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Abstract

A system WF of subintuitionistic logic is introduced, weaker than Corsi’s basic subintuitionistic sys-
tem F. A derivation system with and without hypotheses is given in line with the authors’ derivation

system for F. A neighborhood semantics is introduced with a somewhat more complex definition
than the neighborhood semantics for non-normal modal logics. Completeness is proved for WF with
respect to this neighborhood semantics, and similarly for some logics between WF and F which
characterize nice frame classes. The study by the authors of the conservativity of IPC over F with

respect to some classes of implications is extended to WF, and shows clearly the difference in strength
between the two logics. Study of translations of these weak subintuitionistic logics into non-normal
modal logics turned out to be hard because of the difference between their respective neighborhood
structures and leaves us with some open problems.

Keywords: subintuitionistic logic, intuitionistic logic, conservativity, neighborhood semantics, trans-

lation.

1 Introduction

Subintuitionistic logics were studied by Corsi in 1987 [2], who introduced a basic
system F and by Restall in 1994 [9], who defined a similar system SJ, both with Kripke
models in which no assumption of preservation is made and also not of reflexivity and
transitivity. F cannot prove formulas like A → (B → A). Corsi showed that F can be
translated into the modal logic K just as IPC into S4.
A much studied extension of F, Basic logic BPC, was introduced by Visser in 1981

[11] and shown in 2015 by K. Sano and M. Ma [10] to be translatable into the modal
logic WK4.
Neighborhood structures are the standard semantic tool used to study non-normal

modal logic. In a neighborhood model for modal logic, each state is associated with
a collection of subsets of the universe and a modal formula �ϕ is true at a state w if
the set of all states in which ϕ is true is a neighborhood of w.
M. Moniri and F. Shirmohammadzadeh Maleki in 2015 [8] presented a neighborhood

semantics for IPC and BPC. In this paper we will introduce a system WF, weaker than
F, for which we define a neighborhood semantics. The neighborhood semantics needs
to be more complex than the neighborhood semantics of modal logic.
The structure of this paper is as follows. In Section 2 we introduce the logic WF,

it is created by replacing some axioms of F by rules. The derivation system for WF.
with and without hypotheses, is modeled on the one for F of [5]. We prove a strong
completeness theorem for WF. In Section 3 we prove strong completeness theorems
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2 Weak Subintuitionistic Logics

for the logics between WF and F, formed by combinations of five axioms and rules.
In Section 4, we show that WF has the finite model property. In Section 5 we study
conservativity of IPC overWF with respect to the simple implications introduced in [5].
There is a clear difference in strength compared to the system F: IPC was proved to
be conservative over F with respect to the much more complex basic implications [5].
In Section 6 we investigate the relation between WF and modal logic. The logic WF is
clearly related to the non-normal modal logic EN. But because of the difference of the
models we were able to prove only `WF A ⇒ `EN A. The other direction remains
an open problem. A similar situation arises between the basic monotonic modal logic
M and our system WFIRIL.

2 Soundness and Completeness

In this section we will introduce the logic WF, a logic strictly weaker than F and prove
soundness and completeness of WF.

Definition 2.1
A pair F = 〈W, g,NB〉 is called a Neighborhood Frame of subintuitionistic logic
if W is a non-empty set and NB is a neighborhood function from W into P ((P (W ))2)
such that

1. ∀w ∈ W, ∀X,Y ∈ P (W ), (X ⊆ Y ⇒ (X,Y ) ∈ NB(w));

2. NB(g) =
{
(X,Y ) ∈ (P (W ))2 | X ⊆ Y

}
.

Here g is called omniscient (i.e. has the property 2).

We use the existence of omniscient worlds in the proofs of soundness and of charac-
terization of properties of frames.

Definition 2.2
A Neighborhood Model of subintuitionistic logic is a tuple M = 〈W, g,NB, V 〉,
where 〈W, g,NB〉 is a neighborhood frame of subintuitionistic logic and V : P → 2W

a valuation function on the set of propositional variables P .

Definition 2.3
(Truth in a Neighborhood Model) Let M = 〈W, g,NB, V 〉 be a model and
w ∈ W . Truth of a propositional formula in a world w is defined inductively as
follows.

1. M,w  p ⇔ w ∈ V (p);

2. M,w  A ∧B ⇔ M,w  A and M,w  B;

3. M,w  A ∨B ⇔ M,w  A or M,w  B;

4. M,w  A → B ⇔
(
(A)M , (B)M

)
∈ NB(w);

5. M,w 1⊥,

where (A)M denotes the truth set of A. If X ⊆ W is such that X = (A)M then we
call X definable. We will liberalize Definition 2.1 to require the conditions 1 and 2
to apply only to definable X,Y (see e.g. [3],[7]).
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Definition 2.4
A formula A is true in a modelM= 〈W, g,NB, V 〉, M A if for all w ∈ W, M,w  A
and if all models force A, we write  A and call A valid. A formula A is valid on a
frame F = 〈W, g,NB〉, F  A if A is true in every model based on that frame.

In the following definition of neighborhood models we use the more standard neigh-
borhood function.

Definition 2.5
An N-Neighborhood Frame is a triple F = 〈W, g,N〉. N is a neighborhood func-

tion from W into 22
W

, g ∈ W , and for each w ∈ W we have W ∈ N(w) and
N(g) = {W} (g is called omniscient). An N-Neighborhood Model is a quadruple
M = 〈W, g,N, V 〉 with V : P → 2W a valuation function on the set of propositional
variables P .

Definition 2.6
(Truth in an N-Neighborhood Model) Let M = 〈W,N, V 〉 be a model and
w ∈ W . Truth of a propositional formula in a world w is defined inductively as in
Definition 2.3 with the following clause for →:

M,w  A → B ⇔ {v | v  A ⇒ v  B} ∈ N(w).

It maybe easier to think of {v | v  A ⇒ v  B} as the set ((A)M )c∪ (B)M . Here
we denote W − (A)M by ((A)M )c.

Indeed, we opted for N -neighborhood frames first but were not able to prove com-
pleteness for WF with respect to these frames.

Lemma 2.7
For every N -neighborhood model MN = 〈W, g,N, V 〉, there is a pointwise equivalent
neighborhood model MNB = 〈W, g,NB, V 〉.

Proof. The proof is straightforward by considering, for each w ∈ W ,
NB(w) = {(X,Y ) | (X)c ∪ Y ∈ N(w)} .

In the other direction the connection is not clear.

Definition 2.8
WF is the logic given by the following axioms and rules,

1. A → A ∨B 9. A → A

2. B → A ∨B 10. A A→B
B

3. A ∧B → A 11. A B
A∧B

4. A ∧B → B 12. A
B→A

5. A→B A→C
A→B∧C 13. A→B B→C

A→C

6. A→C B→C
A∨B→C 14. A↔B C↔D

(A→C)↔(B→D)

7. A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C)

8. ⊥→ A

The rules are to be applied in such a way that, if the formulas above the line are
theorems of WF, then the formula below the line is a theorem as well. We return to
the rules when we discuss deduction from hypotheses. We write ` for `WF .
The logic WF misses the following axioms of F (Corsi’s system [2]):
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(A → B) ∧ (A → C) → (A → B ∧ C)

(A → B) ∧ (C → B) → (A ∨ C → B)

(A → B) ∧ (B → C) → (A → C)

Typical for intuitionistic logic is that often axioms and their corresponding rules
are different in strength. That comes out nicely here.
First we will show that WF has the disjunction property.

Definition 2.9 ([6])
We define |A by induction on A, as follows

1. Not |p,
2. |A ∧B iff |A and |B,

3. |A ∨B iff |A or |B,

4. |A → B iff ` A → B and (if |A then |B).

Theorem 2.10
|A ⇔ ` A.

Proof. The proof is a trivial modification of the standard one for IPC.

Theorem 2.11
If ` A ∨B then ` A or ` B.

Proof. Assume ` A∨B, by Theorem 2.10, |A∨B. So |A or |B. Again by Theorem
2.10, ` A or ` B.

Theorem 2.12
The formula A → B is valid if and only if for all models M,

(A)M ⊆ (B)M .

Proof. ⇒: Let  A → B, so for all M and for all w ∈ M, ((A)M , (B)M ) ∈ NB(w).
So, for all M, ((A)M , (B)M ) ∈ NB(g). Hence, by Definition 2.1(2), (A)M ⊆ (B)M .
⇐: We should prove that for all M and for all w ∈ M , ((A)M , (B)M ) ∈ NB(w).

By assumption (A)M ⊆ (B)M , so by definition of neighborhood frames for all M and
for all w ∈ M , ((A)M , (B)M ) ∈ NB(w). That is,  A → B.

Corollary 2.13
 A ↔ B if and only if for all models M , (A)M = (B)M .

Proof. Obvious.

Lemma 2.14
(a) If  A and  A → B, then  B.

(b) If  A → B and  A → C, then  A → B ∧ C.

(c) If  A → C and  B → C, then  A ∨B → C.

(d) If  A → B and  B → C, then  A → C.

(e) If  A ↔ B and  C ↔ D, then  (A → C) ↔ (B → D).
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Proof. We only prove (a) and (e). The other cases are similar.
(a) Let  A → B. By Theorem 2.12, for all models M, (A)M ⊆ (B)M . By

assumption, for all models M , (A)M = W . So also, (B)M = W . Hence,  B.
(e) By Corollary 2.13, it is sufficient to show that for all models M , (A → C)M =

(B → D)M . By assumption and Corollary 2.13, we have (A)M = (B)M and (C)M =
(D)M . Therefore,

{
v | ((A)M , (C)M ) ∈ NB(v)

}
=

{
v | ((B)M , (D)M ) ∈ NB(v)

}
. That

is, (A → C)M = (B → D)M .

Observation 2.15
The formula (p → q) ∧ (p → r) → (p → q ∧ r) is not valid in the class of all
neighborhood frames.

Proof. Consider the neighborhood frame F = 〈W, g,NB〉 with

W = {g, w}, NB(w) = {(W, {w}), (W, {g})} ∪
{
(X,Y ) ∈ (P (W ))2 | X ⊆ Y

}
.

Also consider the valuation V (p) = W , V (r) = {g}, V (q) = {w}. We have,

(W, {w}) ∈ NB(w) ⇒ w  p → q,

(W, {g}) ∈ NB(w) ⇒ w  p → r,

(W,∅) /∈ NB(w) ⇒ w 1 p → q ∧ r.

So, ((p → q) ∧ (p → r))M * (p → q ∧ r)M and therefore,

(((p → q) ∧ (p → r))M , (p → q ∧ r)M ) /∈ NB(g).

That is, g 1 (p → q) ∧ (p → r) → (p → q ∧ r).

Observation 2.16
The formula (p → q) ∧ (r → q) → (p ∨ r → q) is not valid in the class of all
neighborhood frames.

Proof. Consider the neighborhood frame F = 〈W, g,NB〉 with

W = {w, g}, NB(w) = {({g} , {w})} ∪
{
(X,Y ) ∈ (P (W ))2 | X ⊆ Y

}
.

Also consider the valuation V (p) = V (q) = {w}, V (r) = {g}. We have,

({w} , {w}) ∈ NB(w) ⇒ w  p → q,

({g}), {w}) ∈ NB(w) ⇒ w  r → q,

(W, {w})) /∈ NB(w) ⇒ w 1 p ∨ r → q.

So ((p → q) ∧ (r → q))M * (p ∨ r → q)M and therefore,

(((p → q) ∧ (r → q))M , (p ∨ r → q)M ) /∈ NB(g).

That is, g 1 (p → q) ∧ (r → q) → (p ∨ r → q).

Observation 2.17
The formula (p → q)∧(q → r) → (p → r) is not valid on the class of all neighborhood
frames.

Proof. Consider the neighborhood frame F = 〈W, g,NB〉 with

W = {w, g}, NB(w) = {({w} , {g}), ({g} ,∅)}∪
{
(X,Y ) ∈ (P (W ))2 | X ⊆ Y

}
.
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Also consider the valuation V (p) = {w}, V (r) = ∅ and V (q) = {g}. We have,

({w} , {g}) ∈ NB(w) ⇒ w  p → q,

({g} ,∅) ∈ NB(w) ⇒ w  q → r,

({w} ,∅) /∈ NB(w) ⇒ w 1 p → r.

So, ((p → q) ∧ (q → r))M * (p → r)M and therefore,

(((p → q) ∧ (q → r))M , (p → r)M ) /∈ NB(g).

That is, g 1 (p → q) ∧ (q → r) → (p → r).

For the strong completeness theorem we will show that if Σ 0 A then there exists
a state ∆ in the canonical model such that ∆  Σ and ∆ 1 A. For this purpose
we need to have some definitions and propositions. Actually the definitions of theory
and of derivation from hypotheses are identical to the ones for F in [5].

Definition 2.18
A set of sentences ∆ is a theory if and only if

1. A,B ∈ ∆ ⇒ A ∧B ∈ ∆,

2. ` A → B ⇒ (if A ∈ ∆, then B ∈ ∆),

3. If ` A ⇒ A ∈ ∆.

Definition 2.19
(a) We define Γ ` A if there is a derivation of A from Γ and theorems of WF using

the rules A B
A∧B and A A→B

B where in the latter case the restriction is that A → B has
to be provable in WF.
(b) We define Γ  A iff for all M, w ∈ M , if M,w  Γ then M,w  A.

Proposition 2.20
∆ is a theory ⇐⇒ ∆ ` A if and only if A ∈ ∆.

Proof. ⇒: The proof from right to left is immediate. The other direction is by
induction on the length of the derivation. If A is theorem of WF, then by definition
of theory A ∈ ∆.
If ∆ ` A and ∆ ` B, then, by induction hypothesis A ∈ ∆ and B ∈ ∆. So by

definition of theory A ∧B ∈ ∆.
If ` A → B and ∆ ` A, then, by induction hypothesis A ∈ ∆ and by definition of

theorem B ∈ ∆.
⇐: This direction is easy. We only check case 2 of the definition of theory. Let

` A → B and A ∈ ∆. Then by assumption ∆ ` A, and so ∆ ` B. Again by
assumption B ∈ ∆.

Theorem 2.21
(Weak Deduction Theorem) A ` B if and only if ` A → B.

Proof. ⇒: By induction on the length of the proof.
If B is an axiom. Then ` B, so by rule 11, ` A → B.
If A ` A is covered ` A → A.
If A ` B and A ` C. By induction hypothesis ` A → B and ` A → C, so by rule 5,
` A → B ∧ C.
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If A ` B and ` B → C. Then by induction hypothesis ` A → B, so by rule 12,
` A → C.
⇐: Let ` A → B and Γ = {A} then by Definition 2.19, we have Γ ` B, that is
A ` B.

Corollary 2.22
(a) A1, ..., An ` B if and only if ` A1 ∧ ... ∧An → B.

(b) ∆ ` B if and only if, for some A1, ..., An ∈ ∆, ` A1 ∧ ... ∧An → B.

Proof. The proof is easy.

Definition 2.23
A set of sentences ∆ is prime if and only if, if A ∨B ∈ ∆, then A ∈ ∆ or B ∈ ∆.

Theorem 2.24
If Σ 0 D then there is a prime theory ∆ such that ∆ ⊇ Σ, D /∈ ∆.

Proof. By assumption and by definition of provability we conclude that D /∈ Σ.
Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and define,

∆0 = Σ,

∆n+1 = ∆n ∪ {Bn} if ∆n, Bn 0 D,

∆n+1 = ∆n otherwise.

Take ∆ to be the union of all ∆n. Clearly, ∆ 0 D. We must show that ∆ is a prime
theory. Assume that F ∈ ∆, G ∈ ∆ and F ∧ G /∈ ∆. Let F = Bi, G = Bj and
F ∧ G = Bn with j ≥ i ≥ n. So, ∆n, F ∧ G ` D and hence ∆n, F,G ` D. But
F,G ∈ ∆j , so ∆n, F,G 0 D, a contradiction.
Now if ` A → B and A ∈ ∆. Asuume B /∈ ∆. Let B = Bn, then, ∆n, Bn ` D

and so ∆n, A ` D, because from ` A → B and A we can derive B. But this is a
contradiction, since A ∈ ∆.
Assume that F ∨ G ∈ ∆, and F /∈ ∆, G /∈ ∆. Let F = Bn and G = Bk, so

∆n, F ` D and ∆k, G ` D. Then by Corollary 2.22, there exist B̄1, ..., B̄m ∈ ∆n

such that ` B̄1 ∧ ... ∧ B̄m ∧ F → D and also there exist B
′

1, ..., B
′

m′ ∈ ∆k such that

` B
′

1 ∧ ... ∧ B
′

m′ ∧ G → D. W.l.o.g. take n ≥ k, then B̄1, ..., B̄m, B
′

1, ..., B
′

m′ ∈ ∆n.
Thus by some steps and using some rules of WF we will have,

` (B̄1 ∧ ... ∧ B̄m) ∧ (B
′

1 ∧ ... ∧B
′

m′ ) ∧ (F ∨G) → D (2.1)

Again by Corollary 2.22 and (2.1) we have ∆n, F ∨G ` D. But that cannot be true
since F ∨G ∈ ∆.
Assuming that ` F , we want to show that F ∈ ∆. Let F = Bn and F /∈ ∆, so

∆n, F ` D. From ∆n we can derive F , so ∆n ` D. But this is a contradiction, hence
F ∈ ∆. So ∆ is a prime theory.
Since ∆ is a theory and ∆ 0 D, D /∈ ∆.

Definition 2.25
Let WWF be the set of all prime theories. Given a formula A, we define the set JAK
as follows, JAK = {∆ | ∆ ∈ WWF, A ∈ ∆} .
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Lemma 2.26
Let C and D are formulas. Then

(a) JC ∧DK = JCK ∩ JDK.
(b) JC ∨DK = JCK ∪ JDK.
(c) JCK ⊆ JDK iff ` C → D.

(d) JCK = JDK iff ` C ↔ D.

Proof. The proofs are easy. We only prove (c).
(c) Let 0 C → D. Then by the Weak Deduction Theorem C 0 D. Let Σ = {C},

then by Theorem 2.24, there exist a prime theory Γ such that, C ∈ Γ and D /∈ Γ.
That is JCK * JDK.
Now let ` C → D. Assume Γ ∈ WWF, C ∈ Γ. Then by definition of theory D ∈ Γ.

So JCK ⊆ JDK.
When constructing a canonical model the states of the world will be prime theories,

i.e. elements of WWF. Consider the function NBWF : WWF → P ((P (WWF))
2) such that

for each Γ ∈ WWF,

NBWF(Γ) = {(JAK, JBK) | A → B ∈ Γ} .

In the completeness proof we need to be sure that, if (JAK, JBK) ∈ NBWF(Γ), then
A → B ∈ Γ. This does not follow directly from the definition. It only follows directly
that C,D exist such that C → D ∈ Γ, and JCK = JAK and JDK = JBK. In the following
lemma we obtain what is needed to make the argument go through.

Lemma 2.27
If NBWF : WWF → P ((P (WWF))

2) is a function such that for each Γ ∈ WWF,
NBWF(Γ)= {(JAK, JBK)|A → B ∈ Γ}. Then (JAK, JBK)∈NBWF(Γ) implies A → B ∈ Γ.

Proof. Assume (JAK, JBK) ∈ NBWF(Γ). Then for some C, D, JAK = JCK, JBK = JDK,
C → D ∈ Γ. By Lemma 2.26, we have ` A ↔ C and ` B ↔ D. Then by rule 14 we
will have ` (A → B) ↔ (C → D). By assumption, C → D ∈ Γ. Hence, by definition
of prime theory we conclude that, A → B ∈ Γ.

Now we want to define the canonical model for WF.

Definition 2.28
The Canonical model MWF = 〈WWF, g,NBWF, V 〉 of WF is defined by:

1. g is the set of theorems of WF,

2. For each Γ ∈ W and all formulas A and B,

NBWF(Γ)= {(JAK, JBK) | A → B ∈ Γ} ,

3. If p ∈ At, then V (p) = JpK = {Γ | Γ ∈ WWF and p ∈ Γ} .

By Theorem 2.11, WF has the disjunction property and therefore is a prime theory.
It is easy to see that in the canonical model WF is omniscient. Also for all Γ ∈ WWF,
if JAK ⊆ JBK, then (JAK, JBK) ∈ NBWF(Γ). Since if JAK ⊆ JBK, then by Lemma 2.26,
` A → B and so A → B ∈ Γ.
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Theorem 2.29
(Truth Lemma) For any formula E, if MWF is the canonical model of WF, then

(E)M
WF

= JEK.
Proof. By induction on E. The atomic case holds by the definition of canonical
model.
(E := A∧B) Let Γ ∈ WWF and Γ  A∧B then Γ  A and Γ  B. By the induction

hypothesis A ∈ Γ and B ∈ Γ. Γ is a theory so A ∧B ∈ Γ.
Now let A ∧B ∈ Γ. We have ` A ∧B → A and ` A ∧B → B, hence by definition

of theory we conclude that A ∈ Γ and B ∈ Γ. By induction hypothesis Γ  A and
Γ  B so Γ  A ∧B.
(E := A∨B) Let Γ ∈ WWF and Γ  A∨B. Then Γ  A or Γ  B. By the induction

hypothesis A ∈ Γ or B ∈ Γ. We have ` A → A ∨ B and ` B → A ∨ B, so by the
definition of theory we conclude that A ∨B ∈ Γ.
Now let A ∨ B ∈ Γ. Γ is a prime so A ∈ Γ or B ∈ Γ. By induction hypothesis we

conclude that Γ  A or Γ  B. That is Γ  A ∨B.
(E := A → B) Let Γ ∈ WWF, then,

Γ  A → B ⇐⇒ ((A)M
WF

, (B)M
WF

) ∈ NBWF(Γ)
(by induction hypothesis) ⇐⇒ (JAK, JBK) ∈ NBWF(Γ)

(by Lemma 2.27) ⇐⇒ A → B ∈ Γ.

Theorem 2.30
The logicWF is sound and strongly complete with respect to the class of neighborhood
frames.

Proof. Soundness is straightforward (in fact already shown in earlier lemmas).
Let Σ 0 A, then by Theorem 2.24, there is a prime theory ∆ ⊇ Σ such that A /∈ ∆.

So, in the canonical model we have MWF,∆  Σ, MWF,∆ 1 A. That is, Σ 1 A.

3 Completeness for Logics between WF and F

In this section we consider some formulas which characterize special classes of frames.
We form the logics axiomatized by some of these formulas and prove their complete-
ness.

Definition 3.1
For every neighborhood frame F = 〈W, g,NB〉, we list some relevant properties as
follows. Here X,Y, Z are definable subsets of P (W ).
1. F is closed under intersection if and only if for all w ∈ W , if (X,Y ) ∈ NB(w),
(X,Z) ∈ NB(w) then (X,Y ∩ Z) ∈ NB(w).
2. F is closed under union if and only if for all w ∈ W , if (X,Y ) ∈ NB(w), (Z, Y ) ∈
NB(w) then (X ∪ Z, Y ) ∈ NB(w).
3. F satisfies transitivity if and only if for all w ∈ W , if (X,Y ) ∈ NB(w), (Y, Z) ∈
NB(w) then (X,Z) ∈ NB(w).
4. F is closed under upset if and only if for all w ∈ W , if (X,Y ) ∈ NB(w) and Y ⊆ Z
then (X,Z) ∈ NB(w).
5. F is closed under downset if and only if for all w ∈ W , if (X,Y ) ∈ NB(w) and
Z ⊆ X then (Z, Y ) ∈ NB(w).
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Lemma 3.2
The formula (p → q) ∧ (p → r) → (p → q ∧ r) characterizes the class of frames
F = 〈W, g,NB〉 satisfying closure under intersection.

Proof. Let F be closed under intersection and M = 〈W, g,NB, V 〉 be any model
based on F . We have to prove for all w ∈ W ,

(((p → q) ∧ (p → r))M , (p → q ∧ r)M ) ∈ NB(w).

For this purpose it is sufficient to show that, ((p → q) ∧ (p → r))M ⊆ (p → q ∧ r)M .
Let w ∈ W , w  p → q and w  p → r then,

(V (p), V (q)) ∈ NB(w) (3.1)

(V (p), V (r)) ∈ NB(w) (3.2)

The frame is closed under intersection, so by (3.1) and (3.2), (V (p), V (q) ∩ V (r)) ∈
NB(w). So, w  p → q ∧ r. Hence, by definition of neighborhood frames for all
w ∈ W ,

(((p → q) ∧ (p → r))M , (p → q ∧ r)M ) ∈ NB(w).

For the other direction, we use contraposition. Suppose that the class is not closed
under intersection. Then there is a frame F and w ∈ F such that (X,Y ) ∈ NB(w)
and (X,Z) ∈ NB(w) but (X,Y ∩ Z) /∈ NB(w). Consider the valuation V such that,
V (p) = X, V (r) = Z and V (q) = Y . Then,

(V (p), V (q)) ∈ NB(w) ⇒ w  p → q,

(V (p), V (r)) ∈ NB(w) ⇒ w  p → r,

(V (p), V (q ∧ r)) /∈ NB(w) ⇒ w 1 p → q ∧ r.

So ((p → q)∧ (p → r))M * (p → q ∧ r)M . Then by definition of neighborhood frames
g 1 (p → q)∧ (p → r) → (p → q∧r). Therefore F 1 (p → q)∧ (p → r) → (p → q∧r).

Lemma 3.3
The formula (p → q) ∧ (r → q) → (p ∨ r → q) characterizes the class of frames
F = 〈W, g,NB〉 satisfying closure under union.

Proof. Let F be closed under union and M = 〈W, g,NB, V 〉 be any model based on
F . We have to prove for all w ∈ W ,

(((p → q) ∧ (r → q))M , (p ∨ r → q)M ) ∈ NB(w).

For this purpose it is sufficient to show that, ((p → q) ∧ (r → q))M ⊆ (p ∨ r → q)M .
Let w ∈ W , w  p → q and w  r → q then,

(V (p), V (q)) ∈ NB(w) (3.3)

(V (r), V (q)) ∈ NB(w) (3.4)

The frame is closed under union, so by (3.3) and (3.4), (V (p)∪V (r), V (q)) ∈ NB(w).
So, w  p ∨ r → q. Hence by definition of neighborhood frames for all w ∈ W ,

(((p → q) ∧ (r → q))M , (p ∨ r → q)M ) ∈ NB(w).



Weak Subintuitionistic Logics 11

For the other direction, we use contraposition. Suppose that the class is not closed
under union. Then there is a frame F and w ∈ F such that (X,Y ) ∈ NB(w) and
(Z, Y ) ∈ NB(w) but (X ∪ Z, Y ) /∈ NB(w). Consider the valuation V such that,
V (p) = X, V (r) = Z and V (q) = Y . Then,

(V (p), V (q)) ∈ NB(w) ⇒ w  p → q,

(V (r), V (q)) ∈ NB(w) ⇒ w  r → q,

(V (p ∨ r), V (q)) /∈ NB(w) ⇒ w 1 p ∨ r → q.

So ((p → q)∧ (r → q))M * (p∨r → q)M ). Then by definition of neighborhood frames
g 1 (p → q)∧ (r → q) → (p∨r → q). Therefore F 1 (p → q)∧ (r → q) → (p∨r → q).

It is very notable that, if we use N -neighborhoods instead of neighborhoods, the
formulas (p → q) ∧ (p → r) → (p → q ∧ r) and (p → q) ∧ (r → q) → (p ∨ r → q)
characterize the same class of frames. This is clearly undesirable and strong evidence
that our definition of neighborhood is the right one.

Lemma 3.4
The formula (p → q) ∧ (q → r) → (p → r) characterizes the class of frames F =
〈W, g,NB〉 satisfying transitivity.

Proof. Let F satisfy transitivity and M = 〈W, g,NB, V 〉 be any model based on F .
We have to prove for all w ∈ W ,

(((p → q) ∧ (q → r))M , (p → r)M ) ∈ NB(w).

For this purpose it is sufficient to show that, ((p → q) ∧ (q → r))M ⊆ (p → r)M . Let
w ∈ W , w  p → q and w  q → r then,

(V (p), V (q)) ∈ NB(w) (3.5)

(V (q), V (r)) ∈ NB(w) (3.6)

The frame satisfies transitivity, so by (3.5) and (3.6), (V (p), V (r)) ∈ NB(w). So,
w  p → r. Hence, by definition of neighborhood frames for all w ∈ W ,

(((p → q) ∧ (q → r))M , (p → r)M ) ∈ NB(w).

For the other direction, we use contraposition. Suppose that the class does not satisfy
transitivy. Then there is a frame F and w ∈ F such that (X,Y ) ∈ NB(w) and
(Y, Z) ∈ NB(w) but (X,Z) /∈ NB(w). Consider the valuation V such that, V (p) =
X, V (r) = Z and V (q) = Y . Then,

(V (p), V (q)) ∈ NB(w) ⇒ w  p → q,

(V (q), V (r)) ∈ NB(w) ⇒ w  q → r,

(V (p), V (r)) /∈ NB(w) ⇒ w 1 p → r.

So ((p → q)∧(q → r))M * (p → r)M ). Then by the definition of neighborhood frames
g 1 (p → q) ∧ (q → r) → (p → r). Therefore F 1 (p → q) ∧ (q → r) → (p → r).
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Lemma 3.5
The rule p→q

(q→r)→(p→r) characterizes the class of frames F = 〈W, g,NB〉 satisfying

closure under downset.

Proof. Let for all M = 〈W, g,NB, V 〉 on a frame F , which is closed under downset,
M  p → q. We have to prove for all M on F , M  (q → r) → (p → r). For
this purpose we show that for all M on F, (q → r)M ⊆ (p → r)M . Let w ∈ M and
w  q → r then, (V (q), V (r)) ∈ NB(w). Also by assumption V (p) ⊆ V (q). The
frame is closed under downset so, (V (p), V (r)) ∈ NB(w), therefore w  p → r. So
(q → r)M ⊆ (p → r)M , i.e. by Theorem 2.12, for allM on F , M  (q → r) → (p → r).
For the other direction, we use contraposition. Suppose that the class is not closed

under downset. That is there is a frame F and w ∈ F such that (X,Y ) ∈ NB(w), Z ⊆
X but (Z, Y ) /∈ NB(w). Consider the valuation V such that, V (p) = Z, V (r) = Y
and V (q) = X. So (V (q), V (r)) ∈ NB(w), (V (p), V (r)) /∈ NB(w) and V (p) ⊆ V (q),
then M,w  q → r, M,w 1 p → r and M  p → q. Hence (q → r)M * (p → r)M so,
M 1 (q → r) → (p → r).

Lemma 3.6
The rule p→q

(r→p)→(r→q) characterizes the class of frames F = 〈W, g,NB〉 satisfying

closure under upset.

Proof. Let for all M = 〈W, g,NB, V 〉 on a frame F , which is closed under upset,
M  p → q. We have to prove for all M on F , M  (r → p) → (r → q). For
this purpose we show for all M on F , (r → p)M ⊆ (r → q)M . Let w ∈ M and
w  r → p. Then, (V (r), V (p)) ∈ NB(w). Also by assumption V (p) ⊆ V (q). The
frame is closed under downset so, (V (r), V (q)) ∈ NB(w), therefore w  r → q. So
(r → p)M ⊆ (r → q)M , i.e. by Theorem 2.12, for allM on F , M  (r → p) → (r → q).
For the other direction, we use contraposition. Suppose that the class is not closed

under upset. That is there is a frame F and w ∈ F such that (X,Y ) ∈ NB(w), Y ⊆ Z
but (X,Z) /∈ NB(w). Consider the valuation V such that, V (p) = Y, V (r) = X and
V (q) = Z. So (V (r), V (p)) ∈ NB(w), (V (r), V (q)) /∈ NB(w) and V (p) ⊆ V (q), then
M,w  r → p, M,w 1 r → q and M  p → q. Hence (r → p)M * (r → q)M so,
M 1 (r → p) → (r → q).

In this section we will be interested in the following axiom schemas and rules.

(C) (A → B) ∧ (A → C) → (A → B ∧ C)

(D) (A → B) ∧ (C → B) → (A ∨ C → B)

(I) (A → B) ∧ (B → C) → (A → C)

(IL)
A→B

(C→A)→(C→B)

(IR)
A→B

(B→C)→(A→C)

Lemma 3.7
(a) If WFC ⊆ L, then the canonical model of logic L is closed under intersection.

(b) If WFD ⊆ L, then the canonical model of logic L is closed under union.

(c) If WFI ⊆ L, then the canonical model of logic L satisfies transitivity.

(d) If WFIL ⊆ L, then the canonical model of logic L is closed under upset.

(e) If WFIR ⊆ L, then the canonical model of logic L is closed under downset.
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Proof. We only prove (a) and (e). The other cases are similar.
(a) Suppose that in the canonical model of logic L, (X,Y ) ∈ NB(Γ) and (X,Z) ∈

NB(Γ). By definition of NB in the canonical model there exist formulas A,B and
C such that (X,Y ) = (JAK, JBK) and (X,Z) = (JAK, JCK), where A → B ∈ Γ and
A → C ∈ Γ. Hence (A → B)∧(A → C) ∈ Γ and so using (C), A → B∧C ∈ Γ. Hence
(JAK, JB ∧CK) ∈ NB(Γ). Therefore since JBK∩ JCK = JB ∧CK, (X,Y ∩Z) ∈ NB(w).
So NB is closed under intersection.
(e) Suppose that in the the canonical model of WFIR, (X,Y ) ∈ NB(Γ) and Z ⊆ X.

Then there exist formulas A,B and C, such that (X,Y ) = (JAK, JBK), Z = JCK
and JCK ⊆ JAK. By definition of neighborhood in the canonical model and using
Lemma 2.26, we conclude that A → B ∈ Γ and ` C → A, and so using (IR) and
modus ponens, C → B ∈ Γ. Hence (JCK, JBK) = (Z, Y ) ∈ NB(Γ). Therefore NB is
closed under downset.

Theorem 3.8
If Γ ⊆ {C,D, I, IL, IR}, then WFΓ is sound and strongly complete with respect to
the class of neighborhood frames with all the properties defined by the schemes in Γ.

Proof. Immediate by Lemma 3.7.

The logic F is the smallest set of formulas closed under instances of WF, C, D
and I. Theorem 3.8 shows that F is sound and complete with respect neighborhood
models closed under intersection and union, and satisfying transitivity. A rooted
subintuitionistic Kripke model for F is a quadruple M = 〈W, g,R, V 〉 with R lack-
ing the properties of reflexivity, transitivity and preservation of rooted intuitionistic
Kripke models [5]. The following theorem gives another proof of completeness for
F with respect neighborhood models closed under intersection, union and satisfying
transitivity, using the completeness of F with respect to Kripke models ([2, 9, 5]).

Theorem 3.9
For every rooted subintuitionistic Kripke model Mk = 〈W, g,R, V 〉, there is a point-
wise equivalent neighborhood model Mn = 〈W, g,NB, V 〉, closed under intersection
and union, and satisfying transitivity.

Proof. Let Mk = 〈W, g,R, V 〉 be a rooted subintuitionistic kipke model and w ∈ W .
For each w ∈ W , we define R(w) = {u ∈ W | wRu} and

NB(w) = {(X,Y ) | R(w) ⊆ (W −X) ∪ (Y )} .

We show that Mn = 〈W, g,NB, V 〉 is a neighborhood model closed under intersection
and union, and satisfying transitivity. We know that R(g) = W , so

NB(g) = {(X,Y ) | W ⊆ (W −X) ∪ (Y )} = {(X,Y ) | X ⊆ Y } .

It is easy to show that with this definition NB is closed under intersection, union
and satisfies transitivity. We only show that NB is closed under intersection. Let
(X,Y ) and (X,Z) be in NB(w). We want to show that (X,Y ∩ Z) ∈ NB(w). So by
definition of NB,

R(w) ⊆ (W −X) ∪ (Y ), (3.7)

R(w) ⊆ (W −X) ∪ (Z). (3.8)



14 Weak Subintuitionistic Logics

By (3.7) and (3.8), R(w) ⊆ (W−X)∪(Y ∩Z). So, by definition of NB, (X,Y ∩Z) ∈
NB(w). Now we prove that Mk and Mn are pointwise equivalent. The proof is by
induction on the complexity of formulas. We only consider the implication case. Let
Mk, w  A → B. We want to prove that Mn, w  A → B that is ((A)Mn , (B)Mn) ∈
N(w). For this purpose it is sufficient to show that R(w) ⊆ (W − (A)Mn) ∪ (B)Mn .
Let v ∈ R(w) and Mn, v  A. Then wRv and by induction hypothesis Mk, v  A.
Then, by assumption Mk, v  B. So, by induction hypothesis, Mn, v  B. That is
v ∈ (B)Mn and so R(w) ⊆ (W − (A)Mn) ∪ (B)Mn . Hence ((A)Mn , (B)Mn) ∈ N(w).
Now assume Mn, w  A → B. We want to prove that Mk, w  A → B. Let

wRv, Mk, v  A. Then, by induction hypothesis, Mn, v  A. Also, by assumption,
v ∈ R(w) and R(w) ⊆ (W − (A)M ) ∪ (B)M . So Mn, v  B. Again by induction
hypothesis Mk, v  B. That is Mk, w  A → B.

4 Finite model property

In this section we will show that WF has the finite model property. We are going to
prove this result by means of finite theories in so-called adequate sets.

Definition 4.1
A set of formulas Σ is adequate if for all formulas A,B, if A ∨B ∈ Σ then so are A
and B, if A ∧B ∈ Σ then so are A and B, and if A → B ∈ Σ then so are A and B.

Lemma 4.2
Let Σ be a set of formulas and let D be a formula such that Σ∪{D} ⊆ Φ and Σ 0 D.
Then there is a prime theory ∆ ⊆ Φ such that

1. Σ ⊆ ∆,

2. A,B ∈ ∆ and A ∧B ∈ Φ ⇒ A ∧B ∈ ∆,

3. If A,B ∈ Φ and ` A → B ⇒ (if A ∈ ∆, then B ∈ ∆),

4. If A ∈ Φ and ` A ⇒ A ∈ ∆,

5. If A ∨B ∈ ∆ ⇒ A ∈ ∆ or B ∈ ∆.

Proof. Everything is similar to Theorem 2.24, except that we consider an enumera-
tion B1, B2, ..., Bn of the elements of Φ.

Now we make the model MΦ = 〈WΦ, g,NBΦ, V Φ〉 as follows,

1. WΦ := {∆ ⊆ Φ | ∆ satisfies conditions 2 to 5 in Lemma 4.2} ,
2. g := WFΦ = {A | A ∈ Φ and ` A} ,
3. For each ∆ ∈ WΦ, NBΦ(∆) =

{
(JAKΦ, JBKΦ) | A → B ∈ ∆

}
whereJAKΦ =

{
∆ ∈ WΦ | A ∈ ∆

}
,

4. V Φ(p) = JpKΦ =
{
∆ | ∆ ∈ WΦ and p ∈ ∆

}
.

It is easy to show that WFΦ ∈ WΦ and that WFΦ is an omniscient world. So, MΦ is
in fact a neighborhood model.

Lemma 4.3
For every formula E ∈ Φ, and for each Γ ∈ MΦ, (E)M

Φ

= JEKΦ.
Proof. The proof is similar to Theorem 2.29.
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Theorem 4.4
(Finite Model Property) If 0 A, then there exists a finite countermodel for A.

Proof. We consider the finite adequate set Φ such that A ∈ Φ and consider the
model MΦ. By Lemma 2.29, there exists a set ∆ ⊆ Φ such that A /∈ ∆ and ∆ is a
node of MΦ. Hence MΦ,∆ 1 A and so MΦ is a finite neighborhood model which
does not force A.

5 Relation of WF to F

In [5] we obtained conservativity results for IPC over F. In this section, we prove such
results for WF as well. This clarifies the difference in strength between F and WF.

Definition 5.1
Let us call a formula A → B with A and B containing only ∧ and ∨ a simple
implication.

The following is a uniform substitution theorem forWF. It states that we can always
replace logically equivalent formulas by each other.

Theorem 5.2
(Uniform Substitution) If ` A ↔ B, then ` E [A/p] ↔ E [B/p], where p is an
atom.

Proof. The proof is easy by induction on E. We only check the disjunction and
implication cases. Let E = C ∨D, then

1. ` C [A/p] → C [B/p] By induction hypothesis

2. ` C [B/p] → (C ∨D) [B/p] axioms 1

3. ` C [A/p] → (C ∨D) [B/p] Follows from 1 and 2 using rule 12

4. ` D [A/p] → D [B/p] By induction hypothesis

5. ` D [B/p] → (C ∨D) [B/p] axioms 1

6. ` D [A/p] → (C ∨D) [B/p] Follows from 4 and 5 using rule 12

7. ` (C ∨D) [A/p] → (C ∨D) [B/p] Follows from 3 and 6 using rule 6

The other direction is similar to this. So ` (C ∨D) [A/p] ↔ (C ∨D) [B/p].
Now Let E = C → D, then

1. ` C [A/p] ↔ C [B/p] By induction hypothesis

2. ` D [B/p] ↔ D [A/p] By induction hypothesis

3. ` (C [A/p] → D [A/p]) ↔ (C [B/p] → D [B/p]) Follows from rule 13

That is, ` E [A/p] ↔ E [B/p] .

Theorem 5.3
Let A be constructed by applying only ∧ and ∨ to atoms. Then there are formulas

A
′
, A

′′
such that

1. ` A ↔ A
′
and A

′
is a disjunction of conjunctions atoms.

2. ` A ↔ A
′′
and A

′′
is a conjunction of disjunctions of atoms.
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Proof. The proof is straightforward.

Now by the theorem just proved, a simple implication A → B can be replaced by
a WF- and IPC-equivalent A

′ → B
′
such that A

′
is a disjunction of conjunctions and

B
′
is a conjunction of disjunctions.

Lemma 5.4
For all pi, 1 ≤ i ≤ k and qj , 1 ≤ j ≤ m we have,

`WF p1 ∨ ... ∨ pk → q1 ∧ ... ∧ qm

iff

`WF pi → qj for all i, j.

Proof. Easy.

Definition 5.5
A formula A → B called a very simple implication if A is conjunction of atoms
and B is disjunction of atoms.

By the previous lemma we can conclude that to show that IPC is conservative
over WF with respect to simple implications it is sufficient to do so for very simple
implications. We can do so now for very simple implications, and in fact even for CPC
instead of F.

Theorem 5.6
If IPC (or CPC) proves a very simple implication, then WF proves it as well.

Proof. Let A → B be a very simple implication, so A =
∧

i(Pi) and B =
∨

j(qj).
Assume 0WF A → B then by the completeness theorem there exists a neighborhood
model M and w ∈ M , such that M,w 1 A → B. Hence (A)M * (B)M . So there
exists v ∈ M such that M, v  A and M, v 1 B. Now we select this point v
from M and then we make the one point IPC model MIPC = 〈v,NB(v),�〉 such that
NB(v) = {(v, v), (∅, v)} and for all propositional variable p, MIPC, v � p if and only
if M, v  p. Clearly

MIPC, v � pi, for all i,

MIPC, v 2 qj , for all j.

So, ((A)MIPC , (B)MIPC) = (v,∅) and (v,∅) /∈ NB(v). That is MIPC, v � A → B, so
0IPC A → B.

In [5] IPC was proved to be conservative over F with respect to basic implications,
formulas of the form A → B with A and B conjunction/disjunctions of simple impli-
cations. For example (p → q)∧ (p → r) → (p → q ∧ r) is a basic implication provable
in F for which 0WF (p → q) ∧ (p → r) → (p → q ∧ r). This shows a clear difference in
strength between F and WF.

6 WF and Modal Logic

We consider the translation � from L, the language of propositional logic, to L�, the
language of modal propositional logic. It is given by:
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1. p� = p;

2. (A ∧B)� = A� ∧B�;

3. (A ∨B)� = A� ∨B�;

4. (A → B)� = �(A� → B�).

Definition 6.1
A system of modal logic is classical iff it is closed under RE ( A↔B

�A↔�B ) [1].

E is the smallest classical modal logic. The logic EN extends E by adding the
axiom scheme �>. Completeness holds for EN with respect neighborhood frames
that contain the unit, i.e. for all w ∈ W, W ∈ N(w) [1]. The clause for �ϕ in the
N -neighborhood models is: w  �ϕ iff V (ϕ) ∈ N(w).
We will show that if `WF A, then `EN A�. We conjecture that the reverse direc-

tion holds as well but we were unable to prove it because of the difference between
neighborhoods and N -neighborhoods.

Proposition 6.2
If M = 〈W,N, V 〉 is an intuitionistic N -neighborhood model without an omniscient

world then M can be extended by adding an omniscient world to obtain a model M
′

such that for all formulas A and for all w ∈ W ,

M,w  A iff M
′
, w  A.

Proof. We add a world g to W and make a new model M
′
= 〈W ′

, g,N
′
, V

′〉, with
W

′
= W ∪ {g}, for all propositional letters p, (p)M

′

= (p)M and for all w ∈ W and
X ∈ P(W ),

N
′
(w) = {X ∪ {g} , X | X ∈ N(w)} , N

′
(g) = {W

′
}.

Then we will show that for all formulas D, (D)M
′

∩ W = (D)M , in other words

(D)M
′

= (D)M or (D)M
′

= (D)M ∪ {g}. The proof is by induction on D. The case
where D is a proposition letter follows by definition. Conjunction and disjunction are

easy, and if (E)M
′

∩W = (E)M , then ((E)M
′

)c ∩W = ((E)M )c. So let D = E → F
and w ∈ W . Then,

M,w  E → F ⇐⇒ ((E)M )c ∪ (F )M ∈ N(w)

(by induction hypothesis) ⇐⇒∗ ((E)M
′

)c ∪ (F )M
′

∈ N
′
(w)

⇐⇒ M
′
, w ′

E → F.
The explanation of ⇐⇒∗ is that by induction hypothesis,

(E
M

′

)c = (EM )c or (E
M

′

)c = (EM )c ∪ {g} ,

F
M

′

= FM or F
M

′

= FM ∪ {g} .

We can interpret the N -neighborhood models in two ways. As an N -neighborhood
model with N and as a modal model with EN.
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Lemma 6.3
Let M = 〈W,N, V 〉 be an N -neighborhood model. Then for all w ∈ W,

M,w N A iff M,w M A�.

Proof. The proof is by induction on A. The atomic case holds by induction and the
conjunction and disjunction cases are easy. We only check the implication case. So
let A = C → D, then

M,w N C → D ⇐⇒ {v | v 1N C} ∪ {v | v N D} ∈ N(w)
(by induction hypothesis) ⇐⇒

{
v | v 1M C�} ∪

{
v | v M D�} ∈ N(w)

⇐⇒
{
v | v M ¬C�} ∪

{
v | v M D�} ∈ N(w)

⇐⇒
{
v | v M ¬C� ∨D�} ∈ N(w)

⇐⇒ M,w M �(¬C� ∨D�)
⇐⇒ M,w M (C → D)�.

Theorem 6.4
For all formulas A, if `WF A, then `EN A�.

Proof. Assume 0EN A�, then by the completeness theorem there existsM = 〈W,N, V 〉
and w ∈ W , such that M,w 1EN A�. Then, by Lemma 6.3, M,w 1N A. To transfer
M into a proper N -neighborhood model for WF it needs to have an omniscient world.
In case M = 〈W,N, V 〉 does not have one, by Proposition 6.2, there exists M

′
with

an omniscient world such that M
′
, w 1N A. By Lemma 2.7 there is then a pointwise

equivalent neighborhood model M
′

NB = 〈W, g,NB, V 〉, such that M
′

NB , w 1 A. So,
by soundness, 0WF A.

Definition 6.5
An N -neighborhood frame F = 〈W, g,N〉, is closed under superset if and only if

∀w ∈ W, ∀X,Y ∈ P (W ) : X ⊆ Y, X ∈ N(w) ⇒ Y ∈ N(w).

Definition 6.6
A system of modal logic is monotone iff it is closed under RM ( A→B

�A→�B ) [4].

M is the smallest monotonic modal logic. Completeness holds for M with respect
monotonic neighborhood frames, i.e. in F = 〈W,N〉, N is closed under superset [4].

Lemma 6.7
For every N -neighborhood model MN = 〈W, g,N, V 〉 closed under superset there is
a pointwise equivalent neighborhood model MNB = 〈W, g,NB, V 〉 closed under upset
and downset.

Proof. The proof is easy if, by considering, as in Lemma 2.7, for each w ∈ W ,
NB(w) = {(X,Y ) | (X)c ∪ Y ∈ N(w)} .

Theorem 6.8
For all formulas A, if `WFIRIL A, then `M A�.

Proof. Assume 0M A�. Then by the completeness theorem there existM = 〈W,N, V 〉,
closed under superset, and w ∈ W such that M,w 1M A�. So, by Lemma 6.3,
M,w 1N A. In case M = 〈W,N, V 〉 does not have an omniscient world, then by
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Proposition 6.2, there exists M
′
with an omniscient world such that M

′
, w 1N A.

Moreover, from the proof of Lemma 2.7, it is clear that, if M is closed under superset,
M ′ is as well. By Lemma 6.7 then, there is a pointwise equivalent neighborhood model
M

′

NB = 〈W, g,NB, V 〉, closed under upset and downset, such that M
′

NB , w 1 A. So
by soundness, 0WFIRIL A.

Also in this case we were not able to prove the converse.

7 Conclusion

In this article we constructed a neighborhood semantics for weak subintuitionistic
logics extending a basic logic WF. It uses pairs of subsets of the set of worlds instead
of just subsets. This definitely seems the right choice, especially in view of the results
of Section 3 where the various obvious extensions of WF can be neatly separated by
frame properties. And in that way it does become clear what the right logics to be
studies in this area are. It does make the connection to non-normal modal logic less
clear than one could hope for because of the different semantics, and this lead to some
open problems, for example the relationship between WF and EN. The relationship
between the models used in modal logic and subintuitionistic logic does need clearing
up. The conservativity result in Section 5 makes clear what kind of implications can
be expected to be provable in WF and separates WF from F, for which we obtained a
conservativity result before. It is not clear how this relates to the complexity of the
decision problem of the logics. This may be an object for further study. Finally, it
seems worthwhile to study interpolation for WF and other logics.

References

[1] B. Chellas, Modal logic: An Introduction, Cambridge University Press, 1980.

[2] G. Corsi, Weak Logics with strict implication, Zeitschrift fur Mathematische Logik und Grund-
lagen der Mathematic, 33:389-406, 1987.
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