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Chapter 1

Introduction

Neural text generation models1 are at the basis of most modern-day natural lan-
guage processing (NLP) systems. In recent years many important innovations
to neural network architectures and training paradigms have appeared such as
attention mechanisms, Transformers, and pre-training and data augmentation
strategies that have accelerated the performance of NLP systems tremendously.
At their core, however, these models have not changed their probabilistic formu-
lation since the original neural text generation models were first described. Nor is
there necessarily a strong motivation to do so: the current probabilistic formula-
tion permits e�cient training of the model as well as e�cient generation through
sampling or search, and makes no independence assumptions across tokens in the
output sequence. As a result, this probabilistic approach to text generation is
widespread in natural language processing tasks and approaches.

However, the probabilistic nature of these models is often quickly forgotten
after the model has been trained. For many natural language processing tasks
such as machine translation, for example, where translation accuracy (typically
against a single reference translation) is given priority over generation variety,
deterministic search algorithms are employed to extract a single “best” generation
from the model. In such cases, the probabilistic model is only used to score
partial subsequences during generation to find the highest scoring sequence, i.e.
the sequence with highest probability under the distribution, also known as the
mode of the distribution. Assuming that a well-trained text generation model
indeed places data-like sequences2 at its conditional modes, such an approach

1We will use the term neural text generation interchangeably with (neural) sequence genera-
tion throughout the dissertation, text consisting of a sequence of discrete tokens (e.g. words or
sub-words). We opt not to use “natural language generation”, as the focus is on the algorithms
and models behind text generation, and not so much any particular collection of tasks. We
discuss the mathematical formulation of neural text generation models in Section 2.1.

2Data-like is referring to generations similar to sequences in the training data. We can
consider training data to come from a distribution implied by the data collection and human
language production processes that we wish to capture in our text generation models.

1



2 Chapter 1. Introduction

seems intuitive when high accuracy is the primary goal.
Nonetheless, such an assumption should be verified before committing to a

particular generation strategy. In fact, a well-known observation in machine trans-
lation (the “beam search curse”, Koehn and Knowles (2017)) seems to suggest
that the highest probability generations of machine translation models are not
at all data-like. A better understanding of the sequence distributions that our
neural networks predict allows us to make better-informed decisions about what
kind of generation strategy is appropriate for our models.

Sampling is a natural way to explore the properties of the sequence distribu-
tions predicted by neural networks. By studying the properties of such samples
we indirectly also study the properties of the sequence distributions we are work-
ing with. Samples can also be used to inform generation algorithms and for some
tasks samples are even of direct interest themselves as outputs of text generation
systems.

In this dissertation we will explore the use of sampling to better understand
our text generation models and in order to inform novel generation algorithms.
We will view commonly known pathologies and biases of text generation models
under the lens of such a probabilistic exploration and provide a new perspective on
their potential causes. We use these insights to propose and iterate on a sampling-
based generation algorithm inspired by risk minimisation strategies. We also
develop new sampling strategies altogether to sample from arbitrary distributions
where a per-(sub)word factorisation does not exist.

1.1 Why Sampling-Based Generation?

Neural text generation models learn to predict (conditional) sequence distribu-
tions. At test-time we often wish to summarise these distribution objects into a
single grammatically correct generation that is plausible given the context and
task. Common ways to do this are to search for the mode of the distribution or
bias the sampling algorithm towards higher probability generations.

While higher probability sequences can be a good representation of the se-
quence distribution, this does not necessarily have to be the case. When a distri-
bution is high entropy and thus spreads probability mass over many sequences,
the mode and other high probability sequences may obtain only a small amount
of probability mass and may thus not be representative of the distribution as a
whole. On the other hand, when the sequence distribution is very peaked around
a single sequence, that single sequence is a much better summary of the sequence
distribution. Therefore, it is important to know with what kind of distributions
we are dealing with and if they are high entropy distributions we should reconsider
the current focus on searching for high probability sequences.

But if the probability that the model assigns to any particular sequence given
a context would be small, how can we even summarise the distribution into a sin-
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gle sequence at all? While any particular sequence may not get much probability,
certain properties may appear in many sequences that collectively receive a sub-
stantial amount of probability mass. By informing the generation algorithm of
such properties encoded within the distribution, we can find a sequence that best
represents the distribution as a whole. Samples inform us of these distributional
properties, and will form the basis of the generation algorithms we study in this
dissertation.

1.2 Beyond (Sub)Word Factorisation

Luckily for us, sampling from neural text generation models is usually trivial to
do: text generation models use a per-(sub)word factorisation and we can simply
build up a sequence of text units by sampling the next (sub)word from the next-
token distributions predicted by the neural network, a process known as ancestral
sampling (Bishop, 2006).

However, not all models permit easy sampling. An interesting class of mod-
els that allows for very flexible model specification and even the composition of
multiple models are energy-based models. Energy-based models typically only
score complete sequences and can thus not make use of any algorithms that rely
on scoring partial sequences. E�cient generation from such models is a chal-
lenging task as neither search nor sampling is easily achieved. It is worthwhile
to be able to explore such models as well through the act of sampling to study
their behaviours as well as to inform sampling-based decoding algorithms. In this
dissertation, we develop an approximate sampler specifically designed to sample
from such models.

1.3 Contributions

The main contributions of this dissertation are an exploration of machine trans-
lation sequence distributions, a collection of sampling-based decoding algorithms
based on minimum Bayes risk and an approximate sampling algorithm for sam-
pling from energy-based models.

In the exploration of neural machine translation sequence distributions we
find that they tend be high entropy, i.e. they tend to spread probability mass
over many translations. This leads us to conclude that the existing generation
paradigms based on mode-seeking search are sub-optimal for the sequence distri-
butions we obtain in practice. We also explore the sequence distribution in more
detail and find that most probability mass is put on a set of sequences that exhibit
properties of good translations. On top of that we find that well-known patholo-
gies and biases, such as a preference of machine translation models towards too
short translations, are not clearly present in the sequence distribution, suggesting
that they are introduced by the generation algorithm, i.e. mode-seeking search.
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This leads us to propose a sampling-based generation algorithm. We adapt a
generation algorithm previously popular in statistical machine translation (Ku-
mar and Byrne, 2004), minimum Bayes risk, and propose a principled sampling-
based approximation to it. The resulting algorithm uses expectations to e↵ec-
tively capture distributional properties and essentially re-scores sequences based
on how well they summarise the sequence distribution. We provide multiple e�-
ciency improvements and study its properties and e↵ectiveness in neural machine
translation.

Finally, we look into a case where obtaining samples is no trivial task: energy-
based models. We study approximate sampling algorithms and look into how to
e�ciently obtain good (unconditional) proposal distributions for such samplers.
A downside of existing approximate samplers is that it is di�cult to estimate the
approximation quality for any given hyperparameters to the sampling algorithm.
We develop a sampler that does allow for such approximation quality estimates in
terms of divergence measures. We show the e↵ectiveness and advantages of this
sampler over its competitors on a task where we put distributional constraints on
the sequence distribution.

1.4 Thesis Overview

The remainder of this dissertation is laid out as follows.
Chapter 2 provides all the necessary background for understanding the rest of

the dissertation. It assumes basic familiarity with statistical and natural language
processing concepts. Concepts covered include the probabilistic model behind
text generation systems, maximum-likelihood estimation, decision rules and their
approximations, sampling algorithms, and approximate sampling techniques.

Chapter 3 explores the distributions learned by neural machine translation
systems. We show that some of the biases claimed to be present in such sys-
tems are not convincingly present in the sequence distributions learnt by these
models. Therefore, we argue that these biases are at least partially introduced
by the generation algorithm. We further find that sequence distributions often
spread probability mass and we argue that the mode is an inadequate target
for generation algorithms. This is supported by other findings in the literature.
We suggest an alternative generation objective and a straightforward sampling-
based approximation of that we coin sampling-based minimum Bayes risk (MBR)
decoding.

Chapter 4 expands on our sampling-based approximation to minimum Bayes
risk for neural machine translation and studies its scaling properties and sensitiv-
ity to other hyperparameters of the decoding algorithm. We further propose more
e�cient approximations using a coarse-to-fine algorithm with a proxy objective
to perform an initial filtering step. We discuss the impact of the work and find-
ings outside of our own research, and discuss future directions for sampling-based
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MBR decoding.
Chapter 5 looks into sampling from text generation models that do not admit

e�cient generation due to not being able to score partial sequences. We specifi-
cally focus on the task of controlled text generation from large language models,
where we are interested on putting constraints on the sequence distribution as a
whole rather than on individual generations. Energy-based models allow us to
define distributions that meet constraints while staying as close as possible to
the original distribution under a distribution divergence metric. We develop an
approximate sampling algorithm that allows us to sample from such energy-based
models, while being able to estimate how close our approximate samples are to
the target distribution. Our proposed sampler allows for an informed trade-o↵
between approximation accuracy and sampling e�ciency. We also show how one
can utilise modern advancements in in-context-learning and pre-trained neural
text generation models to e�ciently construct proposal distributions.

Chapter 6 provides concluding remarks for the thesis and discusses future
directions.

1.5 Output

The core publications around which the contribution chapters in this dissertation
are based are the following:

• Bryan Eikema and Wilker Aziz. 2020. Is MAP decoding all you need?
the inadequacy of the mode in neural machine translation. In Proceedings
of the 28th International Conference on Computational Linguistics, pages
4506–4520, Barcelona, Spain (Online). International Committee on Com-
putational Linguistics3

• Bryan Eikema and Wilker Aziz. 2022. Sampling-based approximations to
minimum Bayes risk decoding for neural machine translation. In Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Process-
ing, pages 10978–10993, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics

• Bryan Eikema, Germán Kruszewski, Christopher R Dance, Hady Elsahar,
and Marc Dymetman. 2022. An approximate sampler for energy-based
models with divergence diagnostics. Transactions on Machine Learning
Research

The following works were also partially developed during the course of my
PhD, but did not end up in this dissertation, because many of the core develop-
ments happened before or after the PhD:

3This work was awarded the Best Paper Award at the Conference on Computational Lin-
guistics (COLING) of 2020.

https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://openreview.net/forum?id=VW4IrC0n0M
https://openreview.net/forum?id=VW4IrC0n0M
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• Bryan Eikema and Wilker Aziz. 2019. Auto-encoding variational neural
machine translation. In Proceedings of the 4th Workshop on Representa-
tion Learning for NLP (RepL4NLP-2019), pages 124–141, Florence, Italy.
Association for Computational Linguistics

• Bryan Eikema. 2024. The e↵ect of generalisation on the inadequacy of
the mode. In Proceedings of the 1st Workshop on Uncertainty-Aware NLP
(UncertaiNLP 2024), pages 87–92, St Julians, Malta. Association for Com-
putational Linguistics

https://doi.org/10.18653/v1/W19-4315
https://doi.org/10.18653/v1/W19-4315
https://aclanthology.org/2024.uncertainlp-1.9
https://aclanthology.org/2024.uncertainlp-1.9


Chapter 2

Background

This chapter provides background knowledge essential to the remainder of the
dissertation. In Section 2.1, we discuss neural text generation, covering its prob-
abilistic formulation, training algorithms, generation algorithms and evaluation.
Readers with a strong foundation in neural text generation can freely skip this
section. Section 2.2 provides the necessary background knowledge for Chapter 5
of this dissertation. It discusses sampling techniques for models that do not per-
mit straightforward sampling, covering both exact and approximate techniques
for obtaining samples and computing expectations, as well as convergence guar-
antees and diagnostics. Readers already familiar with techniques such as Markov
chain Monte Carlo, importance sampling and rejection sampling, and are familiar
with f -divergences can confidently skip this section.

2.1 Neural Text Generation

Neural text generation consists of a neural network capable of generating se-
quences of discrete units that jointly form a string of text, typically a natural
language sentence. Sequences are split up into smaller textual units, such as
words, subwords or even characters. Generation is then considered a structured
prediction task, where a sequence of such textual units is predicted in succession
by the model, typically in a left-to-right manner. From a probabilistic perspec-
tive, we model a random sequence Y with implicit, but random (in the sense of a
random variable), length |Y |. The split into smaller textual units is realised as a
factorisation into random Categorical variables Yj over a vocabulary of possible
textual units. Using the chain rule of probability this can be achieved as:

7



8 Chapter 2. Background

P (Y = y|X = x) =
|y|Y

j=1

P (Yj = yj|Y<j = y<j, X = x) (2.1)

where Yj|Y<j = y<j, X = x ⇠ Cat (f(x, y<j; ✓)) (2.2)

Here, y<j denotes the sequence of textual units y1 through yj�1 predicted
before predicting yj, or an empty set for the distribution over Y1, and x is a col-
lection representing the (potentially empty) context that is not directly modelled
by the neural text generation system1. Eq. 2.2 states that the random variable
Yj follows a Categorical distribution with parameters determined by f(.), where
the function f(.) is a neural network with parameters ✓ mapping from the context
(x, y<j) to the logits (i.e. parameters) of the Categorical distribution.

Notably, in the presented probabilistic model no independence assumptions
are made and the factorisation is potentially exact. This is because modern neural
networks for sequence generation such as recurrent neural networks (Sutskever
et al., 2014) and Transformers (Vaswani et al., 2017) are powerful enough to
encode (x, y<j) well without su↵ering from traditional data sparsity problems
incurred by such a factorisation. The neural network with parameters ✓ are
then used to map (“encode”) any context y<j, sometimes along with additional
context x, into a continuous space, followed by a projection onto the probability
simplex over a predetermined set of textual units. Commonly a set of subwords
is automatically learned using an algorithm such as byte pair encoding (BPEs;
Sennrich et al., 2016), which ensures that frequent words are represented in a
single token, while less frequent ones are split up into multiple tokens (subwords,
or even characters). Most subword algorithms also allow for an open vocabulary,
meaning that any piece of text can be encoded as a sequence of tokens, without
the need for a special out-of-vocabulary token.

A short side note on notation

We have used uppercase letters to denote random variables and random sequences
and lowercase letters to denote their instantiations. Throughout this disserta-
tion, we will use the above notation as well as the shorter P (y|x) to denote
the probability mass function that preserves the distribution of Y |X = x, such
that P (Y = y|X = x) = P (y|x). We use uppercase P (.) to denote probabil-
ity mass functions over discrete random variables and lowercase p(.) to denote
probability densities over continuous random variables. When distributions are
not normalised (i.e. they don’t sum to 1), we denote that as P̃ (.) or p̃(.). The
support of random variables is denoted using script letters, e.g. Y . Finally, we
will sometimes use P✓(.) to stress the dependence of the probability mass function
on neural network parameters ✓.

1Typically, this is a sequence as well, e.g. the sentence to translate in machine translation.
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2.1.1 Training

As mentioned, each Categorical next-token distribution is parameterised in an
amortised fashion using a single neural network that maps any arbitrary context
(x, y<j) to the probability simplex over vocabulary units. The parameters of this
neural network, collectively referred to as ✓, need to be estimated or trained. One
principled approach to selecting ✓ is to select the ✓ that maximises the probability
assigned by the model to the training data (also known as the model likelihood).
Formally, this means solving the following optimisation problem:

✓MLE = argmax
✓

NY

n=1

|y(n)
|Y

j=1

P✓(y
(n)
j |y(n)<j , x

(n)) (2.3)

= argmax
✓

NX

n=1

|y(n)
|X

j=1

logP✓(y
(n)
j |y(n)<j , x

(n)) (2.4)

for N data points (x(n), y(n)) where x(n) are collections of additional context ele-
ments depending on the particular generation task. This paradigm for selecting
✓ is known as maximum likelihood estimation (MLE) and is commonly used to
train neural text generation models across natural language processing tasks. Of-
tentimes its negative is also posed as a loss function, then often referred to as the
(Categorical) cross-entropy loss.

In particular, for neural networks, the backpropagation algorithm (Rumel-
hart et al., 1986) can be used to compute individual parameter updates across
neural network layers. Furthermore, to make training feasible on large datasets,
gradients are estimated against small subsets (mini-batches) of the training data
instead of all N data points, in an algorithm called stochastic mini-batch gradient
descent (Robbins and Monro, 1951; Bottou and Cun, 2004). Both optimisation
have the same optima, but may still converge to di↵erent locally optimal solutions
depending on initialisation and batch size.

2.1.2 Generation

A trained model provides us with a neural network that can take an arbitrary
context (x, y<j) and can produce a conditional probability distribution over Yj.
Following the factorisation of Equation 2.1, this means we have a neural network
that can predict distributions over (natural language) sequences. At test-time,
however, we are typically less interested in distributions, but rather would prefer
to see a single generation, e.g. a translation of an input sentence or an answer to
a question. This means that we have to select a single sequence from the sequence
distribution as an output of the model at test-time.
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Beam Search

Oftentimes this is achieved by searching for the highest probability sequence of the
distribution, in an algorithm known as beam search. Beam search is a heuristic
search algorithm that locally searches for the highest probability partial subse-
quences using the next-token distributions provided by the neural network, and
keeping a memory of a fixed size containing the best scoring partial subsequences
up to that point. At each step of the algorithm the beam (the memory of highest
probability partial subsequences) is expanded using the next-token distributions
for each subsequence (to k ⇥ |V | continuations) and filtering the continuations
down to the k highest probability continuations, where k is the beam size and
|V | the vocabulary size. These steps repeat until all sequences in the beam end
with an end-of-sequence symbol or a maximum length is reached.

Formally, we can view this as approximating a decision rule that dictates
that the desired sequence from the distribution is the mode of the distribution. In
natural language processing literature, this decision rule is known as maximum-a-
posteriori, or MAP, decoding. Using a larger beam size, we arguably approximate
this decision rule better, as we obtain higher probability sequences. Beam search
has an exponential complexity increase as a function of beam size and thus, in
practice, only approximations of the MAP decision rule with smaller beam sizes
are tractable to compute.

It turns out, however, that for many text generation tasks larger beam sizes
do not result in higher quality generations (Koehn and Knowles, 2017; Fan et al.,
2018; Holtzman et al., 2020; Zhang et al., 2021). In fact, for many tasks such
as machine translation and summarisation, there is negative correlation between
beam size and quality beyond a certain point: an observation known as the beam
search curse (Koehn and Knowles, 2017). Thus, in practice, heuristics are used
in the beam search algorithm, such as using a beam size as small as k = 5 and
combining model probability with additional “scoring functions” to counteract
specific problems with higher probability sequences (e.g. a length penalty to
prevent too short sequences from being output).

Sampling

In some, typically more open-ended tasks in NLP, beam search has been found
to lead to especially poor quality generations, e.g. generations that contain re-
peating phrases or uninteresting generations such as an “I don’t know” answer to
questions (Holtzman et al., 2020). There is also oftentimes a desire for more diver-
sity across generated outputs. For this reason, these fields often employ sampling
to generate from their trained neural text generation models. The most straight-
forward way to do this is by simply following the generative story of the model:
repeatedly draw Yj ⇠ Cat (f✓(x, y<j)) for increasing integers j = 1 . . . NMAX until
an end-of-sequence symbol is drawn or the maximum length NMAX is reached.
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This procedure is also known as ancestral sampling (Bishop, 2006). Following
this procedure, and assuming NMAX is large enough that no samples are cut o↵
prematurely, sampled generations are distributed exactly according to the pre-
dicted sequence distribution. This procedure can therefore also be very useful to
explore the properties of these distributions.

However, some works have found that the quality of generations for a partic-
ular task can improve by tweaking the predicted next-token distributions. For
example, nucleus sampling (Holtzman et al., 2020) considers only the highest
probability words that add up to some top-p amount of probability mass. The
distribution over the resulting subset of the outcome space is re-normalised and
continuations are sampled from the re-normalised next-token distributions. Top-k
sampling (Fan et al., 2018) follows the same procedure except that a fixed number
of k highest probability words are considered. Locally typical sampling (Meister
et al., 2023) selects only words with a surprisal value within some range of the en-
tropy of the next-token distributions. These methods cut-o↵ a long tail of lower
probability (sub)words and thus shrink the outcome space, as many sequences
are now impossible to generate. Using a temperature ⌧ to alter next-token dis-
tributions as P✓(Yj|x, y<j)1/⌧ , is sometimes also used to sharpen or flatten the
predicted distributions (but more typically sharpened), which does not have the
aforementioned e↵ect of shrinking the outcome space. As the above procedures
alter the predicted next-token distributions, samples generated by them do no
longer follow the sequence distributions predicted by the trained model. There-
fore, we sometimes will also refer to these methods as biased samples and samples
generated by ancestral sampling as unbiased samples to stress this fact.

2.1.3 Evaluation

In this dissertation we will mostly work on tasks where some form of ground truth
sequence is available to compare against. Evaluation then involves comparison
of a model generated output against an available ground truth sequence on a
continuous scale. The gold-standard for evaluation would be a properly executed
human evaluation using multiple experts judging the quality of the generated
sequence against several aspects of generation quality. For this dissertation, fol-
lowing the majority of NLP literature, we will, however, have to be content with
employing automatic evaluation metrics. Such metrics will compare a single gen-
erated sequence from the model against a ground truth sequence and assign it a
continuous score.

BLEU (Papineni et al., 2002), for example, compares n-grams for n 2 [1, 4]
between the generated and ground truth sequence and computes a weighted ge-
ometric mean of their precision. The granularity level of the used n-grams varies
slightly from implementation to implementation, but we will frequently use sacre-
BLEU (Post, 2018), which uses a simple regex-based tokeniser to compute n-
grams on a word-level. ChrF(++) (Popović, 2017) similarly computes a score
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based on n-gram precision and recall, but rather operates on a character-level,
therefore generally being more suitable towards morphologically rich languages
that have many di↵erent forms for the same word in di↵erent contexts. A down-
side to these metrics is that they compare the exact wording used in the generation
and reference and are thus not able to detect whether perhaps a synonym of a
ground truth word is correctly used by the model. Therefore, metrics like ME-
TEOR (Denkowski and Lavie, 2011) operate similarly as BLEU and ChrF, but
also make use of a list of synonyms available for a range of more high-resource
languages. Other metrics such as BEER (Stanojević and Sima’an, 2014) use a
number of word- and character-level features to create a trainable model, whose
weights are then tuned such that its scores correlate well with human judgements.

Recent metrics have been based on large pre-trained neural network models,
which have the advantage of being less sensitive to the exact wording of the se-
quences as the internal continuous representations are known to similarly encode
semantically similar words (Mikolov et al., 2013). Similar to BEER, these mod-
els are often fine-tuned on datasets containing human judgements of generation
quality and have been shown to correlate very well with them as a result. There-
fore, such metrics are now considered the state-of-the-art. Examples that we will
use in this dissertation are BLEURT (Sellam et al., 2020), based on the BERT
(Devlin et al., 2019) pre-trained model, and COMET (Rei et al., 2020), built on
XLM-R (Conneau et al., 2020) with variants based on other pre-trained language
models.

2.2 Sampling Techniques

While most models we work with in this dissertation make use of the autoregres-
sive factorisation outlined in Eq. 2.1, a model formulation that permits easy and
e�cient sampling (see Section 2.1.2), there exist models where this is not the case.
In particular, in Chapter 5 we will work with an energy-based model (EBM) that
encodes preferences over entire sequences. Such a model can score sequences, i.e.
it can assign some numerical value that indicates a degree of preference of the
model for that (complete) sequence over others, but it has no inherent mechanism
to generate sequences, as the scores cannot be factorised. Such scores also imply
a probability distribution. Restricting the scores to non-negative numbers2, we
can in principle compute a normalisation constant by summing the score for all
sequences in the outcome space. We will denote such (unnormalised) scorers of a
random variable (or sequence) X as P̃ (x). Normalised probabilities can then be

2One could also exponentiate the values assigned to an outcome, these possibly negative
values are then called energies, and the exponentiated energies we will call scores.
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obtained by dividing by the normalisation constant3:

P (x) / P̃ (x) (2.5)

Z =
X

x2X

P̃ (x) (2.6)

P (x) =
P̃ (x)

Z
(2.7)

Here, X denotes the support of random variable X. However, in practice the
outcome space is typically too large to compute the normalisation constant (e.g.
whenX is a random variable over natural language sentences). Therefore, in order
to obtain samples from P (x), or compute expected values EP (x) [h(x)] under it,
we need to resort to sampling techniques that do not require access to a chain
rule decomposition of P (x). In this section, we will cover some more well-known
ones that we also use in this thesis.

2.2.1 Rejection Sampling

Rejection sampling is a conceptually simple sampling technique that is able to
sample exactly from the target distribution P (x) when certain conditions are met.
It makes use of the concept of a proposal distribution: a distribution di↵erent from
the target distribution that does permit e�cient sampling. Rejection sampling
takes samples from this proposal distribution and accepts (i.e. output the sample)
or rejects (i.e. throw away the sample) using a ratio that guarantees that the
accepted samples are distributed according to the target distribution. Consider an
unnormalised probability distribution P̃ (x) over random variable X from which
we cannot tractably sample, but where we can assign non-negative scores to
sequences x 2 X . If we can find an e�cient-to-sample-from proposal distribution
Q(x), for which the support includes that of X, as well as a constant � such that
P̃ (x)  �Q(x) over the entire support of X, we can sample from P (x) accepting
samples from Q(x) with the following acceptance ratio:

rx =
P̃ (x)

�Q(x)
(2.8)

We also illustrate this idea in Figure 2.1. While the main advantage of this
method is that we obtain exact samples from the (normalised) target distribution
P (x), the main challenge is finding a suitable proposal distribution Q(x) and
constant � such that the rejection sampling condition is met. It may also be
di�cult to prove that P̃ (x)  �Q(x) for all x 2 X , or the acceptance ratio rx

3In the continuous case the summation is replaced by an integral, but the reasoning is
identical.
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Figure 2.1: Rejection sampling, where p̃(x) is a function that assigns non-negative
scores to x 2 X (continuous in this sketch), q(x) is a proposal distribution, and
� is a constant that guarantees that �q(x) � p̃(x) for all x 2 X . If we sample
from q(x) and accept samples with the shown ratio, we obtain exact samples from
p(x).

may be too small on average to lead to an e�cient-enough sampler. Because of
this, we often resort to approximate sampling techniques, which is the topic of
the next subsection.

2.2.2 Markov Chain Monte Carlo

When exact sampling with e.g. rejection sampling is infeasible, one can resort to
approximate sampling. Approximate sampling means that we don’t sample from
the target distribution P (x), but rather from a distribution as close as possible
to P (x). A popular collection of methods for performing approximate sampling
is known as Markov chain Monte Carlo (MCMC). In MCMC, a Markov chain of
samples is built up, such that the last sample in this Markov chain is distributed
according to a distribution close to P (x).

A Markov chain is a stochastic process that undergoes transitions from one
state to another state stochastically. It is characterised by the Markov property,
which dictates that a transition to a future state depends only on the present
state and not the full sequence of states preceding it. Formally, for a sequence of
states St where t indicates time:

P (St|St�1, St�2, . . . , S0) = P (St|St�1) (2.9)

The probability from one state to another is known as a transition probability.
For a finite number of states, we can also define a so-called transition matrix,
containing the probabilities of reaching each state from every other state.

In Markov chain Monte Carlo we build such a Markov chain where each state
St in the Markov chain consists of an outcome in X , e.g. a full natural lan-
guage sentence. In order to define the transition probabilities, MCMC makes
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use of a proposal distribution, similar to rejection sampling explained in the pre-
vious section. For MCMC, however, oftentimes a local proposal distribution is
employed, where the proposal distribution is conditioned on the previous state:
Q(x|x0). This often is implemented as making small steps around the previous
coordinates in a continuous space, or by making small edits in discrete space, e.g.
by changing, adding or removing a single token in a sequence. A local proposal
distribution could be easier to define and may have better convergence properties
if no good global (i.e. unconditional) proposal distributions can be constructed.
However, if a good global proposal distribution Q(x) can be constructed, this can
simply replace the local proposal distribution in the MCMC procedure.

A popular implementation of MCMC is the Metropolis-Hastings (MH) algo-
rithm. In Metropolis-Hastings, we take a proposed transition obtained by sam-
pling from Q(x|x0), and accept it with probability:

rt = min

 
1,

P̃ (x)Q(x0|x)
P̃ (x0)Q(x|x0)

!
(2.10)

If accepted, the new state St+1 becomes the proposed state x. If rejected, the
new state St+1 rather becomes x0, i.e. the previous state gets repeated. This
process can be summarised as follows:

1. Initialise S0 with some starting value x0.

2. Propose a new state x from the proposal distribution Q(x|x0).

3. Compute the acceptance probability rt (Eq. 2.10).

4. Accept the new state x with probability rt. If the transition is accepted,
set St+1 = x. Otherwise, set St+1 = x0.

5. Repeat steps 2-4 until the Markov chain converges.

It can be shown (Robert and Casella, 2004) that if we build a long-enough
Markov chain (such that it converges, see Section 2.2.5 for a discussion on how
to measure convergence) using the the process described above, this collection of
samples can be used to obtain approximate samples from P (x) (by for example
taking the last state of the Markov chain) as well as to compute expectations
under P (x) (by using all or some states of the Markov chain to compute sample
averages).

2.2.3 Importance Sampling

Another important algorithm for estimating expected values under P (x) if we can
only sample from a proposal distribution Q(x) is importance sampling (Robert
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and Casella, 2004). Again, assume we do have a proposal distribution Q(x) where
we can e�ciently sample from and whose support includes that of X, and we aim
to compute an expectation under P (x): EP (x) [h(x)]. The key idea in importance
sampling is that we can use samples from Q(x) and assign each sample a weight
that accounts for discrepancy between P (x) and Q(x).

Consider the aforementioned expectation of a function h(x) under the target
distribution P (x):

EP (x)[h(x)] =
X

x2X

h(x)P (x) (2.11)

Using importance sampling, this expectation can be rewritten as:

EP (x)[h(x)] =
X

x2X

h(x)
P (x)

Q(x)
Q(x) = EQ(x)


h(x)

P (x)

Q(x)

�
(2.12)

Thus, using a standard Monte Carlo estimator, the expectation can be approxi-
mated using N samples {xi}Ni=1

drawn from the proposal distribution Q(x):

EP (x)[h(x)] ⇡
1

N

NX

i=1

h(xi)
P (xi)

Q(xi)
. (2.13)

The ratio P (xi)

Q(xi)
is known as the importance weight. It adjusts the contribution

of each sample xi to account for the fact that the samples are drawn from Q(x)
instead of P (x). While importance sampling can be used with any Q(x) whose
support includes that of X, the choice of Q(x) does impact the variance of the
estimator. We briefly discuss this in Section 2.2.5.

2.2.4 f-Divergences

As we mentioned in Section 2.2.2, approximate sampling techniques like Markov
chain Monte Carlo sample from some distribution close to the target distribution.
In order to define “closeness” between distributions, often a divergence measure
is used. A broad class that includes many commonly employed divergences is the
f -divergences4 (Polyanskiy, 2019).

Let f : [0,1) ! R be a convex function such that f(1) = 0, let f(0)
.
=

limt!0+ f(t), and let P1 and P2 be probability distributions over a discrete sample
space X . The f -divergence of P1 from P2 is defined as:5

Df (P1, P2)
.
= EP2(x)


f

✓
P1(x)

P2(x)

◆�
(2.14)

4The f in f -divergences has no relation with the f(.) we occasionally use to refer to neural
network computations, as in Eq. 2.2.

5We will assume that the support of P1 is included in that of P2 for the remainder of this
dissertation, leading to this slightly simplified definition of f -divergences.
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By varying the definition of f(t) we can obtain many popular divergence
measures, such as the Kullback-Leibler (KL) divergence, total variation distance
(TVD) and �2 divergence. A number of useful properties for f -divergences that
can be shown are that Df (P1, P2) � 0 and, for f(t) strictly convex at t = 1,
Df (P1, P2) = 0 i↵ P1 = P2 (Liese and Vajda, 2006).

In this dissertation, we mainly work with the total variation distance

TVD(P1, P2)
.
=
X

x2X

|P1(x)� P2(x)|/2, (2.15)

obtained with f(t) = |1� t|/2, and KL divergence

KL(P1, P2)
.
=
X

x2X

P1(x) log
P1(x)

P2(x)
(2.16)

= EP1(x)


log

P1(x)

P2(x)

�
, (2.17)

which has f(t) = t log t. For both it holds that they equal 0 i↵ P1 = P2. While
TVD is symmetric (TVD(P1, P2) = TVD(P2, P1)), KL divergence is not and so
KL(P1, P2) 6= KL(P2, P1).

2.2.5 Convergence

While sampling techniques allow us to work with distributions that we would
otherwise not be able to sample from and / or compute expectations under, for
any practical implementations of the algorithms these are approximations with
some amount of error. In this section we will discuss some of the theoretical
guarantees of the Metropolis-Hastings algorithm and importance sampling and
their convergence properties.

Theoretical Guarantees of Metropolis-Hastings

Robert and Casella (2004, Theorem 7.4, p. 274) prove the following theorem, with
P the target distribution.

Theorem 2.1. Suppose that the Metropolis-Hastings Markov chain (X(n)) is P -
irreducible.

(i) If h is an P -integrable function, then

lim
N!1

1

N

NX

n=1

h(X(n)) =

Z
h(x)P (x) dx almost surely.
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(ii) If, in addition, (X(n)) is aperiodic, then

lim
N!1

TVD

✓
P,

Z
KN(x, ·) µ(dx)

◆
= 0

for every initial distribution µ, where KN(x, ·) denotes the kernel for N
transitions.

Let’s explain some of the terminology here. P -irreducible means that we
should design the Markov chain (using the proposal distribution) such that we
can reach every state in the support of P (x) with positive probability eventu-
ally down the Markov chain. In property (i), P -integrability means that the
integral in property (i) should be finite, and almost surely means that the conver-
gence happens with probability 1.6 In property (ii), aperiodicity requires that the
Markov chain does not get trapped in cycles. Common choices of local proposal
distributions ensure that these properties hold.

Now as to what this theorem states. Property (i) says that the average over
the N first elements of a single chain converges to the expectation of h(x) for
x ⇠ P (x), as N increases. Property (ii) is concerned with the TVD between
the target distribution P (x) and the distribution obtained by repeatedly running
an N -step chain and outputting the N th element. This distance converges to
zero as N increases. Meaning that for su�ciently long Markov chains, using the
Metropolis-Hastings algorithm we can compute expectations under P (x) and/or
obtain samples from P (x). While we can ensure that implementations of MH
have these theoretical guarantees, it is often intractable to assess precisely how
close we are to the target distribution for any particular finite N .

Convergence Diagnostics for MCMC

In order to determine a practical N for which we can rely on the accuracy of
results, convergence diagnostics can provide insights into whether the Markov
chain has converged to the target distribution (i.e. whether expectations com-
puted using the produced samples are close to those under the target distribution).
Common techniques include running multiple Markov chains from di↵erent start-
ing points and assessing whether expectations computed under them converge
to the same value, a process often quantified by the Gelman-Rubin statistic (R̂;
Gelman and Rubin, 1992; Vehtari et al., 2021). Furthermore, the autocorrela-
tion of samples from the Markov chain is often assessed, as due to the nature of
MCMC algorithm neighboring states are often highly correlated (especially with
local proposal distributions).7 A metric that is used to quantify this, is the ef-
fective sample size (ESS), which estimates the number of independent samples in

6The set of Markov chains for which convergence does not occur is possibly non-empty, but
have 0 probability collectively.

7Therefore, oftentimes only every k-th state from the Markov chain is used, a procedure
known as thinning.
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the chain after accounting for autocorrelation (Gamerman and Lopes, 2006). We
will not go into depth in these diagnostics as we will not be using them in this
dissertation. It su�ces to know that these diagnostics are mostly heuristic, and
while they can be e↵ective, they do not provide concrete estimates of how close
our expectations or samples actually are to the target distribution.

Importance Sampling

Importance sampling, under some mild conditions, provides an unbiased estima-
tor of the target expectation. Meaning that as the number of samples N increases,
the estimate converges to the true expectation by the law of large numbers (Tao,
2008). Variance of the estimator also decreases with larger N , but is heavily
influenced by the choice of proposal distribution Q(x). In particular, if the ratio
P (x)
Q(x) has high variance, convergence may be slow. For example, if there is a large

discrepancy between P (x) and Q(x) for some portions of the outcome space, the
ratio P (x)

Q(x) can blow up for some samples. Therefore, ideally Q(x) would match

P (x) closely, leading to consistent importance ratios.





Chapter 3

The Inadequacy of the Mode

Neural machine translation (NMT) uses neural networks to predict distributions
over translations given a source sentence. Crucially, the predictions of these
models are (conditional) probability distributions over sequences. In order to elect
a single candidate translation a choice of decision rule is required and typically
also some tractable approximation to it using a decoding algorithm, given the
complexity and vastness of the output space. The decision rule of choice in NMT is
to elect the mode of the distribution, also known as maximum-a-posteriori (MAP),
and its approximation, beam search, which searches for the mode of the sequence
distribution. In this chapter we question this choice of decision rule, showing it
to be suboptimal for the sequence distributions we obtain in practice. We show
that many pathologies and biases typically observed in NMT are at least partially
due to this choice of decision rule. We further show the distributions obtained do
have desirable properties, capturing statistics of good translations. This suggests
that a decoding algorithm that makes use of the sequence distribution holistically
to generate translations could be fruitful. The latter will be the main focus of
the next chapter, though we already propose a concrete direction, sampling-based
minimum Bayes risk, along with some preliminary experiments at the end of this
chapter. Finally, we also explore using the Bayesian framework for evaluating
the data fit of our translation models. We argue that a distributional evaluation
of translation models is crucial for obtaining insights in the e↵ects of model and
architecture changes, rather than purely focusing on improving the outcomes of
beam search. The contents of this chapter are based on Eikema and Aziz (2020),
published at the 28th International Conference on Computational Linguistics
(COLING’2020), where it was awarded Best Paper.

Chapter Highlights

Problem Statement

• Neural machine translation systems su↵er from a number of pathologies

21
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and biases such as generating too short translations, producing copies of
the input or generating hallucinated content.

• Beam search decoding su↵ers from a so-called beam search curse, meaning
better search through a larger beam size often results in worse translation
quality.

• The true mode of the translation distribution has been found to often be
the empty sequence, an obviously inadequate translation.

Contributions

• Prior to this work, most research turned to the model to find a culprit
for observed pathologies and biases. We show that targeting the mode
during decoding through the use of MAP is at least partially responsible
for a number of these pathologies and biases commonly observed in NMT
systems.

• We show that samples from NMT models trained through maximum likeli-
hood estimation (MLE) reproduce statistics of the data well, not showing
some pathologies and biases commonly thought to be inherent to NMT
models, such as producing too short translations.

• We argue that MAP is not well-suited as a decision rule for modern neu-
ral machine translation models and we suggest an alternative decision rule,
minimum Bayes risk along with a proof-of-concept sampling-based approx-
imation, as more suitable for NMT models.

3.1 Introduction

Numerous findings in neural machine translation (NMT) suggest that modern
translation systems have serious flaws. This is based on observations such as: i)
translations produced via beam search typically under-estimate sequence length
(Sountsov and Sarawagi, 2016; Koehn and Knowles, 2017), the length bias ; ii)
translation quality generally deteriorates with better approximate search (Koehn
and Knowles, 2017; Murray and Chiang, 2018; Ott et al., 2018; Kumar and
Sarawagi, 2019), the beam search curse; iii) the true most probable transla-
tion under the model (i.e., the mode of the distribution) is empty in many
cases (Stahlberg and Byrne, 2019) and a general negative correlation exists be-
tween model probability and quality beyond a certain probability value (Ott et al.,
2018), we call this the inadequacy of the mode.
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A number of hypotheses have been formulated to explain these observations.
They mostly suggest there is something fundamentally wrong with NMT as a
model (i.e., its factorisation as a product of locally normalised distributions) or
its most popular training algorithm (i.e., regularised maximum likelihood estima-
tion, MLE for short). These explanations make an unspoken assumption, namely,
that identifying the mode of the distribution, also referred to as maximum a pos-
teriori (MAP) decoding (Smith, 2011), is in some sense the obvious decision rule
for predictions. While this assumption makes intuitive sense and works well in
unstructured classification problems, it is less justified in NMT, where oftentimes
the most probable translations together account for very little probability mass,
a claim we shall defend conceptually and provide evidence for in experiments.
Unless the translation distribution is extremely peaked about the mode for every
plausible input, criticising the model in terms of properties of its mode can at best
say something about the adequacy of MAP decoding. Unfortunately, as previous
research has pointed out, this is seldom the case (Ott et al., 2018). Thus, patholo-
gies about the mode cannot be unambiguously ascribed to NMT as a model nor
to MLE, and inadequacies about the mode cannot rule out the possibility that
the model captures important aspects of translation well in expectation.

In this chapter, we criticise NMT models as probability distributions esti-
mated via MLE in various settings: varying language pairs, amount of training
data, and test domain. We observe that the induced probability distributions
represent statistics of the data well in expectation, and that some length and
lexical biases are introduced by approximate MAP decoding. We demonstrate
that beam search outputs are rare outcomes, particularly so when test data stray
from the training domain. The empty string, shown to often be the true mode
(Stahlberg and Byrne, 2019), too is an infrequent outcome. Finally, we show that
samples obtained by following the model’s own generative story are of reasonable
quality, which suggests we should base decisions on statistics gathered from the
distribution holistically. One such decision rule is minimum Bayes risk (MBR)
decoding (Goel and Byrne, 2000; Kumar and Byrne, 2004), of which we propose
a proof-of-concept sampling-based approximation.

3.2 Observed Pathologies in NMT

Many studies have found that NMT su↵ers from a length bias : NMT underes-
timates length which hurts the adequacy of translations. Cho et al. (2014) al-
ready demonstrate that NMT systematically degrades in performance for longer
sequences. Sountsov and Sarawagi (2016) identify the same bias in a chat sugges-
tion task and argue that sequence to sequence models underestimate the margin
between correct and incorrect sequences which they attribute to local normalisa-
tion. Later studies have also confirmed the existence of this bias in NMT (Koehn
and Knowles, 2017; Stahlberg and Byrne, 2019; Kumar and Sarawagi, 2019).
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Notably, all these studies employ beam search decoding. In fact, some stud-
ies link the length bias to the beam search curse: the observation that large
beam sizes hurt performance in NMT (Koehn and Knowles, 2017). Sountsov
and Sarawagi (2016) already note that larger beam sizes exacerbate the length
bias. Later studies have confirmed this connection (Blain et al., 2017; Murray
and Chiang, 2018; Yang et al., 2018; Kumar and Sarawagi, 2019). Murray and
Chiang (2018) attribute both problems to local normalisation which they claim
introduces label bias (La↵erty et al., 2001) to NMT. Yang et al. (2018) show that
model probability negatively correlates with translation length. These findings
suggest that the mode might su↵er from length bias, likely thereby failing to suf-
ficiently account for adequacy. In fact, Stahlberg and Byrne (2019) show that
oftentimes the true mode is the empty sequence.

The connection with the length bias is not the only reason for the beam search
curse. Ott et al. (2018) find that the presence of copies in the training data cause
the model to assign too much probability mass to copies of the input, and that
with larger beam sizes this copying behaviour becomes more frequent. Cohen
and Beck (2019) show that translations obtained with larger beam sizes often
consist of an unlikely prefix with an almost deterministic su�x and are of lower
quality. In open-ended generation, Zhang et al. (2021) correlate model probability
with human judgements for a fixed sequence length, thus eliminating any possible
length bias issues. They find that probability generally correlates positively with
human judgements, up until an inflection point, after which the correlation be-
comes negative. An observation also made in translation with BLEU rather than
human judgements (Ott et al., 2018). We call this general failure of the mode to
represent good translations in NMT the inadequacy of the mode problem.

3.3 NMT and its Many Biases

It has been said that due to certain design decisions NMT su↵ers from a number
of biases. We review those biases here and then discuss in Section 3.4 one bias
that has received very little attention and which, we argue, underlies many biases
in NMT and explains some of the pathologies discussed in Section 3.2.

Exposure bias. MLE parameters are estimated conditioned on observations, a
human-produced translation given a source sentence, sampled from the training
data. Clearly, those are not available at test time, when we search through
the learnt distribution. This mismatch between training and test, known as
exposure bias (Ranzato et al., 2016), has been linked to many of the pathologies
of NMT and motivated modifications or alternatives to MLE aimed at exposing
the model to its own predictions during training (Bengio et al., 2015; Ranzato
et al., 2016; Shen et al., 2016; Wiseman and Rush, 2016; Zhang et al., 2019).
While exposure bias has been a point of critique mostly against MLE, it has
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only been studied in the context of approximate MAP decoding. The use of
MAP decoding and its approximations shifts the distribution of the generated
translations away from data statistics (something we provide evidence for in later
sections), thereby exacerbating exposure bias.

Non-admissible heuristic search bias. In beam search, partial translations
are ranked in terms of log-probability without regards to (or with crude ap-
proximations of) their future score, which may lead to good translations being
pruned too early. This corresponds to searching with a non-admissible heuristic
(Hart et al., 1968), that is, a heuristic that may underestimate the probability
of completing a translation. This biased search a↵ects statistics of beam search
outputs in unknown ways and may well account for some of the pathologies of
Section 3.2, and has motivated variants of the algorithm aimed at comparing
partial translations more fairly (Huang et al., 2017; Shu and Nakayama, 2018).
This problem has also been studied in parsing literature, where it’s known as im-
balanced probability search bias (Caraballo and Charniak, 1996; Stanojević and
Steedman, 2020).

Label bias. Where a conditional model makes independence assumptions about
its inputs (i.e., variables the model does not generate), local normalisation pre-
vents the model from revising its decisions, a problem known as label bias (Bottou,
1991; La↵erty et al., 2001). This is a model specification problem which limits
the distributions a model can represent (Andor et al., 2016). While this is the
case in incremental parsing (Stern et al., 2017) and simultaneous translation (Gu
et al., 2017), where inputs are incrementally available for conditioning, this is
not the case in standard NMT (Sountsov and Sarawagi, 2016, Section 5), where
inputs are available for conditioning in all generation steps. It is plausible that
local normalisation might a↵ect the kind of local optima we find in NMT, but
that is orthogonal to label bias.

3.4 Biased Statistics and the Inadequacy of the
Mode

In most NMT research, criticisms of the model are based on approximations of
the mode obtained using beam search. The mode, however, is not an unbiased
summary of the probability distribution that the model learnt. That is, properties
of the mode say little about properties of the learnt distribution (e.g., a short
mode does not imply the model underestimates average sequence length). MAP
decoding algorithms and their approximations bias the statistics by which we
criticise NMT. They restrict our observations about the model to a single or a
handful of outcomes which on their own can be rather rare. To gain insight about
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the model as a distribution, it seems more natural to use all of the information
available to us, namely, all samples we can a↵ord to collect1, and search for
frequent patterns in these samples. Evidence found that way more faithfully
represents the model and its beliefs.

On top of that, the sample space of NMT is high-dimensional and highly
structured. NMT models must distribute probability mass over a massive sample
space (e↵ectively unbounded). While most outcomes ought to be assigned negli-
gible mass, for the total mass sums to 1, the outcomes with non-negligible mass
might still be too many. The mode might only account for a tiny portion of the
probability mass, and can actually be extremely unlikely under the learnt dis-
tribution. Using the mode for predictions makes intuitive sense in unstructured
problems, where probability distributions are likely very peaked, and in models
trained with large margin methods (Vapnik, 1998), since those optimise a decision
boundary directly. With probability distributions that are very spread out, and
where the mode represents only a tiny bit of probability mass, targeting at the
mode for predictions is much less obvious, an argument that we shall reinforce
with experimental results throughout this analysis.2

At the core of our analysis is the concept of an unbiased sample from the
model, which we obtain by ancestral sampling: iteratively sampling from distri-
butions of the form Cat(f(x, y<j; ✓)), each time extending the generated prefix
y<j with an unbiased draw, until the end-of-sequence symbol is generated. By
drawing from the model’s probability distribution, unlike what happens in MAP
decoding, we are imitating the model’s training procedure. Only we replace sam-
ples from the data by samples from the model, thus shedding light onto the
model’s fit. That is, if these samples do not reproduce statistics of the data, we
have an instance of poor fit.3 Crucially, ancestral sampling is not a pathfinding
algorithm, thus the non-admissible heuristic search bias is not a concern. An-
cestral sampling is not a decision rule either, thus returning a single sample as
a prediction is not expected to outperform MAP decoding (or any other rule).
Samples can be used to diagnose model fit, as we do in Section 3.6, and to ap-
proximate decision rules, as we do in Section 3.8.4. In sum, we argue that MAP
decoding is a source of various problems and that it biases conclusions about
NMT. Next, we provide empirical evidence for these claims.

1Considering that we are dealing with an unbounded space of sequences, we cannot study
the probability mass function directly. However, we can interact with it through simulation via
ancestral sampling (see Section 2.1.2) and study the properties of the samples we obtain.

2This perhaps non-intuitive notion that the most probable outcomes are rare and do not
summarise a model’s beliefs well enough is also common in a popular information-theoretic
concept, that of typicality (MacKay, 2003, Section 4.4). It’s not clear whether such a typical
set also exists in sequence-to-sequence models like NMT.

3Where one uses (approximate) MAP decoding instead of ancestral sampling this is known
as exposure bias.
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3.5 Data & System

We train NMT systems on German-English (de-en), Sinhala-English (si-en), and
Nepali-English (ne-en), in both directions. For German-English we use all avail-
able WMT’18 (Bojar et al., 2018) parallel data, except for Paracrawl, amounting
to about 5.9 million sentence pairs, and train a Transformer base model (Vaswani
et al., 2017). For Sinhala and Nepali, for which very little parallel data are avail-
able, we mimic the data and system setup of Guzmán et al. (2019). As we found
that the data contained many duplicate sentence pairs, we removed duplicates,
but left in those where only one side (source or target) of the data is duplicate
to allow for paraphrases. For all language pairs, we do keep a portion of the
training data (6, 000 sentence pairs) separate as held-out data for the analysis.
In this process we also removed any sentence that corresponded exactly to ei-
ther the source or target side of a held-out sentence from the training data. To
analyse performance outside the training domain, we use WMT’s newstest2018
for German-English, and the Flores datasets collected by Guzmán et al. (2019)
for the low-resource pairs. Our analysis is focused on MLE-trained NMT sys-
tems. However, as Transformers are commonly trained with label smoothing (LS)
(Szegedy et al., 2016), we do additionally report automatic quality assessments
of beam search outputs on LS-trained systems.

3.6 Assessing the Fit of MLE-Trained NMT

We investigate the fit of the NMT models of Section 3.5 on a held-out portion of
the training data. This allows us to criticise MLE without confounders such as
domain shift. We will turn to data in the test domain (newstest2018, Flores)
in Section 3.8. We compare unbiased samples from the model to gold-standard
references and analyse statistics of several aspects of the data. If the MLE solution
is good, we would expect statistics of sampled data to closely match statistics of
observed data.

We obtain statistics from reference translations, ancestral samples, and beam
search outputs and model them using hierarchical Bayesian models. For each
type of statistic, we formulate a joint model over these three groups and inspect
the posterior distribution over the parameters of the analysis model. We also
include statistics extracted from the training data in our analysis, and model
the three test groups as a function of posterior inferences based on training data
statistics. Our methodology follows that advocated by Gelman et al. (2013) and
Blei (2014). In particular, we formulate separate hierarchical models to inspect
length, lexical, and word order statistics: sequence length, unigram and bigram
counts, and skip-bigram counts, respectively.4 In the next section, we describe

4Skip-bigrams are pairs of tokens drawn in the same order as they occur in a sentence, but
without enforcing adjacency.
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Figure 3.1: A comparison using hierarchical Bayesian models of statistics ex-
tracted from beam search outputs, samples from the model and gold-standard
references. We show the posterior density on the y-axis, and the mean Poisson
rate (length) and agreement with training data (unigrams, bigrams, skip-bigrams)
on the x-axis for each group and language pair.

all the analysis models, inference procedures, and predictive checks that confirm
their fit.

For length statistics, we look at the expected posterior Poisson rate for each
group, each rate can be interpreted as that group’s average sequence length.
Ideally, the expected Poisson rates of predicted translations are close to those
of gold-standard references. Figure 3.1 (top row) shows the inferred posterior
distributions for all language pairs. We observe that samples generated by NMT
capture length statistics reasonably well, overlapping a fair amount with the
reference group. In almost all cases we observe that beam search outputs stray
away from data statistics, usually resulting in shorter translations.

For unigrams, bigrams, and skip-bigrams, we compare the posterior agree-
ment with training data of each group (this is formalised in terms of a scalar
concentration parameter whose posterior we can plot). Higher values indicate a
closer resemblance to training data statistics. For each statistic, the posterior
distribution for gold-standard references gives an indication of ideal values of this
agreement variable. Figure 3.1 (rows 2–4) show all posterior distributions. In
most cases the gold-standard references agree most with the training data, as
expected, followed by samples from the model, followed by beam search outputs.
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For nearly all statistics and language pairs beam search outputs show least agree-
ment with the training data, even when samples from the model show similar
agreement as references do. Whereas samples from the model do sometimes show
less similarity than references, in most cases they are similar and thus lexical and
word order statistics are captured reasonably well by the NMT model. Beam
search on the other hand again strays from training data statistics, compared to
samples from the model.

3.7 Analysis Models

In this section we will go into detail on the Bayesian data analysis models em-
ployed in the previous section. On a first read, this section can be considered
optional as it is not required for understanding the remainder of the thesis.

3.7.1 Length Analysis

We model length data from the training group using a hierarchical Gamma-
Poisson model. Each target sequence length is modelled as being a draw from a
Poisson distribution with a Poisson rate parameter specific to that sequence. All
Poisson rates share a common population-level Gamma prior with population-
level parameters ↵ and �. The population-level parameters are given fixed Ex-
ponential priors set to allow for a wide but reasonable range of Poisson rates a
priori.

↵ ⇠ Exp(1) � ⇠ Exp(10)

�i ⇠ Gamma(↵, �) yi ⇠ Poisson(�i)

Here, i indexes one particular data point. This model is very flexible, because
we allow the model to assign each datapoint its own Poisson rate. We model
test groups as an extension of the training group. Test group data points are
also modelled as draws from a Gamma-Poisson model, but parameterised slightly
di↵erently.

µ = E [Gamma(↵, �|DT )] ⌘ ⇠ Exp(1.)

sg ⇠ Exp(⌘) tg = 1/µ

�gi ⇠ Gamma(sg, tg) ygi ⇠ Poisson(�gi)

Here, i again indexes a particular data point, g a group in {reference, sampling,
beam}, and DT denotes the data of the training group. All Poisson rates are
individual to each datapoint in each group. The Poisson rates do share a group-
level Gamma prior, whose parameters are sg and tg. sg shares a prior among all
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test groups and therefore ties all test groups together. tg is derived from posterior
inferences on the training data by taking the expected posterior Poisson rate in
the training data and inverting it. This is done such that the mean Poisson rate
for each test group is sg · µ, where sg can be seen as a parameter that scales
the expected posterior training rate for each test group individually. We infer
Gamma posterior approximations for all unknowns using stochastic variational
inference (SVI). After inferring posteriors, we compare predictive samples to the
observed data in terms of first to fourth order moments to verify that the model
fits the observations well.

3.7.2 Lexical & Word Order Analyses

We model unigram and (skip-)bigram data from the training group using a hier-
archical Dirichlet-Multinomial model as shown below:

↵ ⇠ Gamma(1, 1) � ⇠ Gamma(1, 1)

✓ ⇠ Dir(↵)  u ⇠ Dir(�)

u ⇠ Multinomial(✓) b|u ⇠ Multinomial( u)

Here, we have one Gamma-Dirichlet-Multinomial model to model unigram counts
u, and a separate Dirichlet-Multinomial model for each u (the first word of a
bigram) that b (the second word of a bigram) conditions on, sharing a common
Gamma prior that ties all bigram models. This means that we e↵ectively have
|V |+1 Dirichlet-Multinomial models (where |V | is BPE vocabulary size) in total
to model the training group, where the |V | bigram models share a common prior.

We model the three test groups using the inferred posterior distributions on
the data of the training group DT . We compute the expected posterior con-
centration of the Dirichlets in the training group models and normalise it such
that it sums to 1 over the entire vocabulary. The normalisation has the e↵ect of
spreading the unigram and bigram distributions. The test groups are modelled
by scaling this normalised concentration parameter using a scalar. In order for
test-groups to recover the training distribution the scaling variable needs to be
large to undo the normalisation. This scalar, sg for unigrams or mg for bigrams,
can be interpreted as the amount of agreement of each test group with the train-
ing group. The higher this scalar is, the more peaked the test group Multinomials
will be about the training group lexical distribution.
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Figure 3.2: Cumulative probability of the unique translations in 1,000 ancestral
samples on the held-out (top), and newstest2018 / Flores(bottom) test sets.
The dark blue line shows the average cumulative probability over all test sen-
tences, the shaded area represents 1 standard deviation away from the average.
The black dots to the right show the final cumulative probability for each indi-
vidual test sentence.

µ(↵) = E [↵|DT ] . µ(�) = E [�|DT ]

⌘s ⇠ Gamma(1, 0.2) ⌘m ⇠ Gamma(1, 0.2)

sg ⇠ Gamma(1, ⌘s) mg ⇠ Gamma(1, ⌘m)

✓g ⇠ Dir(sg · µ(↵))  g ⇠ Dir(mg · µ(�))
ug ⇠ Multinomial(✓g) bg|ug ⇠ Multinomial( g)

g 2 {reference, sampling, beam}

We do collapsed inference for each Dirichlet-Multinomial (as we are not inter-
ested in assessing ✓g or �g), and infer posteriors approximately using SVI with
Gamma approximate posterior distributions. To confirm the fit of the analysis
model, we compare posterior predictive samples to the observed data in terms of
absolute frequency errors of unigrams and bigrams as well as ranking correlation.

3.8 Examining the Translation Distribution

The NMT models of Section 3.5 specify complex distributions over an unbounded
space of translations. Here, we examine properties of these distributions by in-
specting translations in a large set of unbiased samples. To gain further insight
we also analyse our models in the test domain (newstest2018, Flores).
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3.8.1 Number of Probable Translations

NMT, by the nature of its model specification, assigns probability mass to each
and every possible sequence consisting of tokens in its vocabulary. Ideally, how-
ever, a well-trained NMT model assigns the bulk of its probability mass to good
translations of the input sequence. We take 1, 000 unbiased samples from the
model for each input sequence and count the cumulative probability mass of the
unique translations sampled. Figure 3.2 shows the average cumulative probabil-
ity mass for all test sentences with 1 standard deviation around it, as well as the
final cumulative probability values for each input sequence. For the held-out data
we observe that, on average, between 16.4% and 57.8% of the probability mass
is covered. The large variance around the mean shows that in all language pairs
we can find test sentences for which nearly all or barely any probability mass
has been covered after 1, 000 samples. That is, even after taking 1, 000 samples,
only about half of the probability space has been explored. The situation is much
more extreme when translating data from the test domain (see bottom half of
Figure 3.2).5 Naturally, the NMT model is much more uncertain in this scenario,
and this is very clear from the amount of probability mass that has been covered
by 1, 000 samples: on average, only between 0.2% and 0.9% for the low-resource
pairs and between 6.9% and 9.1% for English-German of the probability space
has been explored. This shows that the set of likely translations under the model
is very large and the probability distribution over those sentences mostly quite
flat, especially so in the test domain. In fact, if we look at each input sequence
individually, we see that for 37.0% (en-de), 35.5% (de-en), 18.5% (en-ne), 15.7%
(ne-en), 9.2% (en-si), and 3.3% (si-en) of them all 1, 000 samples are unique. On
the test domain data these numbers increase to 46.7% (en-de), 41.5% (de-en),
52.1% (en-ne), 86.8% (ne-en), 84.6% (en-si), and 87.3% (si-en). For these in-
put sequences, the translation distributions learnt are so flat that in these 1, 000
samples no single translation stands out over the others.

3.8.2 Sampling the Mode

As the predominant decision rule in NMT is MAP decoding, which we approx-
imate via beam search, it is natural to ask how frequently it is that the beam
search output is observed amongst unbiased samples. We find that the beam
search output is contained within 1, 000 unbiased samples for between 54.3% and
92.2% of input sequences on the held-out data. In the test domain, we find that
on English-German for between 44.3% and 49.3%, and in the low-resource set-
ting for between 4.8% and 8.4% of the input sequences the beam search output is
contained in the set. This shows that for a large portion of the input sequences,
the beam search solution is thus quite a rare outcome under the model.

5For English-German and German-English the test domain would not be considered out-of-
domain here, as both training and test data concern newswire.
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Training Domain Test Domain

Task LS beam sample MBR Oracle LS beam sample MBR Oracle

en-de 19.5 19.5 15.3 19.2 22.7 35.2 34.9 20.5 31.5 35.7
de-en 26.6 26.8 21.9 26.2 29.4 39.6 39.4 26.6 37.3 41.0
en-ne 36.7 37.3 36.1 40.5 43.4 32.5 31.3 30.6 34.9 37.0
ne-en 30.6 29.8 26.7 30.2 35.4 19.2 17.2 12.8 16.6 20.1
en-si 34.2 34.3 31.0 36.3 41.5 31.8 30.3 30.3 34.8 36.8
si-en 29.1 28.9 24.3 29.1 36.2 20.0 18.4 13.7 17.7 21.6

High-resource 23.1 23.1 18.6 22.7 26.0 37.4 37.1 23.6 34.4 38.3
Low-resource 32.7 32.6 29.5 34.0 39.1 25.9 24.3 21.8 26.0 28.9
All 29.5 29.4 25.9 30.2 34.8 29.7 28.6 22.4 28.8 32.0

Table 3.1: METEOR scores under di↵erent strategies for prediction: beam search,
single sample, MBR, and an oracle rule. MBR and the oracle both use 30 ancestral
samples and sentence-level METEOR as utility, but the oracle has access to the
reference. To show that our MLE-trained systems are competitive with LS-trained
systems, we list the LS column (using beam search). The sample columns show
average scores of 30 independent samples from the model. All standard deviations
were below 0.2.

Stahlberg and Byrne (2019) showed that oftentimes the true mode of a trained
NMT system is the empty sequence. This is worrying since NMT decoding is
based on mode-seeking search. We find that for between 7.2% and 29.1% of input
sequences for held-out data and between 2.8% and 33.3% of input sequences in the
test domain an empty sequence is sampled at least once in 1, 000 samples. When
an empty sequence is sampled it only occurs on average 1.2 ± 0.5 times. Even
though it could well be, as the evidence that Stahlberg and Byrne (2019) provide
is strong, that often the true mode under our models is the empty sequence, the
empty string remains a rather unlikely outcome under the models.

3.8.3 Sample Quality

The number of translations that an NMT model assigns non-negligible probability
mass to can be very large as we have seen in Section 3.8.1. We now investigate
what the average quality of these samples is. For quality assessments, we compute
METEOR (Denkowski and Lavie, 2011) using the mteval-v13a tokeniser.6 We
translate the test sets using a single ancestral sample per input sentence and
repeat the experiment 30 times to report the average in Table 3.1 (sample). We
also report beam search scores (beam). We see that, on average, samples of the
model always perform worse than beam search translations. This is no surprise,

6For our analysis, it is convenient to use a metric defined both at the corpus and at the
segment level. We use METEOR, rather than BLEU (Papineni et al., 2002), for it outperforms
(smoothed) BLEU at the segment-level (Ma et al., 2018).
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Figure 3.3: METEOR scores for oracle-selected samples as a function of sample
size on the held-out data (top) and newstest2018 / Flores(bottom) test sets.
For each sample size we repeat the experiment 4 times and show a box plot per
sample size. Dashed blue lines show beam search scores.

of course, as ancestral sampling is not a fully fledged decision rule, but simply a
technique to unbiasedly explore the learnt distribution. Moreover, beam search
itself does come with some adjustments to perform well (such as a specific beam
size and length penalty). The gap between sampling and beam search is between
0 and 14.4 METEOR. The gap can thus be quite large, but overall the quality of
an average sample is reasonable compared to beam search. We also observe that
the variance of the sample scores is small with standard deviations below 0.2.

Next, we investigate the performance we would achieve if we could select the
best sample from a set. For that, we employ an oracle selection procedure using
sentence-level METEOR with the reference translation to select the best sample
from a set of samples. We vary sample size from 5 to 30 samples and repeat
each experiment four times. Figure 3.3 plots the results in terms of corpus-
level METEOR. Average METEOR scores for oracle selection out of 30 samples
are shown in Table 3.1. METEOR scores steadily increase with sample size.
For a given sample size we observe that variance is generally very small. Only
between 5 and 10 samples are required to outperform beam search in low-resource
language pairs and English-German in the training domain, but surprisingly 15
to 25 samples are necessary for English-German in the test domain. Still, this
experiment shows that samples are of reasonable and consistent quality with
respect to METEOR. For fewer than 30 random samples the model could meet
or outperform beam search performance in most cases, if we knew how to choose
the best sample from the set. This is a motivating result for looking into sampling-
based decision rules.
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3.8.4 Minimum Bayes Risk Decoding

We have seen that translation distributions spread mass over a large set of likely
candidates, oftentimes without any clear preference for particular translations
within the set (Section 3.8.1). Yet, this set is not arbitrary, it captures various
statistics of the data well (Section 3.6) and holds potentially good translations
(Section 3.8.3). Even though the model does not single out one clear winner, the
translations it does assign non-negligible mass to share statistics that correlate
with the reference translation. This motivates a decision rule that exploits all
information we have available about the distribution. In this section we explore
one such decision rule: minimum Bayes risk (MBR) decoding. We will propose
to use sampling-based approximation to it and perform a small proof-of-concept
experiment to motivate further investigation in the next chapter of the thesis.

For a given utility function u(y, h), which assesses a translation candidate h
against a reference y, statistical decision theory (Bickel and Doksum, 1977) pre-
scribes that the optimum decision y? is the one that maximises expected utility (or
minimises expected loss) under the model: y? = argmaxh2H(x) Ep(Y |x,✓)[u(Y, h)],
where the maximisation is over the entire set of possible translations H(x). Note
that there is no need for a human-annotated reference, expected utility is com-
puted by having the model fill in reference translations. This decision rule,
known as MBR decoding in the NLP literature (Goel and Byrne, 2000), is es-
pecially suited where we trust a model in expectation but not its mode in par-
ticular (Smith, 2011, Section 5.3).7 MBR decoding, much like MAP decoding,
is intractable. We can at best obtain unbiased estimates of expected utility via
Monte Carlo (MC) sampling, and we certainly cannot search over the entirety
of H(x). Still, a tractable approximation can be designed, albeit without any
optimality guarantees. We use MC both to approximate the support H(x) of the
distribution and to estimate the expected utility of a given translation candidate.
In particular, we maximise over the support H̄(x) of the empirical distribution
obtained by ancestral sampling:

y? = argmax
h2H̄(x)

1

S

SX

s=1

u(y(s), h) for y(s) ⇠ p(y|x, ✓) , (3.1)

which runs in time O(S2). Though approximate, this rule has interesting prop-
erties: MC improves with sample size, occasional pathologies in the set pose no
threat, and there is no need for incremental search.

Note that whereas our translation distribution might be very flat over a vast
number of translations, not showing a clear ordering in terms of relative frequency

7MAP decoding is in fact MBR with a very strict utility function which evaluates to 1 if a
translation exactly matches the reference, and 0 otherwise (Kumar and Byrne, 2004, Eq. 5). As
a community, we acknowledge by means of our evaluation strategies (manual or automatic) that
exact matching is inadequate for translation, unlike many unstructured classification problems,
admits multiple solutions.
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within a large set of samples, this need not be the case under expected utility.
For example, in Section 3.8.2 we found that for some input sequences the empty
sequence is contained within the 1,000 samples in our set and appears in there
roughly once on average. If all the 1,000 samples are unique (as we found to often
be the case in Section 3.8.1), we cannot distinguish the empty sequence from the
other 999 samples in terms of relative frequency. However, under most utilities
the empty sequence is so unlike the other sampled translations that it would score
very low in terms of expected utility.

Here, we chose METEOR as utility function for it, unlike BLEU, is well-
defined at the sentence level.8 We estimate expected utility using S = 30 ances-
tral samples, and use the translations we sample to make up an approximation
to H(x). Results are shown in Table 3.1. As expected, MBR considerably out-
performs the average single sample performance by a large margin and in many
cases is on par with beam search, consistently outperforming it in low-resource
pairs. For English-German in the test domain, we may need more samples to
close the gap with beam search. In the next chapter, we will explore sampling-
based minimum Bayes risk in much greater detail. However, in this experiment
we see that sampling-based MBR produces promising results. Crucially, it shows
that exploring the model as a probability distribution holds great potential.

3.9 Related Work

Some of our observations have been made in previous work. Ott et al. (2018)
observe that unigram statistics of beam search stray from those of the data, while
random samples do a better job at reproducing them. Holtzman et al. (2020)
find that beam search outputs have disproportionately high token probabilities
compared to natural language under a sequence to sequence model. Our analysis
is more extensive, we include richer statistics about the data, more language
pairs, and vary the amount of training resources, leading to new insights about
MLE-trained NMT and the merits of mode-seeking predictions.

Ott et al. (2018) also observe that NMT learns flat distributions, they analyse
a high-resource English-French system trained on 35.5 million sentence pairs from
WMT’14 and find that after drawing 10, 000 samples from the WMT’14 valida-
tion set less than 25% of the probability space has been explored. Our analysis
shows that even though NMT distributions do not reveal clear winners, they do
emphasise translations that share statistics with the reference, which motivates
us to look into MBR.

MBR decoding is old news in machine translation (Kumar and Byrne, 2004;

8Even though one can alter BLEU such that it is defined at the sentence level (for example,
by adding a small positive constant to n-gram counts), this “smoothing” in e↵ect biases BLEU’s
su�cient statistics. Unbiased statistics are the key to MBR, thus we opt for a metric that is
already defined at the sentence level.
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Tromble et al., 2008), but it has received little attention in NMT. Previous ap-
proximations to MBR in NMT employ beam search to define the support and
to evaluate expected utility (with probabilities renormalised to sum to 1 in the
beam), these studies report the need for very large beams (Stahlberg et al., 2017;
Blain et al., 2017; Shu and Nakayama, 2017). They claim the inability to directly
score better translations higher is a deficiency of the model scoring function. We
argue this is another piece of evidence for the inadequacy of the mode: by using
beam search, they emphasise statistics of high-scoring translations, potentially
rare and inadequate ones. Very recently, Borgeaud and Emerson (2020) present a
voting-theory perspective on decoding for image captioning and machine transla-
tion. Their proposal is closely-related to MBR, but motivated di↵erently. Their
decision rule too is guided by beam search, which may emphasise pathologies
of highest-probability paths, but they also propose and investigate stronger util-
ity functions which lead to improvements w.r.t. length, diversity, and human
judgements.

The only instance that we are aware of where unbiased samples from an NMT
model support a decision rule is the concurrent work by Bhattacharyya et al.
(2021). The authors make the same observation that we make in Section 3.8.3,
namely that an oracle selection from a small set of samples of an NMT model
shows great potential, greatly outperforming beam search. Motivated by this
observation, the authors propose a re-ranking model that learns to rank sampled
translations according to their oracle BLEU. Using the trained model to re-rank a
set of 100 samples from the NMT model they find strong improvements over beam
search of up to 3 BLEU points, again showing the potential of sampling-based
decision rules.

3.10 Consequent Work

Since the publication of Eikema and Aziz (2020) a number of works have at-
tempted to better understand the inadequacy of the mode across text generation
tasks. Stahlberg et al. (2022) show that the inadequacy of the mode, the entropy
of output distributions and the ability of beam search to find the exact mode are
all tied to the aleatoric uncertainty that is present at the task or sequence level.
They find that tasks or input conditionals that allow for more valid answers, like
machine translation (many valid translations) versus grammatical error correc-
tion (one or a few valid corrections), increases the degree of the inadequacy of
the mode, the flatness of the output distribution and the amount of search errors
that are made by beam search. Before that, Forster et al. (2021) already observed
adequate modes for character-level grammatical error correction models and con-
jectured that the aleaoric uncertainty present in more complex text generation
tasks may be an important predictor for the inadequacy of the mode. Riley and
Chiang (2022) show something similar by smoothly reducing the fraction of the in-
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put sequence that is available, thereby reducing the context available to the model
and increasing the degree of aleatoric uncertainty. They show that repetition and
length bias, common problems with high probability translations, are worsened
when less context is available, suggesting that even less constrained tasks than
machine translation, e.g. fully open-ended generation, su↵ers from an even less
adequate mode, explaining why beam search doesn’t work well for these type of
tasks (Holtzman et al., 2020). Meister et al. (2022) propose an explanation for
the inadequacy of the mode in the form of the expected information hypothesis,
which states that human-like text should have information values (negative log
probabilities) close to the entropy of the distribution of natural language. They
base this around the observation that the information content of human text,
as assessed by NLG models, often falls around the entropy of sequence models.
Interestingly, MBR outputs also fall around the entropy of those same models in
their experiments across tasks, whereas mode-seeking generation methods such as
beam search and nucleus sampling only do for select tasks (Meister et al., 2022,
Figure 9). Yoshida et al. (2024) suggest that the inadequacy of the mode may
be caused by the presence of consistent noise in the training data, arguing that
at relatively small rates of noise even optimally trained models may place such
noise at the mode of the distribution. They also show that the inadequacy of the
mode has not been resolved by the recent enormous increases in model size and
training data size, finding that even recent large language models su↵er from the
inadequacy of the mode.

3.11 Conclusion

In this chapter, we discussed the inadequacy of the mode in NMT and questioned
the appropriateness of MAP decoding. We showed that for such a high dimen-
sional problem as NMT, the probability distributions obtained with MLE are
spread out over many translations, and that the mode often does not represent
any significant amount of probability mass under the learnt distribution. We
therefore argue that MAP decoding is not suitable as a decision rule for NMT
systems. Whereas beam search performs well in practice, it su↵ers from biases of
its own (i.e., non-admissible heuristic search bias), it shifts statistics away from
those of the data (i.e., exposure bias and other lexical and length biases), and in
the limit of perfect search it falls victim to the inadequacy of the mode. Instead,
we advocate for research into decision rules that take into account the probabil-
ity distribution more holistically. Using ancestral sampling we can explore the
learnt distribution in an unbiased way and devise sampling-based decision rules.
Ancestral sampling does not su↵er from non-admissibility, and, if the model fit is
good, there is no distribution shift either.

We further argue that criticisms about properties of the mode of an NMT
system are not representative of the probability distributions obtained from MLE
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training. While this form of criticism is perfectly reasonable where approxima-
tions to MAP decoding are the only viable option, there are scenarios where we
ought to criticise models as probability distributions. For example, where we seek
to correlate an observed pathology with a design decision, such as factorisation,
or training algorithm. In fact, we argue that many of the observed pathologies
and biases of NMT are at least partially due to the use of (approximate) MAP
decoding, rather than inherent to the model or its training objective.

Even though NMT models spread mass over many translations, we find sam-
ples to be of decent quality and contain translations that outperform beam search
outputs even for small sample sizes, further motivating the use of sampling-based
decision rules. We show that an approximation to one such decision rule, MBR
decoding, shows competitive results. This confirms that while the set of likely
translations under the model is large, the translations in it share many statistics
that correlate well with the reference.

MLE-trained NMT models admit probabilistic interpretation and an advan-
tage of the probabilistic framework is that a lot of methodology is already in place
when it comes to model criticism as well as making predictions. We therefore ad-
vocate for criticising NMT models as probability distributions and making pre-
dictions using decision rules that take into account the distributions holistically.
In the next chapter, we will look at the properties of sampling-based minimum
Bayes risk decoding in NMT and explore various scaleable approximations for
expected utility.





Chapter 4

Sampling-Based Minimum Bayes Risk

In this chapter we take a closer look at minimum Bayes risk (MBR) decoding
and the sampling-based proof-of-concept approximation that we proposed for it
in the previous chapter. We will explore the properties of this decision rule
and approximation strategy as well as explore more e�cient approximations to
expected utility to combat the increased computational complexity of sampling-
based MBR decoding compared to standard beam search decoding. We will
explore strategies for generating candidates for MBR decoding and motivate why
even then unbiased estimates of expected utility are crucial. The contents of this
chapter are based around Eikema and Aziz (2022), published at the Empirical
Methods in Natural Language Processing (EMNLP) conference in Abu Dhabi in
2022.1

Chapter Highlights

Problem Statement

• A sampling-based minimum Bayes risk approximation was proposed as more
suitable alternative to beam search decoding in Eikema and Aziz (2020).
However, little is known about its properties, such as how it scales with
more computation.

• Sampling-based MBR decoding is considerably more expensive than stan-
dard beam search decoding, which uses a small beam size.

• Uses of MBR decoding prior to Eikema and Aziz (2022) made use of biased
approximations using beam search with a large beam size or biased sampling
techniques to generate candidates and to estimate expected utility.

1A preprint of this work was already available in 2021 (Eikema and Aziz, 2021).

41
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Figure 4.1: NMT spreads probability roughly uniformly over a large set of promis-
ing hypotheses (left). MBR (right) assigns hypotheses an expected utility, reveal-
ing clear preferences against those that are too idiosyncratic.

Contributions

• We establish that sampling-based minimum Bayes risk decoding does not
su↵er from an equivalent of the beam search curse. In fact, we find that
better search to the exact MBR solution, in our experiments, always leads
to better or equal translation performance. This solidifies expected utility
as a robust criterion for making decisions.

• We propose more e�cient approximations that allow performance in MBR
with equivalent computational budget, bringing sampling-based MBR closer
to being practically viable.

• We show that we can decouple candidate generation from estimation of
expected utility, and show that mode-seeking strategies can still be useful
for generating candidates in MBR, as unbiased estimates of expected utility
are robust enough to filter out any idiosyncracies in the candidate space.

4.1 Introduction

NMT systems (Sutskever et al., 2014; Bahdanau et al., 2015) are trained to predict
a conditional probability distribution over translation candidates of any given
source sentence. After training, choosing a translation for a given input requires
a decision rule: a criterion to elect a ‘preferred’ translation. MAP decoding, the
most common decision rule in NMT, seeks the most probable translation under
the model (i.e., the mode of the distribution).
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MAP decoding and its approximations such as beam search (Graves, 2012)
have been under scrutiny. Stahlberg and Byrne (2019) show that the true mode
is oftentimes inadequately short or empty. Better approximate search is known
to hurt quality (Koehn and Knowles, 2017; Murray and Chiang, 2018; Kumar
and Sarawagi, 2019), a problem known as the beam search curse. The success
of beam search depends on search biases introduced by hyperparameters such as
beam size and length normalisation, which are tuned not to correlate with the
objective of MAP decoding, but rather to strike a compromise between mode-
seeking search and properties of reasonable translations. Despite its success,
a number of problems have been observed such as a length bias (Cho et al.,
2014; Sountsov and Sarawagi, 2016), a word frequency bias (Ott et al., 2018),
susceptibility to copy noise (Khayrallah and Koehn, 2018; Ott et al., 2018), and
hallucination under domain shift (Lee et al., 2019; Müller et al., 2020; Wang and
Sennrich, 2020).

In the previous chapter we argued that the inadequacy of the mode in NMT
does not have to mean that our models are bad. We showed that distributions
predicted by NMT do reproduce various statistics of observed data, but they
tend to spread probability mass almost uniformly over a large space of translation
candidates. This makes their precise ranking in terms of probability mass a fragile
criterion for prediction. While some of these candidates are possibly inadequate
(e.g., the empty sequence), most of them are similar to one another and exhibit
appreciable structural similarity to reference translations. To make better use
of the statistics predicted by NMT models, we recommended MBR decoding
(Kumar and Byrne, 2004), a decision rule that seeks the translation candidate
which maximises an external notion of utility (e.g., an MT evaluation metric)
in expectation under the model distribution. While MBR decoding promises
robustness to idiosyncratic translations, it remains intractable, much like MAP
decoding. We specifically proposed an approximation based on Monte Carlo (MC)
sampling, which although tractable in principle, requires a prohibitive number of
assessments of the utility function.

In this work, we first analyse the procedure introduced in the previous chap-
ter and establish that it does not su↵er from a counterpart to the beam search
curse. That is, better search does not hurt translation quality. The proposed
approximation is, however, computationally expensive, requiring a number of as-
sessments of the utility function that is quadratic in sample size. In this chapter,
we propose algorithms that scale linearly, allowing us to explore large hypothesis
spaces, and considerably improve upon existing approximations to MBR with
less computation. Finally, we find that mode-seeking strategies such as nucleus
sampling and beam search can still aid MBR decoding by constructing compact
sets of high expected utility hypotheses, relying on MBR to filter idiosyncratic
translations that may be present.
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4.2 Minimum Bayes Risk Decoding

In Section 3.8.4 we proposed a sampling-based approximation to minimum Bayes
risk (MBR) decoding. Here, we recap and elaborate on that approach and intro-
duce the necessary notation for this chapter.

Minimum Bayes risk decoding stems from the principle of maximisation of
expected utility (Berger, 1985). A utility function u(y, h) measures the benefit in
choosing h 2 Y when y 2 Y is the ideal decision. When forming predictions, we
lack knowledge about ideal translations and must decide under uncertainty. MBR
lets the model fill in ‘ideal decisions’ probabilistically as we search through the
space of candidates for the one which is assigned highest utility in expectation:

yMBR = argmax
h2Y

E[u(Y, h) | ✓, x]| {z }
=:µu(h;x,✓)

. (4.1)

Note that Y is a random sequence, and we take the expectation with respect to
the sequence distribution P✓(Y |x).

MBR has a long history in parsing (Goodman, 1996; Sima’an, 2003), speech
recognition (Stolcke et al., 1997; Goel and Byrne, 2000), and machine translation
(Kumar and Byrne, 2002, 2004). In machine translation, u can be an instance-
level evaluation metric (e.g., METEOR (Denkowski and Lavie, 2011) or sentence-
BLEU (Chen and Cherry, 2014)). Intuitively, whereas the MAP prediction is
the translation to which the model assigns highest probability, no matter how
idiosyncratic, the MBR prediction is the translation that is closest (under the
chosen u) to all other probable translations. See Figure 4.1 for an illustration of
this concept. Seeking support for a prediction not only in terms of probability
but also in terms of utility makes MBR decoding robust to situations where
inadequate translations are assigned high probability, as it often happens with
the empty string (Stahlberg and Byrne, 2019), when the training data are noisy
(Ott et al., 2018), too small (Eikema and Aziz, 2020) or distant from the test
domain (Müller and Sennrich, 2021).

It is a well-known result that for the ‘exact match’ utility, u(y, h) := 1{y}(h),
the expected utility of h is pY |X(h|x, ✓), hence MBR and MAP decoding have the
same optimum under this choice (Kumar and Byrne, 2002). This view justifies
MAP decoding as an instance of MBR, where decisions are optimised with respect
to a strict notion of translational equivalence. In machine translation evaluation,
exact match is a questionable choice of utility function. It, for example, is unable
to capture paraphrases or any other form of semantic equivalence.

Like in MAP decoding, exhaustive enumeration of all hypotheses is impossi-
ble, we must resort to a finite subset H̄(x) of candidates. Unlike MAP decoding,
the objective function µu(h; x, ✓) cannot be evaluated exactly. Most approxi-
mations to MBR decoding, from Kumar and Byrne (2004) to recent instances
(Stahlberg et al., 2017; Shu and Nakayama, 2017; Blain et al., 2017), use k-best
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lists from beam search for H̄(x) and to form a biased estimate of expected util-
ity. In the previous chapter, we used unbiased samples from the model for both
approximations: i) we followed the generative story in Equation (2.2) to obtain
N independent samples y(n) , a procedure known as ancestral sampling (Bishop,
2006); then, ii) for a hypothesis h, we computed an MC estimate of µu(h; x, ✓):

µ̂u(h; x,N)
MC

:=
1

N

NX

n=1

u(y(n), h) , (4.2)

which is unbiased for any sample size N . We used the same N samples as candi-
dates and approximated Equation (4.1) by

yN-by-N := argmax
h2{y(1),...,y(N)}

µ̂u(h; x,N) . (4.3)

We note that the candidates do not need to be obtained using ancestral sampling,
and investigate alternative strategies in Section 4.5.4. It is important, however,
to use ancestral samples to obtain an unbiased estimate of expected utility as we
show in Section 4.5.1. We call this class of MBR algorithms using unbiased MC
estimation instances of sampling-based MBR decoding.

4.3 Coarse-to-Fine MBR Decoding

A big disadvantage of MBRN-by-N is that it requires N2 assessments of the utility
function. If U is an upperbound on the time necessary to assess the utility
function once, then MBRN-by-N runs in time O(N2 ⇥ U). For a complex utility
function, this can grow expensive even for a modest hypothesis space. As NMT
distributions have been shown to be high entropy (Ott et al., 2018; Eikema and
Aziz, 2020), the quadratic cost prevents us from su�ciently exploring the space
of translations. Therefore, we investigate and propose more flexible algorithms.

An important property of sampling-based MBR decoding is that MC esti-
mation of expected utility, Equation (4.2), and approximation of the hypothesis
space in Equation (4.3) really are two independent approximations. Tying the two
is no more than a design choice that must be reconsidered. We start by obtaining
N translation candidates from the model, which will form the hypothesis space
H̄(x). Then, we use any number S < N of ancestral samples for approximating
expected utility in Equation (4.2).2 We call this version MBRN-by-S, which takes
time O(N ⇥ S ⇥ U). Compared to MBRN-by-N, this variant is able to scale to
much larger hypothesis spaces H̄(x). In practice, however, robust MC estimation
for the utility of interest may still require S that is too large for the N we are
interested in.

2In practice, for e�ciency we will use a fixed set of S samples to estimate expected utility
for each candidate.
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src Convercent erhielt $10 Millionen bei der Finanzierung im Februar von Firmen wie Sapphire Ventures und

Tola Capital, womit das gesamte Kapital auf $47 Millionen angehoben wurde.

ref Convercent raised $10 million in funding in February from firms such as Sapphire Ventures and Tola

Capital, bringing its total capital raised to $47 million.

Figure 4.2: Motivation for coarse-to-fine MBR. We sort 300 candidates sampled
from the model along the x-axis from best to worst according to a robust MC
estimate (using 1,000 samples) of expected BEER under the model. Left: feasible
MC estimates (5 samples) of each candidate’s expected BEER. Right: robust and
inexpensive MC estimates (100 samples) of expected utility w.r.t. a simpler metric
(skip-bigram F1). As estimates are stochastic, we perform 100 repetitions and
plot mean± two deviations. We can see that the robust estimates (right) correlate
fairly well with the expensive ranking we intend to approximate (x-axis), despite
of the simpler utility. As we can a↵ord more evaluations of the proxy utility, we
obtain estimates of reduced variance, which leads to safer pruning.

An idea that we explore in this work is to make use of a proxy utility that
correlates with the target utility but is cheaper to compute. Even when those
do not correlate perfectly, we can make use of the proxy utility to filter the
hypothesis space to a manageable size T on which we can perform robust MC
estimation of expected utility. We coin this approach coarse-to-fine MBR decod-
ing (or MBRC2F), which filters the hypothesis space to a manageable size in the
coarse step, and performs robust MC estimation of expected utility in the fine
step:

yC2F := argmax
h2H̄T (x)

µ̂utarget(h; x, L) (4.4a)

H̄T (x) := top-T
h2H̄(x)

µ̂uproxy(h; x, S) . (4.4b)

Upper-bounding the complexity of the proxy utility by Uproxy, the target utility
by Utarget, using S samples for MC estimation in the coarse step (4.4b) and L in
the fine step (4.4a), the complexity of this algorithm is O(N ⇥ S ⇥ Uproxy + T ⇥
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L⇥Utarget). MBRC2F decouples robust MC estimation (large L) from exploration
(large N) and the cost of exploration from the cost of the target utility.

As illustrated in Figure 4.2, we can find proxy utilities that correlate reason-
ably well with our target utility and are able to give us a rough—but useful—
ordering of the hypothesis space. Rather than using a proxy utility, we could
use the target utility itself in the coarse-step provided we pick a small S. This,
however, most likely leads to too high variability in the ranking, as shown in
Figure 4.2 (left).

4.4 Data, Systems and Utilities

We perform experiments on three language pairs with varying amount of resources
for training: English into and from German, Romanian and Nepali. For German-
English (de-en) we use all available WMT’18 (Bojar et al., 2018) news data except
for Paracrawl, resulting in 5.9 million sentence pairs. We train a Transformer base
model (Vaswani et al., 2017) until convergence and average the last 10 epoch
checkpoints to obtain our final model. We test our models on newstest2018.
For Romanian-English (ro-en) we use all available WMT’16 (Bojar et al., 2016a)
news data amounting to 565k sentence pairs. We train a Transformer base model
until convergence and pick the best epoch checkpoint according to the validation
loss. We test our models on newstest2016. Finally, for Nepali-English (ne-en)
we use the data setup by Guzmán et al. (2019). We apply the pre-processing
step of removing duplicates as in the previous chapter. This results in 235k
sentence pairs. We test our models on the Flores test set, which is of a widely
di↵erent domain than the training data. We mimick the training setup and models
used in Guzmán et al. (2019). In all models we disable label smoothing, as we
previously found this to negatively impact model fit, which would compromise
the performance of MBR.

For computational e�ciency, we opt for non-neural evaluation metrics for use
as utility function in MBR. BEER (Stanojević and Sima’an, 2014) is a non-
neural trained metric that has shown good correlation with human judgements in
previous WMTmetrics shared tasks (Macháček and Bojar, 2014; Stanojević et al.,
2015; Bojar et al., 2016b). In experiments shown in Table 4.1 in Section 4.4.1
we find that using BEER as utility function performs well at pushing translation
performance higher across a range of automatic evaluation metrics. We therefore
use BEER as the utility of choice in our experiments and as a consequence will
consistently report corpus-level BEER scores of MBR translations as well. We
also report SacreBLEU (Papineni et al., 2002; Post, 2018) scores where relevant
to be able to detect overfitting to the utility and for comparison with other works.
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Task Utility BEER BLEU METEOR ChrF++

en-de BEER 64.3 37.0 56.6 61.3
sentence-BLEU 63.3 37.5 55.9 60.2
METEOR 62.5 33.4 57.8 60.5
ChrF++ 63.2 34.9 56.9 61.4

de-en BEER 64.9 38.0 39.3 61.0
sentence-BLEU 64.3 38.3 38.9 60.3
METEOR 63.5 36.1 39.7 59.8
ChrF++ 64.4 37.2 39.5 61.5

en-ro BEER 54.8 21.0 33.9 47.8
sentence-BLEU 54.4 21.3 40.4 47.4
METEOR 54.5 20.9 40.9 47.7
ChrF++ 54.2 20.2 40.3 48.0

ro-en BEER 58.4 27.5 32.4 52.0
sentence-BLEU 57.8 27.8 32.2 51.4
METEOR 57.5 26.6 32.9 51.5
ChrF++ 58.0 27.1 32.7 52.6

en-ne BEER 38.4 3.4 11.0 26.1
sentence-BLEU 34.9 3.0 10.9 22.7
METEOR 37.3 3.4 13.2 25.3
ChrF++ 36.8 2.6 12.3 26.6

ne-en BEER 42.7 6.0 17.0 31.2
sentence-BLEU 39.9 5.7 15.1 28.4
METEOR 40.4 4.6 17.3 30.8
ChrF++ 40.6 4.8 17.0 32.0

Table 4.1: Comparing BEER, sentence-BLEU, METEOR and ChrF++ as utility
functions in MBRN-by-S using N = 405 and S = 100.
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4.4.1 Comparing Target Utilities

We compare a number of utility functions for use in MBR decoding. In princi-
ple any function that measures some notion of similarity across sequences and
can be reliably assessed on the sentence-level is suitable as a utility function for
MBR. As BLEU is the predominant automatic evaluation metric on which trans-
lation quality is assessed, we experiment with a smoothed version of BLEU (Pa-
pineni et al., 2002) that can work on the sentence-level: sentence-BLEU (Chen
and Cherry, 2014) using the default parameters in Post (2018). We further try
METEOR (Denkowski and Lavie, 2011) as we previously found this to produce
good results.3 BEER (Stanojević and Sima’an, 2014) is a character-based metric
that has shown to correlate well with human judgements in many WMT metrics
tasks (Macháček and Bojar, 2014; Stanojević et al., 2015; Bojar et al., 2016b).
Finally, we also explore ChrF++ (Popović, 2017), another character based metric
that is an improved version of ChrF (Popović, 2015).

We perform MBRN-by-S with N = 405 and S = 100 in order to perform the
comparisons. We measure the performance of each utility on BEER, BLEU,
METEOR and ChrF++. Our results are shown in Table 4.1. As expected, us-
ing a certain utility achieves the best performance under the lens of that metric
as well. Sometimes we find a small deviation from this when BEER or ME-
TEOR outperforms sentence-BLEU in terms of BLEU score. This is likely due to
sentence-BLEU only being an approximation to BLEU itself. We find that over-
all BEER seems to do best across metrics followed by ChrF++. One attempt
to quantify this more clearly is by normalising the scores per language pair and
evaluation metric compared to the maximum score obtained by the best scoring
system for that metric and language pair. This leads to the following average per-
formances per evaluation metric: BEER 0.978, METEOR 0.968, ChrF++ 0.964,
and sentence-BLEU 0.955. This indeed shows a slight edge of BEER over the
other utilities tested in pushing scores across our evaluation metrics. Therefore,
we have used BEER as the utility of choice. The finding that BEER works well
as a utility function in MBR was also made before in the work of Blain et al.
(2017).

4.5 Experiments

4.5.1 Estimation of Expected Utility

We start by motivating the importance of unbiased estimates of expected utility
using ancestral samples (i.e. sampling-based MBR). In Figure 4.3 we verify the
biasedness of alternatives to ancestral sampling for this computation: nucleus

3We use a slightly di↵erent version of METEOR than in the previous chapter. We now use
language-specific versions rather than a language-agnostic version used there.
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Figure 4.3: Estimates of expected utility for various hypotheses. We plot practical
estimates of expected utility (x-axis) using either 100 ancestral, nucleus or ‘beam’
samples against an accurate MC estimate using 1,000 ancestral samples. The gray
line depicts a perfect estimator.

sampling (Holtzman et al., 2020) and ‘beam sampling’ (i.e., using k-best outputs
from beam search for estimating expected utility; Blain et al. (2017)). We can
see, rather clearly, that estimates using nucleus samples or beam search bias away
from expected utility under the model, while ancestral sampling is unbiased by
design and hence should be preferred when approximating the objective function
in search. Therefore, in all experiments that follow, we shall use ancestral samples
for making unbiased estimates of expected utility, even when di↵erent methods
are used to construct the hypothesis space.

4.5.2 N-by-N MBR

Now, we look into scaling MBRN-by-N. Previously, we only explored 30 by 30
approximations to the MBR objective. Here, our aim is to investigate whether
MBR decoding is indeed able to scale to better translation performance with more
computation. In Figure 4.4, we explore N from 30 to 405.4 As MBR optimises
a specific utility (we use BEER), we report translation quality along both BEER
and BLEU to detect overfitting to the metric.

We find that MBR steadily improves across language pairs as N grows larger.
BLEU scores improve at a similar rate to that of BEER, showing no signs of

4A batch size of 15 is convenient on our hardware, which is why we work with multiples of
15 in most experiments.
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Figure 4.4: MBRN-by-N for various sizes of N using BEER as target utility. We
report both BEER and BLEU scores.

overfitting to the utility. This is strong empirical evidence that sampling-based
MBR has no equivalent to the beam search curse. We see this as an important
property of a decoding objective.

4.5.3 N-by-S MBR

MBRN-by-N couples two approximations, namely, tractable exploration and unbi-
ased estimation of expected utility are based on the same N ancestral samples.
Our aim is to learn more about the impact of these two approximations, for which
we look into MBRN-by-S. Moreover, with less than N2 assessments of utilities per
decoding, we can also investigate larger H̄(x). We explore N ranging from 210
to 1005, while keeping the number of samples used for approximating expected
utility of each hypothesis smaller, with S ranging from 10 to 200. We argue that
S does not need to grow at the same pace as N , as MC estimates should stabilize
after a certain point.5 See our results in Figure 4.5.

We find that growing N beyond 405 improves translation quality further, even

5The standard error of the mean scales with the inverse square root of the sample size.
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Figure 4.5: MBRN-by-S: we estimate the expected utility of N hypotheses using
S samples. We show average performance over 3 runs with 1 standard deviation.
The dashed line shows MBRN-by-N performance at N = 405.

when the estimates of expected utility are less accurate. Increasing S also steadily
improves translation quality, with diminishing returns in the magnitude of im-
provement. On the other hand, smaller values of S lead to notable deterioration
of translation quality and we note higher variance in results. For all language
pairs it is possible to improve upon the best MBRN-by-N results by considering
a larger hypothesis spaces and smaller S. This experiment shows that the two
approximations can be controlled independently and better results are within
reach if we explore more. On top of that, the best setting of MBRN-by-N takes
164,025 utility assessments per decoding, MBRN-by-S with S = 100 brings this
number down to 100,500 for the largest N considered, while improving BEER
scores on all language pairs. We note that again increasing either N or S gener-
ally improves translation quality in our experiments. This further strengthens our
previous finding that sampling-based MBR does not seem to have an equivalent
of the beam search curse.
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Figure 4.6: Proportion plots of expected utility for 3 strategies for constructing
H̄(x), using 100 translation candidates per strategy. We estimate expected utility
using 1,000 samples. Results are aggregated over 100 source sentences.

4.5.4 Choice of Hypothesis Space

While our focus thus far has been on reducing the number of target utility calls,
allowing the exploration of larger H̄(x), one should also take sampling time in
consideration. For example, we found that in MBRN-by-N with N = 100, sampling
time made up about 60% of the total translation time for our setup. Therefore,
it is computationally attractive to construct compact H̄(x) with promising trans-
lation candidates. Ideally, for better search in MBR, we enumerate a set of high
expected utility hypotheses. Up until now we have constructed H̄(x) using an-
cestral samples. Strategies like nucleus sampling and beam search are known
empirically to produce higher quality translations than ancestral sampling on
average and might therefore also enumerate outcomes that have high expected
utility. We explore ancestral sampling, nucleus sampling and beam search. In a
hyperparameter search we found p = 0.7 for nucleus sampling to work best. For
beam search we use a length penalty of 1.2 (ne) or 0.6 (de, ro). We compare
each strategy by the expected BEER values of the translations generated, using
accurate estimates of expected BEER (using 1,000 samples for MC estimation).
We show results in Figure 4.6.

We find ancestral sampling to produce hypotheses across the entire range of
expected BEER scores. Nucleus sampling and beam search generally produce
translations at the higher end of expected BEER. Therefore, these seem more
suitable for generating e↵ective H̄(x) at smaller N . Nucleus sampling seems to
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Figure 4.7: Comparison of proxy utilities on English to German: BEER using 1,
5 or 100 samples for MC estimation, and unigram F1 (UF) and skip-bigram F1
(SBF) each using 50 samples for MC estimation. We use each proxy utility to
filter a top-20 from 100 ancestral samples. We show the resulting expected target
utilties (BEER, an accurate estimate) (top), as well as a runtime comparison
(bottom). Results are aggregated over 100 source sequences.

lead to the largest proportion of high expected utility translations across language
pairs. Beam search has a noticeably high proportion of poor translations for
English-Nepali, a low-resource language pair where mode-seeking search has been
observed to be less reliable. Results in the opposite direction were similar. We
explore both nucleus sampling and beam search for constructing H̄(x) in the next
experiment, as well as combining all three strategies together.

4.5.5 Coarse-to-Fine MBR

We now turn to the coarse-to-fine procedure (MBRC2F) described in Section 4.3.

Choice of Proxy Utility

We compare various proxy utilities by their e↵ectiveness as filtering strategies
in obtaining high expected utility sets, where we again use accurate estimates
of expected utility using 1,000 samples for MC estimation. We filter the top-20
hypotheses from an initial 100 hypotheses obtained using ancestral sampling. This
ensures a high variety of expected utilities in the initial set. We also compare each
proxy utility on their runtime performance. We compare both cheap estimates
of expected BEER using either 1 or 5 samples for MC estimation (BEER-1 and
BEER-5 respectively) as well as cheap-to-compute proxy metrics: unigram F1
using 50 samples for MC estimation (UF-50) and skip-bigram F1 using 50 samples
for MC estimation (SBF-50).6 We use expected BEER using 100 samples for MC
estimation (BEER-100) as a reference point. See our results on the English-
German system in Figure 4.7.

6Skip-bigrams are bigrams that do not enforce adjacency.
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en-de en-ro en-ne

MBR H̄ BEER BLEU BEER BLEU BEER BLEU

NxS N 64.3 38.0 54.9 21.4 38.9 3.6
C2F N +1.1 +1.9 +0.4 +0.2 +0.4 +0.2

B +0.9 +1.5 +0.5 +0.5 +0.5 +0.5
all +1.3 +2.4 +0.5 +0.4 +0.6 +0.5

BS - +0.9 +2.8 -0.1 +0.1 -0.8 +0.2

de-en ro-en ne-en

MBR H̄ BEER BLEU BEER BLEU BEER BLEU

NxS N 64.8 38.7 58.5 28.0 43.1 6.3
C2F N +0.9 +1.1 +0.5 +0.7 +0.5 +0.2

B +1.0 +1.5 +0.7 +1.2 +0.5 +0.9
all +1.0 +1.4 +0.6 +1.1 +0.8 +0.8

BS - +0.5 +1.2 -0.0 +0.8 -1.0 +0.4

Table 4.2: Comparing MBRN-by-S, MBRC2F and beam search (BS) in terms of
BEER and BLEU performance. We use BEER as utility, UF-50 as proxy utility,
set top-T = 50 and use L = 100 samples for MC estimation. We use various
strategies for constructing H̄(x): 405 nucleus samples (N), the 405-best list from
beam search (B) and combining both of these along with 1,005 ancestral samples
(all). We use S = 13 in MBRN-by-S to mimic the computational cost of MBRC2F at
N = 405. The last row shows standard beam search performance using a typical
beam size of 4 or 5 depending on the language. MBR results are averaged over
3 runs. Standard deviations for BEER/BLEU scores are below 0.1/0.2 (NxS),
0.1/0.1 (C2F) and 0 (BS).

We surprisingly find nearly all strategies to lead to equally good filtered sets as
BEER-100 in terms of expected BEER of the filtered set. The only strategy that
performs slightly worse than the others is BEER-1, which is likely too noisy to
be a reliable filtering strategy. We observed very similar results for the other five
language pairs. In terms of runtime performance we find BEER-1 to be fastest
followed by UF-50 at a 22.2x performance increase over BEER-100.7 In follow-up
experiments, we will use UF-50 as a proxy utility, providing high quality filtered
sets at good runtime performance.
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Coarse-to-Fine MBR Results

In Table 4.2 we compare MBRC2F with MBRN-by-S using N = 405 nucleus samples
(p = 0.7) to construct the hypothesis space. We filter the top-T = 50 hypotheses
using UF-50 as proxy utility and use L = 100 samples for MC estimation of
the top-set, following our findings in Sections 4.5.5 and 4.5.3 respectively. For
MBRN-by-S we set S = 13 to roughly match the amount of computation available
to MBRC2F, based on a 22.2x speed-up of UF-50 relative to BEER-100 observed in
Figure 4.7. We find that across language pairs MBRC2F consistently outperforms
MBRN-by-S showing improvements between +0.4 and +1.1 BEER and +0.2 to
+1.9 BLEU. MBRC2F thus is e↵ective at obtaining higher translation quality
than MBRN-by-S at the same amount of computation available for MBR.

We also explore the e↵ects on translation quality of changing and combining
strategies for constructing H̄(x). We find that using a beam of N = 405 (using the
same length penalty as in Section 4.5.4) to construct H̄(x) produces better results
than nucleus sampling for most language pairs. Notably, re-ordering a large beam
considerably improves over standard beam search decoding (using the usual beam
size of 5 (ro, ne) or 4 (de)) for all language pairs in terms of BEER and for most
language pairs in terms of BLEU scores. Combining all strategies for creating
hypothesis spaces: ancestral sampling, nucleus sampling and beam search leads to
the best results overall. For all language pairs both BEER and BLEU scores either
improve or remain similar. This is more empricial evidence that expected utility
is a robust and reliable criterion for picking translations: enlarging the hypothesis
space or improving MC estimation under reasonable choices of hyperparameters
seemingly never unreasonably hurts translation quality, but generally improves
it.

A Multi-Reference Test Set We also test three systems from Table 4.2 (NxS,
C2F and beam search) on a multi-reference test set. We use the English to
German systems trained on WMT18 news data and translate newstest2021,
which has three separate translations for each source sentence (we use translators
A, C and D). We show results in Table 4.3. We find a similar pattern to that
of Table 4.2. MBRC2F greatly outperforms MBRN-by-S given the same amount
of available compute (see Section 4.5.5) for details). MBRC2F outperforms beam
search results in terms of BEER, but is much closer to beam search this time in
terms of BLEU.

4.5.6 Runtime

We measure runtime performance on hypothesis generation, sampling for MC
estimation of expected utilities and decoding time seperately for various algo-

7Our Python implementations of unigram and skip-bigram F1 are not optimized and we
deem it likely that a greater speed-up is possible with a more e�cient implementation.
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newstest2021 BEER BLEU

NxS 63.4 40.9
C2F 64.5 42.8

BS 63.7 43.0

Table 4.3: English to
German MBRN-by-S and
MBRC2F results on the
newstest2021 multi-
reference test set. We use
N = 405 nucleus samples
as hypothesis space and use
the same hyperparameters
as in Table 4.2.

MBR hyp. generation sampling decoding

NxN 6,241s 7,739s 23,156s
NxS 6,241s 383s 746s
NxSlarge 6,241s 1,825s 5,358s
C2F 6,241s 1,825s 726s

BS - - 194s

Table 4.4: A runtime comparison of MBR
variants and beam search. We separate the
time taken for i) hypothesis generation ii)
sampling (for estimation of expected util-
ity) and iii) running the decoder itself. We
use N = 405 nucleus samples, S = 13 and
Slarge = 100 ancestral samples for NxS vari-
ants, and the hyperparameter settings for
C2F as used in Table 4.2.

rithms explored in this work on the English to German language pair. We run
all experiments on an Intel Xeon Bronze 3104 Processor and a single NVIDIA
GeForce 1080Ti GPU. For generating samples and beam search outputs we set
the batch size to as large as possible, constrained by the available GPU memory.
MBR using BEER as utility runs on CPU, while sampling and beam search run
on GPU. We mimic the MBRN-by-N and MBRC2F setups from Table 4.2 using a
hypothesis space of 405 nucleus samples. We also additionally include runtime
results for MBRN-by-N with N = 405 and a more expensive MBRN-by-S variant
with S = 100 (NxSlarge). For beam search we report results for a beam size of 4,
as has been used throughout the chapter for this language pair. Results are shown
in Table 4.4. As can be seen, collecting hypotheses and unbiased sampling makes
up for a large part of the total decoding time in MBR algorithms. We do note
that sampling operations are easily parallelisable and can be split across multiple
GPUs when available. In terms of the decoding time itself, we can see that we
greatly reduced the amount of computation needed to perform MBR going from
23,156 seconds of decoding time for MBRN-by-N to only 726 seconds of decoding
time for MBRC2F. This can be attributed to the great reduction in number of
utility calls in our proposed approximations.

4.6 Related Work

4.6.1 MBR Decoding in NMT

In recent NMT literature MBR has started being explored either in combination
with MAP decoding or replacing it altogether. Stahlberg et al. (2017) adapt
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lattice minimum Bayes risk decoding (Tromble et al., 2008) on SMT transla-
tion lattices to be incorporated in left-to-right beam search decoding in NMT,
thereby proposing a hybrid decoding scheme. They adapt lattice MBR to work
on partial hypotheses and perform beam search to find translations that are both
high probability under the NMT model and have high expected utility under the
SMT model. Shu and Nakayama (2017) also combine beam search with MBR
decoding to find low risk hypotheses, after which they re-rank all hypotheses with
MBR again. They report having to restrict the number of hypotheses as not to
degrade the e↵ectiveness of MBR re-ranking, a finding that is likely due to bi-
ased estimation of expected utility, as in our work we find that increasing the
number of hypotheses always improves translation quality. Blain et al. (2017)
explore the quality of k-best lists obtained from beam search in NMT models
and find that while MAP is not a good criterion for ranking the resulting hy-
potheses, re-ranking using MBR with BEER as a utility leads to improvements
on top of standard beam search decoding (with a small beam size), in terms of
both BLEU scores as well as human evaluation scores. Borgeaud and Emerson
(2020) approach decoding from a voting theory perspective and derive a decoding
strategy similar to MBR. They explore a range of utility functions, achieving sim-
ilar BLEU scores to beam search, but showing improvements in terms of length,
diversity and human judgement.

All of the above works make use of beam search to provide both the hypothesis
space as well as to make a biased estimate of expected utility. Eikema and Aziz
(2020), the basis of the previous chapter, is the first work in NMT that propose to
use sampling from the model to both make unbiased estimates of expected utility,
the importance of which we confirm here again in experiments, and to form the
hypothesis space. In the previous chapter we only explored MBRN-by-N, however,
and never explored hypothesis spaces larger thanN = 30 samples. In this chapter,
we show that it is beneficial to scale MBR to much larger hypothesis spaces and
that it can be beneficial to construct them using mode-seeking strategies.

4.6.2 Approximations to MBR

Most instances of MBR decoding in machine translation, from the original work
of Kumar and Byrne (2004) to recent instances in NMT (Stahlberg et al., 2017;
Shu and Nakayama, 2017; Blain et al., 2017), approximate the objective function
by computing expectations not w.r.t. the model distribution, but rather, w.r.t.
a proxy distribution. This proxy is obtained by enumeration via beam-search
of a subset of the sample space (e.g., a k-best list), and renormalisation of the
probabilities of the outcomes in this subset. This has the undesirable e↵ect of
exaggerating di↵erences in probability due to underestimation of the normalisa-
tion constant, and, like MAP decoding, it over-represents pathologies around the
mode. Similarly, most prior work uses mode-seeking search to explore a tractable
subset of the hypothesis space. Mode-seeking approximations bias the decoder
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towards the mode making MBR decoding less robust to idiosyncratic outcomes
in the hypothesis space (Eikema and Aziz, 2020). This is in stark contrast with
our work, where we sample from the model to construct unbiased estimates of
expected utility, as well as to enumerate a tractable hypothesis space.

There are cases in statistical machine translation (SMT) where the computa-
tion of expected utility can be factorised along a tractable directed acyclic graph
(DAG) via dynamic programming (Tromble et al., 2008; Zhang and Gildea, 2008;
DeNero et al., 2009; Kumar et al., 2009). In such cases, the DAG contains a much
larger subset of the sample space than any practical k-best list, still some prun-
ing is necessary to construct a compact DAG containing only the most probable
outcomes. These strategies are only available for models and utility functions
that make strong Markov assumptions. For example, Tromble et al. (2008) and
DeNero et al. (2009) develop linearisation strategies for BLEU, and Zhang and
Gildea (2008) maximise expected trigram counts as a proxy to BLEU proper.
The idea of utilising a proxy utility is something we also explore in this chapter,
though only as an intermediate step to decoding with the target utility.

In some (rarer) cases, unbiased (or asymptotically unbiased) samples have
been used to approximate the MBR objective and/or to reduce the search space.
For example, Stanojević and Sima’an (2015) use ancestral sampling in MBR de-
coding for permutation-trees-based reordering models, and Arun et al. (2009) use
Gibbs sampling for MBR decoding in phrase-based MT. Unbiased samples for
estimation of expected utility or exploration of a tractable hypothesis space are
simply not common in machine translation. In SMT, the reason is a technical
one, most SMT models are not based on a left-to-right factorisation of the joint
distribution, thus unbiased sampling requires MCMC (DeNero et al., 2008; Blun-
som et al., 2009) or expensive adaptive rejection sampling (Aziz et al., 2013).
This limitation does not extend to NMT models, but NMT most likely simply
inherited from SMT the practice of using beam-search-based approximations, at
least until we proposed the use of Monte Carlo estimation in Eikema and Aziz
(2020).

4.6.3 Tackling the Inadequacy of the Mode

In the previous chapter, we linked the inadequacy of the mode in NMT to the
entropy of the conditional distribution, or, more precisely, to the fact that NMT
models tend to spread probability mass over large subsets of the sample space
(Ott et al., 2018; Eikema and Aziz, 2020). It is plausible that strategies to con-
centrate probability mass (e.g., reducing entropy or pruning the support of the
model) will do so by making inadequate translations less probable. For example,
Forster et al. (2021) find that the inadequacy of the mode problem does not seem
to a↵ect sequence-to-sequence models of morphological inflection, an essentially
deterministic task, whose combinatorial space is built upon a smaller vocabulary
(i.e., characters instead of sub-word units), and whose observations are typically
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very short (i.e., words rather than sentences). Peters and Martins (2021) train
sparse sequence-to-sequence models (Peters et al., 2019) which assign zero prob-
ability to many outcomes dramatically reducing the support of the conditional
distribution over complete sequences. They show that sparsity leads to inad-
equate candidates such as the empty string being pruned out of the support.
They also find that label smoothing increases the rate at which the empty string
is more probable than the beam-search output.

Meister et al. (2020) interprets the algorithmic approximations of beam search
as an inductive bias towards outputs with uniform information density (Jaeger
and Levy, 2007). They develop variants of beam search where this preference
is a tunable hyperparameter and show that deviating from the mode with this
type of bias can lead to improved translation quality. Another way to deviate
from the mode is to augment the decoding objective with an auxiliary model.
Li and Jurafsky (2016) re-rank a k-best list using a combination of two model
probabilities, namely, pY |X(h|x, ✓fwd) and pX|Y (x|h, ✓bwd). They think of this as
maximising the mutual information (MI) between source and translation. The
motivation is that the target-to-source component will push against inadequate
candidates, as those are unlikely to be mapped back to the source with high
probability. Bhattacharyya et al. (2021) find that 100 samples from an NMT
model contain better candidates (measured in terms of BLEU) than the output
of beam search (an observation we previously also made based on 30 samples
and METEOR, instead). They propose to rerank these samples using an energy-
based model trained to order candidates as sentence-BLEU would. Like these
works, sampling-based MBR decoding, can be seen as a form of explore and rank
approach, however, the ranking function in MBR is derived from the NMT model
itself, whereas both MI- and EBM-based re-ranking involve an auxiliary trained
model. For the EBM, in particular, in the limit of a too large hypothesis space,
the beliefs of the NMT model are completely overwritten by the EBM. MBR,
instead, does not overwrite the model’s beliefs, it re-expresses those beliefs in
terms of utility.

Leblond et al. (2021) recast NMT as a reinforcement learning problem and
learn both a policy (i.e., a mechanism to explore the space of translations one word
at a time from left-to-right) and a value function (i.e., an estimate at the expected
reward of finishing a given prefix translation). For reward they investigate what
they call privileged metrics, which require access to references (e.g., sentence-
level BLEU), and unprivileged metrics, which do not use references but access the
source (e.g., a quality estimation score). Compared to sampling-based MBR, their
work tightly integrates search and value estimation, thus going beyond ranking a
fixed set of candidates. The objective function of MBR can be thought of as an
‘unprivileged metric’ in their terminology, one that is based on the NMT model
itself (and a choice of utility). But, the policy in sampling-based MBR (i.e., the
NMT model) is not trained to be aware of the evaluation metric.
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4.7 Consequent Work

Since the publication of Eikema and Aziz (2020) and Eikema and Aziz (2022) quite
a number of works have explored the use of sampling-based minimum Bayes risk
decoding across text generation tasks, oftentimes showing impressive results.

Müller and Sennrich (2021) study the properties of MBRN-by-N and explore
hypothesis spaces up to a size of N = 100 as well as multiple utility functions.
They find that MBR decoding outputs exhibit a similar but smaller bias towards
short translations and frequent tokens compared to beam search, but do observe
that this is dependent on the choice of utility function. They further find that
MBR decoding mitigates spurious copying and hallucinations under domain shift.
Similar to our results here, they find that MBR decoding scales well with larger
hypothesis spaces and better estimation of expected utility.

Freitag et al. (2022) explore the use of large hypothesis spaces and a range
of utilities, including neural utilities, on the MBRN-by-N approximation. They
find that using BLEURT as utility leads to significantly better translations in
a human evaluation, while producing considerably lower probability translations
than beam search. Interestingly, BLEU favors beam search decoding over MBR
decoding, not agreeing with human judgements.

Freitag et al. (2023) explore di↵erent candidate generation strategies and find
a mode-seeking sampling strategy called epsilon-sampling (Hewitt et al., 2022)
to perform best in a human evaluation. They also confirm once again that MBR
decoding with BLEURT (Sellam et al., 2020) as utility can outperform beam
search in a human evaluation even though BLEU prefers beam search. They also
find that adding a temperature to the sampling procedure can improve perfor-
mance for small candidate sets. Whereas for large candidate sets they find it’s
better to not use a temperature, confirming the robustness of unbiased estimates
of expected utility for ranking a diverse candidate set. Yan et al. (2024) also
explore the use of adding a temperature to the ancestral sampling procedure, but
with di↵erent motivations. Instead, they intend to address the failure of MBR
decoding on models trained with label smoothing. Similarly to what we found
when trying to implement MBR for the first time, they show that even though
label smoothing only has a minor e↵ect on token-level distributions, it has a large
(negative) impact on the sequence-level distribution. They aim to undo this post-
training by adding a temperature to the sampling procedure. They show that
doing this they can achieve constant performance of MBR decoding across models
trained with various degrees of label smoothing, outperforming beam search in
terms of automatic evaluation metrics across all variants.

With the advent of using large language models for virtually all language tasks,
sampling-based MBR has also proven to be a promising decoding algorithm show-
ing strong results. These models are oftentimes trained without label smoothing
and sampling-based methods have been used over beam search for a long time
(though still using mode-biased sampling methods like nucleus sampling and top-k
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sampling). Suzgun et al. (2023) show competitive performance using sampling-
based MBR with code-davinci-002 (Chen et al., 2021) and using BERTScore
(Zhang et al., 2020b) as utility function on summarization, data-to-text gener-
ation, translation, textual style transfer, and image captioning. They also find
state-of-the-art performance on the WMT16 translation task (Bojar et al., 2016a)
and the WebNLG (Castro Ferreira et al., 2020) data-to-text generation dataset.
Garcia et al. (2023) also apply sampling-based MBR for few-shot translation using
LLMs and convincingly show better translation performance over beam search.
They explore the English to German, Chinese and Icelandic language pairs and
find that their few-shot translation models outperform commercial systems and
performs on par with recent WMT submissions. Johnson et al. (2023) employ
sampling-based MBR in an interesting way. Instead of using it as an algorithm
for generation, they employ clever utility design and optimize for expected utility
to find an optimal sequence of uncertainty annotations of an existing generation.
Doing this they are able to annotate generated code from a code generation model
with uncertain subregions of the generation that a user would have to more closely
look at, or similarly, stop a generation when continuations become too uncertain.

Recently, a number of prominent works have appeared that have focused on
making sampling-based MBR decoding more e�cient at test-time. Cheng and
Vlachos (2023) use confidence intervals of expected utility estimates to dynam-
ically prune unpromising hypotheses. Vamvas and Sennrich (2024) aggregate
statistics of groups of sampled pseudo-references in the MBR algorithm and only
compare hypotheses against the aggregate statistics. Jinnai and Ariu (2024) run
multiple coarse-to-fine steps with increasingly accurate estimates of the expected
utility (using the target utility). Finkelstein and Freitag (2024) distil perfor-
mance improvements of MBR decoding by fine-tuning on MBR translations of
monolingual source-side data. Yang et al. (2024) also distil MBR performance
improvements using model fine-tuning, but instead use direct preference opti-
mization (DPO; Rafailov et al., 2023) to distil MBR ranking preferences in the
model. Wu et al. (2024) show success in applying MBR to instruction following
tasks using an expensive LLM-as-a-judge model as utility function (Prometheus;
Kim et al., 2024b), and apply the DPO fine-tuning approach to successfully distil
performance improvements without additional test-time compute burden.

4.8 Conclusion

We have shown MBR to be a robust decision rule for NMT that can find high
quality translations. In particular, we have found that MBR, under reasonable hy-
perparameter choices, generally leads to improved translation quality with more
computation (i.e., searching a larger search space and/or using more samples
for more accurate MC estimation). Big challenges in decoding with MBR are
constructing the hypothesis space and keeping computational cost of estimating
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expected utility tractable. We have proposed e↵ective strategies for both, by
exploring more e�cient ways of forming the hypothesis space and proposing an
approximation to MBR that is linear in the size of this hypothesis space. Our
coarse-to-fine MBR procedure is able to considerably reduce the number of calls
to the utility function without compromising translation quality. We have shown
that sampling-based MBR in general can outperform beam search on all the
language pairs we explored and can continue to improve with better and more
accurate search. We believe sampling-based MBR to be a promising, albeit still
more expensive, alternative to beam search decoding. Unlike beam search, where
it is not obvious how to further improve translation quality, sampling-based MBR
is likely to benefit from improvements to di↵erent aspects of the algorithm. Works
from other labs have demonstrated the e↵ectiveness of sampling-based minimum
Bayes risk decoding across a wide variety of text generation tasks. Still, compu-
tational e�ciency is the main bottleneck in using MBR decoding in production
environments. Therefore, we believe fruitful avenues of research to be among i)
clever algorithms for constructing hypothesis spaces, ii) more robust estimates of
expected utility using fewer samples, iii) clever utility design and iv) improving
the modelling capacity of NMT systems. We hope that these results motivate
researchers and practitioners to make more conscious considerations of the choice
of decision rule and that it paves the way for use of tractable sampling-based
MBR decoding in NMT.8

8An implementation of sampling-based MBR decoding and the approximation strategies
proposed in this chapter is available at github.com/roxot/mbr-nmt.

github.com/roxot/mbr-nmt




Chapter 5

Quasi-Rejection Sampling

In this chapter, we move away from machine translation and autoregressive text
generation altogether. Instead of considering the easy-to-sample-from autoregres-
sive factorisation of typical neural text generation models, we turn our attention
to energy-based models (EBMs). Energy-based models are a class of models that
assign arbitrary non-negative scores to outcomes within its support, in this chap-
ter being sequences of natural language tokens. As these scores do not necessarily
need to be normalised, this allows for a very flexible definition of models. Gen-
eration from such models, however, is not always trivial as we cannot exploit
an autoregressive factorisation to generate one token at a time. In this chapter
we have a look at energy-based models for controlled text generation, allowing
for placing distribution-level constraints on the generated text, such as gener-
ating biographies that are not biased towards generating male biographies. To
sample from these models, we propose an algorithm that we coin quasi-rejection
sampling (QRS), which can produce approximate samples from arbitrary energy-
based models while being able to monitor how good the approximation to the
target distribution (the distribution implied by the EBM) is, and also allowing
for trading o↵ the approximation quality with sampling e�ciency. While the
application of this chapter is controlled text generation, the main contribution
is rather the sampling technique (QRS) itself. Hence, this will be the focus of
this chapter. A technical background on sampling techniques is presented in Sec-
tion 2.2. This work is based on Eikema et al. (2022), published in the Transactions
on Machine Learning Research (TMLR) journal.

Chapter Highlights

Problem Statement

• Energy-based models (EBMs) permit flexible specifications of probability
distributions. For example, we can use EBMs to define constraints on the
outcome distributions of neural text generation models. Generation from
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such models, however, is non-trivial. Typical generation techniques such as
beam search and ancestral sampling (an essential component of sampling-
based MBR decoding) are not easily applicable as they rely on the autore-
gressive factorisation of neural text generation models.

• Approximate samples from such models can be obtained using Markov chain
Monte Carlo (MCMC) techniques. However, those are not trivial to apply
either, as most instantiations rely on local (i.e. conditional) proposal dis-
tributions that approximate the target distribution locally, for which the
options in discrete outcome spaces are limited.1

• MCMC techniques also typically do not provide quality estimates of the
approximate samples, i.e. how close the realised sampling distribution is
from the target distribution implied by the EBM.

Contributions

• We propose quasi-rejection sampling (QRS), a relaxation of rejection sam-
pling that produces approximate samples from an energy-based model pro-
vided that a reasonable easy-to-sample-from proposal distribution is avail-
able, e.g. an autoregressive model approximating the energy-based model.

• We focus on the ease with which we can obtain global (i.e. unconditional)
proposal distributions for text generation. We show how one can construct
them by making use of recent advances in large language models: prompt-
ing, training objectives for approximating EBMs, and the widespread avail-
ability of pre-trained neural text generation models.

• We show that unlike for many other approximate sampling algorithms, we
can estimate the quality of the approximate samples (i.e. how close the sam-
pling distribution is to the energy-based model) in the form of f -divergences.

• We show that QRS has desirable properties for an approximate sampler:
providing guarantees on the sampling quality in the form of upper-bounds
on the total variation distance and showing that f -divergence is a monotonic
function of QRS’s tuning parameter.

• We demonstrate the e↵ectiveness of QRS in controlled text generation, sam-
pling from energy-based models dictating distribution-level constraints. We
show that we can trade-o↵ sampling e�ciency and quality arbitrarily by
changing QRS’s core parameter.

1It is di�cult to define local neighbourhoods in discrete spaces such as those over natural
language sentences, but examples do exist such as using delete, insert and replace operations
of single tokens to define a local neighbourhood around an existing natural language sequence.
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• We compare QRS to Metropolis-Hastings methods (a popular instantiation
of MCMC) and show that QRS outperforms local variants and performs
on par with global variants on proxy metrics. We also exploit the data-
processing inequality to provide a lower bound on the divergence of the
Metropolis-Hastings samplers and compare it to the precise divergence es-
timate for QRS.

5.1 Introduction

Generating samples from a probabilistic model is a fundamental part of many
machine learning tasks, as we have already seen in sampling-based MBR decod-
ing. Sometimes, the relation between the probabilistic model and the associated
generative process is direct: for instance, as we’ve seen in language modelling,
an autoregressive model can both generate a sequence by ancestral sampling and
compute its probability. However, imposing preferences on such models is not
trivial. We may, for example, wish to impose a preference upon our models to
produce generations with particular properties, such as generated biographies
of a biography-generation language model to be about scientists. A family of
models with much greater representational freedom is the family of energy-based
models (EBMs; LeCun et al., 2006). Such models map elements x of the sam-
ple space to real-valued “energies” E(x), or, equivalently, to non-negative scores
P̃ (x) = exp(�E(x)) which can be seen as an unnormalised probability distribu-
tion, where P (x) / P̃ (x). However, EBMs can be di�cult to sample from as we
do not have a clear generative process to follow.

In this chapter, we address the problem of sampling from such EBMs, with
a particular focus on discrete spaces of sequences over a finite vocabulary, and
study applications to text generation. A popular approach to sampling from com-
plex, unnormalised, probability distributions, such as EBMs, consists in applying
Markov chain Monte Carlo (MCMC) techniques, which are guaranteed to con-
verge to the target distribution in the limit (of infinitely long chains), under mild
regularity conditions (Robert and Casella, 2004), also see Section 2.2.5 of this dis-
sertation. In practice, however, the length of the Markov chain is finite, in which
case often only approximate samples are obtained. In order to know whether the
samples are representative of the target distribution, ideally, one should quantify
the divergence of the MCMC sampling distribution from the target distribution
P (x) in terms of well-established metrics (e.g. an f -divergence such as the total
variation distance or KL divergence). Unfortunately, evaluating convergence is
often challenging (Cowles and Carlin, 1996; Roy, 2020), especially if one makes
no assumptions about the sample space. For instance, popular convergence as-
sessments such as e↵ective sample size (ESS; Gamerman and Lopes, 2006) or
R̂ (Gelman and Rubin, 1992; Vehtari et al., 2021) require Euclidean structure
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Figure 5.1: Quasi-rejection sampling (QRS) approximates a target distribution p as
defined by unnormalised p̃ (continuous in this sketch) with a truncated distribution p�
(the blue shaded area). This QRS distribution is defined in terms of a global proposal
distribution q and a scalar parameter � that controls the quality of the approximation.

for computing variances and correlations of real-valued variables (or vectors in
multivariate generalizations; Vats et al., 2019; Brooks and Gelman, 1998), which
are not intrinsically defined on discrete spaces only endowed with a probabilistic
structure. For this reason, prior work on sampling from discrete sequence spaces
often relies on proxy metrics (such as perplexity, diversity metrics and constraint
satisfaction). Such proxies can be insu�cient to assess how representative the
samples are of the target distribution, and therefore can be misleading, as we will
see in Section 5.3.4.

In this chapter, we introduce a simple approximate sampling technique, quasi-
rejection sampling (QRS), which provides explicit estimates of the divergence
from the target distribution for the general class of f -divergences, which includes
the total variation distance (TVD), forward and reverse KL, Jensen-Shannon, and
�2-divergence (also see Section 2.2.4). This is possible because QRS associates
explicit probability scores with samples: a property generally lacking in MCMC
samplers. One may use such divergence estimates to tune the sampler, controlling
the trade-o↵ between e�ciency (acceptance rate) and quality (divergence).

QRS is a relaxation of rejection sampling that obtains approximate samples
from a target distribution (see Figure 5.1). This requires access to a global (or
unconditional) proposal distribution that, ideally, produces samples close to the
target distribution. Traditionally, MCMC methods work with local proposals
(conditional distributions defined around a given point, for instance a distribution
defined by performing a set of local edits), since high-quality global proposals have
been hard to construct. Fortunately, with the advent of powerful neural network
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training techniques, this situation is rapidly changing and obtaining powerful
global proposals is now possible as we show in our experiments for NLP tasks.

We demonstrate the e↵ectiveness of QRS on controlled text generation. Large
pre-trained language models are becoming increasingly useful general purpose
tools and generation is typically accomplished by sampling, albeit biased to-
wards the mode (Nadeem et al., 2021). Controlling the distribution of these
language models to accommodate human preferences can be di�cult, but EBMs
have shown to be a promising way to achieve this (Khalifa et al., 2021). However,
sampling from EBMs defined over a discrete sequence space is non-trivial, mak-
ing it a challenging task to benchmark QRS. In this chapter, we experiment with
EBMs resulting from restricting a GPT-2 language model (Radford et al., 2019)
in some way: either the model is restricted to only generate sequences containing
a specific term; or generations from model are restricted to meet particular con-
ditions at a specific rate, for example debiasing a distribution over biographies
to consist of 50% female biographies. We explore a variety of ways to construct
proposal distributions for QRS. In particular, we explore prompting a pre-trained
language model, as well as training an autoregressive model to approximate the
EBM (Khalifa et al., 2021).2 We also experiment with a paraphrase generation
task in which we use o↵-the-shelf machine translation models as proposal distri-
butions. Results show that we are able to approximate the target distributions to
any desired level in exchange for sampling e�ciency. Finally, we include experi-
mental comparisons with both local (random-walk) and global MCMC methods,
showing that QRS performs comparably or better across several dimensions, while
providing stronger guarantees.

5.2 Formal Approach

We consider a discrete (i.e. countable) sample space X . We are given a nonneg-
ative real function — such as an EBM — P̃ (x) over X , such that the partition
function Z

.
=
P

x2X P̃ (x) is strictly positive and finite. We can then associate

with P a normalised probability distribution P (x)
.
= P̃ (x)/Z. Our goal is to de-

fine a “sampler” !, that is a generator of elements from X , such that ! produces
a sample x with a probability !(x) as close as possible to our target P (x), in
terms of distance measures such as KL divergence KL(P,!) and total variation
distance TVD(P,!), and more generally the large family of f -divergences. To
help us achieve this goal, we assume that we have at our disposal a global pro-
posal distribution Q(x) such that i) we can e↵ectively compute Q(x) (i.e. score
x) for any x 2 X , ii) we can e�ciently generate samples from Q, and iii) the
support of Q includes the support of P , i.e. P (x) > 0 ) Q(x) > 0.

2Khalifa et al. (2021) are able to train an autoregressive model to approximate EBMs of the
sort that we see in this chapter reasonably well, but not perfectly. Hence, sampling algorithms
can help to improve the approximation even further.
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5.2.1 Quasi-Rejection Sampling (QRS)

Algorithm 1 QRS

1: Require: (possibly unnormalised) target P̃ (x), proposal Q, parameter �,
number of required samples N {0 < � <1}

2: n 0
3: while n < N do
4: x ⇠ Q

5: rx  min
⇣
1, P̃ (x)/(�Q(x))

⌘
{Acceptance prob.}

6: u ⇠ U[0,1] {U[0,1] : unif. dist. over [0, 1]}
7: if u  rx then
8: output x
9: n n+ 1
10: end if
11: end while

We propose quasi-rejection sampling (QRS), as shown in Algorithm 1. In
addition to P̃ (x) and Q, QRS requires the input of a finite positive number
�. For a given �, the QRS sampler, which we will denote by P�, produces an
independent and identically distributed (i.i.d.) values x (line 8), with a probability
mass function that we denote by P�(x). If � is a global upper bound on the ratio
P̃ (x)/Q(x), then the behaviour of the QRS algorithm is identical of that of the
classical rejection sampling (RS) algorithm (von Neumann, 1963). However, QRS
does not require � to be an upper bound, and the acceptance probability rx in
line 5 is an extension of that used in RS to situations where P̃ (x) > �q(x). In
such situations, the sample x is always accepted at line 7.

QRS has crucial practical advantages over rejection sampling. It is well known
that for rejection sampling, with � a finite global upper bound, we have P� =
P : in other words, rejection sampling is a perfect sampler for P (Robert and
Casella, 2004). This is of course a major advantage, however it comes with
serious theoretical and practical limitations: there may not exist such a finite
upper bound, and even if one exists, its value may not be known. Furthermore,
even if such a bound could be found, the resulting sampler could be extremely
ine�cient: the “acceptance rate” of rejection sampling is proportional to 1/�,
which can be very small. By relaxing the requirement that � is a global upper
bound, QRS sacrifices the identity between P� and P . However, QRS becomes
much more broadly applicable, and crucially, allows an explicit trade-o↵ between
the sampling e�ciency of P� and its approximation quality.
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5.2.2 Explicit f-divergence Diagnostics for QRS

Let P̃�(x)
.
= min(P̃ (x), �Q(x)), and let Z�

.
=
P

x2X P̃�(x) be the associated
partition function. Also, define the acceptance rate AR� of the QRS sampler P�

as the proportion of samples from Q, in line 4 of the algorithm, that are accepted
on line 7, a proportion that provides a measure of the e�ciency of the algorithm.
We then have the following properties, proven in Eikema et al. (2022):

P�(x) =
min

⇣
P̃ (x), �Q(x)

⌘

Z�
=

P̃�(x)

Z�,
(5.1)

AR� = Ex⇠Q

"
min

 
1,

P̃ (x)

�Q(x)

!#
=

Z�

�.
(5.2)

Eq. 5.1 provides an explicit form for P� as the normalised distribution associated
with P�, while Eq. 5.2 shows that the acceptance rate is a nonincreasing function
of parameter �. Thus, similarly to rejection sampling, QRS has an acceptance
rate proportional to 1

� . The explicit form of P�(x) given in Eq. 5.1 enables us to
directly compute empirical estimates of the f -divergence of the target from P�:

Df (P, P�) = Ex⇠P�


f

✓
P (x)

P�(x)

◆�
(5.3)

Crucially, to estimate this quantity given a collection of samples from P� we need
to compute (or at least approximate) the two values P̃ (x) and P�(x) for any given
x. And this is something that we can do with QRS thanks to the explicit form
of P� of Eq. 5.1 and given that we can estimate the partition functions Z and
Z� — see Eqs. 5.4 and 5.6 below.

The contrast here with a typical Markov chain based sampler ! is striking:
it is usually unfeasible to estimate the probability !(x) for a given x (even one
sampled from !): to do so, one might estimate the chain’s transition matrix or
kernel, and repeatedly multiply by it, but this matrix is usually huge, or even
infinite. In other words, unlike QRS, these samplers are not “scorers”, making it
impractical to estimate f -divergences Df (p,!) as in Eq. 5.3.

5.2.3 Divergence Estimates via Importance Sampling

In order to compute the quantities mentioned above, we need to estimate the
partition functions of P and P�. Also, computing the f -divergence from Eq. 5.3
would require a separate estimate for each value of �. Using importance sam-
pling (IS, see Section 2.2.3 for a short primer), we can use a single collection
{x1, . . . , xN} of i.i.d. draws from Q (rather than from P�) and make importance
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sampling estimates:

Z ⇡ 1

N

NX

i=1

P̃ (xi)

Q(xi)
, Z� ⇡

1

N

NX

i=1

P�(xi)

Q(xi)
(5.4)

AR� ⇡
1

N

NX

i=1

min

 
1,

P̃ (xi)

�Q(xi)

!
(5.5)

Df (P, P�) ⇡
1

N

NX

i=1

P�(xi)

Z�Q(xi)
f

 
Z� P̃ (xi)

Z P�(xi)

!
(5.6)

In Eq. 5.6, we exploit the fact that P�(x) = min(P̃ (x), �Q(x)) is known explicitly.
In this work, from the f -divergences we will only use the KL divergence and

total variation distance (TVD). Again, using importance sampling, we can esti-
mate these as:

TVD(P, P�) ⇡
1

2N

NX

i=1

�����
P�(xi)

Z� Q(xi)
� P̃ (xi)

ZQ(xi)

����� (5.7)

KL(P, P�) ⇡ log
Z�

Z
+

1

N

NX

i=1

P̃ (xi)

ZQ(xi)
log

P̃ (xi)

P�(xi)
. (5.8)

5.2.4 Partition Function Estimates

In Eq 5.4 we estimate the partition functions Z and Z�. As these estimates are
required for further estimates of acceptance rate and f -divergences, it is crucial
that we estimate these with reasonable accuracy. As the sample mean is an unbi-
ased estimator of the mean these estimates are unbiased, meaning these estimates
converge (almost surely) to Z and Z� for N ! 1, a consequence of the strong

law of large numbers (Tao, 2008), whether or not the random variables P̃ (x)
Q(x) and

P�(x)
Q(x) have finite variances. However, in order to provide guarantees about the
accuracy of these estimates, e.g. in terms of confidence bounds, one would need
to estimate these variances. A practical approach consists in providing empirical
variance estimates based on the same N samples, and this is what we will do in
several experiments, comforting us about the practical accuracy of our estimates
of Z and Z�. However, in theory, the empirical variance estimates could them-
selves be wrong, resulting in an estimation circularity. The only way to avoid
this circularity, that we are aware of, consists in cases where the RVs P (x)

q(x) and
P�(x)
q(x) can be bounded a priori. In these cases the variances of these RVs can also

be formally bounded using Popoviciu’s inequality (Popoviciu, 1935), which states
that for m and M a lower- and upper-bound on the values of a random variable
X, its variance is bounded as:
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Var [X]  (M �m)2

4
(5.9)

Interestingly, the random variable P�(x)
Q(x) = min(P̃ (x)/Q(x), �)  � appear-

ing in Z� is bounded by construction3, so that one can always provide formal
guarantees about the Z� estimate:

Var


P�(x)

Q(x)

�
 �2

4
(5.10)

and thus, the IS estimator of Z� has variance

Var

"
1

N

NX

i=0

P�(xi)

Q(xi)

#
=

1

N2

NX

i=0

Var


P�(xi)

Q(xi)

�
(5.11)

=
1

N2
·N · Var


P�(x)

Q(x)

�
(5.12)

 �2

4N
(5.13)

By contrast, in the case of Z, while one may find proposals Q for which a

bound on P̃ (x)
Q(x) is known4, such proposals can be unacceptably ine�cient, while

other proposals closer to the target are much more e�cient in practice, but eschew
strict formal guarantees. We provide variance estimates of our partition function
estimates throughout the experimental section, and will discuss some provable
bounds on Z for some of the EBMs that we consider in Section 5.3.2.

5.2.5 QRS Properties

We provide some interesting properties of QRS samplers. As mentioned before,
ideally an approximate sampler samples from a (sampling) distribution as close to
the target distribution as possible. In QRS, we have the hyperparameter � that
allows for trading o↵ e�ciency (lower �, see Eq. 5.15) and better approximation
quality (higher �). The latter is shown with the following theorem, proven in
Eikema et al. (2022):

Theorem 5.1. Let 0 < � < �0 <1. Then Df (P, P�0)  Df (P, P�)

3Also note that any partition function is lower-bounded by m = 0.
4Note that if we would know a bound on this ratio, we could construct a (standard) rejection

sampling sampler.
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Theorem 5.1 guarantees that increasing the value of parameter � never increases
the f -divergence of the target distribution from the QRS distribution. We will
refer to this as the monotonicity property of QRS for all f -divergences.

We also provide an upper-bound on the total variation distance between the
sampling and target distributions. We refer the reader again to Figure 5.1 for
an intuition. For outcomes where the ratio P̃ (x)/Q(x) > � the sample is always
accepted, but these outcomes possibly receive too little probability mass compared
to the target distribution. Let these regions where the classical rejection sampling
bound is violated be:

Ā�
.
= {x 2 X :

P̃ (x)

Q(x)
> �} (5.14)

It is intuitive that the “fewer” violators there are, the closer P� is to the target P
(i.e. the less white area in Figure 5.1). The following theorem, proven in Eikema
et al. (2022), makes this statement precise, in terms of the actual probability
mass under the target distribution P of the violators:

Theorem 5.2. TVD(P, P�)  P (Ā�).

In other words, the TVD (a value between 0 and 1), is upper-bounded by the
probability of the set of outcomes, under the target distribution P , that violate the
bound. Reducing the size of this set of violators typically lowers the upper-bound
on the TVD between the sampling and target distribution. Also, as a corollary
of this, observing that lim�!1 P (Ā�) ! 0, one sees that P� converges to P for
� ! 1. In experiments we will estimate this quantity using an importance
sampling estimate:

P (A�) =
X

x2X

P (x) [x 2 A�] ⇡
1

N

NX

i=1

P̃ (xi)

ZQ(xi)
[xi 2 A�], (5.15)

where xi ⇠ Q, i.e. we use samples xi from the proposal distribution Q.

5.2.6 Estimating the Mapping Between � and AR

Eq. 5.15 provides a way to estimate the acceptance rate (AR) given a value of �
and a set of samples from a proposal Q. How can we go in the opposite direction
and estimate � for a target AR value? One way to do so, is to estimate the
full mapping from AR to �, and interpolate it at the target AR. Algorithm 2
estimates this mapping e�ciently, based on the observation that Eq. 5.15 can be
rewritten as a sum of two terms:

AR� ⇡ (ai + bi) /N at � = �i (5.16)
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where

�i
.
= P̃ (xi)/Q(xi), ai

.
=

NX

j=1

[�j  �i] �j/�i, bi
.
=

NX

j=1

[�j > �i],

(5.17)

noting that both a and b can be computed e�ciently given a sorted list of �i
values. (In the case that �i = �j for some j 6= i, the output will contain repeated
values, which are easily filtered out, if necessary). We present the algorithm we
will employ in experiments to get the desired ranges of � values in Algorithm 2
below.

Algorithm 2 Estimate AR! � mapping

1: Require: P̃ , Q, N
2: S  [ ]
3: for i = 1, 2, . . . , N do
4: xi ⇠ Q
5: �i  P̃ (xi)/Q(xi)
6: S[i] �i
7: end for
8: Ss  SortAscending(S) {Array of sorted �i}
9: aaux[0] 0
10: for i = 1, 2, . . . , N do
11: �i  Ss[i]
12: aaux[i] aaux[i� 1] + �i {a[i] =

P
j:�j�i

�j}
13: b[i] N � i {b[i] =

P
j [�j > �i]}

14: end for
15: for i = 1, 2, . . . , N do
16: �i  Ss[i]
17: a[i] aaux[i]/�i {a[i] =

P
j:�j�i

�j/�i}
18: AR[i] (a[i] + b[i])/N
19: end for
20: return AR and Ss {Ss[i] is the � at which AR� = AR[i]}

5.3 Experiments

We will now verify the e↵ectiveness of our sampler experimentally. We start with
a toy setting in Section 5.3.1, where we wish to sample from a known Poisson
target distribution using samples from a di↵erent Poisson distribution as proposal
generations. In Section 5.3.2 we turn to neural text generation again, sampling
from EBMs that encode constraints on the sequence distribution as a whole,
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exploring various ways of constructing proposal distributions. We continue in
Section 5.3.3 with a small paraphrase generation experiment that combines two
machine translation models in a round-trip fashion as proposal distribution. In
Section 5.3.4 we compare the QRS sampler with MCMC techniques using various
proxy metrics as well as using a lower bound on divergence measures. Finally, in
Section 5.3.5 we return to the Poisson toy example, which allows us to estimate
exact f -divergences for MCMC samplers, for comparison with QRS.

5.3.1 Sampling From a Poisson Distribution

To demonstrate the usage of QRS we start with a toy setting using two Poisson
distributions. The goal is to sample from a target Poisson distribution P with
rate �p = 11 using samples from a proposal Poisson distribution Q with rate �q =
10. Rejection sampling is not possible in this setting as the ratio P (x)/Q(x) =
(e�1111x/x!)/(e�1010x/x!) = e�1 1.1x can take arbitrarily large values when x
increases, i.e. the ratio is unbounded. However, it is possible to use QRS here.

We perform ten independent experiments in which we sample 104 elements
from Q that we use to compute the quality of the approximation by estimating:
KL(P, P�), TVD(P, P�) and its upper bound P (Ā�). We use � values in the in-
terval [0.5, 3.5]5. Furthermore, we compute the sampler’s e�ciency by estimating
the acceptance rate (AR) for each value of � (Eq. 5.2). As described previously,
we compute estimates for all these metrics using importance sampling. Results
for TVD and its upper-bound are displayed in Figure 5.2. As shown, using higher
values of � improves the TVD, even though this comes at the cost of lower ac-
ceptance rate. In particular, with � = 3.5, the TVD is tiny (⇡ 10�4), yet the
acceptance rate is moderate (0.3, i.e. 30% of proposal samples are accepted).
Notably, we can ease the visualisation of the trade-o↵ between quality and ef-
ficiency by reparametrising the divergence metrics in terms of the acceptance
rate (last panel of Figure 5.3a). We use the procedure to map acceptance rates
to a corresponding � formerly discussed in Section 5.2.6. We use this concise
reparameterised representation to plot subsequent results.

In Figure 5.3 we show the same plots for KL-divergence. Similarly to the
TVD results, we see that the divergence quickly converges to zero as � increases.

Empirical Estimates of Divergence Diagnostics

In the previous and following experiments, we use a su�ciently large sample
size to obtain accurate estimates of the divergence diagnostics. However, it is
reasonable to wonder about the bias and variance of these estimators for smaller
sample sizes. While it is not possible to provide a definite answer for all EBMs, we
can investigate this question by exploiting the fact that we can computeDf (P, P�)

5We use the procedure described in Section 5.2.6 to obtain these.
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(a)

(b)

Figure 5.2: (a) Estimation of sampling quality as TVD(P, P�), e�ciency (accep-
tance rate), and the trade-o↵ between them for a QRS sampler when using a
proposal Q = Poisson(� = 10) to approximate P = Poisson(� = 11) computed in
10 independent experiments over 104 samples. (b) Di↵erences between estimated
TVD(P, P�) and their true values for � = 2, computed 1000 times for each di↵er-
ent number of samples used in the importance sampling estimate. The blue line
is the mean and shaded areas represent one standard deviation. We note that the
notation in this figure di↵ers slightly from that used in the main text of the thesis,
namely using lower-cased letters (p, p� and q), for the discrete distributions P ,
P� and Q.

with great precision when both P and Q are (known) Poisson distributions. We
compare this approximation to the true value with the estimators proposed in
Section 5.2 using sample sizes n 2 {102, . . . , 106} and repeating the process 1000
times. Results for TVD and KL are shown in Figure 5.2b and 5.3b respectively.
As can be seen, there is some small variance when only 100 samples are used for
the estimation, and it quickly improves as more samples are used. Furthermore,
the estimation bias is tiny even when using only 100 samples.
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(a)

(b)

Figure 5.3: (a) Estimation of sampling quality as KL(P, P�), e�ciency (accep-
tance rate), and the trade-o↵ between them for a QRS sampler when using a
proposal Q = Poisson(� = 10) to approximate P = Poisson(� = 11), computed
in 10 independent experiments over 104 samples. (b) Di↵erences between esti-
mated KL(P, P�) and their true values for � = 2, computed 1000 times for each
di↵erent number of samples used in the importance sampling estimate. Shaded
areas represent one standard deviation. We note that the notation in this fig-
ure di↵ers slightly from that used in the main text of the thesis, namely using
lower-cased letters (p, p� and q), for the discrete distributions P , P� and Q.

5.3.2 Generation with Distributional Control

The following experiments focus on the task of generation with distributional
control, introduced by Khalifa et al. (2021), a task that requires sampling from
an EBM over sequences of discrete tokens, making it an ideal test bed for QRS.
Given a language model A(x), the goal of this task is to sample from a model
P (x) that, on the one hand, constrains the moments of a vector of n pre-defined
features �(x) to match some desired value µ̄ (i.e. Ex⇠P�(x) = µ̄), while on the
other hand minimising KL(P,A), a generalised version (Csiszar, 1975; Kullback
and Khairat, 1966) of the maximum entropy approach (Jaynes, 1957; Rosenfeld,
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prompt
name

prompt

simple Wikileaks.

multiple Wikileaks, Wikileaks, Wikileaks.

knowledge Here is what I know about Wikileaks:

jeopardy This medium was founded by Julian As-

sange in 2006.

news Here are the latest developments on Wik-

ileaks:

Figure 5.4: Comparing GPT-2, GPT-2 conditioned on various prompts, and a
fine-tuned model (DPG) as proposals for generating sequences containing “Wik-
ileaks”. Disconnected points in the upper-left corner indicate TVD(P,Q) for
each proposal, while the curves show TVD(P, P�) as a function of the acceptance
rate. Standard deviation bootstrap estimates are shown as shaded regions for
every proposal. Ideal proposals concentrate in the lower left corner of this plot,
achieving low TVD at high acceptance rates.

1996). For example, one might want to debias a language model trained on a
corpus of biographies to produce biographies only of scientists, 50% of which
should be female. Then �1(x) and �2(x) would be binary classifiers assessing
whether a sentence speaks about a scientist or a female individual respectively,
and the desired moments would be set to µ̄ = [1, 0.5].

The authors show that P can be expressed as an unnormalised EBM P̃ =
A(x)b(x), and describe two choices of b(x). On the one hand, they consider
pointwise constraints, where µ̄ 2 {0, 1}n. For instance, if there is a single bi-
nary feature for which we would like that 8x : �(x) = 1, then b takes the form
b(x) = �(x). Otherwise, in the case of distributional constraints in which µ̄ 2 Rn,
they show that there is a vector � 2 Rn such that b(x) = exp(� · �(x)) and
P (x) / A(x)b(x) fulfills the requirements of moment matching and minimal KL
divergence from the original model. The vector � is found using self-normalised
importance sampling (Owen, 2013; Parshakova et al., 2019b) and stochastic op-
timisation.

Proposals for a pointwise constraint

We first experiment with constraining GPT-2 small (Radford et al., 2019) using
one of the pointwise constraints (µ̄ = 1.0) proposed in Khalifa et al. (2021),
namely, b(x) = [x contains “Wikileaks”]. In order to apply QRS we need to
find a suitable proposal distribution. A possible candidate is GPT-2 small itself.
An advantage of this proposal is that we can use pure rejection sampling with an
upper-bound � = 1 to obtain exact samples from the EBM. This is because we
can upper bound the ratio P̃ (x)/Q(x) = A(x)b(x)/A(x) = b(x)  1. In fact, for
b(x) 2 {0, 1} this process reduces to “naively” filtering out all samples for which
b(x) = 0. However, a serious disadvantage is that the acceptance rate will be
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given by the natural frequency of the constraint, i.e. the frequency by which the
constraint will be observed by simply sampling from the model. Using QRS, we
can employ proposal distributions leading to better e�ciency at a small cost in
quality of approximation to P . We explore two such options:

1. First, we make use of the model proposed by Khalifa et al. (2021), which
consists of a fine-tuned autoregressive model obtained by applying the dis-
tributional policy gradient (DPG) algorithm (Parshakova et al., 2019a) to
approximate the target EBM in a generic way. While this model is con-
siderably better at satisfying the desired constraints, it does not match the
desired distribution perfectly.

2. Second, in the spirit of “in-context learning” (Brown et al., 2020), we pro-
pose to condition A(x) on a prompt with the aim of increasing the constraint
satisfaction rate in the resulting conditional distributions. In contrast to the
previous approach, this does not require the training of a new model, even
though it does require the manual selection of promising prompts. We ex-
periment with five such prompts, which we present in Figure 5.4.

Figure 5.4 shows the TVD(P, ·) as a function of acceptance rate for di↵erent
samplers. In this and the following experiments, we chose a range of � values
that yields acceptance rates in the range 100–10�5 (also see Table 5.1), using
Algorithm 2 in Section 5.2.6 for this purpose. We first show the TVD(P,Q) for
each proposal Q, at an acceptance rate of 1, before applying QRS (in the up-
per left corner). Then, we plot TVD(P, P�) as a function of acceptance rate for
each proposal distribution. We compute IS estimates of the TVD on 1M samples
from each proposal distribution. Variance is estimated using the bootstrap esti-
mator (Wasserman, 2010). Note that all samples obtained from QRS satisfy the
constraints perfectly, as sequences that do not satisfy the constraint are always
rejected, and for this reason the curves start with di↵erent acceptance rates. As
expected, using GPT-2 small results in zero TVD, but comes at the cost of low
e�ciency, with an acceptance rate around 10�4. Using prompting, we improve
the constraint satisfaction of the resulting proposal distributions and trade-o↵
approximation quality for greater e�ciency using QRS: For instance, if a TVD
of 0.3 can be tolerated, then some of the prompt proposals provide a 10-fold
higher acceptance rate with respect to the base GPT-2 model with no further
training. Some prompts work notably better than others and we do not exclude
the possibility of there existing prompts that perform even better than the ones
we tested; we leave a more extensive exploration of prompting to create proposal
distributions for future work. The autoregressive policy obtained from the DPG
algorithm is the best proposal distribution we tested. Notably, it allows one to
obtain low TVDs at higher acceptance rates than is possible by naively filtering
samples from the base language model. For example, we can obtain a TVD of
0.1 at 100⇥ the acceptance rate.
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Chandra Pradha Towni (born February 11, 1965) is a social scientist, activist, poet, and author living in

Portugal. She is. . .

Enrella Carrière is a Canadian writer, translator, and philosopher specializing in the history of show business.

She has covered topics such as the direction and psychology of television and the evolution of human. . .

Albert Fahn (born 1970) is an American scientist who focuses on algorithms for generating biomechanical

data. Methods to generate and construct biomechanical data. . .

Wyndham Radnor (born 1946) is a British historian and criminologist specialising in the subject of labour

law. He has written extensively on. . .

Figure 5.5: Estimation of the divergence from the EBM (TVD), and moments
of features female and science in sampling debiased GPT-2 biographies talking
about scientists. Variance is negligible as we show in Table 5.2 in Section 5.3.2.
We also show samples from running the QRS sampler at an acceptance rate of
10�3. Samples are cut o↵ at 40 (subword) tokens and are manually chosen to
show two male and two female biographies, for constraint satisfaction (moment
matching) results refer to the graph. We color words that fire our female or
science features. We note that the notation in this figure di↵ers slightly from
that used in the main text of the thesis, namely using lower-cased letters (p, p�
and q), for the discrete distributions P , P� and Q.

Distributional constraints

We now turn to the task, also introduced by Khalifa et al. (2021), of generating
biographies of scientists while debiasing the gender distribution to contain female
scientists 50% of the time. For this we make use of GPT-2 Biographies (A(x)), a
language model fine-tuned on Wikipedia biographies6 and follow the same setup
as the authors to define the binary classifiers identifying sequences talking about
scientists or females7 and infer an EBM that matches the distributional con-
straints with minimal deviation from the original model. The frequency with
which the model A(·) generates scientist biographies is 1.8%, female biographies
7.5%, and the frequency with which it generates female scientist biographies is
only 0.14%. As proposal distribution, we use the DPG model that Khalifa et al.
(2021) trained to approximate the EBM, which reaches a constraint satisfaction
of 69.0% scientist, 27.3% female and 19.6% female scientist biographies.

As before, we obtain 1M samples from the proposal distribution to compute

6https://huggingface.co/mkhalifa/gpt2-biographies
7Gender is estimated by the ratio of female to male pronoun counts, scientists are identified

by the mention of at least one of multiple words associated with the profession.

https://huggingface.co/mkhalifa/gpt2-biographies
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importance sampling estimates of TVD(P, P�), acceptance rate (AR�), and the
moments of the features that we wish to control. We show all metric curves as
a function of acceptance rate of the QRS algorithm as well as some generation
examples in Figure 5.5.

We find that both TVD(P, P�) and the upper-bound on TVD(P, P�) steadily
converge to zero as the acceptance rate decreases, meaning that we can perfectly
match the target EBM in exchange for sampling e�ciency. As a result, at an
acceptance rate of AR� = 10�3 we nearly perfectly debias the original language
model while exclusively generating biographies about scientists (49.5% female and
99.8% scientist biographies). We show some example generations at AR� = 10�3

chosen manually to illustrate two male and two female biographies. Notably,
we also achieve a good level of constraint satisfaction (48.4% female and 99.9%
scientist biographies) and a TVD of 0.1 at AR� = 10�2. This is a considerable
improvement in quality with respect to the proposal distribution (with a TVD of
0.7), and in acceptance rate relative to directly rejecting from GPT-2 Biographies
(which would result in AR  2⇥ 0.14% = 2.8⇥ 10�3).

Additional Constraints

In this section, we repeat the previous experiments for some additional con-
straints, both pointwise and distributional, as well as show KL-divergence results
for the previous constraints. In particular, we constrain the GPT-2 biographies
model to contain (a) 50% female biographies about scientists, (b) 50% female
biographies about sports, or (c) 50% female biographies without additional con-
straint. Also, we constrain GPT-2 small to exclusively generate sequences con-
taining (d) the term “amazing”, or (e) the term “Wikileaks”. For each of these
tasks, we obtained a fine-tuned model using DPG, which serves both as a baseline
and as a proposal Q that we can sample from. In the case of pointwise constraints,
we also consider a naive filter sampler Qproj in which the proposal distribution is
directly projected onto the constraint manifold by filtering out all samples that
do not match the constraint. This sampler also assigns well-defined scores to the
sequences that it samples, so we can compute estimates of the TVD and KL for
it.

For each task, we again obtain 1M samples from the corresponding proposal,
which we use to evaluate the proposalQ, the projected proposalQproj (only for the
pointwise constraints), and QRS sampling (P�) for a range of � values reported
in Table 5.1. For all of these, we compute estimates of a number of metrics
including those of the previous sections (i.e. TVD(P, P�), KL(P, P�), AR, reverse
KL divergence from the base language model KL(·, A), and the moments of the
features that we wish to control).

Our results are shown in Figure 5.6. As expected, the upper bound on the
TVD between P� and P , and the KL divergence of P from P� both converge
monotonically to zero as the acceptance rate decreases. For the constraints and
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(a) 50% female scientist biographies

(b) 50% female sports biographies

(c) 50% female biographies

(d) 100% sequences containing “amazing”

(e) 100% sequences containing “Wikileaks”

Figure 5.6: We show IS estimates of TVD(P, ·), an upper-bound on TVD(P, P�),
KL(P, ·), KL(·, A) and feature moments as a function of acceptance rate. We
show three distributional constraints on GPT-2 biographies and two pointwise
constraints on GPT-2 small. As proposal distribution, we use a DPG model
trained for each constraint separately. We show separate lines for the target
moments and the moments realized by the EBMs, revealing slight inaccuracies
in the EBM moments for some constraints. We note that the notation in this
figure di↵ers slightly from that used in the main text of the thesis, namely using
lower-cased letters (p, p�, q and qproj), for the discrete distributions P , P�, Q and
Qproj.
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corresponding proposal distributions shown here, it seems that an acceptance rate
of 10�3 is su�cient to match the target EBM nearly perfectly. The feature mo-
ments also converge as the acceptance rate decreases, although in some cases the
QRS sampler matches the target EBM so closely that small inaccuracies in the �
values obtained from the EBM estimation procedure (which is from Khalifa et al.
2021) become apparent. As for the divergence of the QRS distribution from the
original language model KL(P�, A), there is no obvious trajectory that it should
follow other than a tendency to converge to the lowest possible value KL(P,A)
when all constraints are satisfied (by definition, the EBM P is the distribution
C which minimizes KL(C,A) among all distributions satisfying the constraints).
Indeed, our results show that this metric is a non-monotonic function of AR. We
observe that the moments computed downstream on QRS closely match the IS
predictions, giving us confidence in the accuracy of those estimates. Finally, in
the case of our pointwise “amazing” and “Wikileaks” constraints, we find that
the naive filter strategy (qproj) corresponds to running the QRS sampler at a high
acceptance rate.

Experiment �min �max

50% female and 100% scientists 1.0 · 10�12 9.3 · 106
50% female and 100% sports 1.0 · 10�12 2.9 · 107
50% female 4.0 · 10�7 4.0 · 103
100% “amazing” 1.0 · 10�12 5.3 · 101
100% “Wikileaks” 1.0 · 10�12 6.0
simple 1.0 · 10�12 3.8
multiple 1.0 · 10�12 2.3
knowledge 1.0 · 10�12 24.0
jeopardy 1.0 · 10�12 29.0
news 1.0 · 10�12 3.0

Table 5.1: We report the range of � values used to obtain the range of acceptance
rates in Figure 5.4, 5.5, and 5.6.

Importance Sampling Estimates

We report variances of all importance sampling estimates computed using the
bootstrap estimator in Table 5.2. We report mean ± one standard deviation for
� values within the range used in our experiments (also see Table 5.1). We find
our estimates to be accurate within reasonable variance.

Secondly, as noted in Section 5.2.2, it is not generally possible to compute Z
or its variance for any given EBM with certainty. This observation can put into
question the validity of the above-described estimates. We note, however, that
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P � AR TVD(P, P�) KL(P, P�)

100% amazing
0.02 0.08 ± 1.8 ⇥10�4 0.2 ± 6.5 ⇥10�3 0.3 ± 0.04
0.3 7.8 ⇥ 10�3 ± 3.2 ⇥10�5 0.04 ± 8.0 ⇥10�3 0.05 ± 0.02
2 1.2 ⇥ 10�3 ± 6.8 ⇥10�6 0.01 ± 6.7 ⇥10�3 0.01 ± 9.3 ⇥10�3

100% wikileaks
7.4 ⇥ 10�4 0.1 ± 2.1 ⇥10�4 0.3 ± 5.2 ⇥10�3 0.6 ± 0.03
0.01 8.5 ⇥ 10�3 ± 3.7 ⇥10�5 0.07 ± 7.3 ⇥10�3 0.09 ± 0.02
0.2 8.2 ⇥ 10�4 ± 6.6 ⇥10�6 9.7 ⇥ 10�3 ± 3.5 ⇥10�3 3.9 ⇥ 10�3 ± 1.9 ⇥10�3

50% female
1 ⇥ 101 0.1 ± 1.3 ⇥10�4 0.02 ± 6.2 ⇥10�4 0.01 ± 1.2 ⇥10�3

1 ⇥ 102 0.01 ± 1.5 ⇥10�5 5.9 ⇥ 10�4 ± 2.9 ⇥10�4 3.3 ⇥ 10�4 ± 1.8 ⇥10�4

2 ⇥ 103 1.1 ⇥ 10�3 ± 1.5 ⇥10�6 2.7 ⇥ 10�7 ± 4.4 ⇥10�7 �1.7 ⇥ 10�8 ± 9.4 ⇥10�7

50% female + 100% science
7 ⇥ 103 0.08 ± 1.7 ⇥10�4 0.3 ± 6.0 ⇥10�3 0.5 ± 0.03
1.1 ⇥ 105 7.1 ⇥ 10�3 ± 3.5 ⇥10�5 0.07 ± 7.1 ⇥10�3 0.08 ± 0.02
6.4 ⇥ 105 1.3 ⇥ 10�3 ± 1.0 ⇥10�5 0.02 ± 4.9 ⇥10�3 9.9 ⇥ 10�3 ± 4.8 ⇥10�3

50% female + 100% sports
1.2 ⇥ 105 0.07 ± 1.3 ⇥10�4 0.1 ± 4.2 ⇥10�3 0.2 ± 0.01
7.5 ⇥ 105 0.01 ± 3.5 ⇥10�5 0.04 ± 3.8 ⇥10�3 0.04 ± 6.2 ⇥10�3

1.2 ⇥ 107 8.5 ⇥ 10�4 ± 4.6 ⇥10�6 4.2 ⇥ 10�4 ± 3.2 ⇥10�4 4.2 ⇥ 10�5 ± 3.6 ⇥10�5

P � Z Z�

100% amazing
0.02

2.5 ⇥ 10�3 ± 2.5 ⇥ 10�5
0.08 ± 1.8 ⇥ 10�4

0.3 7.8 ⇥ 10�3 ± 3.2 ⇥ 10�5

2 1.2 ⇥ 10�3 ± 6.8 ⇥ 10�6

100% wikileaks
7.4 ⇥ 10�4

1.4 ⇥ 10�4 ± 1.4 ⇥ 10�6
0.1 ± 2.1 ⇥ 10�4

0.01 8.5 ⇥ 10�3 ± 3.7 ⇥ 10�5

0.2 8.2 ⇥ 10�4 ± 6.6 ⇥ 10�6

50% female
1 ⇥ 101

2 ± 2.3 ⇥ 10�3
0.1 ± 1.3 ⇥ 10�4

1 ⇥ 102 0.01 ± 1.5 ⇥ 10�5

2 ⇥ 103 1.1 ⇥ 10�3 ± 1.5 ⇥ 10�6

50% female + 100% science
7 ⇥ 103

8 ⇥ 102 ± 9
0.08 ± 1.7 ⇥ 10�4

1.1 ⇥ 105 7.1 ⇥ 10�3 ± 3.5 ⇥ 10�5

6.4 ⇥ 105 1.3 ⇥ 10�3 ± 1.0 ⇥ 10�5

50% female + 100% sports
1.2 ⇥ 105

1 ⇥ 104 ± 6 ⇥ 101
0.07 ± 1.3 ⇥ 10�4

7.5 ⇥ 105 0.01 ± 3.5 ⇥ 10�5

1.2 ⇥ 107 8.5 ⇥ 10�4 ± 4.6 ⇥ 10�6

Table 5.2: Means and standard deviation of IS estimates of acceptance rate,
TVD with the target distribution and KL divergence to the target distribution
for various � on various EBMs using a DPG fine-tuned proposal. We perform
5,000 bootstrap simulations using 1,000,000 samples each to compute the means
and standard deviations. Values of � are chosen within the range used for our
experiments as reported in Table 5.1.
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when we can bound P̃ (x)/Q(x) we can have formal bounds on these quantities,
allowing us to double-check the accuracy of these estimates. In particular, this is
possible when P̃ (x) = A(x)b(x), Q(x) = A(x) and b(x) 2 [0,M ], as in that case
we have P̃ (x)/Q(x) M . Using Popoviciu’s inequality again (see Section 5.2.2),
we find that the IS estimator of Z has variance

Var

"
1

N

NX

i=0

P̃ (xi)

Q(xi)

#
 M2

4N
. (5.18)

We generated 1 million samples with GPT-2, and used them to compute the
partition functions of the EBMs for pointwise constraints, with provable bounds
on their variance using the above equation. For the 100% “amazing” EBM, we
obtained Z = 2.5⇥ 10�3 ± 2.5⇥ 10�7; whereas for 100% “wikileaks” we obtained
Z = 1.5⇥ 10�4 ± 2.5⇥ 10�7. These are in agreement with the estimates in Table
5.2. However for our experiments with distributional constraints, we determinined
the rather large bound M = 304868, and we would need to gather at least 1012

samples to obtain a reasonable bound on the variance. This highlights the need for
better proposal distributions to compute these quantities, especially considering
that the number of samples that IS needs to compute partition function of P̃ (x) is
inversely proportional to exp(KL(P,Q)) (Chatterjee and Diaconis, 2018). This is
the reason why, in practice, a good proposal distribution can allow us to compute
accurate estimates, even if that comes at the loss of the above-described formal
bounds.

5.3.3 Paraphrase Generation

Inspired by Miao et al. (2019), we also perform proof-of-concept experiments
on paraphrase generation by framing the task in terms of conditional EBMs.
Specifically, given a sentence y to paraphrase, we define our EBM in terms of a
language model A(x) = GPT-2(x), and a pointwise constraint b(x) given by a
binary classifier that classifies a pair (x, y) as a paraphrase if the cosine similarity
between their sentence embeddings is above 0.95. We obtain high-quality sentence
embeddings from sentence-BERT8 (Reimers and Gurevych, 2019). As proposal
distribution we do not use GPT-2, but rather illustrate how we can use o↵-the-
shelf deep learning models as proposal distributions for QRS. In particular, we
use a round-trip machine-translation model, which is a well-known tool in gen-
erating paraphrases (Bannard and Callison-Burch, 2005; Mallinson et al., 2017).
Specifically, we use the English-to-German and German-to-English models from
Ng et al. (2019). We first obtain a translation into German using beam search,9

and then define the proposal distribution as the German-to-English model con-

8We use https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
9We use a beam size of 5.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2


5.3. Experiments 87

Input Sequence Proposal Distribution QRS samples from p at AR = 10
�5

How is the two

wheeler insurance

from Bharti Axa

insurance?

What about bicycle insurance from Bharti

Axa insurance?

How is the Axa Bharti two-wheeler insur-

ance policy?

What about the Bharti Axa insurance? How is Bharti Axa insurance for two-

wheeler?

What is the Bharti Axa insurance plan? The Bharti Axa Two-wheeler insurance.

How is it?

Are there

Doctor Who

references in the

Muse song

”Knights of

Cydonia”?

Do you hear a hint of doctors in the Muse

songs ”Knights of Cydonia”?

Are there Doctor Who references in Muse’s

Knights of Cydonia?

Can you find a hint at Doctor Who in the

”Knights of Cydonia” line from the book’s

Muse song?

Does this Muse song ’Knights of Cydonia’

have any references to Doctor Who?

Are there any references to Doctor Who in a

muse song, Knights of Cydonia?

Are there Doctor Who references in Muse’s

Knights of Cydonia?

In French, how

do you say

”cool”?

How do you call ’cool’ in French? How to Say ”cool” in French

How do you keep the language Cool in French? How to Say ’Cool’ in French

How do you say ’cool’ in French? How do you say ”cool” in French

Figure 5.7: TVD(P, P�) running the QRS sampler at various acceptance rates
to generate paraphrases of three sequences (top). We show some example para-
phrases from both the proposal distribution Q(x) (round-trip NMT) as well as
the QRS sampler P� at an acceptance rate of 10�5 (bottom).

ditioned on the obtained translation. We locally renormalise the model to do
top-30 sampling (Fan et al., 2018).10

We show IS estimates of TVD(P, P�) using 1M samples for three sequences
in Figure 5.7 along with samples from both the proposal distribution and QRS
at AR = 10�5. The quality of the proposal distribution varies with the input se-
quence, as can be seen from the slope of the curve and the low-e�ciency starting
points of some curves (non-paraphrases are always rejected and so they have a big
influence on the acceptance rate). Still, QRS gives excellent approximations to
the target EBM in two out of the three examples (in the “insurance” and “cool”
examples, the TVD is nearly zero), although the TVD in the “Doctor Who” ex-

10The decision to use a top-k sampling strategy to generate from the round-trip translation
model violates the constraint we set in Section 5.2, namely that the support of P should be
included in the support of Q. In Appendix D.2 of Eikema et al. (2022), we show that this a↵ects
the convergence property of QRS such that it becomes lim�!1 P (Ā�) = 1 � P (supp(Q)), i.e.
the convergence of the probability mass on violators (and thus the TVD bound of Theorem 5.2)
is limited by how much of the support of P is covered in Q. If the support of P is included in the
support of Q, we can see that the convergence guarantee we originally showed in Section 5.2.5,
lim�!1 P (Ā�) = 0, is recovered.
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ample remains above 0.4 even for AR = 10�5). Looking at the examples, we
find that the proposal distribution produces decent paraphrases, but they are not
always semantically equivalent or grammatically correct. The QRS samples are
mostly semantically equivalent, though they still contain some mistakes (“Axa
Bharthi” vs “Bharti Axa”) and seem to be insensitive to the question mark and
to the casing of words (“Cool”, “Two-wheeler insurance”). Interestingly, this ex-
periment illustrates how the presented approach could be employed to disentangle
the questions of how to model a problem (by defining the corresponding EBM)
and how to e�ciently sample from it (by improving the proposal distributions),
making it possible to work on each of these questions separately.

5.3.4 Comparison with MCMC techniques

We now compare QRS with MCMC samplers, for which we focus on the EBM for
a pointwise constraint restricting GPT-2 to only generating sequences containing
“amazing”.

Baselines

We use the popular Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953;
Hastings, 1970). This algorithm works by constructing a Markov chain of depen-
dent samples, in which the next state of the chain is equal to a newly proposed
sample with a certain acceptance probability, and otherwise the next state is the
same as the current state. When the length n of the chain tends to infinity it can
be proven (Robert and Casella, 2004, Theorem 7.4), see Section 2.2.5, that the
average of a statistic on the elements of the chain converges to its expected value
under the target distribution and, more importantly when focussing on sampling
as we do, that the distribution of the nth element of the chain converges (in total
variation) to the target distribution. In practice, the chain is of finite length and
only approximate samples are obtained.

Common practices are to discard the first few samples of the chain to reduce
the e↵ects of poor starting conditions (which is known as burn-in), and to only
keep every tth sample to reduce autocorrelations (which is known as thinning).
We use both these heuristics in our experiments. We set a burn-in period of 1,000
steps and only keep every 1, 000th sample to attain an acceptance rate of 10�3.
Note that we chose not to include the burn-in period to compute the acceptance
rate of MCMC samplers, as this period is constant and does not grow with sample
size. We also experiment with a reset variant (-R) of the MH samplers that does
away with autocorrelations among samples altogether (i.e. produces i.i.d. samples
like QRS) by, instead of using thinning, resetting the chain after 1,000 steps and
only retaining the last sample of the chain. This variant does not make use of a
burn-in period.

We experiment with two proposal distributions for use in the MH samplers: i)
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the global proposal distribution used in QRS, i.e. DPG, for independent Metropolis-
Hastings (IMH; Robert and Casella, 2004) and ii) a local proposal distribu-
tion that makes local edits to an evolving sample in the chain for random-walk
Metropolis-Hastings (RWMH). As far as we are aware, IMH is not commonly em-
ployed in the literature due to global proposals classically being di�cult to come
by. We stress that with the advances in neural network training techniques such
as DPG, global proposals are more accessible than ever and we therefore include
IMH as a strong baseline in our experiments. Our design of the local proposal is
inspired by uses of MCMC in controlled text generation, in particular by Miao
et al. (2019) and Goyal et al. (2021). The local proposal randomly performs ei-
ther an insert, delete or replace operation on the token level, where insert and
replace operations are performed by sampling from BERT (Devlin et al., 2019).
Locations of insertions and deletions are chosen uniformly at random. To inform
the local proposal distribution about the target distribution, we implement the
insert and replace operations by randomly mask-filling using BERT (99% of the
time) and filling with “amazing” (1% of the time). We initialize the chain using
a sample from the global proposal distribution.11

Metrics

As no f -divergence estimates are available for the MCMC samplers, we instead
resort to some proxy metrics specific to controlled text generation to measure the
sample quality, extracted from 104 samples over ten independent experiments.
In particular we measure constraint satisfaction (% amazing), perplexity (PPL)
of our samples under GPT-2, diversity across samples with Self-BLEU-5 (Zhu
et al., 2018) and percentage of unique samples (% Uniq), and finally, diversity
within samples as given by the percentage of distinct bigrams (Dist-2; Li et al.,
2016). However, we note that these metrics can easily be cheated. An example
of this is if we would manually construct a sampler that would repeat a small set
of reasonably diverse, high probability (under GPT-2) sequences that meet the
target constraint. The resulting sampling distribution would not necessarily be
close to the target EBM, but would score well on such proxy metrics. For QRS
we do report the TVD to the target distribution, which cannot be gamed in this
way. Notably, for MCMC we can also provide lower bounds on the TVD thanks
to the data-processing inequality (DPI). The DPI tells us, informally, that the
f -divergence of one distribution to another can only decrease by applying the
same “projection” to the two distributions. A precise formulation of this theorem
is provided as Theorem 6.2 of Polyanskiy and Wu (2017), but, for our purposes,
the following special case (“lumping property”) proven as Lemma 4.1 of Csiszár

11Note that localised MCMC methods can still take advantage of good starting points, es-
pecially the reset variants. We therefore also provide our variants of RWMH with a global
proposal distribution for obtaining good starting points, the same global proposal as used for
QRS.
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Method CS PPL# Self-BLEU# %Uniq" Dist-2" TVD#⇤

proposal 62.9± 0.4 61.7± 0.3 85.8± 0.1 100± 0.0 96.1± 0.0 0.67

RWMH 100± 0.0 - 99.8± 0.2 32.0± 33.7 83.8± 17 -
RWMH-R 100± 0.1 58.7± 3.3 87.6± 0.4 100± 0.0 92.0± 0.3 - (� 0.28)
IMH 100± 0.0 - 86.9± 0.3 98.7± 0.5 96.3± 0.1 -
IMH-R 100± 0.0 63.4± 1.5 86.7± 0.1 100± 0.0 96.3± 0.1 - (� 0.01)
QRS 100± 0.0 62.8± 1.6 86.6± 0.2 100± 0.0 96.3± 0.1 0.01

Table 5.3: Comparing with MCMC samplers for the constraint of including
“amazing” in the sequence, CS denotes constraint satisfaction. We show mean ±
one standard deviation over 10 runs. All samplers are run at an acceptance rate
of 10�3. ⇤TVD is estimated on 106 independent samples, standard deviations are
below 0.01.

and Shields (2004) will be su�cient:

Theorem 5.3. Let P and Q be distributions over a sample space X . Let {A1, . . . , Ak}
be a finite partition of X . Then the distributions P 0(i)

.
= P (Ai) and Q0(i)

.
= Q(Ai)

over {1, . . . , k} satisfy Df (P 0, Q0)  Df (P,Q).

While it is in general unfeasible to estimate the actual divergence of two
distributions P,Q over a large space X based only on a moderate number of
samples (as opposed to scores) from P and Q (Canonne, 2020), by projecting
these samples onto a much smaller number k of “bins”, it is possible to obtain
precise estimates of the divergence of the “histogram” P 0 from Q0, and therefore
to lower bound the divergence of P from Q.

We use this result to obtain lower bounds on the TVD to the target distribu-
tion of RWMH-R and IMH-R, for which we have i.i.d. samples, whereas this is
not the case for RWMH and IMH. After manually inspecting a single set of 104

samples out of ten independently sampled sets to look for salient defects, we chose
a binning function that classifies a sample in two bins according to whether it
contains a newline character or not. Then, we used it to bin the samples of the re-
maining nine sets and compute their mean TVD to the binned target distribution
to obtain lower bounds on the TVD.

Results

Our results are shown in Table 5.3, and we also show the first 10 samples of each
sampler in Tables 5.4 to 5.6. All samplers satisfy the constraint of only generating
sequences containing the term “amazing”. The EBM P , however, is defined to
be, among all those distributions that satisfy the constraint, the one closest to
the original language model A (GPT-2) under KL(P,A). Constraint satisfaction
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QRS samples at 10
�3

acceptance rate

• Cowgirl 87 Care Commission Header now available on our VIP web site. CowboyBillIssues
AVAILABLE NOW... Start your website bio examining this amazing cam-

• take note. No wonder Vox isn’t having an amazing day. Screen Snipe Dave ends Neo by
christening it #DroppedSummer [] @cloudp
• I got an unprecedented amount of reviews years ago because of such an interesting movie that
seemed Nude World will be released in some theaters soon. The movie itself was pretty amazing.
I only had to hear
• Before Charlie Hebdo rendered its amazing save for lost lives, scholarship was blind to the
brutal irony. Gregory Wade accidentally shot three bystanders, at least ten more wounded, and
four more dead within three days of

• 4279 watts has passed the bar You can also check your save scores by clicking ‘Save Data
to PWSW Audience‘. Shopping Welters also have amazing customer
• Sculpt your beard to stay stylish when you struggle to look like a nerd. This Collection makes
all your lengthening amazing, so show it off { Ruler of Salt, Cone of Salt at Holl
• If you’ve contacted our sponsor, they know who you are and how hard you work. Unless months
pass without a postcard. Best Served to meet everything you demand. You are amazing and are
• I’m sure a lot of people are most excited to see an F-35 Lightning II V2 today because of the
amazing kick that’s (understandably) in the engine room now that Benson
• Catherine is serviceable, happy, and successful. She loves teaching, having children, and
saving time. She regularly works with can and is an amazing listener. Our community is
full of
• The bellies of the runs was amazing. A ton of complements were good, including some
neighboring dressing room appearances. So long worked up info, my 2014 Mustang had lots of
special opening-specific

Table 5.4: The first 10 examples produced in the first run of QRS on the EBM
filtering GPT-2 sequences containing “amazing”.

alone thus does not tell us how well the samplers approximate the target EBM.
For MCMC samplers we have to rely on proxy metrics. RWMH-R seems to excel
in terms of perplexity while also obtaining competitive diversity metrics (Self-
BLEU-5, % Uniq, and Dist-2). However, we can identify a large TVD between
its sampling distribution and the target one, showcasing the failure of proxy met-
rics to reliably measure the approximation accuracy of our samplers, and demon-
strating the benefits of having explicit estimates of divergence measures. After
qualitatively inspecting samples of both local MCMC methods (see Table 5.5),
we found many samples to contain repetitions, e.g. of punctuation marks. Also,
RWMH seems to su↵er from low diversity across samples (as evidenced by the
high Self-BLEU-5 and low % Uniq scores), containing many repeated samples.
On the other hand, IMH, IMH-R and QRS do not su↵er from this lack of diver-
sity. The variants of IMH and QRS seem to perform on par in terms of sample
diversity, and QRS attains slightly lower perplexity than IMH-R.

An estimate of the TVD around 0.01 shows that QRS closely approximates
the target EBM and shows considerably more diversity within and across samples.
It might be that the IMH and IMH-R samplers would achieve similar results, but
we cannot know as no divergence estimates are available. We only know that the
binning strategy failed to detect any large divergences for IMH-R.

In Table 5.7 we additionally show KL-divergence and the Dist-1 and Dist-3
metrics (distinct unigrams and trigrams respectively) for the pointwise “amaz-
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RWMH samples at 10
�3

acceptance rate

• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m
• The OnePlus 2 is one of the most amazing smartphones we’ve ever tried. It’s an extremely
powerful smartphone you’ve never heard of before, and carries an amazing battery life, or battery
life I’m

(a) RMWH

RWMH-R samples at 10
�3

acceptance rate

• yay!!! this game is amazing!!!!! a cool physical sci fi action game where you play a hardened
junkie with an old girlfriend who’s tough
• in the immediate aftermath of the church shutdown, strange and often amazing events raised
the question of whether the government had ever given up its restrictive control of religious
provocations for political purposes and assumed a new political leadership
• ... had an amazing 7 out of 10, 8 out of 10, 9 out of 10, 6 out of 5... liked it... the
story...
• I do have several solo masters who still have done amazing work to suit/complement
orientated-character traits. In particular, I find myself building out secondary mazes based
on their chunks iay
• "She and my son played "Friends," and used songs that I loved from that’s were amazing," Kleutz
said. "They were acknowledging responsible themes. They felt I was so passionate that I
• useful for those in need or those who are distracted in the outside world. qualms ( # 77574 ),
pro / pro bizarre ( # 776171 ), amazing 1 / 2 / 3 / 5 ( # 776249 )
• We are inspired by the amazing work of the Reader Space Foundation, which fosters artists who
make an impact on a global audience through knowledge, support, and advocacy. It’s made us an
un-
• the casanova is amazing the key to this being a classic, a true black lace bra made from dl’s,
lace and all the fabrics that are available in pink and black. go on, have some fruit, sugar,
vitamins, icing. whisper, wow, good for you
• and it is only using standard rules of thumb, but it is amazing that all the use of " " can be
taken into account. " " " " " " " " " " " " " " " " " " " " " " " " " established.
• With so many amazing actors appearing on every level in a stone once it’s filmed, Star Wars
Rebels follows the Rebellion throughout 2017 with an unusual archive of credits from the original
and Rebels Two Casts.

(b) RMWH-R

Table 5.5: The first 10 examples produced in the first run of the local Metropolis-
Hastings variants RWMH (a) and RMWH-R (b) on the EBM filtering GPT-2
sequences containing “amazing”.
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IMH samples at 10
�3

acceptance rate

• OF ALL The Verifiers who voted for Dragon Quest Revealed, two amazing choices are going to
still be in the fire. To make up for the lost depth, Vulcans will make a busy

• A PO3 sniff tested, protecting the lab from detection by probiotic products, is amazing. 5
years ago, scientists found the cannabinoid-blocking drug O3 responsible
• You have watched The Witcher 3 as a kid. You have eaten plenty of meat at your meals. You’ve
seen a video game show before that has been amazing. Very few people have grown up without
• 11 am 2pm 958-701-99997 to Lift EcoTV, located in Washington, D.C. Do you have more questions
about lifting something amazing in the Farm 600 in
• Bringing this gift is a unique opportunity to share with your loved ones about the home we
love. Our family stunts cloud of feedback and the truly amazing handmade items we came upon
included, providing a great
• Over a group of homebrew enthusiasts gathered for a beer sampling on Wednesday morning, they
shared some amazing homebrew recipes with beer enthusiasts on the craft beer of the weekend, as
well as some star brewers at home
• RIDER VIDEOTAPE | LEON BEVERLY RON OLD AFAIK proud to present you the amazing RADIO available
from RON Old Hollywood: http://www.personalradio

• with comments, screenshots collaborating authors & planners Connecting friends &
family, live with family of our wonderful amazing people. An Albany Folklore Center where
we are based

• Could She Play The Same Sex Career? Missoula is full of different, amazing lesbian and gay
couples to come. It’s so amazing that she’s so welcoming to them. They love

• amazing even or nerdyally I mean it’s true that almost every person touching your skin is
under their own skin, but when you have to contribute, you are competing against art first

(a) IMH

IMH-R samples at 10
�3

acceptance rate

• Journey to Mars! Supermassive Black Hole Recovered From Big Bang Rosetta Sky It took
an amazingly severe situation to produce an amazing HDR image through single recombination with
massive radio uplink

• Early in the credits game, Sid Meier looked over Randi with his smugly excited face. "What
if," he started, "if you think Randi’s doing amazing things to me
• While Gilinda tells everybody what she has in mind in the past, notice that despite their
competitiveness and amazing athleticism, they do outlive the Hokies and don’t recognize one
another. It

• ameral bairnsaucer, from Prague No, this wasn’t a blast. It was awesome. My test team
was amazing. If you wait against an scent that is
• Last day was so amazing. I was going to lay down for some lunch on the park deck and watch
contestants go nuts. Happy morning. Psychos Solid: Winning the Super Bowl isn’t

• Can Customers Generation Support Field Trawler? Well, it looks like it’s gonna be well
taken care of...Tousting can also apparently utilise compiled sound block and got some amazing
gimm
• 64 Explicit Nov 16, 2016 FIVE US SECS CONCLUSIONS On Saturday night you’ll find an amazing
bunch of colleges and universities alike as they host the ’THE LAST TENSE’ panel for
• Pick anything you wish for appears in new like Black Bag Revenge, Savage Comet, Bride of
Waibou, Oinnibox and much more. Gamazing Of The Month Star Trade Reply
• At 6 miles in, the Gawdover Range is an amazingly located range within Markham county, NY. I
was able to flag down one during the last few kilometres and here is the fun!
• I’m never happy about an OC for a while, since I can like them because the fact that the
beautiful side has proven amazing makes sure I learned to love them more and remain satisfied
when looking at

(b) IMH-R

Table 5.6: The first 10 examples produced in the first run of the global Metropolis-
Hastings samplers IMH (a) and IMH-R (b) on the EBM filtering GPT-2 sequences
containing “amazing”.
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ing” constraint of the former experiment, as well as for the EBM that produces
50% female scientist biographies. For the latter there is no obvious way to in-
form the proposal and therefore, we only perform mask-filling through insertions,
replacements and deletions using BERT. We note the same patterns that we ob-
served before for the 50% female scientists EBM, as well as for the KL-divergence
(compared to TVD) in both EBMs.

5.3.5 Exact Divergence Estimates for MCMC

One case in which we can estimate f -divergences for IMH-R and RWMH-R vari-
ants is the Poisson example that we discussed in Section 5.3.1. We present a
comparison between QRS and the reset variants of MH for this Poisson example
here. As in Section 5.3.1, we use the proposal Q = Poisson(� = 10) and target
P = Poisson(� = 11). To ensure accurate values for the KL divergence and TVD,
we implement each method in closed form.

Calculating the probability mass functions of the samplers

For QRS, we compute the probability mass function P� and acceptance rate using
Eq. 5.1 and 5.2. For IMH-R, we take k samples from the proposal Q according
to the generative process:

X(0) ⇠ Q,

for t = 1, . . . , k � 1

Y (t) ⇠ Q

X(t) =

(
Y (t) with probability min

⇣
1, P (Y (t)

)Q(X(t�1)
)

P (X(t�1))Q(Y (t))

⌘

X(t�1) otherwise.

For nonnegative integer states X(t�1) = x0 and X(t) = x1, this corresponds to the
transition matrix (or Markov kernel, noting that the state space is infinite):

Tx1,x0 = Q(x1)min

✓
1,

P (x1)Q(x0)

P (x0)Q(x1)

◆
, 8x1 6= x0

Tx0,x0 = 1�
X

x1 6=x0

Tx1,x0 .

Using these transition probabilities, a finite chain length k, and by truncating
the support of these Poissons to x < 50, we can compute the exact distributions
obtained after performing k steps of Metropolis-Hastings, and compute divergence
measures. For comparison with QRS, we compute the “acceptance rate” as 1/k,
i.e. the reciprocal of the number of times we sample from Q.
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For RWMH-R, we consider the chain:

X(0) ⇠ Q,

for t = 1, . . . , k � 1

Y (t) ⇠
(
X(t�1) � 1 with probability 1

2

X(t�1) + 1 otherwise

X(t) =

(
Y (t) with probability min

⇣
1, P (Y (t)

)

P (X(t�1))

⌘

X(t�1) otherwise,

corresponding to the transition matrix:

Tx1,x0 =

8
>><

>>:

min
⇣
1, P (x1)

P (x0)

⌘
if |x1 � x0| = 1

0 if |x1 � x0| > 1

1�
P

x1:|x1�x0|=1
Tx1,x0 if x1 = x0.

Clearly, the performance of RWMH-R might be improved by using a di↵erent
random walk: the ±1 random walk is used here as it seems the simplest and most
natural choice. Similarly to IMH-R, we can use this transition matrix to compute
the exact distributions, and thus divergences for various chain lengths k.

Truncation errors

For all methods, to ensure practical computation, we truncate the distributions,
working only with states x < 50. To assess the truncation error, we repeat the
experiment, this time truncating with x < 100, and find that the largest relative
error in KL, TVD or AR for any method is in the KL divergence of QRS for
� = 5, which is

����
KL(P, P�)x<100 �KL(P, P�)x<50

KL(P, P�)x<100

���� = 1.48 · · ·⇥ 10�10.

Results

Figure 5.8 presents the TVD and KL divergence as a function of AR, computed
for parameter � in the range [0.1, 5] for QRS, and for k = 1, 2, . . . 5 iterations of
IMH-R and RWMH-R. For acceptance rate AR = 1, all samplers give the same
divergence, as they all return samples directly from the proposalQ. For each lower
acceptance rate12, the TVD of QRS is systematically lower than that of IMH-R,
and the TVD of IMH-R is systematically lower than that of RWMH-R; and the

12The acceptance rates of QRS for � = 2, 3, . . . are nearly equal to 1/2, 1/3, . . . because
AR = Z�/� by Eq. 5.2, and for this choice of �, P and Q we have Z� ⇡ 1.
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Figure 5.8: Quality-e�ciency trade-o↵ for QRS, IMH-R and RWMH-R samplers,
when approximating the target distribution P = Poisson(� = 11). We use dis-
tribution Q = Poisson(� = 10) as proposal for QRS and IMH-R, and as initial
distribution for RWMH-R. Quality is measured as TVD(P, Psampler) in the left
plot, and as KL(P, Psampler) in the right plot. E�ciency is measured as the accep-
tance rate for QRS; and as the reciprocal of the number of sampling iterations
for IMH-R and RWMH-R, which we call the “acceptance rate” in this context.

same holds for KL divergence. On investigating the ratios of the divergences,
we find that these advantages increase as the acceptance rate decreases, and for
AR ⇡ 1/5 we have

TVD(P, PIMH-R,k=5)

TVD(P, PQRS,�=5)
= 2.24 · · ·⇥ 103 and

KL(P, PIMH-R,k=5)

KL(P, PQRS,�=5)
= 3.60 · · ·⇥ 102.

5.4 Related Work

The vast majority of approaches to approximate sampling from complex proba-
bility distributions have been based on MCMC. However, a few approaches have
taken rejection sampling as their starting point. Like QRS, the method of rejec-
tion sampling chains (Tierney, 1992; Chib and Greenberg, 1995) does not require
a global upper bound. This is a hybrid method that uses rejection sampling in
a region satisfying a partial upper bound but combines it with IMH outside of
that region to produce a Markov chain that converges to the correct stationary
distribution. Ca↵o et al. (2002) propose empirical supremum rejection sampling,
an algorithm that adaptively increases the � upper bound based on the maximum
observed so far, with a focus on convergence in the limit rather than approxima-
tion quality.

Closer to our work, some researchers have observed before us that a partial
bound � leads to the probability distribution presented in Eq. 5.1. Rejection
control (Liu et al., 1998; Liu, 2004), in the context of particle filters, exploits
this observation to accelerate the computation of an unbiased IS estimate of the
expectation Ex⇠p [f(x)] in situations where computing f(x) is expensive and must
be done repeatedly. While the focus of that work was not to produce divergence
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diagnostics, interestingly, on close examination, we find that one of their proofs
(Liu, 2004) formulated a �2-divergence between a target distribution and a proxy
distribution similar to P�. Variational rejection sampling (Grover et al., 2018)
uses a relaxation of Eq. 5.1 to better approximate the variational posterior in a
variational inference setting. They aim to construct a di↵erentiable sampler that
can tighten the evidence lower bound, if additional computing power is available.
The focus of our work is more general: we propose a generic sampler for which we
can quantify a trade-o↵ between sampling e�ciency and approximation quality
and we study the properties of this sampler.

While this work is concerned with generating samples from discrete EBMs,
much research so far has been more concerned with continuous EBMs, in partic-
ular for applications in computer vision. Continuous EBMs have the advantage
over discrete ones that it is possible to di↵erentiate the EBM p(x) with respect
to x, and not only the approximating model ⇡✓ relative to ✓. This opens a range
of optimized training techniques (see the survey by Song and Kingma 2021), in-
cluding Langevin and Hamiltonian dynamics (Parisi, 1981; Duane et al., 1987),
where the local Markov chain moves are informed by rx log p(x). While such
techniques are not available for discrete EBMs, some recent e↵orts are trying
to bridge the gap. For instance, continuous relaxation techniques (Han et al.,
2020; Nishimura et al., 2020) relax the original discrete space into a continuous
space, perform the sampling in this space, then map the samples back to the
discrete space; while Grathwohl et al. (2021); Zhang et al. (2022); Rhodes and
Gutmann (2022) sample directly in the discrete space, but inform the local moves
of the chain through gradients computed in a continuous space. To the best of
our knowledge, while Zhang et al. (2022) do experiment with “text infilling”, the
ability to replace some blanks in a given sentence by actual words, none of the
above work has so far directly addressed text generation applications of the kind
we have been considering here, in which the sample space is not only discrete,
but composed of structured objects, namely word sequences of varying length,
raising specific challenges.

Monte Carlo sampling techniques are popular for various NLP applications,
in particular language modelling. For example, Miao et al. (2020) propose a sam-
pler that mitigates poor estimation of probabilities due to overfitting. Deng et al.
(2020) train globally normalised language models to combat negative e↵ects of
local normalisation, and use a form of sampling importance resampling (Rubin,
1987) to sample from the resulting EBM using an autoregressive proposal lan-
guage model. Goyal et al. (2021) develop a Metropolis-Hastings algorithm to
sample from masked language models. For controlled text generation Miao et al.
(2019) propose a random-walk Metropolis-Hastings algorithm for sampling from
an EBM that encodes sequence-level preferences on natural text. Their proposal
distribution consists of local string editing operations on randomly selected words
or positions. Zhang et al. (2020a) improve on this approach by making use of
a tree-search algorithm to more e�ciently explore the space of proposals, by al-
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lowing several edits in a single step of the MH algorithm. In contrast to QRS,
none of these approaches attempt to directly estimate the divergence between the
sampler and the target EBM, but rely on unreliable proxy metrics.

5.5 Consequent Work

Block and Polyanskiy (2023) similarly study a relaxation of rejection sampling
and provide various bounds on sampling complexity (i.e. the number of samples
required from the proposal distribution) in order to obtain an f -divergence below
a given ✏, under various assumptions on the f -divergence itself. Kruszewski et al.
(2023) use and implement our quasi-rejection sampling algorithm as part of the
disco toolkit, a Python framework for imposing distribution-level constraints on
pre-trained language models. Kim et al. (2024a, Appendix F) compare quasi-
rejection sampling and an independent Metropolis-Hasting (IMH) sampler in a
controlled text generation setting under binary constraints and find that QRS
Pareto-dominates IMH in their setup, comparing a lower-bound on the KL diver-
gence against inference time.

5.6 Discussion

QRS is a simple-yet-powerful technique: why has it not previously been promoted
as a practical sampling method? One possible reason is the limited repertoire of
global surrogates to complex distributions. This lack has strongly motivated the
development of MCMC techniques which can exploit simple local proposals to
compute transition probabilities between samples. This is now rapidly changing
with advances in neural training, such as the impressive ability of pretrained
language models to exploit simple prompts to orient their productions towards
certain desired outcomes (but without formal guarantees); or with certain recent
generic techniques, such as DPG, for fine-tuning autoregressive models towards
arbitrary EBMs (but without the ability to totally reproduce them).

We believe that, given such global proposals, QRS can be a strong competitor
to MCMC approaches. In particular, QRS has strong theoretical guarantees,
not shared by these approaches: i) the ability to estimate, for any value of the
� parameter, the divergence of the target EBM from the QRS sampler P�, for
any member of the large class of f -divergences, including TVD and KL, ii) the
ability to tune the sampler to attain a desired quality-e�ciency trade-o↵, and
the intuitive nature of this tuning process thanks to the monotonic relationship
between parameter � and the f -divergence (Theorem 5.1), iii) the existence of a
simple, intuitive bound on the TVD between the QRS sampler and the target,
provided by Theorem 5.2, and iv) the fact that QRS directly produces i.i.d.
samples, rather than the correlated samples of a typical MCMC method.
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Our experimental results show that QRS achieves strong results on the task of
controlled text generation, where for instance, the sampler achieves excellent de-
biasing of the language model for acceptance rates in the range 10�1 to 10�3. We
show the versatility of the approach by applying it to di↵erent sources of global
proposals: proposals over EBMs obtained by generic DPG-style fine-tuning; pro-
posals based on handcrafted prompts; and for paraphrase generation, proposals
based on round-trip translation.

Finally, when comparing QRS to variants of Metropolis-Hastings, we find QRS
outperforms the local variants (RWMH and RWMH-R) and performs on par with
the global variants (IMH and IMH-R), according to the proxy metrics available
for all samplers. Our results on RWMH and RWMH-R, however, show how proxy
metrics can be deceiving and do not give us a full picture of the approximation
accuracy of our samplers. Therefore, we stress the importance of well-founded
divergence measures and, in this chapter, have proposed a sampler for which we
can estimate these. And while we did not experiment with minimum Bayes risk
decoding, the sampling techniques experimented with in this chapter can be used
to obtain samples from a large class of models, which provides all the necessary
ingredients for sampling-based MBR decoding.



Chapter 6

Conclusion

In this dissertation, we explored the use of sampling from neural text generation
models to study properties of sequence distributions, inform decoding algorithms
of such properties, and obtain generations, using quasi-rejection sampling, from
energy-based models that did not inherently permit e�cient generation.

We saw that sequence distributions in neural machine translation models are
such that high probability translations tend to be inadequate in some way, and
stray from data statistics. We showed that a number of biases that were commonly
thought to be inherent to neural machine translation did not show up as clearly
in unbiased samples from the model. Samples, while varying greatly in quality,
did exhibit properties of good translations on average and amongst a number of
samples, typically translations could be found that performed well on evaluation
metrics. High probability translations turned out to be, in fact, rather infrequent
on average. Meaning that while neural machine translation models, by definition,
put most probability mass on the mode, the mode itself and by consequence other
high probability translations, as well as their properties, typically are not that
frequent in the context of the entire sequence distribution.

Related and consequent works to ours show that these observations are not
limited to neural machine translation. In fact, collectively these observations seem
to suggest that inadequate modes and inadequate high probability sequences in
general1 are a fundamental property of current neural text generation models. As
of yet, while some works have come up with hypotheses, there is no consensus
amongst the scientific literature of what the underlying reason for this is, and
whether we can resolve it. One problematic aspect is that it is not easy to quantify
the extent with which neural text generation models exhibit the inadequacy of
the mode. In order for the scientific community to assess the e�cacy of potential
solutions to the problem, developing more extensive methodology for evaluating
current models is essential.

1We will still refer to this property of both the mode and high probability sequences as “the
inadequacy of the mode”.
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However, we also showed that the inadequacy of the mode does not necessarily
mean that the model is poor. In fact, while spread over many translations,
high probability mass is collectively put on properties of good translations of the
input. Motivated by this observation, we proposed an alternative decision rule
for such sequence distributions based on minimum Bayes risk decoding, as well
as a sampling-based approximation of it. The results in this dissertation, as well
as those in the many consequent works that have built on our findings, show
the e↵ectiveness of a decoding strategy informed by the sequence distribution
holistically. This is especially reinforced by the fact that, in our experiments
and in those of some related works, it is found that better approximations to the
decision rule generally lead to better generation quality.

A major obstacle for widespread adoption of sampling-based MBR decoding,
however, is its increased computational cost. In our work, we proposed a more e�-
cient linear time approximation to the decision rule using a coarse-to-fine strategy,
but in consequent works many greatly e↵ective e�ciency optimisations have been
proposed, as well as strategies to distil the gains of MBR decoding through model
fine-tuning. Nonetheless, future work in this direction could still prove fruitful,
making sampling-based MBR more practical and testing its scaling limits.

More consideration into the chosen utility function in MBR decoding could
also prove fruitful. In our work, and most other works on sampling-based MBR
decoding, utilities have simply mimicked the evaluation metrics that work well
for a particular application. The choice of utility is important for performance, as
research in recent years has shown that with the advent of neural evaluation met-
rics, MBR has also greatly benefitted with great generation quality performance
boosts. Yet, carefully crafted utility functions could potentially better exploit any
discovered structure latent within the sequence distribution, or exploit particular
aspects important to a given text generation task.

Finally, we looked at the flexible definitions of probability distributions per-
mitted by energy-based models, at the cost of e�cient inference. We saw how sam-
pling techniques such as Markov chain Monte Carlo and quasi-rejection sampling
allow us to draw samples from such distributions by using autoregressive neural
text generation models to produce proposal generations. Quasi-rejection sampling
in particular allowed us to make an informed trade-o↵ between f -divergence with
the target distribution and sampling e�ciency. We explored various ways of ob-
taining global proposal distributions for text generation by either fine-tuning,
in-context learning or model combination. With large language models becoming
more capable by the day, proposal distributions obtained with in-context learning
and model combinations make it increasingly more accessible to define energy-
based models to one’s desire and obtain reasonably e�cient generations from
them.

All in all, a sampling-based exploration of neural text generation models has
proven fruitful in uncovering inadequacies of such models, guiding better decision-
making, and obtaining generations from non-autoregressive variants. I hope that
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the observations and developments in this dissertation and the works covered
within it are insightful to the broader research community in development, evalu-
ation and use of neural text generation models, and that they may inspire further
advancements to our understanding and developments of the probabilistic models
behind the automated production of natural language.
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Samenvatting

Neurale tekstgeneratiemodellen staan aan de basis van de meeste hedendaagse
systemen voor natuurlijke taalverwerking (natural language processing, NLP). In
de afgelopen jaren zijn de prestaties van NLP-systemen in een stroomversnelling
geraakt dankzij innovaties op het gebied van neurale netwerkarchitecturen en
trainingsparadigma’s zoals attentiemechanismen, Transformers en pre-training-
en data-augmentatiestrategieën. In de kern is de probabilistische formulering van
deze modellen echter niet veranderd sinds de oorspronkelijke neurale tekstgener-
atiemodellen werden gëıntroduceerd.

De probabilistische aard van deze modellen wordt daarentegen vaak snel ver-
geten nadat het model getraind is. Voor veel natuurlijke taalverwerkingstaken,
zoals machinevertaling, worden bijvoorbeeld deterministische zoekalgoritmen ge-
bruikt om een enkele ”beste” generatie uit het model te halen. In dergelijke
gevallen wordt het probabilistische model alleen gebruikt om gedeeltelijke gen-
eraties een score toe te wijzen om zo de hoogst scorende complete generatie te
vinden, oftewel de sequentie met tekstsymbolen met de hoogste kans binnen de
kansverdeling, ook wel bekend als de modus van de kansverdeling. Dit gaat ervan
uit dat neurale tekstgeneratiemodellen datasoortige generaties inderdaad op hun
conditionele modi plaatsen. Een observatie die in literatuur wordt gemaakt in
verscheidene textgeneratietaken suggereert echter dat dit niet het geval is.

Een beter begrip van de kansverdelingen over tekst die onze neurale netwerken
voorspellen, stelt ons in staat beter gëınformeerde beslissingen te nemen over
welke generatie-strategie geschikt is voor onze modellen. Sampling, het gener-
eren van tekst zodat dit de kansverdeling volgt, is een natuurlijke manier om de
eigenschappen van de kansverdelingen die door neurale netwerken worden voor-
speld te verkennen. Door de eigenschappen van dergelijke samples te bestuderen,
onderzoeken we indirect ook de eigenschappen van de kansverdelingen waarmee
we werken. Samples kunnen ook worden gebruikt om generatie-algoritmen te in-
formeren en voor sommige taken zijn samples zelfs de voorkeursuitvoer van het
model.
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In deze dissertatie zullen we het gebruik van sampling verkennen om onze tek-
stgeneratiemodellen beter te begrijpen en om generatie-algoritmen te informeren.
We zullen algemeen bekende problemen van tekstgeneratiemodellen bekijken door
de lens van een dergelijke probabilistische verkenning en een nieuw perspectief
bieden op hun mogelijke oorzaken. We gebruiken deze inzichten om een generatie-
algoritme op basis van sampling te ontwikkelen, gëınspireerd door risicomin-
imisatiestrategieën. Daarnaast ontwikkelen we geheel nieuwe samplingstrategieën
om samples te verkrijgen van willekeurige verdelingen waarbij een per-token- (i.e.
autoregressieve) factorisatie niet bestaat.



Abstract

Neural text generation models are at the basis of most modern-day natural lan-
guage processing (NLP) systems. In recent years many important innovations
to neural network architectures and training paradigms have appeared such as
attention mechanisms, Transformers, and pre-training and data augmentation
strategies that have accelerated the performance of NLP systems tremendously.
At their core, however, these models have not changed their probabilistic formu-
lation since the original neural text generation models were first described.

The probabilistic nature of these models, however, is often quickly forgotten
after the model has been trained. For many natural language processing tasks
such as machine translation, for example, deterministic search algorithms are
employed to extract a single “best” generation from the model. In such cases the
probabilistic model is only used to score partial subsequences during generation
as to find the highest scoring sequence, i.e. the sequence with highest probability
under the distribution, also known as the mode of the distribution. This assumes
that neural text generation models indeed put data-like sequences at its modes.
A well-known observation across text generation tasks, however, seems to suggest
that the highest probability generations of neural text generation models are not
at all data-like.

A better understanding of the sequence distributions that our neural networks
predict allows us to make better-informed decisions about what kind of generation
strategy is appropriate for our models. Sampling is a natural way to explore
the properties of the sequence distributions predicted by neural networks. By
studying the properties of such samples we indirectly also study the properties
of the sequence distributions we are working with. Samples can also be used to
inform generation algorithms and for some tasks samples even are the outputs of
choice from the model.

In this dissertation we will explore the use of sampling to better understand
neural text generation models and in order to inform decoding algorithms. We will
view commonly known pathologies and biases of neural text generation models
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under the lens of such a probabilistic exploration and provide a new perspective on
their potential causes. We use these insights to propose and iterate on a sampling-
based decoding algorithm inspired by risk minimisation strategies, as well as
develop new sampling strategies altogether to sample from arbitrary distributions
where a per-token, i.e. autoregressive, factorisation does not exist.
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