
Group Manipulation in Judgment Aggregation

Sirin Botan
ILLC, University of Amsterdam

botan.sirin@gmail.com

Arianna Novaro
ILLC, University of Amsterdam

arianna.novaro@gmail.com

Ulle Endriss
ILLC, University of Amsterdam

ulle.endriss@uva.nl

ABSTRACT
We introduce the concept of group manipulation into the
study of judgment aggregation and investigate the circum-
stances under which an aggregation rule may be subject
to strategic misrepresentation of judgments by a group of
agents. Our focus is on neutral aggregation rules, which
treat all propositions to be judged symmetrically, and we
assume that agents strategise to minimise the number of
propositions on which they disagree with the outcome of a
rule. We find that strategic manipulation by groups of two
agents can be ruled out for the independent and monotonic
aggregation rules. This family of rules, which is precisely the
family of rules for which manipulation by a single agent can
be ruled out, includes the widely used uniform quota rules.
When three or more agents may coordinate their manipula-
tion, on the other hand, essentially all attractive rules are
susceptible to strategic manipulation. However, we are able
to recover the family of independent and monotonic rules as
being immune to manipulation, if we add the assumption
that the members of a group of manipulating agents fear
that the others might opt out of the jointly agreed plan.
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1. INTRODUCTION
Judgment aggregation [16] is a formal framework for inte-
grating the views of several autonomous agents into a single
collective view. Originating in Philosophy and Economics,
and inspired by the doctrinal paradox observed in Legal The-
ory [15], it has recently received increased attention in Com-
puter Science and Artificial Intelligence [7], where the re-
lated framework of belief revision had been studied for some
time already [10, 14]. One reason for this interest is its great
potential for applications, e.g., for argumentation in multi-
agent systems [20] or for crowdsourcing [19].

Agents will sometimes want to manipulate the process of
aggregation by misreporting their true judgments. This, the
analysis of strategic behaviour, is central to the closely re-
lated study of voting and preference aggregation, in both
Economics [1] and Computer Science [3], but it has received
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very little attention in judgment aggregation to date. The
reason is that here, unlike for preference aggregation, there
is no single most natural way of modelling the incentives of
a strategic agent. One concrete proposal for modelling such
incentives is due to Dietrich and List [5], who initiated the
study of strategic manipulation in judgment aggregation.
They proposed a simple manner in which to induce prefer-
ences from an agent’s judgment set, namely to assume that
an agent’s preferences only depend on the number of propo-
sitions for which their own judgment agrees with that of the
rule. This initial contribution on strategic manipulation in
judgment aggregation, focussing on axiomatic characterisa-
tion results, was later followed up by work on the computa-
tional complexity of manipulation by Endriss et al. [8] and
Baumeister et al. [2].

All of these contributions have dealt with manipulation
by a single agent at a time, rather than with the coordi-
nated manipulation by a group. The same holds for related
work on strategic manipulation in belief merging [9]. In this
paper, we define a suitable notion of group manipulation
for judgment aggregation and characterise the class of rules
that are immune to this kind of interference. In doing so, we
focus on neutral aggregation rules, i.e., rules that treat all
propositions to be judged symmetrically. While our main
results are axiomatic and apply to large families of rules
that meet certain desirable axiomatic properties (notably
neutrality, a closely related property called unbiasedness we
introduce here, independence, and monotonicity), we pay
special attention to a particularly natural family of concrete
aggregation rules often used in practice, namely the uniform
quota rules, and discuss the impact of our results on these
rules in some detail.

The remainder of this paper is organised as follows. In
Section 2 we recall relevant concepts from the judgment ag-
gregation literature and fix our notation and terminology.
In Section 3 we discuss previous work on strategic manip-
ulation by a single agent and prove a new characterisation
result for aggregation rules that are immune to single-agent
manipulation. This result then serves as a base line for our
work on group manipulation. Our main results can be found
in Section 4, where we define the notion of group manipu-
lation and characterise the family of aggregation rules that
are immune to it, showing that essentially all reasonable
rules are susceptible to this form of manipulation. This is
true, in particular, for all (nontrivial) uniform quota rules,
even though these rules are known to be single-agent strat-
egyproof. Following this negative result, in Section 5 we
consider a variant of our main notion of group manipula-



tion, under which individual agents may opt out of a coali-
tion of manipulators. We show that under this alternative
definition we can obtain more positive results, and that the
difference between immunity against single-agent and group
manipulation disappears again. Section 6 concludes.

2. PRELIMINARIES
In this section, we introduce the relevant notation and ter-
minology to speak about judgment aggregation (JA). Specif-
ically, we shall work with the standard framework of JA [7,
13, 17], going back to the work of List and Pettit [16]. We
also introduce a number of novel concepts we require for our
purposes that may be of independent interest, namely the
axiom of unbiasedness and the notions of flipping a formula
in a judgment set and of restricting an aggregation rule.

2.1 Basic Notation and Terminology
An agenda is a finite set of formulas of propositional logic
of the form Φ = Φ+ ∪ {¬ϕ | ϕ ∈ Φ+}, such that Φ+, the
pre-agenda, only contains formulas that are not negated. We
call Φ atomic in case Φ+ only contains atomic propositions.1

A judgment set for Φ is a subset J ⊆ Φ. We call J complete
if ϕ ∈ J or ¬ϕ ∈ J for all ϕ ∈ Φ+; we call J complement-
free if ϕ 6∈ J or ¬ϕ 6∈ J for all ϕ ∈ Φ+; and we call J
consistent if it is logically consistent. J (Φ) denotes the set
of all complete and consistent judgment sets over Φ.

Let N = {1, . . . , n} be a finite set of agents. A profile
J = (J1, . . . , Jn) is a vector of judgment sets, one for each
agent. Agent i is said to accept formula ϕ ∈ Φ if ϕ ∈ Ji;
otherwise she rejects ϕ. We write NJ

ϕ = {i ∈ N | ϕ ∈ Ji} for
the coalition of supporters of ϕ in profile J , i.e., for the set
of agents who accept ϕ in J . We furthermore write (J−i, J

′
i)

for the profile that is like J , except that Ji has been replaced
by J ′i . We say that profiles J and J ′ are C-variants, for some
coalition C ⊆ N , if Ji = J ′i for all i ∈ N \ C. A profile is
called unanimous if it is of the form J = (J, . . . , J).

For ϕ ∈ Φ+, we denote with J�ϕ the result of flipping
ϕ in judgment set J (i.e., of replacing ϕ by ¬ϕ or ¬ϕ by
ϕ). Analogously, for S ⊆ Φ+, we denote with J�S the
result of flipping all the formulas in S in judgment set J .
For example, {p,¬q, r}�{p,q} = {¬p, q, r}. Note that this
flipping operation is cardinality-preserving, i.e., we always
have |J | = |J�S |, for any J and S. Finally, we use J�S

to denote the result of flipping the formulas in S in all the
judgment sets in a given profile J .

2.2 Aggregation Rules
An aggregation rule is a function F : J (Φ)n → 2Φ that as-
signs a collective judgment set F (J) ⊆ Φ to every complete
and consistent profile (2Φ denotes the powerset of Φ). If
ϕ ∈ F (J), then that means that the group accepts ϕ.

An example for an aggregation rule is the (weak) majority
rule, which accepts a formula if and only if at least half of
the agents do. A uniform quota rule Fq is an aggregation
rule induced by a number q ∈ {0, 1, . . . , n+1} such that:

Fq(J) = {ϕ ∈ Φ | #NJ
ϕ > q}

1While much of the theoretical literature on JA is concerned
with the challenge of preserving complex logical dependen-
cies during aggregation, many practical applications of JA
can be accurately modelled using atomic agendas. An ex-
ample is collective annotation using crowdsourcing [19].

Thus, we obtain the majority rule for q = dn
2
e. The una-

nimity rule is the uniform quota rule with quota q = n
(requiring all agents to accept a formula for it to get ac-
cepted) and the nomination rule is the uniform quota rule
with q = 1 (requiring acceptance by at least one agent).

A constant rule is a rule that returns the same fixed judg-
ment set for every possible profile. Two examples for con-
stant rules are the trivial uniform quota rules with quotas
q = 0 and q = n + 1, respectively, which always accept or
reject all formulas, respectively. The dictatorship of agent
i ∈ N is the rule F i : J 7→ Ji, returning the judgment set
of i, whatever the judgments of the others.

We define the restriction of an aggregation rule F to a
coalition C ⊆ N and a subset Ψ+ ⊆ Φ+ of the pre-agenda
for a given profile J ∈ J (Φ)n as the following aggrega-
tion rule F ′, defined for the agents in C and the agenda
Ψ := Ψ+ ∪ {¬ψ | ψ ∈ Ψ+}. F ′ receives a profile in J (Ψ)|C|

as input. We then amend this small profile to obtain a large
profile in J (Φ)n by fixing the judgment sets of agents not
in C as in J and by fixing the judgments of agents in C on
agenda formulas not in Ψ also as in J . Finally, we compute
the output of F for the large profile and return the judg-
ments as far as the agenda formulas in Ψ are concerned as
the output of F ′.2 Note that for every C and Ψ+, there are
several restrictions of F (namely one for every J).

2.3 Axioms
Any given rule may or may not satisfy a number of nor-
matively desirable properties, usually referred to as axioms.
Several such axioms will play a role in this paper.

First, F is independent if NJ
ϕ = NJ′

ϕ implies ϕ ∈ F (J)⇔
ϕ ∈ F (J ′), i.e., if acceptance of a formula only depends on
which agents accept that same formula. Second, F is mono-
tonic if ϕ ∈ J ′i \ Ji for some i ∈ N implies ϕ ∈ F (J) ⇒
ϕ ∈ F (J−i, J

′
i), i.e., if additional support for an accepted

formula never causes that formula to be rejected. The fol-
lowing simple result provides a convenient characterisation
of rules that are both independent and monotonic.

Lemma 1. An aggregation rule F is both independent and
monotonic if and only if, for all profiles J ,J ′ ∈ J (Φ)n and

all formulas ϕ ∈ Φ, it is the case that NJ
ϕ ⊆ NJ′

ϕ implies
ϕ ∈ F (J)⇒ ϕ ∈ F (J ′).

Proof. (⇐) Suppose the stated condition holds. Inde-

pendence follows by observing that NJ
ϕ = NJ′

ϕ implies both

NJ
ϕ ⊆ NJ′

ϕ and NJ′
ϕ ⊆ NJ

ϕ . Monotonicity follows when we
consider two profiles that are {i}-variants of each other.

(⇒) Suppose F is both independent and monotonic. Con-

sider a scenario with NJ
ϕ ⊆ NJ′

ϕ and ϕ ∈ F (J). We need

to show ϕ ∈ F (J ′). In case NJ
ϕ = NJ′

ϕ , the claim follows

from independence. Otherwise, let {i1, . . . , i`} = NJ′
ϕ \NJ

ϕ ,
with ` > 0, be the agents who change their mind on ϕ as
we move from J to J ′. Define a sequence of complete and
consistent profiles as follows:

2We will make use of such restrictions in two cases. In one
case Ψ+ = Φ+, and in the other Φ is assumed to be atomic.
Thus, restrictions are well-defined in both cases. In the gen-
eral case, care needs to be taken as not all consistent judg-
ment sets over Ψ will necessarily remain consistent when
extended with the fixed choices made for formulas in Φ \Ψ.



J0 := J

Jk := (Jk−1
−ik , J

′
ik ) for k ∈ {1, . . . , `}

Thus, we start with J and replace the judgment sets of one
agent at a time to eventually arrive at J` = J ′. By mono-
tonicity, ϕ ∈ F (Jk−1) ⇒ ϕ ∈ F (Jk) for all k ∈ {1, . . . , `}.
Hence, by induction, we get ϕ ∈ F (J`) = F (J ′).

Third, an aggregation rule F is neutral if NJ
ϕ = NJ

ψ im-
plies ϕ ∈ F (J) ⇔ ψ ∈ F (J). Thus, a neutral rule treats
all propositions symmetrically, in the sense of either accept-
ing all or none of any set of formulas with exactly the same
coalition of supporters.

This standard axiom of neutrality, however, does not cap-
ture all symmetry requirements that one might reasonably
want to impose. Specifically, as two complementary formu-
las ϕ and ¬ϕ can never have the same coalition of supporters
in a given profile (as accepting both would be inconsistent
and as accepting neither would be incomplete), neutrality
does not have to say anything about their relative treat-
ment by the aggregation rule. To address this issue, we
introduce a new axiom. We call an aggregation rule F un-
biased if F (J�S) = F (J)�S for any profile J ∈ J (Φ)n

and set S ⊆ Φ+ such that also J�S ∈ J (Φ)n. Thus, unbi-
asedness of F requires that when we flip the formulas in the
input, then the formulas in the output returned by F should
flip in the same way. In other words, F is not biased for or
against negated formulas.3

The following technical lemma will be useful later on.

Lemma 2. Let F be an unbiased aggregation rule. Then
|F (J)| = |F (J�S)| for any profile J ∈ J (Φ)n and any set
S ⊆ Φ+ such that J�S ∈ J (Φ)n.

Proof. We get |F (J)| = |F (J)�S | as F (J) is a judg-
ment set, and |F (J)�S | = |F (J�S)| as F is unbiased.

As is well known, all uniform quota rules are independent,
monotonic, and neutral [4].4 It is easy to check that they also
are unbiased, and that the same holds for the dictatorships.
Constant rules are independent and monotonic, but (with
the exception of the trivial rules that accept all formulas or
reject all formulas) they are neither neutral nor unbiased.

3. SINGLE-AGENT MANIPULATION
In this section, we establish a baseline result on strategic
manipulation by a single agent and discuss the relationship
between our result and a closely related result by Dietrich
and List [5]. We begin by fixing a notion of preference over
judgment sets, which we will also make use of later on when
discussing strategic manipulation by groups of agents.
3Our unbiasedness axiom is related to a different axiom by
the same name used by Grossi and Pigozzi [13], which it-
self is a variant of the acceptance-rejection neutrality axiom
introduced by Dietrich and List [6]. Both of these axioms
are considerably stronger than unbiasedness as defined here,
because we require the judgments on all non-flipped formu-
las to be identical in the two profiles, which these authors
do not, meaning that they obtain axioms that in spirit are
much closer to independence. On the other hand, we allow
for more than one formula to get flipped, which they do not,
so in that sense our axiom is moderately stronger.
4The same is not true for many other practically useful ag-
gregation rules. In particular, many of them, such as the
distance-based rules [18], violate independence.

3.1 Preferences
To model the incentives of an agent to engage in strategic
manipulation, we need to model her preferences. Following
Dietrich and List [5], we will assume that the most preferred
judgment set of agent i is always her own truthfully held
judgment set Ji and that other judgment sets are ranked in
terms of their distance to Ji. The Hamming distance be-
tween two judgment sets J, J ′ ∈ 2Φ is defined as the number
of formulas on which they disagree:

H(J, J ′) = |J \ J ′|+ |J ′ \ J |

For a given profile J = (J1, . . . , Jn), each Ji thus induces
a weak order <J

i on judgment sets:

J <J
i J
′ ⇔ H(J, Ji) 6 H(J ′, Ji)

The strict part �J
i of <J

i is defined in the usual man-
ner, i.e., J �J

i J ′ if and only if J <J
i J ′ but not J ′ <J

i J .
All results in this paper apply to this specific type of mod-
elling preferences, sometimes called Hamming-distance pref-
erences, even when we do not always state this explicitly.

At the time of writing, this is the only standard model
of preferences in the JA literature. On the other hand,
it is widely recognised that this model has its limita-
tions and that identifying richer models of preferences
constitutes an important future research direction for the
field. Hamming-distance preferences belong to the family of
closeness-respecting preferences, also introduced by Dietrich
and List [5], which merely demand that, for two judgment
sets in J (Φ), J should be (weakly) preferred to J ′ by agent i
if Ji∩J ⊇ Ji∩J ′. Some of the complexity results of Baumeis-
ter et al. [2] apply to all preference models in this class.

3.2 Strategyproofness
If agent i strictly prefers the outcome returned by F when
she reports J ′i rather than her true judgment set Ji, then she
has an incentive to do so, and we say that F is susceptible to
strategic manipulation. Otherwise, we say that F is immune
to strategic manipulation, or simply strategyproof.

Definition 1. A rule F is called strategyproof, if for
all profiles J ∈ J (Φ)n, agents i ∈ N , and judgment sets
J ′i ∈ J (Φ) it is the case that F (J) <J

i F (J−i, J
′
i).

We will sometimes write ‘single-agent strategyproof’
rather than just ‘strategyproof’ to differentiate the property
from group-strategyproofness discussed later on. Every ag-
gregation rule F that is independent and monotonic is also
single-agent strategyproof. This follows from a result due to
Dietrich and List [5], and may also be understood indepen-
dently of their result: By independence, we can focus on one
formula ϕ at a time. By monotonicity, if an agent wants ϕ
to get accepted, it is in her best interest to accept ϕ herself
(and accordingly, if she wants ϕ to get rejected).

The following is an immediate corollary to this result,
when taken together with the observation that the uniform
quota rules are both independent and monotonic, which is
also due to Dietrich and List [4].

Proposition 3 (Dietrich & List, 2007). Every uni-
form quota rule Fq is single-agent strategyproof.

Dietrich and List are sometimes misquoted as also hav-
ing proved that strategyproofness implies independence and
monotonicity. In fact, this is not the case, as the following
counterexample demonstrates.



Example 1. Consider an aggregation problem with pre-
agenda Φ+ = {p, q} and a rule F for which the outcome
only depends on agent 1. F returns {p, q} in case agent 1
accepts p, and F returns {¬p,¬q} in case agent 1 accepts
¬p. Thus, F does not take agent 1’s judgment on q into
account. F is neither independent (because the acceptance
of q depends on the acceptance of p) nor monotonic (be-
cause agent 1 can switch from rejecting to accepting q, with
the result being that the collective switches from accepting
to rejecting q). Nevertheless, F is strategyproof: in all four
possible situations, agent 1 cannot increase the number of
agreements between the outcome and her sincere judgment
set by switching to a different judgment set.

Hence, the set of independent and monotonic rules is a
strict subset of the set of single-agent strategyproof rules.
What Dietrich and List [5] did prove, however, is that an
aggregation rule F is independent and monotonic if and only
if F is strategyproof for agents with any kind of closeness-
respecting preferences—rather than just for those with
Hamming-distance preferences. For agents with Hamming-
distance preferences, so far no characterisation of the class
of strategyproof aggregation rules has been known. We pro-
vide such a result here that characterises the strategyproof
rules within the class of neutral-unbiased rules.

Theorem 4. A neutral and unbiased aggregation rule F
is single-agent strategyproof if and only if it is both indepen-
dent and monotonic.

Proof. As we have seen earlier, the right-to-left direction
holds even without the assumptions of neutrality and unbi-
asedness. It is a direct consequence of the aforementioned
result by Dietrich and List [5]. For the other direction, we
shall establish the contrapositive. So let F be neutral and
unbiased, but not both independent and monotonic. We
need to find a profile where F can be manipulated.

By Lemma 1, there is a situation where NJ
ϕ ⊆ NJ′

ϕ and
ϕ ∈ F (J), but ϕ 6∈ F (J ′). When moving from J to J ′, one
agent must be the first to trigger this change, so w.l.o.g., we
may assume only agent i changed her judgment set between
the two, i.e., J and J ′ are {i}-variants.

First, consider the special case where i is the only agent
in the group (i.e., where n = 1). Let S ⊆ Φ+ be the
set of pre-agenda formulas on which Ji and J ′i differ, i.e.,
J�S
i = J ′i and thus J�S = J ′. Hence, by unbiasedness,
F (J ′) = F (J)�S . As F (J) and F (J ′) differ on ϕ, this
means that S must contain ϕ (or ϕ′, in case ϕ is of the
form ϕ = ¬ϕ′). Thus, also Ji and J ′i differ on ϕ. In other

words, this excludes the case of NJ
ϕ = NJ′

ϕ . So we must

have NJ
ϕ ⊂ NJ′

ϕ , meaning that ϕ 6∈ Ji and ϕ ∈ J ′i . As
n = 1, for any formula ψ ∈ Φ, the coalitions of supporters

of ψ in the two profiles, NJ
ψ and NJ′

ψ , are either empty or
the singleton {i}. This allows us to apply neutrality in the
following way: If agent i agrees on ϕ and ψ, then also the
outcome must agree on ϕ and ψ. Now partition Φ into four
sets: the formulas agent i accepts in both profiles (Ji ∩ J ′i),
the formulas she rejects in both profiles (Φ \ (Ji ∪ J ′i)), the
formulas she initially rejects and then accepts (J ′i \ Ji), and
those she initially accepts and then rejects (Ji \ J ′i). This
perspective allows us to fully determine which formulas are
either accepted or rejected in each of the two profiles:

F (J) F (J ′)

Ji ∩ J ′i out (by Lemma 2) out (by neutrality)
Φ \ (Ji ∪ J ′i) in (by neutrality) in (by Lemma 2)
J ′i \ Ji in (by neutrality) out (by neutrality)
Ji \ J ′i out (by Lemma 2) in (by Lemma 2)

All table entries that are marked ‘by neutrality’ follow
from neutrality together with what we know about the ac-
ceptance/rejection of ϕ. The remaining four table entries
then follow from Lemma 2, according to which |F (J)| =
|F (J ′)|, because no other option would permit us to pre-
serve the cardinality of the outcome when moving between
the two profiles. To see this, observe (i) that Ji, J

′
i ∈ J (Φ)

entails |J ′i \ Ji| = |Ji \ J ′i | and that (ii) all formulas coverd
by any given table entry must all behave in the same
way (again, due to neutrality). In conclusion, we obtain
F (J) = [Φ\ (Ji∪J ′i)]∪ [J ′i \Ji] = Φ\Ji and F (J ′) = Φ\J ′i .
In other words, agent i has a clear incentive to manipulate
when in profile J and to report J ′i instead of Ji.

Now suppose n > 1. Instead of showing directly that
F can be manipulated, we instead show that if F were to
be strategyproof, then there would exist another rule F ′ for
single-agent profiles that is neutral, unbiased, not both inde-
pendent and monotonic, and yet strategyproof. As we have
just seen that the latter is not the case, the former cannot
be the case either. So suppose F is strategyproof. We con-
struct F ′ : J (Φ)1 → 2Φ as follows. For any J ∈ J (Φ)1, let
F ′ : (J) 7→ F (J−i, J). That is, F ′ is the restriction of F to
agent i, with the judgments of the other agents being fixed
as in J and J ′ (recall that J−i = J ′−i). Neutrality, unbi-
asedness, and strategyproofness immediately transfer from
F to F ′, for any restriction of this kind. Only for the prop-
erty of not being both independent and monotonic, we need
to verify that the characterising property of Lemma 1 really
is violated for F ′ as well. But this is easily seen to be the

case: we have N
(Ji)
ϕ ⊆ N

(J′
i)

ϕ and ϕ ∈ F ′((Ji)) = F (J) but
ϕ 6∈ F ′((J ′i)) = F (J ′). This concludes the proof.

As an aside, we note that Theorem 4 is not in conflict
with the classical Gibbard-Satterthwaite Theorem [12, 21] in
voting theory, which—loosely speaking—says that no non-
dictatorial voting rule for three or more alternatives can be
strategyproof. The reason is that here we are lacking a coun-
terpart for those three alternatives. Rather, in the context of
the independence axiom, JA may be seen as a series of elec-
tions with two (i.e., fewer than three) alternatives, one for
each formula ϕ in the pre-agenda, with the two alternatives
being ϕ and ¬ϕ. To obtain results in JA that resemble the
Gibbard-Satterthwaite Theorem one has to focus on aggre-
gation problems with specific agendas to model preferences.
Dietrich and List [5] establish a result of this kind.

4. GROUP MANIPULATION
In this section, we generalise the definition of strategyproof-
ness discussed earlier to obtain a definition of group-
strategyproofness, requiring that no coalition of agents
should ever have an incentive to misreport their judgments.
We then characterise the family of (neutral and unbiased)
aggregation rules that is group-strategyproof in this sense.

4.1 Definition of the Concept
As we will see, the size of the coalition of manipulators is
an important parameter in our characterisation of group-



strategyproof rules. For instance, a given rule may be sub-
ject to manipulation by three agents, but not by one or two
agents. We therefore formulate our definition relative to a
number k, the maximum number of agents that may form a
coalition for the purposes of strategic manipulation.

Definition 2. An aggregation rule F is called group-
strategyproof against coalitions of up to k manipulators,
if for all profiles J ∈ J (Φ)n, coalitions C ⊆ N with
|C| 6 k, and C-variants J ′ ∈ J (Φ)n of J it is the case
that F (J) <J

i F (J ′) for all agents i ∈ C.

In the above definition, C is the set of manipulators and
the other agents are truthful. J is the truthful profile and J ′

is the result of the agents in C misreporting their judgments.
Intuitively, the definition says that there exists no group of
up to k agents who can, in at least one situation, change
their judgment sets in such a way that they all (strictly)
prefer the new outcome over the old one. Note that for the
special case of k = 1, we recover Definition 1.

Example 2. Consider the following profile with five
agents and the pre-agenda Φ+ = {ϕ1, ϕ2, ϕ3}:

ϕ1 ϕ2 ϕ3 ¬ϕ1 ¬ϕ2 ¬ϕ3

Agent 1 × X X X × ×
Agent 2 X × X × X ×
Agent 3 X X × × × X
Agent 4 × × × X X X
Agent 5 × × × X X X

Majority × × × X X X

Now suppose the first three agents manipulate by flipping
their judgments corresponding to the cells shaded in grey.
This will cause every single formula in the majority out-
come to flip as well. In the initial profile, for each of the
manipulators, the Hamming distance between the outcome
and her individual judgment set is 4. After the change, the
distance between the new outcome and the old (i.e., truth-
ful) individual judgment set shrinks to 2 for each of them.
Hence, the majority rule is not group-strategyproof against
three manipulators—at least not in a world with a popula-
tion of five. Importantly, observe that each manipulator per-
forms a manipulation on one formula (and its complement)
that damages her own interests, but this is made up for by
the other two performing manipulations that benefit her.

Two families of aggregation rules that are immediately
seen to be group-strategyproof, against coalitions of any size,
are the dictatorships and the constant rules.

Observe that group-strategyproofness for (up to) k implies
group-strategyproofness for (up to) k−1. Thus, for positive
results we will look for the largest k for which they apply,
while for negative results we will look for the smallest such k.
If F is group-strategyproof for any coalition size k, we simply
say that F is group-strategyproof.

4.2 Manipulation by Two Agents
We first analyse the case of k = 2, i.e., the case of up to two
agents manipulating, and find that the situation is no worse
than for the single-agent case covered by Theorem 4.

Theorem 5. A neutral and unbiased aggregation rule F
is group-strategyproof against coalitions of up to two manip-
ulators if and only if it is both independent and monotonic.

Proof. (⇒) We proceed by contraposition. Suppose F is
neutral and unbiased but not both independent and mono-
tonic. Then, by Theorem 4, F is not group-strategyproof
even against a single agent (i.e., a coalition of one manip-
ulator). Hence, F certainly is not group-strategyproof for
coalitions of up to two manipulators.

(⇐) Assume F is neutral, unbiased, independent, and
monotonic. By Theorem 4, there cannot be a manipula-
tion with a coalition of a single agent. So, w.l.o.g., suppose
there are exactly two manipulators. Since F is monotonic,
the manipulators cannot manipulate on formulas for which
their individual judgment sets agree (because their truthful
judgments on such formulas are optimal for both of them
already). Therefore, any manipulator who changes her indi-
vidual judgment set to have an effect on the outcome must
go against her own preferences in order to benefit the other
agent. As preferences are defined in terms of the Hamming
distance, each of the two manipulators will have to require
the other one to perform strictly more such manipulations
on individual formulas than she performs herself. But this
clearly is a contradiction.

4.3 Manipulation by More Than Two Agents
To understand the case of arbitrary numbers of manipula-
tors, we first focus on the case of k = 3 manipulators. We
will require a definition of what it means for an agent to be
able to have an effect on a given formula in a given profile.

Definition 3. Agent i ∈ N is called effective on for-
mula ϕ ∈ Φ+ in profile J ∈ J (Φ)n with J�ϕ

i ∈ J (Φ) if

it is the case that both ϕ ∈ F (J) 6⇔ ϕ ∈ F (J−i, J
�ϕ
i ) and

¬ϕ ∈ F (J) 6⇔ ¬ϕ ∈ F (J−i, J
�ϕ
i ).

Thus, agent i is effective on ϕ in J , if she can flip her
judgment on ϕ whilst remaining complete and consistent,
and if due to that flip the status of both ϕ and ¬ϕ changes
in the outcome. If, for the initial outcome F (J), it is the
case that exactly one of ϕ and ¬ϕ is accepted (i.e., if F is
complete and complement-free in this instance), then this

property is preserved in the changed outcome F (J−i, J
�ϕ
i ).

Otherwise, it continues to be violated.
We now prove a technical lemma that fully characterises

the class of group-strategyproof aggregation rules for the
special case of three agents (and thus at most three manip-
ulators) and an agenda of three positive formulas (i.e., six
formulas overall). We will later use this characterisation as a
gadget to characterise rules for arbitrary numbers of agents
and arbitrary agendas that are group-strategyproof against
up to three manipulators. The first part of the proof of the
following lemma amounts to a generalisation of the tech-
nique employed in Example 2 to obtain a profile in which a
successful manipulation may occur.

Lemma 6. Suppose N = {1, 2, 3} and |Φ+| = 3.
Then a neutral and unbiased aggregation rule F is group-
strategyproof if and only if it is independent and mono-
tonic and there are no unanimous profile (J, J, J) ∈ J (Φ)3

and bijection g : N → Φ+ such that, for all i ∈
N , agent i is effective on agenda formula g(i) in profile

(J�g(1), J�g(2), J�g(3)) ∈ J (Φ)3.

Proof. (⇒) We prove the contrapositive. Let F be a
neutral and unbiased aggregation rule. First of all, if F is
not both independent and monotonic, we know that it is



manipulable by a single agent by Theorem 4. Therefore,
assume F is independent and monotonic, and suppose that
there are a unanimous profile (J, J, J) and a bijection g as
described above. Let Φ+ = {ϕ1, ϕ2, ϕ3}. W.l.o.g., as we can
rename the formulas, we may assume that g(i) = ϕi for all
i ∈ N . Also w.l.o.g., we may assume that J = {ϕ1, ϕ2, ϕ3},
because for any aggregation problem where a negative for-
mula ¬ϕi occurs in J , there exists an equivalent aggregation
problem where ¬ϕi has been replaced by the positive for-
mula >∧¬ϕi and ϕi by its negation. We now need to show
that there exists a profile in which manipulation can occur.
This profile is J = (J�ϕ1 , J�ϕ2 , J�ϕ3). Indeed, let J be
the truthful profile. Then the result of each agent i manipu-
lating by flipping formula ϕi is profile (J, J, J). As all three
agents are effective, all three formulas must have changed
status during manipulation. By monotonicity, this change
must have occurred “in the right direction”, i.e., we have
F (J) = {¬ϕ1,¬ϕ2,¬ϕ3} and F (J, J, J) = {ϕ1, ϕ2, ϕ3}.

We can now easily verify that for each agent i the Ham-
ming distance between her truthful judgment set J�ϕi , e.g.,
{¬ϕ1, ϕ2, ϕ3} for agent 1, and the nonmanipulated out-
come {¬ϕ1,¬ϕ2,¬ϕ3} is higher than the Hamming distance
between her truthful judgment set and the manipulated
outcome {ϕ1, ϕ2, ϕ3}, namely H(J�ϕi , F (J)) = 4 rather
than H(J�ϕi , F (J, J, J)) = 2. Therefore, F is not group-
strategyproof against manipulation by all three agents.

(⇐) Let F be an aggregation rule that is neutral, unbi-
ased, independent, and monotonic. Now suppose that for ev-
ery unanimous profile (J, J, J) and for every bijection g there
is some agent i such that i is not effective on formula g(i).
This amounts to saying that, for every unanimous profile
(J, J, J) and every possible bijection g, there will always be
at most two effective agents over the formulas in Φ+. Hence,
it will always be possible to use the reasoning employed in
the proof of the right-to-left direction of Theorem 5 to show
that F must be group-strategyproof.

Observe that independence and neutrality of an aggrega-
tion rule F together imply that F must be induced by a
local rule, a boolean function over subsets of N , that de-
cides for each formula ϕ in the agenda whether it should be
accepted based only on the coalitions of individual agents
that accept ϕ. This observation is useful in that it allows
us to fully classify all aggregation rules covered by Lemma 6
as either group-strategyproof or susceptible to strategic ma-
nipulation. For three agents and one formula (that may be
accepted or rejected), there are 22·2·2 = 256 possible local
rules. But only 20 of them are monotonic.5 We have enu-
merated these rules using a simple computer program. They
consist of 3 dictatorships (one for each agent), 2 constant
rules (always-accept and always-reject), the nomination rule
(the quota rule with quota 1), the majority rule (the quota
rule with quota 2), the unanimity rule (the quota rule with
quota 3), 6 two-agent rules (with one dummy agent and the
other two using either a nomination or a unanimity rule),
and 6 weighted quota rules (with one agent having weight 2,
two having weight 1, and the quota being either 2 or 3).

Using Lemma 6 it is now easy to check that, for n = 3
and |Φ+| = 3, amongst the neutral, unbiased, independent,
and monotonic aggregation rules, the only ones that can be

5Readers familiar with coalitional game theory may recog-
nise 20, the third Dedekind number [11], as the number of
simple games for three players [22].

manipulated by the full group are the nomination rule and
the unanimity rule. For example, for the nomination rule
all three agents are effective for ϕ in any situation where
currently none of them accepts ϕ. On the other hand, for the
majority rule, for instance, it is impossible to find a situation
where all three agents are effective for ϕ whilst currently
agreeing on ϕ (agent 1 is effective only when agents 2 and 3
disagree, and so forth). Thus, we may rewrite Lemma 6 in
the following simplified form.

Lemma 7. Suppose n = 3 and |Φ+| = 3. Then a neutral
and unbiased aggregation rule F is group-strategyproof if and
only if it is independent and monotonic, and if it is neither
the nomination rule nor the unanimity rule.

Unfortunately, as Example 2 demonstrates, this very
positive result does not generalise to larger numbers of
agents. Specifically, although the majority rule is group-
strategyproof for three agents, it can be manipulated by
three agents when the overall number of agents is five. The
reason is that, when we use the majority rule for five agents
and keep the judgments of two (sincere) agents fixed, then
the resulting rule implicitly defined over the remaining three
agents is in fact the nomination rule, which we have seen to
be manipulable in a world with only three agents.

For our next result we are going to generalise this idea of
a rule for three agents being implicitly defined by a rule for
a larger population when we keep the judgments of all but
three agents fixed. Note that this result only applies to the
case of atomic agendas; the implications of this restriction
are discussed at the end of this section.

Theorem 8. Suppose the agenda Φ is atomic. Then
a neutral and unbiased aggregation rule F is group-
strategyproof against coalitions of up to three manipulators
if and only if F is independent and monotonic, and if none
of the restrictions of F to three agents and three pre-agenda
formulas is either the nomination rule or the unanimity rule.

Proof. By Theorem 4, amongst the neutral and unbi-
ased aggregation rules, only the independent and monotonic
rules can potentially be group-strategyproof. Thus, what
the theorem claims on top of this basic insight is that a neu-
tral, unbiased, independent, and monotonic rule F can be
manipulated by a coalition of 3 agents if and only if there
exist a set of 3 agents and a set of 3 formulas in the pre-
agenda such that, when we keep everything else fixed (the
judgments of the other n − 3 agents on everything and the
judgments of the 3 selected agents on the other agenda for-
mulas), the resulting aggregation rule is either the nomina-
tion rule or the unanimity rule. The right-to-left direction of
this latter claims is an immediate consequence of Lemma 7:
If there is such a restriction that is the nomination or the
unanimity rule, then that restricted rule can be manipulated
by Lemma 7, and thus F can be manipulated by the very
same moves. The left-to-right direction of the same claim is
also immediate in case the original aggregation problem has
a pre-agenda of 3 formulas only.

So all that remains to be shown is that the focus on 3 pre-
agenda formulas at a time is sufficient to catch at least one
situation in which manipulation is possible whenever manip-
ulation is possible at all. So suppose that in a world with
3 agents there exists a successful manipulation involving m
positive formulas. We need to show that then there also



exists a manipulation involving only 3 of those formulas.6

First, w.l.o.g., we may assume that every formula involved in
the manipulation changed its acceptance status in the out-
come (otherwise, simply not manipulating such a formula
does not change the result). Second, w.l.o.g., we may as-
sume that none of the formulas involved in the manipulation
was flipped by all 3 agents (because otherwise none of them
would have benefitted from getting this formula flipped in
the outcome). So every formula involved is flipped by either
one or two agents. The agents flipping ϕ always prefer the
sincere outcome for ϕ, and the ones not flipping ϕ always
prefer the insincere outcome for ϕ (just as in Example 2).
Thus, there are six types of formulas: (+1,+1,−1)-formulas
are those where the manipulation benefits agents 1 and 2
but harms agent 3; (+1,−1,−1)-formulas are those where
the manipulation benefits 1 but harms 2 and 3; and so forth.
The numbers, +1 and −1, indicate the changes to the Ham-
ming distances for the 3 agents caused by the formula in
question. When adding up the vectors corresponding to the
m formulas we must get a positive number in each of the 3
positions (otherwise the corresponding agent does not ben-
efit from the overall manipulation). It is easy to see that
this is only possible if of (+1,+1,−1), (+1,−1,+1), and
(−1,+1,+1), i.e., the formulas benefitting two agents and
harming only one agent, each shows up at least once. But if
the agents only manipulate on the corresponding 3 formulas,
they also all benefit, i.e., we have shown that a manipulation
involving only 3 positive formulas is feasible.

We must emphasise that Theorem 8 is a negative result,
as it implies that essentially all reasonable (neutral and un-
biased) aggregation rules are susceptible to strategic manip-
ulation by groups of agents. To substantiate this claim, let
us see what Theorem 8 implies for the large and important
family of the the uniform quota rules.

Corollary 9. No uniform quota rule Fq with a quota q
satisfying 3 6 q 6 n or 1 6 q 6 n − 2 that is defined on an
atomic agenda Φ is group-strategyproof.

Proof. All uniform quota rules are neutral, unbiased, in-
dependent, and monotonic. Thus, by Theorem 8, to show
a failure of group-strategproofness, we must find a restric-
tion of Fq to 3 agents and 3 pre-agenda formulas for which
the local rule deciding on the acceptance of each individual
formula is either the nomination or the unanimity rule.

First, suppose 3 6 q 6 n. In this case, we can find a
restriction of Fq to 3 agents and 3 pre-agenda formulas that
is the unanimity rule: simply consider a profile in which
q − 3 sincere agents accept ϕ and n − q sincere agents re-
ject ϕ. Then ϕ will get accepted if and only if the three
manipulators unanimously accept ϕ. Note that, due to our
assumptions on q, this construction is well-defined: q−3 > 0,
n− q > 0, and (q − 3) + (n− q) + 3 = n.

Second, suppose 1 6 q 6 n−2. In this case, we can find a
restriction of Fq that is the nomination rule in an analogous
manner: consider a profile in which q − 1 sincere agents
accept ϕ and n− 2− q sincere agents reject ϕ. Then ϕ will
get accepted if and only if at least one of the manipulators
accepts it. Also this construction is well-defined: q − 1 > 0,
n− 2− q > 0, and (q − 1) + (n− 2− q) + 3 = n.
6Because of our assumption that Φ is atomic, we are free
to change the judgments for the remaining m − 3 formulas
back to what they were in the sincere judgment sets. This
is the only reason for this assumption.

The assumptions on the quota under which Corollary 9
applies are very weak. Observe that n > 3 implies that
either 3 6 q or q 6 n − 2 (or both). Thus, for aggrega-
tion problems with n > 3 agents, the only uniform quota
rules that are group-strategyproof are the trivial rules that
either accept or reject all formulas. These are the rules we
obtain for q = 0 and q = n + 1, respectively. For the spe-
cial case of n = 3 agents, as we have seen in the discussion
following Lemma 6, in addition the majority rule is group-
strategyproof. For n < 3 agents, all uniform quota rules are
group-strategyproof. This follows from Theorem 5.

Theorem 8 is stated for the case of (up to) k = 3 ma-
nipulators, rather than for arbitrary k. As pointed out in
Section 4.1, as it is essentially a negative result (i.e., the
contrapositive of the left-to-right direction, giving sufficient
conditions for manipulability, is what matters most), this is
the strongest possible form of this kind of result. Indeed,
as essentially every reasonable neutral rule may be manipu-
lated by coalitions of up to 3 manipulators, it certainly is the
case that they also are subject to manipulation by coalitions
of up to k = 4, 5, . . . manipulators.

Finally, Theorem 8 only applies to atomic agendas. We
required this restriction to be able to show that any manipu-
lation involving m positive formulas can be reduced to a ma-
nipulation involving 3 positive formulas. For an agenda with
strong logical dependencies between formulas, more positive
results are possible in principle. For example, in the most
extreme case, when an agenda consists of tautologies and
their negations only (and assuming unanimity),7 strategic
manipulation is impossible, because every agent will have
the exact same sincere judgment set.8 However, for any
agenda permitting a fair degree of variation in the range of
admissible judgment sets, our results suggest that group-
strategyproofness is rarely an option. A full analysis of how
agenda conditions impact on group-strategyproofness con-
stitutes an important direction for future work.

5. UNSTABLE MANIPULATION
In this section, we propose a variant of the notion of group-
strategyproofness defined earlier and show that under this
new definition much more positive results are feasible. This
alternative definition is inspired by the following example.

Example 3. Recall the scenario discussed in Example 2,
where five agents were using the majority rule to decide on
three pairs of formulas, and the first three agents had an
incentive to manipulate. Below is the profile J ′ we obtain
after they manipulate as indicated before (starting from J):

ϕ1 ϕ2 ϕ3 ¬ϕ1 ¬ϕ2 ¬ϕ3

Agent 1 X X X × × ×
Agent 2 X X X × × ×
Agent 3 X X X × × ×
Agent 4 × × × X X X
Agent 5 × × × X X X

Majority X X X × × ×

Consider what happens when agent 1 opts out of the joint
plan and reverses her manipulation, i.e., when we flip the
7The unanimity axiom states that any reasonable aggrega-
tion rule should map unanimous profiles (J, . . . , J) to J .
8Recall that individual judgment sets are always complete
and consistent, i.e., all agents accept all tautologies.



judgments corresponding to the cells shaded in grey. Then
the majority judgment on ϕ1 and ¬ϕ1 changes as well. As
a result, agent 1 will obtain her most preferred outcome
F (J ′−1, J1) = {¬ϕ1, ϕ2, ϕ3}, which is equal to her truth-
ful judgment set. So agent 1’s preferences in our example
are actually F (J ′−1, J1) �J

1 F (J ′) �J
1 F (J). Thus, she has

an incentive to opt out of the joint plan—and for symmetry
reasons, so does every other agent.9

This is in contrast with our previous notion of manipula-
tion, where any agreed-upon manipulation is guaranteed to
be carried out by all agents in the coalition of manipulators.
Now coalitions are fragile in the sense that any one agent
may opt out of a previously agreed upon manipulation, if
doing so is in her own interest.

Definition 4. An aggregation rule F is called group-
strategyproof against fragile coalitions of up to k ma-
nipulators, if for all profiles J ∈ J (Φ)n, coalitions C ⊆ N
with |C| 6 k, and C-variants J ′ ∈ J (Φ)n of J with
F (J ′) �J

i F (J) and F (J ′−i, Ji) 6= F (J ′) for all i ∈ C
it is the case that F (J ′−i, Ji) �J

i F (J ′) for some i ∈ C.

Intuitively, F is group-strategyproof against fragile coali-
tions if any coalition attempting manipulation is one where
every agent in the coalition has an incentive to opt out of
the manipulation (i.e., to go back to her truthful judgment
set). In the above definition, C is the coalition of manip-
ulators. Condition F (J ′) �J

i F (J) says that all agents in
the coalition benefit from the manipulation and condition
F (J ′−i, Ji) 6= F (J ′) says that every member of the coali-
tion is in fact needed to achieve the new outcome. Finally,
F (J ′−i, Ji) �J

i F (J ′) says that agent i benefits from opting
out once we are in the new profile J ′.

Our new definition makes manipulation more difficult and
thereby immunity against manipulation more likely. Indeed,
we are able to fully recover the class of aggregation rules that
was shown to be single-agent strategyproof in Theorem 4,
but now against coalitions of manipulators of any size, pro-
vided those coalitions are fragile.

Theorem 10. A neutral and unbiased aggregation rule F
is group-strategyproof against fragile coalitions of manipula-
tors if and only if it is independent and monotonic.

Proof. (⇒) Observe that F is single-agent strategyproof
if and only if it is group-strategyproof against fragile
coalitions of size 1 (as no single manipulator would ever
want to opt out of its own coalition). Hence, group-
strategyproofness against fragile coalitions of manipulators
implies standard single-agent strategyproofness. The claim
then follows from Theorem 4.

(⇐) Let F be independent and monotonic. Consider two
C-variants J ,J ′ ∈ J (Φ)n such that F (J ′) �J

i F (J) and
F (J ′−i, Ji) 6= F (J ′) for all i ∈ C. The latter means that
every single agent in C is effective in their manipulation.
By independence, we can reason formula-by-formula. By
monotonicity, the effect that an agent i has on a formula
she is effective for must be against her own true preferences.
Thus, if she reverts back to her truthful judgment set, she
will necessarily obtain a strictly preferred outcome.
9Also consider what happens if agents 1 and 2 both opt out.
Then we end up in a profile with outcome {¬ϕ1,¬ϕ2, ϕ3},
which is the worst possible outcome for agent 3. Thus, if
agent 3 is afraid that the others may opt out, she will not
agree on a joint manipulation in the first place.

In other words, under the alternative notion of strate-
gyproofness discussed in this section, and when restricting
attention to neutral and unbiased aggregation rules, single-
agent strategyproofness and group-strategyproofness in fact
define the same class of aggregation rules.

6. CONCLUSION
We have introduced the notion of group-strategyproofness
into JA and found that it is a considerably more demanding
property than ordinary strategyproofness against a single
manipulator. For example, we have seen that, while all uni-
form quota rules are single-agent strategyproof (see Proposi-
tion 3), essentially none of them are group-strategyproof (see
Corollary 9). Our main result, Theorem 8, shows that, for a
neutral and unbiased aggregation rule, single-agent strate-
gyproofness extends to group-strategyproofness only in case
the rule is such that it is impossible to obtain either the
unanimity rule or the nomination rule by fixing the judg-
ments of all but three agents as well as the judgments of
those three agents on all but three (pairs of) formulas. That
this condition is highly unlikely to be satisfied is convinc-
ingly demonstrated by the aforementioned instantiation of
this result to the uniform quota rules.

We have also seen that when the contracts manipulat-
ing agents make with each other are not binding, then no
coordinated group manipulation is stable. This may be in-
terpreted as offering protection against group manipulation
in practice. Other forms of protection are interesting topics
for future research. For instance, as we have already indi-
cated, strong logical dependencies in the agenda will reduce
opportunities for manipulation, and narrow domain restric-
tions [6] may offer full protection. Another avenue to pursue
in this context is to extend existing work on the complexity
of manipulation [2, 8] to group manipulation.

Our characterisation result for single-agent strategyproof-
ness is of some interest in its own right and clarifies an issue
that had remained vague in the literature to date, namely
that independence and monotonicity alone are not sufficient
to guarantee single-agent strategyproofness when an agent’s
preferences are induced by the Hamming distance between
the outcome and an agent’s true judgment set. Our The-
orem 4 shows that, within the class of the neutral and un-
biased rules, single-agent strategyproofness is fully charac-
terised by independence and monotonicity. When neutrality
and unbiasedness are dropped as assumptions, it is known
that independence and monotonicity still are sufficient con-
ditions for strategyproofness, but a full characterisation of
the strategyproof rules for Hamming-distance preferences re-
mains an open problem.

We have made the common assumption that preferences
are induced by the Hamming distance. Our main result is
negative, so it also applies to the larger class of closeness-
respecting preferences. On the other hand, our positive re-
sult on group-strategyproofness against two manipulators
does not extend to closeness-respecting preferences more
generally, as our proof directly exploits the properties of the
Hamming distance. Nevertheless, considering other forms
of preferences constitutes an important direction for future
work on strategic behaviour in JA, and this includes future
work on group-strategyproofness.
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