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Abstract
We introduce a model of preference diffusion in
which agents in a social network update their pref-
erences based on those of their influencers in the
network, and we study the dynamics of this model.
Preferences are modelled as ordinal rankings over
a finite set of alternatives. At each time step, some
of the agents update the relative ordering of two
alternatives adjacent in their current ranking with
the majority view of their influencers. We consider
both a synchronous and an asynchronous variant
of this model. Our results show how the graph-
theoretic structure of the social network and the
structure of the agents’ preferences affect the ter-
mination of the diffusion process and the properties
of the preference profile at the time of termination.

1 Introduction
The development of models of opinion diffusion in a net-
worked society is important for many reasons: such mod-
els enable us to obtain better predictions of electoral results,
to maximise the effect of marketing campaigns, or to ad-
vance our understanding of the cognitive processes behind
social influence. Social scientists have been the first to pro-
pose models of belief and opinion diffusion and their simple
linear models have been deeply influential [de Groot, 1974;
Lehrer and Wagner, 1981]. More complex models developed
later on have borrowed heavily from related work in physics
and biology [see, e.g., Jackson and Yariv, 2011].

In most of this work, individual opinions are modelled as
real numbers or binary views on a given issue. For instance,
models initially defined for the study of epidemics have been
applied to the propagation of beliefs, by interpreting the like-
lihood of having a disease as an agent’s degree of belief in
some proposition. However, opinions can be complex ob-
jects that cannot always be accurately modelled by a single
number, and this is particularly true for preferences. Indeed,
the representation of preferences is a major research topic in
Artificial Intelligence in its own right [see, e.g., Rossi et al.,
2011]. In this paper, we therefore ask how to model the diffu-
sion of structured preference information across a network.

Our starting point is the intuition that agents update their
preferences by aggregating the views of the agents they trust.

We model this trust relationship by means of a (directed) so-
cial network, where each agent trusts her influencers in the
network. Furthermore, following standard conventions in
voting theory [e.g., Taylor, 2005] we model preferences as
linear orders over a set of alternatives. Preferences spread
over the network by means of individual agents repeatedly
reconsidering pairwise comparisons: an agent picks a pair of
alternatives that are ranked one after the other in her prefer-
ence order, and then compares her opinion on that pair to that
of her influencers. If the agent’s opinion differs from that of a
majority of her influencers, then the pair is swapped. We call
this process pairwise preference diffusion, and we study both
its synchronous version, in which all agents make these up-
dates simultaneously, and an asynchronous one, where only
one agent at a time performs an update.

Our model extends that of Farnoud et al. [2013] who study
iterated voting with agents updating their preferences on pairs
of alternatives so as to agree with the overall majority. Their
work can thus be viewed as a preference diffusion process
on a complete network, where each agent is influenced by
all members of the system. Our approach generalises their
model to arbitrary social networks. We also draw inspiration
from a recent line of work in multiagent systems, which stud-
ies diffusion processes based on complex representations of
individual opinions, grounded in research on belief merging
[Schwind et al., 2015] and judgement aggregation [Grandi et
al., 2015]. A little further afield, related work modelling in-
dividually held points of view as numerical values includes
the seminal contributions of Clifford and Sudbury [1973] and
Holley and Liggett [1975], as well as more recent studies of
linear threshold models [Kempe et al., 2003; 2005] and re-
finements of the classic voter model [Raghavan et al., 2007;
Kearns and Tan, 2008; Hung et al., 2013].

In this paper we identify conditions for a process of pref-
erence diffusion in our model to terminate, and we seek to
characterise the profiles of preferences the process converges
to in case of termination. Our results indicate that outcomes
of a diffusion process depend both on the structure of the
graph representing the social network and on the properties
of the initial profile of preferences. After a review of basic
definitions in Section 2, we formally introduce our model in
Section 3. Section 4 presents our results on termination, Sec-
tion 5 those on convergence, and Section 6 concludes. Some
proofs are omitted due to space constraints.



2 Preliminaries
Let A be a finite set of alternatives and N = {1, . . . , n} a
finite set of agents. The preferences of agents over alterna-
tives are recorded in a preference profile � = (�1, . . . ,�n),
where each �i ⊆ A × A is a (strict) linear order over A
representing the preferences of agent i. For two distinct alter-
natives a, b ∈ A we write a �i b if (a, b) ∈ �i, and a 6�i b
if (a, b) /∈ �i. Thus, a �i b signifies that agent i prefers
alternative a to alternative b.

Furthermore, for a 6= b, we let ab denote the unordered pair
{a, b}. A pair ab is adjacent in �i if there is no c ∈ A with
a �i c �i b or b �i c �i a. We will make frequent, often
implicit, use of the following folklore result (for a proof, see
e.g., the paper of Elkind et al. [2009]).
Lemma 1. Let � and �′ be two distinct linear orders on A.
Then � and �′ must disagree on at least one pair of alterna-
tives that are adjacent in �.
We introduce some further notation. In case ab is an adjacent
pair in�i, let swap(�i, ab) be the linear order resulting from
swapping alternatives a and b in �i. For instance, if a �i

b �i c and �′i = swap(�i, bc), then a �′i c �′i b. If R is
a binary relation on A and a, b ∈ A, the restriction R�ab of
R on ab is defined as R�ab = R ∩ {(a, b), (b, a)}. If � is
a linear order, then ��ab is always a singleton, and if R is
asymmetric, then R�ab is either a singleton or the empty set.

Agents are connected by an influence network represented
by a directed graph E ⊆ N × N . An edge from j to i sig-
nifies that agent i is influenced by agent j. We let Inf (i) =
{j ∈ N : (j, i) ∈ E} denote the set of influencers of agent i.
We often refer to agents in N as the nodes of the influence
network E. A node i such that Inf (i) = ∅ is called a source,
and SE denotes the set of all sources of network E.

We restrict attention to graphs without self-loops, i.e., we
assume (i, i) 6∈ E for all i ∈ N .1 Some of our results apply
to specific classes of graphs: directed acyclic graphs (DAGs),
the complete graph E = {(N × N) \ {(i, i) : i ∈ N}, and
simple cycles E = {(1, 2), (2, 3), . . . , (n, 1)}.

3 The Model
In this section, we introduce our model and formally establish
some of its basic properties.

3.1 Pairwise Preference Diffusion
Our diffusion model is based on the familiar majority rule.
If � is a preference profile and C ⊆ N a subset of agents,
the (strict) majority relation with respect to C is defined by

a �C b ⇐⇒ |{i ∈ C : a �i b}| > |{i ∈ C : b �i a}|.
Thus, a �C b if a strict majority of agents in C prefer a to b.
Majority relations are asymmetric (a �C b implies b 6�C a),
but, in contrast to linear orders, they may have ties and cycles.
In the case of a majority tie, i.e., |{i∈C : a �i b}| = |C|/2,
we have �C�ab = ∅. This can only happen if |C| is even.

Next, we define the basic update function underlying our
diffusion process. Let � be a preference profile, i ∈ N , and

1Thus, we assume that agents do not influence themselves. This
simplifies exposition and does not significantly affect our results.

a, b ∈ A. The function PPD (“pairwise preference diffu-
sion”) is defined as

PPD(�, i, ab) =


swap(�i, ab) if ab is adjacent in �i

and �Inf (i)�ab 6⊆ �i�ab
�i otherwise.

Given a profile, an agent i, and a pair of alternatives ab, the
PPD update swaps a and b in �i if ab is adjacent in �i and
a majority of i’s influencers disagrees with i on ab. In case
of a tie, i.e., when �Inf (i)�ab = ∅, i’s preferences remain
unchanged.2 Note that PPD takes a profile as its (first) input,
but returns only a single preference relation. Nevertheless,
we will often speak of the new profile obtained as a result of
an update. This is the profile that results from � by replacing
�i with PPD(�, i, ab).

Let now turn : N → 2N \ {∅} be a turn function, indi-
cating which individuals in N are updating their preferences
at each point in time, and let pair be a randomised proce-
dure that, given a voter in N , outputs a pair of alternatives
sampled from A × A uniformly at random. Starting from a
preference profile �0, pairwise preference diffusion (PPD) is
the following discrete-time iterative process:

�t+1
i =

{
PPD(�t, i, pair(i)) if i ∈ turn(t)

�t
i otherwise.

An update from �t to �t+1 is called effective if at least one
agent performs a swap, i.e., if �t+1 6= �t. We define two
diffusion processes. Under synchronous PPD the turn func-
tion is such that turn(t) = N for all t ∈ N, i.e., at every step
all agents sample (possibly different) pairs of alternatives and
update accordingly. Under asynchronous PPD the turn func-
tion selects only one agent uniformly at random at every time
point t ∈ N, i.e., one agent at a time samples a pair of alterna-
tives and updates accordingly. See Figure 1 for an example.

3.2 Termination and Convergence
Both synchronous and asynchronous PPD are discrete-time
dynamical processes, and a natural question is whether they
terminate. A preference profile � is called stable for E if
PPD(�t, i, ab) = �t

i for all i ∈ N and a, b ∈ A. Note that
this definition of stability is independent of the turn function
and thus not specific to either synchronous or asynchronous
diffusion. Let P[X] denote the probability of event X under
PPD. We can now define asymptotic termination.
Definition 2. We say that PPD asymptotically terminates on
a class of graphs E ⊆ 2N

2

if for each graph E ∈ E and for
each profile of initial preferences �0 we have

lim
t→+∞

P[�t+1 6= �t] = 0.

It will be useful to view PPD as a simple Markov chain, in
which the states are all possible preference profiles, and PPD

2According to the definitions of Farnoud et al. [2013], an adja-
cent pair ab with a�i b is swapped if and only if |{i∈N : b�ia}| >
|{i∈N : a�ib}|. If Inf (i) = N \ {i}, the latter is equivalent to
b �Inf (i) a. Thus, the setting of Farnoud et al. [2013] exactly corre-
sponds to our setting for the special case of a complete graph.



a �1 b �1 c

c �2 a �2 b

b �3 c �3 a

b �4 a �4 c

Figure 1: A simple influence network with n = 4 agents
and |A| = 3 alternatives. Observe that the preferences of
agents 1, 2, and 3 form a Condorcet cycle, i.e., the major-
ity relation of their preferences is cyclic. In one possible se-
quence of updates for asynchronous PPD, agent 4 updates on
pair ab, moving to preference a �4 b �4 c. After that, no
further updates are possible: even though agent 4 disagrees
with its influencers on pair ac, this pair cannot be swapped
since it is no longer adjacent in �4. If we now consider syn-
chronous PPD, and let agents 1 and 4 update repeatedly on
pair ab, we obtain an infinite update sequence. Agents 2 and
3 are sources, and thus never update their preferences.

updates define transitions from one state to another. That is,
in the case of asynchronous PPD, it is possible to move from
state � to a state �′ if and only if there exists an agent i and
a pair ab such that �′i = PPD(�, i, ab) and �′j = �j for
all agents j 6= i. For synchronous PPD, we require that for
each agent i there is a (possibly different) pair aibi such that
�′i = PPD(�, i, aibi). Transitions between distinct states
correspond to effective PPD updates, and absorbing states,
i.e., states without effective PPD updates, correspond to sta-
ble profiles. In Section 4 we will use the fact that PPD asymp-
totically terminates if and only if the respective Markov chain
is absorbing, i.e., from each state there exists a sequence of
PPD updates leading to a stable state [see, e.g., Kemeny and
Snell, 1976].

We now define a second, stronger notion of termination.
Definition 3. We say that PPD universally terminates on a
class of graphs E if for each graph E ∈ E and each prefer-
ence profile � on E there does not exist an infinite sequence
of effective PPD updates starting from �.
Intuitively, Definition 3 says that, as long as we keep moving,
we are guaranteed to reach a stable state, irrespective of the
random choices made by turn and pair . Clearly, universal
termination implies asymptotic termination. Next, we estab-
lish some further connections between the two concepts.
Lemma 4. If |A| > 3, then every sequence of asynchronous
updates is also a sequence of synchronous updates.

Proof. We show that any asynchronous update can be simu-
lated with a synchronous update. Let ab be the pair that is
being swapped during the asynchronous update in �i. For
each agent j 6= i, we choose a pair that is nonadjacent in �j

(which is possible since |A| > 3), and we keep ab as the se-
lected pair for i. Now we have �t+1

i = PPD(�t, i, ab) and
�t+1

j = �t
j for all j 6= i.

As a direct consequence of Lemma 4, we have the following.
Proposition 5. Let |A| > 3. If synchronous PPD universally
terminates on graph E, then so does asynchronous PPD. If

asynchronous PPD asymptotically terminates on E, then so
does synchronous PPD.

Proof. Universal termination requires the absence of infi-
nite sequences of effective PPD updates. The claim re-
garding universal termination thus follows immediately from
Lemma 4. Asymptotic termination requires, for every profile
�, the presence of a sequence of PPD updates from � to a
stable state. Lemma 4 thus also establishes the claim regard-
ing asymptotic termination.

We will now introduce further terminology to characterise the
profiles encountered at termination. Let a termination profile
for �0 be a stable profile that is reachable from �0. We
say that (asynchronous or synchronous) PPD converges to a
unique profile for �0 if it terminates when starting from �0

and all termination profiles for �0 coincide. We say that PPD
converges to consensus for �0 if it terminates when starting
from �0 and all termination profiles �∗ are unanimous, i.e.,
�∗i = �∗j for all i, j ∈ N . Observe that we do not require all
termination profiles to be equal, thereby allowing for conver-
gence to different consensus profiles.

4 Termination Results
In this section, we investigate how the structure of the influ-
ence network affects the termination of PPD.

4.1 Universal Termination
Universal termination is a very strong property, and we show
that it can only be obtained by heavily restricting the class of
graphs. As noted in Footnote 2, in the special case where the
influence network E is a complete graph (without self-loops),
our model coincides with the setting of Farnoud et al. [2013],
who (implicitly) prove the following.

Proposition 6 (Farnoud et al., 2013). Asynchronous PPD
universally terminates on complete graphs.

Simple examples, such as that of two connected agents with
opposing preferences a �1 b and b �2 a, are sufficient
to show that synchronous PPD does not universally termi-
nate on complete graphs. However, if we restrict attention to
acyclic networks (DAGs), we obtain universal termination for
both synchronous and asynchronous PPD.

Proposition 7. Synchronous PPD universally terminates on
DAGs.

The proof of Proposition 7 uses a potential function argument
similar to that used by Farnoud et al. [2013]. Proposition 7 is
tight, because—as we have seen already—synchronous PPD
does not even terminate universally on a simple cycle with
just two alternatives. Combining Proposition 7 with Proposi-
tion 5 we directly obtain the following result.

Corollary 8. Asynchronous PPD universally terminates
on DAGs.

4.2 Asymptotic Termination
We now prove an asymptotic termination result for arbitrary
networks. We need the following definition.



Definition 9. Let �0 be a preference profile and E an in-
fluence network. The pair (�0, E) satisfies the linear local
majority property (LLM) if for all profiles � reachable from
�0 and for all i ∈ N the relation �Inf (i) is a linear order.

Thus, we require the influence exercised over any agent in
the network after any update sequence to be based on a linear
order. Profiles satisfying domain restrictions such as those
studied in Section 5.1 satisfy LLM on any network.

Theorem 10. Let �0 denote the initial preference profile.
For |A| = 2, asynchronous PPD asymptotically terminates
on any graph E. For |A| > 3, asynchronous PPD asymptoti-
cally terminates on E when (�0, E) satisfies LLM.

Proof sketch. For A = {a, b}, we define a two-phase process
inspired by an idea of Chierichetti et al. [2013]. In the first
phase, we consider all agents i with b �i a and a �Inf (i) b,
and we perform a PPD update on them. We iterate this pro-
cess until all remaining agents with b �i a agree with their
influencers. In the second phase, we consider agents j with
a �j b, and we iteratively update all those that disagree with
a majority of their influencers. We claim that this process
is guaranteed to reach a stable profile. To see this, let �′
and �′′ denote the profile after the first and after the second
phase, respectively. We show that �′′ is stable.

Assume for contradiction that there is an agent i such that
�′′Inf (i) 6⊆ �

′′
i . We distinguish two cases. If a �′′i b (and thus

b �′′Inf (i) a), then �i would have been updated at the end
of the second phase, a contradiction. If, on the other hand,
b �′′i a (and thus a �′′Inf (i) b), then at every time step during
the second phase a majority of i’s influencers preferred a to
b. Consequently, at the end of the first phase we already had
b �′i a and a �′Inf (i) b. But then�i would have been updated
to a �i b, a contradiction. This proves that �′′ is stable.

Now let |A| > 3, and assume that (�0, E) satisfies LLM.
Fix an arbitrary enumeration p1, . . . , p|A|(|A|−1)/2 of all un-
ordered pairs of alternatives in A and consider the pairs in
this order. Say the first pair is p1 = ab. For this pair, we ex-
ecute a generalised variant of the two-phase process defined
above: In the first phase, we consider all agents i with b �i a
and a �Inf (i) b, and we repeatedly perform PPD updates on
agent i until �i is identical to �Inf (i) (we “copy” the entire
relation �Inf (i) to agent i). We can do this because �Inf (i)

is guaranteed to be a linear order by the LLM property. In
particular, agent i prefers a to b after such an update. We
iterate this process until all remaining agents with b �i a
agree with their influencers on ab. In the second phase, we
consider agents j with a �j b and iteratively copy the linear
order �Inf (j) to agent j whenever b �Inf (j) a.

After completing this two-phase process for p1 = ab, we
execute the two-phase process for p2, then for p3, and so
on. We claim that, after all pairs have been considered, we
have reached a stable profile. Say that a pair xy is stable if
�i�xy = �Inf (i)�xy for every agent i, and unstable other-
wise. If all pairs are stable, the profile itself is stable (but note
that the converse does not hold, since there may be unstable
pairs in a stable profile, notably non-adjacent ones).

Now let xy be an arbitrary pair. After the two-phase pro-
cess has completed for xy, we know (by the argument for

a �3 b

a �2 b

a �1 b

b �4 a

b �5 a a �1 b �1 c

c �2 a �2 b

b �3 c �3 a

Figure 2: Left: A strongly connected influence network and
a stable profile. PPD does not converge to consensus despite
the fact that the majority relation is (trivially) acyclic. Right:
A simple cycle influence network and a preference profile
with a cyclic majority relation. PPD converges to consensus
(see Section 5.2).

|A| = 2) that xy is stable. It remains to show that executing
the two-phase process for subsequent pairs does not make xy
unstable. But this is true simply because, once a pair is sta-
ble, no sequence of asynchronous PPD updates will lead to
an agent performing an xy swap. Indeed, suppose that xy is
stable and assume for contradiction that there is a sequence of
PPD updates that swaps xy for some agent. Let t be the first
time that happens, and let i be the agent whose preferences
are swapped at time t. The swap can only be caused by some
agent in Inf (i) having swapped xy at an earlier time t′ < t,
contradicting the minimality of t. Therefore, at the end of the
process all pairs are stable and so is the profile.

Proposition 5 implies asymptotic termination of synchronous
PPD under the same conditions.

It is not clear whether Theorem 10 remains true when LLM
is not satisfied. We leave this as an open problem for future
work. A useful corollary of Theorem 10 concerns simple cy-
cles, where LLM trivially holds.

Corollary 11. Asynchronous PPD asymptotically terminates
on the class of simple cycles.

Asynchronous PPD does not universally terminate on simple
cycles. To see this, take two alternatives a and b, and let all
agents on a simple cycle of length n > 3 have preference
a �i b except for one agent who prefers b to a. This situation
allows for an infinite sequence of effective PPD updates, with
the preference of the outlier moving around the cycle.

5 Convergence Results
In this section we study the properties of termination profiles.
We consider two graph classes: directed acyclic graphs (Sec-
tion 5.1) and simple cycles (Section 5.2).

Recall that when the influence network is complete, our
model is equivalent to the one studied by Farnoud et al.
[2013]. They show that, if n is odd, PPD converges to
consensus if and only if the majority relation �N is acyclic
[Farnoud et al., 2013, Theorem 8]. It is straightforward to
check that acyclicity of �N is neither necessary nor suffi-
cient for convergence to consensus if the network is incom-
plete (see Figure 2). We first consider DAGs.



5.1 Directed Acyclic Graphs (DAGs)
For an acyclic network E, the sources SE play an important
role because their preferences never change. We now study
the influence that the preferences of the sources have on the
termination profile. In particular, we consider the case where
the preferences of the sources are in some sense “aligned,”
and study whether at termination this will be reflected across
the whole network. Such results are important when the dif-
fusion process precedes the aggregation of individual prefer-
ences into a collective preference ordering, e.g., when taking
a collective decision in an election. We identify conditions
under which the asynchronous PPD diffusion process on a
DAG with aligned sources leads to termination profiles that
can be safely aggregated.3

The idea of aligned preferences can be formalised by re-
stricting the set of preference relations that can co-occur in
a profile, i.e., imposing a domain restriction. A very well-
known example of a domain restriction is single-peakedness.
A profile � = (�1, . . . ,�n) is single-peaked if there exists a
linear order / on A, called the axis, such that, for each i ∈ N ,
a / b / c implies that b �i a or b �i c. Single-peaked pref-
erence profiles have many desirable properties. For instance,
it is well known that the majority relation �N is acyclic (and
thus gives rise to weak Condorcet winners) whenever pref-
erences are single-peaked [Black, 1948]. Other well-known
restricted domains are those of single-crossing preferences
[Mirrlees, 1971; Roberts, 1977] and value-restricted prefer-
ences [Sen, 1966; Sen and Pattanaik, 1969] (we omit the def-
initions due to space constraints; see, e.g., [Gaertner, 2009]);
a further (trivial) example is full consensus.

Now, it is straightforward to observe that if the sources
form a consensus, i.e., if�i = �j for all i, j ∈ SE , then PPD
converges to consensus. What we want to show next is that
more complex domain restrictions such as single-peakedness
similarly spread to the whole network whenever they hold at
the source nodes. A simple example shows that this is not
possible if there can be majority ties among the influencers of
a node (see Figure 3). For this reason, we need to assume that
no majority ties occur during the PPD process. This assump-
tion is formalised in the no-tie property.

Definition 12. Let �0 be a preference profile and E an influ-
ence network. The pair (�0, E) satisfies the no-tie property
if, for all profiles � reachable from �0 and for all i ∈ N ,
�Inf (i) does not have ties, i.e., �Inf (i)�ab 6= ∅ for all a 6= b.

The no-tie property generalises a common assumption in
social choice theory—that of assuming that the number of
decision-makers is odd—and can be regarded as natural when
considering large enough networks.

Using this assumption, we will show that PPD propa-
gates a number of domain restrictions, including, in par-
ticular, single-peakedness, single-crossingness, and value-
restrictedness, to the whole network. We now define three
properties a domain restriction may possess.

3This argument has been used in the literature on deliberative
democracy to suggest that deliberation can be an effective process to
obtain an “aggregatable” preference profile [see, e.g., Miller, 1992;
Knight and Johnson, 1994; Dryzek and List, 2004].

a �1 b �1 c c �2 b �2 a

a �3 c �3 b

Figure 3: A stable profile � showing that single-peakedness
is not propagated when there are ties in �Inf (i). Profile � is
not single-peaked, even though �|SE is.

Definition 13. Let D be a domain restriction.
• D is closed under subprofiles if, for each profile � satis-

fying D and for each I ⊆ N , the profile �|I = (�i)i∈I
satisfies D.
• D is closed under majority if, for each profile � satisfy-

ing D and for each I ⊆ N such that�I is a linear order,
the profile � ∪ {�I} = (�1, . . . ,�n,�I) satisfies D.4

• D satisfies the Condorcet condition if, for each profile �
satisfying D, the majority relation �N is acyclic.

We are now ready to show that these properties are sufficient
to guarantee PPD propagation from the sources.
Proposition 14. Let D be a domain restriction that is closed
under subprofiles, closed under majority, and satisfies the
Condorcet condition. Let E be a DAG and let �0 be a pro-
file such that (�0, E) satisfies the no-tie property. If �0�SE
satisfies D, then all profiles at termination satisfy D.

Proof. Let the depth of node i be the length of a longest path
from a source to i (this number is finite, as E is a DAG). We
proceed by induction on the depth of a node. Nodes of depth
zero are sources, so for them our claim is immediate.

Now, consider some d > 0 and assume that our claim is
true for profiles formed by preferences of agents in nodes
of depth d − 1 or less; we will show that it holds for pro-
files formed by preferences of agents in nodes of depth d or
less. Consider an agent i at depth d and assume that her influ-
encers Inf (i) have stabilised. Note that each node in Inf (i)
has depth at most d− 1. Since D is closed under subprofiles
and because of the induction hypothesis, the profile �|Inf (i)
satisfies D. This in turn implies that the majority relation
�Inf (i) is a linear order, because (1) D satisfies the Condorcet
condition and (2) �Inf (i) does not have majority ties due to
(�0, E) satisfying the no-tie property. Thus, Lemma 1 im-
plies that agent i’s preference relation will eventually stabilise
to �Inf (i): as long as agent i disagrees with �Inf (i), she will
have an adjacent pair she can update. Our claim now follows
from the assumption that D is closed under majority.

The requirements of Proposition 14 are satisfied by the three
aforementioned domain restrictions: single-peakedness (SP ),
single-crossingness (SC ), and value-restrictedness (VR).
Corollary 15. Let D ∈ {SP ,SC ,VR}. Consider a DAG E
and a profile �0 such that (�0, E) satisfies the no-tie prop-
erty. If �0�SE satisfies D, then all profiles at termination
satisfy D.

4Being closed under majority is a slightly more demanding re-
quirement than the closedness property that is studied by Puppe and
Slinko [2015] in the context of Condorcet domains.



Proof sketch. According to Proposition 14, it suffices to show
that all three domain restrictions satisfy the Condorcet condi-
tion and are closed under subprofiles and majority.

It is well known that SP , SC , and VR satisfy the Con-
dorcet condition and are closed under subprofiles. The proof
that SP is closed under majority can be found, e.g., in
Moulin’s textbook [Moulin, 2003, Exercise 4.6]. SC is
closed under majority because the preferences of the median
voter(s) agree with the majority relation (assuming the latter
has no ties). Finally, we can show that VR is closed under
majority by straightforward case analysis.

Recall that PPD universally terminates on a DAG. A conse-
quence of the results shown above is that if the sources are
aligned then PPD converges to a unique profile, which can
be computed in polynomial time with a sequence of updates
that stabilises each node in increasing order of their depth.

We conclude this discussion of the case of DAGs by stating
a result that does not require the no-tie property. The follow-
ing property is a strengthening of closedness under majority.
Definition 16. A domain restriction D is closed under ma-
jority influence if the following holds for all profiles � sat-
isfying D and for all I ⊆ N . Let E∗ be an influence net-
work on |I| nodes, consisting of |I| − 1 sources that all in-
fluence the single non-source node. Assign the preferences
in �|I to the nodes in E∗ in an arbitrary order. Consider
the PPD process on E∗ and let �sink denote the prefer-
ences of the non-source node at termination. Then, the profile
� ∪ {�sink} = (�1, . . . ,�n,�sink ) also satisfies D.
Whenever the majority relation with respect to the source
nodes in E∗ is a linear order, �sink coincides with this order
and closedness under majority influence follows from closed-
ness under majority (Definition 13). However, when there are
majority ties (or even cycles), then closedness under majority
influence is a stronger requirement.

The following result is analogous to Proposition 14, but
instead of requiring the no-tie property, we need to start with a
network in which the preferences of all nodes, not only those
of the sources, satisfy the domain restriction.
Proposition 17. Let D be a restricted domain that satisfies
the Condorcet condition and is closed under subprofiles and
majority influence. Consider a DAG E and a profile �0. If
�0 satisfies D, then all profiles at termination satisfy D.
The proof of Proposition 17 is very similar to that of Proposi-
tion 14, with closedness under majority influence taking over
the roles of closedness under majority and the no-tie property.
Proposition 17 applies to single-peaked and to single-crossing
preferences.
Lemma 18. SP and SC are closed under majority influence.
Corollary 19. Let D ∈ {SP ,SC} and let E be a DAG. If
�0 satisfies D, then all profiles at termination satisfy D.

5.2 Simple Cycles
We now investigate termination profiles for the special case of
simple cycles. Lemma 1 implies that, if E is a simple cycle,
then all stable profiles (and thus all termination profiles) are
unanimous. We are going to characterise the set of linear
orders that can be reached as the group consensus.

Clearly, this set contains all linear orders that occur in the
initial profile �0, as we can simply “copy” preferences along
an influence edge. Also observe that if �0 is unanimous on
a pair ab, then this unanimity will be preserved throughout
the PPD process. We show that, for up to three alternatives,
all linear orders that respect such initial unanimities can be
obtained at termination.
Proposition 20. For |A| 6 3, a simple cycle of arbitrary size
can converge to any linear order that does not conflict with a
unanimously accepted pair in �0 (and only to those).

Proof sketch. The claim clearly holds for |A| 6 2. For
A = {a, b, c}, suppose w.l.o.g. that our goal is to reach con-
sensus on a � b � c. Clearly, this is impossible if one of
the comparisons a � b, a � c, or b � c is unanimously re-
jected. It remains to show that convergence to a � b � c is
possible when none of the comparisons a � b, b � c, a � c
is unanimously rejected. Consider a greedy algorithm that re-
peatedly finds an agent i that disagrees with both a � b � c
and her influencer on some pair in {ab, bc, ac} and updates
i’s preferences on that pair. This algorithm terminates after
at most 3n updates; we show that it always results in consen-
sus on a � b � c. To prove this, we assume for the sake of
contradiction that the greedy algorithm gets stuck, and anal-
yse what a “stuck” profile looks like. By enumerating all six
possible preference orders an agent might have, we show that
any stuck profile consists of the linear orders c � a � b and
b � c � a, in an alternating pattern. Both orders have c � a,
and hence so do the initial preferences (since the greedy al-
gorithm never reverses a � c), contradicting our assumption
that a � c is not unanimously rejected.

While it seems likely that Proposition 20 generalises to more
than three alternatives, the proof technique employed above is
not applicable to |A| > 3. We leave this as an open problem.

6 Conclusions
We have introduced a novel model of opinion diffusion on a
social network that is tailored to the representation of indi-
vidual preferences as linear orders over a finite set of alter-
natives. When prompted to reflect on the relative ordering of
a pair of alternatives adjacent in her current preference rank-
ing, an agent will swap them if a majority of her influencers
disagree with the current ordering. At what point in time an
agent is prompted to do so depends on the diffusion process,
which may be synchronous or asynchronous. We have anal-
ysed two notions of termination for such processes, universal
and asymptotic termination, and we have characterised the
profiles of collective preferences at the time of termination
for two classes of networks, namely directed acyclic graphs
and simple cycles.

Modelling social influence as aggregation of the opinions
of an agent’s influencers is a simple idea that opens up a num-
ber of interesting directions for future investigation. For in-
stance, the field of voting theory provides a huge variety of
aggregators that can be explored in this setting. Interesting
questions include how to measure and compute the influence
of a given agent, and how to efficiently infer properties of a
system at the time of convergence when given its initial state.



Acknowledgments
This work has been partly supported by COST Action IC1205
on Computational Social Choice, the Labex CIMI project
“Social Choice on Networks” (ANR-11-LABX-0040-CIMI),
a Feodor Lynen research fellowship of the Alexander von
Humboldt Foundation, and ERC-StG 639945 (ACCORD).

References
[Black, 1948] Duncan Black. On the rationale of group decision-

making. The Journal of Political Economy, 56(1):23–34, 1948.
[Chierichetti et al., 2013] Flavio Chierichetti, Jon Kleinberg, and

Sigal Oren. On discrete preferences and coordination. In Pro-
ceedings of the 14th ACM Conference on Electronic Commerce
(EC-2013), 2013.

[Clifford and Sudbury, 1973] Peter Clifford and Aidan Sudbury. A
model for spatial conflict. Biometrika, 60(3):581–588, 1973.

[de Groot, 1974] Morris H. de Groot. Reaching a consensus. Jour-
nal of the American Statistical Association, 69(345):118–121,
1974.

[Dryzek and List, 2004] John S. Dryzek and Christian List. So-
cial choice theory and deliberative democracy: A reconciliation.
British Journal of Political Science, 34(04):752–758, 2004.

[Elkind et al., 2009] Edith Elkind, Piotr Faliszewski, and Arkadii
Slinko. Swap bribery. In Proceedings of the 2nd International
Symposium on Algorithmic Game Theory (SAGT-2009), 2009.

[Farnoud et al., 2013] Farzad Farnoud, Eitan Yaakobi, Behrouz
Touri, Olgica Milenkovic, and Jehoshua Bruck. Building con-
sensus via iterative voting. In Proceedings of the 2013 IEEE In-
ternational Symposium on Information Theory, 2013.

[Gaertner, 2009] Wulf Gaertner. A Primer in Social Choice Theory.
OUP Oxford, 2009.

[Grandi et al., 2015] Umberto Grandi, Emiliano Lorini, and Lau-
rent Perrussel. Propositional opinion diffusion. In Proceedings
of the 14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2015), 2015.

[Holley and Liggett, 1975] Richard A. Holley and Thomas M.
Liggett. Ergodic theorems for weakly interacting infinite systems
and the voter model. The Annals of Probability, 3(4):643–663,
1975.

[Hung et al., 2013] San-Chuan Hung, Perng-Hwa Kung, Shou-De
Lin, Jing-Kai Lou, Chin-Hua Tsai, and Fu-Min Wang. Modeling
the diffusion of preferences on social networks. In Proceedings of
the 13th SIAM International Conference on Data Mining, 2013.

[Jackson and Yariv, 2011] Matthew O. Jackson and Leeat Yariv.
Diffusion, strategic interaction, and social structure. In Jess Ben-
habib, Alberto Bisin, and Matthew O. Jackson, editors, Hand-
book of Social Economics, volume 1, pages 645–678. North-
Holland, 2011.

[Kearns and Tan, 2008] Michael Kearns and Jinsong Tan. Biased
voting and the democratic primary problem. In Proceedings of
the 4th International Workshop on Internet and Network Eco-
nomics (WINE-2008), 2008.

[Kemeny and Snell, 1976] John G. Kemeny and J. Laurie Snell. Fi-
nite Markov Chains. Springer-Verlag, 1976.

[Kempe et al., 2003] David Kempe, Jon M. Kleinberg, and Éva Tar-
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[Moulin, 2003] Hervé Moulin. Fair Division and Collective Wel-
fare. The MIT Press, 2003.

[Puppe and Slinko, 2015] Clemens Puppe and Arkadii Slinko.
Condorcet domains, median graphs and the single crossing prop-
erty. Technical report, http://arxiv.org/abs/1507.08219, 2015.

[Raghavan et al., 2007] Usha Nandini Raghavan, Réka Albert, and
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