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1 University of Amsterdam, The Netherlands
2 LORIA, CNRS - Université de Lorraine, France

Abstract. We introduce a new topological semantics for evidence, evidence-
based belief, knowledge and learning. This setting generalizes (and in a sense im-
proves on) the evidence models for belief due to van Benthem and Pacuit, as well
as our own previous work on (a topological semantics for) Stalnaker’s doxastic-
epistemic axioms. We prove completeness, decidability and finite model property
for the associated logic, and we look at several types of evidential dynamics.

1 Introduction

In this paper we propose a topological semantics for a notion of evidence-based belief,
as well as for a notion of (“soft”, defeasible) knowledge, and explore their connections
with various notions of evidence possession. This work is largely based on looking
from a new perspective at the models for evidence, belief and evidence-management
proposed by van Benthem and Pacuit [18], and developed further by van Benthem,
Fernandez-Duque and Pacuit [17].

The basic pieces of evidence possessed by an agent are modeled as non-empty sets of
possible worlds. A combined evidence (or just “evidence”, for short) is any non-empty
intersection of finitely many pieces of evidence. This notion of evidence is not neces-
sarily factive3, since the pieces of evidence are possibly false (and possibly inconsistent
with each other). The family of (combined) evidence sets forms a topological basis,
that generates what we call the evidential topology. This is the smallest topology in
which all the basic pieces of evidence are open, and it will play an important role in
our setting. We study the operator of “having (a piece of) evidence for a proposition P”
proposed by van Benthem and Pacuit, but we also investigate other interesting variants
of this concept: “having (combined) evidence for P”, “having a (piece of) factive evi-
dence for P” and “having (combined) factive evidence for P ”. We show that the last
notion coincides with the interior operator in the evidential topology, thus matching
Tarski’s original topological semantics for modal logic [11]. We also show that the two
factive variants of evidence-possession operators are more expressive than the original
(non-factive) one, being able (when interacting with the global modality) to define the
non-factive variants, as well as many other doxastic/epistemic operators.

3 Factive evidence is true in the actual world. In Epistemology it is common to reserve the term
“evidence” for factive evidence. But we follow here the more liberal usage of this term in [17],
which agrees with the common usage in day to day life, e.g. when talking about “uncertain
evidence”, “fake evidence”, “misleading evidence” etc.



A body of evidence is a family of evidence such that every finite subfamily is consistent.
A body of evidence is maximal if it is a “strongest” such body of evidence: it cannot be
‘strengthened’ (properly extended) to any other body of evidence. Maximal bodies of
evidence are essential for the definition of belief proposed by van Benthem and Pacuit,
according to which an agent believes a proposition P if P is entailed by all the maximal
bodies of evidence. This definition works well in the finite case (as well as in the more
general case of Alexandroff topologies), but (as already noted in [17]) it has the defect
that it can produce inconsistent beliefs in the infinite case.4

In this paper, we propose an ‘improved’ semantics for evidence-based belief, obtained
by weakening the definition from [18]. According to us, a proposition P is believed
if P is entailed by all finite bodies of evidence that are “sufficiently strong” (i.e., iff
every finite body of evidence can be strengthened to some finite body of evidence that
entails P). This definition coincides with the one of van Benthem and Pacuit for finite
models, but involves a different generalization of their notion in the infinite case. In fact,
our semantics always ensures consistency of belief, even when the available pieces of
evidence are mutually inconsistent. In this sense, our work can be seen as extending,
generalizing and (to an extent) “streamlining” the framework from [18].

We also provide a formalization of a “coherentist” view on justifications. An argument
essentially consists of one or more evidence sets supporting the same proposition (thus
providing multiple evidential paths towards a common conclusion); a justification is
an argument that is not contradicted by any other evidence. Our definition of belief is
equivalent to requiring that P is believed iff there is some (evidence-based) justification
for P: hence, our notion accurately captures the concept of “justified belief”. Our pro-
posal is also very natural from a topological perspective: it is equivalent to saying that
P is believed iff it’s true in “almost all” epistemically-possible worlds (where ‘almost
all’ is interpreted topologically: all except for a nowhere-dense set).

Moving on to ‘knowledge’, there are a number of different notions one may consider.
First, there is “absolutely certain” or “infallible” knowledge, akin to Aumann’s con-
cept of ‘partitional knowledge’ or van Benthem’s concept of ‘hard information’. In our
single-agent setting, this can be simply defined as the global modality (quantifying uni-
versally over all epistemically-possible worlds). There are propositions that are ‘known’
in this infallible way (-e.g. the ones known by introspection or by logical proof), but
very few: most facts in science or real-life are unknown in this sense. Hence, it is more
interesting to look at notions of knowledge that are less-than-absolutely-certain: so-
called ‘defeasible knowledge’. The famous Gettier counterexamples [6] show that sim-
ply adding “factivity” to belief will not do: true (justified) belief is extremely fragile
(i.e. it can be too easily lost), and it is consistent with having only wrong justifications
for an (accidentally) true conclusion. One path often discussed by philosophers (e.g.
Lehrer and Stalnaker) is to require a correct justification.5 We formalize this notion by
saying that P is known if there is a factive (true) justification for P.

4 A more technical defect of that setting is that the corresponding doxastic logic does not have
the finite model property [17].

5 This is sometimes called the “no-false-lemma” approach: a belief is knowledge if it is not
based on any false justification.



A stronger requirement (than the no-false-lemma approach) was championed mainly by
Lehrer [9, 10], under the name of “Defeasibility Theory of Knowledge”. According to
this view, P is known (in the in-defeasible sense) only if there is a factive justification
for P that cannot be defeated by any further true evidence. This means that the justi-
fication is consistent, not only with the currently available evidence, but also with any
potential (new) factive evidence that the agent might learn in the future. This version of
the theory has been criticized as being too strong: some new evidence might be ‘mis-
leading’ or ‘deceiving’ despite being true. A weaker version of Defeasibility Theory
requires that knowledge is undefeated only by “non-misleading” evidence. In our set-
ting, a proposition P is said to be a potentially misleading evidence if it can indirectly
generate false evidence (i.e. if by adding P to the family of currently available pieces
of evidence we obtain at least one false combined evidence). Misleading propositions
include all the false ones, but they may also include some true ones. We show that our
notion of knowledge matches this weakened version of Defeasibility Theory (though
not the strong version).

Yet another path leading to our setting in this paper goes via our previous work [1, 2] on
a topological semantics for the doxastic-epistemic axioms proposed by Stalnaker [14].
These axioms were meant to capture a notion of fallible knowledge, in close interac-
tion with a notion of “strong belief” (defined as “subjective certainty” or the “feeling
of knowledge”). The main principle specific to this system was that “believing implies
believing that you know” (Bp→ BK p), which goes in direct contradiction to Negative
Introspection for Knowledge.6 The topological semantics that we proposed for these
concepts in [1, 2] was overly restrictive (being limited to the rather exotic class of “ex-
tremally disconnected” topologies). In this paper, we show that these notions can be
interpreted on arbitrary topological spaces, without changing their logic. Indeed, our
definitions of belief and knowledge above can be seen as the natural generalizations to
arbitrary topologies of the notions in [1, 2].

In the last section, we completely axiomatize the various resulting logics, proving their
decidability and finite model property, and we look at various dynamic extensions, en-
coding several types of evidential dynamics.

2 Evidence, Belief and Knowledge in Topological Spaces

2.1 Topological Models for Evidence

Definition 1 (Evidence Models) (van Benthem and Pacuit)7 Given a countable set of
propositional letters Prop, an evidence model for Prop is a tupleM = (X, E0,V), where:
X is a non-empty set of “states”; E0 ⊆ P(X) \ {∅} is a family of non-empty sets called

6 Indeed, the logic of Stalnaker’s knowledge is not S 5, but the modal logic S 4.2.
7 The notion of evidence model in [18] is more general, covering cases in which evidence de-

pends on the actual world, but we stick with what they call ‘uniform’ models, since this corre-
sponds to restricting to agents who are “evidence-introspective”.



basic evidence sets (or pieces of evidence), with X ∈ E0; and V : Prop → P(X) is a
valuation function.

Given an evidence modelM = (X, E0,V), a finite body of evidence is simply a finite set
of mutually consistent pieces of evidence (i.e. a finite F ⊆ E0 s.t.

⋂
F , ∅). More gen-

erally, a (possibly infinite) body of evidence is a family F ⊆ E0 of pieces of evidence s.t.
every non-empty finite subfamily is consistent (i.e. ∀F′ ⊆ F (F′ finite , ∅ ⇒

⋂
F′ ,

∅)). We denote by F the family of all bodies of evidence over M, and by F f inite the
family of all finite bodies of evidence. A body of evidence F supports a proposition P
iff P is true in every world satisfying all the evidence in F (i.e. if

⋂
F ⊆ P).

The strength order between bodies of evidence is given by inclusion: F ⊆ F′ means
that F′ is at least as strong as F. Note that stronger bodies of evidence support more
propositions: if F ⊆ F′ then every proposition supported by F is also supported by
F′. A body of evidence is maximal (“strongest”) if it’s not included in any other such
body. We denote by Max⊆F = {F ∈ F : ∀F′ ∈ F (F ⊆ F′ ⇒ F = F′)} the family
of all maximal bodies of evidence. By Zorn’s Lemma, every body of evidence can be
strengthened to a maximal body of evidence: ∀F ∈ F ∃F′ ∈ Max⊆F (F ⊆ F′).

A combined evidence (or just “evidence”, for short) is any non-empty intersection of
finitely many pieces of evidence. We denote by E := {

⋂
F : F ∈ F f inite s.t.

⋂
F ,

∅} the family of all (combined) evidence.8 A (combined) evidence e ∈ E supports a
proposition P ⊆ X if e ⊆ P. (In this case, we also say that e is evidence for P.) Note that
the natural strength order between combined evidence sets goes the other way around
(reverse inclusion): e ⊇ e′ means that e′ is at least as strong as e.9

The intuition is that e ∈ E0 represent the basic pieces of “direct” evidence (obtained say
by observation or via testimony) that are possessed by the agent, while the combined
evidence e ∈ E represents indirect evidence that is obtained by combining finitely many
pieces of direct evidence. Not all of this evidence is necessarily true though.

We say that some (basic or combined) evidence e ∈ E is factive evidence at world x ∈ X
whenever it is true at x (i.e. x ∈ e). A body of evidence F is factive if all the pieces of
evidence in F are factive (i.e. x ∈

⋂
F).

The plausibility (pre)order vE associated to an evidence model is given by:

x vE y iff ∀e ∈ E0 (x ∈ e⇒ y ∈ e) iff ∀e ∈ E (x ∈ e⇒ y ∈ e).

Definition 2 (Topological Space) A topological space is a pair X = (X, τ), where X
is a non-empty set and τ is a topology on X, i.e. a family τ ⊆ P(X) containing X and
∅, and closed under finite intersections and arbitrary unions. Given a family E ⊆ P(X)
of subsets of X, the topology generated by E is the smallest topology τE on X such
that E ⊆ τE . A set A ⊆ X is closed iff it is the complement of an open set, i.e. it is of

8 This is a difference in notation with the setting in [18, 17], where E is used to denote the family
of basic evidence sets (denoted here by E0).

9 This is both to fit with the strength order on bodies of evidence (since F ⊆ F′ implies
⋂

F ⊇⋂
F′), and to ensure that stronger evidence supports more propositions: since, if e ⊇ e′, then

every proposition supported by e is supported by e′.



the form X \ U with U ∈ τ. Let τc = {X \ U |U ∈ τ} denote the family of all closed
sets of X = (X, τ). In any topological space X = (X, τ), one can define two important
operators, namely interior Int : P(X)→ P(X) and closure Cl : P(X)→ P(X), given by
IntP :=

⋃
{U ∈ τ |U ⊆ P}, ClP :=

⋂
{C ∈ τc | P ⊆ C}. A set A ⊆ X is called dense in X

if ClA = X and it is called nowhere dense if IntClA = ∅. For a topological space X =

(X, τ), the specialization preorder vτ is given by: x vτ y iff ∀U ∈ τ (x ∈ U ⇒ y ∈ U).

Special Case: Relational Spaces. A topological space is called Alexandroff iff the
topology is closed under arbitrary intersections. An Alexandroff topology is fully cap-
tured by its specialization preorder: in this case, the interior operator coincides with
the Kripke modality for the specialization relation (i.e. IntP = {x ∈ X | ∀y (x vτ y ⇒
y ∈ P)}). There is a canonical bijection between Alexandroff topologies X = (X, τ) and
preordered spaces10 (X,≤), mapping (X, τ) to (X,vτ); the inverse map takes (X,≤) into
(X,U p(X)), where U p(X) is the family of upward-closed sets11.

An Even More Special Case: (Grove/Lewis) Sphere Spaces. These are topological
spaces in which the opens are “nested”, i.e. for every U,U′ ∈ τ, we have either U ⊆ U′

or U′ ⊆ U. Sphere spaces are Alexandroff, and moreover they correspond exactly to
totally preordered spaces (i.e. sets X endowed with a total preorder ≤).

Definition 3 (Topological Evidence Models) A topological evidence model (“topo-e-
model”, for short) is a structure M = (X, E0, τ,V), where (X, E0,V) is an evidence
model and τ = τE is the topology generated by the family of combined evidence E
(or equivalently, by the family of basic evidence sets E0)12, which will be called the
evidential topology. It is easy to see that the plausibility order vE ofM coincides with
the specialization order of the associated topology: vE = vτ.

Since any family E0 ⊆ P(X) generates a topology, topo-e-models are just another pre-
sentation of (uniform) evidence models. We use this special terminology to stress our
focus on the topology, and to avoid ambiguities (since our definition of belief in topo-e-
models will be different from the definition of belief in evidence models in [18]).

A topo-e-model is said to be Alexandroff iff the underlying topology is Alexandroff.
So they can be understood as relational (plausibility) models, in terms of a preorder ≤
(“plausibility relation”). A special case is the one of Grove-Lewis (topological) evidence
models: this is the case when the basic pieces of evidence are nested (i.e. for all e, e′ ∈
E0 we have either e ⊆ e′ or e′ ⊆ e). It is easy to see that in this case all the opens of the
generated topology are also nested, so the topology is that of a sphere space.

Proposition 1 Given a topo-e-modelM = (X, E0, τ,V), the following are equivalent:

1. M is Alexandroff;

2. The family E of (combined) evidence is closed under arbitrary non-empty intersec-
tions (i.e., if F ⊆ E and

⋂
F , ∅, then

⋂
F ∈ E);

10 A preorder on X is a reflexive-transitive relation on X.
11 A subset A ⊆ X is said to be upward-closed wrt ≤ if ∀x, y ∈ X (x ∈ A ∧ x ≤ y ⇒ y ∈ A).
12 These families generate the same topology. We denote it by τE only because the family E of

combined evidence forms a basis of this topology.



3. Every body of evidence is equivalent to a finite body of evidence (i.e. ∀F ∈ F ∃F′ ∈
F f inite s. t.

⋂
F =
⋂

F′).

Arguments and Justifications. We can use this setting to formalize a “coherentist”
view on justification, in the spirit of Lehrer [9]. An argument for P is a disjunction U =⋃

i∈I ei of (some non-empty family of) (combined) evidences ei ∈ E that all support P
(i.e. ei ⊆ P for all i ∈ I, or equivalently U ⊆ P). Thus, an argument may provide multiple
evidential paths ei to support a common conclusion P. Topologically, an argument for
P is the same as a non-empty open subset of P (U ∈ τE s. t. U ⊆ P). Also, the interior
IntP is the weakest (most general) argument for P.

A justification for P is an argument U for P that is consistent with every (combined)
evidence (i.e., U ∩ e , ∅ for all e ∈ E, which in fact implies that U ∩ U′ , ∅ for all
U ∈ τE \ {∅}). So justifications are arguments that are not defeated by any available
evidence (or any other argument based on this evidence).13 Topologically, we can see
that a justification for P is just an (everywhere) dense open subset of P (i.e. U ∈ τE s.
t. U ⊆ P and ClτE (U) = X). As for evidence, an argument or a justification for P is
said to be factive (or “correct”) if it is true in the actual world. The fact that arguments
are open in the generated topology encodes the principle that any argument should be
evidence-based: whenever an argument is correct, then it is supported by some factive
evidence. To anticipate further: in our setting, justifications will form the basis of belief,
while correct justifications will form the basis of (defeasible) knowledge. But for now
we’ll introduce a stronger form of “knowledge”: the absolutely-certain and irrevocable
kind.

Infallible Knowledge: possessing hard information. We use ∀ for the so-called global
modality, which associates to every proposition P ⊆ X, some other proposition ∀P,
given by putting: (∀P) := X iff P = X, and (∀P) := ∅ otherwise. In other words: (∀P)
holds (at any state) iff P holds at all states. In this setting, ∀ is interpreted as “absolutely
certain, infallible knowledge”, defined as truth in all the worlds that are consistent with
the agent’s information.14 This is not a realistic concept of knowledge, but just a limit
notion, encompassing all epistemic possibilities.

Having Basic Evidence for a Proposition. van Benthem and Pacuit define, for every
proposition P ⊆ X, another proposition15 E0P given by putting: E0P := X if ∃e ∈
E0 (e ⊆ P), and E0P := ∅ otherwise. Essentially, E0P means that “the agent has basic
evidence for P”, i.e. P is supported by some available piece of evidence. One can also
introduce a factive version of this proposition: �0P, read as “the agent has factive basic

13 This can be connected to Lehrer’s Subjective Justification Game [9], in which justified be-
liefs are based on arguments that cannot be defeated by other arguments (based on the same
“justification system”, i.e. the same set E0 of evidence pieces.

14 In a multi-agent model, some worlds might be consistent with one agent’s information, while
being ruled out by another agent’s information. So, in a multi-agent setting, ∀i will only quan-
tify over all the states in agent i’s current information cell (according to a partition Πi of the
state space reflecting agent i’s hard information).

15 They denote this by EP, but we use E0P for this notion, since we reserve the notation EP for
having combined evidence for P.



evidence for P”, is given by putting

�0P := {x ∈ X : ∃e ∈ E0 (x ∈ e ⊆ P)}.

Having (Combined) Evidence for a Proposition. If in the above definitions of E0P
and �0P we replace basic pieces of evidence by combined evidence, we obtain two
other operators EP, meaning that “the agent has (combined) evidence for P”, and �P,
meaning that “the agent has factive (combined) evidence for P”. More precisely:

EP := X if ∃e ∈ E (e ⊆ P), and EP := ∅ otherwise;

�P := {x ∈ X : ∃e ∈ E (x ∈ e ⊆ P)}.

Observation 1. Note that the agent has evidence for a proposition P iff she has an
argument for P. So EP can also be interpreted as “having an argument for P”. Similarly,
�P can be interpreted as “having a correct (i.e. factive) argument for P”.

Observation 2. Note that the agent has factive evidence for P at x iff x is in the interior
of P. So our modality � coincides with the interior operator: �P = IntP.

2.2 Belief

Belief à la van Benthem-Pacuit [18]. The notion of belief proposed by van Benthem
and Pacuit, which we will denote by Bel, says P is believed iff every maximal body of
evidence supports P: BelP holds (at any state of X) iff we have

⋂
F ⊆ P for every F ∈

Max⊆F . This definition can be generalized to conditional beliefs BelQP, but we skip
the details here, referring to [18] instead. As already noticed in [18], this is equivalent
to treating evidence models as special cases of plausibility models [3, 4, 15], with the
plausibility relation given by vE (or equivalently, as Grove-Lewis “sphere models” [8]
where the spheres are the sets that are upward closed wrt vE), and applying the standard
definition (due to Grove) of belief as “truth in all the most plausible worlds”.16 Grove’s
definition works well when the plausibility relation is well-founded (and also in the
somewhat more general case given by the Grove-Lewis Limit Assumption), but it yields
inconsistent beliefs in the case that there are no most plausible worlds. But note that in
evidence models vE may be non-wellfounded. Indeed, the definition of van Benthem
and Pacuit can lead to inconsistent beliefs!

Example 1 Consider the evidence modelM = (N, E0,V), where the state space is the
set N of natural numbers, V(p) = ∅, and the basic evidence family E0 = {e ⊆ N :
N \ e finite } consists of all co-finite sets. The only maximal body of evidence in E0 is E0
itself. However,

⋂
E0 = ∅. So Bel⊥ holds inM.

16 Note that all the notions of belief we consider are global: they do not depend on the state of
the world, i.e. we have either BelP = X or BelP = ∅ (similar to the sets ∀P, E0P, EP). This
expresses the assumption that belief is a purely internal notion, thus transparent and hence
absolutely introspective. This is standard in logic and accepted by most philosophers, though
Williamson [20] begs to differ.



This phenomenon only happens in (some cases of) infinite models, so it is not due to
the inherent mutual inconsistency of the available evidence. The “good” examples in
[18] are the ones in which (possibly inconsistent) evidence is processed in a way that
yields consistent beliefs. So it seems to us that the intended goal (only partially fulfilled)
in [18] was to ensure that the agents are able to form consistent beliefs based on the
available evidence. We think this to be a natural requirement for idealized “rational”
agents, and so we consider doxastic inconsistency to be “a bug, not a feature”, of the
van Benthem-Pacuit framework. Hence, we now propose a notion that agrees with the
one in [18] in all the “good” cases, but also produces in a natural way only consistent
beliefs.

Our Notion of Belief. The intuition is that something is believed iff it is entailed by all
the “sufficiently strong” (combined) evidence. Formally, we say that P is believed, and
write BP, iff every finite body of evidence can be strengthened to some finite body of
evidence which supports P:

BP holds (at any state) iff ∀F ∈ F f inite∃F′ ∈ F f inite(F ⊆ F′ ∧
⋂

F′ ⊆ P).

Our notion of belief B coincides with Bel in the finite case, or, more generally, in all
Alexandroff models. But, unlike Bel, it is always consistent i.e. B⊥ = B∅ = ∅), and
moreover it satisfies the axioms of the standard doxastic logic KD45. Another nice
feature is that our belief B is a purely topological notion, as can be seen from the fol-
lowing:

Proposition 2 In every evidence model (X, E0,V), the following are equivalent, for any
proposition P ⊆ X:

1. BP holds (at any state);

2. every (combined) evidence can be strengthened to some evidence supporting P
(∀e ∈ E∃e′ ∈ E s.t e′ ⊆ e ∩ P);

3. every argument (for anything) can be strengthened to an argument for P (i.e. ∀U ∈
τE \ {∅}∃U′ ∈ τE \ {∅} s.t. U′ ⊆ U ∩ P);

4. there is a justification for P: i.e. some argument for P which is consistent with any
available evidence (∃U ∈ τE s.t. U ⊆ P and U ∩ e , ∅ for all e ∈ E) ;

5. P includes some dense open set;

6. IntP is dense in τE (i.e. Cl(IntP) = X), or equivalently X \ P is nowhere dense;

7. ∀^�P holds (at any state: i.e. ∀^�P , ∅, or equivalently ∀^�P = X), where
^P := ¬�¬P is the dual of the � operator.

Proof. The equivalence between (1), (2), (3) is easy, and the same goes for the equiva-
lence of (5) and (6). For the equivalence between (3), (4) and (5), recall that arguments
are non-empty open sets and justifications are dense open sets. (So, to show (4), just
take as justification the largest argument for P, i.e. IntP.) Finally, for (6) ⇔ (7), recall
that ∀ is the universal quantifier, � is interior and ^ is closure.



Proposition 2 part (4) can be interpreted as saying that our notion of belief B is the same
as “justified belief”: a proposition P is believed iff the agent has a justification for P. In
this case, there exists a weakest (most general) justification for P, namely IntP. More-
over, part (6) shows that our proposal is very natural from a topological perspective: it is
equivalent to saying that P is believed iff the complement of P is nowhere dense. Since
nowhere dense sets are one of the topological concepts of “small” or “negligible sets”,
this amounts to believing propositions if they are true in “almost all” epistemically-
possible worlds (where ‘almost all’ is interpreted topologically). Finally, part (7) tells
us that belief is definable in terms of the operators ∀ and �.

Conditional Belief. We generalize now to conditional beliefs. First, for sets Q,Q′ ⊆ X,
we say that Q′ is Q-consistent iff Q ∩ Q′ , ∅. We say that a body of evidence F is
Q-consistent iff

⋂
F ∩ Q , ∅. Finally, we say that P is believed given Q, and write

BQP, iff every finite Q-consistent body of evidence can be strengthened to some finite
Q-consistent body of evidence supporting the proposition Q → P (i.e., ¬Q ∪ P)). An
analogue of Proposition 2 can now be proved for conditional belief:

Similarly to Proposition 2, we can show that BQP is equivalent to any of the follow-
ing: every Q-consistent evidence can be strengthened to some Q-consistent evidence
supporting Q→ P; every Q-consistent argument can be strengthened to a Q-consistent
argument for Q → P; there is a Q-consistent argument for Q → P with is consistent
with any Q-consistent evidence; Q → P includes some Q-consistent open set which is
dense in Q; ∀(Q→ ^(Q ∧ �(Q→ P))) = X; etc.

Observation 3. In every evidence model (X, E0,V), the following are equivalent, for
any two propositions P,Q ⊆ X, with Q , ∅:

1. BQP holds (at any state)

2. every Q-consistent evidence can be strengthened to some Q-consistent evidence
supporting Q → P (i.e., ∀e ∈ E(e ∩ Q , ∅ ⇒ ∃e′ ∈ E s.t e′ ∩ Q , ∅ and e′ ⊆
e ∩ (Q→ P)));

3. every Q-consistent argument can be strengthened to a Q-consistent argument for
Q→ P;

4. there is some Q-consistent argument for Q → P which is consistent with any Q-
consistent evidence;

5. Q→ P includes some Q-consistent open set which is dense in Q;

6. Int(Q→ P) is dense in Q (i.e. Cl(Int(Q→ P)) ⊇ Q);

7. ∀(Q→ ^(Q∧�(Q→ P))) holds (at any state): i.e. ∀(Q→ ^(Q∧�(Q→ P))) , ∅;
or equivalently ∀(Q→ ^(Q ∧ �(Q→ P))) = X.

Proof. The equivalence between (1), (2), (3) is easy and simply follows from the se-
mantics of BQP. From (2) to (4): consider the weakest argument Int(Q → P) for
Q → P. Since X ∈ E and X is Q-consistent, there always exists a stronger e′ ∈ E
such that e′ ∩ Q , ∅ and e′ ⊆ Q → P. Since Int(Q → P) is the largest open with



Int(Q→ P) ⊆ Q→ P, we obtain e′ ⊆ Int(Q→ P) ⊆ Q→ P for any such e′, therefore,
Int(Q → P) is also Q-consistent. Let e ∈ E such that e ∩ Q , ∅. Then, by (2), there
exists e′′ ∈ E such that e′′ ∩ Q , ∅ and e′′ ⊆ e ∩ (Q → P). By the previous argument,
we know that e′′ ⊆ Int(Q → P), thus, e′′ ⊆ e ∩ Int(Q → P) , ∅. From (4) to (2)
follows from the fact that any Q-consistent e ∈ E can be strengthen to the Q-consistent
evidence e ∩ Int(Q → P) supporting Q → P. (4)⇔(5) simply follows from the ob-
servation that ∀x ∈ Q(x ∈ e ∈ E ⇒ e is Q-consistent). Therefore, Int(Q → P) is the
Q-consistent argument included in Q → P, which is consistent with any Q-consistent
evidence meaning that it is also dense in Q. (5)⇔(6) also follows from the previous
argument. Finally, for (6)⇔(7 ), recall that ∀ is the universal quantifier, � is interior and
^ is closure.

2.3 Evidential Dynamics

In this section, we consider some of the evidence dynamics introduced in [18]: updates,
evidence addition, evidence upgrade and (a feasible version of) evidence combination.
Throughout this section, we are given a topo-e-model M = (X, E0, τ,V) and some
proposition P ⊆ X, with P , ∅.

Updates (also known as public announcements) involve learning a new fact P with
absolute certainty: P becomes “hard information”. The standard way of modeling this
is via model restrictions. For evidence models, this means keeping only the worlds in P
and only the P-consistent evidence pieces.17

Definition 4 (Updates) The model M!P = (X!P, E!P
0 , τ

!P,V !P) is defined as follows:
X!P = P, E!P

0 = {e ∩ P : e ∈ E0 with e ∩ P , ∅}, τ!P = {U ∩ P : U ∈ τ} and for each
p ∈ Prop, V !P(p) = V(p) ∩ P. It is easy to check thatM!P is still a topo-e-model, with
combined evidence E!P = {e ∩ P : e ∈ E with e ∩ P , ∅}.

Following [18], we also consider evidence addition +P , by which P is accepted as a
new piece of evidence (without being assumed to be hard information).

Definition 5 (Evidence Addition) The model M+P = (X+P, E+P
0 , τ+P,V+P) is defined

as follows: X+P = X, E+P
0 = E0 ∪ {P}, τ+P is the topology generated by E+P

0 and
V+P = V. Again, it is easy to check that M+P is still a topo-e-model, with combined
evidence E+P = E ∪ {e ∩ P :: e ∈ E with e ∩ P , ∅}.

Observation 4. Our above definition for conditional belief can be justified in terms of
dynamics: it is easy to check18 that BQP holds inM iff BP holds inM+Q. So conditional
beliefs “pre-encode” the beliefs induced by evidence-addition.

Next, consider the evidence upgrade ⇑ P, which incorporates P into all other pieces of
evidence, thus making P the most important available evidence:

17 Topologically, this is a move from the original space (X, τ) to the subspace determined by P.
18 For this to hold, it is essential that P and Q are taken to be sets of states, rather than syntactic

formulas in any epistemic language. Otherwise, Moore-type phenomena appear, and the right
equivalence is more complicated: see the Reduction Laws in Section 3.



Definition 6 (Evidence Upgrade) The model M⇑P = (X⇑P, E⇑P
0 , τ⇑P,V⇑P) is defined

as follows: X⇑P = X, E⇑P
0 = {e∪P : e ∈ E0} ∪ {P}, τ⇑P is the topology generated by E⇑P

0
and V⇑P = V. Again,M⇑P is a topo-e-model.

Another dynamic operation considered in [18] is evidence combination. Here, we adapt
it to our topological setting, which assumes that agents can combine only finitely many
pieces of evidence at a given time. This is what we call feasible evidence combination,
in contrast to the infinitary combinations allowed in [18].

Definition 7 (Feasible Evidence Combination) The model M# = (X#, E#
0, τ

#,V#) is
defined as follows: X# = X, V# = V, E#

0 is the smallest set closed under non-empty,
finite intersections and containing E0 and τ# is the topology generated by E#

0. Again,
this gives us a topo-e-model. Note, that as E#

0 is obtained by closing E0 under finite
and non-empty intersections, the topology stays the same: τ = τ#. In fact, we have
E#

0 = E# = E.

2.4 Knowledge

We can now define a “softer” notion of knowledge, that approximates better the com-
mon usage of the word than the above-defined “infallible” knowledge. Formally, we put
KP := {x ∈ X : ∃U ∈ τ (x ∈ U ⊆ P ∧ Cl(U) = X)}. So KP holds at x iff P includes a
dense open neighborhood of x; equivalently, iff x ∈ IntP and IntP is dense. Essentially,
this says that knowledge is “correctly justified belief”: KP holds at world x iff there
exists some justification U ∈ τ for P such that x ∈ U . In other words, P is known
iff there exists some correct (i.e. factive) argument for P that is consistent with all the
available evidence.

Note that K satisfies Stalnaker’s Strong Belief Principle BP = BKP: from a subjective
point of view, belief is indistinguishable from knowledge.19

We illustrate the semantics we proposed for justified belief and knowledge, and the
connection between the two notions in the example below:

Example 2 Consider the model X = ([0, 1], E0,V), where E0 = {(a, b) ∩ [0, 1] : a, b ∈
R, a < b} and V(p) = ∅. The generated topology τE is the standard topology on [0, 1].
Let P = [0, 1] \ { 1n : n ∈ N} be the proposition stating that the actual state is not of the
form 1

n , for any n ∈ N. Since the complement ¬P = { 1n : n ∈ N} is nowhere dense, the
agent believes P, and e.g. U =

⋃
n≥1( 1

n+1 ,
1
n ) is a (dense, open) justification for P. This

belief is true at world 0 ∈ P. But this true belief is not knowledge at 0: no justification
for P is true at 0, since P doesn’t include any open neighborhood of 0, so 0 < IntP
and hence 0 < KP. (However, P is known at all the other worlds x ∈ P \ {0}, since
∀x ∈ P \ {0}∃ε > 0 s.t. x ∈ (x − ε, x + ε) ⊆ P, hence x ∈ IntP.)

19 As we’ll see, K and B satisfy all the Stalnaker axioms for knowledge and belief [1, 2, 12] and
further generalizes our previous work on a topological interpretation of Stalnaker’s doxastic-
epistemic axioms, which was based on extremally disconnected spaces.



This soft type of knowledge is defeasible. In contrast, the usual assumption in Logic
is that knowledge acquisition is monotonic. As a result, logicians typically assume that
knowledge is “irrevocable”: once acquired, it cannot be defeated by any further evi-
dence. A weaker notion of knowledge is the one proposed by Lehrer and others under
the name of Defeasibility Theory: “in-defeasible knowledge” cannot be defeated by any
factive evidence that might be gathered later (though it may be defeated by false “evi-
dence”). The following example shows that, if we allow as potential defeaters all sets
of worlds P containing the actual world, then our KP can be defeated:

Example 3 Consider the modelM = (X, E0,V), where X = {x1, x2, x3, x4, x5}, V(p) =

∅, E0 = {X,O1,O2}, O1 = {x1, x2, x3}, O2 = {x3, x4, x5}. The resulting set of combined
evidence is E = {X,O1,O2, {x3}}. Assume the actual world is x1. Then O1 is known,
since x1 ∈ Int(O1) = O1 and Cl(O1) = X. Now consider the modelM+O3 = (X, E+O3

0 ,V)
obtained by adding the new evidence O3 = {x1, x5}. We have E+O3

0 = {X,O1,O2,O3}, so
E+O3 = {X,O1,O2,O3, {x1}, {x3}, {x5}}. Note that the new evidence is true (x1 ∈ O3). But
O1 is not even believed inM+O3 anymore (since O1 ∩ {x5} = ∅, so O1is no longer dense
in τE+O3 ), thus O1 is no longer known after the true evidence O3 was added!

x1 x2 x3

x4

x5

O1

O2

=⇒
O3

x1 x2 x3

x4

x5

O1

O2

O3

Fig. 1. FromM toM+O3

In conclusion, our notion of knowledge is incompatible with this strong interpreta-
tion of Defeasibility Theory. However, some authors attacked this theory as being too
strong: one should exclude ‘misleading’ defeaters, which may unfairly defeat a good
justification. Intuitively misleading defeaters are the ones which may lead to false con-
clusions when combined with the old evidence. A weakened version of Defeasibility
Theory would require ‘knowledge’ (and its justification) only to be undefeated by non-
misleading evidence.

We proceed now to formalize this distinction. Given a topo-e-modelM, a proposition
Q ⊆ X is misleading at x ∈ X wrt E if evidence-addition with Q produces some false
new evidence; i.e. if there is some e′ ∈ E+Q \ E s.t. x < e′; equivalently, there is some
e ∈ E s.t. x < (e∩Q) < E∪{∅}. It is easy to see that: old evidence in E is by definition non-
misleading wrt E (i.e. if e ∈ E then e is non-misleading wrt E), and new non-misleading
evidence must be true (i.e. if Q < E is non-misleading at x then x ∈ Q).



We are now in the position to formulate precisely the “weakened” version of Defeasi-
bility Theory that we are looking for. In fact, there are two possible formulations, which
in this setting are non-equivalent. Some authors, e.g. Stalnaker, Rott [13] etc, discussed
a version of the Defeasibility Thesis that only requires the believed proposition P to be
“undefeated”, i.e, to be believed conditional on every true (or, in our formulation, every
non-misleading) new evidence”: i.e. BQP holds for every non-misleading Q ⊆ X. This
is what Rott calls “the Stability Theory of Knowledge” [13]. As we’ll see, although our
notion of knowledge is indeed stable in this sense, this definition turns out to be too
weak. In contrast, Lehrer [9] insists that, in order to know P, not only the belief in P
has to be undefeated, but also its justification (i.e. what we call here “an argument for
P”). In other words, there must exist an an argument for P that is believed conditional
on every non-misleading evidence. Clearly, this implies that P itself is believed condi-
tional on every such non-misleading evidence; but the converse is not at all obvious.
Indeed, Lehrer claims that the converse is false. The problem is that, when confronted
with various pieces of new non-misleading evidence, the agent might keep switching
between different justifications (for believing P); thus, she may keep believing in P con-
ditional on any such non-misleading new evidence, without actually having any “good”
justification (i.e., one that remains itself undefeated by all non-misleading evidence).
As we’ll see, this can indeed happen in our setting. So, to have real knowledge, one has
to have at least one “uniformly undefeated” justification: an argument U ⊆ P s.t. BQU
holds for all non-misleading Q ⊆ X.

The next result shows that our notion fits this weakened version of Defeasibility Theory,
in its undefeated-justification variant:

Proposition 3 Let M be a topo-e-model, and assume x ∈ X is the actual world. The
following are equivalent for all P ⊆ X:

1. P is known (x ∈ KP);

2. there is an argument (justification) for P that cannot be defeated by any non-
misleading proposition (i.e. ∃U ∈ τE \ {∅} s.t. U ⊆ P and BQU for all non-
misleading Q ⊆ X).

Proof. To show (1) → (2): Assume x ∈ KP. Then x ∈ IntP. Since (IntP) ∈ τE and
E is a basis of τE , there must exist some e0 ∈ E s.t. x ∈ e0 ⊆ IntP ⊆ P, and IntP is
dense. As our argument, we’ll take U := IntP. Obviously, U ∈ τE and U ⊆ P, so U
is an argument for P. Let now Q ⊆ X be non-misleading. We want to show that BQU
holds. For this, we use the characterization given by clause (2) in Observation 3: let
e ∈ E be any Q-consistent evidence (so e ∩ Q , ∅); to show our claim, it is enough
to find some Q-consistent e′ ∈ E s.t. e′ ⊆ e ∩ U. We have two cases: (1) x ∈ e ∩ Q,
and (2) x < e ∩ Q. In case (1), take e′ := e0 ∩ e ∈ E. Then e′ is Q-consistent (since
x ∈ e0 ∩ (e ∩ Q) = e ∩ (e0 ∩ Q) = e′ ∩ Q, so e′ ∩ Q , ∅), and we obviously have
e′ = e∩e0 ⊆ e∩ IntP = e∩U, as desired. In case (2), x < e∩Q implies that (e∩Q) ∈ E
(since Q is non-misleading and e ∩ Q , ∅). Since IntP is dense, this gives us that
IntP ∩ (e ∩ Q) , ∅. Using again the fact that E is a basis of τE (and IntP ∈ τE), there
must exist some e′′ ∈ E s.t. e′′ ⊆ IntP and e′′ ∩ (e∩Q) , ∅. Take e′ := e′′ ∩ (e∩Q) ∈ E



(since e′′, (e ∩ Q) ∈ E have non-empty intersection). Again, e′ is Q-consistent (since
e′ ∩ Q = e′′ ∩ (e ∩ Q) , ∅) and e′ ⊆ e ∩ e′′ ⊆ e ∩ IntP = e ∩ U, as desired.

To show (2) → (1): Assume that U ∈ τE is s.t. U ⊆ P and BQU holds for all non-
misleading Q. Clearly, this implies that BU holds (by taking Q = X), and hence that
BP holds (since B is a normal operator). So, to show that KP holds at x, it is enough to
show that x ∈ IntP. For this, it is clearly enough to show that x ∈ U (since x ∈ U ∈ τE

and U ⊆ P give us x ∈ IntP). For this, take the proposition Q = {x}, which obviously
is non-misleading at x, hence by (2) we must have BQU. By using again clause (2) in
Observation 3, BQU gives us that: for every Q-consistent e ∈ E there exists some Q-
consistent e′ ∈ E with e′ ⊆ e ∩ (Q → U). Take e := X, which clearly is Q-consistent
(since X ∩ Q = Q = {x} , ∅); hence, we have some e′ ∈ E with e′ ∩ Q , ∅ (i.e. x ∈ e′)
and e′ ⊆ e ∩ (Q → U) = (Q → U), hence {x} = Q = e′ ∩ Q ⊆ (Q → U) ∩ Q ⊆ U, and
thus x ∈ U, as desired.

Obviously (2) implies that we have BQP for all non-misleading Q, so our knowledge
is “stable”, in the sense of Rott’s Stability Theory [13]. But the next counterexample
shows that the “Stability Theory” characterization is too weak.

Example 4 Consider the modelM = (X, E0,V), where X = {x0, x1, x2}, V(p) = ∅, E0 =

{X,O1,O2}, O1 = {x1}, O2 = {x1, x2}. The resulting set of combined evidence is E = E0.
Assume the actual world is x0, and let P = {x0, x1}. Then P is believed (since its interior
IntP = {x1} is dense) but it is not known (since x0 < IntP = {x1}). However, we can show
that P is believed conditional on any non-misleading proposition. For this, note that the
family of non-misleading propositions (at x0) is E ∪ {P, {x0}} = {X,O1,O2, P, {x0}}. It is
easy that for each set Q in this family, we have BQP.

3 Logics for evidence, belief, knowledge and learning

In this section, we present formal languages for evidence, belief, knowledge and ev-
idence acquisition, and provide sound, complete and decidable proof systems for the
resulting logics of evidence, knowledge and belief. We first introduce a language that
captures only topological properties of our models.

The topological language L is given by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕ | Kϕ | ∀ϕ | Bϕϕ | �ϕ | Eϕ

where p ∈ Prop. We employ the usual abbreviations for propositional connectives >, ⊥,
∨,→,↔, and for the dual modalities 〈B〉, 〈K〉, 〈E〉 etc, except that some of them have
special abbreviations: ∃ϕ := 〈∀〉ϕ and ^ϕ := 〈�〉ϕ.

Several fragments of L have special importance: LB is the fragment having the belief
B as the only modality; LK has only the knowledge operator K; LKB has only operators
K and B; L∀K has only operators ∀ and K; L∀� has only operators ∀ and �.

We also consider an extensionLE0�0 ofL, called the evidence language: this is obtained
by extending L with two new operators E0 and �0. The expressivity of LE0�0 goes



beyond purely topological properties: the meaning of E0 and �0 does not depend only
on the topology, but also on the basic evidence family E0. Finally, we will consider one
very important fragment ofLE0�0 , namely the languageL∀��0 having only the operators
∀, � and �0. Its importance comes from that L∀��0 is co-expressive with LE0�0 .

The semantics for these languages is obvious: given a topo-e-modelM = (X, E0, τ,V),
we recursively extend the valuation map V to an interpretation map ||ϕ|| for all formulas
ϕ, by interpreting the Boolean connectives and the modalities using the corresponding
semantic operators: e.g. ||∀ϕ|| = ∀||ϕ||, ||�ϕ|| = �||ϕ|| etc.

Moving on to dynamic extensions, we consider PDL-style languages L!∀��0 , L+∀��0 ,
L⇑∀��0 and L#∀��0 , obtained by adding to L∀��0 dynamic modalities [!ϕ]ψ for updates,
respectively [+ϕ]ψ for evidence addition, [⇑ ϕ]ψ for evidence upgrade and [#]ψ for fea-
sible evidence combination (with the obvious intended interpretations: e.g. [!ϕ]ψmeans
that “ψ becomes true after an update with ϕ”). The semantics for dynamic operators uses
the corresponding model change as standard in Dynamic Epistemic Logic:

x ∈ ||[!ϕ]ψ|| iff x ∈ ||ϕ|| implies x ∈ ||ψ||M!||ϕ|| ,

x ∈ ||[+ϕ]ψ|| iff x ∈ ||∃ϕ|| implies x ∈ ||ψ||M+||ϕ|| ,

x ∈ ||[⇑ ϕ]ψ|| iff x ∈ ||∃ϕ|| implies x ∈ ||ψ||M⇑||ϕ|| ,

x ∈ ||[#]ϕ|| iff x ∈ ||ϕ||M# ,

where we denoted by ||ψ||M!||ϕ|| the interpretation of ψ in the updated modelM!||ϕ||, etc.
The precondition x ∈ ||ϕ|| in the above clause for update encodes the fact that updates
are factive: so one can only update with true sentences ϕ. The preconditions x ∈ ||∃ϕ|| in
the clauses for evidence addition and upgrade encodes the fact that, in order to qualify
as (new) evidence, ϕ has to be consistent (i.e. ||ϕ|| , ∅).

Proposition 4 The following equivalences are valid in all topo-e-models:

1. Bϕ↔ 〈K〉Kϕ↔ ∃Kϕ↔ ∀^�ϕ 4. Kϕ↔ �ϕ ∧ Bϕ↔ �ϕ ∧ ∀^�ϕ
2. Eϕ↔ ∃�ϕ 5. Bθϕ↔ ∀(θ → ^(θ ∧ �(θ → ϕ)))
3. E0ϕ↔ ∃�0ϕ 6. ∀ϕ↔ B¬ϕ⊥

So, all the other modalities of LE0�0 can be defined in L∀��0 . As we’ll see, the dynamic
modalities are also eliminable, so that L∀��0 can in fact define all our operators.

Theorem 1 A sound and complete axiomatization for LB (on topo-e-models) consists
of the axioms and rules of the modal system KD45 for the B operator.

Theorem 2 A sound and complete axiomatization for LK consists of the axioms and
rules of the modal system S 4.2 for the K operator.

Theorem 3 A sound and complete axiomatization for LKB is given by Stalnaker’s sys-
tem 20 KB, consisting of the following:

20 This shows that the semantics in this paper correctly generalizes the one in [1, 12] for the
system KB.



1. the S 4 axioms and rules for Knowledge K

2. Consistency of Belief: Bφ→ ¬B¬φ;

3. Knowledge implies Belief: Kφ→ Bφ;

4. Strong Positive and Negative Introspection for Belief: Bφ→ KBφ; ¬Bφ→ K¬Bφ;

5. the “Strong Belief” axiom: Bφ→ BKφ.

Theorem 4 ([7]) The following system is sound and complete for L∀�:

1. the S5 axioms and rules for ∀

2. the S4 axioms and rules for �

3. ∀ϕ→ �ϕ

Moreover, Proposition 4 shows that L∀� can define all the other operators of L. So a
complete system for L can be obtained from the system for L∀� by adding the four
additional axiom-definitions given in Proposition 4.

Theorem 5 The following system is sound and complete for L∀K:

1. the S 5 axioms and rules for ∀ 3. ∀ϕ→ Kϕ
2. the S 4 axioms and rules for K 4. ∃Kϕ→ ∀〈K〉ϕ

Similarly, the language L∀K can define belief. So a complete system for the language
with this additional belief operator is obtained from the system for L∀K by adding the
axiom-definition Bϕ↔ ∃Kϕ given in Proposition 4.

Theorem 6 (Soundness, Completeness, Finite Model Property and Decidability) The
logic L∀��0 has finite model property and is completely axiomatized by the following
system L∀��0 (and so it’s decidable):

1. the S5 axioms and rules for ∀

2. the S4 axioms and rules for �

3. �0ϕ→ �0�0ϕ

4. the Monotonicity Rule for �0: from ϕ→ ψ, infer �0ϕ→ �0ψ

5. ∀ϕ→ �0ϕ

6. �0ϕ→ �ϕ

7. the Pullout Axiom21: (�0ϕ ∧ ∀ψ)→ �0(ϕ ∧ ∀ψ)

21 This axiom originates from [17], where it is stated as an equivalence rather than an implication.
But the converse is provable in our system.



Theorem 7 The sound and complete logic for L!∀��0 is obtained by adding the follow-
ing recursion axioms to the system L∀��0 :

1. [!ϕ]p↔ (ϕ→ p) 5. [!ϕ]�ψ↔ (ϕ→ �[!ϕ]ψ)
2. [!ϕ]¬ψ↔ (ϕ→ ¬[!ϕ]ψ) 6. [!ϕ]∀ψ↔ (ϕ→ ∀[!ϕ]ψ)
3. [!ϕ](ψ ∧ χ)↔ ([!ϕ]ψ ∧ [!ϕ]χ) 7. [!ϕ][!ψ]χ↔ [!〈ϕ〉ψ]χ
4. [!ϕ]�0ψ↔ (ϕ→ �0[!ϕ]ψ)

Theorem 8 The sound and complete logic for L+∀��0 is obtained by adding the ax-
iom K and the Necessitation rule for the evidence addition modalities as well as the
following recursion axioms to L∀��0 :

1. [+ϕ]p↔ (∃ϕ→ p)

2. [+ϕ]¬ψ↔ (∃ϕ→ ¬[+ϕ]ψ)

3. [+ϕ](ψ ∧ χ)↔ ([+ϕ]ψ ∧ [+ϕ]χ)

4. [+ϕ]�0ψ↔ (∃ϕ→ (�0[+ϕ]ψ ∨ (ϕ ∧ ∀(ϕ→ [+ϕ]ψ))))

5. [+ϕ]�ψ↔ (∃ϕ→ (�[+ϕ]ϕ ∨ (ϕ ∧ �(ϕ→ [+ϕ]ψ)))

6. [+ϕ]∀ψ↔ (∃ϕ→ ∀[+ϕ]ψ)

Theorem 9 The sound and complete logic for L⇑∀��0 is obtained by adding the ax-
iom K and the Necessitation rule for the evidence upgrade modalities as well as the
following recursion axioms to L∀��0 :

1. [⇑ ϕ]p↔ (∃ϕ→ p)

2. [⇑ ϕ]¬ψ↔ (∃ϕ→ ¬[⇑ ϕ]ψ)

3. [⇑ ϕ](ψ ∧ χ)↔ ([⇑ ϕ]ψ ∧ [⇑ ϕ]χ)

4. [⇑ ϕ]�0ψ↔ (∃ϕ→ ((�0[⇑ ϕ]ψ ∨ ϕ) ∧ ∀(ϕ→ [⇑ ϕ]ψ)))

5. [⇑ ϕ]�ψ↔ (∃ϕ→ ((�[⇑ ϕ]ψ ∨ ϕ) ∧ ∀(ϕ→ [⇑ ϕ]ψ)))

6. [⇑ ϕ]∀ψ↔ (∃ϕ→ ∀[⇑ ϕ]ψ)

Theorem 10 The sound and complete logic for L⇑∀��0 is obtained by adding the ax-
iom K and the Necessitation rule for the evidence upgrade modalities as well as the
following recursion axioms to L∀��0 :

1. [#]p↔ p 4. [#]�ϕ↔ �[#]ϕ
2. [#]¬ϕ↔ ¬[#]ϕ 5. [#]�0ϕ↔ �[#]ϕ
3. [#](ϕ ∧ ψ)↔ ([#]ϕ ∧ [#]ψ) 6. [#]∀ϕ↔ ∀[#]ϕ

The proofs of Theorems 1-3 and 5 are relatively standard, and can be found in Ap-
pendices A-D. The proof of Theorem 6 is technically the most difficult result of the
paper. The key difficulty consists in guaranteeing that the natural topology for which
� acts as interior operator is exactly the topology generated by the neighborhood fam-
ily associated to �0. Though the main steps of the proof may look familiar, involving



known methods (a canonical quasi-model construction, a filtration argument, and then
making multiple copies of the worlds to yield a finite model with the right properties),
addressing the above-mentioned difficulty requires a non-standard application of these
methods, as well as a number of additional notions and results, and a careful treatment
of each of the steps. We give the full proof of Theorem 6 in Appendix E. Finally, the
proofs of Theorems 7-10 are also along standard lines, and so we give only a sketch of
these proofs in Appendix F.



Appendices

For the proofs of Theorems 1-3, we make use of known completeness results of the
corresponding systems with respected to standard relational (Kripke) semantics, and
of the connection between the Kripke semantics and our proposed topological seman-
tics.

We now recall some frame conditions concerning the relational completeness of the
systems KD45 and S 4.2.

Let (X,R) be a transitive Kripke frame. A non-empty subset C ⊆ X is a cluster if

(1) for each x, y ∈ C we have xRy, and

(2) there is no D ⊆ X such that C ⊂ D and D satisfies (1).

A point x ∈ X is called a maximal point if there is no y ∈ X such that xRy and ¬(yRx).
We call a cluster a maximal cluster if all its points are maximal. It is not hard to see that
for any maximal cluster C of (X,R) and any x ∈ C, we have ↑x = C. A transitive Kripke
frame (X,R) is called cofinal if it has a unique maximal cluster C such that for each
x ∈ X and y ∈ C we have xRy. We call a cofinal frame a brush if X \ C is an irreflexive
antichain, i.e., for each x, y ∈ X \C we have ¬(xRy) where C is the maximal cluster. A
brush with a singleton X \ C is called a pin. By definition, every brush and every pin is
transitive. Finally, a transitive frame (X,R) is called rooted, if there is an x ∈ X, called a
root, such that for each y ∈ X with x , y we have xRy. Hence, every rooted brush is in
fact a pin.

Lemma 1

1. Each brush is a KD45-frame. Moreover, KD45 is sound and complete wrt the class
of finite brushes, indeed, wrt the class of finite pins.

2. Each reflexive and transitive cofinal frame is an S 4.2-frame. Moreover, S4.2 is
sound and complete wrt the class of finite rooted reflexive and transitive cofinal
frames.

Proof. See, e.g., [5, Chapter 5].

It is well-known that given any reflexive and transitive Kripke frame (X,R) (i.e. for
any preordered set (X,R)), we can construct a topological space, in fact an Alexandroff

space, (X, τR) where τR is the set of all upward-closed subsets of X with respect to the
relation R (see, e.g. [16] for a more detailed discussion on this connection).

We denote the truth set of a formula ϕ ∈ LKB in a Kripke model M = (X,R,V) under the
standard Kripke semantics by [ϕ]M and denote by R+ the reflexive closure of R.



A Proof of Theorem 1

The proof of soundness is a standard validity check. The cases for the axioms D, 4 and 5
are elementary whereas the validity of the K-axiom for B in the class of all topological
spaces follows from Lemma 2 below.

Lemma 2 For any topological space (X, τ) and any U1,U2 ⊆ X, if U1 is open dense
and U2 is dense, then U1 ∩ U2 is dense too.

Proof. Let (X, τ) be a topological space and U1,U2 ⊆ X. Suppose U1 is an open dense
and U2 is a dense set in (X, τ). Since U1 is open and dense we have that W ∩U1 is open
and non-empty for any non-empty open set W. Thus, since U2 is dense, we also have
that (W ∩ U1) ∩ U2 , ∅. Therefore, W ∩ (U1 ∩ U2) , ∅ for any non-empty W ∈ τ, i.e.,
U1 ∩ U2 is dense as well.

For completeness, we use the following connection between the standard Kripke se-
mantics and our proposed semantics for the language LB:

Proposition 5 For every Kripke model M = (X,R,V) based on a brush and all ϕ ∈ LB,

[ϕ]M = ||ϕ||MτR+ ,

whereMτR+ = (X, τR+ ,V).

Proof. The proof follows by induction on the complexity of ϕ. Let M = (X,R,V) be
a Kripke model based on the brush (X,R) and ϕ ∈ LB. Cases for the propositional
variables and Booleans are straighforward.

– Case ϕ := Bψ

Observe that

[Bϕ]M =

{
X if [ϕ]M ⊇ C
∅ otherwise and, ||Bϕ||MτR+ =

{
X if ||ϕ||MτR+ ⊇ C
∅ otherwise

for any topo-modelMτR+ = (X, τR+ ,V) based on (X, τR+ ) and any formula ϕ ∈ LB.
By (IH), we have ||ϕ||MτR+ = [ϕ]M , therefore, ||Bϕ||MτR+ = [Bϕ]M .

Proof of Theorem 1:

Proof. For completeness, let ϕ ∈ LB such that KD45 0 ϕ. Then, by Lemma 1(1), there
exists a brush M = (X,R,V) with [ϕ]M , X. Thus, by Propositition 5, we have that
||ϕ||MτR+ , X, whereMτR+ = (X, τR+ ,V) is the corresponding topological model.



B Proof of Theorem 2

The proof of soundness is again a standard validity check. The relatively harder case
of the K-axiom for K follows from Lemma 2 and the fact that the interior operator
commutes with finite intersections. For completeness, we follow a similar strategy as in
the proof of Theorem 1.

Lemma 3 For every reflexive and transitive cofinal frame (X,R) and non-empty U ∈
τR, we have Cl(U) = X in (X, τR).

Proof. Let (X,R) be a reflexive and transitive cofinal frame and C ⊆ X be its maximal
cluster. By construction, C ∈ τR and moreover C ⊆ U, for all non-empty U ∈ τR.
Therefore, for all non-empty U,V ∈ τR, we have V ∩U ⊇ C , ∅. Hence, Cl(U) = X for
every non-empty U ∈ τR.

Proposition 6 For every reflexive, transitive and cofinal Kripke model M = (X,R,V)
and all ϕ ∈ LK ,

[ϕ]M = ||ϕ||MτR ,

whereMτR = (X, τR,V).

Proof. The proof follows by induction on the complexity of ϕ and the cases for propo-
sitional variables and Booleans are straightforward. We here only prove the case for K.
Let M = (X,R,V) be a reflexive and transitive cofinal Kripke model, x ∈ X and ϕ ∈ LK .

– Case ϕ := Kψ

Left-to-right: Suppose x ∈ [Kψ]M . This implies that x ∈ R(x) ⊆ [ψ]M . By (IH), we
obtain R(x) ⊆ ‖ψ‖MτR . Since x ∈ R(x) ∈ τR, we have x ∈ Int(‖ψ‖MτR ). Moreover, by
Lemma 3, Cl(Int(‖ψ‖MτR )) = X. Therefore, x ∈ ‖Kψ‖MτR .

Right-to-left: Suppose x ∈ ‖Kψ‖MτR . This means that x ∈ Int(‖ψ‖MτR ) and that
Cl(Int(‖ψ‖MτR )) = X. Then, by (IH), x ∈ Int([ψ]M) and Cl(Int([ψ]M)) = X. The
former implies that there is an open set U ∈ τR such that x ∈ U ⊆ [ψ]M . In
particular, since R(x) is the smallest open neighbourhood of x, we obtain R(x) ⊆
[ψ]M . Therefore, x ∈ [Kψ]M .

Proof of Theorem 2:

Proof. For completeness, let ϕ ∈ LB such that S 4.2 0 ϕ. Then, by Lemma 1(2), there
exists a reflexive and transitive cofinal M = (X,R,V) with [ϕ]M , X. Thus, by Proposi-
tition 6, we have that ||ϕ||MτR , X, whereMτR = (X, τR,V) is the corresponding topo-
logical model.

C Proof of Theorem 3

For completeness, we use the following two important features of the system KB (see,
e.g. [14, 2, 1]):



1. KB ` Bϕ↔ 〈K〉Kϕ , and

2. The S 4.2 axioms and rules for K can be derived from KB.

Let ϕ ∈ LKB such that KB 0 ϕ. By (1), the formula ϕ can be reduce to a provably
equivalent formula ψ in the language LK . Moreover, by (2), we have S 4.2 ⊆ KB, thus,
S 4.2 0 ψ. The proof now follows from the proof of Theorem 2.

D Proof of Theorem 5

It is known that the modal system S 4.2∀ axiomatized by the S 5 axioms and rules for
∀, the S 4.2 axioms and rules for K and ∀ϕ → Kϕ is complete with respect to the class
of reflexive and transitive cofinal Kriple frames when K is interpreted as the standard
Kripke modality and ∀ as the global modality [7]. Observe that .2-axiom for K, namely
〈K〉Kϕ→ K〈K〉ϕ, is derivable in the system given in Theorem 5 (by the axioms 3 and 4
in Theorem 5), hence, it contains S 4.2∀. Let ϕ ∈ L∀K such that ϕ is not a theorem of the
above system. Thus, S 4.2∀ 0 ϕ. Then, by the relational completeness of S 4.2∀, there
exists a reflexive and transitive cofinal Kripke modelM = (X,R,V) such that [ϕ]M , X.
Then, by Proposition 6 (extended for the language L∀K), we obtain ||ϕ||MτR , X, where
MτR = (X, τR,V).

E Proof of Theorem 6

A quasi-model is a tuple M = (X, E0,≤,V), where: E0 ⊆ P(X) satisfies the same
constraints as a topo-e-model, V is a valuation, ≤ is a preorder s.t. every e ∈ E0 is
upward-closed wrt ≤. The semantics is the same as on topo-e-models, except that �
gets a Kripke semantics: ‖�φ‖ := {x ∈ X | ∀y ∈ X(x ≤ y⇒ y ∈ ‖φ‖)}.

A quasi-modelM = (X, E0,≤,V) is called Alexandroff if the topology τE is Alexandroff

and ≤=vE is the specialization preorder. There is a natural bijection B between Alexan-
droff quasi-models and Alexandroff topo-e-models, given by putting, for any Alexan-
droff quasi-modelM = (X, E0,≤,V), B(M) := (X, E0, τE ,V). Moreover,M and B(M)
satisfy the same formulas of L∀��0 at the same points. So Alexandroff quasi-models are
just another presentation of Alexandroff models.

Proposition 7 LetM = (X, E0,≤,V) be a quasi-model. The following are equivalent:

1. M is Alexandroff (hence, equivalent to an Alexandroff topo-e-model);

2. τE coincides with the family of all upward-closed sets (with respect to ≤);

3. for every x ∈ X, ↑x is in τE .

Proof. (1 ⇒ 3) SupposeM is Alexandroff, i.e., τE is Alexandroff and ≤=vE . Let
x ∈ X. Then we have: ↑x = {y | x ≤ y} = {y | x vE y} = {y | ∀U ∈ τE(x ∈
U ⇒ y ∈ U)} =

⋂
{U ∈ τE | x ∈ U}. Since τE is an Alexandroff space, we have⋂

{U ∈ τE | x ∈ U} ∈ τE , and hence ↑x =
⋂
{U ∈ τE | x ∈ U} ∈ τE .



(3 ⇒ 2) Let U p(X) be the set of all upward-closed subsets of X. It is easy to see
that τE ⊆ U p(X) (since τE is generated by E0 and every element of E0 is upward-
closed). Now let A ∈ U p(X). Since A is upward-closed, we have A =

⋃
{↑x | x ∈ A}.

Then, by (3) (and τE being closed under arbitrary unions), we obtain A ∈ τE .

(2⇒ 1) Suppose (2) and letA ⊆ τE . By (2), every U ∈ A is upward-closed; hence,⋂
A is upward-closed, so by (2)

⋂
A ∈ τE . This proves that τE is Alexandroff. (2)

also implies that ↑x is the least open neighbourhood of x in τE , i.e., ↑x ⊆ U, for all
U such that x ∈ U ∈ τE . Therefore, ≤⊆vE . For the other direction, suppose x vE y.
This implies, in particular, y ∈ ↑x (since x ∈ ↑x ∈ τE), i.e., x ≤ y.

The proof of Theorem 6 goes through three steps: (1) strong completeness for quasi-
models; (2) finite quasi-model property; (3) every finite quasi-model is modally equiv-
alent to a finite Alexandroff quasi-model (hence, to a topo-e-model).

Proposition 8 (STEP 1) L∀��0 is sound and strongly complete for quasi-models.

PROOF Soundness is easy. Completeness goes via a canonical quasi-model:

Lemma 4 (Lindenbaum Lemma) Every consistent set of sentences in L∀��0 can be
extended to a maximally consistent one.

Proof. Standard.

Let us now fix a consistent set of sentence Φ0. Our goal is to construct a quasi-model
for Φ0. By Lemma 4, there exists a maximally consistent theory T0 s. t. Φ0 ⊆ T0. For
any two maximally consistent theories T and S , we put: T ∼ S iff for all φ ∈ L∀��0 :
((∀φ) ∈ T ⇒ φ ∈ S ); and T ≤ S iff for all φ ∈ L∀��0 : ((�φ) ∈ T ⇒ φ ∈ S ).

Canonical Quasi-Model for T0. This is a structureM = (X, E0,≤,V), where: X := {T :
T maximally consistent theory with T ∼ T0}; E0 := {�̂0φ : φ ∈ L∀��0 with (∃�0φ) ∈
T0}, where we used notation θ̂ := {T ∈ X : θ ∈ T }; ≤ is the restriction of the above
preorder ≤ to X; and V(p) := p̂. In the following, variables T, S , . . . range over X.

Lemma 5 M is a quasi-model.

Proof. Easy verification.

Lemma 6 (Existence Lemma for ∀) ∃̂ϕ , ∅ iff ϕ̂ , ∅.

Proof. This is a standard argument:

Left-to-right. Assume T ∈ ∃̂ϕ, i.e. (∃ϕ) ∈ T ∈ X. We prove the following:

Claim: The set Γ := {∀ψ : ∀ψ ∈ T } ∪ {ϕ} is consistent.

Proof of Claim: Suppose that Γ ` ⊥. Then there exist finitely many sentences (∀ψ1), . . .,
(∀ψn) ∈ T s.t. (∀ψ1 ∧ ∀ψn)→ ¬ϕ is a theorem. But then, by applying the S5 laws to ∀,
we get that (∀ψ1 ∧∀ψn)→ (∀¬ϕ) is also a theorem; hence (∀¬ϕ) ∈ T , which combined
with (∃ϕ) ∈ T , implies that T is inconsistent. Contradiction.



Given the Claim, by Lindenbaum Lemma, there exists some maximally consistent the-
ory S s.t. Γ ⊆ S . It is easy to see that this implies that ϕ ∈ S and S ∼ T ∼ T0 (hence
S ∈ X), i.e. S ∈ ϕ̂.

Right-to-left. Assume T ∈ ϕ̂, i.e. ϕ ∈ T ∈ X. By the theorem ϕ → (∃ϕ), we also have
(∃ϕ) ∈ T , i.e. T ∈ ∃̂ϕ.

Lemma 7 (Existence Lemma for �) T ∈ ̂̂ϕ iff (∃) S ∈ ϕ̂ s. t. T ≤ S .

Proof. This is a standard argument:

Left-to-right. Assume T ∈ ̂̂ϕ, i.e. (^ϕ) ∈ T ∈ X. We prove the following:

Claim: The set Γ := {�ψ : �ψ ∈ T } ∪ {ϕ} is consistent.

Proof of Claim: Suppose that Γ ` ⊥. Then there exist finitely many sentences (�ψ1), . . .,
(�ψn) ∈ T s.t. (�ψ1 ∧ �ψn)→ ¬ϕ is a theorem. But then, by applying the S4 laws to �,
we get that (�ψ1∧�ψn)→ (�¬ϕ) is also a theorem; hence (�¬ϕ) ∈ T , which combined
with (�ϕ) ∈ T , implies that T is inconsistent. Contradiction.

Given the Claim, by Lindenbaum Lemma, there exists some maximally consistent the-
ory S s.t. Γ ⊆ S . It is easy to see that this implies that ϕ ∈ S and T ≤ S (hence also
S ∈ X, thus S ∈ ϕ̂).

Right-to-left. Assume T ∈ ϕ̂, i.e. ϕ ∈ T ∈ X. By the theorem ϕ → (^ϕ), we also have
(^ϕ) ∈ T , i.e. T ∈ ˆ̂ϕ.

Lemma 8 (Existence Lemma for �0) T ∈ �̂0ϕ iff (∃) e ∈ E0 s. t. T ∈ e ⊆ ϕ̂.

Proof. Left-to-right: Assume T ∈ �̂0ϕ, i.e. (�0ϕ) ∈ T . From T ∈ X and T ∼ T0 we get
(∃�0ϕ) ∈ T0. Taking e := �̂0ϕ, we get e ∈ E0 and T ∈ e. To show that e ⊆ ϕ̂, we use the
theorem �0ϕ→ ϕ, which implies that �̂0ϕ ⊆ ϕ̂, i.e. e ⊆ ϕ̂.

Right-to-Left: Let T ∈ X and e ∈ E0, s.t. T ∈ e ⊆ ϕ̂. Then e = �̂0θ for some θ s.t.
(∃�0θ) ∈ T0. So T ∈ e = �̂0θ ⊆ ϕ̂. We now prove the following:

Claim: The set Γ := {�0θ} ∪ {∀ψ : ∀ψ ∈ T } ∪ {¬ϕ} is inconsistent.

Proof of Claim: Suppose that Γ 0 ⊥. By Lemma 4, there exists some S ∈ X s. t. Γ ⊆ S .
From (¬ϕ) ∈ S we get S < ϕ̂ (by the consistency of S ), and from (�0θ) ∈ S we get
S ∈ �̂0θ. So S ∈ �̂0θ \ ϕ̂, contradicting �̂0θ ⊆ ϕ̂.

Given the Claim, there exists a finite Γ0 ⊆ Γ with Γ0 ` ⊥. By the theorem (∀ψ1 ∧

. . .∀ψn) ↔ ∀(ψ1 ∧ . . . ψn), we can assume that Γ0 = {�0θ,∀ψ,¬ϕ}, for some ψ s. t.
(∀ψ) ∈ T . From Γ0 ` ⊥ we get the theorem (�0θ ∧ ∀ψ) → ϕ. Using the Monotonicity
Rule for �0, the formula �0(�0θ ∧ ∀ψ) → �0ϕ is also a theorem. From the axiom
�0θ → �0�0θ and the Pullout Axiom, we get the theorem (�0θ ∧ ∀ψ) → �0ϕ. Since
(�0θ) ∈ T and (∀ψ) ∈ T , it follows that (�0ϕ) ∈ T , i.e. T ∈ �̂0ϕ, as desired.

Lemma 9 (Truth Lemma) For every formula φ ∈ L∀��0 , we have: ‖φ‖M = φ̂.

Proof. Standard proof by induction on the complexity of φ, where the inductive step
for each modality uses the corresponding Existence Lemma, as usual.



Consequence: T0 |=M Φ0. This proves Step 1 (Proposition 8).

Theorem 11 (STEP 2) The logic L∀��0 has Strong Finite Quasi-Model Property.

PROOF OF THEOREM 11: Let φ0 be a consistent formula. By Step 1, take T0 a
maximal consistent theory s.t. φ0 ∈ T0, and let M = (X, E0,≤,V) be the canonical
quasi-model for T0. We will use two facts about this model:

1. ‖ϕ‖M = ϕ̂, for all ϕ ∈ L∀��0 ,

2. E0 = {�̂0ϕ : (∃�0ϕ) ∈ T0} = {‖�0ϕ‖M : (∃�0ϕ) ∈ T0}.

Let Σ be a finite set such that: (1) φ0 ∈ Σ; (2) Σ is closed under subformulas; (3) if
(�0ϕ) ∈ Σ then (��0ϕ) ∈ Σ; (4) Σ is closed under single negations; (5) (�0>) ∈ Σ. For
x, y ∈ X, put: x ≡Σ y iff ∀ψ ∈ Σ(x ∈ ‖ψ‖M ⇐⇒ y ∈ ‖ψ‖M), and denote by |x| := {y ∈
X : x ≡Σ y} the equivalence class of x modulo ≡Σ . Also, put X f := {|x| : x ∈ X}, and
more generally put e f := {|x| : x ∈ e} for every e ∈ E0.

We now define a “filtrated model”M f = (X f , E f
0 ,≤

f ,V f ), by taking: as set of worlds
the set X f (of equivalence classes) defined above; as for the rest, we put: |x| ≤ f |y| iff
for all (�ψ) ∈ Σ : (x ∈ ‖�ψ‖M ⇒ y ∈ ‖�ψ‖M); E f

0 := {e f : e = �̂0ψ = ‖�0ψ‖M ∈
E0 for some ψ s. t. (�0ψ) ∈ Σ}; V f (p) := {|x| : x ∈ V(p)}.

Lemma 10 M f is a finite quasi-model (of size bounded by a computable function of
φ0).

Proof. X f is finite, since Σ is finite so there are only finitely many equivalence classes
modulo ≡Σ . In fact, the size is at most 2|Σ |. It’s obvious that ≤ f is a preorder, that X f ∈ E f

0

(since X = ‖�0>‖M and (�0>) ∈ Σ, so X f ∈ E f
0 ) and that every e f ∈ E f

0 is non-empty
(since it comes from some non-empty e ∈ E0). So we only have to prove that the
evidence sets are upward–closed: for this, let e f ∈ E f

0 , with e = �̂0ψ ∈ E0, (�0ψ) ∈ Σ
and let |x| ∈ e f and |y| ∈ X f s.t. |x| ≤ f |y|. We need to show that |y| ∈ e f .

Since |x| ∈ e f , there exists some x′ ≡Σ x s.t. x′ ∈ �̂0ψ = ‖�0ψ‖M. From (�0ψ) ∈ Σ and
x′ ≡Σ x, we get x ∈ ‖�0ψ‖M. By the theorem �0ψ → ��0ψ, we have x ∈ ‖��0ψ‖M.
But (��0ψ) ∈ Σ (by the closure assumptions on Σ), so |x| ≤ f |y| gives us y ∈ ‖��0ψ‖M.
By the T -axiom �φ→ φ, we get y ∈ ‖�0ψ‖M = �̂0ψ = e, hence |y| ∈ e f .

Lemma 11 (Filtration Lemma) For every formula φ ∈ Σ: ‖φ‖M f = {|x| : x ∈ ‖φ‖M}.

Proof. Proof by induction on φ ∈ Σ. The atomic case, inductive cases for propositional
connectives and modalities ∀φ and �φ are treated as usual (-in the last case using the
filtration property of ≤ f ). We only prove here the inductive case for the modality �0φ:

Left-to-right inclusion: Let |x| ∈ ‖�0φ‖M f . This means that there exists some e f ∈ E f
0

s.t. |x| ∈ e f ⊆ ‖φ‖M f . By the definition of E f
0 , there exists some ψ s.t.: (�0ψ) ∈ Σ and

e = �̂0ψ = ‖�0ψ‖M ∈ E0. From |x| ∈ e f , it follows that there is some x′ ≡Σ x s.t.
x′ ∈ e = ‖�0ψ‖M, and since (�0ψ) ∈ Σ, we have x ∈ ‖�0ψ‖M = e. It is easy to see that
we also have e ⊆ ‖φ‖M. (Indeed, let y ∈ e be any element of e; then |y| ∈ e f ⊆ ‖φ‖M f , so



|y| ∈ ‖φ‖M f , and by the induction hypothesis y ∈ ‖φ‖M.) So we have found an evidence
set e ∈ E0 s.t. x ∈ e ⊆ ‖φ‖M, i.e., shown that x ∈ ‖�0φ‖M.

Right-to-left inclusion: Let x ∈ ‖�0φ‖M, with (�0φ) ∈ Σ. It is easy to see that (∃�0φ) ∈ x
(by the theorem �0φ → ∃�0φ) and so also (∃�0φ) ∈ T0 (since x ∈ X so x ∼ T0). This
means that the set e := �̂0φ = ‖�0φ‖M ∈ E0 is an evidence set in the canonical model,
and since (�0φ) ∈ Σ, we conclude that e f ∈ E f

0 is an evidence set in the filtrated model.
We obviously have x ∈ e, and so |x| ∈ e f . By the (T ) axiom, e = ‖�0φ‖M ⊆ ‖φ‖M,
and hence e f ⊆ {|y| : y ∈ ‖φ‖M} = ‖φ‖M f (by the induction hypothesis). Thus, we have
found e f ∈ E f

0 s.t. |x| ∈ e f ⊆ ‖φ‖M f , i.e., shown that |x| ∈ ‖�0φ‖M f .

Theorem 12 (STEP 3) Every finite quasi-model is modally equivalent to a finite Alexan-
droff quasi-model (and so to a topo-e-model).

PROOF OF THEOREM 12: LetM = (X, E0,≤,V) be a finite quasi-model. We form
a new structure M̃ = (X̃, Ẽ0, ≤̃, Ṽ), by putting: X̃ := X × {0, 1}; Ṽ(p) := V(p) × {0, 1};
(x, i)≤̃(y, j) iff: x ≤ y and i = j; Ẽ0 := {ei : e ∈ E0, i ∈ {0, 1}} ∪ {e

y
i : y ∈ e ∈

E0, i ∈ {0, 1}} ∪ {X̃}, where we used notations ei := e × {i} = {(x, i) : x ∈ e} and
ey

i := ↑y × {i} ∪ e × {1 − i} = {(x, i) : y ≤ x} ∪ e1−i.

Lemma 12 M̃ is a (finite) quasi-model.

Proof. Easy verification.

Notation: For any set Ỹ ⊆ X̃, put ỸX := {y ∈ X : (y, i) ∈ Ỹ for some i ∈ {0, 1}} for the
set consisting of first components of all members of Ỹ . It is easy to see that we have:
(Ỹ ∪ Z̃)X = ỸX ∪ Z̃X , and X̃X = X.

Lemma 13 If y ∈ e ∈ E0, i ∈ {0, 1} and ẽ ∈ {ei, e
y
i }, then we have:

1. ẽX = e;

2. ey
i ∩ ei = ↑(y, i), where ↑(y, i) = {x̃ ∈ X̃ : (y, i)≤̃x̃} = {(x, i) : y ≤ x}.

Proof. 1. If ẽ = ei, then ẽX = (e× {i})X = e. If ẽ = ey
i , then ẽX = (↑y× {i})X ∪ (e× {1−

i})X = ↑y ∪ e = e (since e is upward-closed and y ∈ e, so ↑y ⊆ e).

2. ey
i ∩ ei = (↑y × {i} ∪ e × {1 − i})∩ (e × {i}) = (↑y∩ e)× {i} = ↑y× {i} = ↑(y, i) (since
↑y ⊆ e).

Lemma 14 M̃ is an Alexandroff quasi-model (and thus also a topo-e-model).

Proof. By Proposition 7, it is enough to show that, for every (y, i) ∈ X̃, the upward-
closed set ↑(y, i) is open in the topology τE generated by E0. But this follows directly
from part 2 of Lemma 13.

Lemma 15 (Modal-Equivalence Lemma) For all ϕ ∈ L∀��0 : ‖ϕ‖M̃ = ‖ϕ‖M × {0, 1}.



Proof. Induction on ϕ. The base case (for atomic sentences), and the inductive steps for
propositional connectives and for the operators ∀ and �, are all straightforward. So we
only prove here the inductive step for �0:

Left-to-Right Inclusion: Suppose that (x, i) ∈ ‖�0ϕ‖M̃. Then there exists some ẽ ∈ Ẽ
such that (x, i) ∈ ẽ ⊆ ‖ϕ‖M̃ = ‖ϕ‖M × {0, 1} (where we used the induction hypothesis
for ϕ at the last step). From this, we obtain that x ∈ ẽX ⊆ (‖ϕ‖M × {0, 1})X = ‖ϕ‖M. But
by the construction of Ẽ, ẽ ∈ Ẽ means that either ẽ = X̃ or there exist e ∈ E0, y ∈ e and
j ∈ {0, 1} such that ẽ ∈ {e j, e

y
j}. If the former is the case, we have x ∈ ẽX = X ⊆ ‖ϕ‖M.

Since X ∈ E0, by the semantics of �0, we obtain x ∈ ‖�0ϕ‖M. If the latter is the case,
by part 1 of Lemma 13, we have ẽX = e, so we conclude that x ∈ ẽX = e ⊆ ‖ϕ‖M.
Therefore, again by the semantics of �0, we have x ∈ ‖�0ϕ‖M.

Right-to-Left Inclusion: Suppose that x ∈ ‖�0ϕ‖M. Then there exists some e ∈ E0 such
that x ∈ e ⊆ ‖ϕ‖M. Take now the set ei = e × {i} ∈ Ẽ. Clearly, we have (x, i) ∈ ei ⊆

‖ϕ‖M × {i} ⊆ ‖ϕ‖M × {0, 1} = ‖ϕ‖M̃ (where we used the induction hypothesis for ϕ at
the last step), i.e. we have (x, i) ∈ ‖�0ϕ‖M̃.

Theorem 12 follows immediately from the above Lemma: the same formulas are sat-
isfied at x inM as at (x, i) in M̃. In its turn, our Theorem 6 (Completeness and Finite
Model property for topo-e-models) is an immediate corollary of Theorem 12.

F Proofs of Theorems 7-10

In this appendix, we provide the soundness proofs for the most complex reduction ax-
ioms in Theorems 7-10, and sketch the completeness proof and the expressivity result
for Theorem 7. The completeness results in Theorems 8-10 follow from the same argu-
ment.

F.1 Proof of Theorem 7

Let us denote the axiomatization given in Thereom 7 by L!∀��0 . The soundness proofs
of the axioms 1-3 and 6-7 are standard and they do not depend on the topological prop-
erties of the model. We here only prove the ones for the modalities �0 and �. Let
M = (X, E0, τ,V) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L!∀��0 . In the following, we do
not use the subscriptM for the truth sets in the modelM.



Axiom-4 of Theorem 7:

x ∈ ||[!ϕ]�0ψ|| iff x ∈ ||ϕ|| implies x ∈ ||�0ψ||M!||ϕ||

iff x ∈ ||ϕ|| implies ∃e!||ϕ|| ∈ E!||ϕ||
0 (x ∈ e!||ϕ|| ⊆ ||ψ||M!||ϕ|| )

iff x ∈ ||ϕ|| implies ∃e ∈ E0(x ∈ e ∩ ||ϕ|| = e!||ϕ|| ⊆ ||ψ||M!||ϕ|| )
iff x ∈ ||ϕ|| implies ∃e ∈ E0(x ∈ e ⊆ ||[!ϕ]ψ||)
iff x ∈ ||ϕ|| implies x ∈ ||�0[!ϕ]ψ||
iff x ∈ ||ϕ→ �0[!ϕ]ψ||

The validity of the axiom [!ϕ]�ψ↔ (ϕ→ �[!ϕ]ψ) follows similarly, where we replace
the basic evidence set E0 by the corresponding combined evidence set E.

Therefore, also by Theorem 6, we obtain that L!∀��0 is sound for topo-e-models. The
soundness of the recursion axioms implies that for any formula ϕ ∈ L!∀��0 , there exists a
semantically equivalent formula ψ in the static languageL∀��0 . Moreover, the recursion
axioms give us an inductive algorithm as to how to reduce a formula in the dynamic
language L!∀��0 to a formula in the pure static language L∀��0 . In other words, by
using the recursion axioms, we can also show that any formula ϕ ∈ L!∀��0 is provably
equivalent to a formula ψ ∈ L∀��0 (see, e.g. [19] for a more detailed discussion on the
topic). The completeness of L!∀��0 therefore follows from the completeness of L∀��0

and the soundness of the recursion axioms as follows: Let ϕ ∈ L!∀��0 such that 0L!∀��0
ϕ.

Then, by the recursion axioms, there exists ψ ∈ L∀��0 with `L!∀��0
ϕ ↔ ψ. As L∀��0 ⊂

L!∀��0 and ψ ∈ L∀��0 , we then have 0L∀��0
ψ. Then, by completeness of L∀��0 , there

exists a topo-e-model such that ||ψ|| , X. Then, by soundness of L!∀��0 , we conclude
||ϕ|| , X.

Moreover, since L!∀��0 extends L∀��0 and any dynamic formula is provably equivalent
to a formula in the static language, the logics L!∀��0 and L∀��0 are equally expres-
sive.

F.2 Proof of Theorem 8

Let M = (X, E0, τ,V) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L!∀��0 and observe
that,

x ∈ ||∃ϕ|| implies ||ψ||M+||ϕ|| = ||[+ϕ]ψ|| (1)



Axiom-4 of Theorem 8:

x ∈ ||[+ϕ]�0ψ|| iff x ∈ ||∃ϕ|| implies x ∈ ||�0ψ||M+||ϕ||

iff x ∈ ||∃ϕ|| implies ∃e+||ϕ|| ∈ E+||ϕ||
0 (x ∈ e+||ϕ|| ⊆ ||ψ||M+||ϕ|| )

iff x ∈ ||∃ϕ|| implies (∃e ∈ E0(x ∈ e ⊆ ||ψ||M+||ϕ|| ) or (x ∈ ||ϕ|| ⊆ ||ψ||M+||ϕ|| ))
(by defn. of E+||ϕ||

0 )

iff x ∈ ||∃ϕ|| implies (∃e ∈ E0(x ∈ e ⊆ ||[+ϕ]ψ||) or x ∈ ||ϕ|| ⊆ ||[+ϕ]ψ||)
(by (1))

iff x ∈ ||∃ϕ|| implies ((x ∈ ||�0[+ϕ]ψ||) or (x ∈ ||ϕ|| and x ∈ ||∀(ϕ→ [+ϕ]ψ||))
iff x ∈ ||∃ϕ|| implies (x ∈ ||�0[+ϕ]ψ|| or x ∈ ||ϕ ∧ ∀(ϕ→ [+ϕ]ψ||)
iff x ∈ ||∃ϕ→ (�0[+ϕ]ψ ∨ (ϕ ∧ ∀(ϕ→ [+ϕ]ψ)))||

The proof for the axiom 5 follows in a similar way with minor differences because of
the fact that for every e+||ϕ|| ∈ E+||ϕ|| there is some combined evidence e ∈ E such that
either e+||ϕ|| = e or e+||ϕ|| = e ∩ ||ϕ||. Therefore, we have

Axiom-5 of Theorem 8:

x ∈ ||[+ϕ]�ψ||

iff x ∈ ||∃ϕ|| implies ∃e+||ϕ|| ∈ E+||ϕ||(x ∈ e+||ϕ|| ⊆ ||ψ||M+||ϕ|| )
iff x ∈ ||∃ϕ|| implies ∃e ∈ E(x ∈ e ⊆ ||ψ||M+||ϕ|| or x ∈ e ∩ ||ϕ|| ⊆ ||ψ||M+||ϕ|| )
iff x ∈ ||∃ϕ|| implies ∃e ∈ E((x ∈ e ⊆ ||[+ϕ]ψ||) or (x ∈ ||ϕ|| and x ∈ e ⊆ ||ϕ→ [+ϕ]ψ||))
iff x ∈ ||∃ϕ|| implies (x ∈ ||�[+ϕ]ψ|| or (x ∈ ||ϕ|| and x ∈ ||�(ϕ→ [+ϕ]ψ||))
iff x ∈ ||∃ϕ→ (�[+ϕ]ψ ∨ (ϕ ∧ �(ϕ→ [+ϕ]ψ)))||

F.3 Proof of Theorem 9

LetM = (X, E0, τ,V) be a topo-e-model, x ∈ X and ϕ, ψ ∈ L!∀��0 . Similar to the above
case, we have

x ∈ ||∃ϕ|| implies ||ψ||M⇑||ϕ|| = ||[⇑ ϕ]ψ|| (2)

Axiom-4 of Theorem 9:

x ∈ ||[⇑ ϕ]�0ψ||

iff x ∈ ||∃ϕ|| implies ∃e⇑||ϕ|| ∈ E⇑||ϕ||0 (x ∈ e⇑||ϕ|| ⊆ ||ψ||M⇑||ϕ|| )
iff x ∈ ||∃ϕ|| implies (∃e ∈ E0(x ∈ e ∪ ||ϕ|| ⊆ ||ψ||M⇑||ϕ|| ) or (x ∈ ||ϕ|| ⊆ ||ψ||M⇑||ϕ|| ))

(by defn. of E⇑||ϕ||0 )

iff x ∈ ||∃ϕ|| implies (∃e ∈ E0(x ∈ e ∪ ||ϕ|| ⊆ ||[⇑ ϕ]ψ||) or (x ∈ ||ϕ|| ⊆ ||[⇑ ϕ]ψ||))
(by (2))

iff x ∈ ||∃ϕ|| implies (∃e ∈ E0(x ∈ e ⊆ ||[⇑ ϕ]ψ|| and ||ϕ|| ⊆ ||[⇑ ϕ]ψ||) or (x ∈ ||ϕ|| ⊆ ||[⇑ ϕ]ψ||))
iff x ∈ ||∃ϕ|| implies (x ∈ ||�0[⇑ ϕ]ψ|| and x ∈ ||∀(ϕ→ [⇑ ϕ]ψ)||) or (x ∈ ||ϕ ∧ ∀(ϕ→ [⇑ ϕ]ψ)||)
iff x ∈ ||∃ϕ→ ((�0[⇑ ϕ]ψ ∨ ϕ) ∧ ∀(ϕ→ [⇑ ϕ]ψ))||



The validity of the axiom 5 follows similarly where we replace the basic evidence set
E0 by the corresponding combined evidence set E.

F.4 Proof of Theorem 10

Axiom-4 of Theorem 10:

x ∈ ||[#]�0ϕ|| iff x ∈ ||�0ϕ||M#

iff ∃e# ∈ E#
0(x ∈ e# ⊆ ||ϕ||M# )

iff ∃e# ∈ E#
0(x ∈ e# ⊆ ||[#]ϕ||) (since E#

0 = E# = E)
iff ∃e ∈ E(x ∈ e ⊆ ||[#]ϕ||)
iff x ∈ ||�[#]ϕ||

The validity of the axiom 5 follows similarly since E = E#.
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