
Judgment Aggregation under Issue Dependencies

Marco Costantini
University of Amsterdam

The Netherlands
marcostantini2008@gmail.com

Carla Groenland
University of Amsterdam

The Netherlands
carla.groenland@gmail.com

Ulle Endriss
University of Amsterdam

The Netherlands
ulle.endriss@uva.nl

Abstract

We introduce a new family of judgment aggregation rules,
called the binomial rules, designed to account for hidden de-
pendencies between some of the issues being judged. To place
them within the landscape of judgment aggregation rules, we
analyse both their axiomatic properties and their computa-
tional complexity, and we show that they contain both the
well-known distance-based rule and the basic rule returning
the most frequent overall judgment as special cases. To eval-
uate the performance of our rules empirically, we apply them
to a dataset of crowdsourced judgments regarding the qual-
ity of hotels extracted from the travel website TripAdvisor. In
our experiments we distinguish between the full dataset and a
subset of highly polarised judgments, and we develop a new
notion of polarisation for profiles of judgments for this pur-
pose, which may also be of independent interest.

1 Introduction
Judgment aggregation deals with the question of how to
best merge the judgments made by several agents regard-
ing a number of issues into a single consensus judgment
for each of these issues (List and Puppe 2009; Grossi and
Pigozzi 2014). It generalises preference aggregation (Diet-
rich and List 2007b), and is closely related to a body of work
on belief merging in AI (Everaere, Konieczny, and Marquis
2015). While originating in legal theory, philosophy, and
economics (List and Pettit 2002), several recent contribu-
tions have focused on the algorithmic dimension of judg-
ment aggregation and emphasised its relevance to a variety
of applications associated with AI, such as decision making
in multiagent systems and the aggregation of information
gathered by means of crowdsourcing (Endriss 2016).

In this paper, we introduce a new family of judgment ag-
gregation rules aimed at capturing a phenomenon that hith-
erto has not received any explicit attention in the literature,
namely the fact that when many individuals agree on how
to judge certain subsets of issues, then this may suggest that
there are hidden dependencies between those issues. To il-
lustrate the idea, consider the following example. A group
of 23 gastro-entertainment professionals need to decide on
the ideal meal to serve at a party. They propose one dish and
one drink each, leading to the following profile:
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Chips Beer Caviar Champagne

11 individuals 1 1 0 0
10 individuals 0 0 1 1

2 individuals 0 1 1 0

How should they decide? Any feasible outcome consists
of exactly one dish and exactly one drink, i.e., whatever
rule they use to aggregate their judgments should respect
this integrity constraint. If they use the majority rule to de-
cide, they will end up serving beer and caviar. This outcome
happens to respect the integrity constraint for this particu-
lar profile, but otherwise—intuitively speaking—it does not
seem a good choice. Unfortunately, no existing approach to
judgment aggregation—including, e.g., premise-based rules
(Dietrich and Mongin 2010), quota rules (Dietrich and List
2007a), distance-based rules (Miller and Osherson 2009),
rules inspired by voting theory (Lang et al. 2011), scoring
rules (Dietrich 2014), and representative-voter rules (Endriss
and Grandi 2014)—allows us to capture this intuition.

The aggregation rules we propose, the binomial rules, as-
sign scores to patterns of accepted/rejected issues. In our
example, one such pattern with a lot of support (and thus
a high score) is the joint acceptance of chips and beer. We
show that, by varying the range of patterns of interest, we
can capture two well-known rules and many interesting rules
in between. To better place our rules relative to known rules,
we analyse both their axiomatic properties and their compu-
tational complexity. Finally, we evaluate some of our rules
empirically, by testing them on judgments extracted from a
dataset of hotel reviews. Our rules can be expected to work
particularly well on highly polarised profiles of judgments.
To substantiate this point, we propose a new definition of po-
larisation, which we believe to be of independent interest.

The remainder of this paper is structured as follows. In
Section 2 we define the binomial rules and study their the-
oretical properties. In Section 3 we develop our notion of
polarisation, introduce the compliant-reviewer problem as a
means for evaluating aggregation rules, and compare two of
our rules with the majority rule. Section 4 concludes.

2 Binomial Rules
In this section we introduce a class of aggregation rules that
try to account for observed dependencies between issues.
The formal framework we work in is binary aggregation



with integrity constraints (Grandi and Endriss 2011), but our
rules can easily be adapted to related frameworks, notably
the formula-based framework of List and Pettit (2002).

2.1 Formal Framework
Let I = {1, . . . ,m} be a finite set of binary issues on
which to take a decision. We may think of each issue as a
yes/no-question. A ballot is a vector B = (b1, . . . , bm) ∈
{0, 1}m, indicating for each issue j ∈ I whether it is ac-
cepted (bj = 1) or rejected (bj = 0). We associate a set
{p1, . . . , pm} of propositional variables with I and refer to
formulas Γ in the corresponding propositional language as
integrity constraints. For example, the integrity constraint
Γ = (p1 ∧ p2 → p3) expresses that when you accept the
first two issues, then you must also accept the third. Note
that models for such formulas are isomorphic to ballots. For
a given integrity constraint Γ, we say that a ballot B is ra-
tional if it satisfies Γ, i.e., if B ∈ Mod(Γ).

Let N = {1, . . . , n} be a finite set of agents. Suppose
each of them reports a rational ballot (w.r.t. some integrity
constraint Γ), giving rise to a profile B = (B1, . . . , Bn).
We write bij for the judgment regading the jth issue in Bi,
the ballot submitted by agent i.

Using an aggregation rule, we want to map every such
profile into a single consensus ballot. For example, in a sce-
nario with three agents, three issues, and integrity constraint
Γ = (p1 ∧ p2 → p3), we may get the following profile

B1 = (1, 1, 1), B2 = (1, 0, 0), B3 = (0, 1, 0)

Each of the three ballots is rational. Nevertheless, if we
use the issue-wise majority rule to map this into a single
ballot, we obtain (1, 1, 0), which is not rational. This is the
well-known doctrinal paradox (Kornhauser and Sager 1993;
List and Pettit 2002). In this paper, we are only interested in
aggregation rules that are collectively rational, i.e., where
the outcome is rational whenever the input profile is. Ide-
ally, we get a single ballot as the outcome, but in prac-
tice there could be ties. Therefore, given an integrity con-
straint Γ, we define an aggregation rule as a function F :
Mod(Γ)n → P(Mod(Γ))\{∅}, mapping every rational pro-
file to a nonempty set of rational ballots.

In the sequel, we will sometimes refer to preference ag-
gregation rules and their generalisations to judgment aggre-
gation. The basic idea of embedding preference aggregation
into judgment aggregation is that we may think of issues as
representing questions such as “is A better than B?” and
can ensure that rational ballots correspond to well-formed
preference orders by choosing an appropriate integrity con-
straint, encoding properties of linear orders, such as transi-
tivity (Dietrich and List 2007b; Grandi and Endriss 2011).

2.2 A Family of Rules
Define the agreement between two ballots B,B′ ∈ {0, 1}m
as the number of issues on which they coincide:

Agr(B,B′) = #{j ∈ I | bj = b′j}

Equivalently, Agr(B,B′) is the difference betweenm and
the Hamming distance between B and B′.

For our rules, the idea is to score each rational ballot B?

in terms of how well it agrees with the individual ballots in
the profile on certain subsets of issues. We parametrise our
rules in terms of the sizes of such subsets to consider. Let
K ⊆ {1, . . . ,m} be such a set of possible sizes. If we award
one point for each subset I (the size of which is in K) and
each agent i ∈ N such that the ballot of i fully agrees with
B? on all issues in I , we obtain the following score:1

∑
I⊆I s.t. #I∈K

#{i ∈ N | ∀j ∈ I.bij = b?j} =
∑
B∈B

∑
k∈K

(
Agr(B,B?)

k

)

In fact, we will consider a generalisation of this definition,
where we may ascribe different levels of importance to the
agreement with issue sets of different sizes.
Definition 1. For every index set K ⊆ {1, . . . ,m} and
weight function w : K → R+, the corresponding binomial
rule is the aggregation rule FK,w mapping any given profile
B ∈ Mod(Γ)n to the following set:

FK,w(B) = argmax
B?∈Mod(Γ)

∑
B∈B

∑
k∈K

w(k) ·
(

Agr(B,B?)

k

)
Thus, for every ballot B? we compute a score by adding,

for every ballotB in the profile B and every number k ∈ K,
w(k) points for every set of k issues that B? agrees on with
B. FK,w returns all rational ballots that maximise this score.
Note that FK,w depends also on the integrity constraint Γ,
even if this is not explicit in our notation. We omit w in case
w : k 7→ 1 for all k ∈ K. In case K is a singleton {k},
we call the resulting rule a binomial-k rule. Observe that for
binomial-k rules the weight function w is irrelevant.

The family of binomial-k rules includes two known rules
as special cases. The first is F{1}, which returns the ratio-
nal ballots that maximise the sum of agreements with the
individual ballots. Miller and Osherson (2009) call this the
prototype rule, although more often it is simply referred to
as “the” distance-based rule (Pigozzi 2006; Endriss, Grandi,
and Porello 2012), as it is the rule that minimises the sum
of the Hamming distances between individual ballots in the
profile. F{1} thus is the generalisation of Kemeny’s rule for
preference aggregation (Kemeny 1959) to judgment aggre-
gation. In the absence of an integrity constraint (formally:
for Γ = >), F{1} reduces to the issue-wise majority rule.

The second case of a known binomial-k rule is the rule
for k = m. F{m} awards a point to B? for every ballot
B in the input profile that it agrees with entirely. In other
words, it returns the ballot(s) that occur(s) most frequently
in the profile. Thus, F{m} is a so-called representative-voter
rule (Endriss and Grandi 2014). These are rules that first
determine which of the agents is “most representative” and
then return that agent’s ballot as the outcome. Other ex-
amples for representative-voter ruls are the average-voter

1For the simplified term on the righthand side, we sum over
all B ∈ B rather than over all i ∈ N (which would amount to
the same thing). The reason we prefer this notation here is that
it allows us to apply the same formula for computing scores for
varying groups of agents, and not just some fixed N . This will be
helpful later on (cf. reinforcement, in Section 2.3).



rule (choosing the ballot from the profile that maximises the
sum of agreements with the rest) and the majority-voter rule
(choosing the ballot from the profile that is closest to the ma-
jority outcome). For consistency with this naming scheme,
we suggest the name plurality-voter rule for F{m}. Hart-
mann and Sprenger (2012) have proposed this rule under
the name of situation-based procedure and argued for it on
epistemic grounds, showing that it has good truth-tracking
properties. For the special case of preference aggregation,
the same rule has been advocated by Caragiannis, Procaccia,
and Shah (2014) under the name of modal ranking rule, also
on the basis of its truth-tracking performance. Thus, the fam-
ily of binomial-k rules subsumes two important (and very
different) aggregation rules from the literature. By varying
k, we obtain a spectrum of new rules in between.

For K = [m] = {1, . . . ,m}, i.e., for rules F[m],w that
take agreements of all sizes into account, we will consider
two weight functions, intended to normalise the effect each
binomial has. The first, w1 : k 7→ 1/

(
m
k

)
, is chosen so as

to ensure that each binomial contributes a term between 0
and 1. We call the resulting rule F[m],w1

the normalised
binomial rule. It, to some extent, compensates for the fact
that larger subsets of agreement have a disproportionally
high impact on the outcome. How high is this impact ex-
actly? When no weighting function is used, the identity∑`

k=1

(
`
k

)
= 2`−1, together with

(
`
k

)
= 0 for k > `, shows

that in fact F[m] selects those ballots B? that maximise the
sum

∑
B∈B 2Agr(B,B?). For this reason, we will also exper-

iment with a second weighting function that discounts large
subsets of agreements even more strongly than w1. We call
the rule F[m],w2

with w2 : k 7→ 1/mk the exponentially
normalised binomial rule.

2.3 Axiomatic Properties
A central question in all of social choice theory, includ-
ing judgment aggregation, is what normative properties, i.e.,
what axioms, a given aggregation rule satisfies (Arrow, Sen,
and Suzumura 2002; List and Pettit 2002; Endriss 2016). In
this section, we test our novel rules against a number of stan-
dard axioms and find that they stand out for satisfying both
collective rationality and reinforcement.

First, all binomial rules are clearly anonymous: all indi-
viduals are treated symmetrically, i.e., outcomes are invari-
ant under permutations of the ballots in a profile.

Second, binomial rules do not satisfy the standard formu-
lation of the neutrality axiom (Endriss 2016), which requires
that issues are treated symmetrically: if, for two issues, ev-
eryone either accepts them both or rejects them both, then
the rule should also either accept or reject both. A counterex-
ample can be constructed by picking an integrity constraint
such that only the seven ballots (0, 0, 1, 0, 0), (1, 1, 1, 0, 0),
(0, 0, 0, 1, 0), (1, 1, 0, 1, 0), (0, 0, 0, 0, 1), (1, 1, 0, 0, 1), and
(1, 0, 0, 0, 0) are allowed. For the profile containing the first
six ballots once, F{1} accepts only (1, 0, 0, 0, 0) which con-
tradicts neutrality when looking at the first two issues. We
believe that this indicates a deficiency with this standard
formulation of neutrality rather than with our rules,2 as this

2Slavkovik (2014) also argues against the neutrality axiom.

standard formulation does not account for the asymmetries
in the set of rational ballots induced by the integrity con-
straint. Note that for integrity constraints that are, in some
sense, symmetric (such as the one required to model prefer-
ences) this problem does not occur. Indeed, Kemeny’s rule
(the counterpart to F{1}) is neutral in the context of prefer-
ence aggregation (Arrow, Sen, and Suzumura 2002).

Going beyond basic symmetry requirements, we may
wish to ensure that, when we obtain the same outcome
B? for two different profiles (possibly tied with other out-
comes), then B? should continue to win when we join these
two profiles together. This is a very natural requirement that,
although it has received only little attention in judgment ag-
gregation to date, plays an important role in other areas of
social choice theory (Young 1974; Arrow, Sen, and Suzu-
mura 2002). Note that we are now speaking of aggregation
rules for possibly varying sets of agents. (In what follows,
we use ⊕ do denote concatenation of vectors.)
Definition 2. An aggregation rule F for varying sets of
agents is said to satisfy reinforcement if F (B ⊕ B′) =
F (B) ∩ F (B′) whenever F (B) ∩ F (B′) 6= ∅.

While very appealing, reinforcement is in fact violated
by most collectively rational judgment aggregation rules
that have been proposed for practical use.3 For example,
by the Young-Levenglick Theorem, amongst all preference
aggregation rules that are neutral and Condorcet-consistent,
Kemeny’s rule is the only one that satisfies reinforcement
(Young and Levenglick 1978). Hence, the generalisation
of any other neutral and Condorcet-consistent preference
aggregation rule to judgment aggregation must also vio-
late reinforcement. Thus, we can exclude, e.g., the judg-
ment aggregation rules that generalise Slater’s rule, Tide-
man’s ranked-pairs rule, or Young’s rule, definitions of
which are given by Lang and Slavkovik (2013). Endriss and
Grandi (2014) define a weaker version of the reinforcement
axiom and show that the majority-voter rule does not satisfy
it. The average-voter rule also violates reinforcement.4

On the other hand, as we will see next, it is easy to verify
that all binomial rules satisfy reinforcement.
Proposition 1. Every binomial rule satisfies reinforcement.

Proof. Let us denote the score received by ballot B? when
the binomial rule FK,w is applied to the profile B by
scoreK,w(B?,B) =

∑
B∈B

∑
k∈K w(k) ·

(Agr(B,B?)
k

)
. For

any two profiles B and B′ over disjoint groups, we have:

scoreK,w(B?,B ⊕B′) =
∑

B∈B⊕B′

∑
k∈K

w(k) ·
(Agr(B,B?)

k

)
=
∑
B∈B

∑
k∈K

w(k)·
(Agr(B,B?)

k

)
+
∑

B∈B′

∑
k∈K

w(k)·
(Agr(B,B?)

k

)
= scoreK,w(B?,B) + scoreK,w(B?,B′)

3The majority rule and other quota rules, while easily seen
to satisfy reinforcement, are collectively rational only for certain
(simple) integrity constraints (Dietrich and List 2007a).

4To see this, consider a profile in which 10 agents pick (1, 0, 0),
10 pick (0, 1, 0), and 11 pick (0, 0, 1), and a second profile in
which 1 voter picks (0, 0, 0) and 2 pick (0, 0, 1). In both profiles
(0, 0, 1) wins, but in their union (0, 0, 0) wins.



Hence, the rule FK,w, which simply maximises scoreK,w,
must satisfy the reinforcement axiom as claimed.

The only other judgment aggregation rules proposed in
the literature we are aware of that are both collectively ra-
tional and satisfy reinforcement are the scoring rules of Di-
etrich (2014). We note that Dietrich discusses neither rein-
forcement nor the issue of hidden dependencies.

2.4 Computational Complexity
In order to study the complexity of the binomial rules, con-
sider the following winner determination problem.

WINDET(F )
Instance: Integrity constr. Γ, profile B ∈ Mod(Γ)n,

partial ballot b : I → {0, 1} for some I ⊆ I.
Question: Is there a B?∈F (B) s.t. b?j = b(j), ∀j∈I?
If we are able to answer the above question, we can com-

pute winners for F , by successively expanding I . Building
on work by Hemaspaandra, Spakowski, and Vogel (2005),
Grandi (2012) showed that WINDET is ΘP

2 -complete5 for
the distance-based rule in binary aggregation with integrity
constraints, i.e., for our rule F{1}. On the other hand,
WINDET for the plurality-voter rule F{m} is immediately
seen to be polynomial: one only has to consider the ballots
in B and count how often each ballot occurs. The following
result generalises this to binomial-k rules with k close to m.
Proposition 2. The winner determination problem for
binomial-k rules F{k} is polynomial for (m− k) ∈ O(1).

Proof. Let k close to m, integrity constraint Γ, and profile
B be given. A ballot B can only receive a positive score
if Agr(B,B′) > k for at least one B′ ∈ B. Hence, only
ballots that differ on at most m− k issues with a ballot in B
can get picked, of which there are at most:

n[1+m+m(m−1)+· · ·+m(m−1) · · · (k+1)] ∼ nmm−k

For each ballot, the rule needs to do propositional-logic
model checking for |Γ| many formulas, compute agreement
for m issues in n ballots, and finally compute the binomial
coefficients and sum the result. But O(|Γ|n2m1+(m−k)) is
polynomial if m− k is constant, so we are done.

However, when k is a small constant, the corresponding
binomial-k rule is as intractable as the Kemeny rule F{1}:
Proposition 3. The winner determination problem for
binomial-k rules F{k} is ΘP

2 -complete for k ∈ O(1).

Proof (sketch). ΘP
2 -membership is routine. To prove ΘP

2 -
hardness for all k ∈ O(1), recall how Grandi proved it for
k = 1 (Grandi 2012, Theorem 7.4.5). The central ingre-
dient of his proof is to show that it is NP-hard to check
whether the F{1}-score of a given ballot exceeds a given
number K. If we can show that the same holds for any F{k}
with k ∈ O(1), then we are done. Now take k = 2 and as-
sume we have an algorithm to compute F{2}-scores. Recall

5ΘP
2 = PNP[log] is the class of decision problems that can be

solved in polynomial time if we are allowed a logarithmic number
of queries to an NP-oracle (Wagner 1990).

that the F{2}-score of a ballot is equal to the number of times
that ballot agrees on a pair of issues with some ballot in the
profile, while its F{1}-score is equal to the number of times
it agrees on a single issue with some ballot in the profile.
Thus, we could use our algorithm to compute the F{1}-score
of a given profile B as follows: First, add one more issue
to the problem and let all voters agree on accepting it, call
the resulting profile B′, and compute the F{2}-score for B′.
Second, compute the F{2}-score for B. Then the F{1}-score
for B is the difference between these two numbers. Hence,
computing F{2}-scores is NP-hard as well. By induction, the
same holds for all F{k} with k ∈ O(1).

The determination of the exact computational complexity
of F{k} for medium values of k, as well as for FK,w more
generally, at this point remains an open question. Our analy-
sis strongly suggests that it will be the smallest index k ∈ K
that influences the complexity of FK,w most significantly.

3 Experiments
In this section we evaluate our new aggregation rules ex-
perimentally, using a collection of hotel reviews taken from
TripAdvisor. To allow us to investigate how our rules per-
form specifically on data with strong dependencies between
issues, we propose a notion of polarisation of a profile.

3.1 Polarisation
Polarisation occurs when there are clusters of ballots that
express opposite views on the issues. An example of a po-
larised profile has already been given in the introduction:
one cluster votes for chips and beer and the other for caviar
and champagne. One could imagine there is a “latent” in-
tegrity constraint reflected by the votes that these are the
only “acceptable” combinations, along with some “noise”
(the two individuals voting for beer and caviar).

Polarised profiles are characterised by both correlation
between the issues and uncertainty on judgments. Correla-
tion ensures that there is at least one cluster of ballots that
all differ only slightly from a particular model for the issues.
Uncertainty entails the presence of a second cluster of bal-
lots taking an opposite view on these issues. Therefore, we
define the polarisation coefficient of a profile as the product
of a correlation coefficient and an uncertainty coefficient.

Definition 3. The correlation coefficient of profile B is:

ρB =
1

n ·
(
m
2

) ∑
j 6=j′∈I

|2 ·#{i ∈ N | bij = bij′} − n|

Thus, correlation is maximal for a completely unanimous
profile (where all agents agree on all issues). Pairs of issues
on which agents tend to make complementary judgments
also increase this coefficient. Correlation is low for random
profiles in which we can expect bij = bij′ to hold for about
50% of all agents i ∈ N . The normalisation factor n ·

(
m
2

)
ensures that the correlation coefficient ranges from 0 to 1.

The uncertainty coefficient we propose measures whether
individuals tend to take opposite views on issues.



Definition 4. The uncertainty coefficient of profile B is:

uB = 1− 1

nm

∑
j∈I
|n− 2 ·#{i ∈ N | bij = 1}|

Again, nm is a normalisation factor that ensures that the
coefficient takes values between 0 and 1. Uncertainty is min-
imal for unanimous profiles and maximal when each issue is
accepted by exactly 50% of the population.
Definition 5. The polarisation coefficient of profile B is:

ΨB = ρB · uB
To see how ΨB behaves, consider a simple profile

where four individuals have to assign a value to issues 1
and 2. There are four possible ballots. If all the individ-
uals choose the same ballot, there is no uncertainty but
maximal correlation. For a profile where the four bal-
lots cover all four possible configurations, i.e., for B =
((0, 0), (0, 1), (1, 0), (1, 1)), there is no correlation, while
the uncertainty coefficient is equal to 1. So in both these
cases polarisation is 0. To maximise polarisation, the indi-
viduals have to split into two groups of two and pick oppo-
site ballots, either (0, 0) against (1, 1) or (0, 1) against (1, 0).
Here polarisation can be seen clearly, and the product of cor-
relation and uncertainty coefficient indeed is 1.

In related work, Can, Ozkes, and Storcken (2014) have
proposed an axiomatic framework for analysing possible no-
tions of polarisation of a preference profile. As a means
of offering further support for our proposed definition, we
show that it meets the basic requirements identified by Can,
Ozkes, and Storcken when translated to our setting:

• Regularity: ΨB ∈ [0, 1] for all profiles B; ΨB = 0 for
unanimous profiles B (as uB = 0); and ΨB = 1 for pro-
files B in which half of the population pick some ballotB
and the other half pick the exact opposite of B.

• Neutrality: Polarisation is not affected when we apply
the same permutation on issues to all ballots.

• Replication invariance: ΨB = ΨkB for all profiles B
and k ∈ N, where kB is the result of k times replicating
B. (To see this, note that both ρ and u essentially compute
which proportion of agents have a certain property.)

Can, Ozkes, and Storcken (2014) also propose a fourth
axiom, support independence, which in our context would
amount to saying that when one agent changes her judgment
on one issue from the minority opinion to the majority opin-
ion, then the effect this change has on the polarisation coef-
ficient should not depend on the relative size of the major-
ity. This is a very strong axiom (allowing Can, Ozkes, and
Storcken to characterise a single polarisation coefficient as
meeting all four axioms) of, arguably, less normative appeal
than the other three (e.g., it seems reasonable to also per-
mit polarisation coefficients where small changes have less
impact for profiles with already very strong majorities and
more impact for relatively balanced profiles).

3.2 Description of the Data
We use a dataset of hotel reviews extracted from TripAd-
visor by Wang, Lu, and Zhai (2010), which is available

at PrefLib.org, an online reference library of prefer-
ence data (Mattei and Walsh 2013). Users were able to rate
each hotel by assigning between 1 and 5 stars for each of
a number of features. We only use the part of the original
dataset consisting of reviews where the user has rated all of
the following six features: value-for-money, rooms, location,
cleanliness, front desk, and service. We interpret any rating
between 1 and 3 stars as a negative signal (“issue rejected”)
and any rating of 4 or 5 stars as a positive signal (“issue ac-
cepted”).6 A single review is thus transformed into a ballot
with six binary issues and these are bundled into profiles,
one for each hotel, resulting in 1,850 profiles (hotels) with
an average of 68 ballots (reviews) each.

There is no (explicit) integrity constraint. Nevertheless,
the judgments made in the reviews can be expected to be
fairly correlated, not only because of the relative similarity
between some of the features, but also because guests who
had a pleasant stay in a hotel will often evaluate all features
relatively highly. The mean polarisation coefficient of the
1,850 profiles is 0.26. In order to construct a second dataset
of particularly highly polarised profiles, we have collected
all profiles with a polarisation coefficient of at least 0.5. This
second dataset consists of 31 profiles with 32 ballots on av-
erage. Its mean polarisation coefficient is 0.57.

3.3 Evaluation Criteria
We will use three different criteria to assess the quality of
the results returned by different aggregation rules. The first
two are relatively simply measures that track how well the
outcome preserves certain features of the input profile.
Definition 6. The agreement score of outcome B? relative
to profile B is defined as follows:

agrB(B?) =
1

nm

∑
j∈I

#{i ∈ N | bij = b?j}

Thus, agrB(B?) measures overall agreement of B? with
the profile B. In other words, it measures how well the out-
come matches the majority outcome (which is the ideal as
far as this specific evaluation criterion is concerned).
Definition 7. The correlation score of outcome B? relative
to profile B is defined as follows:

corrB(B?) =
1

2·
(
m
2

) ∑
j 6=j′∈I

|corrB(j, j′) + cmp(b?j , b
?
j′)|,

where corrB(j, j′) = 1
n · (2 ·#{i ∈ N | bij = bij′} − n),

and cmp(x, y) = 1 if x = y and cmp(x, y) = −1 otherwise.
Both of the terms inside the sum are positive for con-

cordant arguments and negative otherwise. As the absolute
value of their sum is maximal when they assume the same
sign (with 2 as top value), the more B? respects the correla-
tion between issues in B, the higher will be the correlation
score. For polarised profiles, the two scores are complemen-
tary, as corrB would evaluate best a ballot in the middle of

6We chose a cut-off point between 3 and 4 rather than between 2
and 3 to achieve a better balance between 0’s and 1’s in the resulting
dataset. Roughly 24% of all judgments in this dataset are 0’s.



Figure 1: Compliant-reviewer scores of all profiles

a cluster, while agrB is usually maximised by ballots that
compromise between clusters.

To introduce our third evaluation criterion, consider the
following scenario. You want to write a hotel review for an
online magazine and you want to please as many of the read-
ers of the magazine as possible (to maximise the number of
like’s received). Suppose a reader will like your review if
she agrees with your judgment on at least k of the issues
(for our data, k 6 6). Our third evaluation criterion assesses
how well the outcome B? produced by the rule evaluated
solves this compliant-reviewer problem.7

Definition 8. The compliant-reviewer score with threshold
k 6 m of outcome B? relative to profile B is defined as:

c-rkB(B?) =
1

n
·#{i ∈ N | Agr(Bi, B

?) > k}

The assumption underlying this evaluation criterion is that
when there are dependencies between issues, agents will
want a higher agreement with the outcome of a rule, since
even small changes would break the patterns of acceptance
satisfying the dependencies, thereby leading to a bad deci-
sion as in the example in the introduction.

3.4 Results
We have compared three rules on the two datasets: the ma-
jority rule (which is equivalent to F{1}, as there is no in-
tegrity constraint), the normalised binomial rule F[m],w1

,
and the exponentially normalised binomial rule F[m],w2

. For
the majority rule, ties have been broken in favour of 0.8 For
the other two rules, we did not observe any ties.

For the full dataset, Figure 1 plots the mean compliant-
reviewer score for thresholds k = 1, . . . , 6 for each rule. We
can see that the majority rule does slightly better for small k
and the binomial rules do slightly better for large k, which
is an effect one would have expected to observe. Still, the

7As pointed out by an anonymous reviewer, there are interest-
ing connections between the Ostrogorski Paradox (Kelly 1989) and
(failures to solve) our compliant-reviewer problem.

8Breaking ties in favour of 1 does not significantly affect results.

Figure 2: Compliant-reviewer scores of polarised profiles

main finding here is that all rules perform similarly well.
To a large extent, this effect is due to all rules choosing the
same outcome: majority and F[m],w1

agree in 75% of the
cases, majority and F[m],w2

in 84%, and the two binomial
rules in 87%. Also the mean agreement and correlation
scores are not affected significantly by the choice of rule:

Majority: agrB(B?) = 1.00 corrB(B?) = 0.75

Binomial (norm): agrB(B?) = 0.99 corrB(B?) = 0.79

Binomial (exp): agrB(B?) = 1.00 corrB(B?) = 0.78

The situation changes for the second dataset, which in-
cludes only highly polarised profiles. Figure 2 shows the
mean compliant-reviewer scores for k = 1, . . . , 6. As we
can see, when the readers’ agreement with the reviewer does
not need to be too high, e.g., at most 3, then the majority rule
performs best in getting as many like’s as possible. But when
readers want a high agreement with the reviewer to be sat-
isfied, then the normalised binomial rule works much better.
This is because it chooses ballots in the middle of a clus-
ter, thereby achieving high agreement with the individuals
in that cluster, but disregarding all the ballots belonging to
the other cluster. In typical examples in the dataset, the ma-
jority rule accepts half of the issues and rejects the other half,
thereby arriving at a compromise that is too weak for most
readers, while the normalised binomial rule tends to pick ei-
ther a clearly positive outcome (with all issues accepted) or
a clearly negative outcome (with all issues rejected). The ex-
ponentially normalised binomial rule scores even better.

For the restricted dataset, the agreement between the
majority rule and the two binomial rules drops significantly,
from 75% to 13% and from 84% to 16%, respectively.
The agreement between the two binomial rules stays
high, at 84% (down from 87%). The mean agreement and
correlation scores for the restricted dataset are as follows:

Majority: agrB(B?) = 1.00 corrB(B?) = 0.58

Binomial (norm): agrB(B?) = 0.95 corrB(B?) = 0.83

Binomial (exp): agrB(B?) = 0.97 corrB(B?) = 0.81

As we can see, moving outcomes towards the centre of a
cluster, as is the case for the two binomial rules, increases



the correlation score, but that improvement is paid for with
a (very modest) decrease in the agreement score.

4 Conclusion
We have introduced the binomial rules for judgment aggre-
gation to account for hidden dependencies in the input and
placed them into the larger landscape of rules proposed in
the literature. They stand out as satisfying the reinforcement
axiom as well as being collectively rational, and they include
both intractable and computationally easy rules. Our experi-
ments, performed on real-world data, show that, indeed, bi-
nomial rules capture dependencies better than the majority
rule, with only a very small loss in total agreement. The ex-
ponentially normalised rule performs particularly well.

To be able to carry out our experiments, we have devel-
oped both a novel notion of polarisation for profiles of judg-
ments and several evaluation criteria for judgment aggrega-
tion rules. Both of these contributions may be of independent
interest to others.

Our work suggests multiple avenues for future work.
First, a better understanding of how to choose the weight
function w in FK,w is required (so far, our experiments
merely suggest that fast-decreasing weight functions are
useful to compensate for the fast-growing binomial coeffi-
cients). Second, our evaluation criteria may be applied to
other rules and other data. Third, these criteria themselves
suggest new approaches to designing aggregation rules.
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