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1 Introduction

G. Corsi, in [1], introduced sublogics of intuitionistic propositional logic IPC
which are characterized by classes of Kripke models in which no assumption of
truth preservation is made, and proved strong completeness for those systems.
Her basic system was called F. G. Restall [4] made a similar study, also consider-
ing truth preservation, with somewhat different methods. His basic system was
called SJ and can be considered to be equivalent to F. The proofs in his paper
are somewhat sketchy.

In 1981, A. Visser [7] had already introduced Basic logic (BPC), an exten-
sion of F with truth preservation, in the natural deduction form, and proved
completeness of BPC for finite, transitive, irreflexive Kripke models. Then in
1997, Suzuki and Ono [6] introduced a Hilbert style proof system for BPC as an
extension of Corsi’s system [1]. They proved a weak completeness theorem.

The structure of this paper is as follows. In Section 2 we introduce the logics,
provide proof systems without and with assumptions and prove weak and strong
completeness theorems. In Section 3 we will show that any prime theory Π
satisfying some specific properties can be treated in much the same way as F
with the same proofs, and a form of strong completeness for F due to Restall
[4] is shown. We then apply the results to logics stronger than F. Thus we will
prove a strong completeness theorem for BPC with a Hilbert style proof system.
In all of this we clarify the role of the rules of modus ponens, conjunction and a
fortiori. In Section 4 we will introduce two special classes of formulas and show
that IPC is conservative over F with respect to these classes. This makes very
clear what proof of IPC can be proved in F. We will prove that IPC is in addition
conservative over BPC with respect to the NNIL formulas of [8]. This clarifies
what more BPC can prove than F.
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2 Subintuitionistic Logic

The Kripke models of subintuitionistic logics have a relation R that lacks the
properties of reflexivity, transitivity and preservation of intuitionistic Kripke
models.

Definition 1. A rooted subintuitionistic Kripke frame is a triple 〈W, g,R〉.
R is a binary relation on W; g ∈ W , the root is omniscient, i.e. gRw for each
w ∈ W . A root subintuitionistic Kripke model is a quadruple 〈W, g,R, V 〉
with V : P → 2W a valuation function on the set of propositional variables P.
The binary relation  is defined on w ∈ W as follows.

1. w  p ⇔ w ∈ V (p), for any p ∈ P ,
2. w  A ∧B ⇔ w  A and w  B,
3. w  A ∨B ⇔ w  A or w  B,
4. w  A → B ⇔ for each v with wRv, if v  A then v  B.

The constant f representing the contradiction is treated as a propositional
variable. M  A if, for all w ∈ W , M,w  A, and if all models force A, we
write A and call A valid.

This validity notion is Corsi’s. We will discuss Restall’s notion in Section 3.2.

Definition 2. F is the logic given by the following axioms and rules,

1. A → A ∨B 7. A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C)
2. B → A ∨B 8. (A → B) ∧ (B → C) → (A → C)
3. A ∧B → A 9. (A → B) ∧ (A → C) → (A → B ∧ C)
4. A ∧B → B 10. A → A
5. A B

A∧B 11. (A → C) ∧ (B → C) → (A ∨B → C)

6. A A→B
B 12. A

B→A

The rules are to be applied in such a way that, if the formulas above the line
are theorems of F, then the formula below the line is a theorem as well. We may
write ` for `F. We will call rule 5 the conjunction rule and, after Corsi, rule
12 the a fortiori rule. We return to the rules when we discuss deduction from
hypotheses. In [4] SJ has different rules and axioms but is essentially the same
system as F though it misses the a fortiori rule 12. For clarity’s sake we prefer to
prove weak completeness first using only direct deduction without hypotheses.

Proposition 1. (Soundness of F) In any root subintuitionistic Kripke model
〈W, g,R, V 〉, for each w ∈ W and each formula A, if `F A then w  A.

Proof. Easy. ut

From the above proposition it does not follow that ` A → (B → A). The
following example shows that 0 p → (q → p).
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Example 1. Let W = {g, w0, w1} and define M = 〈W, g,R, V 〉 as follows:
R = {(g, g), (g, w0), (g, w1), (w0, w1)}.
V (p) = {w0} , V (q) = {g, w1}.

In this model M, g 1 p → (q → p).

Next we will show F to be complete. First we will show that F has the
disjunction property.

Definition 3. [2] We define |A by induction on A, as follows

1. |p iff ` p,
2. |A ∧B iff |A and |B,
3. |A ∨B iff |A or |B,
4. |A → B iff ` A → B and (if |A then |B).

Theorem 1. |A ⇔ ` A

Proof. The proof is a trivial modifciation of the standard one for IPC. ut

Theorem 2. If ` A ∨B then ` A or ` B.

Proof. Assume ` A ∨ B, by Theorem 1(⇐), |A ∨ B. So |A or |B. By Theorem
1, (⇒), ` A or ` B. ut

Remark 1. Now that we have the disjunction property the following rules adopted
by Restall follow from the corresponding rules without ∨.

A ∨ C (A → B) ∨ C

B ∨ C
and

(A → B) ∨ E (C → D) ∨ E

((B → C) → (A → D)) ∨ E

Because let ` A ∨ C and ` (A → B) ∨ C. By Theorem 2, ` A or ` C, and
` A → B or ` C. If ` C then ` B ∨ C. So, let 0 C. Then ` A and ` A → B.
By rule 6 of F we conclude that ` B and hence ` B ∨C. The proof of the other
rule is similar to this.

We show that we do not need Restall’s rule (A→B) (C→D)
(B→C)→(A→D) , because it follows

from the a fortiori rule.

Proposition 2. Let ` A → B and ` C → D then ` (B → C) → (A → D).

Proof. Let ` A → B and ` C → D then,

1. ` (B → C) → (A → B) rule 12
2. ` (B → C) → (B → C)
3. ` ((B → C) → (A → B)) ∧ ((B → C) → (B → C))
4. ` (B → C) → (A → B) ∧ (B → C) From 2,3 using axiom 9
5. ` (A → B) ∧ (B → C) → (A → C)
6. ` (B → C) → (A → C) From 4,5 using axiom 8
7. ` (B → C) → (C → D) From assumption and rule 12
8. ` (B → C) → (A → C) ∧ (C → D) From 6,7 using axiom 9
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9. ` (B → C) → (A → D) Frome 8 using axiom 8.
ut

To show weak completeness of F we need some definitions.

Definition 4. 1. A set of sentences ∆ is a theory if and only if
(a) A,B ∈ ∆ ⇒ A ∧B ∈ ∆,
(b) ` A → B ⇒ (if A ∈ ∆, then B ∈ ∆),
(c) F is contained in ∆.

2. For theories Γ,∆, ΓR∆ iff, for all A → B ∈ Γ , A ∈ ∆ ⇒ B ∈ ∆.
3. A set of sentences ∆ is prime if and only if

if A ∨B ∈ ∆, then A ∈ ∆ or B ∈ ∆.

Theorem 3. Let Γ be a prime theory and C → D /∈ Γ . Then there is a prime
theory ∆ such that ΓR∆, C ∈ ∆ and D /∈ ∆.

Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

∆0 = {E | C → E ∈ Γ},
∆n+1 = ∆n∪{Bn} if for no B̄1, ..., B̄m ∈ ∆n, B̄1∧ ...∧ B̄m∧Bn → D ∈ Γ ,
∆n+1 = ∆n otherwise.

Take ∆ to be the union of all ∆n. We will show that ∆ is a theory. Assume that
F ∈ ∆, G ∈ ∆ and F ∧ G /∈ ∆. Let F = Bi, G = Bj and F ∧ G = Bn such
that, i ≥ n and j ≥ n. So there exist B̄1, ..., B̄m ∈ ∆n such that

B̄1 ∧ ... ∧ B̄m ∧ F ∧G → D ∈ Γ (1)

W.l.o.g. let i ≥ j, then B̄1, ..., B̄m, G ∈ ∆i. By (1) we conclude that F /∈ ∆ and
this is in contradiction with our assumption.

Now let ` A → B and A ∈ ∆. We must show that B ∈ ∆. Let B = Bn and
B /∈ ∆. So there exist B̄1, ..., B̄m ∈ ∆n, such that

B̄1 ∧ ... ∧ B̄m ∧B → D ∈ Γ

We know ` A → B. We conclude by axiom 9 and Modus Ponens that

` B̄1 ∧ ... ∧ B̄m ∧A → B̄1 ∧ ... ∧ B̄m ∧B

and so B̄1 ∧ ... ∧ B̄m ∧A → B̄1 ∧ ... ∧ B̄m ∧B ∈ Γ . Now we have

(B̄1 ∧ ... ∧ B̄m ∧A → B̄1 ∧ ... ∧ B̄m ∧B) ∧ (B̄1 ∧ ... ∧ B̄m ∧B → D) ∈ Γ (2)

Γ is a theory so by (2) and axiom 8 we have B̄1 ∧ ... ∧ B̄m ∧ A → D ∈ Γ and
this is a contradiction, because A ∈ ∆.

Assume that F ∨ G ∈ ∆, and F /∈ ∆, G /∈ ∆. Let F = Bn and G = Bk.
Then there exist B̄1, ..., B̄m ∈ ∆n such that B̄1 ∧ ...∧ B̄m ∧F → D ∈ Γ and also
there exist B

′

1, ..., B
′

m′ ∈ ∆k such that B
′

1∧ ...∧B
′

m′ ∧G → D ∈ Γ . W.l.o.g. take
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n ≥ k, then B̄1, ..., B̄m, B
′

1, ..., B
′

m′ ∈ ∆n. Thus by axiom 11 and some steps we
will have

B̄1 ∧ ... ∧ B̄m ∧B
′

1 ∧ ... ∧B
′

m′ ∧ (F ∨G) → D ∈ Γ

But that cannot be true since F ∨G ∈ ∆.
We know that C → C ∈ Γ , so by definition C ∈ ∆0 and hence C ∈ ∆. Also

we have D → D ∈ Γ , so D /∈ ∆.
Now assume that ` F , we want to show that F ∈ ∆. Assume F = Bn and

F /∈ ∆, then for some B̄1, ..., B̄m ∈ ∆n, we have

B̄1 ∧ ... ∧ B̄m ∧ F → D ∈ Γ (3)

We have ` B̄1 ∧ ... ∧ B̄m → F , so

B̄1 ∧ ... ∧ B̄m → B̄1 ∧ ... ∧ B̄m ∧ F ∈ Γ (4)

Γ is a theory therefore by (3) and (4) and axiom 8 we conclude that

B̄1 ∧ ... ∧ B̄m → D ∈ Γ

and this is a contradiction. Hence F ∈ ∆.
Finally we will show that ΓR∆. let A → B ∈ Γ and A ∈ ∆. Let B /∈ ∆ and

B = Bn. Then there exist B̄1, ..., B̄m ∈ ∆n such that

B̄1 ∧ ... ∧ B̄m ∧B → D ∈ Γ (5)

We call B̄1 ∧ ... ∧ B̄m = C. We have

` (C ∧A → A) ∧ (A → B) → (C ∧A → B) (6)

We know that (C ∧ A → A) ∧ (A → B) ∈ Γ and Γ is a theory. So by 6,
C ∧A → B ∈ Γ . On the other hand we have

` (C ∧A → B) ∧ (C ∧A → C) → (C ∧A → B ∧ C) (7)

We know that (C ∧ A → B) ∧ (C ∧ A → C) ∈ Γ and Γ is a theory, so by 7,
C ∧A → B ∧ C ∈ Γ . That is

B̄1 ∧ ... ∧ B̄m ∧A → B̄1 ∧ ... ∧ B̄m ∧B ∈ Γ (8)

Γ is a theory so by (5), (8) and axiom 8 we have B̄1 ∧ ... ∧ B̄m ∧ A → D ∈ Γ
and this is a contradiction, because A ∈ ∆. So ΓR∆. ut

Definition 5. We call {A | ` A} the empty theory.

Proposition 3. The empty theory ∆ is a prime theory.

Proof. (1) Let A,B ∈ ∆, then ` A and ` B, so ` A∧B. By definition, A∧B ∈ ∆.
(2) Let ` A → B and A ∈ ∆. Then ` A, so ` B. By definition B ∈ ∆. (3) Trivial.

To prove that ∆ is prime, assume A ∨ B ∈ ∆. Then ` A ∨ B. By Theorem
2, ` A or ` B. That is A ∈ ∆ or B ∈ ∆. ut
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Definition 6. The Canonical Model MF = 〈WF,∆,R,〉 of F is defined by:

1. ∆ is the empty theory,
2. WF is the set of all prime theories,
3. The canonical valuation is defined by Γ  p iff p ∈ Γ.

In the canonical model MF = 〈WF,∆,R,〉, ∆ is omniscient. Because let
Γ ∈ WF. If A → B ∈ ∆, then ` A → B. So, if A ∈ Γ , then B ∈ Γ .

Lemma 1. (Truth lemma) For each Γ ∈ WF and for every formula C,

Γ  C iff C ∈ Γ.

Proof. By induction on C. The atomic case holds by definition.
(C := A ∧ B) Let Γ  A ∧ B then Γ  A and Γ  B. By the induction

hypothesis, A ∈ Γ and B ∈ Γ . Γ is a theory so A ∧B ∈ Γ .
Now let A ∧ B ∈ Γ . We have ` A ∧ B → A and ` A ∧ B → B, hence by

definition of theory we conclude that A ∈ Γ and B ∈ Γ . By induction hypothesis,
Γ  A and Γ  B so Γ  A ∧B.

(C := A∨B) Γ  A∨B then Γ  A or Γ  B. By the induction hypothesis,
A ∈ Γ or B ∈ Γ . We have ` A → A ∨ B and ` B → A ∨ B so by definition of
theory we conclude that A ∨B ∈ Γ .

Now let A∨B ∈ Γ . Γ is a prime, so A ∈ Γ or B ∈ Γ . By induction hypothesis,
we conclude that Γ  A or Γ  B. That is Γ  A ∨B.

(C := A → B) Let A → B ∈ Γ , Σ ∈ WF and ΓRΣ,Σ  A. By induc-
tion hypothesis A ∈ Σ. Then by definition of R, B ∈ Σ. Again by induction
hypothesis, Σ  B. that is Γ  A → B.

Now let A → B /∈ Γ . Then by Theorem 3, there is a prime theory ∆ such
that A ∈ ∆, B /∈ ∆ and ΓR∆. So Γ 1 A → B. ut

Theorem 4. (Weak Completeness) For any formula A if  A, then ` A.

Proof. Let 0 A and let ∆ be the empty theory. By the definition of empty theory
A /∈ ∆. So, we have MF,∆ 1 A. That is, 1 A. ut

Next we prove strong completeness with the semantics as in Corsi [1]. But
we introduce a notion of derivation from hypotheses.

Definition 7. (a) We define Γ ` A if there is a derivation of A from Γ and
theorems of F using the rules A B

A∧B , and A A→B
B (only if `F A → B).

(b) We define Γ A iff for all M,w ∈ M , if M,w  Γ then M,w  A.

Remark 2. Note that if Γ ` A then it does not follow that Γ ` B → A. For
example if we assume that Γ = F ∪ {p}, then Γ ` p and Γ 0 q → p.

Surprisingly, the weak Deduction Theorem holds for F and `.

Theorem 5. (Weak Deduction Theorem) A ` B if and only if ` A → B.
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Proof. ⇒: By induction on the length of the proof.

If B is a theorem of F. Then ` B, so by rule 12, ` A → B.

A ` A is covered by ` A → A.

If A ` B and A ` C. By induction hypothesis ` A → B and ` A → C, so
` A → B ∧ C.

If A ` B and ` B → C. Then by induction hypothesis ` A → B, so ` A → C.

⇐: By definition this direction is straightforward. ut

Corollary 1. 1. A1, ..., An ` B iff ` A1 ∧ ... ∧An → B.

2. ∆ ` B iff A1 ∧ ... ∧An ` B for some A1, ..., An ∈ ∆.

Proof. The proof is easy. ut

Proposition 4. ∆ is a theory ⇐⇒ ∆ ` A if and only if A ∈ ∆.

Proof. ⇒: The proof from right to left is immediate. The other direction is by
induction on the length of the derivation. If A ∈ ∆ there is nothing to prove. If
A is a theorem of F, then by definition of theory A ∈ ∆.

If ∆ ` A and ∆ ` B, by induction hypothesis A ∈ ∆ and B ∈ ∆. So, by the
definition of theory A ∧B ∈ ∆.

If ` A → B and ∆ ` A, by induction hypothesis A ∈ ∆, and by definition of
theory B ∈ ∆.

⇐: This is straightforward. ut

Theorem 6. If Σ 0 D then there is a prime theory ∆ such that ∆ ⊇ Σ, D /∈ ∆.

Proof. By assumption and by definition of provability we conclude that D /∈ Σ.
Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and define

∆0 = Σ ∪ F,

∆n+1 = ∆n ∪ {Bn} if ∆n, Bn 0 D,

∆n+1 = ∆n otherwise.

Take ∆ to be the union of all ∆n. The proof now runs as for Theorem 3. ut

Theorem 7. (Strong Completeness) For any formula A, Σ ` A if and only
if Σ  A.

Proof. Left to right is easy. For the other direction, Let Σ 0 A. Then by Theorem
6, there is a prime theory Γ ⊇ Σ such that A /∈ Γ . So, we will have MF, Γ  Σ
and MF, Γ 1 A. That is Σ 1 A. ut

We will not discuss the finite model property in this paper, or translations into
modal logic. We have no new results in that area and refer the reader to Corsi [1]
and Sano and Ma [5].
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3 Π-Provability and Restall’s strong completeness

In the first subsection we introduce provabality in a theory Π with good prop-
erties. In the second subsection we will apply this notion to discuss Restall’s
validity notion. He considers validity in a model as truth in the root, and valid-
ity of a consequence accordingly. This gives rise to another consequence relation.
We define a suitable proof relation `r to prove the connected form of strong com-
pleteness. In the third subsection we further develop the notion of Π-provability
and connect it with provability in logics stronger than F, in particular BPC.

3.1 Π-Provability

Definition 8. ∆ is a Π-theory if and only if:

1. If A,B ∈ ∆, then A ∧B ∈ ∆,
2. If A → B ∈ Π and A ∈ ∆, then B ∈ ∆,
3. The set Π→ of members of Π of the form A → B is contained in ∆,
4. F is contained in ∆.

We will assume Π to be a theory with good properties as coded in the
following definition.

Definition 9. Π is an adequate theory if Π a prime Π-theory closed under
the restricted a fortiori rule, if A ∈ Π→, then for all B, B → A ∈ Π.

Lemma 2. Π is an adequate theory iff Π a prime theory closed under modus
ponens and the restricted a fortiori rule.

Proof. Obvious. ut

In all of Section 3, Π will be assumed to be an adequate theory. This will
turn out to make Π suitable to be the set of formulas true in the root of a model.

Definition 10. We define Γ `Π A as: there is a derivation of A from Γ∪Π→∪F
using the rules A B

A∧B , A A→B
B with A → B ∈ Π in the latter case.

Proposition 5. ∆ is a Π-theory ⇐⇒ ∆ `Π A if and only if A ∈ ∆.

Proof. ⇒: From right to left is trivial. The other direction is by induction on
the length of the proof. If A ∈ ∆ ∪ F ∪Π→ there is nothing to prove.

Let ∆ `Π A and ∆ `Π B. By induction hypothesis A ∈ ∆ and B ∈ ∆. So,
by definition of Π-theory A ∧B ∈ ∆.

If A → B ∈ Π and∆ `Π A. By induction hypothesis A ∈ ∆ and by definition
of Π-theory B ∈ ∆.
⇐: Straightforward. ut

Theorem 8. If Γ is a prime Π-theory with C → D /∈ Γ , then there is a prime
Π-theory ∆ with ΓR∆, C ∈ ∆ and D /∈ ∆.
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Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

∆0 = {E | C → E ∈ Γ} ∪ F,
∆n+1 = ∆n∪{Bn} if for all B̄1, ..., B̄m ∈ ∆n, Γ 0Π B̄1∧ ...∧ B̄m∧Bn → D,
∆n+1 = ∆n otherwise.

Take ∆ to be the union of all ∆n. We show that

1. ΓR∆,
2. ∆ is a prime Π-theory,
3. C ∈ ∆,
4. D /∈ ∆.

1. Let A → B ∈ Γ and A ∈ ∆. We must show that B ∈ ∆. Let B = Bn and
B /∈ ∆. So there exist B̄1, ..., B̄m ∈ ∆n such that

Γ `Π B̄1 ∧ ... ∧ B̄m ∧B → D (9)

A → B ∈ Γ so, Γ `Π A → B and Γ `Π B̄1 ∧ ... ∧ B̄m ∧A → A then,

Γ `Π B̄1 ∧ ... ∧ B̄m ∧A → B

Also we have Γ `Π B̄1 ∧ ... ∧ B̄m ∧A → B̄1 ∧ ... ∧ B̄m, therefore

Γ `Π (B̄1 ∧ ... ∧ B̄m ∧A → B̄1 ∧ ... ∧ B̄m) ∧ (B̄1 ∧ ... ∧ B̄m ∧A → B). (10)

By (10) and axiom 9 we conclude that

Γ `Π B̄1 ∧ ... ∧ B̄m ∧A → B̄1 ∧ ... ∧ B̄m ∧B. (11)

By (9) and (11), we have

Γ `Π (B̄1 ∧ ...∧ B̄m ∧A → B̄1 ∧ ...∧ B̄m ∧B)∧ (B̄1 ∧ ...∧ B̄m ∧B → D). (12)

Again by (12) and axiom 8 we have Γ `Π B̄1 ∧ ... ∧ B̄m ∧ A → D and this is a
contradiction, because A ∈ ∆. So B ∈ ∆ and hence ΓR∆.
2. Let A ∈ ∆, A → B ∈ Π. So, also A → B ∈ Γ . As in (1.) B ∈ ∆ follows.

Let F ∈ Π→. We want to show that F ∈ ∆. We know that Π is closed under
the restricted a fortiori rule, so C → F ∈ Π→ and therefore C → F ∈ Γ . So by
definition of ∆0, F ∈ ∆o and thus F ∈ ∆.

As in the proof of Theorem 3, we can conclude that ∆ is prime and closed
under conjunction.
3. We know that C → C ∈ Γ , so C ∈ ∆0 and then C ∈ ∆.
4. D /∈ ∆, since Γ `Π D → D. ut

Definition 11. In the Π-canonical model MΠ = 〈WΠ ,Π,R,〉 of F

1. WΠ is the set of all prime Π-theories,
2. The canonical valuation is defined by Γ  p if and only if p ∈ Γ.
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Lemma 3. (Truth lemma) For each Γ ∈ WΠ and for every formula A,

Γ  C iff C ∈ Γ.

Proof. By induction on C exactly as in the proof of Lemma 1. ut

This truth lemma will lead as usual to completeness of Π-provability, but we
leave that for the last subsection in which we strengthen the conditions on Π.
But we can already state the following proposition which makes the situation
clearer.

Proposition 6. Π `Π A ⇔ MΠ ,Π  A.

Proof. Immediate by Proposition 5 and Lemma 3. ut

3.2 Restall’s form of strong completeness

We first introduce a stronger notion of proof Γ `r from a set of assumptions
Γ . It will include full modus ponens as well as the restricted a fortiori rule. We
do not assume that the set of assumptions is a prime theory or even a theory.
The fact that no disjunction property is assumed means that the proof rules will
have to be more complex. The idea is that it will be ultimately be possible to
extend the set of assumptions to an adequate theory.

Definition 12. (a) We define Γ `r A if there is a derivation of A from Γ and
theorems of F using the rules

A B

A ∧B
,
B B → A

A
,
B ∨ C (B → A) ∨ C

A ∨ C

and

A

B → A
,

A ∨ C

(B → A) ∨ C

with in the latter two cases the restriction that A has to be an implication.
(b) We define, Γ �r A iff for all M = 〈W, g,R, V 〉, if M, g  Γ then M, g  A.

Proposition 7. Π `r A ⇔ A ∈ Π.

Proof. ⇒: By induction on the length of the proof.
If A ∈ Π there is nothing to prove.
If Π `r A and Π `r B, then, by induction hypothesis, A ∈ Π and B ∈ Π.

So, by the definition of Π-theory A ∧B ∈ Π.
If Π `r A → B and Π `r A, then, by induction hypothesis, A ∈ Π and

A → B ∈ Π. So, by the definition of Π-theory B ∈ Π.
If Π `r (A → B) ∨ C and Π `r A ∨ C, then, by induction hypothesis,

(A → B) ∨ C ∈ Π and A ∨ C ∈ Π. So, A → B ∈ Π or C ∈ Π, and A ∈ Π or
C ∈ Π, since Π is prime. Therefore C ∈ Π, or A → B ∈ Π and A ∈ Π. In the
latter case, by definition of Π-theory, B ∈ Π. So, in both cases B ∨ C ∈ Π.
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If Π `r A and A is an implication, then, by the induction hypothesis and
the closure of Π under the a restricted a fortiori rule, for all B, B → A ∈ Π.

The other cases are similar.

⇐: If A ∈ Π, then by definition, Π `r A. ut

Corollary 2. Π `r A ⇔ Π `Π A.

Proof. Immediate from Propositions 5 and 7. ut

Next we show how to reason with ∨ in case we do not have the disjunction
property.

Lemma 4. If A `r B then C ∨A `r C ∨B.

Proof. By induction on the length of the proof.

If B is a theorem of F, then C ∨ A `r B and C ∨ A `r B → C ∨ B, so
C ∨A `r C ∨B.

If A `r A, also C ∨A `r C ∨A.

If A `r B and A `r D, then by induction hypothesis C ∨ A `r C ∨ B and
C ∨A `r C ∨D, therefore C ∨A `r (C ∨B) ∧ (C ∨D).

After some steps we will have C ∨A `r C ∨ (B ∧D).

If A `r F and F is implication, we want to prove for all B, C∨A `r C∨(B →
F ). By induction hypothesis C ∨A `r C ∨ F . Then C ∨A `r C ∨ (B → F ).

If A `r F and A `r F → B, then by induction hypothesis C ∨ A `r C ∨ F
and C ∨A `r C ∨ (F → B), so C ∨A `r C ∨B.

The remaining cases are easy. ut

Proposition 8. If A `r C and B `r C, then A ∨B `r C.

Proof. By Lemma 4, A ∨B `r C ∨B, and also, C ∨B `r C ∨C. It is simple to
show that ` C ∨ C → C, so A ∨B `r C. ut

Now we have shown that reasoning from disjunctions can be executed prop-
erly we have reached the point at which we can show that an arbitrary set of
formulas can be extended to an adequate theory.

Lemma 5. If Σ 0r A, then there is a Π ⊇ Σ such that Π is an adequate theory
and Π 0r A.

Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

Π0 = {B | Σ `r B},
Πn+1 = Πn ∪ {Bn} if for no B̄1, ..., B̄m ∈ Πn, B̄1, ..., B̄m, Bn `r A,

Πn+1 = Πn otherwise.
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Take Π to be the union of all Πn. By definition of Π, it is clear that Π 0r A.
We must show that Π is a Π-theory. Assume that E ∈ Π, F ∈ Π and

E ∧ F /∈ Π. Let E = Bi, F = Bj and E ∧ F = Bn such that, i ≥ n and j ≥ n.
So there exist B̄1, ..., B̄m ∈ Πn, such that

B̄1, ..., B̄m, E ∧ F `r A

and so,
B̄1, ..., B̄m, E, F `r A

But E,F, B̄1, ..., B̄m ∈ Πj , so B̄1, ..., B̄m, E, F 0r A, a contradiction.
Now let C → D ∈ Π and C ∈ Π we must show that D ∈ Π. Let D = Bn

and D /∈ ∆. So there exist B̄1, ..., B̄m ∈ ∆n, such that

B̄1, ..., B̄m, D `r A

and so
B̄1, ..., B̄m, C → D,C `r A

This is a contradiction.
Assume that E ∨ F ∈ Π, and E /∈ Π, F /∈ Π. Let E = Bn and F = Bk.

Then there exist B̄1, ..., B̄m ∈ ∆n, such that B̄1, ..., B̄m, E `r A and therefore

B̄1 ∧ ... ∧ B̄m ∧ E `r A (13)

and also there exist B
′

1, ..., B
′

m′ ∈ ∆k, such that B
′

1, ..., B
′

m′ , F `r A and there-
fore

B
′

1 ∧ ... ∧B
′

m′ ∧ F `r A (14)

By (13), (14), the distributive law and Proposition 8 we can conclude B̄1 ∧ ... ∧
B̄m ∧B

′

1 ∧ ... ∧B
′

m′ ∧ (E ∨ F ) `r A and hence

B̄1, ..., B̄m, B
′

1, ..., B
′

m′ , E ∨ F `r A (15)

But this is a contradiction, since E ∨ F ∈ Π. So Π is a prime Π-theory.
Finally let E ∈ Π be an implication. We need to show that for all B, B →

E ∈ Π. Let B → E /∈ Π, then there exist B̄1, ..., B̄m ∈ ∆n, such that

B̄1, ..., B̄m, B → E `r A (16)

So, by (16) we have B̄1, ..., B̄m, E `r A, since from E we can derive B → E. But
this is a contradiction, hence B → E ∈ Π. ut
Theorem 9. (Completeness Theorem) Σ `r A if and only if Σ �r A.

Proof. ⇒: Suppose Σ `r A. We use induction on the length of the derivation of
A from Σ to prove that Σ �r A. We only check one case.

Let A be an implication and Σ �r A. We want to show that for all formulas
B, Σ �r B → A. Let M = 〈W, g,R,〉 and M, g  Σ. By assumption M, g  A,
the root g is omniscient and A is an implication formula. Therefore for all v ∈ W,
we have M, v  A, so M, g  B → A.
⇐: Let Σ 0r A. By Lemma 5 there is a prime Π-theory, Π ⊇ Σ such that
A /∈ Π. So, in the canonical model MΠ = 〈WΠ ,Π,R,〉, MΠ ,Π  Σ and
MΠ ,Π 1 A, since A /∈ Π. So Σ 2r A. ut
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3.3 Π-provability and stronger logics

In this subsection we strengthen the conditions on Π to ensure that it satisfies
the full a fortiori rule.

Definition 13. Π is a fully adequate theory if Π is an adequate theory con-
taining no formulas without implications.

A fully adequate theory can be said to make no purely local statements.

Lemma 6. A fully adequate theory Π is closed under the (unrestricted) a for-
tiori rule.

Proof. We have to prove A ∈ Π ⇒ D → A ∈ Π. We prove it by induction on the
complexity of A. Note that the base case is that A is an implication. Statements
without implication are not in Π.

If A ∈ Π is an implication, then D → A ∈ Π by assumption.
If A ∈ Π is B ∧ C, then, by axioms 3 and 4 and modus ponens B ∈ Π and

C ∈ Π. By induction hypothesis, D → B ∈ Π and D → C ∈ Π. Then, by the
conjunction rule, axiom 9 and modus ponens, D → B ∧ C ∈ Π.

If A ∈ Π is B ∨ C, then, since Π is prime, B ∈ Π or C ∈ Π. By induction
hypothesis D → B ∈ Π or D → C ∈ Π, and by axiom 1 or 2, axiom 8 and
modus ponens, D → B ∨ C ∈ Π. ut

Theorem 10. If Π is a fully adequate theory and Σ 0Π D, then there is a prime
Π-theory ∆ ⊇ Σ such that D /∈ ∆.

Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

∆0 = Σ ∪Π→ ∪ F,
∆n+1 = ∆n ∪ {Bn} if for no B̄1, ..., B̄m ∈ ∆n, `Π B̄1 ∧ B̄m ∧ ...∧Bn → D,
∆n+1 = ∆n otherwise.

Take ∆ to be the union of all ∆n. By assumption D /∈ ∆0 and also we have
`Π D → D, so D /∈ ∆.

We show that ∆ is a prime Π-theory. This simply goes exactly as in the
proof of Theorem 6 and 3, Π has all the relevant properties of F that were used
in these proofs. ut

Theorem 11. If Π is a fully adequate theory then Σ `Π A if and only if for all
Γ in the Π-Canonical model MΠ , if Γ  Σ then Γ  A.

Proof. Left to right is easy by induction on the length of the proof. The other
direction follows by Theorem 10. ut

Definition 14. We define ∆ �Π A iff for all M = 〈W, g,R, V 〉 such that M, g 
Π, and all w ∈ W, if M,w  ∆, then M,w  A.

This now allows us to state a very general completeness theorem.
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Theorem 12. (Π-completeness theorem) If Π is a fully adequate theory,
then ∆ `Π A ⇔ ∆ �Π A.

Proof. Left to right is easy, the other direction follows by Theorem 11. ut

This theorem can be applied to any logic extending F as long as it has the
rules of modus ponens, conjunction and the a fortiori rule. Of course, a logic
will usually be closed under substitution but there is no need for this. To get
useful completeness theorems we of course will have to prove that the canonical
model of the logic has the desired properties. We just consider the case of Basic
Propositional Calculus (BPC).

BPC is interpreted in Kripke models similarly to intuitionistic propositional
logic except that the accessibility relation is not necessarily reflexive. Suzuki and
Ono [6] introdused a Hilbert style proof system for BPC. Their axiomatization
is an extension of the logic F with the axioms, A → (B → A), f → A and
A → (B → A ∧B).

We show that we do not need A → (B → A ∧B) in BPC, because it follows
from F+ (A → (B → A)) as follows.

1. ` A → (B → A)
2. ` B → B
3. ` A → (B → B) Follows from 2 using rule 12
4. ` (A → (B → A)) ∧ (A → (B → B)) Follows from 1,3 using rule 5
5. ` A → (B → A) ∧ (B → B) Follows from 4 using axiom 9
6. ` (B → A) ∧ (B → B) → (B → A ∧B)
7. ` A → (B → A ∧B) Follows from 5,6 using axiom 8

The a fortiori rule follows from the axiom A → (B → A) and modus ponens.
In reasoning without assumptions the conjunction rules superfluous because A →
(B → A ∧B) is provable in BPC. But in reasoning with assumptions we do not
seem to be able to do without it.

The next lemma is due Restall [4] and Corsi [1].

Lemma 7. Let MΠ = 〈WΠ ,Π,R,〉 be the Π-canonical model for some Π
containing A → (B → A) for all A,B. Then the relation R is transitive and
satisfies preservation of truth.

Proof. First we will show that R is transitive. Let Γ,∆ and Σ are in WΠ and
let ΓR∆ and ∆RΣ, we want to prove that ΓRΣ. So let A → B ∈ Γ and
A ∈ Σ. We have (A → B) → (> → (A → B)) ∈ Π. So by definition of Π-
theory > → (A → B) ∈ Γ . However > ∈ ∆ and ΓR∆, so by definition of R,
A → B ∈ ∆. Again by definition of R, B ∈ Σ, since A ∈ Σ and ∆RΣ. That is,
R is transitive.

Now we will show that  preserves truth in the Π-canonical model. Assume
that A ∈ Γ and ΓR∆. As ∆ is nonempty, there is a B ∈ ∆. The assumption
gives B → A ∈ Γ (since A → (B → A) ∈ Π), and so A ∈ ∆. ut

Theorem 13. (Completeness Theorem for BPC) Σ `BPC A ⇔ Σ �BPC A.

Proof. Immediate by Lemma 7 and Theorem 12. ut
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4 Relation of F to Intuitionistic Propositional Logic

In this section, we prove conservativity results for IPC over F and over BPC. This
clarifies what part of IPC these systems can prove.

4.1 Conservativity results for IPC over F

We will provide two classes of formulas with respect to which IPC is conservative
over F, the class of simple implications and the class of basic implications.

Definition 15. Let us call a formula A → B with A and B containing only ∧
and ∨ a simple implication, and a formula that is obtained by applying only ∧
and ∨ to simple implications a basic formula. Finally a formula A → B with
A and B basic formulas is a basic implication.

Theorem 14. If `F A ↔ B, then `F E [A/p] ↔ E [B/p], where p is an atom.

Proof. The proof is easy by induction on E. We only check the implication case.
Let E = C → D. Then, by induction hypothesis, we have:

`F C [A/p] → C [B/p]

`F D [B/p] → D [A/p]

By Proposition 2, we can conclude that

`F (C [B/p] → D [B/p]) → (C [A/p] → D [A/p]).

The other direction is the same. So we can conclude that

`F (C [A/p] → D [A/p]) ↔ (C [B/p] → D [B/p]).

That is,
`F E [A/p] ↔ E [B/p] .

ut

Theorem 15. Let A be a formula such that A is constructed by applying only
∧ and ∨ to formulas from a class Θ. Then there are formulas A

′
, A

′′
such that

1. ` A ↔ A
′
and A

′
is a disjunction of conjunctions of formulas in Θ.

2. ` A ↔ A
′′
and A

′′
is a conjunction of disjunctions of formulas in Θ.

Proof. The proof is straightforward. ut

We will apply Theorem 15 to Θ as the class of atoms, and as the class of
very simple implications. Now by the previous theorems, a simple implication
A → B can be replaced by an F- and IPC-equivalent A

′ → B
′
such that A

′
is a

disjunction of conjunctions and B
′
is a conjunction of disjunctions.
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Lemma 8. For all formulas Ai, 1 ≤ i ≤ k and Bi, 1 ≤ j ≤ m we have,

` A1 ∨ ... ∨AK → B1 ∧ ... ∧Bm

iff

` Ai → Bj for all i, j,

where ` can be read as `F as well as `IPC.

Proof. Easy. ut

Definition 16. A formula A → B called a very simple implication if A is
conjunction of atoms and B is disjunction of atoms. A formula A → B is called
very basic implication if A is conjunction of very simple implications and B
is disjunction of very simple implications.

By the previous lemma we can conclude that to show that IPC is conservative
over F with respect to simple implications and basic implications it is sufficient
to do so for very simple implications and very basic implications. We can do so
now for very simple implications, and in fact even for CPC instead of IPC.

Theorem 16. If CPC proves a very simple implication (and a fortiori if IPC
does), then F proves it as well.

Proof. Let A → B is a very simple implication, so A =
∧

i(Pi) and B =
∨

j(qj).
Assume 0F A → B. Then by the completeness theorem there exists a root
subintuitionistic model M and w ∈ M , such that M,w 1 A → B. So there exists
v ∈ M , such that M, v  A and M, v 1 B. Now we select this point v from M
and then we make the one point CPC model MCPC = 〈v, (v, v),�〉 such that for
all propositional variables p, MCPC, v � p if and only if M, v  p. Clearly

MCPC, v � pi, for all i

MCPC, v 2 qj , for all j

That is MCPC, v 2 A → B, so CPC 2 A → B. ut

Up to now CPC (classical logic) did just as well as IPC, but to restrict the class
of very basic implications further we need disjunction properties only available
in (sub)intuitionistic logics. We need the slash | for this purpose also under
assumptions. The following both applies if ` is read as `F and as `IPC. Similarly
for the | defined in terms of `.

Definition 17. Let Γ be a set of formulas. We define the slash Γ |A inductively
on the structure of A as follows

1. Γ | p iff Γ ` p,
2. Γ |A ∧B iff Γ |A and Γ |B,
3. Γ |A ∨B iff Γ |A or Γ |B,
4. Γ |A → B iff Γ ` A → B and (if Γ |A then Γ |B).
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Theorem 17. [2] If Γ |A for all A ∈ Γ , then (Γ |B ⇔ Γ ` B).

Proof. As in [2]. ut

Theorem 18. [2] If Γ |C for all C ∈ Γ and Γ ` A ∨B, then Γ ` A or Γ ` B.

Proof. Let Γ ` A ∨ B. By Theorem 17, Γ |A ∨ B. So Γ |A or Γ |B. Again by
Theorem 17, Γ ` A or Γ ` B. ut

Lemma 9. If A = A1 ∧ ...∧Ak, such that for all 1 ≤ i ≤ k, Ai is a very simple
implication, then A|A. Similarly if, for all 1 ≤ i ≤ k, Ai is an atom.

Proof. By assumption for all 1 ≤ i ≤ n, Ai = Bi → Ci. Clearly, A1 ∧ ... ∧ Ak `
Bi → Ci. We have A1∧ ...∧Ak 0 Bi, because we can make a model M such that
M  A1 ∧ ... ∧ Ak and M 1 Bi (we make all atoms false). So A1 ∧ ... ∧ Ak - Bi

and therefore A1 ∧ ... ∧Ak|Bi → Ci. So, A1 ∧ ... ∧Ak|A1 ∧ ... ∧Ak. ut

Theorem 19. For arbitrary A,D, if A|A and ` A → D, then A|D.

Proof. Let Γ = {A}. Then by Theorem 17, Γ ` A, and by assumption ` A → D.
So, Γ ` D. Again by Theorem 17, Γ |D. That is A|D. ut

Lemma 10. If A|A, then ` A → E ∨ C ⇔ ` A → E or ` A → C, for both
F and IPC.

Proof. By Theorem 19, we have A|E∨C, so A|E or A|C. By Theorem 17, A ` E
or A ` C. Therefore by the weak Deduction Theorem we conclude that ` A → E
or ` A → C. By using F rules and axioms the other direction is easy. ut

Definition 18. A very basic implication A → B is an extremely basic im-
plication if B is a sole very simple implication.

By Lemma 8 and 10, we can conclude that to show that IPC is conservative
over F with respect to basic implications it is sufficient to do so for extremely
basic implications.

Theorem 20. IPC is conservative over F with respect to basic implications.

Proof. By the above, we can assume 0F A with A an extremely basic implication:

A = (A1 → B1) ∧ ... ∧ (An → Bn) → (C → D).

Then there exist M,w ∈ M such that

M,w 1 (A1 → B1) ∧ ... ∧ (An → Bn) → (C → D)

So, there exists v ∈ M with wRv and M, v  Ai → Bi for each 1 ≤ i ≤ n and

M, v 1 C → D

So, there exists vRu with M,u  C and M,u 1 D, and, if M,u  Ai then
M,u  Bi for each i.
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Now we select the point u from M and then we make the one point model
MIPC = 〈u, (u, u),I〉, such that for all propositional variables p, MIPC, u I p if
and only if M,u  p. We will show that

MIPC, u 1I(A1 → B1) ∧ ... ∧ (An → Bn) → (C → D).

It is easy to see that for any conjunction or disjunction E of atoms MIPC, u I E
iff M,u  E. This applies to each of the Ai, Bi, C and D. So, MIPC, u IC,
MIPC, u1ID, and if MIPC, u I Ai, then MIPC, uIBi. So, MIPC, u 1I(A1 →
B1) ∧ ... ∧ (An → Bn) → (C → D). Therefore IPC 0 A. ut

To see that the conservativity result does not apply to CPC just note that
the formula (p → q ∨ r) → (p → q) ∨ (p → r) is a very basic implication which
is not provable in IPC or F, but is provable in CPC.

The conservativity result for IPC over F can be extended to conjunctions and
disjunctions of simple implications and basic implications. In the case of simple
implications CPC can no longer take the role of IPC however as the following
example shows: `CPC (p → q) ∨ (q → p), but 0IPC (p → q) ∨ (q → p)

Finally it is important to note that the result cannot be extended by mixing
propositional variables and implications. In F even such a simple IPC-theorem
as p ∧ (p → q) → q cannot be proved.

4.2 A conservativity result for IPC over BPC

Of course, the above conservativity results apply to stronger logics than F, but
for BPC we can prove an additional theorem. In this subsection we give a formal
definition of NNIL formulas [8] and we will prove that IPC is conservative over
BPC with respect to NNIL formulas.

Definition 19. The smallest class satisfying the following clauses is called NNIL.

1. All propositional variables are in NNIL,
2. if A,B ∈ NNIL then A ∧B ∈ NNIL,
3. if A,B ∈ NNIL then A ∨B ∈ NNIL,
4. if A ∈ NNIL and B does not contain implications, then B → A ∈ NNIL.

Definition 20. The smallest class satisfying the following is the class of nor-
mal NNIL formulas,

1. All propositional variables are in normal NNIL,
2. if A,B is in normal NNIL, then A ∧B is in normal NNIL,
3. if A,B is in normal NNIL, then A ∨B is in normal NNIL,
4. if A is in normal NNIL and B is conjunction of atoms then B → A is in

normal NNIL.

In F we have that A∨B → C is equivalent to (A → C)∧ (B → C), so any NNIL
formula is provably equivalent to a normal NNIL formula.

Theorem 21. If A ∈ NNIL and `IPC A, then `BPC A.
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Proof. Let M = 〈W,R, V 〉 be a model for Basic Logic BPC. Then we define the
intuitionistic model M̄ = 〈W, R̄, V 〉, by R̄ = R∪{(w,w) | w ∈ W}. By induction
on the complexity of A ∈ NNIL, we will show that for all w ∈ W , if M,w 1BPC A,
then M̄, w 1IPC A. We only check implication cases, the other cases are easy. Let
A = ∧pi → C and M,w 1B ∧pi → C, then there exist v ∈ W such that, wRv
and M, v B ∧pi, M, v 1B C. Then M̄, v IPC ∧pi and by induction hypothesis
M̄, v 1IPC C. We know vR̄v, so M̄, v 1IPC ∧pi → C. We can conclude that
M̄, w 1IPC ∧pi → C, since we have preservation and wRv.

Now, assume 0BPC A. Then by the completeness theorem for BPC there exists
a BPC-model M and w ∈ M , such that M,w 1B A, so M̄, w 1IPC A. Then, by
soundness 0IPC A. ut

Finally, returning to the example 0F p ∧ (p → q) → q, BPC is still not able
to prove this formula: even in the case of BPC we cannot mix implications and
atoms in the conservativity result.

5 Conclusion

We developed the subintuitionistic logics introduced by Corsi and Restall in a
uniform manner. Proof systems for Corsi’s basic system F are given for deriva-
tions without and with assumptions, and completeness theorems are proved,
clarifying the role of the rules of modus ponens, conjunction and a fortiori. Simi-
larly for Restall’s notion of proof from a theory Π. This is then applied to obtain
completeness for extensions of F. Two classes of formulas are then introduced,
simple implications and basic implications, and our results are used to give a con-
servation theorem for intuitionistic logic IPC over Corsi’s system F with respect
to these two classes of formulas. For Visser’s basic logic strong completeness is
proved and an additional conservation results is given with respect to the class
of NNIL formulas.

Our methods have been fruitfully used in investigations of a weaker logic
WF characterized by neighborhood models [3]. The conservativity result applies
in that case only to the simple implications, clearly showing the difference in
strength of the two logics.
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