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Abstract

The existence of a statistical learning mechanism under-
lying the cognitive capacity to learn a “language” from
an auditory input stream is well established. Computa-
tional models of segmentation formalize and test the spe-
cific theoretical assumptions about the mechanistic nature
of this process. We present the Retention and Recognition
model (R&R), a probabilistic model based on the cog-
nitive processes of retention and recognition. We show
that R&R outperforms other models in explaining for a
range of experimental results: for a 2AFC task with hu-
man adults reported in Frank, Goldwater, Griffiths, and
Tenenbaum (2010), as well as with data of human adults
from a variant experiment from Peña, Bonatti, Nespor,
and Mehler (2002), and with the responses of a segmen-
tation experiment with rats (Toro & Trobalón, 2005). Our
model also offers a new prediction on the response distri-
bution over test items, which we will confirm revisiting
these experimental results.

Keywords: artificial language learning; rule learn-
ing; statistical learning; animal cognition; cognitive mod-
elling

1 Introduction

In artificial language learning (ALL) experiments, infants,
human adults and nonhuman animals are exposed to sam-
ples from an artificial language, and tested on their ability
to discover the pattern that characterizes that language.
Over the last two decades, ALL has come to play a key
role in many debates about the nature of the cognitive
mechanisms underlying language and music, and ques-
tions about whether these mechanisms are unique to hu-

mans, language and/or music. The discovery that young
infants are sensitive to transitional probabilities in speech
streams (Saffran, Newport, & Aslin, 1996), which likely
plays a role in discovering the words of their native lan-
guage, has led to wide-spread acceptance of a ’statis-
tical learning’ mechanism. However, many researchers
have argued that there is a second, distinct ‘rule learning’
mechanism at work when subjects process a stream con-
taining patterns defined by ‘algebraic rules’ (e.g., Marcus,
Vijayan, Rao, and Vishton (1999)).

In a cleverly designed experiment, Peña, Bonatti, Ne-
spor and Mehler (2002) obtain results that, in their inter-
pretation, support the existence of (at least) these two dis-
tinct mechanisms and show that they can be triggered by
subtle cues in the input. The Peña et al. work was subject
of a vigorous debate that focused on possible confounds
and the question whether the data really demonstrates the
existence of a separate rule learning mechanism (Onnis,
Monaghan, Richmond, and Chater (2005); Endress and
Bonatti (2006); Perruchet, Tyler, Galland, and Peereman
(2004), etc.).

In our opinion, the debate about whether ’rule learning’
and ’statistical learning’ are best described as separate
mechanisms with an overarching control structure that se-
lects between them, or as different processing modes of
a single mechanism, is premature, since at this moment
we do not yet understand the most fundamental aspects of
the process of segmentation. We therefore focus on what
we feel is the most urgent issue: identifying which units
of an unsegmented speech stream are extracted and how
can we quantify the strength of their memory trace. We
argue that a real understanding of the process of segmen-
tation that explains the pattern of results reported in many
papers on the topic requires a precise, integrated computa-
tional model that makes correct predictions on the behav-
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ior of subjects for a variety of artificial languages. Such a
model must, in our view, be pitched at what Marr (1982)
has termed the processing level, because a model at the
rational level could not address the differences that were
observed between different species; and because we do
not know enough yet to venture into modelling at the neu-
ral level. A model with these characteristics has, to the
best of our knowledge, not yet been proposed.

Before presenting such processing model, we first sum-
marize the experimental record. We test our model —
the Retention-Recognition Model (R&R) — against re-
sults from a variety of experiments: two conditions from
the Toro and Trobalón (2005) studies with rats, a vari-
ant of the baseline experiment from the Peña et al. (2002)
studies, and the three internet-based experiments with hu-
man adults reported in (Frank et al., 2010). In the next
section, we will first describe the main experimental find-
ings; the following sections then define the basic model
and evaluate it against empirical data. In section 5 we dis-
cuss related work, including models proposed for some
of the same datasets and a model (PARSER, by Perruchet
and Vinter (1998)) that has some similarities with ours but
also important differences.

2 Experimental Record
Peña et al. (2002) report results from an Artificial Lan-
guage Learning experiment in which French-speaking
adults are exposed to a stream of nonsense words, and
then tested to ascertain whether they have detected the
rules underlying the internal structure of the words. The
“words” in these experiments are syllable triples of the
form AXC, where A and C reliably predict each other
while for a given AXC pattern, X is instantiated in 3 differ-
ent ways. For instance, ‘puliki’ and ‘puraki’ and ‘pufoki’
constitute one “family” of words. In the familiarization
phase, subjects heard a stream of words constructed by
randomly picking words from 3 such families. In some of
the experiments, subliminal pauses were inserted between
subsequent words in the stream.

In the test phase of the experiments, subjects were
tested on whether they recognized these words, but also on
the recognition of partwords (triples that occurred in the
speech stream but that cross word-boundaries, thus having
the structure CnAmX or XCnAm), and the “recognition” of
rulewords (triples AYC that conform to an attested A C
pattern, but with a middle syllable Y that did not occur in
this position in the stream). Some examples of the stream,
words, partwords and rulewords are given in table 1.

In the original paper, all tests involve a forced choice
task, where subjects are presented with pairs of triples

and are asked which of the two was more likely to be
part of the artificial language they heard in the familiar-
ization phase. Tested after 10 minutes of exposure, the
subjects show a significant preference for words over part-
words, but they have no preference when they compare
rulewords and partwords. If the exposure time is increased
to 30 minutes, they prefer partwords to rulewords.In a
third experiment, micropauses of 25 ms are added be-
tween words; now, only 2 minutes of exposure results in a
preference for rulewords.

We present in this paper a variant of the baseline exper-
iment (10 minutes exposure, and a test involving words
and partwords), in which we substitute the forced choice
task with an alternative test. In this set up, participants
will have to answer a ’yes/no’ question about a sequence
being a word of the artificial language; each of this ques-
tions will be presented together with a confidence rate
about the answer. As explained in section 4.2, this al-
ternative type of test reveals interesting properties in the
responses per test item.

stream pulikiberagatafodupurakibefogatalidu ...
words
(AXC) puliki, beraga, tafodu, puraki, befoga, ...

part-words
(CAX, XCA) kibera, ragata, gatafo, fodupu, dupura, ...

rule-words
(AYC) pubeki, beduga, takidu, ...

Table 1: Summary of the stimuli used in the experiments
by Peña et al. (2002)

Toro and Trobalón (2005, Experiment 3A) report sim-
ilar experiments with rats. The animals are exposed to a
20 minute speech stream (with or without pauses) made
out of the same triples as used by Peña et al. (2002). Al-
though the rats could segment a simpler speech stream on
the basis of co-occurrence frequencies, after the Peña et
al. stream (without micropauses) their response rates do
not differentiate between words and partwords; only with
the insertion of micropauses they show a higher response
rate for words. With or without micropauses, the reponses
to rulewords are not significantly different from the re-
sponses to partwords. Toro and Trobalón interpret this as
evidence for lack of generalization —rats do generalize,
but less readily than humans. But since partwords were
actually present in the familiarization stream and rule-
words weren’t, the data is consistent with a model that as-
sumes degrees of generalization. Unfortunately, the con-
trol experiment with non-attested non-rule-obeying sylla-
ble combinations was not performed.

Frank et al. (2010) present an extensive study of seg-
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p1(s) = (1−Bactivation(s)) ·D#types

p2(s) = Alength(s) ·Cπ

0 6 A,B,C,D 6 1; π =

{
0 after a pause
1 otherwise

Figure 1: R&R:The Retention-Recognition Model

mentation in human adults. They focus on how different
properties of the stimuli can influence the performance of
the participants. They vary the number of words in the
sentences that compose the stimuli, as well as the total
number of different words in the language and the amount
of repetitions of each word. These results confirm that the
length of a sentence and the number of words increase
the difficulty of the task, while the amount of repetitions
boosts the performance of the subjects.

3 R&R: the Retention-Recognition
Model

3.1 Model description

In designing our model we assume that any process of
learning and generalization, whatever form it may take,
must operate on items extracted from the input stream
which are committed to memory. The process of Arti-
ficial Language Learning as viewed by Peña et al. and
its follow-up studies may thus be divided into two steps:
(1) segmentation of the input stream and memorization
of segments, and (2) generalizing the store of memorized

fragments. In the present paper we propose a detailed,
quantitative model of the first of these steps, allowing
us to account for existing experimental results concern-
ing segmentation and memorization. We present a sim-
ple processing model, R&R, that describes the memoriza-
tion process during the familiarization phase of the exper-
iments.

The R&R model is represented in figure 1. It operates
on segments (subsequences of the stream, with no a priori
constraints on the length of the subsequence considered),
and maintains a memory of such segments with an associ-
ated (subjective) count. Given an (initially empty) mem-
ory, and any segment from the input stream, the model
may (with probability p1) recognize it (i.e., match it with
a segment in memory). If it succeeds, the subjective fre-
quency of the segment is incremented with 1. If it fails
to recognize the segment, the model might (with proba-
bility p2) still retain it (i.e., add it to memory with initial
subjective frequency 1 if it was not stored, or increase the
subjective frequency by 1 as a form of ’late recognition’).
In this way, the model builds a memory of segments that
have different degrees of familiarity depending on their
distribution in the stream.

The model involves free parameters (A,B,C,D) that
may be fitted to empirical data. The B parameter describes
how the recognition probability increases with the subjec-
tive count (‘activation’) of the segment in memory. The D
parameter describes the decrease in recognition probabil-
ity with the number of different items in memory. Note
that the current model equates the activation of a segment
with its subjective frequency, but the term “activation”
suggests future extensions of the model, for instance to
take recency effects into account. Note further that to ac-
count quantitatively for the recognition of rule-words in
the experiments of Peña et al. (2002), the model should be
extended with a capacity to assign non-zero activations to
unseen triples which share statistically significant proper-
ties with the stored exemplars, but that is beyond the scope
of this paper.

The A parameter describes how quickly the retention
probability decreases with the length of segment. The
factor Cπ attenuates this probability unless the segment
appears right after a micropause. In this way we model
the increased likelihood of a perceptual boundary after a
micropause, which makes pause-delimited segments more
salient.

3.2 Qualitative behaviour of the model

R&R exhibits rich-get-richer dynamics: as the subjective
frequency of a sequence grows, the probability for this
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sequence to be recognized on its next occurrence in the
stream also grows, and therefore its subjective frequency
is likely to increase again. A sequence, however, cannot
be recognized before it has been retained. The stochas-
ticity of the retention will cause some sequences to be re-
tained later than others, so not all sequences will benefit
equally from a high recognition probability.

With this interplay between the stochasticity of the re-
tention and the (also stochastic) rich-get-richer dynamics
of the recognition, even sequences that are identical in
terms of absolute frequency may end up with substantially
different subjective frequency. This effect can be observed
in figure 2, which shows the subjective frequency of the
model for the baseline experiment in Peña et al. (2002).
As can be seen, the model presents different behaviour un-
der different parameters, but all of them produce a some-
what skewed distribution of subjective frequencies.

The parameters of the model can regulate the degree
of skew (in general, low probabilities yield greater skew)
and other aspects of the behaviour of the model: as shown
in figure 2, R&R can yield distributions of subjective fre-
quencies in which the words of a stream are clearly dis-
tinguished from the partwords, as well as others in which
some of the partwords will have higher subjective fre-
quencies than some of the words.

The qualitative behavior of R&R predicts therefore that
the responses of subjects in the segmentation experiments
will reflect the skewed distribution of the memorized se-
quences. The next section analyzes whether this predic-
tions is found in the empirical results.

4 Empirical predictions and empir-
ical data

4.1 Prediction of observed skew in response
distribution in rats

We have implemented the R&R model in Python and stud-
ied its behavior under a variety of parameter settings. We
exposed the model to a stream of syllables that we created
by following the description of the familiarization stream
in Peña et al. (2002). In that stream, words appear all with
exactly the same frequency (e.g. puliki, beraga, tafodu,
etc. appear 100 times each in the 10 minute condition).
Partwords have a much lower frequency (approximately
1/2 of the word frequency)1.

1The exact frequency depends on the random process by which
words are sampled; in our simulations we have assumed that Peña et
al. repeatedly play the complete sequence of words in randomized or-
der. We also tried other processes consistent with the description they
give, and obtained very similar results

In line with the general observations made above, R&R
generates skewed distributions when presented with this
familiarization stream (see figure 2). Such a skew has, to
the best of our knowledge, not been reported yet in the
analysis of experimental ALL results on adults, which all
report averages over responses in a forced choice setting.
Nor has it been reported in papers on experiments with
prelinguistic infants and animals, which do measure re-
ponses to individual test items but all report averages over
stimulus classes.

To investigate whether the experimental results reflect
our prediction of skew, we need another type of analysis.
We first apply such an analysis to the original data of (Toro
& Trobalón, 2005), which the authors kindly shared. The
authors measure leverpressing responses of the rats when
exposed to the test triples to assess their recognition of
words, partwords and rulewords. In figures 3 and 4 we
plot, with small solid circles, the responses of rats after
familiarization to the stream without and with pauses re-
spectively. We again plot the data for partwords and words
ordered by response frequency.

Interestingly, thanks to plotting the individual re-
sponses per item, we can now observe that the responses
clearly follow a very skewed distribution. This new ob-
servation of these experimental results confirm the predic-
tion that we derived from the qualitative behavior of our
model: that the responses of subjects for the test items are
not uniform within the class of stimuli.

To evaluate how well the model can fit these data quan-
titatively, we make the additional assumption that the
measured response rates are directly proportional to the
subjective frequencies of the triples in the memories of the
rats and then search for parameter settings that produce
the best fit (measured with squared error) to the ’median’
rat2 (shown as blue lines in the graphs). We fit parame-
ters B and D, and a value3 that combines A and C, to the
data without pauses; we then used the data with pauses
solely to differentiate between the contributions of A and
C. The pink lines in the graphs give the prediction of the
model with the thus fitted parameters, and demonstrate a
surprisingly good fit.

We also plot the average responses of the rats and aver-
age subjective frequencies of the model in figures 5 and
6. In the experiments without pauses (figure 5), the rats
seem, counterintuitively and in contrast to the model’s

2Defined as the rat with the median lever pressing response to the
words and partwords with the highest and second highest response rates.

3As all considered segments have length 3 and there is no informa-
tion to differentiate between the contributions of A and C, we estimate
the value of A3C instead. We then assume these values as given, and
employ the corresponding data from the experiment with micropauses
to estimate A and C.
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Figure 2: Subjective Frequencies in 4 runs of the R&R model, with different parameters, when familiarized with the
AXC language of Peña et al. (2002).

prediction, to prefer partwords over words. The differ-
ence is not statistically significant, however (t(7)=-1.47,
p=.184, as reported by (Toro & Trobalón, 2005)).

4.2 Prediction of observed skew in response
distribution in humans

We have been able to confirm the prediction of skew in
the response distribution of rats because we obtained ac-
cess to the original data, which consisted of responses per
item. But when it comes to humans, we encounter some
complications: adults are typically tested in 2AFC tasks,
which do not allow for a study of the distribution of re-
sponses for single items; as for infants, although the type
of responses that are recorded (typically, listening times)
would allow to investigate the preference for single items,
the reported data consists only on averages for classes of
sequences, and we could not obtain access to the origi-
nal data for any of the relevant studies, despite repeated

requests.
For these reasons, we have run an experiment with hu-

man adults to investigate if the skew of response distribu-
tions is consistent with that predicted by R&R. For this,
we used stimuli following the structure proposed in Peña
et al. (2002).

Methods

Participants
13 participants, master students of the University of
Amsterdam, participated in the study as part of one of
their courses.

Stimuli
We presented an 11 minute speech stream of synthetic
speech syllables generated with eSpeak. We used two
conditions that only differed in the randomization of the
position of a syllable in a word, and the randomization of
the order of appearance of those words. For one group,
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Figure 3: Responses of rats (blue) and subjective frequen-
cies of the model (pink), without pauses. W indicates
words; P indicates partwords; both ordered by response
frequency. Parameter setting of the model: A=0.5; B=0.6;
C=0.7; D=0.85.

Figure 4: Responses of rats (blue) and subjective fre-
quencies of the model (pink), with pauses. W indicates
words; P indicates partwords; both ordered by response
frequency. Parameter setting of the model: A=0.5; B=0.6;
C=0.7; D=0.85.

the words were: jaduki, jamaki, jataki, lidufo, limafo,
litafo, sudube, sumabe, sutabe; for the other, the words
were: jabeta, jaduta, jakita, mabefo, madufo, makifo,
subeli, suduli, sukili. Each word was presented 100
times, and their order of appearance was random with the
constrain that one word cannot follow another of the same
family (i.e., that starts and ends with the same syllable).

The test items consist of the nine words of the fa-
miliarization stream and nine partwords, also present in
the familiarization stream, consisting of two syllables
of one word and one syllable of the next, or of one
syllable of one word and two syllables of the next. These
eighteen items appear two times in the test set, and their
order of appearance is randomized (but constant across
participants), with the constraint that the same sequence

Figure 5: Average responses of rats and model, for exper-
iment without pauses.

Figure 6: Average responses of rats and model, for exper-
iment with pauses.

doesn’t appear consecutively.

Procedure
The participants were randomly assigned to one of the
two conditions. The stimuli were presented with the
use of a web form. They were instructed to listen to
the whole familiarization stream, for which they would
have to answer questions afterwards. In the test phase,
each test item was presented acoustically, followed with
the question ‘Is this sequence part of the language you
have heard?’, to be answered with yes/no. Afterwards,
they were asked to rate their confidence in the previous
answer, in a scale from 1 to 7 (where 1 is minimum
confidence and 7 is maximum).

Results
The average accuracy of the participants is 59.25%. This
number is below that of Peña et al. (2002) (73.3%);
this difference may reflect the fact that test items are
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Figure 7: Confidence rates, averaged per ranked item.

presented in isolation, in contrast with the 2AFC task that
Peña et al. (2002) used, where two items are presented
at the same time and therefore the participant has more
information (e.g., for a word that might have been ac-
cepted at chance level, the presence of its paired partword
in the test can provide an extra hint for accepting the
word). Nevertheless, the difference between words and
partwords is significant (T-test over scale responses: t =
2.8722, df = 21.971, p-value = 0.008859).

We use the scale response of the confidence rate, mul-
tiplied with -1 if the answer to the yes/no question was
negative. For each participant, we order their responses,
maintaining the separation between words and partwords.
Then we align the responses by their class (word or part-
word) and rank (position in the ordered list or responses
for a particular class) and we average across participants.
The assumption behind this procedure is that words are
indistinguishable in terms of their frequency, but yet the
most salient word for one participant need not be the most
salient word for the other participant. In other words,
we anonymize the particular item, while maintaining their
confidence rate, rank and class.

The results are shown in figure 7, combining the two
conditions. Thanks to analysing the responses per item,
we can observe that, as we expected, the data of human
adults also bear out the prediction of skew. The responses
given to items of the same class show a great degree of
assymetry, to the extent that among the sequences with
highest acceptability there are also a few partwords. We
therefore confirm that the skewed responses are not re-
stricted to nonhuman animals such as rats, but it also a
characteristic behavior of human adults.

4.3 Fitting R&R to forced choice data
We have seen that the predictions of R&R in terms of
skew are visible in the experimental data of rats and hu-
mans. However, both experiments involve a small number
of subjects, so we turn our attention now to a more com-
prehensive study (Frank et al., 2010), in order to use a
sufficiently big number of datapoints to give a quantita-
tive measure of goodness of fit of our model.

Frank et al. assess the performance of human adults
in segmenting an artificial language. Each of their three
experiments involves a range of conditions that make the
task more difficult in one particular dimension: (1)sen-
tence length, (2)amount of exposure or (3)number of word
types).

Their study also involves an evaluation of how exist-
ing models of segmentation fit human performance. The
models were evaluated in terms of their goodness of fit
to the curve that describes the average performance of
the human subjects in all the conditions of a certain ex-
periment. From all the models evaluated, the Bayesian
Lexical model (Goldwater, Griffiths, & Johnson, 2006,
2009) achieved the best performance in experiments (1)
and (2). Later, French, Addyman, and Mareschal (2011)
show that their model (TRACX, a connectionist model
based on recognition of previously encountered segments)
provide even higher performance in experiments (1) and
(3), but it is not evaluated on experiment (2).

This evaluation scheme is thus based on reproducing
accuracies under different conditions of difficulty, aver-
aged over all stimuli classes and averaged over all partic-
ipants, with parameters of the models optimized on the
entire dataset. In Alhama, Scha, and Zuidema (2015) we
argue that this is too weak an evaluation to distinguish be-
tween models, but we adapt it here nevertheless to demon-
strate that our model is easily comparable with other mod-
els when evaluated in the same way.

In order to use the same evaluation procedure with
R&R, we need to make two small adaptations to the
model. Our design of the model was inspired by the re-
sults presented in Peña et al. (2002), where the pauses in
the stimuli, when present, have a length of 25ms, and this
duration is supposed to be perceived by humans only sub-
liminally. The stimuli used in Frank et al. (2010) differ
significantly in the use of pauses: they have a duration
of 500ms, and they are used as a separation of sentences
instead of words. We adapt the formula for Retention, us-
ing an exponential parameter regulating the effect of the
pauses (1). 4

4As explained in footnote 3, we cannot distinguish the contributions
of the two parameters A and C, so we opted to change the formula in
this way. We keep the value of µnp at 1.0 in this simulation so that the
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p2(s) = Alength(s)·µ (1)

µ =

{
µwp after a pause
µnp otherwise

The other adaptation is the use of the Luce Rule. The
R&R model assigns a score to each sequence: the subjec-
tive frequency. To derive prediction about behavior in a
2AFC test, we follow Frank et al. (2010) and transform
scores into probabilities by applying the Luce choice rule
(Luce, 1963) (2):

P(s1) =
Sub jFreq(s1)

Sub jFreq(s1)+Sub jFreq(s2)
(2)

Table 2 summarizes the goodness of fit between the
models and the experimental data, using Pearson’s r as a
metric to compare the curves that describe how the perfor-
mance evolves when the difficulty of the task is increased.
As it can be seen, for the parameter setting that yields bet-
ter fit in the three experiments (A = 0.005,B = 0.948,D =
0.827,munp = 1.0,muwp=0.288), our model outperforms
all the other models in experiment 1. One possible ex-
planation for this result is that R&R is the only model
that incorporates a treatment for the effect of pauses: in-
creasing the length of the sentence entails fewer pauses in
the input stream, and therefore R&R finds longer sentence
more difficult, in the same way as humans do.

For the second experiment, R&R provides the best re-
sults, together with the Bayesian TP model with restricted
input and the Bayesian Lexical Model with uniform for-
getting of types. R&R does not at the moment implement
any form of forgetting (although it could be easily incor-
porated), and it does not need to force a limitation in the
input data. Instead, we obtain the effect of imperfect stor-
age of all the input data by modelling the process of re-
tention and recognition.

Also on experiment 3, the R&R model shows the
best correlation with human data. In this experiment,
the performance of humans decreases when the number
word types increases. It is worth noticing that R&R and
TRACX reproduce this phenomenon with very good fit
without the need of adapting the models for the task. In
contrast, the normative models benefit from the fact that
the partwords become less frequent when the number of
types increases, exhibiting higher performance when that
of humans decreases. This effect is counteracted in vari-
ant implementations that add a limitation of the input data
or some form of forgetting: with this solution, the mod-
els invert their trend and present a much better correlation

resulting model remains comparable.
5This experiment was not reported in (French et al., 2011), so we

assume a Pearson R of 0.0, which means that there is no correlation.

with human performance. It is fair to notice that TRACX
and R&R do not need to be adapted for this experiment;
on the contrary, it is an intrinsic property of their design
that not all the segments of the input stream will be mem-
orized.

The curves of the performance of both human adults
and R&R can be see in figure 8.

This study shows that our model can fit 2AFC data on
human adults with a correlation that is at least on par with
that of other models.

5 Related work
Many models of segmentation of artificial grammar learn-
ing have been proposed. Among the models that can be
classified as at Marr’s rational level, the most success-
ful approach seems to be the Bayesian model presented
in Goldwater et al. (2009) and evaluated in Frank et al.
(2010). Using Bayesian inference, the model considers
segmentation hypotheses that are consistent with the input
stream, and computes their posterior probability incorpo-
rating a prior distribution based in a Dirichlet process. The
main assumptions of this process are: i) the probability of
a word in the ith position is proportional to the number of
occurrences of this word in previous positions, and ii) the
relative probability for a new word type in the ith position
is inversely correlated with the total number of word to-
kens, and iii) a new word type is more probable if it is
shorter. Some of these assumptions are also embodied in
R&R: assumption (i) is also contained in the recognition
function in R&R, but based on subjective frequency rather
than absolute frequency; and (iii) is directly encoded in
the retention probability of R&R.

On the other extreme, at Marr’s implementational
level, some connectionist models have been proposed
(Cleeremans & McClelland, 1991; Servan-Schreiber,
Cleeremans, & McClelland, 1991); the most recent,
TRACX (French et al., 2011; French & Cottrell, 2014)
provides comparable results to the Bayesian model in
modelling human’s performance in a range of conditions
(Frank et al., 2010). TRACX is a neural network that uses
the architecture of autoencoders: it learns a representa-
tion for the input data. The error of the output layer is
computed by comparing it with the input, and it serves
as an indication of the degree of recognition of the input.
The model processes the input stream sequentially, main-
taining a context window. After successful recognition of
a segment, the internal representation learned by the net-
work is used as the context for the next segment to be
presented. In this way, contiguous segments that are suc-
cessfully recognized are gradually represented as a single
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Exp. 1: Sentence Length Exp. 2: Amount of tokens Exp. 3: Word types Avg.
Transitional Probabilities 0.84 0.43 -0.99 0.09
Mutual Information 0.83 -0.32 -0.99 -0.16
Bayesian Lexical model 0.94 0.89 -0.98 0.28
MI Clustering 0.11 -0.81 0.29 -0.13
PARSER 0.00 0.86 0.00 0.28
TRACX 0.92 0.05 0.97 0.63
Bayesian TPs 0.82 0.92 0.96 0.9
4% data
Bayesian Lexical model 0.88 0.85 0.90 0.87
4% data
Bayesian Lexical model 0.95 0.92 0.73 0.86
Uniform forgetting (types)
Bayesian Lexical model 0.88 0.87 0.88 0.87
Prop. forgetting (types)
Bayesian Lexical model 0.86 0.82 0.97 0.88
Uniform forgetting (tokens)
Retention & Recognition 0.98 0.97 0.98 0.97

Table 2: Comparison of model results to human performance from Frank et al. (2010) experiments. The reported
metric is Pearson’s r.

chunk, and therefore can be recognized as a unit. This
approach shares with R&R the intuition that words in the
input stream obtain that status after being recognized over
and over.

Unlike these models, R&R is clearly situated at Marr’s
processing level. In that category, we are only aware of the
existence of PARSER, a model proposed by (Perruchet &
Vinter, 1998). PARSER is a symbolic, exemplar-based
model that shares many similarities with R&R. We now
briefly present PARSER and discuss the similarities and
differences with our model.

PARSER is built around basic principles of associa-
tive learning and chunking. Starting with a few primi-
tives (typically, the syllables of the stream), it will incre-
mentally build a lexicon of segments, each one with an
associated weight, that will have an effect on determin-
ing which segments will be memorized next. The size of
the next segment to be perceived is determined randomly;
however, the units that compose this segment will be ei-
ther primitives or already-memorized segments that have
a weight higher than a certain threshold. As an exam-
ple, if the size of the next segment to be perceived is 2,
it might be composed of two primitives (syllables), two
segments (larger than the syllables) or one of each. The
algorithm chooses the combination that allows the largest
units, from left to right. For every new segment that is per-
ceived, its weight in memory is incremented (or it’s added
with an initial weight), but the smaller units that compose

it are decremented; this is what the authors interpret as in-
terference. Additionally, at each timestep, all the units in
memory have their weights decreased.

PARSER and R&R are both exemplar-based models
that build a lexicon of segments (exemplars), and use this
lexicon of already-memorized segments to decide on fur-
ther segments to memorize. Each segment in the lexi-
con is stored together with a score (the memory weight
in PARSER or the subjective frequency in R&R) that will
determine the impact of this segment in the next steps of
the segmentation process.

The models are similar in their procedure, but there are
notable differences among them. One of them is their
probabilistic nature. For PARSER, the stochasticity is
limited to the random selection of the size of the next
segment to read from the stream. In contrast, R&R is
probabilistic in both of its basic processes (retention and
recognition), but it does not apply a random process for
selecting the size of the segments. Instead, it considers all
possible segments starting from the next syllable (until a
maximum length).

The process of retention in R&R penalizes longest seg-
ments, on the basis that they would require more work-
ing memory. PARSER implements the opposite intuition:
whenever several segment candidates are possible, it se-
lects those that are built of the longest units. Recognition
is also modelled differently. PARSER implements some
form of recognition when it maps the next segment to be
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(a) Curve of performance over different conditions (vary-
ing sentence length) of experiment 1.
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(b) Curve of performance over different conditions (vary-
ing the number of tokens) of experiment 2.
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(c) Curve of performance over different conditions (vary-
ing the vocabulary size) of experiment 3.

Figure 8: Curve of performance of all experiment in Frank
et al. 2010.

read against the units in memory. This is modelled as a
threshold: only units with weight above the threshold can
be recognized as part of the new segment to be read. In
R&R, recognition is also based on the score (the subjec-
tive frequency) of the segments in memory, but it provides
a probabilistic account rather than a binary choice; fur-
thermore, the number of types already stored in memory
also plays a role, decreasing the probability as more types
are stored.

R&R does not at the moment implement any form of
forgetting. Although we initially planned to add a form
of decay in the recognition probability, we see in the ex-
perimental data that some of the less frequent sequences
have higher responses than some of the more frequent se-
quences. While this is not necessarily contradictory with
some form of forgetting, it is still unclear to us whether
including forgetting is actually necessary to explain the
experimental data.

We have implemented PARSER following the explana-
tion in their paper, and we have used the same parame-
ters that the authors report as the authors in their study of
Peña et al. (2002) (Perruchet et al., 2004). Figure 9 shows
the average responses of 14 runs of the model, for each
test item, ordered by decreasing weight. The distribution
of weights shows the skew that we have also presented
for R&R, but all words have higher weights than all part-
words. Thanks to the free parameters of R&R, we can
provide a behaviour similar to PARSER but also one that
gives more prominence to some of the partwords in the
stream, like in the experimental results from figure 7.

The scores for partwords are also the reason the two
models differ when evaluated against the 2AFC data pre-
sented in Frank et al. (2010). As can be see in table 2,
R&R shows almost perfect correlation with humans in all
experiments, but PARSER yields a Pearson’s r of 0.0 in
two out of the three experiments. As discussed in the
study, the reason for this failure is that PARSER neglects
the scores of partwords, which are very close to zero in all
the conditions of the three experiments.

6 Conclusions
ALL has proven to be very useful for finding out what
cues are exploited when subjects are faced with the task of
learning an unknown language. Researchers have postu-
lated theories about the mechanisms underlying the learn-
ing process. In this work we focus on one of the first
problem that learners face: the identification of words in
a speech stream.

With our model, R&R, we provide a theory that consid-
ers the process of segmentation as the interaction of two
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Figure 9: Responses of PARSER for the words in experi-
ment 1 in Peña et al. (2002)

cognitive mechanisms: retention and recognition. Pitched
at the processing level, and with a very simple formaliza-
tion, our model offers a way to understand the pattern of
experimental results that we find in the literature. Never-
theless, it is fair to point out that we have not described
how our model would explain one of the relevant aspects
of the experimental results we have reviewed; namely,
the conditions under which subjects accept rulewords (se-
quences that do not appear in the familiarization stream
but are consistent with the rules of formation of words).
Our ongoing modelling research on the process of gen-
eralization to new valid exemplars is out of the scope of
this paper, but it is nonetheless described as a process that
operates on the segments memorized by R&R.

Models do not only help us reason about the cognitive
processes underlying existing experiments, but also allow
us to make predictions for experimental results. R&R pre-
dicts that the memorized segments of the familiarization
stream show a strong skew in the distribution of subjec-
tive frequencies; an observation that, to our knowledge,
has never been reported before.

To confirm this prediction, we have revisited the ex-
perimental results of Peña et al. (2002), on human adults,
and Toro and Trobalón (2005), on rats; focusing on the re-
sponses per test item: by replicating the experiment with a
different test type in the former, and by providing a more
fine-grained analysis in the latter. We find that the data
shows a clearly skewed distribution of responses, confirm-
ing our prediction. Furthermore, we show that R&R also
provides a good quantitative fit to the experimental data
of Toro and Trobalón (2005).

In order to contrast R&R with other computational
models that have been proposed, we have followed the

evaluation procedure presented in the work by Frank et
al. (2010). This extensive study provides a quantitative
comparison of many models of segmentation, based on
their goodness of fit to several datapoints in 2AFC exper-
iments. We have followed the same procedure to include
our model in the study, and we have shown that R&R pro-
duces a better correlation with experimental results than
the other models. Nevertheless, we raise awareness of
the need of a type of evaluation that takes into account
responses per individual item rather than average perfor-
mance.

We further discuss how our model contrasts with some
of the more relevant models in the literature. We con-
clude that, while some of the ideas embodied in R&R are
already present in other approaches, our model constitutes
a simple yet powerful characterization of the mechanisms
underlying speech segmentation that shows a better corre-
lation with the experimental data, and that has already al-
lowed us to provide a new observation of the existing data,
proving therefore to be a promising tool for revealing the
properties of this basic process of language learning.
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