of Coproducts) Let {(X,7;);}i<n and Y be a finite collection
of NRL-spaces. Suppose that for each i < n, there is some NRL-space morphism g; : X; =Y. Then
there exists a map g : [[;<, Xi = Y that uniquely satisfies g(vi(z)) = gi(z) for all z € X; and i < n.

Proof. Let {X = (X;,7),}i<n and Y be NRL-spaces. Suppose we have X = [[ X; and that for each
1 < n, there is some NRL-space morphism g; : X; — Y. Recall that NRL-spaces have all meets in
virtue of being L-spaces (Lemma 2.2.13). In Theorem 3.1.10 we defined g : Hz‘gn X; = Y such that:

g(a) = \ gi(e()).

i<n

In virtue of this definition it was immediate that g(~;(z)) = g;(z). We also showed that g is an
L-space morphism and that g uniquely satisfied the property g(v;(x)) = ¢i(z). We must now check the
various conditions for g to be a morphism in the category of NRL-spaces. Specificlly, we just need to
check that the conditions for ® and ¢ are met.

For (®-forth), we have:

9(0) @ g(8) = A gile(@)® A ai(B@) < \ (5:(a(d) ® g:(86) < \ (gi(a® BG)) = gla® B).

i<n i<n i<n i<n
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For (®-back), the argument for (A-back) in the proof of Theorem 3.1.10 can be repurposed by
substituting A for ®.

Now, for (/-back) we reason as follows. Let z ® g(a) < z. For each i < n, by /-back for g;, there are
z; and z; such that 2 < g;(x;) and g(z;) < 2 ® gi(a(i)) and z; ® a(i) < 2. Define 8,6 :n+1 — |JX;
such that for all i < n, 5(i) = x; and /(i) = z;. It is immediate then that z < g(f) and that f@a < '
since x; ® a(i) < z;. To show that g(8’) < z. We note that (') = A<, 9i(zi) < = ® gj(a(y)) for
all j <n. So we have that g(8') < A\, = ® gj(a(j)). However, since n is finite, Lemma 5.2.11 tells
us that A,., = ® gj(a(j)) =2 ® A<, 9i(a(i)) =z ® g(e). We obtain that g(f') <z ® g(o) < z, as
desired. Bj; generalizing on S8 and /87 we conclude that g satisfies the (/-back) condition.

A symmetric argument demonstrates (\-back) holds.

Finally, we consider the conditions (e-forth) and (e-back). For (e-forth), we know by (e-forth) for
each g; that ey < gi(ex,). So we have that ey < A,-,, gi(ex;) = g(ex). For (e-back), suppose that
ey < g(a). Then for all i <n, ey < g;i(a(7)). By (s—bz;ck) for each g; we obtain that ex;, < (i) for all
i < n. We therefore arrive that the conclusion that ex < « and thus that (e-back) holsd for g.

Having checked these various conditions, we conclude that g is an NRL-space morphism and that
the universal property for coproducts holds for the NRL-space X = Hign X;.

O

We have just shown that products of NRL-spaces play double duty as coproducts in the category
of NRL-spaces. This is essentially explained by the semilattice structure of NRL-spaces and thereby
the inclusion maps ;.

We now show in Theorem 8.2.5 that the NRL-space Xg dual to a finite product of r¢-groupoids
G =[] G; is essentially the same as the product X = [[ Xq, of NRL-spaces dual to each G;.

Unlike in the case of L-spaces, where we gave a concrete description of the homeomorphism, we
will simply use the universal property of coproducts demonstrated in Proposition 8.2.4 to derive our
representation. The uniqueness of the isomorphism we obtain together with the fact that there is
a forgetful functor back to the category of L-spaces will ensure that the isomorphism has the same
concrete description as in Theorem 3.1.11. We therefore will obtain the insight and usefulness of a

concrete description, but without all the work.

Theorem 8.2.5. Let {G}i<n be a finite family of rl-groupoids. Then:

N i<n
Proof. Let {Gi}i<p be a finite family of r¢-groupoids. Let G = Hz‘gn G; and let X = Hign Xg,. In
virtue of the fact that RLG® = NRL, we know thatX g satisfies the universal property of coproducts

in the category NRL. Standard reasoning then implies that Xg = X.
O

8.2.2 The Disjunction Property

We apply our definition of products of NRL-spaces to provide a characterization of when an extension
of the logic NFL™ has the disjunction property. We will then use our characterization to show some
particular logics with weakening have the disjunction property. In the setting of substructural logics,

the disjunction property can be stated as follows:
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Definition 8.2.6. Let L be an extension of NFLT. We say that L has the disjunction property if:
(DP)  IfbFr @V, then by, ¢ or by 9.

Our characterization relies on what we call an e-prime frame. An e-prime frame (X, A,1,®,¢) is
one where € is A-prime i.e. if z A y < e, then x < ¢ or y < e. With the concept of an e-prime frame,
our semantic characterization of when a logic has the disjunction property is that a Logic L extending

NFL™ has the disjuction property iff the canonical model of L is e-prime.

Definition 8.2.7. (e-Prime Frames and Spaces)
An OKHD-frame X = (X, A,1,®,¢) is e-prime iff for all x,y € X, if x Ay < ¢, thenx < ¢ or
y <e. An NRL-space X is e-prime if the underlying OKHD-frame of X is e-prime.

Being an e-prime frame is simply the dual notion to being a well-connected algebra (see [34, 31]).
From the logical perspective this fact amounts to the claim that the logic of a e-prime frame has the

disjunction property.

Lemma 8.2.8. For any valuation V' on an e-prime OKHD-frame X = (X, A, 1,®,¢), if X, V,e I ¢V,
then X,V elk ¢ or X,V e lF 1.

Proof. Suppose that X,V eI ¢V 1p. Then there are ,y € X such that z A y < e and X.V,z IF ¢ and
X,V,y Ik 9. By well connectedness, either z < e or y < e. So since [¢] and [¢/] are both upwards
closed with respect to <, we have that either X,V el ¢ or X,V e IF 1. [

Lemma 8.2.9. If an extension L of NFL™ has the disjunction property, then any canonical model

My, of L is e-prime.

Proof. Suppose that L has the disjunction property. We reason indirectly to show that 9y, is e-prime.
Suppose form u,v € X that neither v < e nor v < e¥. Then there are ¢ € u and 1 € v such
that ¢ € el. This in turn implies that neither ¢ = ¢ nor ¢t = 1 are provable in L and thus by the
disjunction property t = ¢ V 1) is not provable in L. This gives us that ¢ Vi) € e¥. But ¢ Vo € unw
since both ¢ = ¢ V¢ and ¥ = ¢ V ¢ are derivable in any extension of NFL. It thus follows that
unov g el

O

With the lemmas we just proved at our disposal, we now move to the main result of this section.
The result characterizes exactly when a logic has the disjunction property in terms of a property of the

class of frames that corresponds to that logic.

Theorem 8.2.10. An extensions L of NFL™ has the disjunction property iff for any two NRL-spaces X
and Y in the class space for L, there is a e-prime NRL-space Z for L and an embedding f : X XY — Z.

Proof. For the direction from right to left, suppose that for any topological two NRLs-paces X and
Y in the class of space for L, there is a e-prime NRL-space Z for L) and an NRL-space embedding
f: X xY — Z. Now suppose that neither ¢ = ¢ nor t = ¢ are provable in L. By completeness,
there are models M = (X, 7,V) and N = (Y, 0,V’) and elements z and y of those models such that
M,z IF t and N,y IF ¢ but M,z If ¢ and N,y If ¢. Since M,z IF ¢t and N,y IF ¢, we have that
ex < z and gy < y. By definition of the direct product of two NRL-spaces, exxy < (1x,y) and
exxy < (z,1ly). Now, by assumption there is an e-prime NRL-space Z for L) and an NRL-space
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embedding f : X x Y — Z. So by the definition of an embedding, ez < f((z, Ty)) and ez < f(Tx,y).
Now, from a frame preservation fact (Lemma 7.2.10) we know know that embeddings reflect validity
and therefore preserve refutation. So given that f and the maps w +— (w, Ty) and w — (T x,w) are
all embeddings, we have that (Z,Vp), f((z, Ty)) If ¢ and (Z, V1), f((T x,y)) I ¥ for some valuations
Vo, Vi : Prop — Fi(Z). It follows that when we define the valuation V5 such that Va(p) = Vo(p) N Vi(p)
we also have (Z,Va), f((z, Ty)) I ¢ and (Z,V2), f((Tx,y)) IV ¥. So because ez < f((z, Ty)) and
ez < f(Tx,y), we obtain (Z,Va2),ez I ¢ and (Z,Va),ez Iff 1. Finally, putting Lemma 8.2.8 to work,
we arrive at the conclusion that (Z,V3),ez I ¢ V1. By contraposition we have shown the disjunction

property for the logic L in question.

Now for the direction from right to left. Suppose that the logic L has the disjunction property.
Then the canonical frames of L are all e-prime given Lemma 8.2.9. But by Lemma 7.5.4 any frame
of L embeds into canonical frame. So in particular, the product of any two frames will embed into a

e-prime frame. Therefore we have shown what we wanted to show. ]

The above theorem’s proof provides us with the following corollary, which provides a different
perspective on when a substructural logic has the disjunction property. Such characterization may
be preferred since the one given in the antecedent theorem is just a dualization of the algebraic

characterization.

Corollary 8.2.11. An extension L of NFL has the disjunction property iff the canonical models of

the logic are e-prime.

Proof. If a logic L extending NFL™ has the disjunction property, then by Lemma 8.2.8, the canonical
models of Li are all e-prime. Conversely, Assume that the canonical models of Li are all e-prime. by
Lemma 7.5.4, the product of any frames will embed into a canonical model. Therefore, by Theorem

8.2.10, we obtain that L has the disjunction property. ]

The Disjunction Property in Logics with Weakening

Let us denote an extension of NFLT with weakening by NFL,}. Based on the results in the
previous section and in particular Theorem 8.2.10 an easy method for showing an extension L of NFL;
presents itself. In particular, we may simply add a single point to the bottom of the product of two
topological frames and then ensure that the new point behaves like an identity for ®. This is similar

to the method used in modal logic where the disjoint union of two frames is given a new root.

Lemma 8.2.12. Let W be the class of NRL-space satisfying the conditions
Vey(zr <z ®y) Vaey(z < x ®y)

then if X in K, then the NRL-space X* = ({x} & X,7") is in K where {x} & X = ({*} &
X, A, 1%, @% e*) is defined such that 1* =1, e* = %, and

xRy ifr,ye X
. z Ay ifr,ye X .
yr z= Yy r=quwx, ify ==,
x, if either x = % or y = x
Yy, if x = *.
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Finally, we have that T* is the topology generated by the subbase where (—)¢ is calculated in {x} ® X :
S = Fiap(X)U{U | U € Fiep(X)} U {T*} U{(T%)°}.

Proof. We must check that for all z,y € {*}®X that x < 2®*y and z < y®*x and z®*e* = x = e*R*x.
But these are all almost immediate from the definition of ®* and €* given above.

Let us now observe that X* is an NRL-space. X* is 0-dimensional in virtue of the definition of the
subbase S*.

For compactness, let {U;};c; C S* be a sub basic cover of X*. We now have two cases to consider. In
the case that there is some i € I, U; = 1%, then trivially {1x} is itself a cover of X. If on the other hand
there is no ¢ € I such that U; = 1%, then observe that the collection S*NX = {WNX | W € Fiyp(X)}
is a subbase for X since it contains all clopen filters of X and their complements. So {U; N X };cr is a
subbasic cover of X. By compactness of X, there is a finite J C I such that {U; N X };c is a cover X.
Further, since there must be some 4 such that * € U;, this U; must be equal to ({*} W X) — V for some
V € Figp(X). We then have that the following collection {U;};cs U {U;} is finite subcover of {U;}icr.

For HMS-separation, let x € y. If z,y € X, then since HMS-separation holds in X and the fact all
clopen filters of X are clopen filters in X*, we are done. If either x = % or y = *, since X is a clopen
filter we are done.

We now must check that the clopen filters are closed under the operations Vv, o, \, and /. First note
there is only one new clopen filter in X*, namely 7. So we just need to consider the cases where we
are applying the operations in question to 7. With this in mind, closure under V is straightforward
since for any clopen filter U, VU = 1*. In contrast, %o U = U = U o T* for all clopen filter U, so
again we are ensured that the closure condition holds. A simple argument shows for any clopen filter U
both U\T* and 1 % /U are equal to T since 1% is the greatest clopen filter. In contrast, for any clopen
filter U both 1% \U and U/tx are equal to U by applying the fact that 1 is the greatest clopen filter
and the axioms Vzy(r < z ® y) and Vzy(z < x ® y). The clopen filters are therefore closed under the
operations V, o, \, and /.

Finally, we must check that if for all clopen filters U,V: if x € U and y € V, then z € U oV, then
 ®y < z. Suppose that none of x,y, or z are *. Then z,y,z € X and so we can apply the relevant
condition in X to obtain that z ® y < z. If either x = %, then x ® y = y. So suppose that y £ z for
contradiction. Then by HMS-separation there is some clopen filter U such that y € U and z ¢ U. But
x € Tx, so by assumption that for all clopen filters U,V: if x € U and y € V, then z € Uo V, we
obtain that z € Tx o U C U, contradicting that we had z ¢ U. It follows that x ® y = y < y, as desired.
Roughly the same argument holds when y = *. Finally, if z = %, then it is not hard to see that x = x
and y = % must also be the case and so we are again in one of the above cases.

We therefore conclude that X* is an NRL-space. ]

Lemma 8.2.13. Let W be as in the previous lemma. If X € W, then {x} U X is e-prime and X

embeds into X*.

Proof. For e-primeness, note that ¢* has exactly one element that covers it, namely ex!. So, if
x Ay < &*, then either x = ¢* or y = &*.
For the embedding, note that the identity function will do. The fact the the indentity satisfies all

the morphism conditions isn’t hard to see and follows quickly. In the case of (A-back), slightly more

Lz covers y iff y <  and there is no z such that y < z < z.
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care must be taken. the identity is continuous in virtue of our definition of the subbase, S*. O
Proposition 8.2.14. The logic NFL; has the disjunction property.

Proof. W is the class of NRL-space that corresponds to the logic NFL;}. By Theorem 8.2.10, if
the product of any NRL-spaces for L embeds into an e-prime NRL-space for L, then L has the
disjunction property. So by Lemma 8.2.13, which tells us every NRL-space in W embeds into an
e-prime NRL-space, we conclude that NFL; has the disjunction property. O

We give one more particular instance of a logic with weakening and the disjunction property. In
the section on canoncity at the end of Chapter 7, we remarked on the logic Lycc considered by Ono
and Komori [32], which was essentially characterized as intutitionistic logic without contraction or

alternatively, as FL* with commutativity and weakening.
Proposition 8.2.15. Lgcc has the disjunction property.

Proof. We need to check that operation ® of {*} & X is associative and commutative whenever X
is. For commutativity, let z,y € {*} & X. We just need to consider the case when x = % since X is
assumed to be commutative. But then clearly, x ® y = y = y ® . Another very simple argument

shows that ® is associative. O]

This concludes the section on the disjunction property.

8.3 Conclusion

In this chapter we expanded the theory of NRL-spaces. First we proved a representation theorem
for the congruences of residuated latticesin their dual RL-spaces (Theorem 8.1.4) and used this to
obtain a characterization of subspaces of RL-spaces (Theorem 8.1.12). Second, we characterized
products and coproducts of NRL-spaces (Theorem 8.2.4) and then gave a representation theorem for
products of rf-groupoids (Theomem 8.2.5). We then applied these both of these developments to
obtain logic results like a new proof of the parameterized local deduction theorem (Theorem ?7?) and a
characterization of when an extensions of NFL™ has the disjunction property (Theorem 8.2.10) and

then gave a few specific examples of such logics (Propositions 8.2.14 and 8.2.15).
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Conclusion

In this thesis we developed a novel topological duality for r/-groupoids and showed how this duality
connects the theory of L-spaces developed by Bezhanishvili et al. [6] to the frame based semantics for
substructural logics originating in the work of Ono and Komori, Humberstone [23], and Dosen [13].
We began in Chapter 3 and Chapter 4 by extending the representation theorems and II; preservation
results from Bezhanishvili et al. [6] to all monotone lattice expansions. In Chapter 5 we introduced
NRL-spaces, RML-spaces, OKHD-frames, and RML-frames and established a number of connections
between these types of objects. Most importantly we showed how OKHD-frames can be obtain from
the general theory outlined in Chapter 3. In Chapter 6, we proved duality for the class of residuated
lattices with respect to both NRL-spaces and RML-spaces. We then showed how these results restricted
to obtain dualities for a number of other classes of residuated lattices. In Chapter 7 we reviewed
substructural logic and in particular the OKHD-semantics. We then used our duality to define a
topological semantics for substurctural logics and proved a general completeness theorem. Afterwards,
we adapted the notion on II;-persistence to the setting of the OKHD-semantics and used duaity to
show a general completeness theorem with respect to OKHD-frames that subsumes existing results. We
ended the chapter with a discussion of how earlier canonical model style proofs could be understood
in terms of duality and II;-persistence. Finally, in Chapter 8, we extend the theory of NRL-spaces.
First we obtained a dual representation of congruences of residuated lattices and a characterization of
subspaces. The we characterized products and coproducts of NRL-spaces and showed how this leads
to a representation for products of rf-groupoids. We then applied the development to first obtain a
new proof of the parameterized local deduction theorem and then a characterization of logics with the

disjunction property. There are many places the theory presented in this thesis could be extended.

e Generalizations of the representation of monotone operations and monotone lattice expansions

(Theorem 3.2.6 and Corollary 3.2.7) to include antitone operations as well.

e A characterization of identities on lattices expansions with antitione operations that are preserved

by the II;-completion.

e A deeper study of the connection between the II;-completion, the Xi-completion, and the

canonical extension from the point of view of L-spaces.

e A generalization of the characterization of classes of rf-groupoids closed under the IT;-completion
(Theorem 6.4.5) and there by a generization of our completeness theorem with respect to the
OKHD-semantics (Theorem 7.4.8).

e The identification of interesting applications of the topological semantic to substructural logics.
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