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Abstract A number of seminal results in the field of social choice theory demon-
strate the difficulties of aggregating the preferences of several individual agents for
the purpose of making a decision together. We show how to formalise three of the
most important impossibility results of this kind—Arrow’s Theorem, Sen’s Theo-
rem, and the Muller-Satterthwaite Theorem—by using a modal logic of social choice
functions. We also provide syntactic proofs of these theorems in the same logic.
While prior work has been successful in applying tools from logic and automated
reasoning to social choice theory, this is the first human-readable formalisation of the
Arrovian framework allowing for a direct derivation of the main impossibility theo-
rems of social choice theory. This is useful for gaining a deeper understanding of the
foundations of collective decision making, both in human society and in groups of
autonomous software agents.1

1 Introduction

Social choice theory is the study of mechanisms for collective decision making [35].
This includes voting rules as mechanisms to collectively make political decisions, and
consequently social choice theory is chiefly associated with the disciplines of politi-
cal science and economics. But similar mechanisms can also be used to make deci-
sions in multiagent systems, to coordinate the actions of individual agents, to resolve
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1 This is an extended version of a paper appearing in the proceedings of the 14th International Con-
ference on Autonomous Agents and Multiagent Systems [11]. That paper included the formalisation and
proof of one of the three theorems covered here, namely Arrow’s Theorem.



2 Giovanni Ciná, Ulle Endriss

conflicts between them, and to bundle their information and expertise [8]. Closely
related applications of social choice theory in computer science furthermore include
recommender systems [29], Internet search engines [2], and crowdsourcing [21].

This widening of the scope of social choice theory has renewed interest in the for-
mal foundations of the field. As we are designing ever more specialised social choice
mechanisms for novel types of tasks, better tools to analyse the formal properties of
these mechanisms are needed. Specifically, there is now a growing literature on the
formal verification of social choice mechanisms by means of logical modelling and
the use of techniques from automated reasoning [1,5,9,12,13,16,24,34,37,38]. (We
will review some of the contributions to this field in Section 6.)

An obvious yardstick against which to measure different approaches to the for-
malisation of social choice frameworks is Arrow’s Theorem [3], the seminal re-
sult in the field, which shows that it is impossible to design preference aggregation
mechanisms for three or more alternatives that are Pareto efficient and for which
the relative ranking of two alternatives is based only on the rankings for the same
two alternatives submitted by the individual voters. For instance, recent work has
modelled the Arrovian framework in propositional logic [34], first-order logic [16],
higher-order logic [24,38], and a tailor-made modal logic [1]. Some of this work has
resulted in methods to prove Arrow’s Theorem either automatically [34] or semi-
automatically [24,38], while other work has generated logical formalisations of the
theorem that are easily accessible to humans and thus helpful in deepening our under-
standing of social choice [1,16]. A shortcoming of the latter contributions, however,
is that they have so far not resulted in a full proof of Arrow’s Theorem or similar
results within the chosen logical framework itself.2 Rather, such work has proceeded
by showing that a given logical system is complete w.r.t. an appropriate class of mod-
els of social choice theory, thereby proving that a rendering of Arrow’s Theorem in
the logical language in question must be a theorem of that logic. That is, such work
has derived results about a given logic by means of reference to existing “semantic”
proofs of Arrow’s Theorem. The ultimate goal of such research, however, must be the
opposite: to use the logic to derive proofs for Arrow’s Theorem and similar results.

In this paper, we close this gap by providing a Hilbert-style syntactic proof of
Arrow’s Theorem within a simple tailor-made modal logic that is shown to be com-
plete. We have opted for a Hilbert calculus, rather than, say, an approach based on
natural deduction, because Hilbert calculi are still the systems used most widely by
modal logicians and thus facilitate comparison to proof systems for other logics, and
because this choice allows for a particularly compact presentation of our assump-
tions. Having said this, other proof systems have other advantages (e.g., in view of
readability of proofs or implementability) and thus certainly also have a place in the
study of social choice theory. Our logic of choice is a fragment of the modal logic of
social choice functions proposed by Troquard et al. [37]. Troquard et al. have used
their (full) logic to reason about the strategy-proofness of voting rules (but it has not
previously been applied to Arrow’s Theorem). This logic can be used to model a
(resolute) social choice function (SCF), i.e., a function that maps any given profile of

2 However, in recent and as yet unpublished work, Perkov [30] has sketched a syntactic proof of Arrow’s
Theorem in a natural deduction calculus for the modal logic of Ågotnes et al. [1]. (See also Section 6.)
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preference orders to a single winning alternative. While Arrow originally formulated
his theorem for social welfare functions, i.e., functions that map any given profile of
preference orders to a single social preference order [3], we will instead work with
a standard variant of the theorem for SCF’s [35]. Arguably, SCF’s (returning a top
alternative rather than a full ranking of all alternatives) are relevant to a wider range
of applications. In any case, known techniques to prove either version of the theorem
are very similar [12,35]. Thus, our work also suggests how one might construct a
similar syntatcic proof of Arrow’s Theorem for social welfare functions, using, for
instance, a logic such as that of Ågotnes et al. [1].

Besides encoding and proving Arrow’s Theorem, we also cover two further sem-
inal impossibility results from social choice theory, namely Sen’s Theorem [32] on
the impossibility of a Paretian liberal and the Muller-Satterthwaite Theorem [23],
thereby demonstrating the generality and flexibility of our approach. Both of these
theorems have so far received only very little attention in the literature on logics for
social choice, with the notable exception of the work of Tang and Lin [34]. Sen’s
Theorem shows that the Pareto principle, by which unanimously held preferences
should be respected, and a very weak form of liberalism, by which there should be
certain private issues that only concern a single agent and that therefore should be dic-
tated by that agent, are incompatible. The Muller-Satterthwaite Theorem shows that
the only SCF’s that satisfy a particular—strong but intuitively appealing—form of
monotonicity are the dictatorships and those SCF’s that bar certain alternatives from
winning, even if they are preferred by all agents. Arguably, these are three of the four
most important classical impossibility results in social choice theory. The fourth, the
Gibbard-Satterhwaite Theorem [15,31] on the impossibility of devising a strategy-
proof SCF, is outside the scope of this paper as it requires us to model both declared
preferences (as for the three theorems covered here) and actual preferences, so as to
be able to distinguish truthful agents from agents engaging in strategic manipulation.
The modal logic of SCF’s we are working with can only model one type of prefer-
ence. This is intended and appropriate for our purposes. However, the full original
logic of Troquard et al. [37] can model these two layers of preferences—indeed, this
is the main objective it had been designed for originally. Our work, together with the
fact that the Gibbard-Satterthwaite Theorem may be considered a relatively simple
corollary to the Muller-Satterthwaite Theorem requiring only a proof showing that
strategy-proofness implies strong monotonicity [12], therefore strongly suggests that
proving the Gibbard-Satterthwaite Theorem in the full logic of Troquard et al. using
an extension of our approach is possible in principle.

Our proofs are presented as human-readable recipes for how to construct a fully
formal derivation inside the modal logic of SCF’s of the three impossibility theorems
discussed. These recipes can be transformed into machine-readable proofs relatively
easily, and it is therefore possible in principle to have the proofs verified automatically
by a proof-checker for this logic. In this sense, our contribution narrows the gap
between, on the one hand, work on logics for modelling social choice [1,16,37] and,
on the other, work on automated reasoning for social choice [9,13,24,34,38]. Having
said this, there currently is no work on automated theorem proving for the modal logic
we are working with, so while narrowed, aforementioned gap has not yet been fully
closed. As a further step in this direction, we also discuss how to translate from modal
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logic into propositional logic. While this does result in a blow-up of the size of the
representation of theorems (meaning that we lose readability for humans) it makes it
possible for us to use standard tools, particularly SAT solvers, to automatically reason
about these theorems. This perspective provides a close connection to the approach
pioneered by Tang and Lin [34], and later refined by others [9,13], of automatically
proving results in social choice theory using SAT solvers.

The remainder of this paper is organised as follows. Section 2 recalls the defini-
tion of a SCF, and then introduces our logic of SCF’s and establishes completeness
for it. This is followed up in Section 3, where we show how various concepts of inter-
est for social choice theory can be modelled in this logic. This includes a discussion
of the universal domain assumption and encodings of desirable properties of SCF’s,
such as Pareto efficiency and monotonicity. The three theorems are encoded and then
proved in Section 4. The translation into propositional logic, offering a means of im-
plementation via a SAT solver, is presented in Section 5. Finally, Section 6 discusses
related work in some detail and Section 7 concludes.

2 A Modal Logic of Social Choice Functions

In this section, we recall the formal definition of a SCF and introduce the fragment of
the logic put forward by Troquard et al. [37] required to define such a SCF, adapting
some of their notation and terminology to our purposes. We then demonstrate that
the known completeness theorem for the full logic extends to the fragment that is
of interest to us here. Finally, we discuss the limitations of this logic in view of
expressing properties of families of SCF’s ranging over electorates of varying size,
as well as how to overcome these limitations in practice.

2.1 Social Choice Functions

Let N = {1, . . . ,n} be a finite set of agents (or individuals) and let X be a finite set of
alternatives (or candidates). To vote, each agent i ∈ N expresses her preferences by
supplying a linear order <i over X , i.e., a binary relation that is reflexive, antisym-
metric, complete, and transitive.3 Let L (X) denote the set of all such linear orders.
We shall also refer to<i as the ballot provided by agent i, to stress the fact that this is
the preference declared by the agent, but not necessarily her true preference. A profile
is an n-tuple (<1, . . . ,<n) ∈L (X)n of such ballots, one for each agent.

Definition 1 A resolute social choice function is a function F : L (X)n→ X mapping
any given profile of ballots to a single winning alternative.

Examples for resolute SCF’s are well-known voting rules, such as the Borda rule or
the plurality rule [35]—when combined with a suitable tie-breaking rule that ensures

3 The strict part �i of <i is a strict linear order, a relation that is irreflexive, complete, and transitive.
While most work in voting theory tends to take such strict linear orders as primitive, we instead follow
Troquard et al. [37] and work with non-strict linear orders. Ultimately, both approaches are equivalent: <i
uniquely determines �i, and vice versa.
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that there always is just a single winner. Under the Borda rule, for instance, an agent
assigns as many points to a given alternative as she lists other alternatives below
it (with the alternatives obtaing the most points winning). Ties may be broken, for
instance, by using the ballot of the first agent.

2.2 Language

Troquard et al. [37] have introduced a modal logic, which they call Λ scf[N,X ], to
reason about resolute SCF’s (mapping declared preferences to winners) as well as the
agents’ truthful preferences. This logic can be used to model strategic behaviour in
voting. Here we are not specifically interested in this strategic component, but rather
in the purely aggregative aspect of social choice, i.e., in the question of whether a
given SCF fairly aggregates individual ballots into a social decision. For the purposes
of the present paper, we shall refer to the relevant fragment of the logic of Troquard
et al. as L[N,X ], the logic of SCF’s parametrised by N and X . Next, we define the
language, i.e., the set of well-formed formulas, of this logic.

This language is built on top of two types of atomic propositions. First, for every
i ∈ N and x,y ∈ X , pi

x<y is an atomic proposition (with the intuitive meaning that
agent i prefers x to y). Pref [N,X ] := {pi

x<y | i ∈ N and x,y ∈ X} is the set of all
such propositions. Second, by a slight abuse of notation, every alternative x ∈ X is
also an atomic proposition (with the intuitive meaning that x wins). Besides the usual
propositional connectives, we have a modal operator 3C for every coalition of agents
C ⊆ N (with the intuitive meaning that C can ensure the truth of a given formula,
provided the others do not alter their ballots). The following definition summarises
how the language is constructed.

Definition 2 The set of well-formed formulas ϕ in the language of L[N,X ] is gener-
ated by the following Backus-Naur Form (where p ∈ Pref [N,X ], x ∈ X and C ⊆ N):

ϕ ::= p | x | > | ¬ϕ | ϕ ∨ϕ |3Cϕ

Additional propositional connectives and a dual modal operator are defined in the
usual manner: ϕ∧ψ is short for ¬(¬ϕ∨¬ψ), ϕ→ψ is short for for ¬ϕ∨ψ , ϕ↔ψ

is short for for (ϕ→ψ)∧(ψ→ ϕ),⊥ is short for ¬>, and 2Cϕ is short for ¬3C¬ϕ .
For i ∈ N, we write 3i as a shorthand for 3{i} and 2i as a shorthand for 2{i}.

The full logic of Troquard et al. [37] includes an additional pair of modal opera-
tors to speak about true preferences.

2.3 Semantics

The semantics of the logic is a standard possible-worlds semantics for modal logics,
defined in terms of a set of possible worlds, a family of accessibility relations, and a
valuation function [6]. We first give a short high-level description intended for readers
familiar with such semantics, and then provide complete formal definitions.
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First, the set of possible worlds is the set of all possible profiles—which is fully
determined by N and X . The semantics of atomic propositions of the form pi

x<y will
be defined solely in terms of this set of possible worlds: pi

x<y is true at a given
world/profile w, if agent i prefers x to y in w. Only to model the truth of atomic
propositions of the form x will we require a valuation function. Valuation functions
here are SCF’s: x is true at world/profile w if the SCF in question maps profile w to
the winning alternative x. Finally, for every coalition C ⊆ N, there is an accessibility
relation between worlds/profiles: w is connected to w′ if they differ only w.r.t. the
preferences of agents in C. These accessibility relations will be used to define the
semantics of modal formulas of the form 3Cϕ in the usual manner.

Definition 3 A model is a triple M = 〈N,X ,F〉, consisting of a finite set of agents N
with n = |N|, a finite set of alternatives X, and a SCF F : L (X)n→ X.

For fixed sets N and X , we sometimes write MF for the model M = 〈N,X ,F〉 based on
the SCF F . From now on we shall use the terms ‘world’ and ‘profile’ interchangeably.
We are now ready to define what it means for a formula ϕ to be true at a world
w = (<1, . . . ,<n) in a given model M.

Definition 4 Let M = 〈N,X ,F〉 be a model. We write M,w |= ϕ to express that the
formula ϕ is true at the world w = (<1, . . . ,<n) ∈ L (X)n in M. The satisfaction
relation |= is defined inductively:

– M,w |= pi
x<y iff x<i y

– M,w |= x iff F(<1, . . . ,<n) = x
– M,w |= ¬ϕ if M,w 6|= ϕ

– M,w |= ϕ ∨ψ iff M,w |= ϕ or M,w |= ψ

– M,w |=3Cϕ iff M,w′ |= ϕ for some world w′=(<′1, . . . ,<
′
n)∈L (X)n with<i =

<′i for all agents i ∈ N \C.

That is, 3Cϕ is true at w, if the agents in C can make ϕ true by changing their own
ballots (assuming none of the other agents change as well). Thus, 2Cϕ is true at w
if ϕ holds at every world that is reachable from w by only the agents in C changing
their ballots.

In some sense, the truth of every formula of the form pi
x<y is under the con-

trol of agent i. Because of this feature, this kind of logic is sometimes classified as
a logic of propositional control. The motivation underlying such logics is essentially
game-theoretic: every individual is conceived as having “control” over a set of atomic
propositions. The choice of a particular truth value for these atomic propositions can
be seen as an action of the individual, and therefore a valuation of all the atomic
propositions of this sort corresponds to a strategy profile. For more details and mo-
tivations on logics of propositional control we refer to the work of van der Hoek
and Wooldridge [19], Gerbrandy [14], Balbiani et al. [4] and Troquard et al. [37],
amongst others. We also note that these logics are closely related to Pauly’s coalition
logic [27], Boolean games [7,18], and the Ceteris Paribus Logic of Grossi et al. [17].

Let ϕ be a formula in the language based on N and X . Then ϕ is called satisfiable,
if there exist a SCF F and a world w ∈L (X)n such that MF ,w |= ϕ . It is called true
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in the model M, denoted M |= ϕ , if M,w |= ϕ for every world w ∈L (X)n. Finally, it
is called valid, denoted |= ϕ , if M |= ϕ for every model M based on N and X .

The logic of Troquard et al. [37] is known to be decidable and this result imme-
diately extends to the fragment of their logic discussed here:

Proposition 1 Determining whether a formula in the language of L[N,X ] is valid is
a decidable problem.

Proof Since N and X are fixed, we can enumerate all models and check for each of
them whether our formula is true at every world in the model. ut

2.4 Axiomatisation and Completeness

Next, we review the axiomatisation due to Troquard et al. [37], restricted to the frag-
ment L[N,X ] discussed here, and then adapt their completeness result to this frag-
ment. The first few axioms ensure that the propositions of the form pi

x<y really encode
linear orders.

(1) pi
x<x (reflexivity)

(2) pi
x<y↔¬pi

y<x for x 6= y (antisymmetry and completeness)
(3) pi

x<y∧ pi
y<z→ pi

x<z (transitivity)

Here x, y and z range over atomic propositions in X , and i ranges over agents. Before
we continue with the axiomatisation, let us first introduce a couple of additional lan-
guage constructs to refer to ballots and profiles within the logical language. Consider
a profile w = (<1, . . . ,<n) ∈L (X)n. For a given agent i ∈ N, let x1,x2, . . . ,xm be a
permutation of the elements of X such that x1 <i x2 <i · · · <i xm. Then balloti(w) is
defined as the following formula:

balloti(w) := pi
x1<x2

∧ pi
x2<x3

∧·· ·∧ pi
xm−1<xm

Thus, balloti(w) is true at world w′ if and only if w and w′ agree as far as the ballot of
agent i is concerned. Note that balloti(w) is a purely syntactic representation of a se-
mantic notion (namely, agent i’s preference order<i). Similarly, we define profile(w)
as the following formula:

profile(w) := ballot1(w)∧ballot2(w)∧·· ·∧ballotn(w)

Hence, the formula profile(w) is true at world w, and only there. This shows that
nominals, i.e., formulas uniquely identifying worlds [6], are definable within this
logic. Furthermore, due to the finiteness of X and N, there can be only finitely many
formulas of type profile(w) that are consistent with the axioms.

Let Nw
x<y := {i ∈ N | x <i y} denote the set of agents that prefer x over y in pro-

file w = (<1, . . . ,<n). By a slight abuse of notation, we use the same expression as a
construct of our language:

Nw
x<y :=

∧
{pi

x<y | x<i y in w}
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We write Nw
x<y to denote both the set of agents and the formula; the context will

disambiguate the intended meaning. Note that
∧

x,y∈X Nw
x<y is logically equivalent to

profile(w): this reflects the fact that a profile can either be presented by specifying
the preferences of each individual or by specifying the sets of agents preferring one
alternative over another, for all pairs of alternatives.

For any two alternatives x,y ∈ X , we define profile(w)(x,y) as the formula fixing
the relative ordering of x and y for all agents as in profile w:

profile(w)(x,y) := Nw
x<y∧Nw

y<x

This formula will be used to express the fact that two profiles ‘agree’ on the prefer-
ences concerning the alternatives x and y.

We now state the remaining axioms defining the logic L[N,X ]:

(4) all propositional tautologies
(5) 2i(ϕ → ψ)→ (2iϕ →2iψ) (K(i))
(6) 2iϕ → ϕ (T(i))
(7) ϕ →2i3iϕ (B(i))
(8) 3i2 jϕ ↔2 j3iϕ (confluence)
(9) 2C12C2 ϕ ↔2C1∪C2ϕ (union)

(10) 2 /0ϕ ↔ ϕ (empty coalition)
(11) (3i p∧3i¬p)→ (2 j p∨2 j¬p), where i 6= j (exclusiveness)
(12) 3iballoti(w) (ballot)
(13) 3C1δ1∧3C2δ2→3C1∪C2(δ1∧δ2) (cooperation)
(14)

∨
x∈X (x∧

∧
y∈X\{x}¬y) (resoluteness)

(15) (profile(w)∧ϕ)→2N(profile(w)→ ϕ) (functionality)

Here ϕ and ψ range over arbitrary formulas, x over atomic propositions in X , i and
j over agents, C1 and C2 over coalitions, and w over profiles. In axiom (11), p is
ranging only over atomic propositions in the set Pref [N,X ], and in axiom (13) δ1 and
δ2 do not contain any common atoms.

Axioms (4)–(8) describe well-known properties of normal modal logics [6]. Ax-
iom (9) describes the capability of a coalition to enforce a certain formula in terms of
the capabilities of its sub-coalitions. Axiom (10) states that the empty coalition cannot
enforce any formula. Axiom (11) enforces a division among the atomic propositions
of the shape pi

x<y: if an atom is controlled by an agent i, then other agents cannot
change its value. Axiom (12) ensures that every agent can express every possible
preference. Due to axiom (13), if two formulas δ1 and δ2 do not contain a common
atom and two coalitions C1 and C2 can each enforce one of the formulas, then the
joint coalition can enforce the conjunction δ1 ∧ δ1. Axiom (14) expresses that any
outcome associated with a profile must be a single winning alternative. Thus, this
axioms encodes the resoluteness of the SCF in question. Finally, axiom (15) ensures
that every profile is associated with a single outcome, i.e., it encodes the fact that the
SCF being modelled must be a function.

The inference rules of the logic are modus ponens and necessitation w.r.t. all
modalities of the form 2i [6]:

– (MP) from ϕ → ψ and ϕ , infer ψ
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– (Neci) from ` ϕ , infer `2iϕ

Here we write ` ϕ to express that a well-formed formula ϕ in the language
parametrised by N and X is a theorem of the logic L[N,X ], in the sense that it can
be derived from axioms (1)–(15), together with the above inference rules. The ` ϕ

appearing in the second rule thus indicates that the rule can only be applied to theo-
rems. We define a set of formulas Γ to be consistent if we cannot derive a contradic-
tion from it. The theorems of L[N,X ] coincide with the valid formulas:

Theorem 1 (Completeness) The logic L[N,X ] is sound and complete w.r.t. the class
of models of SCF’s.

Proof (sketch) Since our logic is a fragment of Λ scf[N,X ], the soundness result due to
Troquard et al. [37] applies directly. The same is not true for completeness. However,
as we shall outline next, mutatis mutandis, the proof of Troquard et al. [37] for the
richer logic can be adapted to our fragment.

First, we show the existence of an isomorphism between the models of Defini-
tion 3 and particular Kripke models. The latter structures are tuples 〈W,(RC)C⊆N〉
where W is the set of profiles and RC ⊆W ×W are relations defined as

wRCw′ iff w � N \C = w′ � N \C,

where w � N \C is the profile w restricted to only the individuals outside of C. Intu-
itively, wRCw′ holds if all the agents outside of C express the same preferences in w
and w′.

Second, given a consistent formula ϕ , we build a maximally consistent set Γϕ

containing it using the usual Lindenbaum construction. Define Cluster(Γϕ) to be the
set of maximally consistent sets that describe the same SCF:

Cluster(Γϕ) := {Γ | ∀w ∈L (X)n,∀x ∈ X :
3N(profile(w)∧ x) ∈ Γ iff

3N(profile(w)∧ x) ∈ Γϕ}

Finally, we consider the submodel of the canonical model generated by
Cluster(Γϕ). Let us call this submodel Mϕ . It remains to be checked that:

– the Truth Lemma holds for Mϕ ,
– there is a bijection between profiles and states of Mϕ ,
– Mϕ is one of the aforementioned particular Kripke models corresponding to the

models of our logic.

The first item is shown in the customary way, while the other items are proven by
exploiting the axioms. ut

2.5 Representing Families of Social Choice Functions

To complete the outline of the expressive capabilities of L[N,X ], we illustrate how it
is possible to encode a SCF as a formula. Given a SCF F , its representation will be:

ρ
F =

∧
{profile(w)→ x | w ∈L (X)n and F(w) = x}
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That is, ρF is simply the conjunction, over all profiles w, of implications between a
formula describing w and a formula identifying the winning alternative for profile w
under F . In other words, we need to have the full graph of the function, that is,
the full set of input-output pairs, to be able to encode F in the language. This is
indeed possible, because, strictly speaking, ρF represents the function only for a fixed
number of alternatives and a fixed number of agents. Moreover, since we are able to
encode any set of input-output pairs, we can represent any SCF in the language.

Unfortunately, for the very same reason, ρF cannot be taken as a proper repre-
sentative of a SCF, because it only tells us what the output of the function is in a
very limited case: when the alternatives are exactly those in X and when the agents
are exactly those in N. In practice, however, we are interested in families of SCF’s.
If, say, F is the Borda rule and X and N both have cardinality 3, then ρF will only
express the workings of the Borda rule for 3 alternatives and 3 agents. A full rep-
resentation of the Borda rule (which formally is a family of SCF’s in the sense of
Definition 1), however, should contain the information necessary to compute the out-
put from any given profile. It should be a conjunction of all the formulas ρF for all
possible choices of X and N. But even assuming that we had all such sets of pairs,
there are countably many ρ’s of this kind, and our logical language does not contain
countable conjunctions. Given that the language is not powerful enough to encode
an algorithmic specification, there is no hope that our logic, or a similar logic, will
do better than using ρF in representing SCF’s. Indeed, this restriction to specific sets
of alternatives and agents is a recognised limitation of most existing logic-based ap-
proaches to modelling frameworks of social choice [12].

Interestingly, however, this problem affects the representations of the properties
of SCF’s only partially. Since most of the properties do not directly refer to the spe-
cific number of alternatives and agents, we can formulate the properties leaving X
and N as parameters. The same can be done when proving the relative dependencies
between properties. This means that, to prove that property P1 entails P2, we prove
that, for fixed choices of X and N, there is a proof in the logic from the formula en-
coding P1 to the formula encoding P2 (both these formulas are instantiated to X and
N themselves). This is the approach we shall take here.

3 Modelling Features of Social Choice Theory

In this section, we show how to model several important concepts of social choice
theory in our logic. We start by proving the Universal Domain Lemma, which demon-
strates that there exists a formula in our language that expresses that for every possible
preference profile there exists a world where it is realised, and that is a theorem of
our logic. This simple but important result will be used throughout the paper. We
then pause to introduce and encode a notion that will feature in several properties and
proofs in the next (sub)sections, the concept of a decisive coalition. Finally, we for-
malise the main properties featuring in the classical impossibility theorems we want
to prove, particularly Pareto efficiency, independence of irrelevant alternatives, strong
monotonicity, and liberalism. For each property we suggest an encoding in the logic
and prove that it indeed captures the corresponding semantic notion.
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Throughout, we exploit freely the finiteness of the language: we will use big
conjunctions and disjunctions to quantify over individuals, alternatives, and profiles.

3.1 The Universal Domain Lemma

The following lemma states that all the possible profiles are also possible worlds in
the semantics. This fact, which is implicit in our definition of a SCF, is called the
universal domain condition in Arrow’s original work [3].

Lemma 1 (Universal Domain Lemma) For every possible profile w ∈L (X)n, we
have that `3Nprofile(w).

Proof Take any profile w. Then ballot1(w) encodes the preferences of the first agent.
We have, by axiom (12), that 31ballot1(w), and similarly for the second agent we get
32ballot2(w). Because ballot1(w) and ballot2(w) contain different atoms (the former
only atoms with superscript 1, the latter only atoms with superscript 2), we can apply
axiom (13) and obtain 3{1,2}(ballot1(w)∧ballot2(w)). We can repeat this reasoning
for all the finitely many agents in N to prove 3Nprofile(w). ut

3.2 Decisive Coalitions

We will call a coalition of agents C⊆N decisive over a pair of alternatives (x,y)∈ X2

if the members of C preferring x to y is a sufficient condition for preventing y from
winning. We use the following formula to encode decisiveness of C over (x,y):

Cdec(x,y) :=

(∧
i∈C

pi
x<y

)
→¬y

If C is decisive on every pair, we will simply write Cdec. Along the same lines,
we define a weakly decisive coalition C for (x,y) as a coalition that can bar y from
winning if exactly the agents in C prefer x to y. We encode weak decisiveness of C
over (x,y) as follows:

Cwdec(x,y) :=

(∧
i∈C

pi
x<y∧

∧
i6∈C

pi
y<x

)
→¬y

The reader can easily check that these syntactic notions match the semantic ones;
for example, in the case of decisiveness we have that Cdec(x,y) is true in the model
MF if and only if the coalition C is decisive over that pair of alternatives for the
corresponding SCF F .
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3.3 Pareto Efficiency

We now introduce several properties that one might reasonably want to require a
SCF to satisfy. The first is Pareto efficiency, expressing the desideratum that, if all the
agents rank an alternative x above another alternative y, then y should not win.

Definition 5 A SCF F is Pareto efficient if, for every profile w ∈L (X)n and every
pair of distinct alternatives x,y ∈ X with Nw

x<y = N, we obtain F(w) 6= y.

This is formalised as follows:

Par :=
∧
x∈X

∧
y∈X\{x}

[(∧
i∈N

pi
x<y

)
→¬y

]

Observe that Par is equivalent to Ndec, i.e., to saying that the grand coalition N is
decisive on every pair.

Lemma 2 For every SCF F, MF � Par if and only if F is Pareto efficient.

Proof Straightforward. ut

3.4 Independence of Irrelevant Alternatives

Our next property of interest is independence of irrelevant alternatives (IIA). It ex-
presses the intuitively desirable property of a SCF F that, for every two profiles and
for every two alternatives x and y, if the outcome of F in the first profile is x and
the two profiles are identical as far as the preferences of the agents over x and y are
concerned, then the outcome of F in the second profile should not be y. The original
formulation of IIA given by Arrow [3] was applied to social welfare functions rather
than SCF’s. Our definition is the most natural adaptation of Arrow’s idea to SCF’s. It
has also been used by Taylor [35], amongst others.

Definition 6 A SCF F satisfies IIA if, for every pair of profiles w,w′ ∈L (X)n and
every pair of distinct alternatives x,y∈X with Nw

x<y =Nw′
x<y, it is the case that F(w) =

x implies F(w′) 6= y.

We formalise this property in our logic as follows:

IIA :=
∧

w∈L (X)n

∧
x∈X

∧
y∈X\{x}

[3N(profile(w)∧ x)→ (profile(w)(x,y)→¬y)]

That is, if in some world (reachable via the 3N-modality) we observe profile w with
alternative x winning, then in the present world, if it agrees with w as far as the relative
ranking of x and y is concerned, y cannot be the winner.

The following lemma formally establishes the correspondence between the syn-
tactic formulation of IIA and its semantic definition.

Lemma 3 For every SCF F, MF � IIA if and only if F satisfies the property of inde-
pendence of irrelevant alternatives.
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Proof From right to left, assume F satisfies IIA. We want to prove every conjunct
of the formula IIA. So take any generic world w′ such that MF ,w′ �3N(profile(w)∧
x). We want to show that MF ,w′ � (profile(w)(x,y) → ¬y). So suppose MF ,w′ �
profile(w)(x,y), which entails Nw

x<y = Nw′
x<y. By the semantics of 3N , there is a world

w′′ such that MF ,w′′ � profile(w)∧ x, which entails Nw
x<y = Nw′′

x<y. Thus, also Nw′
x<y =

Nw′′
x<y. From MF ,w′′ � x we can infer F(w′′) = x. Now we can apply IIA to w′′ and w′

and obtain F(w′) = x and thus F(w′) 6= y. Again by the semantics, this is tantamount
to MF ,w′ � ¬y.

From left to right, assume MF � IIA. Take any two profiles w,w′ and two al-
ternatives x,y with Nw

x<y = Nw′
x<y. Now assume F(w) = x. We thus have MF ,w �

profile(w)∧ x and, by the semantics of 3N , also MF ,w′ � 3N(profile(w)∧ x). Us-
ing modus ponens and formula IIA, we get MF ,w′ � (profile(w)(x,y)→¬y). But we
assumed Nw

x<y = Nw′
x<y, hence MF ,w′ � profile(w)(x,y) and thus MF ,w′ � ¬y, which

by the semantics entails F(w′) 6= y. ut

3.5 Strong Monotonicity

Next is a monotonicity property known as Maskin monotonicity or strong monotonic-
ity. It requires that, whenever alternative x wins in a given profile and we (weakly)
improve the standing of x vis-à-vis all other alternatives, then x should still win in the
new profile—even if the relative rankings of other alternatives change in the profile
as well. While its formal definition is similar to that of IIA, there are subtle differ-
ences: we are now quantifying over all other alternatives y rather than considering
one specific such alternative.

Definition 7 A SCF F is strongly monotonic if, for every pair of profiles w,w′ ∈
L (X)n and every alternative x ∈ X, it is the case that F(w) = x and Nw

x<y ⊆ Nw′
x<y for

all y ∈ X \{x} together imply F(w′) = x.

This property can be encoded as follows:

SM :=
∧

w∈L (X)n

∧
x∈X

3N(profile(w)∧ x) ∧

 ∧
y∈X\{x}

Nw
x<y

 → x


Lemma 4 For every SCF F, MF � SM if and only if F is strongly monotonic.

Proof From left to right, suppose MF � SM is the case. Now, fix two profiles w and
w′ and an alternative x, assume that F(w) = x, and assume that Nw

x<y ⊆ Nw′
x<y for all

y ∈ X \{x}. Due to F(w) = x, we have MF ,w � profile(w)∧ x and, by the semantics
of 3N , also MF ,w′ �3N(profile(w)∧ x). By the second assumption, namely Nw

x<y ⊆
Nw′

x<y, we obtain that the second conjunct of SM, namely
∧

y∈X\{x}Nw
x<y, is also true

at w′. From the validity of SM we can conclude MF ,w′ � x and hence F(w′) = x.
From right to left, say that F is strongly monotonic and fix w and x. Take a generic

profile w′ and assume MF ,w′ � 3N [x∧ profile(w)]∧
∧

y∈X\{x}Nw
x<y. Due to the first
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conjunct we know that F(w) = x, while in light of the second we can conclude that
Nw

x<y ⊆ Nw′
x<y for all y ∈ X \{x}, because by the semantics all the supporters of x over

y in w still support x over y in w′. By strong monotonicity we get F(w′) = x and
MF ,w′ � x. Since w′ was generic we can conclude that SM is a validity in MF . ut

3.6 Surjectivity

Our most basic property is surjectivity. It expresses the desideratum that every alter-
native should be the winner for at least one profile.

Definition 8 A SCF F is surjective if, for every alternative x∈ X there exists a profile
w ∈L (X)n such that F(w) = x.

We can encode surjectivity as follows:

Sur :=
∧
x∈X

∨
w∈L (X)n

3N(profile(w)∧ x)

Lemma 5 For every SCF F, MF � Sur if and only if F is surjective.

Proof Straightforward. ut

3.7 Liberalism

The idea that a form of liberalism can be modelled as a property of SCF’s is due
to Sen [32]. He postulated that every agent should have the power to determine the
relative ranking of at least two alternatives x and y. For example, x might be the state
of the world in which Barack Obama is president of the United States of America and
you paint the walls of your bedroom in pink, and y might be the state of the world
where Barack Obama is president of the United States of America and you paint the
walls of your bedroom in white. Then you should have the power of excluding one
of x and y from being the collectively chosen alternative (which of course does not
mean that the other one of the two necessarily needs to be chosen). In this case, we
say that you are (two-way) decisive on x and y.

Definition 9 A SCF F satisfies the property of liberalism if, for every individual i∈N
there exist two distinct alternatives x,y ∈ X for which i is two-ways decisive.

The property of liberalism can be encoded as follows:

Lib :=
∧
i∈N

∨
x∈X

∨
y∈X\{x}

({i}dec(x,y)∧{i}dec(y,x))

Lemma 6 For every SCF F, MF � Lib if and only if F satisfies liberalism.



Proving Classical Theorems of Social Choice Theory in Modal Logic 15

Proof From left to right, suppose MF � Lib. Suppose for the sake of contradiction that
F does not satisfy liberalism. If there is an individual i that is not two-ways decisive
on any pairs then for every pair there is a profile w such that the outcome F(w)
is in conflict with the preferences of i (say, x <i y and F(w) = y). This means that
{i}dec(x,y)∧{i}dec(y,x) cannot be a validity in the model MF , and the same holds
for all the pairs, so

∨
x
∨

y6=x({i}dec(x,y)∧{i}dec(y,x)) cannot be a validity either,
for our fixed i. This in turn entails that MF � Lib is not the case, which constitutes the
desired contradiction.

From right to left, say that F satisfies liberalism. Fixing an agent i, it
is easy to check that, calling x,y the alternatives for which i is decisive, we
must have {i}dec(x,y) ∧ {i}dec(y,x) as a validity on the model MF . Thus, also∨

x
∨

y 6=x({i}dec(x,y)∧{i}dec(y,x)) is a validity, and the same holds for every i, so
we get the validity of Lib. ut

3.8 Dictatorships

Finally, we will require one undesirable property of SCF’s. A dictatorship is a SCF
for which one individual, the dictator, can enforce their top alternative as the outcome.
Denote with topw

i that alternative x∈X for which x<i y for all other alternatives y∈X
in profile w = (<1, . . . ,<n).

Definition 10 A SCF F is a dictatorship if there exists an agent i ∈ N (the dictator)
such that, for every profile w ∈L (X)n, we obtain F(w) = topw

i .

The property of being a dictatorship is encoded by the following formula:

Dic :=
∨
i∈N

∧
x∈X

∧
y∈X\{x}

(
pi

x<y→¬y
)

Observe that Dic is equivalent to
∨

i∈N{i}dec, i.e., a SCF is dictatorial if and only if
there exists an individual that is decisive on every pair.

Lemma 7 For every SCF F, MF � Dic if and only if F is a dictatorship.

Proof From right to left, suppose F is a dictatorship, and call the dictator i. Take any
world w = (<1, . . . ,<n). We want to show that the disjunct corresponding to i is true
at w. Thus, for any two distinct alternative x,y we want to show that pi

x<y→¬y is true
at w. First, if x<i y, then topw

i 6= y and thus, due to F being a dictatorship of i, we have
F(w) 6= y. By the semantics, this entails MF ,w � ¬y and thus MF ,w � pi

x<y → ¬y.
Second, if x 6<i y, then MF ,w 6� pi

x<y, and the implication holds vacuously.
From left to right, suppose MF � Dic. Then one of the disjuncts must be valid,

say for agent i. Suppose x = topw
i under profile w. Then MF ,w �

∧
y∈X\{x} pi

x<y.
Since (the disjunct referring to i in) the condition Dic is true at w, we obtain
MF ,w �

∧
y∈X\{x}¬y. By resoluteness, this entails MF ,w � x and thus F(w) = x. ut
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Note that, in the presence of axiom (14), encoding resoluteness, the disjunction in the
formula Dic is actually an exclusive one, i.e., not only must there be some dictator,
but there must be exactly one dictator.4

4 Impossibility Theorems

We are now ready to state the three major impossibility theorems we are interested in
as formulas in the language of our modal logic of SCF’s. For each of them, we then
demonstrate how to construct a full proof of the theorem within the axiomatic system
we have seen to be complete for our logic (cf. Theorem 1). We start with Arrow’s
Theorem and then prove the Muller-Satterthwaite Theorem as a corollary. The third
theorem, Sen’s Theorem on the impossibility of a Paretian liberal, is mathematically
much simpler and also admits a relatively short proof in our logic.

Before we begin, we need to make one important remark concerning the expres-
sivity of our logic. Given that the language of L[N,X ] is parametrised by the set
of individuals N and the set of alternatives X , strictly speaking the aforementioned
theorems, which all apply to scenarios with arbitrary numbers of individuals and al-
ternatives (provided those numbers are sufficiently large), cannot be stated or proven
within the logic. To prove each of these impossibility theorems in their full generality
we have to resort to a meta-argument, using a proof schema, to show that, for each
choice of N and X , it is possible to prove a version of the theorem in the logic in-
stantiated to those two parameters. The same proviso also holds for the properties of
SCF’s featuring in the previous section: rather than being formulas in the logic, they
are schemas of the representations of the properties in the logic.

4.1 Encoding Arrow’s Theorem

First published in 1951, Arrow’s Theorem is widely regarded as the seminal con-
tributions to social choice theory [3]. The original theorem concerns social welfare
functions, i.e., functions mapping profiles of (weak) preference orders (permitting in-
difference between alternatives) to single collective preference orders. The version
we present here is adapted for preference orders that do not permit indifferences be-
tween alternatives and to SCF’s (which return a single winning alternative rather than
a collective order). We refer to Taylor [35] for an extensive discussion of this vari-
ant of the theorem. From a mathematical point of view, both variants are essentially
equivalent and can be proven using the same methods [12,35]. We focus on linear
orders (not permitting indifferences), because most standard voting rules impose this
requirement on ballots [35]. We furthermore focus on SCF’s, because the problem
of choosing a single best alternative is more pervasive in applications than that of
choosing a full ranking over alternatives.

4 The reader can prove this using the Universal Domain Lemma, formula Dic, and axiom (14). The gist
of the proof is to take a profile where two dictators disagree and to show that this leads to a contradiction.
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Arrow showed that, rather surprisingly, any SCF for three or more alternatives
that is Pareto efficient and that satisfies the property of independence of irrelevant
alternatives must be dictatorial.

Theorem 2 (Arrow’s Theorem) Any SCF for at least three alternatives that satisfies
IIA and the Pareto condition is a dictatorship.

We now proceed to code a proof of Arrow’s Theorem in our logic. We will use a
familiar technique, based on the concept of decisive coalitions (as defined in Sec-
tion 3.2), to guide our search for a proof [12,33]. What is novel about our approach
is that we show that this technique can be fully embedded into a formal derivation of
the axiomatic system for L[N,X ] presented earlier. We offer an outline on the main
steps of the proof, from which a complete formal derivation can be recovered.

The proof is based on two main lemmas. The first lemma shows that, under cer-
tain conditions, a coalition being weakly decisive over a specific pair of alternatives
implies that the same coalition is (not only weakly) decisive over all pairs.

Lemma 8 Consider a language parametrised by X such that |X | > 3. Then for any
coalition C ⊆ N and any two distinct alternatives x,y ∈ X, we have that:

` Par∧ IIA∧Cwdec(x,y)→Cdec

Proof Suppose x, y, x′ and y′ are distinct alternatives.5 To prove Cdec we need to
prove each of the conjuncts in the following formula:

∧
x∈X

∧
y∈X\{x}

[(∧
i∈C

pi
x<y

)
→¬y

]

Denote by C′ one of the possible subsets of N \C preferring x′ over y′. Now consider
the following derivation:

(1) (
∧

i∈C pi
x′<y′)→ [(

∧
i∈C pi

x′<y′)∧
∨

C′⊆N\C((
∧

i∈C′ p
i
x′<y′)∧ (

∧
i6∈C′∪C pi

y′<x′))]

By finiteness of agents and alternatives and the theorems pi
x′<y′ ∨ pi

y′<x′ for all
i ∈ N we can, rearranging conjunctions and disjunctions, prove the second line of
the formula; the implication follows.

(2) (
∧

i∈C pi
x′<y′)→

∨
C′⊆N\C [(

∧
i∈C pi

x′<y′)∧ (
∧

i∈C′ p
i
x′<y′)∧ (

∧
i 6∈C′∪C pi

y′<x′)]

by distributivity from (1)
(3) This part of the proof contains the derivation of the following formula, for every

coalition C′ ⊆ N \C:
Par∧IIA∧Cwdec(x,y)→ [(

∧
i∈C pi

x′<y′)∧(
∧

i∈C′ p
i
x′<y′)∧(

∧
i 6∈C′∪C pi

y′<x′)→¬y′]

We will present the derivation for any such C′ below.
(4) Par ∧ IIA ∧ Cwdec(x,y) →

∨
C′⊆N\C[(

∧
i∈C pi

x′<y′) ∧ (
∧

i∈C′ p
i
x′<y′) ∧

(
∧

i 6∈C′∪C pi
y′<x′)→¬y′]

by propositional reasoning from all the instances of (3)

5 With three alternatives the argument is analogous but simplified, since two of the alternatives coincide.
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(5) Par∧ IIA∧Cwdec(x,y)→ [(
∧

i∈C pi
x′<y′)→¬y′]

by propositional reasoning from (2) and (4)

We still need to show (all the finitely many instances of) step (3). We prove each of
them in the following way. Consider a specific profile w = (<1, . . . ,<n) for which we
can rearrange the conjuncts in the formula profile(w) as follows:

profile(w) = (
∧
i∈C

pi
x<y)∧ (

∧
i∈N

(pi
x′<x∧ pi

y<y′))∧

(
∧

i∈C∪C′
pi

x′<y′)∧ (
∧
i 6∈C

pi
y<x)∧ (

∧
i6∈C∪C′

pi
y′<x′)∧α

Here α is the formula expressing the fact that all the other alternatives (if any) are
ranked by all agents below x,y,x′,y′. We are now ready to present a derivation for a
specific coalition C′:

(a) For any z ∈ X \{x,y,x′,y′}:
Par∧profile(w)→¬x∧¬y′∧¬z

from formula Par, the second part of profile(w), and α

(b) Cwdec(x,y)∧profile(w)→¬y

by definition of Cwdec(x,y)
(c) Par∧Cwdec(x,y)→ (profile(w)→ x′)

by axiom (14), encoding resoluteness, with (a) and (b)
(d) 3Nprofile(w)

by the Universal Domain Lemma
(e) Par∧Cwdec(x,y)→3N(profile(w)∧ x′)

by standard modal reasoning from (c) and (d)
(f) Par∧ IIA∧Cwdec(x,y)→3N(profile(w)∧ x′)

by propositional reasoning from (e)
(g) Par∧ IIA∧Cwdec(x,y)→ [(profile(w)(x′,y′)→¬y′)]

from (f) and formula IIA w.r.t. x′ and y′

But profile(w)(x′,y′) consists of the following conjuncts:

(
∧
i∈C

pi
x′<y′)∧ (

∧
i∈C′

pi
x′<y′)∧ (

∧
i 6∈C′∪C

pi
y′<x′)

Hence, we may infer that this latter formula entails ¬y′. This shows step (3) and
concludes the proof. ut

The next lemma establishes a syntactic counterpart of what is known as the Contrac-
tion Lemma in the literature [33]. It says that, under certain conditions, for any way
of splitting a decisive coalition of two or more agents into two sub-coalitions, one of
those sub-coalitions must also be decisive.
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Lemma 9 (Contraction Lemma) Consider a language parametrised by X such that
|X |> 3. Then for any coalition C ⊆ N and any two coalitions C1 and C2 that form a
partition of C, we have that:

` Par∧ IIA∧Cdec→ (C1dec∨C2dec)

Proof Consider C, C1 and C2 as in the statement of the lemma (i.e., C =C1∪C2 and
C1 ∩C2 = /0) and let x,y,z be three distinct alternatives. Now consider any profile w
for which profile(w) has the following form:

profile(w) = (
∧

i 6∈C2

pi
x<y)∧ (

∧
i∈C1

pi
x<z)∧ (

∧
i∈C1∪C2

pi
y<z)

(
∧

i∈C2

pi
y<x)∧ (

∧
i 6∈C1

pi
z<x)∧ (

∧
i6∈C1∪C2

pi
z<y)∧α

Here α encodes the fact that all other alternatives (if any) are ranked by all agents
below x,y,z. By propositional reasoning and the fact that in profile w all agents in C
prefer y over z we can derive:

Cdec→ (profile(w)→¬z) (1)

For any other alternative k different from x or y, we can derive:

Par→ (profile(w)→¬k) (2)

This is so because α in profile(w) encodes the fact that all other alternatives are
ranked by all agents below x,y,z. Formulas (1) and (2), together with axiom (14),
encoding resoluteness, enforce that x or y must be the outcome:

Par∧Cdec→ ((profile(w)→ x)∨ (profile(w)→ y)) (3)

As an aside, we note that we know (again from resoluteness) that this disjunction
must be exclusive. By the Universal Domain Lemma, we have that 3Nprofile(w) is a
theorem, and thus, using standard modal reasoning on formula (3), we obtain:

Par∧Cdec→ (3N(profile(w)∧ x)∨3N(profile(w)∧ y)) (4)

Now propositional reasoning together with IIA, first w.r.t. the pair (x,z) and then w.r.t.
the pair (y,x), allows us to derive from formula (4) the following formula:

Par∧ IIA∧Cdec→ ((profile(w)(x,z)→¬z)∨ (profile(w)(y,x)→¬x))

Recall that in profile(w) the agents in C1 are the only ones supporting x over z. Hence,
(profile(w)(x,z)→¬z) means that C1 is weakly decisive for the pair (x,z). Likewise,
the agents in C2 are the only ones supporting y over x; thus (profile(w)(y,x)→ ¬x)
means that C2 is weakly decisive for the pair (y,x). In this fashion we can conclude
that:

Par∧ IIA∧Cdec→ (C1wdec(x,z)∨C2wdec(y,x)) (5)
We can now use Lemma 8 and propositional reasoning on formula (5) to derive:

Par∧ IIA∧Cdec→ (C1dec∨C2dec)

We have thus shown that Par∧ IIA∧Cdec→ (C1dec∨C2dec) must be a theorem of
the logic. Note that the disjunction is still exclusive. ut
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We can now state and prove a syntactic counterpart of Arrow’s Theorem:

Theorem 3 (Arrow’s Theorem) Consider a logic L[N,X ] with a language
parametrised by X such that |X |> 3. Then we have:

` Par∧ IIA→ Dic

Proof As mentioned earlier, Par is equivalent to Ndec. Exploiting the formula IIA,
we can apply the Contraction Lemma and prove that one of two disjoint subsets of N
is decisive. Repeating the process finitely many times (we have finitely many agents),
we can show that one of the singletons that form N is decisive. But this is tantamount
to saying that there exist a decisive agent, i.e., a dictator, so the formula

∨
i∈N{i}dec,

which is equivalent to Dic. Hence, the formula Par∧ IIA→ Dic can be derived as a
theorem of the logic L[N,X ] for any set X with |X |> 3 as claimed. ut

Note that throughout the proof we have made implicit use of the condition |X | > 3
when assuming the availability of three distinct alternatives (in fact, in the proof of
Lemma 8 we have only gone through the most interesting case, requiring at least four
alternatives).

As we already mentioned, the proof provided here is not, strictly speaking, a
full syntactic proof of Arrow’s Theorem within the logic, because the language is
parametric in the set of agents N and the set of alternatives X . Nevertheless, apart
from the proviso on the number of alternatives stated in Theorem 3, our proof is
independent of the choice of N and X ; that is to say, this proof can be used as a
template to prove the appropriate instance of Arrow’s Theorem in any logic L[N,X ]
for N and X such that |X |> 3.

Due to Theorem 1 establishing completeness of the logic and Lemmas 2, 3, and 7
establishing the correctness of our representation of the Arrovian conditions within
the logic, Theorem 3 is equivalent to the usual, semantic, rendering of Arrow’s The-
orem for SCF’s stated as Theorem 2. Thus, our purely syntactic proof constitutes
an independent proof of the theorem. This shows that the logic L[N,X ] is a useful
tool for reasoning about nontrivial concepts in social choice. In the remainder of this
section we offer further support for this assertion, by proving two additional results.

4.2 Encoding the Muller-Satterthwaite Theorem

The Muller-Satterthwaite Theorem [23] establishes that, when there are at least three
alternatives, the only SCF’s that are strongly monotonic—and that do not rule out
some of the alternatives as potential winners to begin with (by failing surjectivity)—
are the dictatorships. Like Arrow’s Theorem, this result shows that certain intuitively
appealing properties of SCF’s simply cannot be realised in general. We directly give
a syntactic formulation of this important result in our logic.

Theorem 4 (Muller-Satterthwaite Theorem) Consider a logic L[N,X ] with a lan-
guage parametrised by X such that |X |> 3. Then we have:

` SM∧Sur→ Dic
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Proof It is enough to show that ` SM∧Sur→Par∧IIA. Then, by the syntactic deriva-
tion of Arrow’s Theorem given earlier, we obtain Dic. We begin by showing that the
two premises entail IIA. If we can show that

SM→ [3N(profile(w)∧ x)→ (profile(w)(x,y)→¬y)]

for any w and any distinct x,y then we have that the two premises prove the conjunc-
tion of all such consequents, which is IIA.

The general strategy is the following: first we construct a profile w′′ which ranks
the alternatives x,y above all others and preserves the ordering of w encoded in
profile(w)(x,y); second, by SM, we conclude that x must be the outcome in this pro-
file w′′; third we show that, for any profile w′ that agrees with profile(w)(x,y) , if the
outcome at w′ is y then, again by SM, the outcome at w′′ is also y; this last passage
contradicts the fact that x is the outcome at w′′, hence y cannot be the outcome at any
such w′. We proceed to encode this reasoning.

First, construct a formula representing w′′:

profile(w′′) := profile(w)(x,y)∧
∧
i∈N

∧
z 6=x,y

(pi
x<z∧ pi

y<z)

By construction, we clearly have that:

profile(w′′)→
∧

k∈X\{x}
Nw

x<k

Together with SM, this latter formula readily entails the following implication:

SM∧3N(profile(w)∧ x)∧profile(w′′)→ x

By the Universal Domain Lemma, we know that we have 3Nprofile(w′′). Thus:

SM∧3N(profile(w)∧ x)→3N(profile(w′′)∧ x) (6)

This concludes the first two parts, showing that x must be the outcome for the profile
w′′. We now reason by contradiction, assuming

SM∧3N(profile(w)∧ x)∧profile(w)(x,y)∧ y

and deriving 3N(profile(w′′)∧ y), in contradiction with formula (6), thereby forcing
us to conclude that the following holds:

SM∧3N(profile(w)∧ x)∧profile(w)(x,y)→¬y

Clearly, we can derive from the axioms that:

profile(w)(x,y)∧ y→
∨
w′
[profile(w′)∧profile(w)(x,y)∧ y]

That is to say, there is a profile w′ containing the preferences in profile(w)(x,y) for
which the outcome is y. By the Universal Domain Lemma, we can put a diamond in
front of the profile formula. Hence, after some rearrangement we obtain:

profile(w)(x,y)∧ y→
∨
w′
3N [profile(w′)∧ y] (7)
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Notice now that the part inside the disjunction looks like the first formula in the
antecedent of SM, formulated for variable y. Upon inspection we can also check that
for all such w′′, we get:

profile(w′′)→
∧
k 6=x

Nw′
x<k

Thus, we know that by applying SM we obtain:

SM∧3N [profile(w′)∧ y]∧profile(w′′)→ y

Now we can push SM inside the disjunction in formula (7), use the Universal Domain
Lemma to get 3Nprofile(w′′), and apply the latter formula to conclude that each of
the disjuncts entails 3N(profile(w′′)∧y). But then the whole disjunction entails it and
we can derive:

profile(w)(x,y)∧ y→3N(profile(w′′)∧ y)

This contradicts formula (6), since only one alternative can be the outcome and x 6= y.
Hence, we have derived IIA.

Now for the derivation of Par. It is enough to show that SM∧ Sur entails each
conjunct of the following form:

(
∧
i∈N

pi
x<y)→¬y (8)

From Sur we know that
∨

w3N(profile(w)∧ x). Construct the profile w′′ which is the
same as w but with the difference that x has been ranked over y by all agents:

profile(w′′) :=
∧
i∈N

pi
x<y∧

∧
z,k 6=x

profile(w)(z,k)∧
∧

y>iz
pi

x<z∧
∧

z>iy
profile(w)(x,z)

where y >i z in the subscript is just notation to mean that y is ranked over z by i in w
and similarly for z >i y. Clearly by this formula we have that if z >i y in w then in w′′

their ranking in unchanged, while for z = y and y >i z now x is ranked above z; thus

profile(w)→
∧

y∈X\{x}
Nw

x<y

Hence by SM we have that 3N(profile(w)∧ x)∧ profile(w′′)→ x, that is, x is still
the outcome in w′′. Hence, every disjunct in Sur entails 3N(profile(w′′)∧ x). Now
notice that the antecedent in the formula (8), namely (

∧
i∈N pi

x<y), by construction is
just profile(w′′)(x,y). So pushing the latter into the disjunction we obtain that each
disjunct entails:

3N(profile(w′′)∧ x)∧profile(w′′)(x,y)

But this is the antecedent of IIA, hence each disjunct actually entails ¬y. Therefore,
the whole disjunction entails ¬y, and we have proved the desired implication (8). ut
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4.3 Encoding Sen’s Approach to Rights

Sen’s Theorem [32] shows that it is impossible to satisfy both the property of Pareto
efficiency and the property of liberalism. Unlike the other impossibility theorems
discussed, this result does not depend on any assumptions regarding the number of
alternatives. We again give directly a syntactic formulation using our logic.

Theorem 5 (Sen’s Theorem) Consider any logic L[N,X ]. Then we have:

` ¬(Par∧Lib)

Proof Our derivation will mirror the standard proof of the theorem [12,32]. It is
sufficient to show that (Par∧Lib) entails a contradiction. To make the notation lighter
we will use the following abbreviation, meaning that an agent i is two-way decisive
over the pair (x,y):

Libi(x,y) := {i}dec(x,y)∧{i}dec(y,x)

Consider only two of the conjuncts of Lib, say for agents i1 and i2. If we can prove
that these two conjuncts together with Par entail a contradiction then we are done.
Begin by rearranging the conjunction of disjunctions in the definition of Lib into a
disjunction of conjunctions. For two agents this will look like this:∨

x1,x2,y1,y2

(Libi1(x1,y1)∧Libi2(x2,y2)) (9)

This formula essentially says that there are two pairs of elements on which the two
agents are respectively two-way decisive. If we can prove that each of the disjuncts
entails a contradiction, then by the laws of disjunction we can infer that the whole
formula entails a contradiction. Note that we can push Par inside such a conjunction.
Therefore, the task at hand is to show that formulas of the following shape entail a
contradiction for every choice of the four alternatives:

Par∧ (Libi1(x1,y1)∧Libi2(x2,y2))

We focus on the cases, i.e., the disjuncts, in which these are all distinct alternatives;
the cases of two or three alternatives follow via a similar argument with some alter-
natives being merged into one. For each choice of x1,x2,y1,y2 ∈ X build the profile
wx1,2,y1,2 with the following properties:

– Individual i1 ranks x1 above y1.
– Individual i2 ranks x2 above y2.
– All individuals rank y1 above x2 and also y2 above x1.
– All individuals rank x1,x2,y1,y2 above all other alternatives.

These properties correspond to the following formulas:

– pi1
x1<y1

– pi2
x2<y2

–
∧

i∈N(pi
y1<x2

∧ pi
y2<x1

)
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–
∧

i∈N(pi
x1<z∧ pi

x2<z∧ pi
y1<z∧ pi

y2<z) for all other alternatives z ∈ X

Therefore, they will be part of a big conjunction forming profile(wx1,2,y1,2). Clearly,
by combining the latter two of the above formulas with the formula representing the
Pareto condituon, we we can derive the following two formulas:

– (Par∧
∧

i∈N(pi
y1<x2

∧ pi
y2<x1

))→ (¬x2∧¬x1)

– (Par∧
∧

i∈N(pi
y1<z∧ pi

y2<z∧ pi
x1<z∧ pi

x2<z))→¬z
for all other alternatives z ∈ X

Thus, we can derive:

(Par∧profile(wx1,2,y1,2))→ (¬x2∧¬x1∧¬z)

It is also easy to prove that the following two formulas hold:

– Libi1(x1,y1)∧ pi1
x1<y1

→¬y1

– Libi2(x2,y2)∧ pi2
x2<y2

→¬y2

Recall that the formulas pi1
x1<y1

and pi2
x2<y2

are also contained in profile(wx1,2,y1,2).
Hence, summing up what we have seen so far, we obtain:

[Par∧Libi1(x1,y1)∧Libi2(x2,y2)∧profile(wx1,2,y1,2)]→ [¬x1∧¬x2∧¬y1∧¬y2∧Z]

In the above formula, we use Z as a shorthand for the conjunction
∧

z∈X\{x1,x2,y1,y2}¬z.
The consequent of the implication above is a negation of all the alternatives in X , a
formula that is inconsistent with the first part of axiom (14), the axiom encoding
resoluteness of the SCF. Hence, we obtain:

[Par∧Libi1(x1,y1)∧Libi2(x2,y2)∧profile(wx1,2,y1,2)]→⊥ (10)

Due to the Universal Domain Lemma, we know that the formula 3Nprofile(wx1,2,y1,2)

is a theorem of the logic. So if we are given Par∧Libi1(x1,y1)∧Libi2(x2,y2), we can
certainly deduce:

Par∧Libi1(x1,y1)∧Libi2(x2,y2)∧3Nprofile(wx1,2,y1,2)

By this formula, formula (10), and modal reasoning we can conclude:

[Par∧Libi1(x1,y1)∧Libi2(x2,y2)∧3Nprofile(wx1,2,y1,2)]→3N ⊥

Since 3N ⊥→⊥ is a theorem of normal modal logic we get:

[Par∧Libi1(x1,y1)∧Libi2(x2,y2)]→⊥

Thus, we have shown that one of the disjuncts of formula (9) implies a contradiction.
Repeating the same proof for every permutation of the four alternatives, we can thus
prove that the whole disjunction entails a contradiction. Thus, also (Par∧Lib) entails
a contradiction and we are done. ut
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5 Implementing the Logic

In this section we expand on the possibility of implementing the logic. As we will see,
it is possible to translate the language of L[N,X ] into classical propositional logic, and
more specifically into the propositional language used by Tang and Lin [34]. This
paves the way for the application of SAT solvers to check the validity of formulas in
our logic, thereby allowing for a fully automated check of the validity of the theorems
formulated in this paper.

The language for modelling social choice functions used by Tang and Lin con-
sists of two predicates: p(i,x,y,w), expressing that in profile w agent i prefers x over
y, and s(x,w), expressing that alternative x is the winner in profile w. In full generality,
these predicates belong to a multi-sorted first order logic with variables for agents,
alternatives, and profiles. However, when the number of agents and alternatives is
fixed, we can translate the quantified formulas into propositional formulas substitut-
ing for the variables all the finitely many constants; this is how Tang and Lin obtain
a propositional language that can be fed into a SAT solver. Formulas in the resulting
propositional language are also evaluated on the models of Definition 4:

– M |= p(i,x,y,w) iff x<i y in profile w
– M |= s(x,w) iff F(w) = x

We show here how to adapt the so-called Standard Translation [6] from modal logic
into first-order logic to a translation from our modal language into the multi-sorted
first-order logic with predicates p(i,x,y,w) and s(x,w). Once this is done, the for-
mulas of the latter language can be turned into propositional clauses and checked
following the approach of Tang and Lin [34]. Consider the following translation of
the language of L[N,X ] into the language with predicates p(i,x,y,w) and s(x,w). The
translation is parametric in w, a variable ranging over profiles:

tw(pi
x<y) 7→ p(i,x,y,w)

tw(¬ϕ) 7→ ¬tw(ϕ)

tw(ϕ ∧ψ) 7→ tw(ϕ)∧ tw(ψ)

tw(x) 7→ s(x,w)

tw(3Cϕ) 7→ ∃w′(
∧

i∈N\C

∧
x 6=y∈X

[tw(pi
x<y)↔ tw′(pi

x<y)]∧ tw′(ϕ))

The other propositional connectives are handled accordingly. The following lemma
establishes the connection between the satisfiability problem for L[N,X ] and the satis-
fiability problem for the propositional language associated with the same parameters.

Proposition 2 For every formula ϕ in the language of L[N,X ], profile w, and SCF
F, ϕ is satisfiable at MF ,w if and only if tw(ϕ) is satisfiable at MF .

Proof The proof proceedss by induction on the complexity of ϕ . The base cases are
immediate by the translation and the semantics; we expand only on the case of the
modality.

First, suppose 3Cϕ is satisfiable. Then there are a SCF F and a profile w such that
MF ,w |=3Cϕ , which in turn entails that there is another profile w′ with <i =<′i for
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all i∈N \C such that MF ,w′ |= ϕ . By the induction hypothesis, tw′(ϕ) is satisfiable at
MF . Since<i =<′i is the case, we will have that

∧
i∈N\C

∧
x,y∈X [tw(pi

x<y)↔ tw′(pi
x<y)]

is true at MF . So we can conclude that tw(ϕ) is satisfiable at MF when w′ is the witness
of the existential quantifier.

For the other direction, suppose tw(3Cϕ) is satisfiable at MF . Then there exists
a profile w′ such that

∧
i∈N\C

∧
x,y∈X [tw(pi

x<y)↔ tw′(pi
x<y)] and tw′(ϕ) are true. From

the second formula and induction hypothesis we get that MF ,w′ |= ϕ , while from the
first we can conclude that <i =<′i for all i ∈ N \C. Thus, MF ,w |=3Cϕ . ut

The reader may now wonder: why are we using modal logic at all, if we can collapse
everything to propositional logic? The key here is size: the readability of the formu-
las of L[N,X ], and therefore its usefulness as a tool for formalisation, is lost in the
translation into propositional logic.

To make this point precise, we inductively define a function s assigning a size to
each formula in a modal propositional language: the size of propositional atoms is 1,
and the size of any other formula is the sum of the sizes of its immediate subformulas
plus 1. For example, the size of p∧¬q is 1+ 1+(1+ 1) = 4. It is easy to see that
the size contributed by the propositional atoms and the boolean connectives remains
constant during the translation: s(tw(pi

x<y)) = s(p(i,x,y,w)) = 1 = s(pi
x<y), and sim-

ilarly for the other cases. For the modality, however, we have a significant difference.
The formula 3Cϕ has size s(ϕ)+1, while its translation tw(3Cϕ) has size

|L (X)|n× [s(tw(ϕ))+1+(|N \C|× (|X2|− |X |)×4)−1]

This formula comes from the definition of the translation. First of all, after X and N
have been fixed, we have to transform the existential quantifier into a big disjunction
over all possible profiles; this explains the multiplication with the factor |L (X)|n.
Within the square brackets, we have to add the size of the translation of ϕ to the
size of the formula

∧
i∈N\C

∧
x,y∈X [tk(pi

x<y)↔ tk′(pi
x<y)], plus 1 because of the con-

junction. Now let us look at the latter formula. If we take the bi-implication between
atomic propositions as primitive, the inner formula has size 3 (otherwise it would be
even greater). This needs to be multiplied with the size of the complement of C and
the size of |X2| minus all the pairs in the diagonal (we consider x 6= y). Counting the
conjunction associated with each of the instances of the bi-implication and subtract-
ing 1 for the additional conjunction that we are considering, we arrive at the formula
above.

The reader can get a feel of the blow-up by considering the following example.
Let us analyse the simple case in which there are 3 alternatives and 2 agents, and
where C is a singleton. We take ϕ = x, an atomic proposition, so that s(ϕ) = 1 and
s(3Cϕ) = 2. On the other hand, the size of the translation into propositional logic
is s(tk(3Cϕ)) = (3!)2× [1+ 1× (9− 3)× 4] = 36× 25 = 900. Clearly, formulas of
such size are unwieldy for humans; their best use is for automated reasoning.

Thus, the logic L[N,X ] can fulfill two roles in the study of social choice theory.
First, as demonstrated in the main part of this paper it is a convenient formalism in
which to cast proofs of theorems regarding the characterisation of SCF’s in terms of
basic properties. Second, as demonstrated in this section, it can serve as a convenient
interface between social choice theory and propositional logic, with L[N,X ] ensuring
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readability and the propositional counterpart allowing for the use of standard compu-
tational tools, particularly SAT solvers, to automatically reason about the SCF’s.

6 Related Work

The idea of using formal methods to subject social procedures to the same kind of
formal analysis routinely applied to algorithms and software systems can be traced
back to, at least, the work of Parikh [25,26]. The two main arguments motivating
this kind of enterprise are obvious and well known: formal analysis will deepen our
understanding of social procedures; and formal analysis can increase our confidence
in the correctness of social procedures. Pauly [28] has suggested a third argument
that is specific to the use of logic in social choice theory: the expressive power of
a logical language required to express a choice-theoretic property (such a IIA) is a
relevant criterion in judging the interestingness of a characterisation result making
use of such a property. A fourth argument fueling this line of research is that it has
the potential to uncover entirely new characterisation and impossibility results [9,13,
34]—results that are of independent interest to economists [10].

Successful applications of logic and automated reasoning to social choice theory
have included the automated verification of the correctness of practical algorithms for
implementing voting rules [5] and the automated search for new impossibility theo-
rems in the domain of ranking sets of objects [13]. However, most work to date has
focussed on the Arrovian framework of preference aggregation and the challenges of
representing Arrow’s Theorem in a variety of logical frameworks [1,16], of verifying
the correctness of existing proofs for the theorem [24,38], and of finding new such
proofs [34]. Indeed, Arrow’s Theorem is arguably the best yardstick against which
to measure new formal methods for reasoning about problems of social choice. The
work of Lange et al. [20] on the use of automated reasoning in different areas of
economic theory, such as auctions and cooperative games, demonstrates that the ba-
sic concepts and techniques developed for the seemingly narrow domain of Arrovian
preference aggregation can have a ripple-on effect on the use of formal methods in
economics more widely.

Regarding Arrow’s Theorem, starting at the top as far as the expressive power
of the logical systems employed is concerned, Nipkow [24] and Wiedijk [38] have
shown how to verify existing proofs for the theorem in higher-order logic proof assis-
tants. Grandi and Endriss [16] have shown that classical first-order logic is sufficiently
expressive to model all aspects of Arrow’s Theorem, with the sole exception being
the requirement that the set of agents be finite (the theorem is not valid for infinite
electorates; cf. the use of induction in the proof of Theorem 3). In particular, mod-
elling IIA does not require second-order quantification. At the most extreme end of
the spectrum, Tang and Lin [34] have shown that the theorem can be embedded into
classical propositional logic, albeit only for a fixed set of agents and a fixed set of
alternatives. This embedding itself ceases to be useful for deepening our understand-
ing of social choice (as it involves thousands of clauses, even for the simplest case
of |N| = 2 and |X | = 3). Instead, the great significance of the work of Tang and Lin
derives from the fact that they have been able to provide a fully automated proof of
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the theorem based on this embedding. The work of Ågotnes et al. [1], like our own
work, is orthogonal to these other contributions, in that they design a new tailor-made
logic for social choice theory, rather than encoding those concepts into already exist-
ing logics. Note that Troquard et al. [37], the originators of the logic Λ scf[N,X ] we
have used here, have themselves not attempted to model Arrow’s Theorem.

Examples for work in this vein addressing results other than Arrow’s Theo-
rem are still rare. Tang and Lin [34] have extended their approach to proving Ar-
row’s Theorem also to the Muller-Satterthwaite Theorem and to Sen’s Theorem.
Nipkow [24], besides treating Arrow’s Theorem, also has verified a proof of the
Gibbard-Satterthwaite Theorem using a higher-order logic proof assistant. Grandi
and Endriss [16] also formalise Sen’s Theorem.

To date, the approaches to modelling Arrow’s Theorem in logical frameworks in
Hilbert-style calculi, namely the contributions of Ågotnes et al. [1] and of Grandi and
Endriss [16], have not yet yielded a complete proof of the theorem within that same
logical framework, although Ågotnes et al. [1] do succeed in providing a syntactic
proof of a relevant lemma. In as yet unpublished work, Perkov [30] has outlined a
natural deduction proof of Arrow’s Theorem using the language of Ågotnes et al. [1].
There currently are no results of this kind available for either the Muller-Satterthwaite
Theorem or Sen’s Theorem.

A recent survey on logic and social choice theory [12] has identified three critical
points in existing work on logics for modelling concepts in social choice: (1) whether
the approach does not require us to fix the sets of agents and alternatives upfront,
(2) whether the universal domain assumption can be expressed in an elegant manner,
and (3) whether the approach facilitates automation. Regarding point (1), as discussed
in Section 2.5, our logic is indeed subject to the common limitation of requiring us
to fix the cardinalities of N and X before even the notion of a well-formed formula
can be defined, but we have also demonstrated that in practice this limitation can be
overcome by working with schemas parametrised by N and X . Point (2) is convinc-
ingly taken care of by Lemma 1, the Universal Domain Lemma. Point (3), finally, is
addressed in Section 5, where we show how to reduce the satisfiability problem of
the logic L[N,X ] to the satisfiability problem for propositional logic. Of course, to di-
rectly develop automated reasoning tools for L[N,X ], thereby foregoing the need for
translation and the associated blow-up in the problem size, is still of some interest.
Evidence for the claim that also this direction is feasible and promising is given by
Troquard [36], who has initiated a study of algorithms for model checking for the full
logic Λ scf[N,X ], including a prototype implementation.

7 Conclusion

We have shown how to obtain a syntactic proofs of Arrow’s Theorem [3], the Muller-
Satterthwaite Theorem [23], and Sen’s Theorem [32] within a simple modal logic
for speaking about basic concepts of preference aggregation. The logic in question
is a fragment of a logic introduced by Troquard et al. [37], which we have shown
to be complete by adapting their original completeness proof. While prior work has
been successful in applying tools from logic and automated reasoning to social choice
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theory, this is the first human-readable formalisation of the framework of preference
aggregation that allows for a direct derivation of these important impossibility the-
orems. Inspired by the work of Tang and Lin [34], we furthermore have suggested
a pragmatic approach to implementing automated reasoning tools for the logic via a
translation into propositional logic.

Because of the central role of Arrow’s Theorem in particular, not only in social
choice theory at large, but also more specifically in the emerging literature on logics
for social choice, where it has served as a yardstick for assessing the suitability of
a variety of approaches to logical modelling, we believe that our work constitutes
a useful step towards the longterm aim of the field. This aim is to offer tangible
computer-aided support for reasoning about methods for collective decision making,
be it in the context of political decision making, economic interaction, or multiagent
systems.

Our results suggest two important directions for future work. First, it certainly
is possible, at least in principle, to encode most of the commonly studied desiderata
for voting rules, similar to those modelled in Section 3, in the logic considered here.
To what extent this might allow us to verify whether a given voting rule satisfies a
given property or to re-prove other classical results in social choice theory, such as
May’s Theorem on the characterisation of the simple majority rule [22], are intriguing
open questions. Second, our demonstration of the usefulness of modal logics of social
choice underlines the importance of further developing the reasoning machinery for
such logics, including optimised implementations, also beyond the translation-based
approach advocated in Section 5.
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