Succinctness of Languages for Judgment Aggregation

Ulle Endriss Umberto Grandi
ILLC IRIT
University of Amsterdam University of Toulouse

The Netherlands France

ulle.endriss@uva.nl umberto.grandi @irit.fr

Abstract

We review several different languages for collective decision
making problems, in which agents express their judgments,
opinions, or beliefs over elements of a logically structured
domain. Several such languages have been proposed in the
literature to compactly represent the questions on which the
agents are asked to give their views. In particular, the frame-
work of judgment aggregation allows agents to vote directly
on complex, logically related formulas, whereas the setting
of binary aggregation asks agents to vote on propositional
variables, over which dependencies are expressed by means
of an integrity constraint. We compare these two languages
and some of their variants according to their relative suc-
cinctness and according to the computational complexity of
aggregating several individual views expressed in such lan-
guages into a collective judgment. Our main finding is that
the formula-based language of judgment aggregation is more
succinct than the constraint-based language of binary aggre-
gation. In many (but not all) practically relevant situations,
this increase in succinctness does not entail an increase in
complexity of the corresponding problem of computing the
outcome of an aggregation rule.

1 Introduction

We are interested in collective (but also, as a special case, in-
dividual) decision making problems where the domain, i.e.,
the set of alternatives to choose from, has a complex, com-
binatorial structure. A prime example is judgment aggrega-
tion (List and Pettit 2002), where a set of agents express
their opinions on different but related questions and a con-
sistent collective decision is sought. Other notable examples
include multiple referenda, where agents express their pref-
erences about each of a set of interdependent binary issues,
and a collective choice on each issue has to be made; com-
mittee and, more generally, multiwinner elections, where a
set of candidates, subject to some cardinality constraint, has
to be elected given the voters’ preferences; and group config-
uration, where a complex object, such as a path in a graph,
has to be constructed, given the agents’ preferences. Such
domains are usually referred to as combinatorial domains
(see Lang and Xia (2016) for a survey).

In this paper we are interested in combinatorial domains
where the issues at stakes are binary, i.e., agents express

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ronald de Haan Jérome Lang
Algorithms and Complexity Group LAMSADE
Technische Universitit Wien Université Paris-Dauphine
Austria France

dehaan@ac.tuwien.ac.at lang @lamsade.dauphine.fr

a yes/no opinion on each question, and where issues may
be logically correlated, thus restricting the set of admissible
evaluations. Consider, for instance, the following example,
which is inspired by the so-called group-travel problem in-
troduced by Klamler and Pferschy (2007).

Example 1. A four operator using an automated planning
tool needs to prepare the schedule for a day trip of a group of
tourists. The group has the options of taking a guided tour
of the city centre (T), visiting the nearby museum (M), or
going to the beach (B). A short rest at the hotel (H) can
also be included in the plan. The preferences of each tourist
are elicited by means of binary questions such as “Qy : Do
you want to include a stop-by at the hotel?” or “Qs : Do
you want take the tour of the city centre or visit the museum
(or maybe both)?”, corresponding to a simple yes/no vote
on propositional formulas H and T' 'V M. More complex
opinions can also be queried, such as “Q3 : Do you require
a stop-by at the hotel if a visit to the beach is scheduled?”,
corresponding to a vote on the propositional formula B —
H, or “Q4 : Do you want to include all three activities in
the schedule?”, corresponding to a vote onT’ N M N B.

The designer of such a tool faces a choice in the repre-
sentation of the issues at stake. On the one hand, she can
directly ask the individuals to vote on each of the four ques-
tions (each modelled as a formula of propositional logic),
and then check that the overall individual opinion is a con-
sistent set of formulas. However, this first option requires
consistency checking, which has high computational com-
plexity. On the other hand, the designer can pre-process the
logical relations amongst the issues at stake and represent
them as an integrity constraint. In our example, this would
boil down to assigning a propositional symbol to each of the
four questions—such as @1, Q2 , @3, and Q4—and check-
ing that each individual opinion satisfies an integrity con-
straint expressing that a positive answer to (J; implies a pos-
itive answer to (D3, that a positive answer to both ()4 and Q3
implies a positive answer to ()1, and, finally, that a positive
answer to (4 implies a positive answer to (Jo:

(Q1 = Q3) AN [(QaNQ3) = Q1] A (Qs — Q2)

Whether the required logical relations between the issues
are respected can then be verified by means of simple model
checking. However, this move may come at a price, notably
in the size of the integrity constraint relative to the size of

the initial formulation modelling the issues themselves as
propositional formulas. The aim of this paper is to quan-
tify this price in the succinctness of representation for the
two languages described above, and for two additional vari-
ants. A second aim is to clarify the extent to which changes
in succinctness have an effect on the tractability of making
collective decisions based on individual inputs represented
in those languages.

We draw on definitions from the literature on judg-
ment aggregation (see Grossi and Pigozzi (2014) and En-
driss (2016) for two recent surveys) and more specifically
on results on the computational complexity of its winner
determination problem (Endriss, Grandi, and Porello 2012;
Lang and Slavkovik 2014; Endriss and de Haan 2015), in
combination with the notion of relative succinctness em-
ployed in different areas of artificial intelligence, such as
knowledge representation languages (Cadoli et al. 2000),
planning (Nebel 2000), preference representation (Coste-
Marquis et al. 2004; Uckelman et al. 2009), and modal logics
for multiagent systems (French et al. 2013).

Another highly relevant stream of work is belief merg-
ing (see Konieczny and Pino Pérez (2011) for a sur-
vey). The relation between belief merging and judgment ag-
gregation is discussed by Everaere, Konieczny, and Mar-
quis (2014; 2015). In belief merging, however, there is no
given set of issues that defines a decision problem. Individu-
als are instead allowed to submit as many propositional for-
mulas as they wish, making problems of succinctness less
relevant for this setting. The approach followed in this paper
is also reminiscent of the problem of knowledge compila-
tion (Cadoli and Donini 1997; Darwiche and Marquis 2002;
Marquis 2015), which deals amongst other things with quan-
tifying the cost of computing a given function over a com-
pactly represented input.

The remainder of this paper is organised as follows. In
Section 2 we give the necessary background on judgment
aggregation and introduce several languages for specifying
aggregation problems. In Section 3 we recall the fundamen-
tal definition of relative succinctness and prove our main re-
sults, establishing the relative succinctness of four different
specification languages. In Section 4 we address the issue of
translating from one language to another, and we study the
computational complexity of this problem. Following this,
in Section 5 we analyse the influence of the choice of lan-
guage on the complexity of the problem of computing the
collective judgment under several aggregation rules. Finally,
Section 6 concludes.

2 Languages for Judgment Aggregation

We start from a finite set of issues over which a group of
agents need to take a decision. Agents express their opin-
ions in the form of yes/no judgments over each of the issues,
and these opinions are then merged into a collective one by
means of an aggregation rule. Issues are related by logical
constraints, making certain opinions unacceptable. A classic
example for an aggregation rule is the majority rule, which
accepts a given issue if a (strict) majority of the individu-
als wish to accept it. However, the majority rule has the se-
vere drawback that it may produce an inconsistent outcome.

This is the well-known doctrinal paradox (Kornhauser and
Sager 1993; List and Pettit 2002). Therefore, many alterna-
tive rules have been considered in the literature. We will see
some of them in Section 5.

The specification of a collective decision problem over a
logically structured domain is given by a set of issues and a
set of feasible positions to take on them. In much of this pa-
per we focus on the languages that can be used to represent
such restrictions, rather than on the rules for aggregating the
judgments expressed in those languages. In this section, we
define the four concrete languages we consider and show
that they all have the same expressive power.

2.1 Basic Definitions
Let us first define the basic semantics for specifications:

Definition 1. The basic language (BASIC) for the specifica-
tion of collective decision problems over logically structured
domains is Lo = {X | X C{0,1}™, X # 0, m € N}.

For example, X = {(0,0,0),(0,1,0),(1,0,0),(1,1,1)}
is an element of L that specifies a decision problem with
m = 3 issues for which there are four feasible positions to
take, namely those for which the third issue gets accepted if
and only if both the first two issues get accepted as well.

In view of the combinatorial explosion—in terms of the
number of issues m—of the extensional representation of a
set of all feasible evaluations, a number of languages have
been proposed in the literature to specify restrictions in a
compact way. We begin by giving the following definition:

Definition 2. A specification language (L, 7) is given by a
set L and an interpretation function T : L — L.

Intuitively, a specification language can be used to com-
pactly represent the restriction on feasible evaluations with-
out having to provide the full list of them, with the function 7
interpreting the representation in the basic language.

Let PL denote the propositional language over a count-
able number of atoms, and let PLy, 3 denote the
propositional language over the set of atoms {p1,...,pm }.
Furthermore, the length || of a formula ¢ is the number of
occurrences of propositional atoms in that formula.

2.2 Four Concrete Specification Languages

The first specification language we consider requires vot-
ers to directly take a stance on complex propositional for-
mulas, restricting the set of feasible positions by requiring
the set of accepted formulas to be logically consistent.' This
setting is known as judgment aggregation, and is the sub-
ject of a growing number of publications in philosophy and
economics (List and Pettit 2002; Pauly and van Hees 2006;
Girdenfors 2006; Dietrich and List 2007a; Miller and Osh-
erson 2009) as well as in artificial intelligence (see, e.g., the
surveys by Grossi and Pigozzi (2014) and Endriss (2016)
mentioned earlier).

In this framework, issues are pairs of propositional formu-
las {¢, —p}, where ¢ is not of the form —), which together

!This setting has been generalised by Dietrich (2007) to include
a larger class of logical languages. In this paper, however, we focus
on the standard definitions using propositional logic.

form an agenda ® = {v1,¢1,. .., Ym, @m}. Given an
agenda ®, the pre-agenda associated with it is the set of its
non-negated formulas @ = {1, ..., ¢, }. Individuals ex-
press their positions by means of judgment sets J C ®. A
judgment set J is called complete if for all ¢ € ®T we have
@ € Jor—p € J,anditis called consistent if there exists an
assignment that makes all formulas in J true. The set of all
complete and consistent judgment sets is denoted by 7 (P).

Definition 3. The language of judgment aggregation (JA)
is defined as follows:

Lin = {{p1, 1, ..
(@) = J(P),

where we assume that a complete and consistent judgment
set J C ® is represented by a binary vector (vy,...,Upm)
withv; = lifp; € Jandv; = 0if ~p; € J.

For example, the pre-agenda ®* = {a,b,a A b} speci-
fies a decision problem where each individual has to choose
for each of these three formulas whether to accept it or its
negation. To be consistent, an individual has to accept the
third formula if and only if she accepts the first two, i.e.,
if we translate into the basic language we obtain 74 (®) =
{(0,0,0),(0,1,0), (1,0,0), (1,1,1)}, the exact same set of
feasible positions discussed directly after Definition 1.

A second possibility for staging a vote on a binary com-
binatorial domain is that of directly querying individuals
on simple binary issues, and representing the logical re-
lations amongst them by means of a propositional con-
straint. This is the approached followed by Grandi and En-
driss (2013), building on earlier work by Dokow and Holz-
man (2009; 2010). In this setting, a set of binary issues
7 ={1,...,m}is given, and the individuals have to express
their opinions in the form of binary ballots B € {0,1}~.
Feasible positions are specified by means of an infegrity
constraint T', built using only the propositional symbols
PS = {p1,...,pm}, one for each issue.

Definition 4. The language of binary aggregation with in-
tegrity constraints (IC) is defined as follows:

Lic = {T|T ePLyy,
T[C(F) = MOd(F),

where Mod(T") is the set of models of the formula T, each of
which is represented as a binary vector.

a(pmyﬁ(pm} ‘ ©j € P‘C7 me N}

po} Satisfiable, m € N}

,,,,,

In this framework, our running example is represented by
the integrity constraint I' = (p1 A pz <> p3). Indeed, we
again have 7;¢(T") = {(0,0,0), (0, 1,0), (1,0,0),(1,1,1)}.

Finally, we also consider two generalisations of this last
framework. The first of these appears not to have been stud-
ied in previous work. It generalises IC by allowing the use
of additional variables in the integrity constraint—beyond
those directly corresponding to the m issues:

Definition 5. The language of binary aggregation with in-
tegrity constraints with additional variables (IC+AV) is de-
fined as follows:

Licrav = {({p1, ...
TIC+AV(F) = MOd(F)

,om ;1) | T € PL sat.,m € N}

{p1,--spm}>

where Mod(I') (.} is the set of models of T restricted
fo the propositional variables in {p1, ..., pm }-

The second generalisation combines the formula-based
setting of the language JA with the use of integrity con-
straints (with additional variables). This framework has been
used, amongst others, by Dietrich and List (2008) and Lang
and Slavkovik (2014).

Definition 6. The language of judgment aggregation with
constraints (JAC) is defined as follows:

Lic = {{p1,7e1,- - 0m, ~pm}i D) |
w; € PL,T € PL satisfiable, m € N}

Tic(®;T) = J(®;1),

where J(®;T") is composed of all complete and consistent
judgment sets for ® that are consistent with T

Observe that IC+AV is recovered as a special case of JAC
if we restrict pre-agenda formulas to atomic propositions.

We mention in passing two additional languages that have
been considered in the literature on social choice theory. The
language of binary aggregation (Dokow and Holzman 2009;
2010) represents explicitly the set of feasible positions, and
therefore corresponds directly to our basic language BASIC.
The language of abstract Arrovian aggregation (Nehring
and Puppe 2010) represents a decision problem in terms of a
set of Boolean properties, specifying for each feasible alter-
native a full list of the properties that are satisfied, resulting
in a representation of size comparable to that of the basic
language. We omit formal definitions in the interest of space.

2.3 Expressivity

It is straightforward to show that all of the languages intro-
duced earlier are equally expressive, and that they can rep-
resent all problem specifications from the basic language.

Proposition 1. 754, Tjc, Tic+av, and Tjac are surjective.

Proof. A proof of the surjectivity of 74 can be found in the
work of Dokow and Holzman (2009, Proposition 2.1). 7y¢ is
surjective by the full expressivity of propositional logic with
respect to sets of Boolean assignments. The remaining part
of the proof follows from the facts that IC is a special case
of IC+AV and that JA is a special case of JAC. O

Thus, expressivity is not a relevant criterion when choos-
ing the best specification language for a given problem.

3 Succinctness of Specification Languages

In this section, we present our results on the relative suc-
cinctness of different languages for judgment aggregation.
Our main result shows that voting directly on propositional
formulas (JA) is strictly more succinct than voting on issues
related by an integrity constraint (IC). We also show that
languages that combine formulas and constraints have the
same succinctness as the formula-based setting.

3.1 Definition of Relative Succinctness

We now provide a definition of relative succinctness be-
tween two specification languages, inspired by the work of
Gogic et al. (1995) and Cadoli et al. (2000).

Let the size of a specification in the BASIC language be
defined as size(X) = | X| - m. The size of a specification in
the language JA is the size of the corresponding agenda @,
i.e., the sum of the lengths of the formulas in ®, adding the
length of the integrity constraint in the case of the language
JAC. The size of a specification in the language IC is the
length of the integrity constraint I', with the addition of m
for the case of the language /C+AV. Call two specifications
X, € L1 and X5 € L5 in languages £, and Lo equivalent,
and write X; = X, if and only if 71 (X7) = 72(X>).
Definition 7. Given two languages L1 and Lo for specifica-
tion, we say that L, is at least as succinct as Lo, and write
L1 < Lo, if there exist a function f : Lo — L1 and a poly-
nomial p such that, for all X € L, we have:

o f(X)=X, and
o size(f(X)) < plsize(X))

Thus, language £ is at least as succinct as language Lo,
if any specification given to us in £, can be translated into
an equivalent specification in £, without a super-polynomial
blow-up in the size of the representation. L is strictly more
succinct than Lo, denoted £ < Lo, if L1 < Lo but Lo £
L1, i.e., if such a correspondence can be found in only one

direction. £1 and Ly are equally succinct, denoted £ ~ Lo,
if both £1 < Lo and Lo < L4.

3.2 Basic Result

We begin by proving the following fact, establishing the in-
creased succinctness of using integrity constraints with re-
spect to the explicit representation:

Proposition 2. IC is strictly more succinct than BASIC.

Proof. (IC < BASIC) We need to show that every X C
{0,1}"™ can be represented by a propositional formula that
is at most polynomial in the size of X. Each element z €
{0,1}™ can be specified by a conjunction of literals ¢, =
LN Ny, suchthatfj =pjifz; =1 andfj = pj
iff z; = 0. Let f(X) = \,cx ¥z It is easy to see that
f(X) = X and that size(f(X)) = O(size(X)).

(BASIC # IC) To show that there is no polynomial trans-
lation from IC to BASIC, we give a set of integrity con-
straints whose unique equivalent in £ is of exponential size.
Consider I' = p; as integrity constraint, and let the number
of issues grow. For every m, the set of models of I" has size
2m=1 and thus is exponential in 1.2 O

Recall that BASIC is identical to the binary aggregation
framework of Dokow and Holzman (2009; 2010) and that, in
terms of succinctness, it is closely related to the abstract Ar-
rovian aggregation framework of Nehring and Puppe (2010).
Thus, these two frameworks are also strictly less succinct
than binary aggregation with integrity constraints.

2Since the set of models of —p1 has also size exponential in m,
this proof shows that representing the set of infeasible positions
explicitly is also less succinct than using a constraint.

3.3 Formulas and Constraints

In this section, we prove our main result (Theorem 6) that
shows that the formula-based setting of judgment aggrega-
tion is more succinct than the constraint-based formalism,
and that this relation is subject to a well-known conjecture
in computational complexity theory. We begin by showing
a non-trivial reduction from JA to IC and then illustrate that
reduction with an example.’

Proposition 3. JA is at least as succinct as IC.

Proof. Let T be a satisfiable propositional formula over the
propositional variables {p1,...,pm}. To prove the state-
ment we show that there exists an agenda ® with & =
{¢1,...,¢m} such that 74 (®) = 74¢(T"), and such that the
size of ® is polynomial in the size of I.

Since I is satisfiable (see Definition 4), we can pick an
assignment o : {p1,...,pm} — {0,1} that satisfies I".
Let IT = {1 < j < m | a(p;) = 1} be the set of in-
dices of propositions p; that o sets to true, and let I— =
{1 <j<m|a(p;) = 0} be the set of indices of proposi-
tions p; that « sets to false. We can now define a pre-agenda

&t = {p1,...,¢m} composed of the following formulas:
(pv-T ifjert
PIT\p AT ifjel”

Clearly, the size of ® is polynomial in the size of I'. Note
that for j € It we have that =p; = —p; AT

We now need to show that there exists a one-to-one corre-
spondence between truth assignments on {py, ..., pm } that
models I' on the one hand, and consistent judgment sets over
the agenda ® on the other hand. Let 3 be a truth assignment,
and define J5 = {; | B(p;) = 1} U{~y; | B(p;) = 0}.
We now show that for any assignment f3 it holds that Jg is
consistent if and only if 5 is a model of I, which in turn
implies that 7, (®) = 75¢(T") and concludes the proof.

First, recall that « is the initially chosen model of T', and
observe that J, = {p; V-I' | je IT}U{-p; VT |j¢€
I~ }, thus « satisfies J,, and J,, is consistent. Now let 3 be
a truth assignment such that o # 3. We begin by showing
that Jg = T. By definition, there exists some 1 < i < m
such that a(p;) # B(pi). Let x; = —; if B(p;) = 0, and
Xi = ; otherwise. Observe that y; € Jg, by definition
of Jg. If a(p;) = 1 then, since a(p;) # B(p;), we have
B(p;) = 0 and x; = —p; AT. Similarly, if «(p;) = 0 then
B(pi) = 1 and x; = p; AL'. Therefore, we know that x; =T,
which, because of x; € Jg, implies that Jg = T.

We now show that that for every 1 < j < m it holds
that J3 = p; if and only if 5(p;) = 1. There are two cases:

(¢) If B(p;) = 1 then by construction of Jg, we have ¢; €
Jg. Thus, Jg contains either p; A I' or p; V =I'. Because
J3 = T, if we are in the case where Jg contains p; V =T,
then Js |= p;, and if Jg contains p; AT then Jg = p;.

3 An equivalent shorter proof of this theorem can be obtained by
combining our Proposition 8 with the straightforward observation
that IC+AV < IC. We chose to present a direct proof here as it
provides better insights into the properties of the two languages.

(1) If instead 5(p;) = O then by construction of .Jg, we have
—p; € Jg. Thus, Jg contains either —p; V =I" or —=p; AT
Again, because Jg E T, if we are in the case where Jg
contains —p; V I, then Jg E —p;; and if we are in the
case where Jg contains —p; A I then Jg = —p;.

Summing up, we have shown that Jg |= T, and that
Js = pj iff B(p;j) = 1. We can therefore conclude that
Jg is satisfiable if and only if 3 satisfies I'. 0

The intuition behind the construction used in the proof
of Proposition 3 is the following. Since « satisfies I', the
complete judgment set .J, corresponding to « should be
consistent, which is clearly the case. For all other com-
plete judgment sets, there is at least one formula that im-
plies I'. Under these conditions, each formula ¢; essentially
just enforces p; and each formula —; essentially just en-
forces —p;. Therefore, I' and ® have exactly the same se-
mantics. We illustrate this construction with an example.

Example 2. Let PS = {p1,p2,p3} and let T = —p; +
(p2 V p3). Let o = (1,0,0); clearly, o = T'. We can now
define the two sets IT = {1} and I~ = {2,3}, and the
corresponding pre-agenda consisting of the formulas ¢ =
p1V L =p1Va(paVps) w2 =p2 AL = —p1 Ap, and
3 = ps AT' = —p1 Aps. Out of the eight judgment sets over
{©1, 2, p3}, four of them are consistent: {p1, 2, ~ps},
{=e1, 02,03}, {01, 02, 73} and {—p1, ~pa, 3}, and
they correspond to the four interpretations satisfying T,
namely (1,0,0), (0,1, 1), (0,1,0) and (0,0, 1). Take for in-
stance B = (0,0,1). The corresponding judgment set Jg =
{=p1,7p2, 03} = {=p1 A (P2 V p3), p1 V —p2, —p1 A p3}.
As expected, we have that Jg is consistent and 3 = T.
Take now ' = (1,1,0). We have Jg: = {1, 2, @3} =
{p1V =(p2 V p3),~p1 A p2,p1 V —ps}. In this case Jg: is
inconsistent and 3’ = —T.

We now show that the converse of Proposition 3 is not
true, subject to a well-known conjecture in computational
complexity theory. We do so by using a known result by
Cadoli et al. (2000). For this, we consider the following
problem. Let £ be a language of specification. The admis-
sibility (or model checking) problem for £ consists in de-
ciding, given some X € L and a vector v € {0,1}™,
whether v € 7(X). In order to use the result by Cadoli
et al., we show a difference in complexity for this admis-
sibility problem, for the languages /C and JA. For IC, the
admissibility problem coincides with checking whether a
given (complete) truth assignment satisfies a propositional
formula, which can be done in polynomial time.

Observation 4. The admissibility problem for IC is in P.

For JA, on the other hand, the admissibility problem in-
volves checking satisfiability of a propositional formula.

Lemma S. The admissibility problem for JA is NP-hard.

Proof. We give a reduction from SAT, the propositional
satisfiability problem. Let ¢ be an arbitrary propositional
formula (in conjunctive normal form). We construct the
agenda ® = {p, ~p}. It is then easy to see that the vec-
tor (1), i.e., a vector of length one with a single element, is
in 754 (®) if and only if is satisfiable. O

We are now ready to state our main result. This result is
based on the widely-believed complexity-theoretic assump-
tion that the Polynomial Hierarchy is strict (cf. Arora and
Barak, 2009; Chapter 5).

Theorem 6. JA is strictly more succinct than IC, unless the
Polynomial Hierarchy collapses.

Proof. By Proposition 3, we know that JA is at least as suc-
cinct as IC. To see that IC is not as succinct as JA, unless
the Polynomial Hierarchy collapses, suppose that the Poly-
nomial Hierarchy is strict. Then NP # P, and we can apply
Theorem 5 of Cadoli et al. (2000) using the results of Obser-
vation 4 and Lemma 5. This result directly implies that IC is
not as succinct as JA. O

The resulting collapse of the Polynomial Hierarchy
@f IC = JA) takes place at the second level, which can be
shown with a direct (but lengthier) proof, which we omit
here in the interest of space.

3.4 Additional Languages

Next, we show that the two additional languages that com-
bine constraints and formulas (see Definitions 5 and 6) are
as succinct as the language JA.

Proposition 7. JAC and JA are equally succinct.

Proof. (JAC < JA) The inequality is straightforward from
the fact that JA is a special case of JAC.

(JA < JAC) To prove that every agenda and additional
constraint can be translated into a single agenda with the
same semantics we use a similar translation to the one pre-
sented in Proposition 3. Let (®;I") be an element of JAC,
where ¢ = {Sola TPy - Py “@m} Let {pla s 7pu} be
the propositional variables occurring in ® U {T"}. We show
that there exists an agenda A with At = {§y,...,d,,} such
that 7j4c(®,T') = 754 (A), and |4] is polynomial in [PU{T'}|,
foreach § € A.

Since I' is satisfiable, there exists an assignment « :
{p1,...,pu} — {0,1} that satisfies '. We can therefore
repeat the construction presented in the proof of Propo-
sition 3. Let I = {1 < j < m | o E ¢,} and
I"={1<j<m]|af —p;} Foreach j € I, we
let §; = ¢; AT;and foreach j € I't, weletd; = p; vV I,
We now define a one-to-one correspondence between judg-
ment sets over ® and judgment sets over the agenda A: for
each judgment set J € J(®), we define the judgment set
J' =A{0; | ¢j € J}U{=d, | ~¢; € J}. Using the same
arguments as in the proof of Proposition 3, we show that for
any J it holds that J U {I'} is consistent if and only if .J’ is
consistent. O

Proposition 8. IC+AV and JA are equally succinct.

Proof. (IC+AV < JA) Take any pre-agenda & =
{9011 RS (Pm} and let T((I)) = ({plv s apm}vr) be an in-
stance of Ljciay, where T' = A (p; > ¢;). Now let « be
the propositional formula corresponding to an assignment to
the propositional variables {p1,...,pm}. The consistency
of a A T is equivalent to the consistency of judgment set
{@i | a(p;) = 1}U{—¢; | a(p;) = 0}. Therefore, we have a

one-to-one correspondence between I'-consistent judgment
sets of T'(®) and consistent judgment sets of .

(JA = IC+AV) The inequality is a straightforward con-
sequence of the fact that IC+AV is a special case of JAC,
combined with the result of Proposition 7. 0

4 From Formulas to Constraints and Back

In Section 3.3 we showed that JA < IC, which means that
every formula I' € £;¢ can be equivalently expressed as an
agenda ® € Ly, of a size that is polynomial in that of T
We now show that this translation is hard, namely as hard as
computing a model of a propositional formula, if it exists.

Proposition 9. Given a satisfiable propositional formula
' € PLyp, ... p.n}> the problem of computing an agenda
of size polynomial in |U| with || = m such that 7;c(T) =
7ja(®@) is FNP-complete under Turing reductions.

Proof. We first show membership in FNP. Given I', we can
guess a satisfying assignment « of I in polynomial time.
Using «, we can use the construction in the proof of Propo-
sition 3 to construct an agenda ® of polynomial size such
that 7;c(T") = 754 (®). If " is unsatisfiable, we are allowed to
output any agenda containing the right number of formulas.

Next, to show FNP-hardness, we reduce from the prob-
lem FSAT. In this problem, given a propositional formula I,
one needs to output a satisfying assignment of I" if I is sat-
isfiable, and “unsatisfiable” otherwise. In our reduction, we
produce in polynomial time an instance x of the problem P
that we are proving hardness of, and from the output of P on
input we produce in polynomial time an output for FSAT.

The idea of this reduction is the following. Given any
agenda @, we can efficiently construct a vector @ € 74 (),
by taking an arbitrary truth assignment « to the variables
in @, and checking what formulas in ® are satisfied by a.
Therefore, if we can express a propositional formula I' €
Lc as an equivalent agenda ¢ € L4, we can use this trick
to efficiently produce a satisfying assignment for I'.

Let T be an instance of FSAT on variables {p1,...,pm}
We let I' be the instance of P. Then, the output of P on
input I' is an agenda ®. Then, let v : Var(®) — {0,1}
be an arbitrary truth assignment to the variable occurring
in ® (e.g., the all-zeroes assignment). We now construct an
assignment & : {y1,...,ymt — {0,1} as follows. For
each 1 < j < m, we let a(y;) = 1if and only if v |= ¢,.
Clearly, the complete judgment set corresponding to « is sat-
isfiable, since y witnesses this. Now, if « [~ T', we can con-
clude that I' is unsatisfiable, since otherwise it would have
been the case that 7;c(I") = 754 (®). Thus, if @ = T', we can
output ¢, and if « }= T', we can output “unsatisfiable”. [

In the other direction, the main interest of the language
IC+AV is that it gives us a practical way of translating (with
worst-case exponential-size growth) an element of £j4 into
an element of £;c. Before we start, recall that the forgetting
3X.p of a set of variables X in a propositional formula ¢
(Lin and Reiter 1994) is defined inductively as follows:

e Wp=09p

“Here we allow the output to be any agenda if I is unsatisfiable.

o Hatp =1 VgeT
o (X U{x}).o=3X.(F{z}.0)

The problem of translating an element of JA, that is, an
agenda ®, into an equivalent element of ({p1,...,pm};T)
with I' € PLyp, . p..}» amounts to variable forgetting in
a propositional formula, as shown by the following con-
struction.> Let ® with @ = {¢1,...,¢,,} be an ele-
ment of Ly, and let Y = Var(e1,...,om) be the set
of propositional variables appearing in ¢y, ..., ¢,,. Define
I := A;(pi < ¢;), and define an instance of L;c,ay as
{p1, -y om}; T*). Now, forget from I'* all variables with
the exception of py, ..., Ppy:

r = E(Y\{pl,...7pm}).1"*

Thus, we obtain an instance I" of £;¢ that is equivalent to
the initial instance ® of L.

Example 3. Let © be an instance of Lja with pre-agenda
ot = {aANbya — ¢,c,b <+ d,d}. Following the construc-
tion described above, we have:

I = (pre (@Ab)A(p2+ (a—) A
(p3 <>) A(pa > (b= d)) A (ps <> d)

Forgetting a,b,c,d in T'*, after calculations, provides us
with the following integrity constraint:

r = (p1 A (p2 <> p3) A (P4 <> ps))
Vo (mp1 Ap2 A (pa < ps))
Vo (mp1 A (p2 > p3) A (pa <> —ps))
Vo (mp1 Ap2 A (pa <> —ps))

It is then a straightforward exercise to check that the assign-
ments to {p1,...,ps} that verify T correspond one-to-one
to complete and consistent judgment sets over P.

The interest of this construction is that it can also be used
to build fragments of JAC that are intermediate between JA
and IC, by replacing some elements ¢ of the agenda by a
propositional variable p;, adding p; <+ ¢ to the constraint ',
and forgetting all variables (if any) that appeared in ;. The
more we move from JA to IC, the more space we need (cf.
Theorem 6). At the same time, as we discuss below, some
basic tasks, such as checking consistency of a judgment set,
become computationally easier to solve.

Finally, we note that in case an agenda ® is such that
every propositional variable occurring as a subformula
within one of the elements of ® is also an agenda for-
mula itself, translating from JA to IC is simple and does
not involve a combinatorial explosion. Indeed, if &+ =
{plv sy D Pet1y e SDm} with Var((I)Jr) = {plv s 7]95},
we can build an equivalent constraint I' € P~Ly,, ., 1 as
follows, using fresh variable names P41, - . . , Pm:

r = (p€+1 <~ ‘PIH—l) JARERIAY (pm, Ad @m)

SForgetting may give rise to exponentially long formulas, un-
less NP N coNP C P/ poly (Lang, Liberatore, and Marquis 2003,
Proposition 23). This fact can be used to give an alternative proof
that /C cannot be at least as succinct as JA (i.e., of Theorem 6),
again under standard assumptions of complexity theory.

5 Does the Choice of Language Affect the
Complexity of Aggregation?

Our results on the succinctness of specification languages
for judgment aggregation need to be interpreted in view
of some considerations of computational complexity. When
confronted with an aggregation problem, we want to be able
to choose the most succinct language with respect to the spe-
cific aggregation rule used. It is therefore important to know
whether the computational complexity of computing judg-
ment aggregation rules changes significantly or not when a
different specification language is being used.

It is clear that basic tasks related to the admissibility of
judgments will be easier in the less succinct setting of the
IC language, rather than in the formula-based languages JA
and JAC. Concretely, deciding whether either an individual
judgment or the result of an aggregation result is admissi-
ble is polynomial in the case of /C—as it corresponds to
model-checking—and NP-complete in any formula-based
language—as it corresponds to satisfiability checking.

However, in this section we show that this kind of gain
does not always transfer to more complex tasks, such as de-
termining the result of using an aggregation rule, a prob-
lem which often is called the winner determination prob-
lem in the literature, due to its close links with the problem
of computing the winners in an election. In what follows
we focus on the two languages of JA and IC, for which
an extensive analysis of the computational complexity of
the winner determination problem already exists in the lit-
erature (Endriss, Grandi, and Porello 2012; Grandi 2012;
Lang and Slavkovik 2014; Endriss and de Haan 2015).

5.1 Aggregation Rules

Let ' = {1,...,n} be a finite set of n individuals. For
the sake of simplicity, we will always assume that n is
odd. Let a profile be a collection of individual views, be
they binary ballots B = (By,...,B,) or judgment sets
J = (J1,...,Jn), one for each individual. An aggrega-
tion rule is a function that associates with each profile of
ballots/judgment sets a single collective ballot/judgment set
(or possibly a set of such collective ballots/judgment sets, in
case there is a tie).

We now introduce the specific aggregation rules for which
we study the winner determination problem. We use the for-
malism of IC to state our definitions. Equivalent formula-
tions can be easily obtained in JAS If B is a ballot, i.e.,
B € {0,1}%, we indicate with b; the value it takes on is-
sue j. If B is a profile of ballots, then b; ; is the opinion of
voter ¢ on issue j. The Hamming distance between two bal-
lots is defined as the number of issues on which they differ:
H(B.B') = |{j €T |b; # ¥}

Definition 8. The following are aggregation rules. In each
case, I is an integrity constraint.

(i) For a given quota k < n, the uniform quota rule Qy, is
defined as Qi(B); = 1iff |[{i e N | b;; = 1}| > k.

SFormally, we say that rule F} for language £; and rule Fb
for language Lo are equivalent if 71(Fi(x1,...,2n)) =
To(Fs(y1, - .-, Ym)) whenever 71 (x;) = 72(y;) foralli € N.

(X e majority rule Maj is defined as (), wit, = ==
i) The majority rule Maj is defined ith | = "3
117 e Kemeny rule is defined as follows:

111) The K le is d d It

Kemeny' (B) = argmin ZH(B,BZ-)
BEL jen

(tv) The Slater rule is defined as follows:

Slater' (B) = arlgg‘illljﬂH(BaMaj(B))

(v) The maximum subagenda rule is defined as follows:’

MSA"(B) = argmaxS {j € 7|b; = Maj(B);}
BET
vi) For every k < n, the binomial-k rule is defined as:
(vi)
— H(B, B;
Bin, (B) = argmax Z (n (B, 1)>
BEL ien K

Thus, a uniform quota rule simply accepts an issue
when at least a given number k of the individuals do. The
quota rules have been studied in depth by Dietrich and
List (2007b). The Kemeny rule returns those of the admis-
sible outcomes that minimise the sum of the Hamming dis-
tances to the individual ballots in the profile, while the Slater
rule minimises the distance to the majority outcome (which
itself may not be admissible). The names of these two rules
are due to their close similarity to well-known preference
aggregation rules with the same names. The maximum sub-
agenda rule returns those admissible ballots that, in terms
of set-inclusion, have maximal agreement with the major-
ity outcome. The latter three rules appear in the literature
under a variety of different names (Miller and Osherson
2009; Lang et al. 2011; Endriss, Grandi, and Porello 2012;
Nehring, Pivato, and Puppe 2014; Dietrich 2014). The
binomial-% rules maximise the number of subsets of issues
of size k that the outcome agrees on with the individual bal-
lots. So for £ = 1 we obtain the Kemeny rule as a special
case (Costantini, Groenland, and Endriss 2016).

Not all aggregation rules are collectively rational, i.e.,
they may output an inadmissible ballot on an admissible
profile. Characterisation results in the literature identify for
what integrity constraint quota rules, and in particular the
majority rule, are collectively rational (see, e.g., the surveys
by Grossi and Pigozzi (2014) and Endriss (2016)). The Ke-
meny, Slater, maximum subagenda, and binomial-k rules are
collectively rational by definition.

5.2 Winner Determination Problems

We consider the following decision problems, that allow us
to compute the result of an aggregation rule on a given pro-
file of ballots or judgments:

WINDET/C(F)
Instance: Integrity constraint IC, admissible profile B,
subset I C 7, partial ballot p : I — {0, 1}
Question: Isthere a B* € F(B)s.t.Vj € I, b = p(j)?
"The operator argmax = is understood to return arguments that
produce a result that is maximal with respect to set-inclusion.

WINDET (F)
Instance: Agenda ®, admissible profile J, set L C &
Question: Is there a J* € F(J) with L C J*?

A slightly different type of winner determination problem
has been introduced by Lang and Slavkovik (2014). In that
formulation, we ask whether all judgment sets in 7'(B) con-
tain a given element of the agenda. Thus, this formulation is
dual to the formulation used here. It is straightforward to
check that all the results we present in the sequel also hold,
mutatis mutandis, for this alternative definition of the winner
determination problem (sometimes replacing NP by coNP).

5.3 Computational Complexity: No Gap

In this section we show that for most of the aggregation rules
defined in Definition 8 the computational complexity of their
winner determination problem is independent of the specifi-
cation language used. We also prove a general result that, to
a certain extent, formalises the intuition that winner determi-
nation should in principle not become any harder when we
move from the language JA to the less succinct language IC.
We start with the following straightforward observation:

Observation 10. Both of the problems WINDET2(Q},) and
WINDETC(Qy) are in P for any quota k < n.

As an aside, and without stating precise definitions
here, we note that the same is true for all of the so-
called representative-voter rules studied by Endriss and
Grandi (2014), which are rules that always select an out-
come from the set of feasible positions explicitly provided
by one of the individuals. All of these rules clearly have
trivial winner determination problems for any of our spec-
ification languages.

The following is a known result:

Proposition 11. Both of the problems WINDET"* (Kemeny)
and WINDET'®(Kemeny) are ©5-complete.

Proof. For the language JA, a proof is given by Endriss,
Grandi, and Porello (2012), and for the language I/C a proof
is given by Grandi (2012). O

Many hardness results for WINDET in the literature
carry over to the problem WINDETC. This holds for hard-
ness proofs where only agendas are used that satisfy the
property that every propositional variable occurring in the
agenda also appears as a separate formula in the agenda. In
this case, we can employ the translation described at the end
of Section 4 to transform such an agenda into an equiva-
lent integrity constraint in polynomial time. This gives us a
method of transforming the hardness proof for WINDET*A
into a hardness proof for WINDET/C. We give an example
of a hardness result that carries over in this manner.

Proposition 12. Both of the problems WINDET" (Slater)
and WINDET/ (Slater) are ©5-complete.

Proof. WINDET™ (Slater) has been shown to be ©5-
complete by Lang and Slavkovik (2014) and Endriss and
de Haan (2015). The hardness proof given in the latter pa-
per only involves agendas that satisfy the property described

above. Therefore, WINDET'“(Slater) is ©5-hard as well.
Membership in ©5 for WINDET“ (Slater) is routine. O

The final rule for which we are going to establish
language-independence for the complexity of its winner de-
termination problem is the maximum subagenda rule.

Proposition 13. Both of the problems WINDET™ (MSA)
and WINDET/C(MSA) are X5-complete.

Proof. The membership proof is routine in both cases. For
WINDET™ (MSA), the TI5-hardness of the complementary
problem was proven by Lang and Slavkovik (2014), even
for the case of |L| = 1 (see Proposition 1 and the discussion
at the end of Section 3 in their paper).

For WINDET/“(MSA), consider the following reduc-
tion from WINDET”(MSA) with |L| = 1. Let & =
{1,701, .. ,¢0m, ¥m} be an agenda, J a profile over
®, and a € P. Without loss of generality, let a« = ;.
Let {p1,...,p,} be the propositional variables appearing
in ¢1,...,9m. Moreover, let u; = |J|, and let uy =
r +m + 1. We construct the set P = {p;,p; | 1 < i <
T}U{ql,...,qm}U{ZiJ‘ ‘ 1 < Z < U1,1 <] < UQ} Of
propositions. Then, we define the integrity constraint I' =
(Viti(AjZ1 ~zi5)) = (NjZa(g @) A Ny
—p};)). Finally, if J = (J1,...,Jy,), we define B =
(Bi,...,Buy,), where for each 1 < £ < w; the ballot By
is defined as follows. For each variable z; ;, By sets the cor-
responding issue to 1 if and only if ¢ = ¢. For each vari-
able g;, By sets the corresponding issue to 1 if and only
if ¢; € Jy. Finally, By sets all issues corresponding to vari-
ables p; and p} to 0. It is readily verified that each By satis-
fies I, due to the assignment to the variables z; ;.

Assume (®,J,{a}) is a positive instance of
WINDET”(MSA); that is, there exists a maximally
consistent subset S of Maj(B) that contains ;. Let this
maximally consistent subset be {¢;¢; | i € I} where €, is
either ¢; or =p;, and I C {1,...,m}. Then the following
assignment « satisfies I', and it agrees with Maj(B) on
a maximal set of issues amongst all assignments satisfy-
ing I'. For each variable ¢;, o sets g; to true if and only
if €,0; = ;. The assignment « sets each variable z; ;
to false. Finally, the variables p; and p) are set according
to some assignment [that satisfies S, as follows. For
each 1 < i < r,if B sets p; to true, then « sets p; to true
and p) to false, and if /3 sets p; to false, then « sets p), to true
and p; to false.

Similarly, for any assignment « that satisfies I', that
agrees with Maj(B) on a maximal set of issues amongst
all assignments satisfying I', and that contains p;, there is a
corresponding maximally consistent subset of Maj(B) that
contains (7.

We have thus shown that, for a good number of well-
known aggregation rules, the complexity of the aggregation
problem is invariant under changes of the specification lan-
guage, at least for what concerns the languages JA and IC.
Intuitively, the problem of WINDET™ should always be at

least as hard as that of WINDET/C, but a result that for-
malises this intuition in its full generality seems difficult to
obtain. For the classes NP, ©5, A}, and %5, however, mem-
bership carries over from the case of JA to the case of IC.
We give a proof of this fact for the case of NP.

In what follows, we refer to arbitrary aggregation rules F'.
We use F' to refer to the equivalent rules, for both JA and IC.

Proposition 14. If WINDETA(F) is in NP, then also
WINDET/C(F) is in NP

Proof. Suppose that WINDET™(F) is in NP, i.e., that
there is a non-deterministic polynomial-time algorithm that
solves WINDET (F). We describe a non-deterministic
polynomial-time algorithm A that solves WINDET/C(F)
(showing membership in NP). Let (I, B, p) specify an ar-
bitrary input for the problem WINDET/C(F). Firstly, the
algorithm A guesses an assignment « for I'. If « satis-
fies I', it continues, and otherwise, it rejects the input.
Then, the algorithm A uses the model « of I' to con-
struct an equivalent agenda ®, using the construction in
the proof of Proposition 3. Finally, the algorithm A simu-
lates the non-deterministic polynomial-time algorithm for
WINDET" (F), using as input (®,.J, L), where J and L
correspond directly to B and p, respectively. Since the al-
gorithm for WINDET(F') accepts (for some sequence of
non-deterministic choices) if and only if (®,J, L) is a yes-
instance, we get that A accepts (for some sequence of non-
deterministic choices) if and only if (I',B,p) is a yes-
instance for WINDET/(F). O

For the case of AL and Y%, an analogous statement can be
proven, using similar arguments (constructing an algorithm
that firstly determines a model for I', and subsequently sim-
ulates the algorithm for the case of JA). For the case of @’2’,
a technically more involved argument is required.

5.4 Computational Complexity: Gap

The results above notwithstanding, it is not the case that
the complexity of the winner determination remains always
unaffected when we switch between languages. One ag-
gregation rule where winner determination is easy in bi-
nary aggregation with integrity constraints but intractable in
the formula-based judgment aggregatlon framework is the
binomial-k rule for k = m — 1.8

Proposition 15. WINDET(Bin’,
WINDET (Bin!,

m—1) is polynomial, while

_1) is NP-complete.

Proof. WINDET/®(Bin!,_,) has been shown to be polyno-
mial by Costantini, Groenland, and Endriss (2016). Mem-
bership of WINDET (Bin!,) in NP is routine. To estab-
lish NP-hardness, we provide a reduction from SAT. Sup-
pose we want to check whether a given formula ¢ is con-
sistent. Let a, b, ¢ be propositional variables not occurring
in o, and construct an agenda ® with ®* = {a,b,v} for

8The following result easily generalises to any & > 0 for which
the difference m — k is a constant.

¥ = aAb— (pAc). Now consider the profile consist-
ing of the following three judgment sets: J; = {a, b, ~9},
Jo = {—a,b,¢}, and J3 = {a,—b, 1}, all of which are con-
sistent. Suppose we want to know whether {a, b, 1} is one of
the winners. Under the binomial-2 rule, both this judgment
set and each of the three judgment sets in the profile would
receive a score of 3, while no other judgment set can possi-
bly obtain a higher score. Thus, {a, b, v} is a winner if and
only if it is consistent, which is the case if and only if ¢ is
consistent. Thus, we can solve SAT for ¢ by solving this par-
ticular instance of the winner determination problem. [

Let us informally describe one further family of rules for
which there also is a complexity gap. Consider any aggre-
gation rule that returns the majority outcome when it is ad-
missible and that carries out some simple computation—that
is polynomial for both of our languages—in all other cases.
For any such rule, winner determination will be polynomial
for IC but NP-hard for JA, because for the latter language we
need to carry out a satisfiability check to determine whether
or not the majority outcome is admissible. A natural rule of
this kind, which however has not been considered in the lit-
erature before, would be the rule that returns the majority
outcome when it is admissible, and that in all other cases
returns the outcome of the majority-voter rule defined by
Endriss and Grandi (2014). The latter rule returns the “most
representative” individual judgment as the collective judg-
ment, in the sense of being the individual judgment that min-
imises the Hamming distance to the majority outcome.

6 Conclusions

We have studied the relative succinctness of four compact
languages for the representation of a collective decision
making problem in a logically structured combinatorial do-
main. Our main result shows that the formula-based ap-
proach used in judgment aggregation is strictly more suc-
cinct than the constraint-based one used in binary aggrega-
tion. We have also studied the translation from one language
to the other, and its computational complexity, in particular
by means of additional languages that combine a formula-
based description of the issues with a constraint.

One of the most obvious problems we face in judgment
aggregation is that of winner determination: given a profile
of judgments and an aggregation rule, we want to compute
the collective judgment returned by the rule. We have related
our study of succinctness with results on the computational
complexity of this winner determination problem, showing
that for a number of well-known rules the complexity of the
associated problem does not change when we change the
specification language that is used. At the same time, we
have seen that this tendency is not a universal law and that
there are meaningful, albeit much less widely used, aggrega-
tion rules where complexity is positively affected by switch-
ing to the less succinct specification language.

A full characterisation of rules for which the complexity
of winner determination is language-dependent represents
an interesting open problem, as does the identification of
fragments of the formula-based language for which the cor-
responding integrity constraints are polynomially bounded.

Acknowledgements. This work has been partly supported
by COST Action IC1205 on Computational Social Choice, by
the FWF Austrian Science Fund (Parameterized Compilation,
P26200), and and by the French National Research Agency
(Project ANR-14-CE24-0007-01 “CoCoRICo-CoDec”).

References

Arora, S., and Barak, B. 2009. Computational Complexity — A
Modern Approach. Cambridge University Press.

Cadoli, M., and Donini, F. M. 1997. A survey on knowledge com-
pilation. Al Communications 10(3—4):137-150.

Cadoli, M.; Donini, F. M.; Liberatore, P.; and Schaerf, M. 2000.
Space efficiency of propositional knowledge representation for-
malisms. J. of Artificial Intelligence Research (JAIR) 13:1-31.

Costantini, M.; Groenland, C.; and Endriss, U. 2016. Judgment
aggregation under issue dependencies. In Proc. 30th AAAI Confer-
ence on Artificial Intelligence (AAAI-2016).

Coste-Marquis, S.; Lang, J.; Liberatore, P.; and Marquis, P. 2004.
Expressive power and succinctness of propositional languages for
preference representation. In Proc. 9th International Conference
on Principles of Knowledge Representation and Reasoning (KR-
2004).

Darwiche, A., and Marquis, P. 2002. A knowledge compilation
map. J. of Artificial Intelligence Research (JAIR) 17:229-264.

Dietrich, F., and List, C. 2007a. Arrow’s theorem in judgment
aggregation. Social Choice and Welfare 29(1):19-33.

Dietrich, F., and List, C. 2007b. Judgment aggregation by quota
rules: Majority voting generalized. Journal of Theoretical Politics
19(4):391-424.

Dietrich, F., and List, C. 2008. Judgment aggregation without full
rationality. Social Choice and Welfare 31(1):15-39.

Dietrich, F. 2007. A generalised model of judgment aggregation.
Social Choice and Welfare 28(4):529-565.

Dietrich, F. 2014. Scoring rules for judgment aggregation. Social
Choice and Welfare 42(4):873-911.

Dokow, E., and Holzman, R. 2009. Aggregation of binary eval-
uations for truth-functional agendas. Social Choice and Welfare
32(2):221-241.

Dokow, E., and Holzman, R. 2010. Aggregation of binary evalua-
tions. Journal of Economic Theory 145(2):495-511.

Endriss, U., and de Haan, R. 2015. Complexity of the winner
determination problem in judgment aggregation: Kemeny, Slater,
Tideman, Young. In Proc. 14th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-2015).

Endriss, U., and Grandi, U. 2014. Binary aggregation by selection
of the most representative voter. In Proc. 28th AAAI Conference on
Artificial Intelligence (AAAI-2014).

Endriss, U.; Grandi, U.; and Porello, D. 2012. Complexity of
judgment aggregation. Journal of Artificial Intelligence Research
(JAIR) 45:481-514.

Endriss, U. 2016. Judgment aggregation. In Brandt, F.; Conitzer,
V.; Endriss, U.; Lang, J.; and Procaccia, A. D., eds., Handbook of
Computational Social Choice. Cambridge University Press.

Everaere, P.; Konieczny, S.; and Marquis, P. 2014. Proposi-
tional merging and judgment aggregation: Two compatible ap-
proaches? In Proc. 21st European Conference on Artificial Intelli-
gence (ECAI-2014).

Everaere, P.; Konieczny, S.; and Marquis, P. 2015. Belief merg-
ing versus judgment aggregation. In Proc. 14th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS-
2015).

French, T.; van der Hoek, W.; Iliev, P.; and Kooi, B. 2013. On the
succinctness of some modal logics. Artif. Intelligence 197:56-85.

Girdenfors, P. 2006. A representation theorem for voting with
logical consequences. Economics and Philosophy 22(2):181-190.
Gogic, G.; Kautz, H. A.; Papadimitriou, C. H.; and Selman, B.
1995. The comparative linguistics of knowledge representation. In
Proc. 14th International Joint Conference on Artificial Intelligence
(IJCAI-1995).

Grandi, U., and Endriss, U. 2013. Lifting integrity constraints in
binary aggregation. Artificial Intelligence 199-200:45-66.

Grandi, U. 2012. Binary Aggregation with Integrity Constraints.
Ph.D. Dissertation, ILLC, University of Amsterdam.

Grossi, D., and Pigozzi, G. 2014. Judgment Aggregation: A Primer.
Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool Publishers.

Klamler, C., and Pferschy, U. 2007. The traveling group problem.
Social Choice and Welfare 29(3):429-452.

Konieczny, S., and Pino Pérez, R. 2011. Logic based merging.
Journal of Philosophical Logic 40(2):239-270.

Kornhauser, L. A., and Sager, L. G. 1993. The one and the many:
Adjudication in collegial courts. California Law Review 81(1):1—
59.

Lang, J., and Slavkovik, M. 2014. How hard is it to compute
majority-preserving judgment aggregation rules? In Proc. 21st Eu-
ropean Conference on Artificial Intelligence (ECAI-2014).

Lang, J., and Xia, L. 2016. Voting in combinatorial domains. In
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A. D.,
eds., Handbook of Computational Social Choice. Cambridge Uni-
versity Press.

Lang, J.; Pigozzi, G.; Slavkovik, M.; and van der Torre, L. 2011.
Judgment aggregation rules based on minimization. In Proc. 13th
Conference on Theoretical Aspects of Rationality and Knowledge
(TARK-2011).

Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional inde-
pendence: Formula-variable independence and forgetting. Journal
of Artificial Intelligence Research (JAIR) 18:391-443.

Lin, F, and Reiter, R. 1994. Forget it! In Proc. AAAI Fall Sympo-
sium on Relevance.

List, C., and Pettit, P. 2002. Aggregating sets of judgments: An
impossibility result. Economics and Philosophy 18(1):89-110.
Marquis, P. 2015. Compile! In Proc. 29th AAAI Conference on
Artificial Intelligence (AAAI-2015).

Miller, M. K., and Osherson, D. 2009. Methods for distance-based
judgment aggregation. Social Choice and Welfare 32(4):575-601.
Nebel, B. 2000. On the compilability and expressive power of
propositional planning formalisms. Journal of Artificial Intelli-
gence Research (JAIR) 12:271-315.

Nehring, K. D., and Puppe, C. 2010. Abstract Arrowian aggrega-
tion. Journal of Economic Theory 145(2):467-494.

Nehring, K.; Pivato, M.; and Puppe, C. 2014. The Condorcet set:
Majority voting over interconnected propositions. Journal of Eco-
nomic Theory 151:268-303.

Pauly, M., and van Hees, M. 2006. Logical constraints on judge-
ment aggregation. Journal of Philosophical Logic 35(6):569-585.
Uckelman, J.; Chevaleyre, Y.; Endriss, U.; and Lang, J. 2009. Rep-
resenting utility functions via weighted goals. Mathematical Logic
Quarterly 55(4):341-361.

