
Structured Justifications for Binary Aggregation

MSc Thesis (Afstudeerscriptie)

written by

Otto de Jong

under the supervision of Dr. Ronald de Haan, and submitted to the Examinations Board in

partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

25 August 2025 Dr. Maria Aloni (Chair)

Dr. Ronald de Haan (Supervisor)

Dr. Gregor Behnke

Dr. Malvin Gattinger

Abstract

In binary aggregation (with integrity constraints), a group of voters votes on a set of issues. Each

person votes by submitting a ballot in the form of a binary vector, stating for each issue whether

they accept or reject it. An integrity constraint is a propositional formula over the different issues

that states which ballots the voters are allowed to submit. A (consistent) aggregation rule then

decides on a set of possible outcomes. Like the ballots submitted, each possible outcome is a binary

vector, accepting or rejecting every issue while also taking into account the integrity constraint, i.e.

not violating it.

Suppose we are in such a setting, where every voter has submitted a ballot and the aggregation

rule decided on one or more possible outcomes. Given a set of normative principles that we call

axioms, one can try to justify the chosen outcome(s). This can be done by showing that collectively

accepting this set of axioms forces the outputted outcome under the inputted ballots, no matter

the specific aggregation rule.

In an unstructured justification, we provide an explanation in the form of a set of specific

instances of these axioms that together justify the outcome. In a structured justification, we also

provide a structured way to read this explanation.

In the first part of this thesis, we will define unstructured and structured justifications for binary

aggregation. First, we propose a new definition of outcome statements that are used to describe

aggregation rules. Thereafter, we define a tableau-based calculus in which we can structure the

justifications. In the second part, we encode the framework of binary aggregation in Python, and

we develop an algorithm that allows us to generate justifications with the help of a SAT solver and

an MUS extraction tool.

Contents

Introduction 3

I Theoretical Part 8

1 Preliminaries 9

1.1 Propositional Logic . 9

1.2 Graph Theory . 10

1.3 Binary Aggregation . 10

1.4 Binary Aggregation Axioms . 11

2 Expressing Axioms in L(O) 15

2.1 Outcome Statements . 15

2.2 Axioms and Axiom Instances in L(O) . 18

2.3 Rewriting the Binary Aggregation Axioms in L(O) 20

2.4 Discussion . 25

3 The Tableau Method 27

3.1 Introduction to Tableaux . 27

3.2 The Expansion Rules . 28

3.3 Correctness of the Calculus . 33

3.3.1 Termination . 35

3.3.2 Soundness . 38

3.3.3 Completeness . 39

3.4 Discussion . 43

4 Justifications 44

4.1 Unstructured Justifications . 44

4.2 Structured Justifications . 49

4.3 Discussion . 54

II Implementation 55

5 Encoding Binary Aggregation 56

5.1 Encoding the Framework . 56

5.2 Encoding Consistent Aggregation Rules . 60

1

5.2.1 Valuation Restrictions as Axioms . 60

5.2.2 Correspondence Lemma . 64

5.3 Encoding Axioms . 67

5.3.1 Encoding the Valuation Restrictions . 67

5.3.2 Encoding the Binary Aggregation Axioms . 68

6 Generating Justifications 72

6.1 Generating Unstructured Justifications . 72

6.1.1 The Algorithm for Unstructured Justifications 74

6.1.2 Examples of Unstructured Justifications . 76

6.2 Generating Structured Justifications . 77

6.2.1 The Algorithm for Structured Justifications 78

6.2.2 Examples of Structured Justifications . 80

6.3 Termination, Soundness and Completeness for the Encoded Fragment 82

6.4 Discussion . 84

Conclusion 88

Bibliography 92

2

Introduction

Suppose a municipality wants to decide which urban projects they will realize in the coming period.

In order to do so, they let the residents vote on the different projects. Suppose there are three

different proposed projects, but there is only enough money to realize two of them. Then the

municipality could ask the residents to present the following ballot: for each of the three projects,

either accept it or reject it, with the extra constraint that they may not accept all three of the

projects.

After the votes are counted, the municipality will have to decide which two projects will be

realized. Although this example is rather simple, there are cases where this decision is far from

straightforward, e.g. there might be tens of projects with dependencies between the different

projects. After such a decision is made, it will be made public. Hopefully, most residents will be

happy, or at least not very unhappy, about the outcome.

The decision is made by a mechanism that aggregates the ballots that are cast by the residents

and then decides on an outcome, in this case: the election of two of the three projects. If the

municipality wanted to offer some transparency concerning their decision, they could try and

explain the workings of the mechanism that elects the outcome. But a more direct form of

transparency would be to directly justify the outcome by explaining why the outcome elected is the

only possible outcome, given the ballots submitted and some collectively shared notions of fairness.

Such justifications form the main topic of this thesis.

In this thesis, we will define justifications for the framework of binary aggregation (with integrity

constraints). We will provide two kinds of justifications: unstructured and structured justifications.

The main goal of this thesis is twofold. First, we aim to set up a theoretical model in which

we can express and construct justifications for the framework of binary aggregation. Thereafter,

we want to encode this framework in a computer and develop an algorithm that allows us to

generate explainable justifications. Before we can give a more in-depth description, we provide

some theoretical context.

Computational Social Choice

Social choice theory is a field of work that analyses settings of collective decision-making, like

the one described above. Generally, such a setting consists of a group of voters and a group of

candidates or possible outcomes. Every voter voices their opinion on what the outcome should be

by submitting a ballot, and some mechanism should then aggregate these opinions and conclude on

a set of outcomes. There is a wide variety of different frameworks in which to express these settings

formally. Every framework constitutes a subfield of social choice theory; for an extensive overview

of this field, we refer to the work of Arrow, Sen and Suzumura [ASS02].

3

Voting theory is a prominent subfield of social choice theory. In voting theory, there is a group

of voters and a group of candidates. Each voter submits a ballot in the form of a preference order

over the candidates. These ballots together form a profile. A social choice function is a function

that takes such a profile as an input and then outputs one or more candidates; this outcome is

often called the winner set. For a detailed description of this framework, we refer to the chapter

written by Zwicker [Zwi16] in the Handbook of Computational Social Choice by Brandt, Conitzer,

Endriss, Lang and Procaccia [Bra+16].

Social choice functions can satisfy certain normative principles, these we call axioms. For

example, a social choice function satisfies strategyproofness if no voter can lie about their preference

in order to get a better outcome for themselves; for a formal definition, we also refer to the work of

Zwicker [Zwi16]. Arrow [Arr63] proved an important impossibility theorem, in which he showed

that there is no social choice function that satisfies a certain set of axioms. This formed an early

and important work in the paradigm of social choice theory called the axiomatic method.

The axiomatic method focuses on the different axioms, e.g. by checking which sets of axioms

are unsatisfiable together (thus formulating impossibility theorems) or by proving whether certain

social choice functions satisfy certain axioms. This paradigm is also extensively described in the

work of Brandt et al. [Bra+16].

This thesis falls within computational social choice. This is the field of work that combines social

choice theory with methods from computer science; it also considers the computational aspects

of the different concepts within social choice theory. The work of Brandt et al. [Bra+16] offers a

broad overview of the field.

As stated above, computational social choice combines social choice theory with tools from

computer science. One of these tools are SAT solvers. The SAT problem is a fundamental decision

problem in computer science. It takes a (propositional) formula as input and checks whether this

formula is satisfiable or not. For an extensive review of the problem of satisfiability in computer

science, we refer to the work of Biere, Heule, Van Maaren and Walsh [Bie+09]. A SAT solver is

a computer program that “solves” the SAT problem; it takes a formula as input and returns as

output whether that formula is satisfiable or not.

In computational social choice, a SAT solver is mostly used to check if there exist social choice

functions that satisfy certain sets of axioms. In order to do so, both the social choice function

and the axioms need to be encoded as one big propositional formula. The use of a SAT solver in

different subfields of computational social choice has been researched by a variety of people [LT09;

GE11a; BG16; GP17; End20; Klu+20].

Binary Aggregation

In this thesis, we consider the subfield of computational social choice called binary aggregation (with

integrity constraints). In binary aggregation, people vote on a set of issues by submitting ballots

in the form of binary vectors; accepting or rejecting each of the issues. The integrity constraint

is a propositional formula over the issues that describes which ballots the voters are allowed to

submit. An aggregation rule should then decide on a set of possible outcomes, electing one or more

binary vectors. Each outcome vector also provides a decision for every issue by either accepting or

rejecting it. An aggregation rule is consistent if all outcome vectors elected by the rule also satisfy

the integrity constraint.

The example described at the beginning of this introduction can easily be expressed within this

4

framework. Let {1, . . . ,100} be the set of residents that will cast a vote, let X = {x1, x2, x3} be
the set of issues and let Γ = ¬(x1 ∧ x2 ∧ x3) be the integrity constraint (stating that no ballot may

accept all issues). Suppose the ballots are cast by the voters as seen in the following profile.

30 ∶ (1,1,0)
49 ∶ (1,0,1)
21 ∶ (0,1,1)

It is not evident here what would be the fairest outcome; simply picking the majority for each

issue will lead to accepting all issues, which will violate the integrity constraint. In this thesis, we

will introduce a variety of different axioms that allow us to discuss settings like the one above.

Binary aggregation is a relatively new subfield of computational social choice. A lot of work in

this field has been done by Grandi and Endriss [GE10; GE11b; Gra12a; EG14]. They have based

their model on the work of Wilson [Wil75] and Dokow and Holzman [DH10], who propose general

frameworks for aggregation procedures.

Binary aggregation is closely related to another subfield of computational social choice called

judgment aggregation, where people vote on formulas instead of issues. For an early work on

judgment aggregation, we refer to a paper by List and Pettit [LP02]. For a clear overview of the

framework, we refer to the work of Endriss [End16]. Judgment aggregation is a more general

framework than voting theory, which Endriss motivates in the aforementioned work by showing how

to express a voting theory setting in the framework of judgment aggregation. Binary aggregation

has the same expressive power as judgment aggregation, and one can translate aggregation settings

back and forth in both frameworks; this is shown by Grandi [Gra12a].

Another related field is participatory budgeting. Participatory budgeting considers more applied

settings like the example above, where there is a limited budget and people can vote on how they

think that budget should be spent. This framework closely ties to judgment aggregation, as is

shown by Rey, Endriss and De Haan [REH20]. For a more extensive introduction to participatory

budgeting, we refer to the work of Rey [Rey23].

Contribution

Our contribution can be divided into two parts: the construction of a theoretical model on the one

hand and the implementation of that model on the other.

First, we discuss the theoretical part. In that part, we define unstructured and structured

justifications for binary aggregation. These concepts serve as tools for the transparency in settings of

collective decision-making, as is illustrated by the example at the beginning of this introduction. An

unstructured justification consists of two parts: a set of collectively accepted normative principles

and a set of instances of those axioms that each explain for a specific scenario how an aggregation

rule should behave in that scenario. The union of these instances then forms an explanation for why

every aggregation rule that satisfies the set of normative principles should accept the prescribed

outcome, given a certain input of ballots. A structured justification extends this definition by also

showing how to read this explanation; it structures the explanation into a human-readable proof.

In order to define these justifications, we have developed a language of outcome statements

that allows us to easily express axioms as sets of formulas, where each formula describes how an

aggregation rule should behave in a specific scenario. This descriptive language offers a new way to

formally describe aggregation rules.

5

Consequently, we have developed a tableau-based calculus, based on the semantics of these

outcome statements, that allows us to prove the unsatisfiability of certain combinations of outcome

statements and axiom instances. In this context, a set of outcome statements and axioms is

unsatisfiable if there is no aggregation rule that satisfies all of them. We have also proven

termination, soundness and completeness of our calculus. Firstly, this calculus offers a new model

for reasoning about aggregation rules in binary aggregation. Secondly, it allows us to structure

the explanations in unstructured justifications, and thus is an essential part of the definition of

structured justifications.

In the second part of this thesis, we show how to encode the framework of binary aggregation in

Python, using the earlier defined outcome statements. In order to do so, we encode both aggregation

rules and the different binary aggregation axioms in Python. To our knowledge, the framework of

binary aggregation has not been encoded in a computer yet.

Finally, we construct an algorithm that first generates a set that closely resembles an unstructured

justification and then structures that set in order to obtain a tree that resembles a structured

justification. This is done with the help of a SAT solver. To our knowledge, using a SAT solver as

a tool for the framework of binary aggregation has not been done before.

Related Work

For voting theory, Boixel and Endriss [BE20] have already defined unstructured justifications and

Boixel, Endriss and De Haan [BEH22] have defined structured justifications. Their work serves as

a guideline for our model. The main ideas of the definitions are the same, although the adaptation

to the framework of binary aggregation sometimes requires us to adopt different approaches. For

example, we have completely diverted from their definition of an outcome statement as their

definition does not translate to the framework of binary aggregation nicely. As this definition lies

at the fundament of our model, our tableau-based calculus has turned out different as well.

Boixel, Endriss and Nardi [BEN22] have shown how to nicely integrate structured justifications

for voting theory into an interactive tool that illustrates the workings of the definition by generating

different examples for different inputs. We do not present such a tool, but we have developed an

algorithm that generates a structured justification if one exists for the given input.

Nardi, Boixel and Endriss [NBE22] have developed a graph-based algorithm that generates

unstructured justifications efficiently; also for voting theory.

Grandi and Endriss [GE13] defined a first order language to express axioms within the field of

preference aggregation. This is an alternative to the propositional language of outcome statements

that we will define. Nardi [Nar21] proposes a similar language for axioms in voting theory by

expressing axiom instances as formulas.

Cailloux and Endriss [CE16] developed a system to argue about voting rules. There are some

resemblances between our language of outcome statements and the language that they define in

their paper.

Outline

We end the introduction with a short outline of the thesis.

Chapter 1: This is a preliminary section. First, we give some specific definitions from propositional

logic that are relevant for this thesis. Then, we provide preliminary definitions for graph theory,

6

as they are necessary for our tableau-based calculus. Consequently, we introduce the framework

of binary aggregation with all the relevant definitions. We conclude the chapter by introducing

several binary aggregation axioms.

Chapter 2: In this chapter we define the outcome statements and their language. We also provide

a definition of an axiom instance and an axiom. Finally, we rewrite the axioms provided in the

previous chapter in the language of outcome statements.

Chapter 3: Here we introduce the tableau method. First, we give a general introduction to

tableaux. Then we introduce our tableau-based calculus. We conclude the chapter by showing

termination, soundness and completeness of the newly introduced calculus.

Chapter 4: In this chapter we introduce the main notions of this thesis: unstructured and

structured justifications. We provide several examples for both definitions.

Chapter 5: Now that we have concluded the theoretical section, we start with the encoding. In

this chapter we show how to encode the framework of binary aggregation. The encoding of an

aggregation rule requires the introduction of several extra axioms. We end the chapter by encoding

the axioms introduced in the first chapter and rewritten in the second chapter.

Chapter 6: In the final chapter of the thesis we show the algorithm that we have constructed. It

consists of two parts: the first part generates a set that resembles an unstructured justification.

The second part structures this set by generating a tree that resembles a structured justification.

We show the workings of both parts of the algorithm through several examples.

7

Part I

Theoretical Part

8

Chapter 1

Preliminaries

In this chapter we will provide the necessary context for this thesis. First, we consider some relevant

definitions from propositional logic. Thereafter, we provide some basic definitions of graph theory.

Finally, we will introduce the framework of binary aggregation and state some relevant axioms

within that framework.

1.1 Propositional Logic

We will assume that the reader is familiar with propositional logic; if not, we refer to the work of

Mendelson [Men09]. Still, we provide several specific definitions.

For a set of propositional variables X, let L(X) denote the set of propositional formulas over

X, i.e. propositional formulas that contain only variables from the set X.

A propositional formula that is a disjunction of literals is called a clause. A propositional

formula φ is in conjunctive normal form (CNF) if it is the conjunction over a set of clauses; in

this case, we call φ a CNF-formula. A formula φ is in disjunctive normal form (DNF) if it is a

disjunction over a set of formulas that are themselves conjunctions of literals. Such a formula, we

call a DNF-formula. We present a lemma concerning these types of formulas.

Lemma 1.1. For every propositional formula φ, we can find a DNF-formula that is equivalent to

φ. The same holds for CNF-formulas.

For the proof of this theorem, we refer to the work of Howson [How05].

Definition 1.1. We define the length L(φ) of a propositional formula φ recursively:

• L(�) = L(⊺) ∶= 0;

• L(x) ∶= 1, for a propositional variable x;

• L(¬φ) ∶= 1 +L(φ), for a propositional formula φ;

• L(φ ⊗ ψ) ∶= 1 + L(φ) + L(ψ), for two propositional formulas φ and ψ and any operator

⊗ ∈ {∧,∨,→,↔}.

9

1.2 Graph Theory

In Chapter 3, we will define a tableau-based calculus with which we construct structured justifications

for binary aggregation. As graph theory offers the underlying structure for our tableaux, we provide

the necessary definitions in the following section. For a more thorough discussion of graph theory,

we refer to the work of Tutte [Tut01].

A graph is a tuple G = (V,E) where V is a set of nodes or vertices and E is a binary relation on

V . For two nodes v,w ∈ V , an element (v,w) ∈ E is called an edge. For two vertices v,w ∈ V , the

edge (v,w) ∈ E is an outgoing edge for v and an incoming edge for w. The in-degree of a vertex is

the amount of incoming edges for that vertex and the out-degree is the amount of outgoing edges.

A path in a graph G = (V,E) is a sequence of vertices (v1, v2, v3, . . .) such that (vi, vi+1) ∈ E for

every index i. A cycle is a path (v1, . . . , vn) with v1 = vn. We call a graph acyclic if there are no

cycles. We call a graph connected if there is a path between every two vertices in V .

A (directed) tree is a connected acyclic graph. In a tree, a root node is a vertex that has

an in-degree of 0. A node with an out-degree of 0 is called a leaf node, and if we have that

(v,w), (v,w′) ∈ E, we call w and w′ the children of v. Every path from a root node to a leaf node

v ∈ V is called a branch; we then say that the branch ends in v. A tree is infinite if it contains

infinitely many nodes.

To conclude the section, we make the following remark, which will be helpful later on.

Remark 1.1. A tree where every node only has finitely many children is infinite if and only if it

contains an infinite branch.

1.3 Binary Aggregation

In this section, we will provide the basic definitions for the framework of binary aggregation (with

integrity constraints). The following definitions are based on the work of Grandi and Endriss

[GE11b; Gra12b].

Let I = {1, . . . ,m} be a finite set of issues that need to be decided on and let X = {x1, . . . , xm}
denote the set of propositional variables corresponding to the issues in I. Let X∗ =X ∪{¬x ∣ x ∈X}
denote the set of literals on X. A literal ℓ ∈X∗ is positive if ℓ = x for some x ∈X and negative if

l = ¬x for some x ∈X.

A vector B ∈ {0,1}m is called a ballot, and it provides a binary decision for each issue: yes

(denoted by a 1) or no (denoted by a 0). Such a ballot can also be viewed as a truth assignment on

the propositional variables in X, making xj true if there is a 1 on the j-th position of B, and false

if it is a 0. This can naturally be extended to any propositional formula φ ∈ L(X): we say that

a ballot B satisfies such a propositional formula φ if the truth assignment induced by the ballot

makes φ true. We then write B ⊨ φ.

Example 1.1. For m = 3, we say that the ballot B = (1,0,1) makes x1 true, while it makes x2

false. We may also write B ⊨ ¬(x1 ∧x2 ∧x3), as the variable x2 is false under the truth assignment

induced by the ballot B.

An integrity constraint Γ ∈ L(X) is a satisfiable propositional formula with variables from X

that describes which ballots are allowed. Let Mod(Γ) ⊆ {0,1}m be the set of ballots that satisfy Γ;

we call those the rational ballots.

10

Example 1.2. For m = 3 and Γ = (x1 → x2)∧¬x3, we get that Mod(Γ) = {(1, 1, 0), (0, 1, 0), (0, 0, 0)}.

Let n be the number of voters that vote on the issues in I (or X). A multiset B with

∣B∣ = k consisting of rational ballots is called a profile of size k. We denote the set of all possible

profiles of size k by Mod(Γ)k and the set of all possible profiles (with at most n voters) by

Mod(Γ)+ ∶= ⋃1≤k≤nMod(Γ)k.

Example 1.3. Again, let m = 3 and Γ = (x1 → x2) ∧ ¬x3. Then for B = {(1,1,0), (0,1,0)}, we
have that B ∈Mod(Γ)2. We also have that B ∈Mod(Γ)+.

Remark 1.2. Note here that our framework is anonymous, i.e. we do not consider which voter

submitted which ballot, we only consider what ballots are submitted. This is due to the fact that

anonymity is a prerequisite condition for almost every application of binary aggregation (and

democratic elections in general). Additionally, it simplifies our framework because we can consider

profiles as multisets instead of ordered sequences of ballots.

An aggregation rule is a function F ∶Mod(Γ)+ → 2{0,1}
m ∖ {∅}, mapping any possible profile of

rational ballots to a nonempty subset of outcome vectors; or simply outcomes.

Notation 1.2. Sometimes we denote an aggregation rule by F , where it is assumed that F ∶
Mod(Γ)+ → 2{0,1}

m ∖ {∅}.

Note here that a profile is a multiset, while the set of outcomes, sometimes called the outcome

set, is a set (without duplicates); this set describes which outcomes are elected by the aggregation

rule. An aggregation rule F is called consistent if F (B) ⊆Mod(Γ) for any B ∈Mod(Γ)+, i.e. all
outcome vectors in F (B) satisfy the constraint Γ, where we note that we may consider any outcome

in F (B) as a ballot (a binary vector with dimension m). An outcome vector v ∈ {0,1}m is called

consistent if it satisfies the integrity constraint, i.e. v ⊨ Γ. In that case, we have that v ∈Mod(Γ).

Example 1.4. Let m = 3, Γ = x1 ∨ x2 and let F be an aggregation rule such that there is a profile

B ∈Mod(Γ)+ with F (B) = {(0,0,1), (1,1,1)}. Then F is not consistent as (0,0,1) ⊭ x1 ∨ x2. The

rule F ′ that maps any profile B ∈Mod(Γ)+ to the singleton {(1,0,0)} is consistent.

Convention 1. For the rest of this thesis, let n be the number of voters, let I be the set of issues

with ∣I∣ =m, let X be the corresponding set of variables with literal set X∗ and let Γ ∈ L(X) be the

integrity constraint. Whenever it is not specified, we assume that Γ = ⊺.

1.4 Binary Aggregation Axioms

In binary aggregation, axioms are properties that can be satisfied or violated by aggregation rules.

The axioms presented in the following section are primarily based on notions of fairness and should

all be easy to accept as reasonable principles. The following axiom definitions are based on the

work of Lang, Pigozzi, Slavkovik, Van der Torre and Vesic [Lan+17] and the work of Grossi and

Pigozzi [GP22]. Both have defined axioms for judgment aggregation. We define adaptations of

these axioms for binary aggregation.

Faithfulness

Whenever we consider a profile B ∈Mod(Γ)1, we know it is of the form B = {B}, where B is some

rational ballot in Mod(Γ). The first axiom is based on the idea that in a situation with a single

11

voter, the aggregation rule should adopt the ballot submitted by this single voter as the unique

outcome.

Definition 1.2 (Faithfulness). We say that an aggregation rule F is faithful if for every profile

B ∈Mod(Γ)1, we have that F (B) = {B}, where B = {B}.

Homogeneity

The next axiom considers the scenario where a profile consists of multiple copies of some other

profile. Before we can state the axiom, we first need to define addition for profiles.

Definition 1.3. For two profiles B,B′ ∈Mod(Γ)+, we define the sum of the profiles as B +B′ ∶=
B⊎B′, where ⊎ is the multiset sum, which adds all the elements of B together with all the elements

of B′ in the natural way. For an integer k ≥ 1 and a profile B, we define kB ∶= B +⋯ +B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

.

Example 1.5. Form = 2, B = {(1, 1), (1, 1), (1, 0), (0, 0)},B′ = {(1, 1), (1, 0)} and B′′ = {(1, 1), (0, 0)},
we have that B = B′ +B′′. For a profile B′′′ = {(1,1), (1,1), (0,0), (0,0)}, we have that B′′′ = 2B′′.

Note here that profiles are multisets, so the order does not matter.

Definition 1.4 (Homogeneity). We say that an aggregation rule F is homogeneous if for any

profile B ∈Mod(Γ)+ and any integer k ≥ 1 such that kB ∈Mod(Γ)+, we have that F (B) = F (kB).

Example 1.6. Let n = 4, m = 2 and let F be a homogeneous aggregation rule, then we should have

that F ({(1,1), (0,0)}) = F ({(1,1), (1,1), (0,0), (0,0)}).

Unanimity

The following two axioms consider the situation in which every ballot in the profile agrees on an

issue, either by accepting it or rejecting it unanimously.

Definition 1.5 (Weak Unanimity). We say that an aggregation rule F is weakly unanimous

if for every profile B ∈Mod(Γ)+ and any literal ℓ ∈X∗, if we have that for all B ∈B it holds that

B ⊨ ℓ, then there is an outcome v ∈ F (B) such that v ⊨ ℓ.

Definition 1.6 (Strong Unanimity). We say that an aggregation rule F is strongly unanimous

if for every profile B ∈Mod(Γ)+ and any literal ℓ ∈X∗, if we have that for all B ∈B it holds that

B ⊨ ℓ, then for every outcome v ∈ F (B) we have that v ⊨ ℓ.

Example 1.7. For m = 2, some aggregation rule F and a profile B = {(1,0), (1,1)}, if F (B) =
{(1,1), (0,1)}, it is not strongly unanimous, as not every outcome vector satisfies x1, while every

ballot in B does satisfy x1. It could however still be weakly unanimous, as there is an outcome

in F (B) that satisfies x1; this depends on what F elects as outcome sets for the other profiles in

Mod(Γ)+.

Reinforcement

Reinforcement is a slightly more intricate axiom. Like homogeneity, it is concerned with the

composition of profiles.

Definition 1.7 (Reinforcement). We say that an aggregation rule F satisfies reinforcement if

for every three profiles B,B′,B′′ ∈Mod(Γ)+ where B =B′ +B′′ and F (B′) ∩ F (B′′) ≠ ∅, we have

that F (B) = F (B′) ∩ F (B′′).

12

Example 1.8. Form = 2, B = {(1, 1), (1, 1), (1, 0), (0, 0)},B′ = {(1, 1), (1, 0)} and B′′ = {(1, 1), (0, 0)},
we have that B = B′ +B′′, as seen in Example 1.5. Now suppose that for some aggregation rule

F , we have that F (B′) = {(1,1), (1,0)} and F (B′′) = {(1,1)}, then if F satisfies reinforcement, it

should hold that F (B) = {(1,1)}, as that is the intersection of the two outcome sets F (B′) and
F (B′′).

Monotonicity

The following axiom formalizes the idea that if some literal is elected under some profile, then it

should also be elected under a profile in which even more ballots satisfy that literal. Before we

state it, we need to properly define this scenario.

Definition 1.8. For two profiles B,B′ ∈Mod(Γ)+, we say that B′ is an ℓ-improvement of B if

there are ballots B ∈ B and B′ ∈ B′ such that B ∖ {B} = B′ ∖ {B′} where B and B′ are the same

ballot except for the fact that B′ ⊨ ℓ while B ⊭ ℓ.

Example 1.9. For m = 2, let B = {(1, 0), (0, 1), (1, 1)} and let B′ = {(0, 0), (0, 1), (1, 1)}. Then B′

is an ¬x1-improvement of B, as for B = (1,0) and B′ = (0,0), we have that B ∖ {B} = B′ ∖ {B′}
where B and B′ are the same ballot except for the fact that B′ ⊨ ¬x1 while B ⊨ x1, so B ⊭ ¬x1.

Now we are ready to state the axiom.

Definition 1.9 (Monotonicity). We say that an aggregation rule F is monotonic if for every two

profiles B,B′ ∈Mod(Γ)+ such that B′ is an ℓ-improvement of B, we have that if for every outcome

v ∈ F (B) it holds that v ⊨ ℓ, we also have that for every outcome v′ ∈ F (B′) it holds that v′ ⊨ ℓ.

Example 1.10. In Example 1.9 above, the profile B′ is an ¬x1-improvement of B. For an

aggregation rule F that satisfies monotonicity, suppose that F (B) = {(0,1)}, then it should also

hold that every outcome vector in F (B′) should reject x1 (have a 0 on the first coordinate), so

F (B′) = {(0,1)} would do, or any other outcome set in which every outcome rejects the first issue.

Majority-preservation

The next axiom states the idea that an aggregation rule should elect the outcomes that are agreed

upon by the majority of the ballots in the profile, e.g. if a majority of the ballots accepts the first

issue, then all outcomes should also accept the first issue. In order to state it formally, we require

some prerequisite definitions.

Definition 1.10. For a profile B ∈Mod(Γ)+ and a formula φ ∈ L(X), we define N(B, φ) to be the

number of ballots in B that make φ true. Formally, we get N(B, φ) ∶= ∣{B ∈ B ∣ B ⊨ φ}∣.

Example 1.11. Let n = 4, m = 3 and consider the profile B = {(1, 0), (1, 1), (0, 1), (0, 0)}. Then we

find that N(B, x1) = 2, while N(B, x1 ∨ x2) = 3.

Definition 1.11. We define the majority set to be the set of all literals in X∗ that are satisfied

by a strict majority of the ballot: m(B) ∶= {ℓ ∈X∗ ∣ N(B, ℓ) > ∣B∣
2
}.

A consistent outcome vector v ∈Mod(Γ) is a majority extension of m(B) if it satisfies all

literals in m(B). The set of majority extensions of m(B) is then defined as follows:

ext(m(B)) ∶= {v ∈ {0,1}m ∣ v ⊨ Γ and ∀ℓ ∈m(B) ∶ v ⊨ ℓ}.

13

We say that B is majority-consistent if ext(m(B)) ≠ ∅ , i.e. there is a vector satisfying both the

literals in ext(m(B)) and Γ.

Example 1.12. Let n = 4, m = 3 and let B = {(1,1,1), (1,0,1), (1,0,0), (0,0,0)}. Then m(B) =
{x1,¬x2} as both literals are satisfied by three ballots in B; a strict majority. Then we find that

ext(m(B)) = {(1,0,0), (1,0,1)} (assuming that Γ ≡ ⊺).

Example 1.13. Again, consider the example above but now let Γ = x2∨x3. Then the vector (1, 0, 0)
is no longer a consistent outcome, so we would have that ext(m(B)) = {(1,0,1)}.

Finally, we show an example of a profile that is not majority-consistent. This is an adaptation

of a famous paradox in judgment aggregation. The scenario in the example below is referred to as

the doctrinal paradox ; it is described in the work of Kornhauser and Sager [KS93].

Example 1.14. Let n = 3, m = 3, Γ = ¬(x1 ∧ x2 ∧ x3) and let B = {(1,1,0), (1,0,1), (0,1,1)}. We

then find that m(B) = {x1, x2, x3} as all issues are accepted by two of the three ballots. However,

there is no outcome that satisfies both Γ and all the literals in m(B), so ext(m(B)) = ∅. We

conclude that B is not majority-consistent.

Now we are ready to state the axiom.

Definition 1.12 (Majority-preservation). We say that an aggregation rule F is majority-

preserving if F (B) = ext(m(B)) whenever B ∈Mod(Γ)+ is majority-consistent.

Note here that an aggregation rule that satisfies majority-preservation will never output an

inconsistent outcome vector whenever the input profile is majority-consistent. We have defined it

in this way as we will only consider consistent aggregation rules in our final model.

Example 1.15. Let n = 4, m = 3, Γ = ⊺ and F be an aggregation rule that is majority-preserving.

Then for B = {(1,1,1), (1,0,1), (1,0,0), (0,0,0)}, it should hold that F (B) = {(1,0,0), (1,0,1)}.

Cancellation

The final axiom we introduce is cancellation. It considers the scenario where every issue gets the

exact same votes in some profile. In that scenario, the cancellation axiom proposes that the outcome

set should contain every consistent outcome vector.

Definition 1.13 (Cancellation). An aggregation rule F satisfies cancellation if Mod(Γ) ⊆ F (B)
for every profile B ∈Mod(Γ)+ such that N(B, x) = N(B,¬x) for every x ∈X.

Note here that N(B, x) = N(B,¬x) implies that N(B, x) = N(B,¬x) = 1
2
n. Then we find that

m(B) = ∅ so ext(m(B)) =Mod(Γ).

Example 1.16. Let n = 4, m = 3, Γ = x1 ∨ x2 and F be an aggregation rule that satisfies

cancellation. Then for B = {(0,1,1), (1,0,1), (1,0,0), (0,1,0)}, it should hold that F (B) ⊇
{(0,1,0), (1,0,0), (1,1,0), (0,1,1), (1,0,1), (1,1,1)}.

Remark 1.3. It is important to note here that cancellation is implied by majority-preservation. This

follows from the fact that whenever we have a profile B as described above, ext(m(B)) =Mod(Γ).
However, the majority-preservation axiom is very strong, and it not always desirable to adopt it

as a property of an aggregation rule. Sometimes, it might be better to offer a weaker alternative

axiom like cancellation, as will become clear later in this thesis.

14

Chapter 2

Expressing Axioms in L(O)

In Section 1.4, we have introduced several binary aggregation axioms. All of them are denoted as

conditions in a somewhat formal language; using universal and existential quantifiers to describe what

the outcome of an aggregation rule should look like. In this chapter, we introduce a propositional

language that allows us to rewrite the axioms using propositional formulas over a set of outcome

statements as propositional variables. In order to do so, we introduce axiom instances. Every

axiom is then simply a set of axiom instances, each of them describing what the aggregation rule

should behave like in a specific scenario. In the final section of this chapter, we define a set of these

formulas (each corresponding to an axiom instance) for each axiom, and show that an aggregation

rule satisfies this set of formulas if and only if it satisfies the axiom.

2.1 Outcome Statements

In the previous chapter, we were describing the possible outcome sets of an aggregation rule through

the satisfaction of axioms. In the following section, we define outcome statements, which will help

us reason more directly about the outcome sets of aggregation rules.

The idea of using outcome statements is based on the work of Boixel, Endriss and De Haan

[BEH22]. They define outcome statements for voting theory that narrow down the set of possible

outcomes given a certain input profile. In this thesis, we introduce a different type of outcome

statement, which considers what formulas the outcomes should satisfy rather than what the possible

outcome should be. This is a consequence of the fact that for binary aggregation, there are 22
m − 1

different possible (nonempty) outcome sets (where m is the number of issues): every binary vector

is either in the outcome or not. As a solution, we introduce an outcome statement that does not

directly describe the set of possible outcomes, but rather states what formulas are satisfied by the

set of outcomes, which allows us to write more compact outcome statements.

Definition 2.1. Let B ∈Mod(Γ)+ be a profile, let φ ∈ L(X) be a formula and let F be an aggregation

rule. A universal outcome statement is a tuple of the form JB, φK. We say that an aggregation

rule F satisfies an outcome statement JB, φK if every outcome in F (B) satisfies the formula φ,

where we recall that an outcome can be seen as a valuation on X. Formally, we define the following:

F ⊨ JB, φK ⇐⇒ ∀v ∈ F (B) ∶ v ⊨ φ.

Example 2.1. Let m = 3, let B ∈Mod(Γ)+ and let F be some aggregation rule such that F (B) =

15

{(1,0,1), (1,1,0), (1,0,0)}. Then it holds that F ⊨ JB, x1K as every outcome v ∈ F (B) satisfies x1.
It also holds that F ⊨ JB, x1 ∨ x2 ∨ x3K, but we have that F ⊭ JB, x2 ∨ x3K, as (1, 0, 0) ∈ F (B) while
(1,0,0) ⊭ x2 ∨ x3.

Definition 2.2. Building on Definition 2.1, we construct the set of all universal outcome statements.

There is a universal outcome statement for every profile in Mod(Γ)+ and formula in L(X):

O ∶= {JB, φK ∣ B ∈Mod(Γ)+ and φ ∈ L(X)}.

Now we define the propositional language L(O) over the set of universal outcome statements O.

Definition 2.3. Let JB, φK be a universal outcome statement with B ∈ Mod(Γ)+ and φ ∈ L(X);
then we have that JB, φK ∈ O. Let ψ and ρ be propositional formulas with variables from O, so

ψ, ρ ∈ L(O). We define the following semantics.

• F ⊨ JB, φK is defined in Definition 2.1,

• F ⊨ ¬ψ if and only if F ⊭ ψ,

• F ⊨ ψ ∧ ρ if and only if F ⊨ ψ and F ⊨ ρ,

• F ⊨ ψ ∨ ρ if and only if F ⊨ ψ or F ⊨ ρ,

• F ⊨ ψ → ρ if and only if F ⊭ ψ or F ⊨ ρ,

• F ⊨ ⊺ always,

• F ⊨ � never.

Note here that for every universal outcome statement of the form JB,�K ∈ O, we have that

JB,�K ≡ �, as there is no aggregation rule such that every vector in F (B) satisfies �.

Notation 2.1. From now on, we will use tuples of the form JB, φK to denote both universal outcome

statements in O and propositional variables in L(O).

Example 2.2. For B,B′ ∈ Mod(Γ)+ and φ,ψ ∈ L(X), the formula JB, φK → JB′, ψK is in L(O).
For an aggregation rule F with F ⊨ JB, φK→ JB′, ψK, the following holds:

(∃v ∈ F (B) ∶ v ⊭ φ) or (∀v′ ∈ F (B′) ∶ v′ ⊨ ψ).

This is equivalent to the following statement:

if (∀v ∈ F (B) ∶ v ⊨ φ) then (∀v′ ∈ F (B′) ∶ v′ ⊨ ψ);

if all outcomes under input B satisfy φ, then all outcomes under input B′ should satisfy ψ.

Upon closer inspection of the universal outcome statement and its negation, we define a dual

notion which will simplify our model later on.

Definition 2.4. Let JB, φK be some universal outcome statement. We define an existential

outcome statement as follows:

⟪B, φ⟫ ∶= ¬JB,¬φK.

The meaning of the existential outcome statement becomes clear in the following lemma.

16

Lemma 2.2. Let B ∈Mod(Γ)+, φ ∈ L(X) and F be an aggregation rule, then we find the following:

F ⊨ ⟪B, φ⟫ ⇐⇒ ∃v ∈ F (B) ∶ v ⊨ φ.

Proof. First, suppose that F ⊨ ⟪B, φ⟫. This means that F ⊨ ¬JB,¬φK, so F ⊭ JB,¬φK. Then we

find that there exists an outcome vector v ∈ F (B) such that v ⊭ ¬φ, but this is equivalent to saying

that v ⊨ φ, so we find that there exists an outcome vector v ∈ F (B) for which v ⊨ φ.
Conversely, suppose that there is an outcome vector v ∈ F (B) such that v ⊨ φ, then we find

that v ⊭ ¬φ, so not every outcome vector in F (B) makes ¬φ true, so by definition we find that

F ⊭ JB,¬φK, so F ⊨ ¬JB,¬φK. We conclude that F ⊨ ⟪B, φ⟫.

Example 2.3. Let m = 2, B ∈ Mod(Γ)+ and F be some aggregation rule such that F (B) =
{(1,0), (0,1)}. Then we have that F ⊨ ⟪B, x1⟫ and F ⊨ ⟪B,¬x1⟫ while F ⊭ JB, x1K and F ⊭
JB,¬x1K.

Because an aggregation rule can never output an empty set by definition, we find the following

lemma, which shows that the universal outcome statement implies the existential one.

Lemma 2.3. Let B ∈ Mod(Γ)+, φ ∈ L(X) and F be some aggregation rule, then the following

holds:

if F ⊨ JB, φK then F ⊨ ⟪B, φ⟫.

Proof. Because F (B) ≠ ∅ by definition, if all outcomes in F (B) satisfy a formula, then there is at

least one outcome in F (B) that satisfies it.

We conclude the section with an observation about the set of all existential and universal

outcome statements, which will become useful later on.

Definition 2.5. We define the set of all outcome statements as follows:

S ∶= O ∪ {⟪B, φ⟫ ∣ B ∈Mod(Γ)+ and φ ∈ L(X)}.

Elements of this set are either universal or existential outcome statements; they are denoted by s ∈ S.
From now on, we simply refer to them as outcome statements. We denote a set of outcome

statements by S.

Definition 2.6. Let L(O) = O ∪ {¬JB, φK ∣ JB, φK ∈ O} be the set of literals in the language L(O).

In the following lemma, we show the relation between the literals in L(O) and outcome

statements.

Lemma 2.4. Every outcome statement is in L(O). Additionally, for every element in L(O), there
exists an outcome statement that is equivalent to this element.

Proof. It is immediately clear that any universal outcome statement is in L(O). Now consider an

existential outcome statement ⟪B, φ⟫. By definition, it holds that ⟪B, φ⟫ = ¬JB,¬φK. As we have

that ¬JB,¬φK ∈ L(O) by definition of L(O), we are done.

Now we prove the second claim. For every universal outcome statement in L(O) it is immediately

clear that there exists an equivalent outcome statement, namely the universal outcome statement

itself. Now consider a negative literal ¬JB, φK ∈ L(O). Then we find that ¬JB, φK ≡ ⟪B,¬φ⟫,
because ⟪B,¬φ⟫ = ¬JB,¬¬φK. This concludes the proof of the second claim.

17

2.2 Axioms and Axiom Instances in L(O)
The following definitions are inspired by Section 2.2 of the paper by Boixel and Endriss [BE20].

Building on the three general requirements they offer for axiom instances, we provide a definition

of an axiom instance for binary aggregation.

Grandi and Endriss [GE13] have defined a first order language to express axioms within

preference aggregation. In this section, we will define a propositional language to express the binary

aggregation axioms.

Intuitively, an axiom is a normative principle describing a specific property of an aggregation

rule. We have introduced several examples of such axioms in Section 1.4. The propositional

language in Section 2.1 allows us to easily encode these axioms as sets of formulas. In this section,

we describe this alternative way to denote axioms. We view an axiom as a set of axiom instances

that describe how an aggregation rule should behave in a specific scenario, i.e. for one or more

specific profiles. The axiom itself is then simply the union of all these local descriptions, which

gives us a full description of the behavior of an aggregation rule. This idea is encapsulated in the

following definition.

Definition 2.7. An axiom instance A is a propositional formula with variables from O, so

A ∈ L(O). An axiom A is a set of axiom instances. For an aggregation rule F and an axiom

instance A ∈ L(O), we say that F satisfies A if F ⊨ A. Consequently, we say that F satisfies an

axiom A if F ⊨ A for all A ∈ A; by abuse of notation, we also write F ⊨ A.

As discussed earlier, an axiom instance A of an axiom A is a specific instantiation of that axiom,

describing for a particular set of profiles (related through the axiom) how the aggregation rule

should elect the outcome.

Example 2.4. As an example of a very basic axiom, suppose we have the axiom that states that for

every aggregation rule, every outcome under any profile should accept the first issue, x1. Then an

axiom instance of this axiom would be that for some specific profile, every outcome of the aggregation

rule under that input should accept x1. We might encode this axiom as the following set:

A = {JB, x1K ∣ B ∈Mod(Γ)+}.

Then we find that an aggregation rule F satisfies the axiom described above if and only if F ⊨ A.

Definition 2.8. The interpretation of an axiom instance A is the set of aggregation rules that

satisfy A, we denote it as follows:

I(A) ∶= {F ∶Mod(Γ)+ → 2{0,1}
m

∖ {∅} ∣ F ⊨ A}.

The interpretation of an axiom A is the set of aggregation rules that satisfy A, we denote it

similarly:

I(A) ∶= {F ∶Mod(Γ)+ → 2{0,1}
m

∖ {∅} ∣ F ⊨ A}.

For an integrity constraint Γ, we define the consistent interpretations as follows:

IΓ(A) ∶= I(A)∩{F ∣ F ∶Mod(Γ)+ → 2Mod(Γ)∖{∅}} and IΓ(A) ∶= I(A)∩{F ∣ F ∶Mod(Γ)+ → 2Mod(Γ)∖{∅}}.

These sets denote the subsets of satisfying aggregation rules that are also consistent.

18

Example 2.5. If we reconsider Example 2.4, I(A) is exactly the set of all aggregation rules that

satisfy the described axiom. For an integrity constraint Γ, IΓ(A) is the set of consistent aggregation

rules that satisfy the described axiom.

We note the following about the relation between the interpretation of an axiom and that of

the axiom instances.

Remark 2.1. For an axiom A consisting of axiom instances A, note that I(A) = ∩A∈AI(A), as
I(A) is exactly the set of aggregation rules that satisfy every axiom instance A ∈ A. From this

observation it also immediately follows that if A ∈ A, it holds that I(A) ⊆ I(A), as any aggregation

rule that satisfies A also satisfies A.

We make another remark concerning the generality of the definition of an axiom.

Remark 2.2. Every set S of outcome statements is in fact an axiom, as it is a set consisting of

axiom instances, namely formulas in L(O). More specifically, S contains only literals from L(O).
This follows from the fact that every outcome statement is in L(O) (see Lemma 2.4). Because of

this, we may also use I(S) to denote the interpretation of the set S.

In this thesis, we will often consider different sets of axioms; hence the following definition.

Definition 2.9. For a set of axioms A, we may generalize Definition 2.8 and define the interpre-

tation of this set:

I(A) ∶= ⋂
A∈A

I(A).

The consistent interpretation is then defined as follows:

IΓ(A) ∶= I(A) ∩ {F ∣ F ∶Mod(Γ)+ → 2Mod(Γ) ∖ {∅}}.

When justifying an outcome statement in Chapter 4 of this thesis, we will never use a complete

axiom. Instead, we use one or more axiom instances from each axiom in some set A. The following

definition comes in handy. Note here that we denote a set of axiom instances by A, which we

have earlier used to denote an axiom. Syntactically, every set of axiom instances can be seen as an

axiom. However, in the following definition, we do not wish to see A as an axiom, but rather as a

collection of axiom instances.

Definition 2.10. For a set of axiom instances A and a set of axioms A, we write A ◁ A if every

axiom instance in A is an instance of some axiom in A, i.e. for every axiom instance A ∈ A there

is an axiom A′ ∈ A such that A ∈ A′.

Example 2.6. Suppose we have three axioms A1,A2 and A3. Then for any three axiom instances

A1 ∈ A1, A2 ∈ A2 and A3 ∈ A3, we have that for A = {A1,A2,A3} and A = {A1,A2,A3}, it holds
that A ◁ A. It also holds that {A1,A2} ◁ A.

We conclude the section by defining several cases of entailment.

Definition 2.11. Let A be a set of axiom instances and let s ∈ S be an outcome statement. We

write A ⊨ s if every aggregation rule that satisfies A also satisfies s:

A ⊨ s ⇐⇒ I(A) ⊆ I(s).

19

For an integrity constraint Γ, we define the following:

A ⊨Γ s ⇐⇒ IΓ(A) ⊆ IΓ(s).

Example 2.7. Let m = 3, B ∈Mod(Γ)+, Γ = x1, A = {JB, x2K, JB, (x1 ∧x2) → x3K} and s = JB, x3K.
Then it does not hold that A ⊨ s, as for an aggregation rule F with F (B) = {(0, 1, 0)}, we find that

F ∈ I(A) while F ∉ I(s), so I(A) /⊆ I(s). However, it is the case that A ⊨Γ s: let F ∈ IΓ(A) and let

v ∈ F (B), then v ⊨ x1 as F is consistent and v ⊨ x2 as F ⊨ JB, x2K. Now we find that v ⊨ x1 ∧ x2
and because F ⊨ JB, (x1 ∧ x2) → x3K, we conclude that v ⊨ x3. As we took an arbitrary outcome

v ∈ F (B), we may now conclude that F ⊨ JB, x3K, so F ∈ IΓ(s).

In Section 3.2, we will consider the situation where an outcome statement follows from the

combination of an axiom instance and a set of other outcome statements. We already define it here.

Definition 2.12. Let S be a set of outcome statements (see Remark 2.2), let A ∈ L(O) be an axiom

instance and let s ∈ S be an outcome statement. Then we write S,A ⊨ s if every aggregation rule

that satisfies both S and A also satisfies s, i.e.

S,A ⊨ s ⇐⇒ I(S) ∩ I(A) ⊆ I(s).

Example 2.8. Let S = {JB, φK} and let A = JB, φK→ JB′, ψK for B,B′ ∈Mod(Γ)+ and φ,ψ ∈ L(X).
Then, for s = JB′, ψK, it holds that S,A ⊨ s: let F be an aggregation rule such that F ∈ I(S) ∩ I(A),
then F ⊨ JB, φK and F ⊨ JB, φK → JB′, ψK, so clearly we also have that F ⊨ JB′, ψK. We conclude

that F ∈ I({JB′, ψK}).

2.3 Rewriting the Binary Aggregation Axioms in L(O)
In the following section, we show how to rewrite the axioms from Section 1.4 as axioms in the

language of L(O). Every axiom is a set of axiom instances, which are propositional formulas in

L(O), as discussed in the previous section. First, we provide one more definition which will help us

to express more specific statements in L(O).

Definition 2.13. For an aggregation rule F , a profile B ∈ Mod(Γ)+ and an outcome vector

v ∈ F (B), we define the literal set

Lv ∶= {x ∣ x ∈X and v ⊨ x} ∪ {¬x ∣ x ∈X and v ⊨ ¬x} = {ℓ ∣ ℓ ∈X∗ and v ⊨ ℓ}.

Now let the formula

φv ∶= ⋀
ℓ∈Lv

ℓ

describe the conjunction of every choice made in the outcome v. For every x ∈X, v satisfies either

x or ¬x, so φv is a formula that precisely describes the outcome vector v. Consequently, let

φF (B) ∶= ⋁
v∈F (B)

φv

describe the disjunction of the outcome vectors in F (B).

Example 2.9. Let m = 3 and consider some aggregation rule F and profile B such that F (B) =

20

{(1, 1, 0), (1, 1, 1), (0, 0, 0)}. Then for v = (1, 1, 0), we would have that φv = x1 ∧ x2 ∧ ¬x3. Addition-

ally, we find that φF (B) = (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2 ∧ ¬x3).

Note that F ⊨ JB, φF (B)K by definition, as any outcome vector in F (B) satisfies one of the

formulas in the disjunction φF (B). Also note that for any v ∈ F (B) we have that F ⊨ ⟪B, φv⟫, as
there is an outcome vector in F (B) that satisfies φv. Finally, note that we may also consider the

formulas of the form φB for a ballot B ∈Mod(Γ), using the set LB instead of Lv, where we note

that B is also a binary vector of size m. We state two lemmas concerning these formulas.

Lemma 2.5. For two outcome vectors v,w ∈ {0,1}m, if v ⊨ φw, then v = w.

Proof. Suppose v ⊨ φw but v ≠ w for contradiction. That means that the vectors disagree on some

issue x ∈X. Suppose without loss of generality that w ⊨ x while v ⊨ ¬x; the other way around is

proven analogously. Then we find that x ∈ Lw, which implies that v ⊨ x, as v ⊨ φw. This gives us

that v ⊨ x ∧ ¬x, which contradicts the fact that any vector satisfies either x or ¬x, and not both.

We conclude that v = w.

Lemma 2.6. Let B,B′ ∈Mod(Γ)+ and let F be an aggregation rule. Then F ⊨ JB, φF (B′)K implies

that F (B) ⊆ F (B′).

Proof. Suppose that F ⊨ JB, φF (B′)K. This means that any outcome vector in F (B) satisfies φF (B′).

Now take any outcome vector v ∈ F (B). Then it holds that v ⊨ φF (B′), which means that there is

a formula φv′ with v
′ ∈ F (B′) such that v ⊨ φv′ . But now we may apply Lemma 2.5 and find that

v = v′, so v ∈ F (B′). We conclude that F (B) ⊆ F (B′).

Now we are ready to rewrite the axioms from Section 1.4 in the language L(O). For every axiom

we rewrite, we immediately show that the original axiom and the rewritten version are equivalent.

Faithfulness

The faithfulness axiom in L(O) is denoted as follows:

AFai ∶= {JB, φBK ∣ B ∈Mod(Γ)1 and B = {B} for some B ∈Mod(Γ)}.

Note here that for any profile of size 1, AFai contains a formula ensuring that the outcome should be

exactly the single ballot submitted in the profile. Now we show that the axiom above is equivalent

to the faithfulness axiom introduced in Section 1.4.

Lemma 2.7 (Faithfulness). For any aggregation rule F , it holds that F ⊨ AFai if and only if F is

faithful.

Proof. For the left to right implication, suppose that F ⊨ AFai. Now let B ∈Mod(Γ)1 with B = {B}.
Then it holds that F ⊨ JB, φBK, so for any vector v ∈ F (B) it should hold that v ⊨ φB . Now, note

that by Lemma 2.5, we get that v = B for any outcome v ∈ F (B). Since F (B) cannot be empty, we

may conclude that F (B) = {B}, which shows that F is indeed faithful.

For the other direction, suppose that F is faithful, then it immediately follows that for any

B ∈ Mod(Γ)1 with B = {B} we have that F ⊨ JB, φBK, as F (B) = {B}. This concludes our

proof.

21

Homogeneity

For homogeneity, we find the following axiom:

AHom ∶= {JB, φK↔ JkB, φK ∣ k ∈ N>0, φ ∈ L(X) and B, kB ∈Mod(Γ)+}.

Lemma 2.8 (Homogeneity). For any aggregation rule F , it holds that F ⊨ AHom if and only if F

is homogeneous.

Proof. First, suppose that F ⊨ AHom. Now let B ∈Mod(Γ)+ and consider the profile kB ∈Mod(Γ)+

for an arbitrary k ∈ N>0 (for which kB ∈Mod(Γ)+). As we trivially have that F ⊨ JB, φF (B)K and F ⊨

JkB, φF (kB)] and we have that F ⊨ AHom by assumption, we may conclude that F ⊨ JB, φF (kB)K
and F ⊨ JkB, φF (B)K too. Then Lemma 2.6 gives us both F (B) ⊆ F (kB) and F (kB) ⊆ F (B)
respectively, which proves that F (B) = F (kB). As we had taken an arbitrary profile B and integer

k, we have now proven that F is homogeneous.

Now suppose that F is homogeneous and consider B ∈Mod(Γ)+, k ∈ N>0 and kB ∈Mod(Γ)+.
As F is homogeneous, we find that F (B) = F (kB), so it is immediately clear that for any formula

φ ∈ L(X), we have that F ⊨ JB, φK if and only if F ⊨ JkB, φK. We conclude that F ⊨ AHom.

Unanimity

Now we define both weak and strong unanimity. Recall that weak unanimity states that whenever

every ballot in a profile agrees on an issue, then there should be at least one outcome that also

agrees on this issue. This is compactly expressible with the existential outcome statement we

defined earlier:

AWeak-Un ∶= {⟪B, ℓ⟫ ∣ B ∈Mod(Γ)+, ℓ ∈X∗ and ∀B ∈ B ∶ B ⊨ ℓ}.

The axiom above contains an existential outcome statement for every profile in which everyone

agrees on accepting or rejecting some issue, forcing the fact that there should be at least one

outcome that agrees with the ballots in the profile (on that particular issue). We show that both

definitions of weak unanimity are equivalent.

Lemma 2.9 (Weak Unanimity). For any aggregation rule F , it holds that F ⊨ AWeak-Un if and

only if F is weakly unanimous.

Proof. Suppose that F ⊨ AWeak-Un, now consider any profile B and literal ℓ ∈X∗ such that for all

B ∈ B we have that B ⊨ ℓ. Then our assumption gives us that F ⊨ ⟪B, ℓ⟫, so there is at least one

outcome vector in F (B) that satisfies ℓ. We conclude that F is weakly unanimous.

For the other direction, if F is weakly unanimous, it is immediately clear that F ⊨ ⟪B, ℓ⟫ for
every profile B ∈Mod(Γ)+ and literal ℓ ∈X∗ such that every ballot B ∈ B satisfies ℓ. This implies

that F ⊨ AWeak-Un, which concludes our proof.

Strong unanimity can be written as the dual of weak unanimity, where we use the universal

outcome statement instead of the existential one:

AStrong-Un ∶= {JB, ℓK ∣ B ∈Mod(Γ)+, ℓ ∈X∗ and ∀B ∈ B ∶ B ⊨ ℓ}.

Lemma 2.10 (Strong Unanimity). For any aggregation rule F , it holds that F ⊨ AStrong-Un if

and only if F is strongly unanimous.

22

Proof. As for weak unanimity, we find that AStrong-Un exactly encapsulates the condition that states

that whenever every ballot in a profile agrees on one literal, then all outcomes should also agree

(with the ballots) on that literal. We conclude that the proof in both directions is immediate.

Reinforcement

As reinforcement is an axiom of a more intricate nature, it is not surprising that the equivalent

axiom that we will define in this section is a bit more complicated than some of the other axioms.

However, there is still a clear correspondence between the axiom as stated in Section 1.4 and the

axiom introduced below:

ARei ∶= {(⟪B′, φv⟫ ∧ ⟪B′′, φv⟫) →
(((JB′, φK ∨ JB′′, φK) → JB, φK)∧
((⟪B′, φw⟫ ∧ ⟪B′′, φw⟫) → ⟪B, φw⟫))
∣ B,B′,B′′ ∈Mod(Γ)+,B = B′ +B′′, φ ∈ L(X) and v,w ∈ {0,1}m}.

Before we prove the equivalence, we provide some intuition. The axiom above can be read as follows:

whenever the formula on the first line is satisfied, the conjunction of the formulas on the second

and third line should also be satisfied. For an aggregation rule F , the formula on the first line is

satisfied if there is an outcome v ∈ {0,1}m that is in both F (B′) and F (B′′), which is equivalent

to the reinforcement condition that states that F (B′) ∩ F (B′′) ≠ ∅. If this condition is satisfied,

reinforcement states that F (B) = F (B′) ∩ F (B′′). In ARei, we express both inclusions separately.

The implication on the second line states that F (B) ⊆ F (B′)∩F (B′′); this will follow from Lemma

2.6. The actual equivalence will become clear in the proof of the lemma below. Finally, the formula

on the third line describes the fact that F (B′) ∩ F (B′′) ⊆ F (B) by stating that whenever some

vector is in both F (B′) and F (B′′), it should also be in F (B).
Now, we provide the proof of the equivalence of the two reinforcement definitions.

Lemma 2.11 (Reinforcement). For any aggregation rule F , it holds that F ⊨ ARei if and only if

F satisfies reinforcement.

Proof. First, suppose that F ⊨ ARei and consider the profiles B,B′,B′′ ∈ Mod(Γ)+ such that

B = B′ +B′′ and F (B′) ∩ F (B′′) ≠ ∅. We need to show that F (B′) ∩ F (B′′) = F (B) as that

would prove that F satisfies reinforcement. Note that we have that F ⊨ ⟪B′, φv⟫ ∧ ⟪B′′, φv⟫
for some v ∈ {0,1}m as F (B′) ∩ F (B′′) ≠ ∅ by assumption, so there is an outcome vector v ∈
F (B′) ∩ F (B′′) and for that v it holds that F ⊨ ⟪B′, φv⟫ ∧ ⟪B′′, φv⟫. Then, as F ⊨ ARei, we

first find that F ⊨ (JB′, φK ∨ JB′′, φK) → JB, φK for any φ ∈ L(X). If we let φ = φF (B′), we find

that F ⊨ JB′, φF (B′)K ∨ JB′′, φF (B′)K (as F ⊨ JB′, φF (B′)K by definition) so we then also have that

F ⊨ JB, φF (B′)K. Analogously, we find that F ⊨ JB, φF (B′′)K. Now Lemma 2.6 gives us that both

F (B) ⊆ F (B′) and F (B) ⊆ F (B′′), so F (B) ⊆ F (B′) ∩ F (B′′).
For the inclusion in the other direction, suppose that w ∈ F (B′) ∩ F (B′′). Then we have that

F ⊨ ⟪B′, φw⟫ ∧ ⟪B′′, φw⟫ and we may use the second part of the consequent in ARei (the formula

on the third line) and find that F ⊨ ⟪B, φw⟫. This means that there is an outcome w′ ∈ F (B) such
that w′ ⊨ w; by Lemma 2.5 we then get that w′ = w, so w ∈ F (B). Now we may conclude that

F (B′) ∩ F (B′′) ⊆ F (B) so F (B′) ∩ F (B′′) = F (B), which proves that F satisfies reinforcement.

23

For the other direction, suppose that F satisfies reinforcement and consider any profiles

B,B′,B′′ ∈Mod(Γ)+ for which B = B′ +B′′, any vectors v,w ∈ {0,1}m and any formula φ ∈ L(X).
Suppose that F ⊨ ⟪B′, φv⟫ ∧ ⟪B′′, φv⟫, then we need to prove that F ⊨ ((JB′, φK ∨ JB′′, φK) →
JB, φK)∧((⟪B′, φw⟫∧⟪B′′, φw⟫) → ⟪B, φw⟫). As F ⊨ ⟪B′, φv⟫∧⟪B′′, φv⟫, we know that v ∈ F (B′)
and v ∈ F (B′′) (using Lemma 2.5), so F (B′) ∩ F (B′′) ≠ ∅. As F satisfies reinforcement, we may

conclude that F (B′) ∩ F (B′′) = F (B). Now suppose that F ⊨ JB′, φK ∨ JB′′, φK, then either every

vector in F (B′) satisfies φ, or every vector in F (B′′) does. As F (B) ⊆ F (B′) and F (B) ⊆ F (B′′)
(because F (B) = F (B′) ∩ F (B′′)), both cases immediately give us that F ⊨ JB, φK, so it holds that

F ⊨ (JB′, φK ∨ JB′′, φK) → JB, φK. Now suppose that F ⊨ ⟪B′, φw⟫ ∧ ⟪B′′, φw⟫, then we find that

w ∈ F (B′) ∩ F (B′′) (again by using Lemma 2.5). Now as F (B′) ∩ F (B′′) = F (B), we find that

w ∈ F (B), so F ⊨ ⟪B, φw⟫ and we are done. We conclude that F ⊨ ARei.

Monotonicity

As seen in Section 1.4, the essential part of the monotonicity axiom is the definition of an ℓ-

improvement. As we also use that definition in our encoding, the AMon axiom is relatively simple.

AMon ∶= {JB, ℓK→ JB′, ℓK ∣ B,B′ ∈Mod(Γ)+, ℓ ∈X∗ and B′ is an ℓ-improvement of B}.

As the axiom above is almost equivalent to the axiom introduced in Section 1.4, the proof is very

short.

Lemma 2.12 (Monotonicity). For any aggregation rule F , it holds that F ⊨ AMon if and only if

F is monotonous.

Proof. Monotonicity states that, for any ℓ ∈X∗ and any ℓ-improvement B′ of B, if every outcome

in F (B) satisfies ℓ, then every outcome in F (B′) satisfies ℓ. Note that this is exactly what is

written in AMon, so the proof is immediate.

Majority-preservation

For majority-preservation, we want to model the fact that for any majority-consistent profile B, we

should have that F (B) = ext(m(B)). Before we state the axiom, we define the following formula,

analogous to the definition of φF (B):

φext(m(B)) ∶= ⋁
v∈ext(m(B))

φv,

where we recall that φv is the conjunction of all literals that v satisfies (see Definition 2.13). Now

we are ready to rewrite the axiom:

AMaj ∶={⟪B, φv⟫ ∣ B ∈Mod(Γ)+, v ∈ ext(m(B))}
∪{JB, φext(m(B))K ∣ B ∈Mod(Γ)+ and ext(m(B)) ≠ ∅}.

Note that the first part ensures that any majority extension will be in the outcome set (if there is

any), while the second part ensures that the outcome set is a subset of the set of majority extensions.

Also note that if a profile B is not majority-consistent, there are no formulas of the form ⟪B, φv⟫
or JB, φext(m(B))K in AMaj . Now we prove that the axiom is correctly rewritten.

24

Lemma 2.13 (Majority-preservation). For any aggregation rule F , it holds that F ⊨ AMaj if and

only if F is majority-preserving.

Proof. First suppose that F ⊨ AMaj and let B ∈Mod(Γ)+ be majority-consistent. We want to prove

that F (B) = ext(m(B)), because then we have shown that F is majority-preserving. First note

that for every v ∈ ext(m(B)), we have that F ⊨ ⟪B, φv⟫, and for the outcome vector w ∈ F (B) for
which w ⊨ φv, Lemma 2.5 gives us that w = v, so v ∈ F (B). This gives us that ext(m(B)) ⊆ F (B).
Now note that F ⊨ JB, φext(m(B))K by the second part of AMaj . Now if we follow the proof of

Lemma 2.6 but substitute φext(m(B)) for φF (B′), we find that F (B) ⊆ ext(m(B)). We conclude

that F (B) = ext(m(B)), so we have proven that F is majority-preserving.

For the implication from right to left, suppose that F is majority-preserving. Recall that for

any profile B that is not majority-consistent, there will not be any formulas of the form ⟪B, φv⟫ or

JB, φext(m(B))K in AMaj . Now suppose B is majority-consistent, then as F is majority-preserving,

we know that F (B) = ext(m(B)). Then it is immediately clear that for any v ∈ ext(m(B)) we
have that F ⊨ ⟪B, φv⟫, as v ∈ ext(m(B)) implies that v ∈ F (B). It also evidently holds that

F ⊨ JB, φext(m(B))K, as φext(m(B)) = φF (B). We conclude that F ⊨ AMaj and we are done.

Cancellation

Finally, we rewrite the cancellation axiom and show that it is equivalent to the original definition.

We define it as follows:

ACan ∶= {⟪B, φv⟫ ∣ B ∈Mod(Γ)+, v ∈Mod(Γ) and ∀x ∈X ∶ N(B, x) = N(B,¬x)}.

Now we provide the final equivalence.

Lemma 2.14 (Cancellation). For any aggregation rule F , it holds that F ⊨ ACan if and only if F

satisfies cancellation.

Proof. First suppose that F ⊨ ACan and let B ∈Mod(Γ)+ such that N(B, x) = N(B,¬x) for every
x ∈ X. Then as F ⊨ ACan, we find that F ⊨ ⟪B, φv⟫ for every v ∈Mod(Γ). From Lemma 2.5 we

may then conclude that v ∈ F (B) for every v ∈Mod(Γ), so Mod(Γ) ⊆ F (B) which proves that F

satisfies cancellation.

Now suppose that F satisfies cancellation and consider a profile B ∈ Mod(Γ)+ such that

N(B, x) = N(B,¬x) for every x ∈X. Then we find that Mod(Γ) ⊆ F (B), so for every v ∈Mod(Γ)
it holds that F ⊨ ⟪B, φv⟫. We conclude that F ⊨ ACan.

2.4 Discussion

In this chapter, we have defined outcome statements for binary aggregation. They offer an alternative

for the outcome statements defined by Boixel et al. [BEH22], who define an outcome statement (for

voting theory) as a tuple ⟨≻N ,O⟩, where ≻N is a profile (of preferences) and O is a set of possible

outcome sets; a possible outcome set here is a subset of the candidates. The idea is then that

whenever a voting rule satisfies such a statement, the outcome set of that rule under input profile

≻N should be one of the possible outcome sets in O.
As already noted in the introduction of this chapter, there are 22

m − 1 possible outcomes

(without taking the integrity constraint into account). Because of this, the direct translation of

25

their definition of outcome statements to binary aggregation is an inconvenient way of describing

aggregation rules. For example, if we want to describe the set of outcome sets where every outcome

vector satisfies x1, we should consider all possible subsets of binary vectors that start with a 1; we

would need to state the 22
m−1 − 1 possible outcome sets. We conclude that the direct translation of

the definition of outcome statements for voting theory by Boixel et al. [BEH22] would not suffice.

In Definition 2.1, we offered an alternative definition. Instead of stating what the outcome set

should be, our definition describes what the outcome set should look like, i.e. what formulas the

outcome vectors should satisfy. This allows for a more readable and intuitive way of describing the

behavior of an aggregation rule. As is seen in Section 2.3, these outcome statements contain all the

expressive power that we need, and the duality of the existential and universal outcome statements

allows us to compactly denote the binary aggregation axioms in an intuitive manner.

It is important to note here that we could still express the direct translation of the voting

theory outcome statements within our own adapted definition. For an aggregation rule F , a profile

B ∈Mod(Γ)+ and a set of possible outcome sets O ⊆ 2{0,1}m ∖ {∅}, we find the following:

F satisfies ⟨B,O⟩ ⇐⇒ F ⊨ ⋁
O∈O
((⋀

v∈O
⟪B, φv⟫) ∧ JB, φOK),

where we make use of Definition 2.13. Here we note that F ⊨ (⋀v∈O⟪B, φv⟫) ∧ JB, φOK if and only

if F (B) = O. We conclude that our definition is a generalization of the definition proposed by

Boixel et al. [BEH22].

26

Chapter 3

The Tableau Method

In Chapter 4, we will define both unstructured and structured justifications. In this chapter, we

introduce a tableau-based calculus, which will serve as a means of structuring an unstructured

justification through the use of a graph, or more specifically: a tree. The specific tree that we will

define in this chapter, we call a tableau. Every node in the tableau represents a set of outcome

statements and each edge represents some sort of inference in which we add or alter some outcome

statement. In the construction of such a tableau, we start off with a single root node corresponding

to a set of outcome statements and then gradually expand the tableau by adding new nodes. This

chapter is based on the work of Boixel, Endriss and De Haan [BEH22], who have defined such a

calculus to obtain structured justifications for voting theory. However, we introduce a different set

of expansion rules and our notion of an outcome statement is different from theirs. Other than

that, the general structure of the method remains the same.

3.1 Introduction to Tableaux

The tableau method is a proof procedure that can be used to show the unsatisfiability of one or

more logical formulas through the use of a set of inference rules; see the work of D’Agostino, Gabbay,

Hähnle and Posegga [DAg+13] for an extensive description of this method. When using the tableau

method, one is concerned with the construction of a tableau, which is a dynamical mathematical

object. In principle, a tableau is a graph with some extra properties, which will be set out later

on in the formal definition. Every node in the graph corresponds to a set of formulas, and every

edge in the graph corresponds to an expansion rule. A tableau is constructed gradually by applying

expansion rules and thereby expanding the tableau. In a tableau for classical propositional logic,

as defined by D’Agostino [DAg13], an example of such an expansion rule could be: if we are in

some node which is labeled with a set of formulas that contains the formula p ∧ q, we may expand

the tableau by drawing an edge from this node to a new node containing the separate formulas p

and q instead of p ∧ q, see Figure 3.1. Another example is the expansion rule for a disjunction of

formulas, see Example 3.2. This rule illustrates a case distinction: if p∨ q holds, then either p holds

or q holds.

27

S = {p ∧ q, p→ q,¬r}

S′ = {p, q, p→ q,¬r}

Figure 3.1: Expansion rule for conjunction

S = {p ∨ q, p→ r}

S′ = {p, p→ r} S′′ = {q, p→ r}

Figure 3.2: Expansion rule for disjunction

In general, we instantiate such a tableau with a single node that corresponds to an initial set of

formulas. Consequently, we start expanding the tableau by gradually applying expansion rules.

In this thesis, the tableau method will be used to prove that there is no consistent aggregation

rule that satisfies a certain set of outcome statements in combination with a set of axiom instances.

We initialize a tableau by defining a single node that is labeled with this set of outcome statements.

This node we call the root node. Then, we apply expansion rules in order to add new nodes to the

tableau. Every node in the tableau is labeled with a set of outcome statements. In any node S,

we consider the set I(S) of aggregation rules that satisfy the set of outcome statements S. The

goal is to end up with a tree such that all the leaf nodes correspond to sets of outcome statements

that are clearly inconsistent, which means that all of these sets should contain a statement of the

form JB,�K or ⟪B,�⟫. This we call a closed tableau. If we can construct such a tableau, we may

then conclude that there is no consistent aggregation rule that satisfies the set that we used to

instantiate the tableau (in combination with the axiom instances that appear in the tableau).

Formally, a tableau is defined as follows.

Definition 3.1. A tableau T is a tree with exactly one root node, while all other nodes have an

in-degree of 1. Every node is labeled with a set S of outcome statements, and every edge is labeled

with an expansion rule. We label the root node of the tableau with the set S. The root node is

always labeled with a finite set.

3.2 The Expansion Rules

In this section, we define the set of expansion rules which we will be using in our tableaux. We

define our expansion rules given a set of axiom instances. We distinguish seven different rules.

Some of them will simply expand the tableau by adding an extra outcome statement to the set

corresponding to some leaf node, while others will actually reorganize the set of outcome statements,

e.g. by rewriting some formula in some outcome statement. The expansion rules are based the

work of Boixel et al. [BEH22].

Definition 3.2. Let A be a set of axiom instances. We define the ways to expand a tableau with

new nodes and edges using expansion rules. Every rule will expand a branch in the tableau that

ends in a leaf node S by introducing one or more child nodes (with corresponding directed edges

from S to the newly introduced nodes). If it is clear or irrelevant which branch is expanded, we

might also simply speak of expanding the tableau (instead of a specific branch).

Let S be a leaf node of some tableau T . We define the following expansion rules:

• Axiom-driven expansion rule: For any instance A ∈ A, profile B ∈Mod(Γ)+ and formula

28

φ ∈ L(X) such that S,A ⊨ JB, φK (see Definition 2.12), we may expand the branch ending in

S with a node S′ = S ∪ {JB, φK}, given that I(S′) ⊊ I(S).

Analogously, if S,A ⊨ ⟪B, φ⟫, we may expand the branch ending in S with a node S′ =
S ∪ {⟪B, φ⟫}, given that I(S′) ⊊ I(S).

• Constraint-driven expansion rule: For any propositional formula φ ∈ L(X) such that

Γ ⊨ φ and for any profile B ∈Mod(Γ)+, we may expand the branch ending in S with a node

S′ = S ∪ {JB, φK}, given that I(S′) ⊊ I(S).

• Branching rule: For any profile B ∈ Mod(Γ)+ and formula φ ∈ L(X), we may expand

the branch ending in S with two new nodes S′ = S ∪ {JB, φK} and S′′ = S ∪ {⟪B,¬φ⟫} or

S′ = S ∪ {JB,¬φK} and S′′ = S ∪ {⟪B, φ⟫}, given that in either case, both I(S′) ⊊ I(S) and
I(S′′) ⊊ I(S).

• Simplification rule: For any JB, φK, JB, ψK ∈ S, we may expand the branch ending in S by

adding a node S′ = (S ∖ {JB, φK, JB, ψK}) ∪ {JB, φ ∧ ψK}.

• Rewrite rule: For any JB, φK ∈ S and formula ψ ∈ L(X) such that ψ ≡ φ and L(ψ) < L(φ),
we may expand the branch ending in S by adding a node S′ = (S ∖ {JB, φK}) ∪ {JB, ψK}.

We may do the same for outcome statements of the form ⟪B, φ⟫.

• Witness rule: For any outcome statement JB, φK ∈ S, we may expand the branch ending

in S by adding a node S′ = S ∪ {⟪B, φ⟫}, given that there is no statement in S of the form

⟪B, ψ⟫ with ψ ≡ φ.

• Refinement rule: For any ⟪B, φ⟫, JB, ψK ∈ S, we may expand the branch ending in S by

adding a node S′ = S ∪ {⟪B, φ∧ψ⟫}, given that there is no statement in S of the form ⟪B, ρ⟫
with ρ ≡ φ ∧ ψ.

The definition above is rather elaborate, so we will extensively illustrate its workings with

examples.

Axiom-driven Expansion Rule

The first expansion rule is the axiom-driven expansion rule. The idea of this rule is that we can

add outcome statements that are a consequence of the axiom instances in A. The condition at

the end ensures that we will only add outcome statements that actually narrow down the number

of aggregation rules that satisfy the set of outcome statements; otherwise we could infinitely add

trivial outcome statements. We provide two examples of this rule. In the first example, we can

simply add the axiom instance as it is also an outcome statement, i.e. it is an atomic formula in

L(O). It is immediately clear that S,A ⊨ A

Example 3.1. Suppose there is some axiom instance JB, φK ∈ A and let T be some tableau

containing a branch ending in the leaf node S. Then we may expand this branch through the use

of the axiom-driven expansion rule by simply adding a new leaf node S′ = S ∪ {JB, φK} and a

corresponding directed edge, given that I(S′) ⊊ I(S). This is illustrated in Figure 3.3.

29

S

S′ = S ∪ {JB, φK}

Figure 3.3: The axiom-driven expansion rule
described in Example 3.1

S = {⟪B, φ⟫}

S′ = {⟪B, φ⟫,⟪B′, φ⟫}

Figure 3.4: The axiom-driven expansion rule
described in Example 3.2

In the second example, our axiom instance is an implication, so we cannot simply add it, as it is

not an outcome statement. Rather, we add an outcome statement s for which it holds that S,A ⊨ s.

Example 3.2. Suppose we have some axiom instance A = ⟪B, φ⟫ → ⟪B′, φ⟫ with A ∈ A and

suppose we are in some tableau T that contains a branch ending in the leaf node S = {⟪B, φ⟫}.
Then it holds that S,A ⊨ ⟪B′, φ⟫, so we may apply the axiom-driven expansion rule to the branch

ending in S by adding the node S′ = S ∪ {⟪B′, φ⟫}, again with a corresponding edge from S to S′,

see Figure 3.4. Note here that it evidently holds that I(S′) ⊊ I(S).

Constraint-driven Expansion Rule

Consequently, we consider the constraint-driven expansion rule. This expansion rule allows us to

add a universal outcome statement for any profile and any logical consequence of the integrity

constraint. This rule is motivated by the fact that we only want to consider outcomes that actually

satisfy the constraint. Sometimes, if the constraint is large, it might be better for the readability

of the inference step to only introduce a consequence of the constraint rather than the formula

itself. Again, we require the newly introduced outcome statement to actually narrow down the set

of satisfying aggregation rules (to prevent infinite application of the rule). We illustrate the rule

with two examples.

Example 3.3. Let Γ be an integrity constraint, let B ∈ Mod(Γ)+ and let T be some tableau

containing a branch ending in the leaf node S. Then we may expand this branch through the use

of the constraint-driven expansion rule by simply adding a new leaf node S′ = S ∪ {JB,ΓK} with a

corresponding edge, given that I(S′) ⊊ I(S). See Figure 3.5.

S

S′ = S ∪ {JB,ΓK}

Figure 3.5: The constraint-driven expansion rule described in Example 3.3

As described in the definition, we can also add any logical consequence of the constraint.

Example 3.4. Let Γ = (x1 → x2) ∧ (x1 ∨ x3 ∨ x4) ∧ (¬x1 → x3), let B ∈ Mod(Γ)+ and let T be

some tableau containing a branch ending in the leaf node S = {JB,¬x1 ∧¬x3 ∧¬x4K}. Then we may

30

expand this branch through the use of the constraint-driven expansion rule by adding a new leaf

node S′ = S ∪ {JB, x1 ∨ x3 ∨ x4K} and an edge (S,S′). Here it is clear that I(S′) ⊊ I(S), in fact, we

even have that I(S′) = ∅. See Figure 3.6.

S = {JB,¬x1 ∧ ¬x3 ∧ ¬x4K}

S′ = {JB,¬x1 ∧ ¬x3 ∧ ¬x4K, JB, x1 ∨ x3 ∨ x4K}

Figure 3.6: The constraint-driven expansion rule described in Example 3.4

Branching Rule

The branching rule is the only rule that introduces more than one new leaf node. It parallels the

idea of the following case distinction: for every profile and every formula, it should either hold that

all outcomes satisfy the formula, or there is an outcome that does not satisfy it. The same holds

for the negation of this formula, which is why we allow the second option in the definition. Again,

we require the set of aggregation rules to actually get smaller in both newly introduced leaf nodes.

Example 3.5. Suppose we are in some tableau T that contains a branch ending in the leaf node S

and let B ∈Mod(Γ)+ and φ ∈ L(X). Then we may apply the branching rule to the branch ending in

S by adding the nodes S′ = S ∪ {JB, φK} and S′′ = S ∪ {⟪B,¬φ⟫}, together with the edges (S,S′)
and (S,S′′), given that both I(S′) ⊊ I(S) and I(S′′) ⊊ I(S). This is illustrated in Figure 3.7.

S

S′ = S ∪ {JB, φK} S′′ = S ∪ {⟪B,¬φ⟫}

Figure 3.7: The branching rule described in Example 3.5

Example 3.6. If we reconsider the scenario in Example 3.5, note that we can also apply the

branching rule to the branch ending in S by adding the nodes S′ = S∪{JB,¬φK} and S′′ = S∪{⟪B, φ⟫},
together with the edges (S,S′) and (S,S′′), given that both I(S′) ⊊ I(S) and I(S′′) ⊊ I(S).

Simplification Rule

The simplification rule allows us to make the following inference: if every outcome under input

B should satisfy φ and every outcome under input B should satisfy ψ, then every outcome under

input B should satisfy φ∧ψ. This is the first rule that actually deletes an outcome statement when

applied. We illustrate it with an example.

Example 3.7. For a tableau T that contains a branch ending in a leaf node S = {JB, φK, JB, ψK},
we may expand this branch through the application of the simplification rule by adding a node

S′ = {JB, φ ∧ ψK} and an edge (S,S′), see Figure 3.8.

31

S = {JB, φK, JB, ψK}

S′ = {JB, φ ∧ ψK}

Figure 3.8: The simplification rule described in Example 3.7

Rewrite Rule

The rewrite rule allows us to rewrite the formulas in the outcome statements into shorter (equivalent)

formulas. An important example is the deletion of double negations, see Example 3.8.

Example 3.8. For a tableau T that contains a branch ending in a leaf node S = {JB,¬¬φK}, we
may expand this branch through the application of the rewrite rule by adding a node S′ = {JB, φK}
and an edge (S,S′), see Figure 3.9.

S = {JB,¬¬φK}

S′ = {JB, φK}

Figure 3.9: The rewrite rule described in Example 3.8

Witness Rule

The witness rule mirrors the following inference: if every outcome in some set F (B) satisfies φ,
then there is an outcome in F (B) that satisfies φ. This follows from the fact that F (B) ≠ ∅ by

definition. In the application of the witness rule, we simply add the existential outcome statement,

without deleting the corresponding universal statement. We do require that the leaf node of the

branch that we expand does not contain an equivalent statement already.

Example 3.9. For a tableau T that contains a branch ending in a leaf node S = {JB, φK}, we may

expand this branch through the application of the witness rule by adding a node S′ = {JB, φK,⟪B, φ⟫}
and an edge (S,S′), see Figure 3.10.

S = {JB, φK}

S′ = {JB, φK,⟪B, φ⟫}

Figure 3.10: The witness rule described in Example 3.9

32

Refinement Rule

Our final rule is the refinement rule. It concerns the following situation: if there is an outcome in

some set F (B) that satisfies φ and every outcome in F (B) satisfies ψ, then there is an outcome

that satisfies φ ∧ ψ (namely the outcome that already satisfies φ). As with the witness rule, we

require that the leaf node of the branch that we expand does not already contain an equivalent

statement. We provide one more example.

Example 3.10. For a tableau T that contains a branch ending in a leaf node S = {⟪B, φ⟫, JB, ψK},
we may expand this branch through the application of the refinement rule by adding a node S′ =
{⟪B, φ⟫, JB, ψK,⟪B, φ ∧ ψ⟫} and an edge (S,S′), see Figure 3.13.

S = {⟪B, φ⟫, JB, ψK}

S′ = {⟪B, φ⟫, JB, ψK,⟪B, φ ∧ ψ⟫}

Figure 3.11: The refinement rule described in Example 3.10

3.3 Correctness of the Calculus

Now that we have illustrated the inner workings of our tableau-based model, we want to prove that it

actually behaves desirably. This comes down to first showing that the process of applying expansion

rules will eventually terminate and then proving soundness and completeness of our tableau-based

method. Before we are able to formally state these three properties, some further definitions are

required. The following definitions are also based on the work of Boixel et al. [BEH22]. In this

section, we generally follow the structure of Section 3.3 from their paper.

Earlier, we discussed the fact that we use the tableau method to prove that there is no consistent

aggregation rule that satisfies a set of outcome statements S in combination with a set of axiom

instances A. We do so by constructing a tableau, rooted in some node labeled with the set S, such
that all the leaf nodes in the constructed tableau contain inconsistencies. Then we conclude that

there is no consistent aggregation rule F that satisfies both the statements in the root node S and

the axiom instances in the set A. We define the following concepts.

Definition 3.3. In a tableau T , we call a node S inconsistent if I(S) = ∅, and consistent

otherwise. An outcome statement is called inconsistent if it is of the form JB,�K or ⟪B,�⟫,
for some profile B. We say that T is closed if every leaf node contains an inconsistent outcome

statements; otherwise it is open.

Note here that any node containing an inconsistent outcome statement is itself inconsistent,

but not any inconsistent node contains an inconsistent outcome statement, as it could for example

contain two statements of the form JB, φK and JB,¬φK. We illustrate these definitions with an

example.

Example 3.11. Consider the tableau T in Figure 3.12. We do not consider the expansion rules as

the example serves the purpose of dissecting the definitions in Definition 3.3. Note here that node

33

S2 contains an inconsistent outcome statement. Also note that the node S4 is inconsistent, as we

can never satisfy the outcome statements in S4. However, S4 does not contain any inconsistent

outcome statement. We conclude that T is not closed. We could however easily close it by applying

the simplification rule to the branch ending in S4 and then applying the rewrite rule, where we note

that (x1 ∧ x2) ∧ (x1 → ¬x2) ≡ �.

S

S1

S2 = {⟪B,�⟫}

S3

S4 = {JB, x1 → ¬x2K, JB, x1 ∧ x2K}

Figure 3.12: An example illustrating Definition 3.3

For Definition 3.2 we require a set of axiom instances A. This is the set of axiom instances that

can be applied in the axiom-driven expansion rules of the tableau. We define the following.

Definition 3.4. We say that a tableau is licensed by a set of axiom instances A if every axiom

instance A that is used in an application of the axiom-driven expansion rule in the tableau is in the

set A.

If there actually is a consistent aggregation rule that satisfies the outcome statements in the

root node S and the axiom instances in some set A, we will never be able to construct a closed

tableau that is rooted in S and licensed by A. We still want the process of applying expansion

rules to eventually stop. The following definition captures this situation.

Definition 3.5. A tableau T is saturated if no branch in T can be expanded further by the

application of one of the expansion rules.

A saturated tableau T cannot be expanded further, so there is no branch in T ending in a leaf

node S that can be expanded. For this to be the case, the outcome set S should satisfy certain

properties. In the next example, we illustrate the situation. First, we establish some notation

concerning the depiction of tableaux in the rest of this thesis.

Notation 3.1. From now on, when depicting a tableau, we do not denote the outcome sets in the

nodes. Instead, we only explicitly write down the outcome statements when introducing them. The

edges in the tableau are labeled with the expansion rule that is applied. If the axiom-driven expansion

rule is applied, we instead label the edge with the relevant axiom. This method of depicting tableaux

is taken from the paper by Boixel et al. [BEH22].

Example 3.12. For simplicity, let n = 1, m = 1 and Γ = ⊺. Then we find that Mod(Γ)+ =
{{(0)},{(1)}}. Now consider the trivial set of outcome statements S = {J{(0)}, x1 ∨ ¬x1K} and let

A = AFai; note here that for m = 1, we find that AFai = {J{(0)},¬x1K, J{(1)}, x1K}.
The tableau in Figure 3.13 is a saturated tableau that is licensed by A = AFai and rooted in S.

To conclude that the tableau is saturated, we observe the following. Any axiom instance in A is

34

s0 ∶ J{(0)}, x1 ∨ ¬x1K

s0, s1 ∶ J{(1)}, x1K

s0, s1, s2 ∶ J{(0)},¬x1K

s1, s
′
0 ∶ J{(0)}, (x1 ∨ ¬x1) ∧ ¬x1K

s1, s
′′
0 ∶ J{(0)},¬x1K

s1, s
′′
0 , s3 ∶ ⟪{(0)},¬x1⟫

s1, s
′′
0 , s3, s4 ∶ ⟪{(1)}, x1⟫

Faithfulness

Faithfulness

Simplification

Rewrite

Witness

Witness

Figure 3.13: The saturated tableau described in Example 3.12

already introduced through the application of the axiom-driven expansion rule, so no application of

the axiom-driven expansion rule will further narrow down the set of satisfying aggregation rules. As

Γ = ⊺, no application of the constraint-driven expansion rule will narrow down the set of satisfying

aggregation rules. As the leaf node in the tableau already completely describes a specific aggregation

rule, we will never be able to satisfy the precondition of the branching rule, as we cannot make

any case distinction about the properties of the aggregation rules in I(S) (where S denotes the leaf

node). It is immediately evident that we can no longer apply the simplification rule, the rewrite

rule, the witness rule or the refinement rule.

3.3.1 Termination

Now we are ready to prove that the construction of any tableau eventually terminates. It is

formalized as follows. Note that because every node has at most two children, a tableau is infinite

(contains infinitely many nodes) if and only if it has an infinite branch; see Remark 1.1.

Boixel et al. [BEH22] also show the termination of their calculus for the framework of voting

theory. Our proof is a bit more extensive, as our set of expansion rules is bigger than theirs.

Theorem 3.2 (Termination). When using the tableau expansion rules from Definition 3.2, we

can never construct a tableau that contains an infinite branch. As a consequence, any gradual

expansion of a tableau (through the application of the expansion rules) will lead to the construction

of a saturated tableau within finitely many steps.

35

Proof. We show that no expansion rule can be applied infinitely many times within a branch, which

proves that we can never construct an infinite branch. Let T be a tableau and let S be the root

node of T . As there are only finitely many profiles and finitely many outcome vectors, there are

only finitely many aggregation rules. This follows from the fact that every aggregation rule consists

of the election of a nonempty subset of outcome vectors for every profile. We conclude that ∣I(S)∣
is finite.

First, note that the axiom-driven expansion rule, the constraint-driven expansion rule and the

branching rule can only be applied under the condition that I(S′) ⊊ I(S), where a branch ending

in the leaf node S is expanded with the node S′. As ∣I(S)∣ is finite and for every such application

of one of these rules, we have that ∣I(S′)∣ < ∣I(S)∣, we conclude that none of the three may be used

infinitely many times in a branch.

For a leaf node S in T , we define the set of all universal outcome statements in S as follows:

JSK ∶= {s ∈ S ∣ s = JB, φK for some B ∈Mod(Γ)+ and φ ∈ L(X)}.

Now we make the following remarks.

• ∣JSK∣ is finite, as ∣S∣ is finite by definition.

• For any expansion of the branch ending in S via the simplification rule (by adding the node

S′), we have that ∣JS′K∣ = ∣JSK∣ − 1. This follows from the simple fact that we collapse two

universal outcome statements into one when applying this rule.

• For any application of the rewrite rule, the witness rule or the refinement rule, we have that

∣JS′K∣ = ∣JSK∣, as the first rule only rewrites a formula in some outcome statement in S and

the other two rules only alter the subset of existential outcome statements.

• For any application of the axiom-driven expansion rule, the constraint-driven expansion rule

or the branching rule we do get that ∣JS′K∣ = ∣JSK∣ + 1, but they can only be applied finitely

many times, as explained above.

If we tie all of the above together, we conclude that in order to apply the simplification rule infinitely

many times in a branch, we would need to apply one or more of the axiom-driven expansion rule,

constraint-driven expansion rule or branching rule infinitely many times, which is not possible, as

shown before. We conclude that we can never have infinitely many applications of the simplification

rule in a branch.

Now we have proven that the first four rules can only have finitely many occurrences in any

branch. It is left to show that the same holds for the other three. We make the following observation:

because the first four rules can only produce finitely many universal outcome statements and any

formula can only be rewritten to a shorter equivalent formula finitely many times, the rewrite rule

can only introduce finitely many more universal outcome statements by rewriting the formulas in

the universal outcome statements introduced by the first four rules. Note here that the witness rule

and the refinement rule cannot introduce any new universal outcome statements.

For the witness rule, observe that we may only apply it at most once for every universal outcome

statement that is introduced in the branch: for JB, φK and JB, ψK with φ ≡ ψ, we may only apply it

once, and no existential outcome statement that is introduced can be deleted; it can be rewritten

however, but the precondition of the witness rule makes sure that we cannot introduce any equivalent

existential outcome statements.

36

Now we note that the only way to introduce new universal outcome statements is through

any of the first five rules, but we have just proven that all of them together can only introduce

finitely many universal outcome statements in a branch. We conclude that we will never be able to

apply the witness rules infinitely many times in a branch, as it would require an infinite amount of

universal outcome statements to be introduced in that branch.

Now we show that in any branch, we may only apply the refinement rule finitely many times.

Define the set of existential outcome statements in S, denoted by ⟪S⟫, analogous to the set of

universal outcome statements in S. Now we partition this set into equivalence classes with the

following equivalence relation:

⟪B, φ⟫ ∼ ⟪B′, ψ⟫ ⇐⇒ B = B′ and φ ≡ ψ.

The fact that this is indeed an equivalence relation follows immediately from the fact that ‘≡’ is an
equivalence relation for the formulas in L(X). We then define equivalence classes and the set of all

equivalence classes:

[⟪B, φ⟫] ∶= {s ∈ S ∣ s ∼ ⟪B, φ⟫} and ⟪S⟫∼ ∶= {[⟪B, φ⟫] ∣ ∃s ∈ S such that s ∼ ⟪B, φ⟫},

where we note that for ⟪B, φ⟫ ∼ ⟪B′, ψ⟫, we have that [⟪B, φ⟫] = [⟪B′, ψ⟫]. Now we observe the

following.

• The domain Mod(Γ)+ is finite and there are finitely many formulas in L(X) up to equivalence;

the latter follows from the fact that there are finitely many valuations on X and every formula

φ ∈ L(X) can be represented by the subset of valuations on X under which φ is true. As a

consequence, the set ⟪S⟫∼ is finite.

• For any expansion of the branch ending in S with the node S′, we find that ⟪S⟫∼ ⊆ ⟪S′⟫∼.
This follows from the fact that the only rule that actually deletes an existential outcome

statement is the rewrite rule, but that rule also introduces an equivalent existential statement,

so for the application of the rewrite rule we find that ⟪S⟫∼ = ⟪S′⟫∼.

• For any expansion of the branch ending in S with the node S′ through the application of the

refinement rule, we have that ⟪S⟫∼ ⊊ ⟪S′⟫∼. This is a direct consequence of the precondition

of the rule, that states that we cannot introduce an existential outcome statement that is

equivalent to an existential outcome statement in S.

We summarize the observations above. Firstly, the set ⟪S⟫∼ is finite. Secondly, no expansion rule

will reduce the set of “existential equivalence classes”. Finally, through the application of the

refinement rule, we properly extend the set ⟪S⟫∼, i.e. ⟪S⟫∼ ⊊ ⟪S′⟫∼. Now we note that for any

node S, we can only properly extend the set ⟪S⟫∼ finitely many times, as ⟪S⟫∼ ⊆ ⟪S⟫∼ and ⟪S⟫∼ is

finite. We conclude that in any branch, we may only apply the refinement rule finitely many times.

Finally, we note that in any branch, all the other rules (except the rewrite rule) can only be

applied finitely many times, so they can only introduce finitely many new outcome statements in

that branch. Since any formula in an outcome statement can only be rewritten finitely many times

to a shorter equivalent formula, we find that the rewrite rule can also only be applied finitely many

times in that branch, which concludes our proof.

37

3.3.2 Soundness

Now that we have shown termination, we conclude the chapter by proving soundness and complete-

ness.

Recall that the tableau method described in this chapter offers a way to prove that there is

no consistent aggregation rule that satisfies a set of outcome statements (in combination with a

set of axiom instances). This is done by taking this set of outcome statements as a root node

and constructing a tableau that is closed, which shows that there is no consistent aggregation rule

that satisfies our initial set of outcome statements in combination with the axiom instances used

for the applications of the axiom-driven expansion rule. Every branch can be seen as a sequence

of argumentation steps, where the branching rule acts as a case distinction. A closed tableau

then corresponds to finding a contradiction for every case in the case distinction. In this context,

soundness should then say the following: if we can construct such a closed tableau for a set S, then
there should be no consistent aggregation rule satisfying this set (and the relevant set of axiom

instances). Now we formalize and prove this.

Theorem 3.3 (Soundness). If we can find a closed tableau T that is rooted in S and licensed by

A, then there is no consistent aggregation rule that satisfies the outcome statements in S and the

axiom instances in A.

Proof. We follow the proof idea of Boixel et al. [BEH22].

We prove the contrapositive. Suppose there is a consistent aggregation rule F that satisfies the

outcome statements in S and the axiom instances in A. Then we need to show that we cannot

construct a closed tableau that is licensed by A and rooted in S.
First, observe that F satisfies the outcome statements in S by assumption, so F ∈ I(S).

Consequently, we show that every possible expansion rule applied to a node S with F ∈ I(S) will
introduce at least one other node S′ such that F ∈ I(S′). This implies that any tableau rooted in S
and licensed by A will have at least one branch ending in a leaf node S′′ such that F ∈ I(S′′), so
this leaf node cannot contain any inconsistent outcome statements, as we would then have that

I(S′′) = ∅. This proves that we will never be able to construct a closed tableau that is rooted in S
and licensed by A, as that would require all the leaf nodes in the tableau to contain at least one

inconsistent outcome statement.

Suppose we are in a node S in the tableau with F ∈ I(S); we consider the seven possible

expansion rules and show that each of them introduces at least one new node S′ such that F ∈ I(S′).

• Axiom-driven expansion rule: take any axiom instance A ∈ A. Because F satisfies both

the outcome statements in S and the axiom instances in A by assumption, we know that

F ∈ I(S) ∩ I(A) (as A ∈ A). But for any outcome statement s that we would add through

the application of the axiom-driven expansion rule, we require that I(S) ∩ I(A) ⊆ I(s), so
for any such statement we find that F ∈ I(s). This implies that for the newly added node

S′ = S ∪ {s}, we have that F ∈ I(S′).

• Constraint-driven expansion rule: consider a propositional formula φ ∈ L(X) such that

Γ ⊨ φ. As F is consistent, we know that for any profile B ∈Mod(Γ)+, we have that F ⊨ JB,ΓK.
But as Γ (classically) entails φ, we immediately find that F ⊨ JB, φK holds as well; note here

that any outcome vector in F (B) satisfies Γ when seen as a valuation, and as Γ ⊨ φ, this

vector also satisfies φ. We conclude that for any outcome statement JB, φK that is added

38

through the application of the constraint-driven expansion rule, we find that F ∈ I(S′), with
S′ = S ∪ {JB, φK}.

• Branching rule: for any profile B ∈Mod(Γ)+ and formula φ ∈ L(X), we either have that

F ⊨ JB, φK or F ⊨ ⟪B,¬φ⟫ (the latter being equivalent to F ⊭ JB, φK). That means that for

S′ = S ∪ {JB, φK} and S′′ = S ∪ {⟪B,¬φ⟫}, we either have that F ∈ I(S′) or F ∈ I(S′′), where
F ∈ I(S) already holds by assumption. For the other possible application of the branching

rule the proof is analogous.

• Simplification rule: for any application of the simplification rule it holds that I(S) = I(S′),
where S′ is the node that is added to the branch ending in the leaf node S through the

application of the simplification rule. This follows from the fact that for any aggregation rule

F and any outcome statements JB, φK, JB, ψK and JB, φ ∧ ψK, it holds that F ⊨ JB, φK and

F ⊨ JB, ψK if and only if F ⊨ JB, φ ∧ ψK. We conclude that F ∈ I(S′).

• Rewrite rule: it is immediately evident that for any application of the rewrite rule we

have that I(S) = I(S′), where S′ is the newly added node with one formula in one outcome

statement rewritten. We again conclude that F ∈ I(S′).

• Witness rule: suppose that S′ = S ∪ {⟪B, φ⟫} with JB, φK ∈ S, where S′ is the node added

through the application of the witness rule to the branch ending in S. Then as we have

that F ∈ I(S), every outcome vector in F (B) satisfies φ. Since F (B) ≠ ∅ by definition, we

conclude that there exists an outcome vector in F (B) that satisfies φ, so F ∈ I(⟪B, φ⟫). Then,
as F ∈ I(S) holds by assumption, we conclude that F ∈ I(S ∪ {⟪B, φ⟫}) = I(S′).

• Refinement rule: let S′ = S ∪ {⟪B, φ ∧ ψ⟫}, with ⟪B, φ⟫, JB, ψK ∈ S, where S′ is added

through the application of the refinement rule. Because it holds that F ∈ I(S), every outcome

vector in F (B) satisfies ψ and there exists an outcome vector in F (B) that satisfies φ. Then
it immediately follows that there exists an outcome vector in F (B) that satisfies φ∧ψ, namely

the outcome vector that already satisfies φ. We conclude that F ∈ I(S′).

We conclude the following: for the root node S we have that F ∈ I(S) and for any application of an

expansion rule (with axiom instances from A) expanding a branch ending in a leaf node S such

that F ∈ I(S), we find that there exists at least one newly added node S′ such that F ∈ I(S′). This
implies that for any tableau rooted in S and licensed by A, there is at least one branch ending in a

leaf node S′′ such that F ∈ I(S′′), which means that this leaf node does not contain any inconsistent

outcome statements, so we will never be able to construct a closed tableau. This concludes our

proof.

3.3.3 Completeness

Before we prove completeness, we prove two auxiliary lemmas. The first lemma concerns the idea

that the set of satisfying aggregation rules narrows down as you follow a branch from the root node

to the leaf node.

Lemma 3.4. In a tableau T , if S′ is a child node of S (so there is an edge from S to S′), then we

have that I(S′) ⊆ I(S).

Proof. We show that for any application of one of the rules, we find that I(S′) ⊆ I(S).

39

• If S′ is added through the application of any of the first three rules, we immediately find that

I(S′) ⊊ I(S), as this is a precondition of those rules.

• For the simplification rule, we make the same observation as in the soundness proof: for

any profile B ∈ Mod(Γ)+, any aggregation rule F and any two formulas φ,ψ ∈ L(X), it
holds that F ⊨ JB, φK and F ⊨ JB, ψK if and only if F ⊨ JB, φ ∧ ψK. We conclude that for

S′ = (S ∖ {JB, φK, JB, ψK}) ∪ {JB, φ ∧ ψK}, we find that I(S′) = I(S).

• For the rewrite rule, it is immediately clear that I(S′) = I(S).

• Note that for the witness rule, any aggregation rule that satisfies the outcome statements

in the child node S′ will also satisfy the statements in S, as S ⊊ S′. We conclude that

I(S′) ⊆ I(S).

• Finally, for the refinement rule, we analogously find that I(S′) ⊆ I(S) as a consequence of the

fact that S ⊊ S′.

This concludes our proof.

Before we get to the proof of completeness, we prove another auxiliary lemma. This lemma proves

an important property of saturated tableaux: any inconsistent leaf node in a saturated tableau

should contain an inconsistent outcome statement. Earlier, we discussed the fact that an inconsistent

node need not contain an inconsistent outcome statement; take the node S = {JB, x1K,⟪B,¬x1⟫}
for example. The idea of this lemma is that we can always “trace down” the inconsistency through

the application of the expansion rules. For example, in the case of S we could apply refinement and

find the statement ⟪B,¬x1 ∧x1⟫, then rewriting would grant us the inconsistent outcome statement

⟪B,�⟫. In a saturated tableau, we cannot apply any more rules, so this “tracing down” should

then already have happened.

Lemma 3.5. In a saturated tableau T , any inconsistent leaf node contains an inconsistent outcome

statement.

Proof. Let T be a saturated tableau and suppose for contradiction that there is a branch ending in

a leaf node S such that I(S) = ∅ while S contains no inconsistent outcome statement.

Note that this means that S contains no outcome statements of the form ⟪B, φ⟫ or JB, φK with

φ ≡ �, otherwise we could apply the rewrite rule to S, contradicting the fact that T is saturated.

Let SB be the set of outcome statements in S that make a statement concerning profile

B ∈Mod(Γ)+, so SB = {s ∈ S ∣ s = ⟪B, φ⟫ or s = JB, φK for some φ ∈ L(X)}. Now note that there is

at least one profile B such that I(SB) = ∅. Suppose it is not the case, then we can simply construct

an aggregation rule F as follows: for any profile B ∈Mod(Γ)+, take some F ′ ∈ I(SB) (which exists

by assumption) and let F (B) ∶= F ′(B). Then as S = ∪B∈Mod(Γ)+SB, we conclude that F ∈ I(S),
which contradicts the fact that I(S) = ∅. We conclude that there exists a profile B ∈Mod(Γ)+ such

that I(SB) = ∅.
Consequently, we show that SB contains exactly one universal outcome statement. If it contains

more than one universal outcome statement, we could apply the simplification rule, contradicting

the fact that T is saturated and S is a leaf node in T .
If SB does not contain any universal outcome statements, we can construct an aggregation rule

F that satisfies the statements in SB as follows. For any profile B′ ∈Mod(Γ)+ other than B: pick

an arbitrary outcome F (B′) ∈ 2{0,1}m ∖ {∅}. For B: let F (B) be a set of outcome vectors such

40

that for every (existential) outcome statement in SB of the form ⟪B, φ⟫, there is a v ∈ F (B) such
that v ⊨ φ; recall here that we have that φ /≡ �. Then it is immediately clear that F ∈ I(SB), which
contradicts the fact that I(SB) = ∅. We conclude that in addition, SB must contain at least one

universal outcome statement, so SB should contain exactly one universal outcome statement.

Now we have found that I(SB) = ∅ while SB contains exactly one universal outcome statement,

and no inconsistent outcome statements. Let S′B be the set of the existential outcome statements

in SB, then we can prove that I(S′B) ≠ ∅, by again constructing an aggregation rule F such that

F (B) contains a vector satisfying φ for each statement ⟪B, φ⟫ ∈ S′B, as we have shown in the

paragraph above. This means that the inconsistency of the set SB is related to the single universal

outcome statement in SB. Note that by assumption, we cannot have that this statement is of the

form JB,�K, and it can also not be of the form JB, φK with φ ≡ �; otherwise we could apply the

rewrite rule. This implies that for JB, ψK ∈ SB, we have that I(JB, ψK) ≠ ∅.
We now claim the following: there exists an existential outcome statement ⟪B, ρ⟫ ∈ S′B such

that I({JB, ψK,⟪B, ρ⟫}) = ∅. For contradiction, suppose that for every s ∈ S′B, we have that

I({JB, ψK, s}) ≠ ∅. That means that for every existential outcome statement of the form ⟪B, φ⟫ ∈ S′B,
there is an aggregation rule F ′ ∈ I({JB, ψK,⟪B, φ⟫}), so there is an outcome v ∈ F ′(B) such that

v ⊨ φ and v ⊨ ψ. But then we can again define an aggregation rule that will satisfy SB: let F be

arbitrarily defined on every profile other than B and let F (B) be the union of all these outcome

vectors v for each existential outcome statement in S′B, as described above. Then it holds that

F ∈ I(SB), as all vectors also satisfy ψ, and for every existential outcome statement in SB, there is

an outcome vector that satisfies the formula of that outcome statement. This contradicts the fact

that I(SB) = ∅. We conclude that there exists an existential outcome statement ⟪B, ρ⟫ ∈ S′B such

that I({JB, ψK,⟪B, ρ⟫} = ∅.
But this implies that ρ∧ψ ≡ �, otherwise I({JB, ψK,⟪B, ρ⟫}) ≠ ∅, as we could have an aggregation

rule F where F (B) is a singleton containing a vector that satisfies both ψ and ρ. But then, as

shown earlier, we cannot have that ⟪B, ρ ∧ ψ⟫ ∈ S; otherwise we would be able to rewrite this

statement to an inconsistent outcome statement. In general, for any formula χ ∈ L(X) such that

χ ≡ ρ ∧ ψ, we have that χ ≡ � as ρ ∧ ψ ≡ �. As a consequence, S cannot contain an existential

outcome statement of the form ⟪B, χ⟫ for any χ with χ ≡ ρ ∧ φ. This means that we are able to

apply the refinement rule to obtain a new outcome statement ⟪B, ρ ∧ ψ⟫, contradicting the fact

that S is a leaf node in a saturated tableau, which concludes our proof.

Having proven the second auxiliary lemma, we are ready to state and prove completeness.

Theorem 3.6 (Completeness). If there is no consistent aggregation rule that satisfies both the

outcome statements in S and the axiom instances in A, then we can construct a tableau T that is

closed, rooted in S and licensed by A.

Proof. Again, we follow the general proof idea of Boixel et al. [BEH22] but adapt it to our own

model. We do a proof by contraposition.

Suppose we cannot construct a closed tableau that is rooted in S and licensed by A. We want

to prove that there exists a consistent aggregation rule that satisfies both the outcome statements

in S and the axiom instances in A.
Take any (finite) open saturated tableau T that is rooted in S and licensed by A, which exists

as a consequence of our assumption and termination. Lemma 3.5 now gives us that any inconsistent

node also contains an inconsistent outcome statement, and as T is open, it should contain at least

one consistent leaf node S.

41

As S is consistent, we have that I(S) ≠ ∅. Now consider any F ∈ I(S). We want to show that

this F is consistent, satisfies the outcome statements in S and satisfies the axiom instances in A.

• Firstly, suppose that F is not consistent. Then there is a profile B ∈ Mod(Γ)+ such that

F (B) contains an outcome that does not satisfy Γ. But then F ⊭ JB,ΓK so we can apply the

constraint-driven expansion rule and expand S with a node S′ = S ∪{JB,ΓK}, which is a valid

expansion as F ∉ I(S′), so I(S′) ⊊ I(S) (note here that I(S′) ⊆ I(S) trivially holds as S ⊆ S′).
This contradicts the fact that S is a leaf node in a saturated tableau T . We conclude that F

is consistent.

• Now we show that F satisfies all the outcome statements in S. Note that by Lemma 3.4, we

have that I(S′) ⊆ I(S) if S′ is a child node of S. Also note that there is a (finite) path from

the root node S to the leaf node S in T . These two facts give us that I(S) ⊆ I(S) and as

F ∈ I(S), we then find that F ∈ I(S), which proves that F satisfies all the outcome statements

in S.

• Before we show that F satisfies all the axiom instances in A, we prove that ∣I(S)∣ = 1, so F is

in fact the only aggregation rule that satisfies the outcome statements in S. For contradiction,

suppose that there is another aggregation rule F ′ ∈ I(S) such that F ≠ F ′. That means

that there is a profile B ∈ Mod(Γ)+ such that F (B) ≠ F ′(B). Then we either have that

F (B) /⊆ F ′(B) or F (B) /⊆ F ′(B). Suppose without loss of generality that F (B) /⊆ F ′(B)
(the other case is proven analogously). Then there is an outcome vector v ∈ F (B) such that

v ∉ F ′(B). Now we note that F ⊭ JB, φF ′(B)K (see Definition 2.13), as the outcome v ∈ F (B)
does not satisfy any of the clauses in φF ′(B) as it is not equal to any of the vectors in F ′(B)
(this follows from the contrapositive of Lemma 2.5), so v ⊭ φF ′(B). Additionally, we have

that F ′ ⊭ ⟪B,¬φF ′(B)⟫, as there is no outcome in F ′(B) that does not satisfy φF ′(B) by

definition. This means that we are able to apply the branching rule for the profile B and the

formula φF ′(B): let S
′ = S ∪ {JB, φF ′(B)K} and S′′ = S ∪ {⟪B,¬φF ′(B)⟫}, then we have that

F ∉ I(S′) while F ′ ∉ I(S′′), so I(S′) ⊊ I(S) and I(S′′) ⊊ I(S) (which allows us to apply the

branching rule). This contradicts the fact that T is saturated. We conclude that F is the

only aggregation rule in I(S).

• Finally, suppose for contradiction that there is an axiom instance A ∈ A such that F ⊭ A.
Then we may conclude that I(S) ∩ I(A) = ∅, as we have just proved that I(S) = {F}. Now

take any profile B ∈Mod(Γ)+, then we have that I(S) ∩ I(A) ⊆ I(JB,�K), so S,{A} ⊨ JB,�K.
Also note that for S′ = S ∪ {JB,�K}, we have that I(S′) = ∅, so I(S′) ⊊ I(S). This means

that we may apply the axiom-driven expansion rule to S for the axiom instance A ∈ A and

the outcome statement JB,�K, which contradicts the fact that S is a leaf node in a saturated

tableau T . We conclude that F ⊨ A for all A ∈ A, so F ⊨ A.

Now we have proven that there exists a consistent aggregation rule that satisfies both the

outcome statements in S and the axiom instances in A, which concludes our proof.

From soundness and completeness, it follows that the calculus described above is in fact correct.

Corollary 3.7 (Correctness). Let S be a set of outcome statements and A be a set of axiom

instances. Then we can construct a closed tableau T that is rooted in S and licensed by A if and

only if there is no consistent aggregation rule satisfying the outcome statements in S and the axiom

instances in A.

42

3.4 Discussion

In this chapter, we defined a tableau-based calculus that allows us to construct a structured proof

for the fact that there is no consistent aggregation rule that satisfies a set of outcome statements

together with a set of axiom instances. The model is based on the semantics of the outcome

statements defined in Chapter 2. The idea of the tableau method is based on the work of Boixel et

al. [BEH22]. Although the general approach still coincides, our definition of an outcome statement

differs from theirs, and we have defined a calculus for binary aggregation instead of voting theory, so

our model has turned out quite differently. Boixel et al. propose three expansion rules: the axiom-

driven expansion rule, the branching rule and the simplification rule. We offer three alternatives for

these rules for the framework of binary aggregation, and we propose four extra expansion rules.

The constraint-driven expansion rule incorporates the integrity constraint into the tableaux. The

rewrite rule accounts for the fact that our outcome statements are of a more descriptive kind and

require the use of propositional formulas. Finally, the witness rule and refinement rule resemble

inferences that one would make, based on the semantics of outcome statements. These last two

rules also offer extra interaction between the universal and existential outcome statements, which

can sometimes be helpful when constructing a tableau, as will become clear in some of the examples

in the next chapter.

The exact preconditions for the different expansion rules are all carefully defined to make

sure that soundness, completeness and termination hold. This is especially clear in the proof of

termination, where these preconditions are often mentioned. We have also made sure that we will

never lose any information in the application of one of the expansion rules. For example, in the

witness rule we do not remove the universal outcome statement, otherwise Lemma 3.4 would not

hold. There are many other expansion rules one could come up with, and we certainly do not claim

that the set of expansion rules defined in Definition 3.2 is the “best” set of expansion rules to adopt.

However, in the above we have shown that each expansion rule is selected for a particular reason,

and its technical details are carefully considered. Moreover, we have shown that this set makes for

a sound, complete and terminating calculus. In the next chapter, we will see the tableaux in action,

which will show that it is a calculus that is easy to work with.

The outcome statements work well within the tableau-based calculus, as they are compact and

intuitive. Both the language of the outcome statements and the tableau method are dynamical

frameworks: they are easily expanded, adapted, or rewritten. This resemblance offers for a smooth

interaction between both.

When considering the explainability and transparency of our model, we note two things. Firstly,

the rewrite rule might perform a very extensive rewrite that is hard to grasp. In that sense, a big

part of the inference may happen within a single application of the rewrite rule. Because of that,

one could argue that this rule is too strong and offers too little transparency. However, in this

chapter we have defined a general calculus that is sound and complete. It might be interesting

to adapt the rewrite rule to force more transparent inferences, e.g. we might restrict the possible

rewrite steps.

Another rule that might cover a complex inference is the axiom-driven expansion rule. It is

sometimes not so trivial why some outcome statement is forced by a set of outcome statements and

an axiom instance. However, when actually implementing a model to generate such justifications in

Chapter 6, we will provide a method that is transparent to some extent.

43

Chapter 4

Justifications

In this chapter, we formally define justifications. First, we define unstructured justifications ; Boixel

and Endriss [BE20] defined these already for voting theory. Section 4.1 is based on their work, but

we will adapt it to the framework of binary aggregation and use the outcome statements defined in

Chapter 2. An unstructured justification for some outcome statement JB, φK is a set of axioms and

a set of instances of those axioms that explains why every consistent aggregation rule that satisfies

the instances also should satisfy JB, φK, i.e. the outcome statement JB, φK is a consequence of the

set of axiom instances.

Consequently, we show how to use the tableau method from the previous chapter to define

structured justifications, where we add a tableau to an unstructured justification in order to structure

the justification. Again, we follow the main ideas from the work of Boixel et al. [BEH22].

4.1 Unstructured Justifications

In this section, we will define unstructured justifications. As described above, an unstructured

justification is a set of axioms together with a set of axiom instances that explains why a certain

outcome statement JB, φK should hold. The justification is called unstructured, as there is no guide

how to read this set; it might be complicated to explain why from this set of axiom instances it

follows that JB, φK should hold.

The definition of an unstructured justification makes use of three different sets. Before we state

the definition, we introduce these sets.

Definition 4.1. The corpus of axioms A is the set of all axioms that are collectively accepted by

the group of voters, i.e. each voter deems the axioms in A to be fair and acceptable. The normative

basis is a subset AN ⊆ A of axioms that are relevant for the specific justification. Finally, the

explanatory basis AE is the set of axiom instances from the axioms in AN that are actually used

in the justification.

The roles of these different concepts will become clear in the examples later in this section. Now

we adapt the definition of an unstructured justification for voting theory by Boixel and Endriss

[BE20] to binary aggregation.

Definition 4.2 (Unstructured Justification). Let A be a corpus of axioms and let JB, φK ∈ S be

a universal outcome statement. An (unstructured) justification for JB, φK is a pair ⟨AN ,AE⟩

44

consisting of a normative basis AN and an explanatory basis AE such that the following conditions

hold:

• Explanatoriness: AE explains the outcome statement JB, φK while no proper subset does:

we have that AE ⊨Γ JB, φK while for every proper subset A′ ⊊ AE we find that A′ ⊭Γ JB, φK.

• Relevance: Every instance in AE is an instance of an axiom in AN : AE ◁ AN (see

Definition 2.10).

• Adequacy: All axioms in AN are in the corpus: AN ⊆ A.

• Nontriviality: There exists a consistent aggregation rule F such that F satisfies the axioms

in AN : IΓ(AN) ≠ ∅.

Remark 4.1. Note here that we only allow for the justification of universal outcome statements.

This is due to the fact that existential outcome statements are less descriptive. For example, if we

would justify an outcome statement of the form JB, x1K, then that would mean that we should accept

the first issue, no matter the final outcome. However, justifying an existential outcome statement

like ⟪B, x1⟫ says a lot less about the final outcome.

Now we consider some examples to gain some intuition towards the definition above.

Example 4.1. Let n = 4, m = 2 and Γ = ⊺. Let B = {(1,0), (1,0), (0,1), (1,1)} and suppose we

want to justify the fact that every outcome should accept issue 1, given that all axioms introduced in

Section 2.3 are collectively accepted. Formally, we then have that

A = {AFai,AHom,AWeak-Un,AStrong-Un,ARei,AMon,AMaj ,ACan}

and we want to justify the outcome statement JB, x1K. An example of an unstructured justification

for this corpus and outcome statement would then be

⟨AN ,AE⟩ = ⟨{AMaj},{JB, (x1 ∧ x2) ∨ (x1 ∧ ¬x2)K}⟩.

Note here that ext(m(B)) = {(1,1), (1,0)}, which is the set that the formula in the outcome

statement in the axiom instance describes. We show that it is in fact a justification for JB, x1K by

checking all the conditions.

• Explanatoriness: Note that IΓ(AE) is the set of consistent aggregation rules F for which

F (B) ⊆ {(1,1), (1,0)}; this follows from the fact that F ⊨ JB, (x1 ∧ x2) ∨ (x1 ∧ ¬x2)K implies

that any outcome in F (B) should satisfy either x1 ∧ x2 or x1 ∧ ¬x2. Lemma 2.5 then gives

us that any outcome in F (B) is equal to (1,1) or (1,0). This means that for any such

F ∈ IΓ(AE), we have that F ⊨ JB, x1K. We conclude that AE ⊨Γ JB, x1K, where we note that

any aggregation rule is consistent as Γ = ⊺.

Any proper subset of AE is the empty set, and it is immediately clear that there exists an

aggregation rule F ∈ IΓ(∅) for which F ⊭ JB, x1K. We conclude that explanatoriness is

satisfied.

• Relevance: It is immediately clear that

{JB, (x1 ∧ x2) ∨ (x1 ∧ ¬x2)K} ◁ {AMaj},

45

as the instance on the left is an instance of the axiom AMaj. We conclude that relevance is

also satisfied.

• Adequacy: This is also immediate: AN = {AMaj} ⊆ A.

• Nontriviality: Finally, note that as Γ = ⊺, we have that

IΓ(AN) = I(AN),

and as I(AN) is clearly nonempty (the rule for which F (B) = ext(m(B)) is in I(AN) as
ext(m(B)) is nonempty for every B ∈Mod(Γ)+), nontriviality is also satisfied.

In the following example, we adapt the example in the work of Boixel et al. [BEH22] to binary

aggregation.

Example 4.2. Let n = 3, m = 2 and Γ = ⊺. Suppose the majority-preservation axiom is not in the

corpus, i.e. it is not collectively accepted by the group of voters. We find the following set:

A = {AFai,AHom,AWeak-Un,AStrong-Un,ARei,AMon,ACan}.

Now let B = {(1, 0), (0, 1), (1, 1)} and suppose we want to justify the outcome statement JB, x1 ∧x2K
from the normative basis AN = {AFai,ACan,ARei}. We could then come up with the following non-

formal justification: an aggregation rule should elect every outcome for the sub-profile {(1, 0), (0, 1)}
because of cancellation, while it should only elect (1, 1) for the profile {(1, 1)} because of faithfulness.

Reinforcement should then force that F (B) is the intersection of the two outcomes, which is {(1, 1)}.
Formally, we have an unstructured justification ⟨AN ,AE⟩ with AN as stated above and the following

explanatory basis, with B′ = {(1,1)} and B′′ = {(1,0), (0,1)}:

AE = {JB′, x1 ∧ x2K}
∪ {⟪B′′, x1 ∧ x2⟫}
∪ {(⟪B′, x1 ∧ x2⟫ ∧ ⟪B′′, x1 ∧ x2⟫)
→ (((JB′, x1 ∧ x2K ∨ JB′′, x1 ∧ x2K) → JB, x1 ∧ x2K)
∧ ((⟪B′, φw⟫ ∧ ⟪B′′, φw⟫) → ⟪B, φw⟫))},

where φw is the formula describing some arbitrary vector w ∈ {0,1}m (this will not be relevant for

the justification). Note here that B = B′ +B′′. Again, we check all the conditions to show that this

is indeed an unstructured justification.

• Explanatoriness: Let F ∈ IΓ(AE). The first thing we note is that F ⊨ JB′, x1 ∧ x2K so it

also holds that F ⊨ ⟪B′, x1 ∧ x2⟫, as F (B′) ≠ ∅. We also find that F ⊨ ⟪B′′, x1 ∧ x2⟫. This

gives us that F ⊨ ⟪B′, x1 ∧x2⟫∧⟪B′′, x1 ∧x2⟫, so F satisfies the antecedent of the third axiom

instance of AE so F should satisfy the consequence as well:

F ⊨ ((JB′, x1 ∧ x2K ∨ JB′′, x1 ∧ x2K) → JB, x1 ∧ x2K) ∧ ((⟪B′, φw⟫ ∧ ⟪B′′, φw⟫) → ⟪B, φw⟫).

For this justification, we only care about the first part of the conjunction, so we have:

F ⊨ (JB′, x1 ∧ x2K ∨ JB′′, x1 ∧ x2K) → JB, x1 ∧ x2K.

46

Because it holds that F ⊨ JB′, x1 ∧ x2K (as it is an outcome statement in AE), we find that

F ⊨ JB, x1 ∧ x2K, which is what we wanted to show.

For the second part of explanatoriness, note that without the third formula of AE, we can

construct an aggregation rule F for which F ⊭ JB, x1 ∧ x2K immediately: we can simply define

any rule that does satisfy the first two formulas while F (B) contains a vector that is not equal

to (1,1), e.g. F (B) = {(1,1), (0,0)}. The rest of the definition of F is arbitrary.

Without any of the first two formulas, we can construct an aggregation rule F such that either

F ⊭ ⟪B′, x1 ∧ x2⟫ or F ⊭ ⟪B′′, x1 ∧ x2⟫. Such a rule would not satisfy the antecedent of the

third axiom instance, so we would then be able to define F (B) however we liked, so again we

could define F (B) such that there is an outcome v ∈ F (B) such that v ≠ (1,1). We conclude

that we cannot omit any formula from AE.

• Relevance: Note here that the first formula is an instance of AFai, the second is an instance

of ACan and the third is an instance of ARei.

• Adequacy: This is immediately clear.

• Nontriviality: Because Γ = ⊺, we only need to show that I(AN) ≠ ∅. We show that the

aggregation rule F for which F (B) = ext(m(B)) for each profile, is in I(AN). For the profiles

in Mod(Γ)1, it selects the single ballot that is submitted, so F satisfies AFai. It is also clear

that ACan is satisfied, as F elects all outcomes in case of a tie (which can only occur in

Mod(Γ)2).

Finally, suppose that B = B′ + B′′ and F (B′) ∩ F (B′′) ≠ ∅. For B ∈ Mod(Γ)2, we have

that B′,B′′ ∈ Mod(Γ)1. Then because of faithfulness, F (B′) ∩ F (B′′) ≠ ∅ if and only if

F (B′) = F (B′′) and B′ = B′′. In that case, B contains two of the same ballots, so ext(m(B))
consists only of that unique ballot, so F (B) = F (B′) ∩ F (B′′).

For B ∈Mod(Γ)3, either B′ or B′′ is of size one, and because of faithfulness, either F (B′) or
F (B′′) is a singleton. Suppose without loss of generality that B′ ∈ Mod(Γ)1 so F (B′) is a

singleton. Now suppose that F (B′) ∩ F (B′′) ≠ ∅, then it holds that F (B′) ∩ F (B′′) = F (B′).
We conclude that for F (B′) = {v}, it holds that v ∈ ext(m(B′)) and v ∈ ext(m(B′′)). That

means that for any literal ℓ ∈ Lv (see Definition 2.13) we have that N(B′′, ℓ) ≥ 1. We conclude

that for any literal ℓ ∈ Lv we have that N(B, ℓ) ≥ 2, as B′ = {v} by faithfulness and B = B′+B′′,

so v ∈ ext(m(B)). Now note that because B ∈Mod(Γ)3, there are no ties so ∣ext(m(B))∣ = 1.
We conclude that F (B) = {v}, so F (B) = F (B′) ∩ F (B′′) and we have proven that F ⊨ ARei.

In the two examples above, we have assumed that Γ = ⊺. To illustrate why we only consider

consistent aggregation rules for the explanatoriness condition, we provide the reader with the

following example.

Example 4.3. Let m = 3, Γ = x1 and AE = {JB, x2K, JB, (x1 ∧ x2) → x3K}; the definition of AN is

not relevant for the purpose of this example, so we disregard it for now. Now consider the outcome

statement JB, x3K. Let F be a consistent aggregation rule such that F ⊨ AE and let v ∈ F (B). Then

v ⊨ x1 as F is consistent and v ⊨ x2 as F ⊨ AE. Then because of the second formula in AE, we may

conclude that v ⊨ x3, which gives us that F ⊨ JB, x3K, so AE ⊨Γ JB, x3K. It is easy to see that for

any proper subset A′ ⊊ AE, it holds that A′ ⊭ JB, x3K, so AE could serve as the explanatory basis

of an unstructured justification for the outcome statement JB, x3K, given that there exists a suiting

47

normative basis AN . However, note that AE ⊭ JB, x3K, e.g. take an (inconsistent) aggregation rule

F such that F (B) = {(0,1,0)}.

For a corpus of axioms A, we might be able to justify different (possibly contradicting) outcome

statements for the same profile. This is due to the fact that different normative bases may force

different outcome statements to be true, because the axioms in both bases could be different

(although both are subsets of the corpus). However, if we fix a (nontrivial) normative basis, we

should not be able to justify contradicting outcomes, as the justifications would then lose their

persuasiveness. In the following lemma, we prove that this is indeed impossible. It is inspired by

Theorem 1 in the paper by Boixel and Endriss [BE20]. We formulate an alternative lemma for our

framework.

Lemma 4.1. Let AN be a set of axioms, and let AE
1 ◁ AN and AE

2 ◁ AN be two sets of axiom

instances. Furthermore, let B ∈Mod(Γ)+ and let φ,ψ ∈ L(X) such that φ ∧ ψ ∧ Γ is unsatisfiable.

Then we cannot have that ⟨AN ,AE
1 ⟩ is an unstructured justification for JB, φK while ⟨AN ,AE

2 ⟩ is
an unstructured justification for JB, ψK.

Proof. We follow the proof idea from the proof of Theorem 1 by Boixel and Endriss [BE20].

Suppose for contradiction that we have a set of axioms AN , a profile B ∈Mod(Γ)+, formulas

φ,ψ ∈ L(X), a set of axiom instances AE
1 ◁ AN such that ⟨AN ,AE

1 ⟩ is a justification for JB, φK
and a set of axiom instances AE

2 ◁ AN such that ⟨AN ,AE
2 ⟩ is a justification for JB, ψK while

φ ∧ ψ ∧ Γ is unsatisfiable, for some integrity constraint Γ. As we have that both AE
1 ◁ AN and

AE
2 ◁ AN , we know that IΓ(AN) ⊆ IΓ(AE

1) and IΓ(AN) ⊆ IΓ(AE
2); this follows from the fact

that every axiom instance A ∈ AE
1 is an instance of some axiom in AN (and the same holds for

AE
2), so any consistent aggregation rule that satisfies the axioms in AN also satisfies the axiom

instances in both AE
1 and AE

2 . We then find that IΓ(AN) ⊆ IΓ(AE
1) ∩ IΓ(AE

2). Since AE
1 explains

JB, φK, we find that IΓ(AE
1) ⊆ IΓ(JB, φK) (see the explanatoriness condition). Similarly, we find

that IΓ(AE
2) ⊆ IΓ(JB, ψK). When we tie all of this together, we get that

IΓ(AN) ⊆ IΓ(AE
1) ∩ IΓ(AE

2)
⊆ IΓ(JB, φK) ∩ IΓ(JB, ψK)
= IΓ({JB, φK, JB, ψK})
= IΓ(JB, φ ∧ ψK).

The first equality follows from the fact that the intersection of the two sets consists exactly of

the consistent aggregation rules that satisfy both the outcome statements. The second equality

follows from the fact that for every aggregation rule F , the following holds:

F ⊨ JB, φK and F ⊨ JB, ψK if and only if F ⊨ JB, φ ∧ ψK.

From this we conclude that for any consistent aggregation rule that satisfies the axioms in AN ,

we have that F ⊨ JB, φ∧ψK. Note that by our assumption, φ∧ψ∧Γ is unsatisfiable, so there cannot

be an outcome vector in F (B) that makes φ ∧ ψ ∧ Γ true. As a consequence, there is no consistent

aggregation rule F for which F ⊨ JB, φ ∧ ψK. We conclude that IΓ(JB, φ ∧ ψK) = ∅, and because

IΓ(AN) ⊆ IΓ(JB, φ ∧ ψK), it should also hold that IΓ(AN) = ∅. This contradicts the nontriviality

condition from Definition 4.2, which states that IΓ(AN) ≠ ∅, which concludes our proof.

48

4.2 Structured Justifications

In Section 4.1, we defined the notion of an unstructured justification: a pair consisting of a set

of axioms called the normative basis and a set of axiom instances of those axioms called the

explanatory basis that justify a universal outcome statement of the form JB, φK. Intuitively, the
axiom instances in the explanatory basis force JB, φK to hold, i.e. given the input B any outcome

of any consistent aggregation rule that satisfies AE should satisfy the formula φ.

In Chapter 3, we defined a tableau-based calculus for binary aggregation. This method is used

to prove that there is no consistent aggregation rule that satisfies a set of outcome statements in

combination with a set of axiom instances. An important feature of such a tableau is that it offers

a structured way to display a proof. This section is about structuring a justification through the

use of a tableau. Essentially, a structured justification is an unstructured justification together with

a tableau that shows how to structure the justification.

Suppose we already have an unstructured justification ⟨AN ,AE⟩ for the outcome statement

JB, φK. We then construct a tableau as follows. First, we define a root node S = {⟪B,¬φ⟫} that
states the negation of this outcome statement. We then expand the tableau by applying the different

expansion rules. The final goal is to construct a closed tableau that is rooted in S = {⟪B,¬φ⟫}
and licensed by AE , which proves that there is no consistent aggregation rule that satisfies both S
and the axiom instances in AE . Because we still have the nontriviality condition, we may then

conclude that any consistent aggregation rule that satisfies the axiom instances should also satisfy

JB, φK. Note here that consistency is also checked within the tableau through the application of

the constraint-driven expansion rule. Finally, we may then accept this as a structured justification

for the outcome statement JB, φK. We construct the tableaux following this contradiction method

because it interacts nicely with the case distinctions that are implemented through the use of the

branching rule; this allows us to find a contradiction for every possible case in the case distinction,

i.e. an inconsistent outcome statement in every leaf node in the tableau.

One important difference with unstructured justifications is that we no longer require the

explanatory basis to be minimal; this is due to the fact that the shortest explanatory basis does not

necessarily provide the “best” justification, as observed by Boixel et al. [BEH22]. This is why we

cannot simply extend the definition of an unstructured justification for the definition of a structured

justification.

The following definition is based on the work of Boixel et al. [BEH22], who have defined

structured justifications for voting theory.

Definition 4.3 (Structured Justification). Let A be a corpus of axioms and let JB, φK be a universal

outcome statement with B ∈Mod(Γ)+ and φ ∈ L(X). A structured justification for the outcome

statement JB, φK is a triple ⟨AN ,AE ,T ⟩ consisting of a normative basis of axioms, an explanatory

basis of axiom instances and a tableau such that the following conditions hold:

• Explanatoriness: T is a closed tableau that is rooted in the node S = {⟪B,¬φ⟫} and licensed

by the set AE.

• Relevance: Every instance in AE is an instance of an axiom in AN : AE ◁ AN .

• Adequacy: All axioms in AN are in the corpus: AN ⊆ A.

• Nontriviality: There exists a consistent aggregation rule F such that F satisfies the axioms

in AN : IΓ(AN) ≠ ∅.

49

Before we provide some illustrative examples, let us first dissect the definition above. As for the

unstructured justifications, we want to justify a universal outcome statement JB, φK, which serves

as an argument for collectively accepting the outcome property φ (or: accepting only outcome

vectors that satisfy this formula), given that the profile B displays the opinions of that group.

Now, instead of only offering a set of (collectively accepted) axioms and a set of instances of those

axioms, we also provide a tableau that shows how to properly structure the set of instances into an

argument that explains why the outcome statement JB, φK is forced by this set.

In order for the tableau to fulfill this role, we require it to be closed, rooted in the singleton

containing the negation of the statement we want to justify and licensed by the set of axiom

instances AE ; note here that the tableau shows a proof by contradiction. This is captured in the

explanatoriness condition.

The other three conditions are identical to the conditions in the definition of an unstructured

justification (see Definition 4.1). As noted before, an important difference with unstructured

justifications is that we do not require the minimality of the justification. In the following remark,

we show how the explanatoriness condition above relates to that of Definition 4.2.

Remark 4.2. Let JB, φK be some outcome statement and let ⟨AN ,AE ,T ⟩ be a structured justification

for JB, φK. Then we know that T is a closed tableau that is rooted in the node S = {⟪B,¬φ⟫} and
licensed by the set AE. But now the soundness of our calculus (see Theorem 3.3) gives us that there

exists no consistent aggregation rule that satisfies the outcome statement ⟪B,¬φ⟫ and the axiom

instances in AE. Note that nontriviality forces the existence of a consistent aggregation rule that

satisfies the axioms in AN , so this rule also satisfies the axiom instances in AE. Then for any such

rule F ∈ IΓ(AE), it holds that F ⊭ ⟪B,¬φ⟫, so F ⊨ ¬⟪B,¬φ⟫, which is equivalent to saying that

F ⊨ JB, φK. We conclude that IΓ(AE) ⊆ IΓ(JB, φK).

Let us now consider some examples to show the inner workings of the definition. We depict the

tableaux following Notation 3.1.

Example 4.4. We reconsider Example 4.1, which served as an example to illustrate the definition

of unstructured justifications. We had the following situation: n = 4, m = 2, Γ = ⊺,
B = {(1, 0), (1, 0), (0, 1), (1, 1)}, A = {AFai,AHom,AWeak-Un,AStrong-Un,ARei,AMon,AMaj ,ACan}
and we wanted to justify the outcome statement JB, x1K.

The unstructured justification we gave in the example was the following:

⟨AN ,AE⟩ = ⟨{AMaj},{JB, (x1 ∧ x2) ∨ (x1 ∧ ¬x2)K}}.

Where we noted that ext(m(B)) = {(1,1), (1,0)}, which is the set that the formula in the

outcome statement in the axiom instance describes. Now we provide a structured justification

⟨AN ,AE ,T ⟩, where the first two sets are equal to those of the unstructured justification. As the final

three conditions of both justification definitions are equal, we refer to Example 4.1 as we already

showed there that the tuple ⟨AN ,AE⟩ satisfies these conditions. It only remains to provide a closed

tableau T that is rooted in {⟪B,¬x1⟫} and licensed by AE = {JB, (x1 ∧ x2) ∨ (x1 ∧ ¬x2)K}. Now we

define the tableau T in Figure 4.1, for which it is immediately clear that these three properties hold.

We also show a way to structure the unstructured justification in Example 4.2. This example

translates the example presented in the paper of Boixel et al. [BEH22] to the framework of binary

aggregation and the defined tableau-based calculus.

50

s0 ∶ ⟪B,¬x1⟫

s0, s1 ∶ JB, (x1 ∧ x2) ∨ (x1 ∧ ¬x2)K

s0, s1, s2 ∶ ⟪B,¬x1 ∧ ((x1 ∧ x2) ∨ (x1 ∧ ¬x2))⟫

s0, s1, s
′
2 ∶ ⟪B, (� ∧ x2) ∨ (� ∧ ¬x2)⟫

s0, s1, s
′′
2 ∶ JB,�K

Majority-preservation

Refinement

Rewrite

Rewrite

Figure 4.1: The tableau T in Example 4.4

Example 4.5. Recall that in Example 4.2, we had a normative basis AN = {AFai,ACan,ARei}
and an explanatory basis

AE = {JB′, x1 ∧ x2K}
∪ {⟪B′′, x1 ∧ x2⟫}
∪ {(⟪B′, x1 ∧ x2⟫ ∧ ⟪B′′, x1 ∧ x2⟫)
→ (((JB′, x1 ∧ x2K ∨ JB′′, x1 ∧ x2K) → JB, x1 ∧ x2K)
∧ ((⟪B′, φw⟫ ∧ ⟪B′′, φw⟫) → ⟪B, φw⟫))},

where B = {(1,0), (0,1), (1,1)}, B′ = {(1,1)} and B′′ = {(1,0), (0,1)}. Note here that the first

formula in AE is an instance of faithfulness, the second of cancellation and the third of reinforcement.

We want to provide a structured justification for the outcome statement JB, x1 ∧ x2K. Again, we

only provide a tableau T , as we already showed in Example 4.2 that the last three properties are

satisfied by AN and AE. In the tableau in Figure 4.2, note that in the reinforcement step, we make

use of the fact that both the precondition of the third formula in AE, ⟪B′, x1 ∧ x2⟫ ∧ ⟪B′′, x1 ∧ x2⟫,
and the formula JB′, x1 ∧ x2K ∨ JB′′, x1 ∧ x2K are satisfied, so we may conclude JB, x1 ∧ x2K and add

this statement through an application of the axiom-driven expansion rule; this inference is explained

more elaborately in Example 4.2.

Note here that the application of the branching rule does not add any semantic value to the

tableau, but it might still contribute to the explainability.

Finally, we also show how to turn the unstructured justification in Example 4.3 into a structured

justification by constructing a tableau.

Example 4.6. Recall that in Example 4.3, we had the following scenario: m = 3, Γ = x1, AE =
{JB, x2K, JB, (x1 ∧ x2) → x3K} and AN was irrelevant; just suppose it is some axiom set such that

relevance, adequacy and nontriviality hold. We want to justify the outcome statement JB, x3K. In

Figure 4.3, we construct a tableau T that is closed, rooted in S = {⟪B,¬x3⟫} and licensed by AE.

51

s0 ∶ ⟪B,¬(x1 ∧ x2)⟫

s0, s1 ∶ JB′′,¬(x1 ∧ x2)K

s0, s1, s2 ∶ ⟪B′′, x1 ∧ x2⟫

s0, s1, s2, s3 ∶ ⟪B′′, (x1 ∧ x2) ∧ ¬(x1 ∧ x2)⟫

s0, s1, s2, s
′
3 ∶ ⟪B′′,�⟫

s0, s4 ∶ ⟪B′′, x1 ∧ x2⟫

s0, s4, s5 ∶ JB′, x1 ∧ x2K

s0, s4, s5, s6 ∶ ⟪B′, x1 ∧ x2⟫

s0, s4, s5, s6, s7 ∶ JB, x1 ∧ x2K

s0, s4, s5, s6, s7, s8 ∶ ⟪B,¬(x1 ∧ x2) ∧ (x1 ∧ x2)⟫

s0, s4, s5, s6, s7, s
′
8 ∶ ⟪B,�⟫

Branching left

Cancellation

Refinement

Rewrite

Branching right

Faithfulness

Witness

Reinforcement

Refinement

Rewrite

Figure 4.2: The tableau T in Example 4.5

In the examples above, we have obtained structured justifications based on unstructured

justifications. However, given a (satisfiable) normative basis, we could also directly try to construct

a closed tableau that is rooted in the singleton containing the negation of the outcome statement

that we want to justify. During this construction, one could use any axiom instance from an axiom

in the normative basis, and when the tableau is closed, the explanatory basis simply becomes the

set of all axioms used in the applications of the axiom-driven expansion rules.

We end the section by showing that, as with unstructured justifications (see Lemma 4.1), we

cannot justify contradictory statements using structured justifications.

Lemma 4.2. Let AN be a set of axioms, and let AE
1 ◁ AN and AE

2 ◁ AN be two explanatory

bases. Furthermore, let B ∈Mod(Γ)+ and let φ,ψ ∈ L(X) such that φ ∧ψ ∧ Γ is unsatisfiable. Then

we cannot have that ⟨AN ,AE
1 ,T1⟩ is a structured justification for JB, φK while ⟨AN ,AE

2 ,T2⟩ is a

structured justification for JB, ψK.

Proof. From Remark 4.2, it follows that IΓ(AE
1) ⊆ IΓ(JB, φK) and IΓ(AE

2) ⊆ IΓ(JB, ψK). The rest

of the proof is analogous to the proof of Lemma 4.1.

52

s0 ∶ ⟪B,¬x3⟫

s0, s1 ∶ JB, x1K

s0, s1, s2 ∶ JB, x2K

s0, s
′
1 ∶ JB, x1 ∧ x2K

s0, s
′
1, s3 ∶ JB, (x1 ∧ x2) → x3K

s0, s
′′
1 ∶ JB, (x1 ∧ x2) ∧ ((x1 ∧ x2) → x3)K

s0, s
′′′
1 ∶ JB, x1 ∧ x2 ∧ x3K

s0, s
′′′
1 , s2 ∶ ⟪B,¬x3 ∧ (x1 ∧ x2 ∧ x3)⟫

s0, s
′′′
1 , s

′
2 ∶ ⟪B,�⟫

Constraint-driven expansion rule

Axiom-driven expansion rule

Simplification

Axiom-driven expansion rule

Simplification

Rewrite

Refinement

Rewrite

Figure 4.3: The tableau T in Example 4.6

53

4.3 Discussion

In Section 4.1, we defined unstructured justifications. In essence, an unstructured justification for

an outcome statement JB, φK consists of a subset of the collectively accepted axioms (the normative

basis) together with a set of specific instances of those axioms (the explanatory basis) that contain

an explanation as to why it should hold that for any consistent aggregation rule F that satisfies the

axioms in the normative basis, it should hold that any outcome vector in F (B) satisfies the formula

φ. Consequently, we showed several examples to illustrate the definition. Finally, we proved in

Lemma 4.1 that we cannot justify contradicting statements.

In Section 4.2, we defined structured justifications. A structured justification extends the

definition of an unstructured justification by adding a tableau which structures the explanatory

basis. We also illustrated this definition through the use of examples and showed that we cannot

justify contradicting statements with structured justifications; see Lemma 4.2.

The first observation we make is that the explanatoriness condition for unstructured justifications

considers only consistent aggregation rules. This is due to the fact that these are the only “allowed”

rules, so we need not consider all aggregation rules for the entailment. This also parallels the

explanatoriness condition for the structured justification, where the integrity constraint is taken

into account by the constraint-driven expansion rule. This is also shown in detail in Remark 4.2.

Boixel and Endriss [BE20] define unstructured justifications for voting theory. Boixel et al.

[BEH22] have extended this definition and defined structured justifications for voting theory. The

general idea of both definitions coincides with that of our definitions of unstructured and structured

justifications, although they consider different frameworks and our tableau-based calculus differs

substantially from theirs; see Section 3.4.

Although the nontriviality condition we defined is a direct translation of the definition by Boixel

et al. [BEH22], it might be somewhat harder to check within our framework. This is due to the

fact that the axiomatic method has not been researched as extensively for binary aggregation as

it has been for voting theory. There has been a lot of research on the different voting rules and

the axioms they satisfy, e.g. by Arrow [Arr63] and Brandt et al. [Bra+16]. For voting theory, it is

relatively easy to check for a set of axioms AN whether it is satisfiable or not; maybe it might be

already proven somewhere that there is a specific voting rule that satisfies all the axioms in AN .

For binary aggregation, the axiomatic method has been researched a bit less thoroughly, which is

why it might sometimes be harder to check the satisfiability of a set of axioms AN . However, in

Chapter 6 we will show how to check the nontriviality condition through the use of a SAT solver.

In Section 1.4, we have introduced a set of binary aggregation axioms. These are adaptions

of the judgment aggregation axioms in the works of Grossi and Pigozzi [GP22] and Lang et al.

[Lan+17]. The set of axioms at hand is somewhat restrictive; some axioms are too strong, like

majority-preservation, and other axioms are too weak, like monotonicity. Because of the generality

of the model we have defined, one could easily introduce new axioms to make for more interesting

and intricate justifications. For now, our set of axioms will do.

54

Part II

Implementation

55

Chapter 5

Encoding Binary Aggregation

In the second part of this thesis, we will construct an algorithm that allows us to generate sets

of axiom instances that resemble unstructured justifications and trees that offer an alternative to

the tableaux defined in Chapter 3, when given a normative basis and an outcome statement that

should be justified. In order to do so, we will first encode the framework of binary aggregation in

Python. Consequently, we will encode the axioms presented in Section 2.3. With this encoding at

hand, we are ready to construct the desired algorithm, which we will do in Chapter 6.

Geist and Peters [GP17] show a way of encoding the framework of voting theory, and specifically

axioms, in a computer. They do so by encoding an axiom as a CNF-formula: a conjunction over a

set of clauses (see Section 1.1). This approach aligns with the way we have expressed our axioms in

the language of L(O) in Section 2.3, where we rewrote an axiom as a set of axiom instances. It

remains to rewrite these axiom instances as clauses, which we will do in Section 5.3.

In a Jupyter Notebook, Endriss [End23] offers a way of implementing a similar method to that

of Geist and Peters in Python. For any input profile R and every possible outcome x, he introduces

one propositional variable pR,x that is satisfied by a voting rule if and only if x is in the output

of that rule under input profile R. We will also use Python for our encoding, and we adapt the

implementation for voting theory by Endriss to binary aggregation, following the general structure

and making use of functions provided in the existing implementation if possible.

In the following chapter, we will adapt the encoding of the framework offered by Geist and

Peters [GP17] and implemented in Python by Endriss [End23] to binary aggregation. In Section

5.1, we will encode the general framework of binary aggregation. We show how to encode the

basic concepts of the framework and how to encode outcome statements. We also explain some of

our considerations regarding the encoding. Consequently, in Section 5.2, we show how to encode

aggregation rules. This is done by encoding extra dependencies between the outcome statements to

make sure that our encoding behaves according to the semantics introduced in Chapter 2. These

dependencies will also be denoted as axioms. We conclude the chapter with Section 5.3, where we

show how to encode these axioms and the axioms introduced in Section 2.3.

The encoding that is described in this chapter and in Chapter 6 can be found in the Jupyter

Notebook on https://zenodo.org/records/16614542 [Jon25].

5.1 Encoding the Framework

The first things we need to encode are the basic definitions from binary aggregation.

56

https://zenodo.org/records/16614542

Encoding Issues, Voters and Profiles

Following the work of Endriss [End23], we will encode voters, issues and profiles as integers. In

principle, we want to start counting at zero for each of these (as binary counting also starts at zero),

but as the integers for the issues should represent the variables {x1, . . . , xm}, we use the integers

{1, . . . ,m} to encode them.

Convention 2. The m issues are represented by the integers {1, . . . ,m}. The n voters are

represented by the integers {0, . . . , n − 1}.

for Γ = ⊺, the number of possible profiles follows from the number of issues and voters. We will

follow the work of Endriss [End23], but extend the encoding to allow for profiles of different sizes.

Without taking the integrity constraint into consideration, there are 2m possible ballots: a

binary choice for each of the m issues. In a profile, there are up to n voters that have a choice

between 2m ballots. To allow for a structured way of counting the different profiles, we decided to

take the order of the profiles into consideration, thus encoding them as ordered lists (or: sequences)

instead of multisets. This gives rise to the following definition.

Definition 5.1. The ordered domain is the set of (ordered) sequences of ballots of size one up to

n:

Mod(Γ)+∗ ∶= {(B1, . . . ,Bk) ∣ B1, . . . ,Bk ∈Mod(Γ) and 1 ≤ k ≤ n}.

Elements of Mod(Γ)+∗ we call ordered profiles. For a consistent aggregation rule F ∶Mod(Γ)+ →
2Mod(Γ) ∖ {∅}, an ordered profile B ∈Mod(Γ)+∗ and a formula φ ∈ L(X), we say that

F ⊨ ⟪B, φ⟫ ⇐⇒ F ⊨ ⟪B′, φ⟫,

where B′ is the multiset that contains exactly the elements that are in the ordered profile B, so for

B = (B1, . . . ,Bk), we find that B′ = {B1, . . . ,Bk}. We may also call B′ the multiset corresponding

to B.

We then find the following equality (for Γ = ⊺):

∣Mod(Γ)+∗∣ = ∣ ⋃
1≤k≤n

{(B1, . . . ,Bk) ∣ B1, . . . ,Bk ∈Mod(Γ)}∣ = ∑
1≤k≤n

(2m)k.

This way of counting allows for easy retrieval of the ballots when presented with an integer

representing a profile. The anonymity axiom (which will be introduced in Section 5.2) will make

sure that elements of Mod(Γ)+∗ that are equal as multisets, i.e. they have the same corresponding

multiset, will be semantically unified in the framework.

Convention 3. We represent the profiles by the integers {0, . . . ,∑1≤k≤n(2m)k − 1}, where we

distinguish between the profiles {B,B′} and {B′,B} in order to allow for a nice counting of the

profiles. The profiles are counted in base 2m (the number of different ballots).

The correspondence between the set of integers above and the different profiles becomes clear in

the following example.

Example 5.1. Suppose that n = 2 and m = 3. Then the ordered profile that is represented

by the integer 0 is ((0,0,0)). The (ordered) profile represented by the integer 7 is the profile

((1,1,1)) and 8 then represents the profile ((0,0,0), (0,0,0)). The next profile (represented by 9)

57

is ((1,0,0), (0,0,0)). The profile ((1,1,1), (0,0,0)) is represented by 15 and ((0,0,0), (1,0,0)) is
represented by 16.

Note here that we assume that Γ = ⊺, while it might be the case that Γ restricts certain profiles.

This will be encoded in Section 5.2, where we consider both the input and output restriction of the

integrity constraint.

Encoding Outcome Statements

Consequently, we want to encode the different outcome statements. Theoretically, we have an

existential outcome statement ⟪B, φ⟫ and a universal outcome statement JB, φK for every ordered

profile B ∈Mod(Γ)+∗ and formula φ ∈ L(X). However, there are infinitely many formulas φ ∈ L(X).
We do find the following lemma.

Lemma 5.1. There are 22
m

formulas in L(X) up to equivalence.

Proof. This follows from the fact that any two formulas that are made true by the same valuations

on X are equivalent by definition, so we can represent a formula φ ∈ L(X) by the set of (complete)

valuations on X that make φ true. There are 2m valuations on X: any variable xi ∈ X (for

i ∈ {1, . . . ,m}) is either true or false. Then there are 22
m

subsets of valuations, each corresponding

to an equivalence class of formulas in L(X). This concludes our proof.

As this number of formulas (up to equivalence) is double exponential, it is undesirable to

implement, as the size of the set of outcome statements that we need to encode will blow up very

quickly. For this reason, we only encode a fragment of L(X).
When deciding on a fragment of L(X) for our encoding, we want to take the following into

consideration. We have that ⟪B, φ⟫ ≡ ¬JB,¬φK and JB, φK ≡ ¬⟪B,¬φ⟫ for any formula φ ∈ L(X)
and profile B ∈Mod(Γ)+, which means that our encoding of the fragment of L(X) should be closed

under negation, where we note that some of the axioms and the expansion rules show that there is

a narrow interaction between the universal and existential outcome statements.

The considerations above have led to the adoption of the following fragment of L(X), allowing
for both expressivity within the languages and easy negation in L(O) without having a double

exponential number of formulas.

Definition 5.2. We define the following subset of L(X):

L(X)∧,∨ = {φ ∈ L(X) ∣ φ = ⋀
ℓ∈L

ℓ or φ = ⋁
ℓ∈L

ℓ for L ⊂X∗ such that φ /≡ � and φ /≡ ⊺}.

In other words, L(X)∧,∨ is the fragment of L(X) that contains all formulas that are either a

conjunction or a disjunction of some set of literals in X∗, but they cannot contain both x and ¬x
for any variable x ∈X.

This fragment allows for a straightforward ternary encoding: for every issue, either it does not

appear in the formula, it appears positively or it appears negatively. This gives rise to 3m possible

ternary vectors. Then, one more binary is needed in order to encode whether the formula is a

conjunction or a disjunction, leaving us with 2 ⋅ (3m) different formulas. For readability, we may

sometimes write these formulas as dis(v) and con(v), where v is a ternary string, deciding for each

issue whether it appears positively, negatively or not at all. This encoding is illustrated in the

following example.

58

Example 5.2. For m = 2 and conjunctive formulas, we find the following correspondence.

Integer Ternary string Formula in L(X)∧,∨
0 00 con(00)
1 01 x1
2 02 ¬x1
3 10 x2
4 11 x1 ∧ x2
5 12 ¬x1 ∧ x2
6 20 ¬x2
7 21 x1 ∧ ¬x2
8 22 ¬x1 ∧ ¬x2

Table 5.1: Encoding of some formulas in L(X)∧,∨

The formula con(00) is not defined in our framework, but is only there so that we can structurally

count in ternary and later easily retrieve the formulas represented in the rightmost column.

Now that we have obtained the encoding of voters, issues, profiles and formulas in L(X)∧,∨, we
are ready to encode the literals corresponding to the outcome statements in S. Again, we simply

use integers for this encoding.

In the Jupyter Notebook developed by Endriss [End23], the fundamental literals of the encoding

for voting theory are existential statements describing the outcome for a certain input profile. The

literals that we will encode are the outcome statements described in Section 2.1, which function as

a more indirect alternative to the statements introduced in the Jupyter Notebook of Endriss.

For every profile B ∈ Mod(Γ)+∗ and for every formula φ ∈ L(X)∧,∨, there is an existential

outcome statement ⟪B, φ⟫. Instead of encoding the universal outcome statements, we encode

the negations of the existential outcome statements, where we note that any universal outcome

statement is equivalent to the negation of some existential outcome statement. For example, the

statement JB, x1 ∧ ¬x2K is equivalent to ¬⟪B,¬x1 ∨ x2⟫ and the statement JB, x1 ∨ x2 ∨ x3K is

equivalent to ¬⟪B,¬x1 ∧ ¬x2 ∧ ¬x3⟫.

Remark 5.1. Note here that we consider outcome statements with ordered profiles instead of

multisets. This causes no problems, as we will make sure the ordered profiles that are equal as

multisets are treated as the same profile: there are simply multiple representatives for every multiset

B ∈Mod(Γ)+. For now, we will consider outcome statements with ordered profiles B ∈Mod(Γ)+∗

instead of multiset profiles B ∈Mod(Γ)+.

When encoding the literals, we first count the statements ⟪B, φ⟫ where φ is a conjunction. The

first literal, represented by a 1 instead of a 0 (as we want to be able to negate it in the clauses

later on), is the existential statement ⟪((0, . . . , 0)), con(0⋯0)}. The statement corresponding to the

integer 2 then is ⟪((0, . . . ,0)), x1⟫; the counting follows that of Example 5.2. The integer 3m + 1

is the outcome statement ⟪((1, . . . ,0)), con(0⋯0)⟫. After we’ve counted every outcome statement

with a conjunctive formula, we turn to the disjunctive formulas.

This method gives rise to the following function, where b is the integer that represents the

ordered profile, v is the integer that represents the vector describing the formula (see Example 5.2),

con or dis is either a 0 (for conjunction) or a 1 (for disjunction) and profile sum(n) is the number

of ordered profiles of size up to n.

def posLiteral(b, v, con_or_dis):

return b*(3**m) + v + 1 + con_or_dis*(3**m)*(profile_sum(n))

59

The function above allows us to encode all the relevant information of an outcome statement

in one integer. The negations are encoded by simply taking the negative values. The output of

the function above under an inputted outcome statement is the integer representing that outcome

statement.

Remark 5.2. Finally, observe that � ∉ L(X)∧,∨, so we will not be able to derive a contradiction

through an outcome statement of the form ⟪B,�⟫ or JB,�K. Instead, we will derive a contradiction

whenever we accept both a literal and its negation, e.g. ⟪B, φ⟫ and JB,¬φK. This will become clear

in the algorithms described in the next chapter.

5.2 Encoding Consistent Aggregation Rules

As discussed in the previous section, we have encoded the outcome statements ⟪B, φ⟫ and ¬⟪B, φ⟫
for every B ∈ Mod(Γ)+∗ and φ ∈ L(X)∧,∨. This gives rise to the following set of propositional

variables:

S∗ ∶= {⟪B, φ⟫ ∣ B ∈Mod(Γ)+∗ and φ ∈ L(X)∧,∨} ∪ {JB, φK ∣ B ∈Mod(Γ)+∗ and φ ∈ L(X)∧,∨}.

Note here that S∗ is not really a fragment of the set of outcome statements S (see Definition 2.5)

because the profiles in the definition above are ordered while the profiles that appear in Definition

2.5 are multisets. However, the encoding of the anonymity axiom will make sure that any two

elements ⟪B, φ⟫,⟪B′, φ⟫ ∈ S∗, where B and B′ contain exactly the same elements (i.e. they are

equal except for their orderings) are treated equally. Because our encoding will not differentiate

between these two statements, we can consider the ordered profiles as multisets, as the ordering

becomes irrelevant as a consequence of this anonymity axiom.

The fundamental purpose of outcome statements is to describe aggregation rules. Intuitively,

when we give a list of outcome statements that is detailed enough, we are able to describe any single

aggregation rule F . This allows us to define a correspondence between (consistent) aggregation

rules and valuations on the set S∗ that we have encoded. Here, a valuation on S∗ decides for any

profile B ∈Mod(Γ)+∗ and φ ∈ L(X)∧,∨ whether ⟪B, φ⟫ is true or ¬⟪B, φ⟫ (which corresponds to

the variable JB,¬φK ∈ S∗) is true. In the encoding, any valuation on S∗ then corresponds to a set of

integers such that for any outcome statement, either its corresponding integer is in that set (if the

outcome statement is true in the valuation) or its negation is (if the outcome statement is false in

the valuation). Here we also follow the general idea in the work of Geist and Peters [GP17] and the

implementation in Python by Endriss [End23].

However, not every such valuation actually corresponds to an aggregation rule. For example, a

valuation on S∗ could make JB, x1∧x2K true while it makes JB, x1K false, which does not correspond

to any valid aggregation rule. As a consequence, we need to impose further restrictions on the

valuations that are allowed in order to induce a one-to-one correspondence between certain valuations

on S∗ and consistent aggregation rules.

5.2.1 Valuation Restrictions as Axioms

We will introduce the different restrictions and denote them as axioms consisting of axiom instances

that are propositional formulas over S∗, so that they can be easily encoded as CNF-formulas over

the propositional variables in S∗.

60

Anonymity

As discussed in the first part of this thesis, our framework is anonymous, which means that we do

not distinguish between the different voters. As a consequence, profiles are (unordered) multisets.

This is due to the fact that we only care what ballots are submitted and not who submitted which

ballot. However, in the encoding of the profiles, the order of the ballots actually does matter, e.g.

{B,B′} ≠ {B′,B}. The following axiom considers ordered profiles that are equal as multisets, i.e.

they are permutations of each other. These ordered profiles have the same corresponding multiset

(see Definition 5.1), so they should behave identically in our encoding.

AAnon ∶= {⟪B, φ⟫ ↔ ⟪B′, φ⟫ ∣ B,B′ ∈Mod(Γ)+∗, φ ∈ L(X)∧,∨ and B
Multiset= B′},

where B
Multiset= B′ means that the ordered lists of ballots B and B′ are equal as multisets. For

any two ordered profiles that satisfy this condition, a valuation on S∗ that satisfies the anonymity

axiom does not distinguish between statements of the form ⟪B, φ⟫ and ⟪B′, φ⟫: they are either

both true or both false. This allows us to view all ordered profiles as different representatives of

the same multiset.

Taking the contraposition of the two implications in the axiom instances, together with the

observation that {¬φ ∣ φ ∈ L(X)∧,∨} = L(X)∧,∨, will give us the bi-implication for the universal

outcome statements.

Integrity Constraint

The second restriction we introduce is that of the integrity constraint. It is both a restriction on the

possible valuations on S∗ and a restriction on the domain of input profiles. The integrity constraint

is submitted in the form of a CNF-formula. That way, we can simply restrict the domain of profiles

by checking for every profile that we encoded if all the ballots in that profile satisfy all the clauses

of the constraint.

Convention 4. The integrity constraint Γ is inputted in the form of a CNF-formula.

Consequently, we want to constrain the output by disallowing any complete conjunction over X,

i.e. a conjunction that either contains x or ¬x (but not both) for every issue x ∈X, that does not

satisfy the integrity constraint. A complete conjunction is formally defined as follows.

Definition 5.3. We say that a formula φ ∈ L(X) is a complete conjunction if φ = ⋀ℓ∈L ℓ such

that L ⊂X∗ and for every x ∈X either x ∈ L or ¬x ∈ L but not both.

It will later become clear that, together with the other valuation restrictions introduced in this

section, it suffices to only restrict these complete conjunctions in the outcome statements.

For the integrity constraint, we find the following axiom:

AIC ∶= {¬⟪B, φ⟫ ∣ B ∈Mod(Γ)+∗ and φ ∈ L(X)∧,∨ is a complete conjunction such that φ ⊭ Γ},

where we note that there is exactly one truth assignment on X that makes φ true, so φ ⊭ Γ then

implies that this unique truth assignment does not satisfy Γ.

61

At Least One

The third restriction on the possible truth assignments on S∗ is also implemented in the Jupyter

Notebook by Endriss [End23], although we have adapted it to fit the framework of binary aggregation.

It is the only axiom that is necessary to capture voting rules in the Python encoding of voting

theory by Endriss.

As any aggregation rule should have a nonempty set of possible outcome vectors, there should

be at least one existential outcome statement that is true for every input profile. Because this

axiom can be combined with axioms later in this section, it will suffice to only consider the literals

for the following axiom:

AAt-Least-One ∶= { ⋁
ℓ∈X∗
⟪B, ℓ⟫ ∣ B ∈Mod(Γ)+∗}.

The axiom above states that for any profile B ∈Mod(Γ)+∗, there should be at least one outcome

vector that satisfies one of the literals in X∗.

Atomic Equivalence

For a literal ℓ ∈ X∗, the formulas con(ℓ) and dis(ℓ) are semantically equal. For this reason,

we need to define an axiom that will bind these formulas in our encoding. This is more of a

technical restriction which is implemented for syntactical purposes, hence the seemingly trivial

axiom instances. Before we can state it, we give one more definition.

Definition 5.4. Let B ∈Mod(Γ)+∗, let ℓ ∈X∗ and let F be some aggregation rule, then we say that

F ⊨ ⟪B, con(ℓ)⟫ ⇐⇒ F ⊨ ⟪B, ℓ⟫ ⇐⇒ F ⊨ ⟪B,dis(ℓ)⟫,

where we note that the satisfaction of an outcome statement with an ordered profile is defined in

Definition 5.1.

We now define the axiom as follows:

AAtom-Equiv ∶= {⟪B, con(ℓ)⟫ ↔ ⟪B,dis(ℓ)⟫ ∣ B ∈Mod(Γ)+∗ and ℓ ∈X∗}.

Note here that from Definition 5.4 it follows that any consistent aggregation rule satisfies ⟪B, con(ℓ)⟫
if and only if it satisfies ⟪B,dis(ℓ)⟫, where both con(ℓ) and dis(ℓ) correspond to the same formula

in L(X), namely ℓ.

Conjunction Upwards

Before we introduce the next axiom, we note the following.

Notation 5.2. For the following four axioms, we will make use of subsets of X∗, denoted by L.

We will either take the conjunction or the disjunction over the literals in L to denote different

formulas. As �,⊺ ∉ L(X)∧,∨, we can never take the conjunction or disjunction over a set of literals

L where both x,¬x ∈ L for some variable x ∈ X. For readability, we will not denote this in every

axiom. Whenever we describe a set L ⊂ X∗ in the following four axioms, we assume that for no

x ∈X∗ we have that both x ∈ L and ¬x ∈ L.
It will become clear in the axioms that the axiom instances with literal sets that do not satisfy

this condition are equivalent to ⊺ and thus do not add any information to the axiom.

62

In the semantics of outcome statements, we can never have that ⟪B, x1⟫ is true while neither

⟪B, x1 ∧ x2⟫ nor ⟪B, x1 ∧ ¬x2⟫ are true. This is due to the fact that the first statement implies

that there is a (complete) outcome vector v that satisfies x1, which means that v should also either

satisfy x2 or ¬x2. The following axiom encapsulates and generalizes this idea.

ACon-Up ∶= {⟪B,⋀
ℓ∈L

ℓ⟫ → (⟪B, x∧⋀
ℓ∈L

ℓ⟫∨⟪B,¬x∧⋀
ℓ∈L

ℓ⟫) ∣ B ∈Mod(Γ)+∗, L ⊂X∗ such that x,¬x ∉ L}.

Note here that whenever we would consider a set L ⊂X∗ such that there exists a variable x′ ∈X
with both x′ ∈ L and ¬x′ ∈ L, the antecedent in the axiom instance would never be satisfied as

⋀ℓ∈L ℓ ≡ �.

Conjunction Downwards

If an outcome statement of the form ⟪B,⋀ℓ∈L ℓ⟫ holds, then for any subset L′ ⊆ L, the outcome

statement ⟪B,⋀ℓ∈L′ ℓ⟫ should also hold: if there is an outcome vector that satisfies the conjunction

of the literals in L, then it also satisfies any conjunction of the literals of a subset of L. This

downwards relation is captured in an axiom as follows:

ACon-Down ∶= {⟪B,⋀
ℓ∈L

ℓ⟫ → ⟪B, ⋀
ℓ∈L′

ℓ⟫ ∣ B ∈Mod(Γ)+∗ and L′ ⊆ L ⊂X∗}.

Again, whenever we consider a set L ⊂X∗ such that there is a variable x ∈X with both x ∈ L
and ¬x ∈ L, the antecedent in the axiom instance would never be satisfied as ⋀ℓ∈L ℓ ≡ �.

Disjunction Upwards

Now we define two parallel axioms for disjunction. If ⟪B,⋁ℓ∈L ℓ⟫ holds for some set of literals

L ⊂X∗, then for any superset L′ ⊇ L, the statement ⟪B,⋁ℓ∈L′ ℓ⟫ should hold, as the outcome vector

that satisfies one of the literals in L also satisfies one of the literals in L′. We define the following

axiom:

ADis-Up ∶= {⟪B,⋁
ℓ∈L

ℓ⟫ → ⟪B, ⋁
ℓ∈L′

ℓ⟫ ∣ B ∈Mod(Γ)+∗ and L ⊆ L′ ⊂X∗}.

Note here that whenever x,¬x ∈ L for some x ∈X, we have that both ⋁ℓ∈L ℓ ≡ ⊺ and ⋁ℓ∈L′ ℓ ≡ ⊺.

Disjunction Downwards

If ⟪B,⋁ℓ∈L ℓ⟫ holds for some set L ⊂X∗, then that means that for at least one of the literals ℓ ∈ L,
the statement ⟪B, ℓ⟫ should hold because the outcome vector satisfying the disjunction satisfies

one of the literals of the disjunction. This gives rise to the disjunction downwards axiom:

ADis-Down ∶= {⟪B,⋁
ℓ∈L

ℓ⟫ → (⋁
ℓ∈L
⟪B, ℓ⟫) ∣ B ∈Mod(Γ)+∗ and L ⊂X∗}.

Note that whenever x,¬x ∈ L for some x ∈X, it holds that (⋁ℓ∈L⟪B, ℓ⟫) is always true.

Box implies Diamond

We define one more axiom in this section, which mirrors the fact that if some universal statement

JB, φK holds, then because there is always at least one outcome vector, the existential statement

63

⟪B, φ⟫ should also hold:

ABox-Imp-Dia ∶= {¬⟪B,¬φ⟫ → ⟪B, φ⟫ ∣ B ∈Mod(Γ)+∗, φ ∈ L(X)∧,∨}.

An interesting observation to make here is that when writing the instances of the axiom as clauses,

we find disjunctions of the form ⟪B,¬φ⟫∨⟪B, φ⟫ (given the equivalence ¬p→ q ≡ p∨ q), which may

also be considered as some variant of the law of the excluded middle: for any formula φ, either there

exists an outcome vector that satisfies it, or there is an outcome vector that satisfies its negation.

5.2.2 Correspondence Lemma

The axioms above show formulas that any truth assignment over the literals in S∗ should satisfy,

based on the semantics of the outcome statements. In the following lemma, we show that there is a

direct correspondence between consistent aggregation rules on the one hand and truth assignments

on S∗ that satisfy all the axioms above on the other.

Definition 5.5. We define the corpus of restriction axioms as follows:

ARest ∶= {AAnon,AIC ,AAt-Least-One,AAt-Equiv,ACon-Up,ACon-Down,ADis-Up,ADis-Down,ABox-Imp-Dia}.

Lemma 5.3. There is a one-to-one correspondence between consistent aggregation rules F ∶
Mod(Γ)+ → 2Mod(Γ) ∖ {∅} and truth assignments on S∗ that satisfy the axioms in ARest. Moreover,

in this correspondence, a consistent aggregation rule F satisfies an outcome statement s ∈ S∗ if

and only if that outcome statement (as a propositional variable) is true in the corresponding truth

assignment on S∗.

Proof. Let Γ be some integrity constraint. First, we prove that for any consistent aggregation rule

there is an assignment on S∗ such that the condition above holds.

Let F be some consistent aggregation rule and let V be the truth assignment on S∗ such that V
makes a literal s ∈ S∗ true if and only if it is satisfied by F , i.e. F ⊨ s (see Definition 5.1). The

correspondence described in the lemma then holds by definition of V . It only remains to show that

V satisfies all the axioms in ARest.

• First we show anonymity. By definition, an outcome statement ⟪B, φ⟫ ∈ S∗ is satisfied by

F if and only if F ⊨ ⟪B′′, φ⟫, where B′′ is the multiset corresponding to the ordered profile

B ∈ Mod(Γ)+∗ (see Definition 5.1). Now consider any formula φ ∈ L(X)∧,∨ and any two

ordered profiles B,B′ ∈Mod(Γ)+∗ that have the same corresponding multiset, i.e. they contain

exactly the same ballots, but they are ordered differently. Let B′′ ∈Mod(Γ)+ be the multiset

that corresponds to both B and B′. Then the following equivalences hold: F ⊨ ⟪B, φ⟫ if

and only if F ⊨ ⟪B′′, φ⟫ if and only if F ⊨ ⟪B′, φ⟫. Now it follows by definition of V that V
makes ⟪B, φ⟫ true if and only if it makes ⟪B′, φ⟫ true. We conclude that V satisfies AAnon.

• AIC is satisfied as for any complete conjunction φ ∈ L(X)∧,∨ (see Definition 5.3) such that

φ ⊭ Γ and any ordered profile B ∈Mod(Γ)+∗, it holds that F ⊨ ¬⟪B, φ⟫, as F is consistent.

But then ¬⟪B, φ⟫ is true in V by definition of V. We conclude that V satisfies AIC .

• It is clear that F ⊨ ⋁ℓ∈X∗⟪B, ℓ⟫ for every B ∈ Mod(Γ)+∗, as F (B) ≠ ∅, so there is at least

one outcome vector v ∈ F (B), and for this vector it trivially holds that v ⊨ ℓ for some ℓ ∈X∗.

64

From there it follows that for every B ∈ Mod(Γ)+∗, there is at least one ℓ ∈ X∗ such that

⟪B, ℓ⟫ is true in V. We conclude that V satisfies AAt-Least-One.

• It is immediately evident that F satisfies AAt-Equiv. As a consequence, V does so as well.

• To show that F ⊨ ACon-Up, suppose that F ⊨ ⟪B, φ⟫ for some B ∈ Mod(Γ)+∗, some con-

junction φ ∈ L(X)∧∨ and some issue-variable x ∈ X such that neither x nor ¬x appear in

the conjunction φ. Let B′ be the multiset corresponding to the ordered profile B. Then

there is an outcome vector v ∈ F (B′) such that v ⊨ φ by definition. But as this out-

come vector is a “complete” vector, i.e. it either accepts or rejects each issue in X, it

also accepts or rejects the issue x. This means that either v ⊨ φ ∧ x or v ⊨ φ ∧ ¬x. We

conclude that F ⊨ ⟪B′, φ ∧ x⟫ or F ⊨ ⟪B′, φ ∧ ¬x⟫. We then return to our ordered profile

B ∈Mod(Γ)+∗ and find that F ⊨ ⟪B, φ ∧ x⟫ or F ⊨ ⟪B, φ ∧ ¬x⟫. In conclusion, we have that

F ⊨ ⟪B, φ⟫ → (⟪B, φ∧x⟫∨⟪B, φ∧¬x⟫). By definition of V we then find that V also satisfies

⟪B, φ⟫ → (⟪B, φ ∧ x⟫ ∨ ⟪B, φ ∧ ¬x⟫), so V satisfies ACon-Up as we had taken an arbitrary

profile and conjunction.

• The fact that F ⊨ ACon-Down follows from the simple observation that whenever F ⊨

⟪B,⋀ℓ∈L ℓ⟫ for some set of literals L ⊂ X∗, then for any subset L′ ⊆ L it should hold that

F ⊨ ⟪B,⋀ℓ∈L′ ℓ⟫, as the outcome vector that satisfies ⋀ℓ∈L ℓ evidently also satisfies ⋀ℓ∈L′ ℓ.

We conclude that for any B ∈ Mod(Γ)+∗ and L′ ⊆ L ⊂ X∗, it holds that F ⊨ ⟪B,⋀ℓ∈L ℓ⟫ →
⟪B,⋀ℓ∈L′ ℓ⟫. From there it follows that V ⊨ ⟪B,⋀ℓ∈L ℓ⟫ → ⟪B,⋀ℓ∈′L ℓ⟫ by definition, so

V ⊨ ACon-Down.

• To prove disjunction upwards, the essential observation is that whenever an outcome vector

satisfies some disjunction ⋁ℓ∈L ℓ for L ⊂ X∗, it will also satisfy ⋁ℓ∈L′ ℓ for any superset of

literals L′ ⊇ L, as it satisfies (at least) one literal in L which is then also in L′. We find that

F ⊨ ADis-Up so also that V ⊨ ADis-Up.

• For disjunction downwards, note that if there is some outcome vector that satisfies ⋁ℓ∈L ℓ

for L ⊂ X∗, then that means that it satisfies at least one of the literals in L. We find that

F ⊨ ADis-Down which implies that V ⊨ ADis-Down.

• The fact that F satisfies ABox-Imp-Dia follows from the fact that F (B) is never empty for

any B ∈Mod(Γ)+, so there is always at least one outcome vector in F (B). This means that

whenever every outcome vector in F (B) satisfies some formula φ, then there also exists an

outcome vector that satisfies that formula φ. The translation to Mod(Γ)+∗ and V then follows

immediately.

Now we prove the other direction of the one-to-one correspondence. Let V be some valuation on

S∗ that satisfies all the axioms in ARest. We need to find the corresponding consistent aggregation

rule. We claim that the corresponding rule F is defined as follows. For every B ∈ Mod(Γ)+, let
F (B) be exactly the set of (complete) outcome vectors v for which the literal ⟪B′, φv⟫ is true in V ,
where B′ ∈Mod(Γ)+∗ is some ordering of the ballots in the multiset B (see Definition 2.13 for the

definition of φv). Note here that as V satisfies AAnon, the choice of B′ is arbitrary.

First, we show that F , defined in this way, is consistent. Note that it cannot be the case that

F (B) contains an inconsistent outcome vector v for some B ∈Mod(Γ)+, as that would mean that

for any B′ ∈ Mod(Γ)+∗ that contains exactly the ballots that appear in B, it is the case that

65

V satisfies the statement ⟪B′, φv⟫ while φv ⊭ Γ by assumption, which contradicts the fact that

V ⊨ AIC . We conclude that F is consistent.

Consequently, we show that F (B) ≠ ∅ for any B ∈Mod(Γ)+. Consider an arbitrary B ∈Mod(Γ)+

and let B′ ∈ Mod(Γ)+∗ be an ordered profile containing exactly the ballots in B. From the fact

that V ⊨ AAt-Least-One, it follows that there is at least one ℓ ∈X∗ such that V ⊨ ⟪B′, ℓ⟫. Now we

can recursively apply the conjunction upwards axiom, for which we have that V ⊨ ACon-Up, and

conclude that there should be at least one vector v ∈ {0, 1}m such that V ⊨ ⟪B′, φv⟫. From this we

infer that v ∈ F (B) by definition of F , so F (B) ≠ ∅.
It remains to show that an outcome statement s ∈ S∗ is satisfied by F if and only if it is true

in V. We will only prove it for existential outcome statements (for both directions); the universal

statements then follow by taking the contrapositive of both directions of the equivalence, together

with the observation that {¬φ ∣ φ ∈ L(X)∧,∨} = L(X)∧,∨.
First, we prove the direction from left to right. Suppose that F ⊨ s for some existential outcome

statement s ∈ S∗. We make a case distinction.

• Suppose that s = ⟪B, ℓ⟫ for some ℓ ∈ X∗ and B ∈ Mod(Γ)+∗ and let B′ ∈ Mod(Γ)+ be the

multiset corresponding to B. Then that means that there is some v ∈ F (B′) such that v ⊨ ℓ,

which implies that ℓ appears in the conjunction φv. We then find that V ⊨ ⟪B, φv⟫ by

definition of F . Now as V ⊨ ACon-Down and ℓ appears as a literal in the conjunction φv, we

may conclude that V ⊨ ⟪B, ℓ⟫, so V ⊨ s.

• Now suppose that s = ⟪B,⋀ℓ∈L ℓ⟫ where ∣L∣ > 1 and L ⊂ X∗. Let B′ again be the multiset

corresponding to the ordered profile B, then there is an outcome vector v ∈ F (B′) such that

v ⊨ ⋀ℓ∈L ℓ, but that means that any literal that appears in L also appears in φv. From the

definition of F , it then follows that V makes ⟪B, φv⟫ true. As any literal in L appears in

the conjunction φv, we can apply the conjunction downwards rule (as V ⊨ ACon-Down) and

conclude that V ⊨ ⟪B,⋀ℓ∈L ℓ⟫.

• Finally, suppose that s = ⟪B,⋁ℓ∈L ℓ⟫, with ∣L∣ > 1 and L ⊂ X∗ and let B′ be the multiset

corresponding to B. Then there exists an outcome v ∈ F (B′) such that v ⊨ ⋁ℓ∈L ℓ. This means

that there is a literal ℓ ∈ L such that v ⊨ ℓ. But that means that ℓ appears in the conjunction

φv. As v ∈ F (B′), we find that V ⊨ ⟪B, φv⟫ by definition of F . As the literal ℓ appears in the

conjunction φv, we may again use the conjunction downwards axiom and find that V ⊨ ⟪B, ℓ⟫.
Finally, we may then apply the disjunction upwards axiom (since V ⊨ ADis-Up) and find that

V ⊨ ⟪B,⋁ℓ′∈L ℓ
′⟫, where we note that ℓ ∈ L.

For the proof of the other direction of the implication, suppose that V ⊨ s for some outcome

statement s ∈ S∗. We again make a case distinction.

• If s = ⟪B, ℓ⟫ for some ℓ ∈ X∗, we may use the fact that V ⊨ ACon-Up and repeatedly apply

instances of it to conclude that there is some complete conjunction φv with φv ⊨ ℓ (so ℓ

appears in the conjunction φv) and V ⊨ ⟪B, φv⟫. Then it follows from the definition of F

that v ∈ F (B′), where B′ is the multiset corresponding to the ordered profile B ∈Mod(Γ)+∗.
As φv ⊨ ℓ and v ∈ F (B′), we conclude that F ⊨ ⟪B′, ℓ⟫, which gives us that F ⊨ ⟪B, ℓ⟫ by

Definition 5.1.

• Now suppose that s = ⟪B,⋀ℓ∈L ℓ⟫ for some literal set L such that ∣L∣ > 1 and L ⊂X∗. Then

we can again use the fact that V ⊨ ACon-Up and find a complete conjunction φv such that

66

φv ⊨ ⋀ℓ∈L ℓ (so every literal ℓ ∈ L appears in the conjunction φv) and V ⊨ ⟪B, φv⟫. From

there it follows by definition of F that v ∈ F (B′) where B′ is again the multiset corresponding

to B. We conclude that F ⊨ ⟪B′, φv⟫, so we also have that F ⊨ ⟪B′,⋀ℓ∈L ℓ⟫, as any literal in

L appears in φv. We conclude that F ⊨ ⟪B,⋀ℓ∈L ℓ⟫.

• Finally, suppose that s = ⟪B,⋁ℓ∈L ℓ⟫ for ∣L∣ > 1 and L ⊂X∗. Then we may use the fact that

V ⊨ ADis-Down and find that there is a literal ℓ ∈ L for which V ⊨ ⟪B, ℓ⟫. As V ⊨ ACon-Up, we

conclude that there is a complete conjunction φv such that ℓ appears in φv and V ⊨ ⟪B, φv⟫.
This means that v ∈ F (B′) by definition of F , where B′ is the multiset corresponding to B.

Then it also holds that F ⊨ ⟪B′, ℓ⟫ as ℓ appears in φv and v ∈ F (B′). We conclude that

F ⊨ ⟪B′, ℓ⟫ so it also holds that F ⊨ ⟪B′,⋁ℓ∈L ℓ⟫, as ℓ ∈ L. Finally, we find that it also holds

that F ⊨ ⟪B,⋁ℓ∈L ℓ⟫.

This concludes our case distinction.

A careful reader might note here that we have not used every axiom from ARest for the proof of

the second part of the correspondence, which means that we could have proven the lemma above

for a subset of ARest. However, in Chapter 6, the importance of the different axioms in ARest will

become clear. The ones that are not used in the proof above and thus could have been omitted will

improve the explainability of the justifications that are generated in the following chapter.

5.3 Encoding Axioms

In the previous section, we have proven the correspondence between consistent aggregation rules

and truth valuations on S∗ that satisfy the axioms in ARest. In this section, we will conclude the

implementation of the framework by showing how to encode the axioms in Python. First, we show

how to encode the axioms introduced in the previous section. Consequently, we show how to encode

the axioms from Section 2.3. Again, the encoding that is described here can be found in the Jupyter

Notebook on https://zenodo.org/records/16614542 [Jon25].

Every axiom is a set of axiom instances, which will be propositional formulas over S∗ in our

encoding. Instead of encoding a set of these axiom instances, we follow the work of Geist and

Peters [GP17] and Endriss [End23] and encode the axioms as CNF-formulas, where each clause in

the formula corresponds to an axiom instance. The CNF-formula representing an axiom is then

simply a big conjunction over all these clauses. However, not every axiom instance can be written

as a disjunction. Because of that, we might split some axiom instances into multiple smaller clauses.

For example, an axiom instance of the form p↔ q we might write as (¬p ∨ q) ∧ (¬q ∨ p); this does
not affect the CNF-structure as we are still taking a conjunction over a set of disjunctions.

When provided with the CNF-formula, Endriss [End23] has shown how to encode it in Python

through the use of one or more for-loops.

5.3.1 Encoding the Valuation Restrictions

First, we encode the axioms described in Section 5.2.

For anonymity, we want to have a clause for every two ordered profiles that are equal as

multisets and every formula in our fragment. Because we cannot rewrite a bi-implication as a

disjunction, we have rewritten it as the conjunction of two disjunctions (each representing one of

67

https://zenodo.org/records/16614542

the two implications). This gives rise to the following CNF-formula.

φAnon ∶= ⋀
B,B′∈Mod(Γ)+∗∶

B
Multiset= B′

⋀
φ∈L(X)∧,∨

((¬⟪B, φ⟫ ∨ ⟪B′, φ⟫) ∧ (¬⟪B′, φ⟫ ∨ ⟪B, φ⟫))

The encoding of (the outcome restriction of) the integrity constraint is very straightforward

and follows directly from its encoding as an axiom.

φIC ∶= ⋀
B∈Mod(Γ)+∗

⋀
φ∈L(X)∧,∨

φ is a complete conjunction
such that φ⊭Γ

¬⟪B, φ⟫

The axiom instances of the at least one axiom are already written as disjunctions, which

makes the encoding of the CNF-formula evident.

φAt-Least-One ∶= ⋀
B∈Mod(Γ)+∗

⋁
ℓ∈X∗
⟪B, ℓ⟫.

Like for anonymity, the atomic equivalence axiom also requires the rewriting of an equivalence

as a conjunction of two clauses.

φAt-Equiv ∶= ⋀
B∈Mod(Γ)+∗

⋀
ℓ∈X∗
((¬⟪B,dis(ℓ)⟫ ∨ ⟪B, con(ℓ)⟫) ∧ (¬⟪B, con(ℓ)⟫ ∨ ⟪B,dis(ℓ)⟫))

The encoding of the rest of the valuation restriction axioms is straightforward and happens

analogously to the ones above. For that reason, we will not show them here.

Following the work of Endriss [End23], we can now simply encode the axioms above by taking

a for-loop for every conjunction and consequently denoting every clause as a list of integers that

correspond to outcome statements. For example, the formula above is encoded as follows. At

the end of Section 5.1, the encoding of the ‘posLiteral’ function is shown. The ‘literal outcomes’

function simply returns the vectors representing the set X∗.

def cnf_atomic_equivalence():

cnf = []

for b in IC_profiles:

for v in literal_outcomes():

cnf.append([negLiteral(b, v, 1), posLiteral(b, v, 0)])

cnf.append([negLiteral(b, v, 0), posLiteral(b, v, 1)])

return cnf

5.3.2 Encoding the Binary Aggregation Axioms

Now we turn to the encoding of the axioms introduced in Section 2.3. We start with faithfulness.

For every ordered profile that contains only one ballot, so it is of the form B = (B), we want to

add the clause JB, φBK. This is encoded by adding a unit clause containing the outcome statement

¬⟪B,¬φB⟫ for each ordered profile of size one.

φFai ∶= ⋀
B∈Mod(Γ) and B=(B)

¬⟪B,¬φB⟫

68

The axiom instances of the homogeneity axiom are bi-implications. We will rewrite these

clauses as conjunctions over two smaller clauses that represent both directions of the bi-implication.

We note the following equivalences:

JB, φK↔ JkB, φK = ¬⟪B,¬φ⟫ ↔ ¬⟪kB,¬φ⟫ ≡ (⟪B,¬φ⟫ ∨ ¬⟪kB,¬φ⟫) ∧ (¬⟪B,¬φ⟫ ∨ ⟪kB,¬φ⟫).

As it is easy to see that {¬φ ∣ φ ∈ L(X)∧,∨} = L(X)∧,∨ (through the use of De Morgan’s laws),

we do not have to negate all formulas φ in the rightmost formula above and can instead simply use

φ, as we iterate over every formula in L(X)∧,∨. Before we can state the CNF-formula, we need to

define the addition operator for ordered profiles.

Definition 5.6. Let B′,B′′ ∈ Mod(Γ)+∗ with B′ = (B′
1, . . . ,B

′
i) and B′′ = (B′′

1 , . . . ,B
′′
j), then we

define the addition of these ordered profiles as follows:

B′ +B′′ ∶= (B′
1, . . . ,B

′
i,B

′′
1 , . . . ,B

′′
j).

For some k ∈ N>0 and some profile B ∈Mod(Γ)+∗, we then define

kB ∶= B +⋯ +B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

.

Now we can state the CNF-formula for homogeneity.

φHom ∶= ⋀
B∈Mod(Γ)+∗

(⋀
B′∈Mod(Γ)+∗∶

B′=kB for some k∈N>0

(⋀
φ∈L(X)∧,∨

((⟪B, φ⟫ ∨ ¬⟪B′, φ⟫) ∧ (¬⟪B, φ⟫ ∨ ⟪B′, φ⟫))))

Remark 5.3. First, we note that we have lost certain instances in our encoding that are described

in the axiom in Section 2.3. This is due to the fact that we have only encoded a fragment of L(X).
However, it is easy to see that this encoding is still equivalent to the original homogeneity axiom

presented in Section 1.4. This follows from the fact that for every outcome v ∈ {0,1}m, we have

that ⟪B, φv⟫ ↔ ⟪kB, φv⟫ is a subformula of φHom. As a consequence, for every aggregation rule F

that satisfies this formula, we get that F (B) = F (kB) (because v ∈ F (B) if and only if v ∈ F (kB))
so homogeneity is satisfied. Conversely, it is easy to see that any aggregation rule that satisfies

homogeneity also satisfies the formula above.

Remark 5.4. Another important observation to make here is the following: we are now only

considering the ordered profiles B,B′ ∈Mod(Γ)+∗ where B′ = kB (for some k ∈ N>0) in that specific

ordering. However, in our anonymous framework we do not distinguish between different orderings

of the profiles, and we only care if B′ contains exactly the same ballots as the ordered profile kB.

In that sense, our CNF-formula does not cover all the cases and is thus inadequate. However, the

anonymity axiom accounts for the cases that φHom does not cover, as it gives us the equivalence

of any two outcome statements ⟪B, φ⟫ and ⟪B′, φ⟫ where B and B′ are different orderings of the

same multiset of ballots.

The two unanimity axioms are straightforward to implement, as they both consist of unit clauses.

By slight abuse of notation, we consider elements of the ordered profiles. First we show weak

69

unanimity.

φWeak-Un ∶= ⋀
B∈Mod(Γ)+∗

⋀
ℓ∈X∗∶

∀B∈B∶B⊨ℓ

⟪B, ℓ⟫

For strong unanimity, we want a universal outcome statement instead of an existential one.

φStrong-Un ∶= ⋀
B∈Mod(Γ)+∗

⋀
ℓ∈X∗∶

∀B∈B∶B⊨ℓ

¬⟪B,¬ℓ⟫

The axiom instances in the reinforcement axiom are the most complex L(O)-formulas out of

all the axioms (see Section 2.3). However, we are able to split a single axiom instance into three

different formulas that are easily rewritable as clauses. An axiom instance of the reinforcement

axiom is of the following form:

(⟪B′, φv⟫ ∧ ⟪B′′, φv⟫) → (((JB′, φK ∨ JB′′, φK) → JB, φK) ∧ ((⟪B′, φw⟫ ∧ ⟪B′′, φw⟫) → ⟪B, φw⟫)).

This formula is equivalent to the conjunction of the following three formulas:

• (⟪B′, φv⟫ ∧ ⟪B′′, φv⟫ ∧ JB′, φK) → JB, φK,

• (⟪B′, φv⟫ ∧ ⟪B′′, φv⟫ ∧ JB′′, φK) → JB, φK,

• (⟪B′, φv⟫ ∧ ⟪B′′, φv⟫ ∧ ⟪B′, φw⟫ ∧ ⟪B′′, φw⟫) → ⟪B, φw⟫.

The three formulas above are all easy to rewrite as clauses, as the negation of the antecedent is a

disjunction by De Morgan’s laws in each of the formulas.

Now we are ready to present the CNF-formula for the encoding of the axiom.

φRei ∶= ⋀
B,B′,B′′∈Mod(Γ)+∗∶

B=B′+B′′

⋀
v,w∈{0,1}m

⋀
φ∈L(X)∧,∨

((¬⟪B′, φv⟫ ∨ ¬⟪B′′, φv⟫ ∨ ⟪B′,¬φ⟫ ∨ ¬⟪B,¬φ⟫)

∧(¬⟪B′, φv⟫ ∨ ¬⟪B′′, φv⟫ ∨ ⟪B′′,¬φ⟫ ∨ ¬⟪B,¬φ⟫)

∧(¬⟪B′, φv⟫ ∨ ¬⟪B′′, φv⟫ ∨ ¬⟪B′, φw⟫ ∨ ¬⟪B′′, φw⟫ ∨ ⟪B, φw⟫))

Remark 5.5. As for homogeneity, we observe that we are now only considering the triples of

ordered profiles B,B′,B′′ ∈Mod(Γ)+∗ where B = B′ +B′′ in that specific ordering. As explained in

Remark 5.4, φAnon will make sure that our encoding accounts for the cases that are not covered in

φRei.

Remark 5.6. Finally, we note that, as for the encoding of homogeneity, we have also lost

several axiom instances in this encoding, as a consequence of the fact that we have only encoded

a fragment of L(X). Analogously to what we showed in Remark 5.3, it is almost immediate that

our formula still encodes the original axiom presented in Section 1.4. The formulas of the form φv

together with the first two clauses in φRei force that F (B) ⊆ F (B′) and F (B) ⊆ F (B′′) whenever
F (B′) ∩F (B′′) ≠ ∅; note here that we consider the instances for φ = ¬φv. The final clause gives us

that F (B′) ∩ F (B′′) ⊆ F (B).

The monotonicity axiom instances make use of universal outcome statement. Before we can

state the CNF-formula, we have to define the notion of an ℓ-improvement (see Definition 1.8) for

ordered profiles.

70

Definition 5.7. We say that an ordered profile B′ ∈Mod(Γ)+∗ is an ℓ-improvement of B ∈Mod(Γ)+∗

if B and B′ are equal except for one index, say i, and Bi and B
′
i are the same ballot except for the

fact that B′
i ⊨ ℓ while Bi ⊭ ℓ.

This definition is weaker than the original definition because it requires the ballots that differ

to be in the exact same index of the ordered profiles. However, this will again be resolved by the

anonymity axiom.

For the encoding of the clauses, recall that the axiom instances of monotonicity use universal

outcome statements. We find the following formula.

φMon ∶= ⋀
B,B′∈Mod(Γ)+∗∶

B′ is an ℓ-improvement of B

⟪B,¬ℓ⟫ ∨ ¬⟪B′,¬ℓ⟫

Now we encode the majority-preservation axiom. First, we need to redefine m(B) for ordered
profiles.

Definition 5.8. For an ordered profile B ∈ Mod(Γ)+∗, the majority set is defined as follows:

m(B) ∶=m(B′), where B′ is the multiset corresponding to B and m(B) is defined as in Definition

1.11. The set ext(m(B)) is then simply defined as in Definition 1.11. Analogously, we define

N(B, φ) ∶= N(B′, φ).

Before we are ready to spell out the CNF, we face one more problem. Our fragment of L(X)
does not contain formulas of the form φext(m(B)), as this is a disjunction of conjunctions (see

Definition 2.13) and L(X)∧,∨ only allows for either conjunctions or disjunctions. As a solution,

we let φ∗ext(m(B)) simply be the conjunction over all the literals in m(B). Then it holds that for

any ordered profile B ∈Mod(Γ)+∗ with ext(m(B)) ≠ ∅ and any consistent aggregation rule F that

F ⊨ JB, φ∗ext(m(B))K if and only if F ⊨ JB, φext(m(B))K. This follows immediately from the fact that

φext(m(B)) describes the disjunction over all the possible extensions of the conjunction φ∗ext(m(B)).

Now we define the CNF-formula.

φMaj ∶= (⋀
B∈Mod(Γ)+∗

⋀
v∈ext(m(B))

⟪B, φv⟫) ∧ (⋀
B∈Mod(Γ)+∗∶
ext(m(B))≠∅

¬⟪B,¬φ∗ext(m(B))⟫)

To conclude the section, we provide the CNF-formula for the cancellation axiom. As the

axiom instances are propositional variables, we do not need to rewrite them.

φCan ∶= ⋀
B∈Mod(Γ)+∗∶

∀x∈X ∶
N(B,x)=N(B,¬x)

⋀
v∈Mod(Γ)

⟪B, φv⟫

As we have already carefully considered and explained the decisions that we made in the encoding

during the chapter, we will not provide a separate discussion for this chapter. We compactly state

our results.

First, we have shown how to encode the framework of binary aggregation by following the

work of Geist and Peters [GP17] and Endriss [End23]. Consequently, we encoded aggregation rules

through axioms that restrict the possible truth valuations on the encoded propositional variables.

Finally, we showed how to encode the axioms introduced in Section 2.3.

71

Chapter 6

Generating Justifications

Now that we have implemented the framework of binary aggregation in Python, we can continue with

the main goal of this implementation: generating justifications. The algorithm we will introduce in

this chapter consists of two parts. First, we show a method of generating a minimally unsatisfiable

subset that resembles an unstructured justification, following the work of Boixel and Endriss [BE20],

but adapting it to the framework of binary aggregation. This is shown in Section 6.1. In Section

6.2 we then give an algorithm that structures an unstructured justification by generating a tree

that resembles the tableaux defined in Chapter 3.

6.1 Generating Unstructured Justifications

In this section, we show an algorithm that generates a set of axiom instances that resembles an

unstructured justification. As stated before, we will follow the method introduced by Boixel and

Endriss [BE20]. In their algorithm, they check the satisfiability of different sets of axiom instances

with the help of a SAT solver.

A SAT solver is a decision procedure that takes as input a propositional formula and outputs

whether the formula is satisfiable or not. For an extensive and detailed description of SAT solvers,

we propose the work of Biere et al. [Bie+09]. In this thesis, a SAT solver will be used to check

whether certain sets of axiom instances and outcome statements are satisfiable together. We will

also use an algorithm based on a SAT solver that computes a minimally unsatisfiable subset, which

is defined as follows.

Definition 6.1. We define two notions of an MUS, one in terms of satisfiability by aggregation

rules and one in terms of satisfiability by valuations on S∗.

• Let A be some set of axiom instances. In this chapter, we will say that A is satisfiable if

there is a consistent aggregation rule F such that F ⊨ A (see Definition 2.7). The set A is

then unsatisfiable if there is no consistent aggregation rule F such that F ⊨ A.

A minimally unsatisfiable subset (MUS) of an unsatisfiable set A is a subset of axiom

instances A′ ⊆ A such that A′ is unsatisfiable while for every proper subset A′′ ⊊ A′ it holds
that A′′ is satisfiable.

• For the encoding S∗ and any set of propositional formulas A over S∗, we say that A is

unsatisfiable if there is no valuation V on S∗ that makes all the formulas in A true. For any

72

subset A′ ⊆ A of an unsatisfiable set A, we say that A′ is an MUS of A if A′ is unsatisfiable

but every proper subset of A′ is satisfiable (by a valuation on S∗).

The specific MUS extraction algorithm that we will use is the deletion-based MUS extractor

from the paper by Marques-Silva [Mar10]. The MUS that we will extract is a subset of some

unsatisfiable set of axiom instances in the form of propositional formulas over S∗. This MUS then

offers an explanation for the unsatisfiability of this set.

The method of extracting an MUS is also used in the paper on unstructured justifications by

Boixel and Endriss [BE20]. They extract an MUS which then serves as an unstructured justification.

As stated earlier, we will follow their method.

Now we show the correspondence between minimally unsatisfiable subsets and unstructured

justifications. Suppose we have an outcome statement JB, φK ∈ O, a corpus of axioms A and an

unstructured justification ⟨AN ,AE⟩ for that outcome statement. Then by explanatoriness, we

have that AE ⊨Γ JB, φK while for every proper subset A′ ⊊ AE it holds that A′ ⊭Γ JB, φK. As

JB, φK ≡ ¬⟪B,¬φ⟫, every consistent aggregation rule that satisfies AE also satisfies ¬⟪B,¬φ⟫. As

a consequence, there is no consistent aggregation rule that satisfies both AE and ⟪B,¬φ⟫, and
as for every proper subset A′ ⊊ AE , it holds that A′ ⊭Γ JB, φK, we find that any proper subset

of AE ∪ {⟪B,¬φ⟫} is satisfiable by some consistent aggregation rule, where we note that AE is

satisfiable as AN is satisfiable. We present the following lemma, which is an adaptation of the

lemma presented by Boixel and Endriss [BE20].

Lemma 6.1. Let A be a corpus of axioms and let AN ⊆ A be a set of axioms that is satisfiable.

Moreover, let ⟪B,¬φ⟫ be an outcome statement such that there is no consistent aggregation rule

that satisfies both the axioms in AN and ⟪B,¬φ⟫. Then for any set of axiom instances A such that

A ◁ AN , the following statements are equivalent:

• A∪ {⟪B,¬φ⟫} is a minimally unsatisfiable subset of the set (⋃A′∈AN A′) ∪ {⟪B,¬φ⟫}.

• The tuple ⟨AN ,A⟩ is an unstructured justification for the outcome statement JB, φK.

Proof. First suppose that A∪{⟪B,¬φ⟫} is a minimally unsatisfiable subset of the set (⋃A′∈AA′)∪
{⟪B,¬φ⟫}. Relevance, adequacy and nontriviality follow immediately from the assumptions (see

Definition 4.2).

It remains to show explanatoriness. Firstly, note that A is satisfiable as AN is satisfiable.

Consider any consistent aggregation rule that satisfies A, then as A∪ {⟪B,¬φ⟫} is unsatisfiable,
we may conclude that F ⊭ ⟪B,¬φ⟫, so F ⊨ ¬⟪B,¬φ⟫. We conclude that F ⊨ JB, φK, which gives

us that A ⊨Γ JB, φK.
Now consider any proper subset A′′ ⊊ A. Then it holds that A′′ ∪ {⟪B,¬φ⟫} ⊊ A∪ {⟪B,¬φ⟫},

and as the latter is a minimally unsatisfiable subset, we may conclude that A′′ ∪ {⟪B,¬φ⟫}
is satisfiable. From this we infer that there exists a consistent aggregation rule F such that

F ⊨ A′′ ∪ {⟪B,¬φ⟫}, which implies that A′′ ⊭Γ ¬⟪B,¬φ⟫. We find that the explanatoriness

condition is satisfied, which concludes the proof of the first direction of the equivalence.

Now suppose that ⟨AN ,A⟩ is an unstructured justification for the outcome statement JB, φK.
That means that by explanatoriness, A ⊨Γ JB, φK holds, while for every proper subset A′ ⊊ A we

have that A′ ⊭Γ JB, φK. The first part immediately gives us that A∪ {⟪B,¬φ⟫} is unsatisfiable.
To prove that A∪ {⟪B,¬φ⟫} is minimally unsatisfiable, let A′ ⊊ A∪ {⟪B,¬φ⟫}. We make a

case distinction.

73

• If ⟪B,¬φ⟫ ∉ A′, then A′ ⊆ A and as A ◁ AN and AN is satisfiable, we may conclude that A′

is satisfiable as well.

• If ⟪B,¬φ⟫ ∈ A′, then (A′ ∖ {⟪B,¬φ⟫}) ⊊ A. Because of explanatoriness we then find

that (A′ ∖ {⟪B,¬φ⟫}) ⊭Γ JB, φK, so there is a consistent aggregation rule F such that

F ⊨ A′ ∖ {⟪B,¬φ⟫} while F ⊭ JB, φK, which implies that F ⊨ ⟪B,¬φ⟫. We find that

F ⊨ (A′ ∖ {⟪B,¬φ⟫}) ∪ {⟪B,¬φ⟫}, so F ⊨ A′. We conclude that A′ is satisfiable.

This concludes our proof.

The lemma above shows us that finding such an MUS would theoretically grant us an unstructured

justification, given the following two conditions.

1. We have a set of axioms AN ⊆ A that is satisfiable.

2. This set is unsatisfiable in combination with the negation of the presented universal outcome

statement.

Both conditions we have to check through the use of a SAT solver. We observe the following.

Remark 6.1. For a set of axioms AN and the set of their encodings AN∗
, there exists a consistent

aggregation rule satisfying AN if and only if there is a truth valuation on the propositional variables

in S∗ that makes the axiom instances in the encoded axioms in AN∗
and ARest true. This follows

immediately from Lemma 5.3. This equivalence still holds if we add the negation of the presented

outcome statement to both sides, so we can also check the second condition with a SAT solver.

We use the SAT solver Glucose3 to check whether there is such a truth valuation on S∗; see the

work of Audemard and Simon for a description of the Glucose SAT solver [AS18]. This SAT solver

is included in the PySAT toolkit; for a description of this toolkit we refer to the work of Igantiev,

Morgado and Marques-Silva [IMM18].

6.1.1 The Algorithm for Unstructured Justifications

Before we present the algorithm, note that we have shown in Subsection 5.3.1 that the encoded

framework is anonymous, although we have encoded profiles as ordered lists of ballots. For

readability, we will now assume profiles in our encoding to be multisets. For the technical details,

we refer to the Jupyter Notebook. Moreover, we define

ARest+ ∶= ⋃
A∈ARest

A

as the union of all the axioms in the set of restriction axioms ARest (see Definition 5.5). Note that

in the following algorithm, we use the notation of the axioms instead of the formulas encoded in

Section 5.3; this is because this notation offers for a better illustration of the general idea of the

algorithm and following the notation of Section 5.3 would result in a more technical explanation,

which we will evade for the purpose of readability.

The first if-statement in Algorithm 1 is checked with the help of a SAT solver, as described

earlier. If the set is unsatisfiable, the nontriviality condition for AN is not satisfied and the program

will stop. For the second if-statement, if A+ is satisfiable (which would violate the second condition

presented above), the MUS extraction tool cannot return an MUS and the algorithm will also stop.

74

Algorithm 1 An algorithm that extracts an MUS

input: A set of axioms AN and a universal outcome statement JB, φK
if The set (⋃A∈AN A) ∪ARest+ is satisfiable then

Let A+ ∶= (⋃A∈AN A) ∪ARest+ ∪ {⟪B,¬φ⟫}
if The set A+ is unsatisfiable then

Extract an MUS A′ ⊆ A+

output: The MUS A′
end if

end if

The MUS that is extracted in Algorithm 1 closely resembles an unstructured justification.

Unfortunately, we cannot show that it is an unstructured justification or that it always grants us

an unstructured justification, as this is not the case. We do find the following lemma.

Lemma 6.2. Suppose that Algorithm 1 extracts the MUS A′ ⊆ A+. Then A′ ∖ ARest+ is an

unsatisfiable subset of (⋃A∈AN A) ∪ {⟪B,¬φ⟫} in terms of satisfiability by aggregation rules (see

Definition 6.1).

Proof. Suppose the algorithm returns the MUS A′ ⊆ A+. Then as (⋃A∈AN A)∪ARest+ is satisfiable

(as this is explicitly checked in the algorithm), we may conclude that ⟪B,¬φ⟫ ∈ A′. Now we

may write A′ = A′N ∪ A′R ∪ {⟪B,¬φ⟫} with A′N ⊆ ⋃A∈AN A and A′R ⊆ ARest+. If we prove that

A′′ = A′N ∪ {⟪B,¬φ⟫} is an unsatisfiable subset of (⋃A∈AN A) ∪ {⟪B,¬φ⟫} in terms of the first

definition of Definition 6.1, we are done.

Because A′ is an MUS, there is no valuation V on S∗ that satisfies A′. But then there is no

valuation V that satisfies the axioms in ARest and the instances in A′ either. Now we may use

Lemma 5.3 and conclude that there is no consistent aggregation rule F that satisfies the axiom

instances in A′. Now note that for every consistent aggregation rule F , it holds that F ⊨ ARest+,

as is shown in the proof of Lemma 5.3. As a consequence, we also find that F ⊨ A′R for every

consistent aggregation rule F . But because A′ is unsatisfiable, we may now conclude that there is

no consistent aggregation rule that satisfies A′′.

Now we consider the explanatoriness condition in Definition 4.2. The first part of the condition

requires the explanatory basis to force the outcome statement. We make the following remark.

Remark 6.2. Because A′ ∖ARest+ is an unsatisfiable subset of (⋃A∈AN A) ∪ {⟪B,¬φ⟫} for any

MUS A′ that we extract, we may conclude that any consistent aggregation rule F that satisfies

A′ ∖(ARest+ ∪{⟪B,¬φ⟫}) also satisfies ¬⟪B,¬φ⟫ ≡ JB, φK, so A′ ∖(ARest+ ∪{⟪B,¬φ⟫}) ⊨Γ JB, φK.

The second part of the condition considers the minimality of the explanation. We note the

following.

Remark 6.3. The MUS that is outputted by Algorithm 1 cannot always be translated to an

unstructured justification. This is a consequence of the fact that the minimality condition of the

generated MUS states that any proper subset A of the MUS is satisfiable by some valuation V on the

set S∗. However, this valuation need not satisfy the axioms in ARest, so we cannot use Lemma 5.3

to ensure that A is satisfiable by some consistent aggregation rule. The valuation V could specifically

make the axiom instances in A true but not describe a consistent aggregation rule, so it could still

be the case that there is no consistent aggregation rule that satisfies A.
We conclude that the MUS that is generated in Algorithm 1 does not perfectly align with our

theoretical definition of an unstructured justification, as the minimality condition of explanatoriness

75

is not satisfied, as that would require every proper subset of the MUS to be satisfied by some

consistent aggregation rule. In the following section, it will become clear that the output of the

algorithm does closely resemble an unstructured justification, and it is often possible to actually

extract an unstructured justification from this MUS.

Finally, we make the observation that our extracted MUS may contain axiom instances from

ARest+. The axiom instances from ARest+ give us a lot of extra information about the unsatisfiability

of the MUS, as will become clear in the following examples.

6.1.2 Examples of Unstructured Justifications

Now that we have provided the algorithm, it is time to present some results. We show several

examples of minimally unsatisfiable subsets that are generated with the algorithm above. Before

we do so, we provide two conventions regarding the notation of the axiom instances.

Notation 6.3. Every outcome statement is denoted as an existential outcome statement or (if

it is a universal outcome statement) as the negation of an existential outcome statement. Every

formula is rewritten as a disjunction. Recall that p → q ≡ ¬p ∨ q, (p ∧ q) → r ≡ ¬p ∨ ¬q ∨ r and

p→ (q ∨ r) ≡ ¬p ∨ q ∨ r.

Example 6.1. For the first example, we let m = 3, n = 3, Γ = x1 ∨ x2 ∨ x3 and

AN = {AFai,AHom,AWeak-Un,AStrong-Un,ARei,AMon}.

The outcome statement we want to justify is J{(0, 1, 0), (1, 0, 0), (1, 0, 0)}, x1 ∨ x2K. The SAT solver

shows that the set (⋃A∈AN A) ∪ARest+ is in fact satisfiable. Consequently, the program computes

the set

A+ = (⋃
A∈AN

A) ∪ARest+ ∪ {⟪{(0,1,0), (1,0,0), (1,0,0)},¬x1 ∧ ¬x2⟫}

and extracts the following MUS (which shows us that the set A+ is unsatisfiable, otherwise we would

not have been able to extract an MUS).

Conjunction Upwards: ¬〈〈(010,100,100); ¬x1∧¬x2〉〉 ∨ 〈〈(010,100,100); ¬x1∧¬x2∧x3〉〉
∨ 〈〈(010,100,100); ¬x1∧¬x2∧¬x3〉〉
Conjunction Downwards: ¬〈〈(010,100,100); ¬x1∧¬x2∧x3〉〉 ∨ 〈〈(010,100,100); x3〉〉

Strong Unanimity: ¬〈〈(010,100,100); x3〉〉

Integrity Constraint: ¬〈〈(010,100,100); ¬x1∧¬x2∧¬x3〉〉
None: 〈〈(010,100,100); ¬x1∧¬x2〉〉

The final clause is the added negation of the originally inputted outcome statement. When trying to

construct a human-readable proof, one might end up with the following reasoning: the final (unit)

clause forces us to accept either the second or the third literal in the conjunction upwards clause. If

we accept the third literal, we find a contradiction with the integrity constraint clause. If we accept

the second literal, we have to accept the second literal of the conjunction downwards clause, which

contradicts the strong unanimity (unit) clause. This concludes our proof.

Note here that the pair ⟨{AStrong-Un},{J{(0,1,0), (1,0,0), (1,0,0)},¬x3K}⟩ evidently serves as

an unstructured justification for the statement J{(0,1,0), (1,0,0), (1,0,0)}, x1 ∨ x2K.

76

Example 6.2. Again, let m = 3, n = 3, Γ = x1 ∨ x2 ∨ x3 but now add majority-preservation; so

AN = {AFai,AHom,AWeak-Un,AStrong-Un,ARei,AMon,AMaj}.

Suppose we input the universal outcome statement J{(0,1,0), (1,0,0), (0,1,0)},¬x1K. The SAT

solver shows that the set (⋃A∈AN A) ∪ARest+ is satisfiable, and the algorithm returns the following

MUS.

Atomic Equivalence: ¬〈〈(010); x1〉〉 ∨ 〈〈(010); x1〉〉

Disjunction Upwards: ¬〈〈(010); x1〉〉 ∨ 〈〈(010); x1∨¬x2∨x3〉〉
Box Implies Diamond: 〈〈(010); ¬x1∧x2∧¬x3〉〉 ∨ 〈〈(010); x1∨¬x2∨x3〉〉
Faithfulness: ¬〈〈(010); x1∨¬x2∨x3〉〉
Reinforcement: ¬〈〈(010,100); ¬x1∧x2∧¬x3〉〉 ∨ ¬〈〈(010); ¬x1∧x2∧¬x3〉〉
∨ 〈〈(010); x1〉〉 ∨ ¬〈〈(010,100,010); x1〉〉

Majority-Preservation: 〈〈(010,100); ¬x1∧x2∧¬x3〉〉
None: 〈〈(010,100,010); x1〉〉

One could again try to translate the MUS into a human-readable proof. The MUS itself is not

very helpful, as it is immediately clear that, given the majority-preservation axiom, the outcome

statement J{(0,1,0), (1,0,0), (0,1,0)},¬x1K is justified, as the majority elects ¬x1.
We find an unstructured justification ⟨{AFai,AMaj ,ARei},{AF ,AM ,AR}⟩ for

J{(0,1,0), (1,0,0), (0,1,0)},¬x1K, where the axiom instances in the justification are the instances

of the respective axioms in the MUS above.

Example 6.3. For the final example, we show that the program also runs within a reasonable

amount of time for m = 4 (in specific scenarios). We still let n = 3 and Γ = x1 ∨x2 ∨x3. Here we let

AN = {AFai,AHom,AWeak-Un,AStrong-Un,AMon}

and we input the statement J{(1,0,0,0), (1,0,0,0), (1,0,0,0)},¬x1 ∨ ¬x2K. Again, the SAT solver

shows that the set (⋃A∈AN A) ∪ARest+ is satisfiable, and the algorithm returns the following MUS.

Atomic Equivalence: ¬〈〈(1000,1000,1000); x2〉〉 ∨ 〈〈(1000,1000,1000); x2〉〉

Conjunction Downwards: ¬〈〈(1000,1000,1000); x1∧x2〉〉 ∨ 〈〈(1000,1000,1000); x2〉〉

Disjunction Upwards: ¬〈〈(1000); x2〉〉 ∨ 〈〈(1000); ¬x1∨x2∨x3∨x4〉〉
Faithfulness: ¬〈〈(1000); ¬x1∨x2∨x3∨x4〉〉
Homogeneity: 〈〈(1000); x2〉〉 ∨ ¬〈〈(1000,1000,1000); x2〉〉

None: 〈〈(1000,1000,1000); x1∧x2〉〉

We find the unstructured justification ⟨{AFai,AHom},{AF ,AH}⟩, where AF is the faithfulness

instance from the MUS above and AH is the homogeneity instance.

6.2 Generating Structured Justifications

In the minimally unsatisfiable subsets that we generated in the previous section, a lot of structure

is already implicitly present. As can be seen in Example 6.1, we can relatively easily construct a

structured proof based on the extracted MUS. In this section, we will define an algorithm that

allows us to structure such an MUS. Unfortunately, the output of this algorithm is not a structured

77

justification as defined in Chapter 4. However, the tree that we will generate closely resembles the

tableau that is used in the definition of a structured justification.

It is roughly done as follows: following the definition of a structured justification (see Definition

4.3), the root node should contain only the negation of the outcome statement that we want

to justify. This is the unit clause that is labeled with “None” in the examples in the previous

section. Consequently, we gradually add child nodes containing all other unit clauses, such as axiom

instances from the faithfulness axiom. After adding all of those, we need to actually start making

inferences, e.g. we have the clause ¬⟪B, φ⟫∨⟪B, ψ⟫ and the unit clause ⟪B, φ⟫ is already added in

one of the nodes, so we may apply the clause ¬⟪B, φ⟫ ∨ ⟪B, ψ⟫ and conclude that the statement

⟪B, ψ⟫ should hold. This we can do through unit propagation. The idea of unit propagation is

that if we want to satisfy a clause of literals, and we have already rejected all the literals in the

clause except for one, then we may accept that one literal, as it is the only way to still satisfy the

clause. For a more elaborate description, we refer to the work of Van Harmelen, Lifschitz and

Porter [HLP08].

However, this method does not account for branching within the tree. In our model, the

only clauses for which we want to branch are those of the conjunction upwards and disjunction

downwards axioms. For those clauses, we make a case distinction in our structured justification, i.e.

we branch in the tree. This will become clear in the examples later on.

We face one more problem. Consider the following (hypothetical) MUS:

{[−1], [1,2,3], [−2,4], [−2,−4], [−3,4], [−3,−4]}.

It is easy to see that it is unsatisfiable as accepting either 2 or 3 will lead to a contradiction.

However, suppose that [1,2,3] is not an element of one of the branching axioms (conjunction

upwards or disjunction downwards). Then we are not allowed to make this case distinction in our

structured justification, so we will not be able to structure the MUS above. As a solution, we allow

branching over any clause in the MUS in such scenarios.

6.2.1 The Algorithm for Structured Justifications

In this section, we explain the algorithm that is used to structure an MUS that is generated through

Algorithm 1 in the previous section. The goal is to obtain a tree that serves as an alternative for a

structured justification, licensed by the MUS (minus the negated input statement).

The nodes of the tree that is constructed are labeled with lists of outcome statements. Each

new node that is added is labeled by the list of outcome statements of its parent plus one newly

introduced outcome statement. This outcome statement is inferred either through unit propagation

in combination with a clause in the MUS or through branching (also in combination with a clause

in the MUS). In this way, any clause in the MUS corresponds to some expansion rule. The goal is

to obtain a tree with only inconsistent leaf nodes. More specifically, for every leaf node there should

be an outcome statement s such that both s and ¬s are in that node. In our algorithm, we will call

a tree closed when this condition is satisfied (instead of requiring that every leaf node contains

an inconsistent outcome statement as in Chapter 3). We only add new children to consistent leaf

nodes.

In Algorithm 2, we present an outline of the algorithm that is encoded in Python. First, we

instantiate the tree with a root node, which is labeled with a list containing only the negation of

the outcome statement that we want to justify. We then delete the unit clause that contains only

78

Algorithm 2 An algorithm that structures an MUS

input: An MUS
Instantiate the tree with the clause labeled “None”
Delete this clause from the MUS
for Clause in MUS do

if Length of clause equals 1 then
Add the clause to the tree
Delete the clause from the MUS

end if
end for
while There is a consistent leaf node do

for Node in the set of consistent leaf nodes do
if There is a possible clause to apply then

Pick a random possible clause
Expand the tree by adding one or more child nodes through the
application of the clause (either by unit propagation or branching)

else if There are no possible clauses to apply then
Allow branching

end if
end for

end while
output: The constructed tree

this literal from the inputted MUS.

Consequently, we create a for-loop in which we add and delete all the unit clauses in the MUS.

This creates a single branch, as any application of a unit clause consists of adding a single child

with one extra literal (the single literal in the applied unit clause). These are then also deleted

from the MUS.

Now we enter a while-loop which runs as long as there is a consistent leaf node; if there are no

more consistent leaf nodes, every leaf node is inconsistent, so our tree is closed and we have found

a tree that offers a way to structure the inputted MUS.

In the while-loop, we go through the list of consistent leaf nodes (note here that the order in

which this happens is irrelevant as all these nodes are leaf nodes of separate branches that do not

influence each other). For every consistent leaf node, we check the possible clauses that we can use

to expand the branch ending in this leaf node, and we randomly pick one. This will append one

or more new children of the original leaf node to the tree (depending on the applied clause). The

algorithm will never allow for the same clause to be applied in a branch twice, so once a clause is

applied in some branch, it can never appear in the set of possible clauses later in that branch.

To ensure that the algorithm always outputs a closed tree, we have to account for the case of

the problematic MUS that is described in the introduction of this section. In such a scenario, it

might be the case that the standard application of the clauses through unit propagation or the two

cases of branching is not sufficient and our algorithm will not be able to construct a closed tree. As

a solution, we allow branching, which means that we can apply any clause and branch over the

different literals in that clause, adding a child node for every literal in the clause.

There are many ways to turn an MUS into a structured justification. This is dependent on

the order in which the different expansion rules are applied. One could argue that the branching

should happen as late as possible as it will allow the tree to be relatively small, and it will prevent

multiple applications of the same rules in the different branches, as we will see in Example 6.6.

79

However, a small tree does not necessarily offer an explainable justification. In some cases, the most

understandable justification will start with a case distinction, i.e. branching of the tree. In order

to somewhat reduce the size of the generated justifications, we have decided to start by adding

all the unit clauses, so that those will only be applied once. In terms of explainability, these unit

clauses correspond to the set of outcome statements that we may assume (as a consequence of

corresponding axioms); they do not require logical inference. For this reason, it makes sense to

start by listing all these clauses. After this has been done, we do not prioritize any clause over

another and allow for random application until every branch is closed.

6.2.2 Examples of Structured Justifications

Now we show several examples of the usage of Algorithm 2.

Example 6.4. In the first example, we show what Algorithm 2 does on the input of the MUS that

is extracted in Example 6.1, where we had that n = m = 3 and Γ = x1 ∨ x2 ∨ x3. We repeat it one

more time.

Conjunction Upwards: ¬〈〈(010,100,100); ¬x1∧¬x2〉〉 ∨ 〈〈(010,100,100); ¬x1∧¬x2∧x3〉〉
∨ 〈〈(010,100,100); ¬x1∧¬x2∧¬x3〉〉
Conjunction Downwards: ¬〈〈(010,100,100); ¬x1∧¬x2∧x3〉〉 ∨ 〈〈(010,100,100); x3〉〉

Strong Unanimity: ¬〈〈(010,100,100); x3〉〉

Integrity Constraint: ¬〈〈(010,100,100); ¬x1∧¬x2∧¬x3〉〉
None: 〈〈(010,100,100); ¬x1∧¬x2〉〉

In Figure 6.1, we only show the newly added outcome statement of every node for readability.

First, we instantiate the tree with the (negation of) the initially inputted outcome statement that

needs to be justified, i.e. the clause with the label “None”. Afterwards, it is deleted from our MUS.

Consequently, we add (and delete) all the unit clauses; in this case an instance of strong unanimity

and the integrity constraint. After that, both the conjunction upwards and the conjunction downwards

instances are applicable; the algorithm randomly picks the latter and applies it, concluding the first

literal of the instance (as seen in the fourth node). Finally, the last possible clause is applied. It is

easy to see that both leaf nodes contain an outcome statement and their negation. We conclude that

the tree is closed.

Figure 6.1: The generated tree described in Example 6.4

80

Example 6.5. In the second example, let n =m = 3 and let Γ = x1 ∨ x2 ∨ x3 again. Let

AN = {AFai,AHom,AWeak-Un,AStrong-Un,ARei,AMon,ACan}

and suppose we want to justify the outcome statement J{(0,1,1), (1,0,1), (0,1,0)}, x2K. First, we

generate the following MUS using Algorithm 1.

Atomic Equivalence: ¬〈〈(011); ¬x2〉〉 ∨ 〈〈(011); ¬x2〉〉

Disjunction Upwards: ¬〈〈(011); ¬x2〉〉 ∨ 〈〈(011); x1∨¬x2∨¬x3〉〉
Box Implies Diamond: 〈〈(011); x1∨¬x2∨¬x3〉〉 ∨ 〈〈(011); ¬x1∧x2∧x3〉〉
Faithfulness: ¬〈〈(011); x1∨¬x2∨¬x3〉〉
Reinforcement: ¬〈〈(011); ¬x1∧x2∧x3〉〉 ∨ ¬〈〈(101,010); ¬x1∧x2∧x3〉〉
∨ 〈〈(011); ¬x2〉〉 ∨ ¬〈〈(011,101,010); ¬x2〉〉

Cancellation: 〈〈(101,010); ¬x1∧x2∧x3〉〉
None: 〈〈(011,101,010); ¬x2〉〉

When inputting the MUS above, Algorithm 2 generates the tree depicted in Figure 6.2.

Figure 6.2: The generated tree described in Example 6.5

Example 6.6. We show one more example of a slightly more intricate tree that branches early on.

Although the justification is not so interesting, as it almost immediately follows from unanimity,

the example nicely illustrates the workings of our system. We again have that n = m = 3 but let

Γ = (x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3). Let

AN = {AFai,AHom,AWeak-Un,AStrong-Un,ARei,AMon}.

We want to justify the outcome statement J{(1,0,0), (1,0,0), (1,0,0)}, x1 ∧ ¬x2 ∧ ¬x3K and extract

the following MUS.

Disjunction Upwards: ¬〈〈(100); ¬x1〉〉 ∨ 〈〈(100); ¬x1∨x2∨x3〉〉
Disjunction Upwards: ¬〈〈(100); x2〉〉 ∨ 〈〈(100); ¬x1∨x2∨x3〉〉

81

Disjunction Upwards: ¬〈〈(100); x3〉〉 ∨ 〈〈(100); ¬x1∨x2∨x3〉〉
Disjunction Downwards: ¬〈〈(100,100,100); ¬x1∨x2∨x3〉〉 ∨ 〈〈(100,100,100); x3〉〉

∨ 〈〈(100,100,100); x2〉〉 ∨ 〈〈(100,100,100); ¬x1〉〉

Faithfulness: ¬〈〈(100); ¬x1∨x2∨x3〉〉
Homogeneity: 〈〈(100); ¬x1〉〉 ∨ ¬〈〈(100,100,100); ¬x1〉〉

Homogeneity: 〈〈(100); x2〉〉 ∨ ¬〈〈(100,100,100); x2〉〉

Homogeneity: 〈〈(100); x3〉〉 ∨ ¬〈〈(100,100,100); x3〉〉

None: 〈〈(100,100,100); ¬x1∨x2∨x3〉〉

Consequently, we generate the tree in Figure 6.3 using Algorithm 2.

Figure 6.3: The generated tree described in Example 6.6

6.3 Termination, Soundness and Completeness for the En-

coded Fragment

If we combine Algorithm 1 with Algorithm 2 by first generating an MUS and then structuring

that MUS, we find an algorithm that takes as input a set of axioms AN and a universal outcome

statement JB, φK with B ∈ Mod(Γ)+∗ and φ ∈ L(X)∧,∨ and outputs the generated MUS and a

tree that structures that MUS. This tree is rooted in [⟪B,¬φ⟫] and every edge corresponds to

the application of some axiom instance from the MUS generated by Algorithm 1. Note here that

this tree is formally not a closed tableau, but it closely resembles one: every leaf node contains a

contradiction in the form of an outcome statement and its negation. We will extensively discuss

the differences and similarities of the two calculi in Section 6.4.

In Algorithm 3, we show the algorithm that is described above. If Algorithm 1 does not output

an MUS because one of the two preconditions is not satisfied, then Algorithm 3 will not produce

any output.

As for the tableau-based calculus in the first part of this thesis, we would like to show termination,

soundness and completeness of Algorithm 3.

82

Algorithm 3 An algorithm that concatenates Algorithm 1 and Algorithm 2

input: A set of axioms AN and a universal outcome statement JB, φK
Run Algorithm 1
if Algorithm 1 outputs an MUS then

Run Algorithm 2 with as input this MUS
output: The MUS outputted by Algorithm 1
and the closed tree outputted by Algorithm 2

end if

Unfortunately, because our SAT solver (Glucose3) does not always terminate (as it can get

stuck in an infinite loop), we cannot ensure that Algorithm 1 always terminates, as it is based on

that SAT solver. As a consequence, Algorithm 3 does not always terminate. However, Algorithm 1

allows for the usage of any SAT solver. Now consider the SAT solver that simply checks for every

possible valuation on S∗ if that valuation satisfies the inputted set. Then this SAT solver always

terminates, as there are only finitely many valuations, so if we use this SAT solver, or another

one that always terminates, we could show termination. The same holds for the MUS extraction

algorithm that is used in Algorithm 1, where we note that we could simply consider every possible

subset (of which there are finitely many) and check whether it is minimally unsatisfiable.

Lemma 6.4 (Termination). Algorithm 3 always terminates, given that Algorithm 1 uses a SAT

solver and a MUS extraction algorithm that always terminate.

Proof. Firstly, note that the first part of the algorithm always terminates as both the SAT solver

and the MUS extraction algorithm always terminate; the other steps in this algorithm are trivial.

Consequently, we observe that Algorithm 2 always terminates as the MUS that is inputted is finite,

and we can never apply the same clause twice in one branch. This concludes our proof.

Now we turn to soundness. As discussed in Remark 6.3, the MUS that is returned by Algorithm

1 does not always grant us an unstructured justification because the minimality condition of

explanatoriness is not always satisfied. This followed from a technical observation concerning the

valuations in the encoding. Instead, we find the following lemma.

Lemma 6.5. Let JB, φK ∈ S∗ be a universal outcome statement and let AN be some set of axioms.

If Algorithm 3 outputs the MUS A′ and some tree, under the input AN and JB, φK, then it holds

that A′ ∖ (ARest+ ∪ {⟪B,¬φ⟫}) ⊨Γ JB, φK.

Proof. This follows immediately from Lemma 6.2 and Remark 6.2.

Furthermore, note that any tree that is outputted by Algorithm 3 is closed, rooted in [⟪B,¬φ⟫]
and contains only applications from the clauses in the MUS A′∖{⟪B,¬φ⟫}. This follows immediately

from the definition of Algorithm 2.

Unfortunately, because we have only encoded a fragment of L(X), our system is not complete.

For example, we could never generate a closed tree for the outcome statement JB, x1 ↔ x2K as we

have no way of encoding this outcome statement into our framework. However, we are able to show

completeness of the system with respect to the fragment of L(X) that we have encoded: L(X)∧,∨.
As for termination, we assume that the SAT solver and the MUS extraction tool terminate.

Lemma 6.6 (Completeness for the fragment L(X)∧,∨). Let s ∈ S∗ be a universal outcome statement

and let AN be a satisfiable set of axioms such that AN is unsatisfiable in combination with ¬s.

83

Then the algorithm will generate a closed tree rooted in [¬s] with clause applications from some set

A′ ⊆ (⋃A∈AN A) ∪ARest+.

Proof. Because there is no consistent aggregation rule that satisfies both ¬s and the axioms in AN

by assumption, we know by Lemma 5.3 that there is no truth valuation on S∗ that makes ¬s, the
axioms in AN and the axioms in ARest true. As a consequence, the MUS extraction tool will be

able to extract an MUS A′ ⊆ (⋃A∈AN A) ∪ARest+ ∪ {¬s}.
Given this MUS, the second part of our algorithm will always generate a tree, where we note

that in the problematic case described in the introduction of Section 6.2, our algorithm will branch

over all clauses, making a nested case distinction over all clauses in the set. Then because the

inputted set is an MUS, there is no possible truth assignment, so every case in the distinction will

correspond to an inconsistent leaf node.

6.4 Discussion

In the first part of this thesis, we proposed a theoretical framework in which we can capture

structured justifications with the help of tableaux. We introduced a set of expansion rules that

mirror the possible inference steps one could make when justifying a certain outcome statement.

In the second part of the thesis, we tried to implement this in Python. In our encoding, we

decided to encode a fragment of the possible formulas L(X) in order to evade an exponential

blow-up of the size of the outcome space. We started by constructing an algorithm that extracts an

MUS that resembles an unstructured justification (extended with extra axiom instances from the

valuation restriction axioms). Finally, we implemented another algorithm that structures this MUS

by generating a tree data structure in Python. This tree resembles a tableau from a structured

justification. Inevitably, the theory and implementation do not perfectly align. In this section, we

will discuss where they coincide and where they differ.

The Extracted MUS and Soundness

Firstly, we note that the MUS that we extract in Algorithm 1 often grants us an unstructured

justification, but in Remark 6.3, we show that we cannot guarantee that the MUS grants us an

unstructured justification due to some technicalities in our encoding. We could however ensure the

generation of an MUS that always grants us an unstructured justification by encoding the valuation

restriction axioms as hard clauses instead of soft clauses in our MUS. Then every truth valuation

on S∗ has to satisfy the axioms in ARest and would thus correspond to a consistent aggregation

rule by Lemma 5.3. This encoding would also allow us to prove soundness of the algorithm, as it

would show that every MUS that we generate grants us an unstructured justification.

However, by doing so, we would no longer obtain axiom instances from the restriction axioms in

our MUS. As a consequence, the extracted MUS would be less informative, as these axiom instances

provide a lot of insights towards the unsatisfiability; see the examples in Subsection 6.1.2. For that

reason, we have decided to encode the valuation restriction axioms as soft clauses, as the goal of

this implementation was to construct an algorithm that generates explainable justifications.

Expansion Rules

In both the theoretical approach and the implementation, the main idea is to construct a tree that

is rooted in the singleton containing (the negation of) some outcome statement and is licensed

84

by a set of axiom instances. These axiom instances constitute an important part of the inference

steps that are made within the tree. The nodes are labeled with sets of outcome statements. The

essential property of the constructed tree is that every branch ends in a leaf node that contains a

contradiction, i.e. it contains some outcome statement and its negation.

One of the biggest differences between the theoretical model and the implementation is that

they are based on different sets of expansion rules. Here it is important to note how the two sets of

expansion rules came about. In the theoretical framework, we wanted a set of rules that allows

for intuitive inferences while the system is sound and complete. This set of rules tries to mimic

possible inferences one could make when coming up with a justification.

The second set of expansion rules were not consciously elected. Instead, they are a consequence

of the axioms in Definition 5.5. This set of axioms constitutes the valuation restriction that makes

sure that every truth valuation on our encoded propositional variables corresponds to a consistent

aggregation rule (that satisfies exactly the outcome statements that are true in the valuation).

As a consequence, these axioms provide a detailed description of the inner workings of outcome

statements. As the instances of these restriction axioms are inputted in order to generate the MUS

(see Section 6.1), they might also end up in the outputted MUS, which resembles an unstructured

justification.

When extracting such an MUS, for example the one from Example 6.5, it is returned in the

following format, where every integer represents some outcome statement in S∗ and every sublist

represents some clause, i.e. axiom instance:

[[−169,15937], [−15937,15956], [15956,177], [−15956], [−177,−789,169,−6649], [789], [6649]].

One could instantly walk through the MUS above and try to come up with a way to structure the

clauses in a way that is readable and explainable. In the algorithm in Section 6.2, we presented a

way to automate this process through the generation of a tree, where clauses correspond to edges

in the tree. In that way, every clause becomes an inference step in the tree, which implies that the

different axioms, both the valuation restrictions from Section 5.5 and the binary aggregation axioms

from Section 2.3, correspond to the different possible inference steps, as is seen in the examples in

Subsection 6.2.2.

There are certain similarities between the set of expansion rules from Section 3.2 and the rules

induced by the axioms from Section 5.5. For example, the witness rule and the box implies diamond

rule describe the same inference.

However, the two sets of rules are not equal. For example, the branching into three nodes

that happens in Example 6.6 cannot be reproduced in the theoretical tableau method; one could

try to mirror this step through a double application of the branching rule, but this method will

always add extra outcome statements that are not added in the triple branching in Example 6.6.

Conversely, the branching rule from the set of expansion rules in the theoretical part can not always

be mirrored with the set of expansion rules in the implementation.

The Fragment L(X)∧,∨ and Completeness

Apart from the possible inference rules, a big difference between the two frameworks is that

our encoding only expresses a fragment of the outcome statements that can be expressed in the

theoretical framework. Because of this, the algorithm we have encoded is not complete. However,

the following lemma shows us that we can still express every outcome statement with the fragment

85

L(X)∧,∨.

Lemma 6.7. Any outcome statement of the form ⟪B, φ⟫ or JB, φK with B ∈Mod(Γ)+ and φ ∈ L(X)
can be written as either a conjunction or a disjunction of outcome statements of the form ⟪B, ψ⟫
or JB, ψK with B ∈Mod(Γ)+ and ψ ∈ L(X)∧,∨.

Proof. Consider an outcome statement ⟪B, φ⟫ with B ∈Mod(Γ)+ and φ ∈ L(X). The formula φ

can be rewritten as a DNF-formula (see Section 1.1) of the form ψ1 ∨⋯ ∨ ψk, where every ψi is a

conjunction of literals in X∗. But now we find that

⟪B, φ⟫ ≡ ⟪B, ψ1 ∨⋯ ∨ ψk⟫ ≡ ⟪B, ψ1⟫ ∨⋯ ∨ ⟪B, ψk⟫.

For the universal outcome statements, we use the fact that any formula in L(X) can be rewritten

as a CNF-formula and then pull this conjunction out, analogously to the proof above.

Given the lemma above, one could try to extend the encoded framework in order to obtain a

method that is complete. In order to do so, we would need to translate any outcome statement that

appears in the input or in one of the axiom instances to either a conjunction or a disjunction of

outcome statements from our fragment. With that encoding at hand, the framework is in principle

expressive enough to generate a justification whenever one could theoretically find one.

We note that we can only justify outcome statements of the form JB, φK with φ ∈ L(X)∧,∨.
Because of that, we cannot justify statements of the form JB, φF (B)K (see Definition 2.13), where

F (B) describes some outcome set. However, with the help of Lemma 6.7, it would be possible to

extend our model and allow for justifications of this type.

We also make the observation that our algorithm does not offer a closed tree in the sense that

every leaf node contains an inconsistent outcome statement, as we have not encoded these because

� ∉ L(X)∧,∨. However, this is just a small technicality, because we do require overtly inconsistent

leaf nodes: every leaf node should contain some outcome statement and its negation. One could

easily extend our model by introducing an inconsistent outcome statement. As it does not really

contribute to the model (since we already have clear inconsistencies in the leaf nodes), we have

decided to leave it out.

Finally, we note that in Section 5.3, we have encoded the axioms for the fragment of L(X)∧,∨

and we showed that they are equivalent to the axioms in Section 1.4. However, this does restrict the

explainability of our model to a certain extent. Observe here that our algorithm will never return

axiom instances with outcome statements of the form ⟪B, φ⟫ or JB, φK with φ ∈ L(X) ∖ L(X)∧,∨,
as these are not encoded. This type of axiom instance could occur in the theoretical framework.

Running Time

To conclude this discussion, we make some remarks concerning the running time of the two

algorithms. There are four steps that require attention here.

1. The instantiation of both the restriction axioms and the axioms in AN .

2. Checking the satisfiability of the conjunction of all the above with a SAT solver; this is the

nontriviality condition.

3. Extracting the MUS; this is the essential part of the first algorithm.

4. Turning the MUS into a structured justification; this is done in the second algorithm.

86

For small examples, with n =m = 3, many of the axioms in the first step are instantiated within

a matter of seconds. Reinforcement runs the longest; it will take about a minute to instantiate the

axiom.

After all the axioms have been instantiated, we check the second and third step. Both happen

in a matter of seconds for n =m = 3. The fourth step also runs within seconds.

Generally, we may conclude that step 4. will always be relatively quick, as the input is an

extracted MUS. Most of the times, such an MUS is substantially smaller than the union of all the

axiom instances in the second step.

For bigger n and m the running time grows quickly. For n = 3 and m = 4, the instantiating

of the axioms already takes about an hour. However, the satisfiability of the conjunction of the

different formulas is checked within a minute. Note that we would only need to instantiate the

axioms once. Thereafter, we can run different examples, for the chosen n, m and Γ. Unfortunately,

the Python 3 Google Compute Engine Backend on which we run the programs only offers 12 GB of

RAM and the extraction of our MUS requires more for this setting. As a consequence, our system

crashes and we are unable to extract an MUS. For n = 4 and m = 3, the instantiating of the axioms

also takes around an hour. But here, we are allowed to extract an MUS without exceeding the 12

GB of RAM; the extraction now takes around a minute. Step 2. and 4. both run within several

seconds. For n = 5, the instantiation in the first step was not finished after three hours.

It makes sense that increasing m leads to a higher running time than increasing n. This is due

to the fact that increasing m leads to an increase in both the number of profiles and the number of

possible formulas in the outcome statements. Increasing n only increases the number of profiles.

The integrity constraint restricts the set of possible profiles. If the constraint is “strict”, i.e.

the set of allowed profiles is small, then the algorithm will run quicker, as it needs to check less

profiles and thus less axiom instances. In that sense, the integrity constraint also has a lot of

influence on the running time of the algorithm. For example, if we let n = 3 and m = 4 but we let

Γ = (x1 ↔ x2) ∧ (x3 ↔ x4), then the instantiation of the CNF-formulas takes only a minute.

Finally, we note that the set of axioms that is instantiated in the first step is also relevant for

the running time. For example, if we let n = 3, m = 4 and Γ = x1 ∨ x2 ∨ x3 but we do not instantiate

the reinforcement axiom, the instantiation only takes about 20 minutes and we are able to run the

rest of the steps within a matter of minutes; see Example 6.3.

87

Conclusion

In this thesis, we defined unstructured and structured justifications for binary aggregation. We

also encoded the framework of binary aggregation in Python and constructed an algorithm that

extracts an MUS that resembles an unstructured justification (extended with extra axiom instances

from the valuation restriction axioms) and an algorithm that offers a way of structuring this MUS

by constructing a tree that resembles a tableau. First, we summarize the most important findings

per chapter.

In Chapter 2, we first introduced outcome statements. Thereafter, we proposed a definition

for axioms and axiom instances by expressing them in the language of outcome statements L(O).
Finally, we showed the expressive power of L(O) by rewriting the axioms of binary aggregation in

this language. We also proved that these rewritten axioms are equivalent to the original axiom

definitions.

In Chapter 3, we defined a tableau-based calculus that allows us to prove the unsatisfiability

of sets of outcome statements and axiom instances in a structured manner. The calculus is based

on the set of expansion rules that we introduced. These correspond to the different inferences one

would make when arguing about aggregation rules. Finally, we proved termination, soundness and

completeness of this calculus.

In Chapter 4, we introduced the main concepts of the thesis: unstructured and structured

justifications for binary aggregation. This chapter concludes the theoretical part of the thesis.

In Chapter 5, we showed how we encoded the framework of binary aggregation in Python. An

important encoding was that of aggregation rules, which required the introduction and encoding of

the valuation restriction axioms. We concluded the chapter by showing how to encode the binary

aggregation axioms in Python.

In Chapter 6, we introduced two algorithms. The first algorithm takes as input an outcome

statement and a set of axioms and generates an MUS that resembles an unstructured justification

as output. The second algorithm takes as input such an MUS and then outputs a tree that serves

as an alternative for the tableau in a structured justification. If we combine the two algorithms by

running them after each other, then we find an algorithm that generates an MUS together with a

tree that offers a way to structure the MUS. At the end of the chapter, we discuss termination,

soundness and completeness of the algorithm. Finally, we show that for small n and m (n =m = 3),
we are able to generate justifications quickly. For bigger n or m, the running time quickly grows

and it is hard and sometimes impossible to generate justifications for these bigger examples.

Evaluation

The first goal of this thesis was to set up a theoretical model in which we can express and construct

justifications. In the first part of this thesis, we have presented a model that fulfills this role. The

88

three main components are the language of outcome statements, the tableau-based calculus and

the definitions of justifications.

As a consequence of the fact that the size of the outcome space for an aggregation rule is double

exponential (See Section 2.1), we decided to define outcome statements that describe the outcome

set rather than state the possible outcome sets. An easy way to describe a ballot is through the

use of formulas over the issue-variables. To describe the outcome set, we decided to introduce an

existential and a universal statement. We have then defined a propositional language over these

outcome statements. We found that this language offers an intuitive way to formally argue about

aggregation rules. Moreover, we showed its expressive power by rewriting the binary aggregation

axioms in this language.

The semantics of these outcome statements lies at the core of the tableau-based calculus that

we have defined. This tableau method inherits the intuitive nature of the outcome statements and

allows for explainable proofs. We also showed termination, soundness and completeness for the

calculus, although it required a lot of technical details, and we had to carefully pick the set of

expansion rules and their different preconditions.

We concluded the theoretical part by defining unstructured and structured justifications and

providing several examples for both definitions. In these examples, it becomes clear that it is

relatively hard to come up with good examples in terms of binary aggregation axioms; a lot of the

examples come down to simply justifying that the majority outcome should be elected. However,

sometimes it might still be valuable to justify such an outcome without explicitly applying the

majority-preservation axiom, as this axiom is rather strong and is not collectively accepted in every

collective decision-making scenario. For example, consider the situation where 51 people cast the

same ballot while 49 people cast the complete opposite ballot; in that scenario, it could be deemed

unfair to simply go with the majority. For an interesting discussion on egalitarian principles that

offer an alternative approach within the related framework of judgment aggregation, we refer to the

work of Botan, De Haan, Slavkovik and Terzoupoulou [Bot+23].

Moreover, in certain situations we notice that our set of binary aggregation axioms falls short.

To illustrate this, we consider the example below, which is a version of the doctrinal paradox for

binary aggregation; see the paper by Kornhauser and Sager [KS93].

Let m = n = 3, suppose that Γ = ¬(x1 ∧ x2 ∧ x3) and consider the profile displayed below.

1 ∶ (1,1,0)
1 ∶ (1,0,1)
1 ∶ (0,1,1)

If we were to follow the majority on every issue, which might seem fair to do in this situation,

we find an inconsistent outcome vector, namely (1,1,1). We conclude that the profile is not

majority-consistent. The other axioms do not really offer any help in a symmetrical situation like

the one above. However, one could argue that it should be justifiable to at least pick one of the

issues, as every voter accepts two of the three issues. A possible solution is the introduction of

distance-based axioms that parallel the Kemeny and Slater rules from judgment aggregation; see the

work of Grossi and Pigozzi [GP22]. These rules look for the consistent outcomes that are the most

similar to the ballots in the profile. Such a distance-based axiom could offer help in a situation like

the above, and allow us to justify that we should at least accept one issue.

However, the examples presented in Chapter 4 do show that the tableau method that we defined

offers for simple and intuitive visual proofs.

89

The second goal of this thesis was to encode binary aggregation in a computer and develop an

algorithm that generates justifications for binary aggregation. Unfortunately, we have only encoded

a fragment of the formulas L(X), namely L(X)∧,∨. As a consequence, the two-part algorithm

presented in Chapter 6 is not complete, i.e. we cannot justify every outcome statement that we

could theoretically justify. Moreover, our implementation does not coincide perfectly with the

theory. We have already extensively discussed this matter in Section 6.4.

We did manage to construct an algorithm in Python that generates a tree that resembles a

structured justification. For small examples, like for n =m = 3 (and any integrity constraint Γ), it

runs within a minute. For bigger m, the running time quickly grows and it becomes very hard (if

not practically impossible) to run the algorithm, as is seen in Section 6.4.

However, if we were to have a very restrictive integrity constraint that substantially narrows

down the set of allowed profiles, we are able to run the program for bigger n and m.

We have met the goal of developing an algorithm that generates justifications, although it only

works efficiently for small examples and it does not align perfectly with the theory presented in the

first part of this thesis.

Future Work

We will end the conclusion by proposing several directions for possible future work.

The first direction we consider is researching complexity results for the justifications defined in

this thesis. Boixel and De Haan [BH21] show the computational complexity of two things: firstly,

whether an unstructured justification (for voting theory) is correct, and secondly, whether there

exists an unstructured justification (for voting theory) in a given setting. As these results would

give insights to the applicability and limits of the algorithms introduced in this thesis, it would be

relevant to do research in this direction.

We have chosen to adapt the justification definitions from voting theory to binary aggregation

(with integrity constraints). Binary aggregation is both a general framework and lends itself for a

relatively easy encoding in a computer (as the name suggests). However, there are many frameworks

closely related to binary aggregation, such as judgment aggregation, among others. Endriss, Grandi,

De Haan and Lang [End+16] give an overview of a few of these frameworks and show that all are

equally expressive. However, binary aggregation (with integrity constraints) is less general than

some of these other frameworks in terms of succinctness; this notion describes how compactly one

could translate a setting from one framework to another. By allowing for extra variables (other

than the ones in X) in the constraint, the framework would become more general in these terms.

Considering the different translations between these frameworks and their generality based on

the paper by Endriss et al. [End+16] would be another interesting research direction, as it could

possibly lead to an efficient adaption of the justification definitions to these other frameworks.

As discussed in the evaluation above, the binary aggregation axioms may sometimes fall short.

This is due to the fact that binary aggregation is a relatively new field of research and the axiomatic

method has not yet been deployed extensively for this framework. Together with the possible

translations proposed in the paragraph above, it might be of interest to adapt the model to judgment

aggregation and see whether we can use the judgment aggregation axioms to find more profound

justifications.

90

In this thesis, we have introduced several tools in the framework of binary aggregation for

the purpose of expressing and constructing justifications. But these tools could also be used for

different purposes. For example, the tableau-based calculus that we have defined serves as a method

to prove the unsatisfiability of a set of axioms together with a set of outcome statements. But

if we disregard this set of outcome statements, our calculus offers a structured way of showing

impossibility results: if we construct a closed tableau that is licensed by some set of axiom instances,

then we can conclude an impossibility of the corresponding axioms.

Moreover, the SAT solver that we use within our encoding can also be used to apply a method

like that of Geist and Peters [GP17] to binary aggregation. As SAT solvers have been very helpful

tools in the axiomatic method for voting theory and related frameworks [LT09; GE11a; BG16;

GP17; End20; Klu+20], it might be interesting to see what they could offer in the research on

binary aggregation.

In Section 6.4, we have extensively discussed the differences between our theoretical model

and the implementation thereof. Specifically, we have looked at the difference between the set

of expansion rules defined in the tableau-based calculus and the set of expansion rules that was

induced by the restriction axioms in the implementation. Both these sets are carefully chosen to be

both intuitive and fit the technical requirements. However, neither are unique and there are many

different ways to substitute these sets. We consider two possible options. Firstly, we could alter

the set of expansion rules to match the implementation, i.e. define a theoretical model that aligns

better with what we have implemented. The second option is to go the other way around and try

to define another set of restriction axioms that aligns more with the set of expansion rules that we

have defined.

Finally, one could try to formalize the sketch for the proof of completeness in Section 6.4, which

would bring together the theoretical part and the implementation.

The algorithm that we have developed is not perfect, which means it could be improved. In

the work of Nardi, Boixel and Endriss [NBE22], they show an algorithm that efficiently computes

unstructured justifications for voting theory. One could try to adapt this algorithm to our model

and use that instead of the deletion-based MUS extraction algorithm that we use.

In our second algorithm, we randomly pick one of the possible expansion rules for a leaf node.

Instead, one could try to implement certain heuristics in order to generate more explainable

justifications. For example, one could try to rank the different applicable clauses based on their

relevance at that point in the tableau.

Finally, we note that participatory budgeting is a closely related framework, which would allow

for more applied examples of our model. One could try to adapt our model to the framework of

participatory budgeting and consider the model in a more real-world setting.

91

Bibliography

[Arr63] Kenneth J. Arrow. Social Choice and Individual Values. 2nd. First edition published in

1951. New York: John Wiley and Sons, 1963 (cited on pages 4, 54).

[AS18] Gilles Audemard and Laurent Simon. “On the glucose SAT solver”. In: International

Journal on Artificial Intelligence Tools 27.01 (2018) (cited on page 74).

[ASS02] Kenneth J. Arrow, Amartya Sen, and Kotaro Suzumura, editors. Handbook of Social

Choice and Welfare. Volume 1. Elsevier, 2002 (cited on page 3).

[BE20] Arthur Boixel and Ulle Endriss. “Automated Justification of Collective Decisions

via Constraint Solving”. In: Proceedings of the 19th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS-2020). IFAAMAS, May 2020

(cited on pages 6, 18, 44, 48, 54, 72, 73).

[BEH22] Arthur Boixel, Ulle Endriss, and Ronald de Haan. “A Calculus for Computing Structured

Justifications for Election Outcomes”. In: Proceedings of the 36th AAAI Conference

on Artificial Intelligence (AAAI-2022). Feb. 2022. https://doi.org/10.1609/aaai.

v36i5.20414 (cited on pages 6, 15, 25–28, 33–35, 38, 41, 43, 44, 46, 49, 50, 54).

[BEN22] Arthur Boixel, Ulle Endriss, and Oliviero Nardi. “Displaying Justifications for Collective

Decisions”. In: Proceedings of the 31st International Joint Conference on Artificial

Intelligence (IJCAI-2022). Demo Paper. July 2022. https://doi.org/10.24963/

ijcai.2022/847 (cited on page 6).

[BG16] Felix Brandt and Christan Geist. “Finding Strategyproof Social Choice Functions via

SAT Solving”. In: Journal of Artificial Intelligence Research 55 (2016), pages 565–602

(cited on pages 4, 91).

[BH21] Arthur Boixel and Ronald de Haan. “On the complexity of finding justifications for

collective decisions”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Volume 35. 6. 2021, pages 5194–5201 (cited on page 90).

[Bie+09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of

Satisfiability. Volume 185. IOS Press, 2009 (cited on pages 4, 72).

[Bot+23] Sirin Botan, Ronald de Haan, Marija Slavkovik, and Zoi Terzopoulou. “Egalitarian

judgment aggregation”. In: Autonomous Agents and Multi-Agent Systems 37 (Feb.

2023) (cited on page 89).

[Bra+16] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia,

editors. Handbook of Computational Social Choice. Cambridge University Press, 2016

(cited on pages 4, 54).

92

https://doi.org/10.1609/aaai.v36i5.20414
https://doi.org/10.1609/aaai.v36i5.20414
https://doi.org/10.24963/ijcai.2022/847
https://doi.org/10.24963/ijcai.2022/847

[CE16] Olivier Cailloux and Ulle Endriss. “Arguing about Voting Rules”. In: Proceedings of

the 15th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS-2016). Also presented at COMSOC-2016. IFAAMAS, May 2016 (cited on

page 6).

[DAg+13] Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim Posegga, editors.

Handbook of tableau methods. Springer Science & Business Media, 2013 (cited on

page 27).

[DAg13] Marcello D’Agostino. “Tableau methods for classical propositional logic”. In: Handbook

of tableau methods. Edited by Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle,

and Joachim Posegga. Springer Science & Business Media, 2013. Chapter 2 (cited on

page 27).

[DH10] Elad Dokow and Ron Holzman. “Aggregation of binary evaluations”. In: Journal of

Economic Theory 145.2 (2010), pages 495–511 (cited on page 5).

[EG14] Ulle Endriss and Umberto Grandi. “Binary Aggregation by Selection of the Most

Representative Voter”. In: Proceedings of the 28th AAAI Conference on Artificial

Intelligence (AAAI-2014). July 2014 (cited on page 5).

[End+16] Ulle Endriss, Umberto Grandi, Ronald de Haan, and Jérôme Lang. “Succinctness

of Languages for Judgment Aggregation”. In: Proceedings of the 15th International

Conference on Principles of Knowledge Representation and Reasoning (KR-2016). Apr.

2016 (cited on page 90).

[End16] Ulle Endriss. “Judgment Aggregation”. In: Handbook of Computational Social Choice.

Edited by F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia. Cambridge

University Press, 2016. Chapter 17 (cited on page 5).

[End20] Ulle Endriss. “Analysis of One-to-One Matching Mechanisms via SAT Solving: Im-

possibilities for Universal Axioms”. In: Proceedings of the 34th AAAI Conference on

Artificial Intelligence (AAAI-2020). AAAI Press, Feb. 2020. https://doi.org/10.

1609/aaai.v34i03.5689 (cited on pages 4, 91).

[End23] Ulle Endriss. SAT Solving for Social Choice Theory. 2023. https://nbviewer.org/

urls/staff.science.uva.nl/u.endriss/teaching/comsoc/2024/code/sct.ipynb

(visited on 07/01/2025) (cited on pages 56, 57, 59, 60, 62, 67, 68, 71).

[GE10] Umberto Grandi and Ulle Endriss. “Lifting Rationality Assumptions in Binary Aggrega-

tion”. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence

(AAAI-2010). July 2010. https://doi.org/10.1609/aaai.v24i1.7603 (cited on

page 5).

[GE11a] Christian Geist and Ulle Endriss. “Automated search for impossibility theorems in

social choice theory: Ranking sets of objects”. In: Journal of Artificial Intelligence

Research 40 (2011), pages 143–174. https://doi.org/10.1613/jair.3126 (cited on

pages 4, 91).

[GE11b] Umberto Grandi and Ulle Endriss. “Binary Aggregation with Integrity Constraints”.

In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence

(IJCAI-2011). July 2011 (cited on pages 5, 10).

93

https://doi.org/10.1609/aaai.v34i03.5689
https://doi.org/10.1609/aaai.v34i03.5689
https://nbviewer.org/urls/staff.science.uva.nl/u.endriss/teaching/comsoc/2024/code/sct.ipynb
https://nbviewer.org/urls/staff.science.uva.nl/u.endriss/teaching/comsoc/2024/code/sct.ipynb
https://doi.org/10.1609/aaai.v24i1.7603
https://doi.org/10.1613/jair.3126

[GE13] Umberto Grandi and Ulle Endriss. “First-Order Logic Formalisation of Impossibility

Theorems in Preference Aggregation”. In: Journal of Philosophical Logic 42.4 (2013),

pages 595–618. https://doi.org/10.1007/s10992-012-9240-8 (cited on pages 6,

18).

[GP17] Christian Geist and Dominik Peters. “Computer-aided methods for social choice theory”.

In: Trends in Computational Social Choice (2017), pages 249–267 (cited on pages 4, 56,

60, 67, 71, 91).

[GP22] Davide Grossi and Gabriella Pigozzi. Judgment aggregation: a primer. Springer Nature,

2022 (cited on pages 11, 54, 89).

[Gra12a] Umberto Grandi. Binary aggregation with integrity constraints. University of Amster-

dam, 2012 (cited on page 5).

[Gra12b] Umberto Grandi. “Binary aggregation with integrity constraints”. In: University of

Amsterdam, 2012. Chapter 2, pages 15–27 (cited on page 10).

[HLP08] Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of knowledge

representation. Elsevier, 2008 (cited on page 78).

[How05] Colin Howson. Logic with trees: an introduction to symbolic logic. Routledge, 2005

(cited on page 9).

[IMM18] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. “PySAT: A Python

toolkit for prototyping with SAT oracles”. In: International Conference on Theory and

Applications of Satisfiability Testing. Springer. 2018, pages 428–437 (cited on page 74).

[Jon25] Otto de Jong. Supplementary material for the thesis ”Structured Justifications for

Binary Aggregation”. July 2025. https://doi.org/10.5281/zenodo.16614542.

https://doi.org/10.5281/zenodo.16614542 (cited on pages 56, 67).

[Klu+20] Boas Kluiving, Adriaan de Vries, Pepijn Vrijbergen, Arthur Boixel, and Ulle Endriss.

“Analysing Irresolute Multiwinner Voting Rules with Approval Ballots via SAT Solving”.

In: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020).

IOS Press, 2020, pages 131–138 (cited on pages 4, 91).

[KS93] Lewis A. Kornhauser and Lawrence G. Sager. “The one and the many: Adjudication in

collegial courts”. In: California Law Review 81 (1993) (cited on pages 14, 89).

[Lan+17] Jérôme Lang, Gabriella Pigozzi, Marija Slavkovik, Leendert van der Torre, and Srdjan

Vesic. “A partial taxonomy of judgment aggregation rules and their properties”. In:

Social Choice and Welfare 48 (2017), pages 327–356 (cited on pages 11, 54).

[LP02] Christian List and Philip Pettit. “Aggregating Sets of Judgments: An Impossibility

Result”. In: Economics and Philosophy 18.1 (2002), pages 89–110. https://doi.org/

10.1017/S0266267102001064 (cited on page 5).

[LT09] Fangzhen Lin and Pingzhong Tang. “Computer-aided proofs of Arrow’s and other

impossibility theorems”. In: Artificial Intelligence 173.11 (2009), pages 1041–1053 (cited

on pages 4, 91).

[Mar10] Joao Marques-Silva. “Minimal unsatisfiability: Models, algorithms and applications”.

In: 2010 40th IEEE International Symposium on Multiple-Valued Logic. IEEE. 2010,

pages 9–14 (cited on page 73).

94

https://doi.org/10.1007/s10992-012-9240-8
https://doi.org/10.5281/zenodo.16614542
https://doi.org/10.5281/zenodo.16614542
https://doi.org/10.1017/S0266267102001064
https://doi.org/10.1017/S0266267102001064

[Men09] Elliott Mendelson. Introduction to mathematical logic. Chapman and Hall/CRC, 2009

(cited on page 9).

[Nar21] Oliviero Nardi. “A graph-based algorithm for the automated justification of collective

decisions”. In: Master’s thesis. ILLC, University of Amsterdam (2021) (cited on page 6).

[NBE22] Oliviero Nardi, Arthur Boixel, and Ulle Endriss. “A Graph-Based Algorithm for the

Automated Justification of Collective Decisions”. In: Proceedings of the 21st Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AAMAS-2022).

IFAAMAS, May 2022 (cited on pages 6, 91).

[REH20] Simon Rey, Ulle Endriss, and Ronald de Haan. “Designing Participatory Budget-

ing Mechanisms Grounded in Judgment Aggregation”. In: Proceedings of the 17th

International Conference on Principles of Knowledge Representation and Reasoning

(KR-2020). Sept. 2020, pages 692–702. https://doi.org/10.24963/kr.2020/71

(cited on page 5).

[Rey23] Simon Rey. Variations on Participatory Budgeting. University of Amsterdam, 2023

(cited on page 5).

[Tut01] William T. Tutte. Graph theory. Volume 21. Cambridge university press, 2001 (cited

on page 10).

[Wil75] Robert Wilson. “On the theory of aggregation”. In: Journal of Economic Theory 10.1

(1975), pages 89–99 (cited on page 5).

[Zwi16] William S. Zwicker. “Introduction to the Theory of Voting”. In: Handbook of Com-

putational Social Choice. Edited by F. Brandt, V. Conitzer, U. Endriss, J. Lang, and

A. D. Procaccia. Cambridge University Press, 2016. Chapter 2 (cited on page 4).

95

https://doi.org/10.24963/kr.2020/71

	Introduction
	I Theoretical Part
	Preliminaries
	Propositional Logic
	Graph Theory
	Binary Aggregation
	Binary Aggregation Axioms

	Expressing Axioms in L(O)
	Outcome Statements
	Axioms and Axiom Instances in L(O)
	Rewriting the Binary Aggregation Axioms in L(O)
	Discussion

	The Tableau Method
	Introduction to Tableaux
	The Expansion Rules
	Correctness of the Calculus
	Termination
	Soundness
	Completeness

	Discussion

	Justifications
	Unstructured Justifications
	Structured Justifications
	Discussion

	II Implementation
	Encoding Binary Aggregation
	Encoding the Framework
	Encoding Consistent Aggregation Rules
	Valuation Restrictions as Axioms
	Correspondence Lemma

	Encoding Axioms
	Encoding the Valuation Restrictions
	Encoding the Binary Aggregation Axioms

	Generating Justifications
	Generating Unstructured Justifications
	The Algorithm for Unstructured Justifications
	Examples of Unstructured Justifications

	Generating Structured Justifications
	The Algorithm for Structured Justifications
	Examples of Structured Justifications

	Termination, Soundness and Completeness for the Encoded Fragment
	Discussion

	Conclusion
	Bibliography

