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Abstract

Experiments in Artificial Language Learning have revealed
much about the ability of human adults to generalize to novel
grammatical instances (i.e., instances consistent with a famil-
iarization pattern). Notably, generalization appears to be neg-
atively correlated with the amount of exposure to the artificial
language, a fact that has been claimed to be contrary to the pre-
dictions of a statistical mechanism (Peña, Bonatti, Nespor, and
Mehler (2002); Endress and Bonatti (2007)). In this paper, we
propose to model generalization as a three-step process involv-
ing: i) memorization of segments of the input, ii) computation
of the probability for unseen sequences, and iii) distribution of
this probability among particular unseen sequences. Applying
two probabilistic models for steps (i) and (ii), we can already
explain relevant aspects of the experimental results. We also
demonstrate that the claim about statistical mechanisms does
not hold when generalization is framed under the 3-step ap-
proach; concretely, a statistical model of step (ii) can explain
the decrease of generalization with exposure time.
Keywords: artificial grammar learning; statistical learning;
rule learning; computational modelling; cognitive modelling

Introduction
In the last twenty years, experiments in Artificial Language
Learning have become increasingly popular for the study of
the basic mechanisms that operate when subjects are exposed
to language-like stimuli. Thanks to these experiments, we
know that 8 month old infants can segment a speech stream
by extracting statistical information (Saffran, Aslin, & New-
port, 1996), and it has been shown that they can do it solely
relying on the transitional probabilities between adjacent syl-
lables (Aslin, Saffran, & Newport, 1998). This ability also
seems to be present in human adults (Saffran, Newport, &
Aslin, 1996), and to some extent in nonhuman animals like
cotton-top tamarins (Hauser, Newport, & Aslin, 2001) and
rats (Toro & Trobalón, 2005).

Peña et al. (2002) present a clever experimental design that
is aimed to test generalization skills1 in a segmentation task.
The stimuli used in their experiments consists of a sequence
of artificial words that obey a certain pattern (namely, a non-
adjacent dependency between the first and last syllables of
each word). This setup is particularly suitable to test whether
words have been extracted, but also whether participants gen-
eralize to unseen sequences that are consistent with this pat-
tern.

In the following section, we summarize the experiments
reported by Peña et al., as well as some follow-up exper-

1The type of generalization we are interested in is commonly re-
ferred to in the ALL literature as ‘rule learning’. We prefer the term
‘generalization’ because ‘rule-learning’ can be confused with a par-
ticular theory of generalization that claims that the mental structures
used in a generalization process have the form of algebraic rules.

iments (Endress and Bonatti (2007); Frost and Monaghan
(2016)). We then present a way to think about the process
of generalization that identifies 3 main steps: memorization
of segments, computation of the probability of unseen se-
quences, and generalization to particular unseen sequences.
Next, we use the Retention&Recognition model (Alhama,
Scha, & Zuidema, 2016) to model the first step, and Simple
Good-Turing (Gale & Sampson, 1995) for the second step.
We show that modelling only the first two steps we can al-
ready explain the pattern of results found in the experiments.
Finally, we discuss the implications of our study for hypoth-
esis about the nature of the generalization mechanism.

Experimental Record
Peña et al. (2002) conduct a series of Artificial Language
Learning (ALL) experiments in which French-speaking
adults are familiarized to a synthesized speech stream consist-
ing of a sequence of artificial words. Each of these words con-
tains three syllables AXC such that the A syllable co-occurs
with the C syllable, forming a non-adjacent dependency. The
order of the words in the stream is randomized, with two con-
straints: (i) words belonging to the same ‘family’ (i.e., words
with the same A and C syllables) do not appear consecutively,
and (ii) words with the same middle syllable X do not appear
consecutively.

stream pulikiberagatafodupurakibefogatalidu ...
words
AiXCi

puliki, beraga, tafodu, puraki, befoga, ...

part-words
C jAiX ,XCiA j

kibera, ragata, gatafo, fodupu, dupura, ...

rule-words
AiYCi

pubeki, beduga, takidu, ...

class-words
AiYC j

pubedu, betaki, tapuga, ...

rule*-words
AiZCi

puveki, bezoga, tathidu, ...

Table 1: Summary of the stimuli used in the depicted experi-
ments.

The participants are subsequently tested in a two-
alternative forced choice task where they have to make
choices between two items: a word (AXC) versus a part-
word (an ill-segmented sequence of the form XCA or CAX,
as shown in table 1), or a word versus a rule-word (a rule-
obeying AYC sequence such that Y appears in the stream as
an A or a C syllable). The participants were asked to choose



the item that looked more like a word from the artificial lan-
guage they had been familiarized with.

In their baseline experiment, the authors expose the partic-
ipants to a 10 minute stream of AXC words. In the subse-
quent test phase, the subjects show a significant preference
for words over part-words, proving that the words could be
segmented out of the familiarization stream. Next, the ex-
periment is replicated, with the exception that the test now
involves a choice between a part-word and a rule-word. The
subjects’ responses in this experiment do not show a signifi-
cant preference for either part-words or rule-words, suggest-
ing that participants do not generalize to novel grammatical
sequences. However, when the authors insert micropauses
of 25ms between the words, the participants do show a pref-
erence for rule-words over part-words. A shorter familiariza-
tion (2 minutes) containing micropauses also results in a pref-
erence for rule-words; in contrast, a longer familiarization (30
minutes) without the micropauses results in a preference for
part-words. In short, the presence of micropauses seems to
facilitate generalization to rule-words, while the amount of
exposure time correlates negatively with this capacity.

Endress and Bonatti (2007) report a range of experiments
with the same familiarization procedure used by Peña et al.
However, their test for generalization is based on class-words:
unseen sequences that start with a syllable of class “A” and
end with a syllable of class “C”, but with A and C not appear-
ing in the same triplet in the familiarization (and therefore not
forming a nonadjacent dependency).

From the extensive list of experiments conducted by the
authors, we will refer only to those that test the preference
between words and class-words, for different amounts of ex-
posure time. The results for those experiments (illustrated
in figure 1) also show that the preference for generalized se-
quences decreases with exposure time. For short exposures
(2 and 10 minutes) there is a significant preference for class-
words; when the exposure time is increased to 30 minutes,
there is no preference for either type of sequence, and in a 60
minutes exposure, the preference reverses to part-words.

Finally, Frost and Monaghan (2016) show that micropauses
are not essential for rule-like generalization to occur. Rather,
the degree of generalization depends on the type of test se-
quences. The authors notice that the middle syllables used
in rule-words might actually discourage generalization, since
those syllables appear in a different position in the stream.
Therefore, they test their participants with rule*-words: se-
quences of the form AZC, where A and C co-occur in the
stream, and Z does not appear. After a 10 minute exposure
without pauses, participants show a clear preference for the
rule*-words over part-words of the form ZCA or CAZ.

In summary, the pattern of results in these experiments
shows: i) generalization for a stream without pauses is only
shown for rule*-words, but not for rule-words nor class-
words; ii) the preference for rule-words and class-words is
boosted if micropauses are present; iii) increasing the amount
of exposure time correlates negatively with generalization to
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Figure 1: Percentage of generalization for rule-words and
class-words, in the experiments reported in Peña et al. (2002)
and Endress and Bonatti (2007), for different exposure times
to the familiarization stream.

rule-words and class-words (with differences depending on
the type of generalization and the presence of micropauses,
as can be seen in figure 1). This last observation, which we
call the time effect, is the phenomenon we want to account for
in this paper.

Understanding the generalization mechanism:
a 3-step approach

Peña et. al interpreted their results as showing that general-
ization requires a separate mechanism (other than the statis-
tical mechanism used for extracting the words). Endress and
Bonatti claim that this separate mechanism cannot be based
on statistical computations. The authors predict that a statis-
tical mechanism would benefit from increasing the amount of
exposure, based on the assumption that more evidence entails
better representations that should encourage generalization.
They call this the More-than-One-Mechanism hypothesis, or
MoM.

We consider that, in order to formulate hypotheses about
the workings of generalization, we should postulate a con-
crete framework that defines the main steps involved in it. We
propose a conceptualization of generalization as a three-step
process (illustrated in figure 2). According to the three-step
approach, a model of generalization in ALL should involve
the following steps:

(i) Memorization: Build up a memory store of segments with
frequency information (i.e., compute subjective frequen-
cies).

(ii) Quantification of the propensity to generalize: Depend-
ing on the frequency information from (i), decide how
likely are other unseen types.

(iii) Distribution of probability over possible generaliza-
tions: Distribute the probability for unseen types com-



puted in (ii), assigning a probability to each generalized
sequence.

Crucially, we believe that step (ii) has been neglected in cog-
nitive approaches to generalization. This step accounts for
the fact that generalization is not only based on the particu-
lar structure underlying the stimuli, but also depends on the
statistic properties of the input. At this point, we can already
reassess the MoM hypothesis: more exposure time does en-
tail better representation of the stimuli (as would be reflected
in step (i)), but its impact on generalization depends on the
model used for step (ii). As we show later, modelling only
steps (i) and (ii) we can already predict the time effect, based
solely on statistical information of the input stream (although
without step (iii) we cannot expect to obtain a precise quanti-
tative fit to the data).
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Figure 2: Three step approach to generalization.

Memorization of segments: the Retention and
Recognition model

The Retention and Recognition model Alhama et al. (2016)
was proposed as a model of memorization of segments from
an auditory sequence. The model consists of an initially
empty memory, and two mechanisms: retention and recog-
nition. These mechanisms store segments from the input se-
quence in the memory, together with a count of how many
times the segment has been retained or recognized. We refer
to these counts as “subjective frequencies”.

The model is presented with the ordered set of subse-
quences of the input, of any length. Each one of these seg-
ments is processed as shown in figure 3: first the recognition
mechanism attempts to recognize the segment (that is, it at-
tempts to determine whether the segment corresponds to one
of the segments already in memory). The probability for suc-
cessful recognition is P1. If the attempt succeeds, the subjec-
tive frequency (count) of the segment in memory is increased
with one. If the segment was not recognized, the model may
still retain it, with probability P2. If it does, the segment will
be added to the memory (or, if already there from a previous
iteration, its subjective frequency is increased with one). If
not, the segment is ignored, and the next subsequence of the
stream will be processed.

p1(s) = (1−Bactivation(s)) ·D#types

p2(s) = Alength(s) ·Cπ

0 6 A,B,C,D 6 1; π =

{
0 after a pause
1 otherwise

Figure 3: R&R:The Retention-Recognition Model

The probabilities of the model involve free parameters (A,
B, C and D) that may be set based on empirical data. The
recognition probability P1 of a segment s depends on its
activation(s) in the internal memory (at the moment, the ac-
tivation corresponds to the subjective frequency), so that seg-
ments with greater subjective frequency are easier to recog-
nize. However, the number of different segments in memory



(#types) makes the recognition task more difficult. The reten-
tion probability P2 is larger for shorter segments; in addition,
the probability is attenuated (as indicated by parameter C) un-
less the segment is preceded by a pause.

Figure 4 shows the subjective frequencies computed by
R&R after an exposure to a 10 minute familiarization, for an
arbitrary parameter setting. As it can be seen, the distribution
of subjective frequencies is skewed, with a prominent pres-
ence of part-words. We discuss later the effect of the skew in
determining the propensity to generalize (step 2 of the pro-
posed 3-step approach).

Figure 4: Subjective frequencies computed by the R&R
model (A=0.5, B=0.5, C=0.2, D=0.5), for an exposure of 10
minutes (without pauses).

Quantifying the propensity to generalize: the
Simple Good-Turing method

In probabilistic modelling, generalization must necessarily
involve shifting probability mass from attested events to unat-
tested events (referred to as smoothing). But how do we com-
pute the amounts of probability mass that will be shifted, and
thus the propensity to generalize?

Good and Turing (Good, 1953) define a method that, given
a finite sample of a population of tokens belonging to differ-
ent types, computes the probability that the next token drawn
from that population belongs to a certain type, including the
possibility of the token belonging to a type that was not in-
cluded in the sample and was therefore unattested. We ap-
ply the Good-Turing method to subjective frequencies of the
R&R model. Types are thus segment types (e.g., talidu),
while tokens are particular occurrences of those segments
(e.g., the first occurrence of talidu in the stream).

In the field of Natural Language Processing, Simple Good
Turing (Gale & Sampson, 1995), a computationally efficient
implementation of the Good-Turing method, is well known
and widely used to smooth the probabilities (as computed
with maximum likelihood estimation) of words in a language

model, with the purpose of reserving some probability mass
for words that did not appear in the finite corpus from which
the model was inferred.

The method works as follows: we use the subjective fre-
quencies r computed by R&R and, for each of them, we com-
pute the frequency of that frequency (Nr), that is, the num-
ber of triples that have a certain subjective frequency r. The
values Nr are then approximated by a continuous downward-
sloping line in log space. These approximated values E(Nr)
are used to reestimate the frequencies according to (1).

r∗ = (r+1)
E(Nr+1)

E(Nr)
(1)

The reestimated frequency r∗ is then used to reestimate the
probabilities:

Pr =
r∗

N
(2)

The reestimated probabilities sum up to one when including
the probability for unseen sequences. This probability is de-
fined as follows:

P0 =
E(N1)

N
(3)

This probability P0 (also known as missing mass) corre-
sponds to what we have called “propensity to generalize”.

The Simple Good-Turing method is designed to ensure that
the probability for unseen types is similar to the probability
of types with frequency one. The propensity to generalize is
therefore greater for distributions where most of the probabil-
ity mass is for smaller frequencies. This obeys a rational prin-
ciple: when types have been observed with high frequency, it
is likely that all the types in the population have already been
attested; on the contrary, when there are many low-frequency
types, it may be expected that there are also types not yet at-
tested.

Results
Memorization of words and part-words
First we analyze the effect of the different conditions (expo-
sure time and presence of pauses) in the memorization of seg-
ments computed with R&R (step (i)). Figure 5 shows the
presence of words and part-words in the memory of R&R af-
ter different exposure times (average out of ten runs of the
model). As can be seen, the subjective frequencies of part-
words increase over time, and thus, the difference between
words and part-words decreases as the exposure increases.

The graph also shows that, when the micropauses are
present, words are readily identified after much less exposure,
yielding clearer diferences in subjective frequencies between
words and part-words.

The results of these simulations are consistent with the ex-
perimental results: the choice for words (or sequences gen-
eralized from words) against part-words should benefit from
shorter exposures and from the presence of the micropauses.
Now, given the subjective frequencies, how can we compute
the propensity to generalize?



Figure 5: Average number of present words (green contin-
uous line) and part-words (red dashed line) in 10 runs of
a model with an arbitrary parameter setting (A=0.5 B=0.5
C=0.2 D=0.5).

Prediction of observed decrease in the propensity to
generalize
Next, we apply the Simple Good-Turing method 2 to subjec-
tive frequencies computed by the R&R model. As shown in
figure 6, we find that the propensity to generalize decreases
as the exposure time increases, regardless of the parameter
setting used in R&R. This result is consistent with the ratio-
nale in the Simple Good-Turing method: as exposure time
increases, frequencies are shifted to greater values, causing
a decrease in the smaller frequencies and therefore reducing
the expectation for unattested sequences.

The results of these simulations point to a straightforward
explanation of the experimental finding of a reduced prefer-
ence for the generalized sequences: longer exposures repeat
the same set of words (and partwords), and consequently, par-
ticipants may conclude that there are no other sequences in
that language - otherwise they would have probably appeared
in such a long language sample.

It can be noticed in the graphs that the propensity to gener-
alize is smaller for the micropause condition. The reason for
that is that R&R identifies words quicker when micropauses
are present, and therefore, the subjective frequencies tend to
be greater. This is consistent with the results reported in Frost
and Monaghan (2016), which show that micropauses are not
needed for a certain type of generalization (concretely, for
rule*-words). As the authors suggest, one plausible conclu-
sion is that rule-words and class-words are constructed in a
way that discourages generalization (due to the middle sylla-
ble occupying either an A or C position in the familiarization
stream), but the micropauses compensate it by enhancing the
salience of the initial and final syllables (A and C).

2We use the free software implementation of Simple Good Tur-
ing in https://github.com/maxbane/simplegoodturing.

Discussion
The experiments that we are addressing are all based on the
same simple language, but the results form a complex mosaic:
generalization is observed in different degrees depending on
the amount of exposure, the presence of micropauses and
the type of generalization (rule-words, class-words or rule*-
words). We have approached the analysis of these results with
the use of several tools: first, with the 3-step approach, a con-
ceptualization of generalization that identifies its main com-
ponents; second, with the use of R&R, a probabilistic model
that already predicts some aspects of the results -and, impor-
tantly, generates a skewed distribution of subjective frequen-
cies that is crucial for step (ii) (as we will discuss next); and
third, with the Simple Good-Turing method for quantifying
the propensity to generalize. We now discuss how we inter-
pret the outcome of our study.

Framing generalization with the 3-step approach allowed
us to identify a step that is usually neglected, namely, the
computation of the propensity to generalize. We state that
generalization is not only a process of discovering structure:
the frequencies in the familiarization generate an expectation
for unattested items, and the responses for generalized se-
quences must be affected by it. Moreover, this step is based
on statistical information, proving that —contrary to other
claims (Endress & Bonatti, 2007)— a statistical mechanism
can account for the negative correlation with exposure time.

One issue to discuss is whether the results on the propen-
sity to generalize depend on the use of the R&R model for
computing the subjective frequencies. As we mentioned be-
fore, the frequency distributions computed by R&R are typi-
cally skewed. The Simple Good-Turing is actually designed
to fit natural language frequencies, which are known to be
Zipfian; although the distributions computed with R&R are
not necessarily Zipfian, the skew makes them more suitable
(a fact that becomes specially relevant with the use of artificial
languages, which have frequency distributions very different
from natural language).

To further illustrate this point, we have applied the Simple
Good-Turing to frequency distributions computed with the
Bayesian model presented in Goldwater, Griffiths, and John-
son (2006).3 The results of three runs of the model are shown
in figure 7. As it can be seen, the propensity to generalize
is almost non-existent. Rather than decreasing, it either re-
mains the same or even increases. The reason for this is the
(almost) nonexistent amount of types with small frequency.
As an example, all the runs of the model for the 10 minutes
exposure result in a perfect memorization of the nine words,
and no other segments; therefore, the resulting lexicon con-
sists only of 9 types of frequency 100 (and consequently, a
uniform frequency distribution without any degree of skew).

Finally, we reiterate that have accomplished our goal qual-
itatively. We capture the downward tendency of the propen-
sity to generalize, but a model for step (iii) is required to

3We use the version of the model that exploits bigram word de-
pendencies, with the default parameters.



also achieve a quantitative fit. This is however a longstanding
question in linguistics and cognitive science. Thanks to iden-
tifying the three main components in generalization, we have
been able to propose concrete models of the first two steps,
and already explain much of the pattern of results.
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Figure 6: Propensity to generalize, for several parameter set-
tings (average of 100 runs). Our model shows a clear decrease
for all parameter settings we tried, consistent with the empir-
ical data (compare with figure 1).
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Figure 7: Propensity to generalize for the frequencies com-
puted with the model described in Goldwater et al. (2006).


