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Introduction Aldo Antonelli’s untimely death is a sad loss to our profession. We have been
asked by the editors of the jJournal of Philosophical Logic to write a short comment on his
most recent work, published in this issue, based in part on a referee report by one of us, that,
unfortunately, did not reach Aldo in time.

Here is what appeals to us in the innovative work in Antonelli 2013, 2015. There is a long
history of attempts to reanalyze the semantics of first-order predicate logic, the most basic
system in our field. What many of these attempts have in common is a search for specific
parameters in the ‘standard semantics’ given by Tarski that might be naturally modified or
generalized. A further motive has been the issue whether the famous ‘undecidability of
predicate logic’ is truly an intrinsic inescapable property of this system, or a side effect of
decisions concerning its semantic design that could have gone differently. In our paper
Andréka, van Benthem and Németi 1998, we presented one such reanalysis, going back to
earlier work in relativized cylindric set algebra (Crs), making the choice of variable
assignments, or modal ‘states’, an explicit parameter in first-order models, and modifying
the semantics of quantifiers accordingly. This generalized semantics validates a decidable
core logic inside standard first-order logic, and we were also able to show that this system is
closely tied to the Guarded Fragment, a large decidable slice of first-order logic under its
standard semantics. In a recent paper Andréka, van Benthem, Bezhanishvili and Németi
2014, we returned to the issue of generalizing existing semantics via Henkin-style
modifications of models, covering second-order moves, algebraic approaches, and others,
and we thought that we had pretty much covered all existing strategies.

A new semantics and logic Against this background, here is a surprising new angle,
overlooked so far to the best of our knowledge - although we will find some precursors later
on in work on generalized quantifiers from the 1970s. Antonelli 2013 proposes a non-
standard semantics for languages with arbitrary generalized quantifiers. Applied to the
existential quantifier of first-order logic, this semantics reads as follows:

M, s |= Ex.@iff (a) there exists an object d in M with M, s[x:=d] |= ¢,
and (b) the set of all witnesses d of this sort belongs to a family P¥
of subsets that has been specified in advance as part of the model. 4
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4 Technically, Antonelli’s semantics uses a function f assigning to every set S a subset f{S) of the full
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meaning of 3, while (b) comes from the nonstandard power sets.



In what follows, we will use the notation Qx.¢ for arbitrary generalized quantifiers, Ex.¢ for
the generalized reading of the existential quantifier described just now, and Jx.¢ for the
standard existential quantifier of first-order logic.

The paper Antonelli 2015 in this volume shows that the induced logic over ordinary first-
order syntax is recursively axiomatizable. The author gives a Henkin-style completeness
proof, as well as an adequate semantic tableau system, for a proof calculus with respect to
his generalized semantics. The calculus derives sequents I" [- ¢ that are valid in the usual
local sense, from truth of the premises under an assignment to truth of the conclusion under
that same assignment. This allows for a standard deduction theorem removing a premise

from I'in order to conditionalize a conclusion ¢. The calculus has three principles:

T All propositionally valid rules of inference.

EXT Equivalence Rule: If x does not occur free in I, from I'~a <> f5,
infer I' -Ex o <= Ey. [y/x]B, with [y/x]f an alphabetic variant of .

UG Universal Generalization: If x does not occur free in I,

from I'[-a, infer I' [--Ex .

Moreover, it is shown that full first-order logic arises syntactically from this base logic when
one adds all instances of the axiom ¢ — Ex.@. It is also proved that first-order logic arises
semantically from the base logic by requiring the non-standard power sets in models to be
closed under first-order parametrical definability. Finally, the paper proposes a proof for the
decidability of the new base logic via an effective translation into the Guarded Fragment.

As Antonelli notes, we have the beginnings of a new program here, studying the spectrum of
logics and semantics in between his base logic and full first-order logic. Indeed, the more we
looked at his system, the more several interesting things started striking us. In what follows,
we make a few observations and suggestions strengthening this general perspective -
though we have a qualification about the claimed results that we will explain in due course.

System variations For a start, analyzing the above syntax and semantics suggests a few
natural variations. We list a few. By ‘basic A-logic’ we mean Antonelli’s complete logic given
above. It retains an essential feature of standard first-order semantics: variables are
independent of each other. The truth value of a formula @ in a model M under an assignment
s only depends on the objects in M assigned by s to the free variables in @. This is reflected in
allowing alphabetic variants in the Equivalence Rule.

Typically, this independence fails in generalized semantics of the above-mentioned modal or
Crs type: values to individual variables outside of the formula may matter since not all
variable assignments may be admissible in a model. In semantics of the latter kind, the
Equivalence Rule only holds in the weaker version

EXT' from [~a <= f to [-Exa <> Ex.f5.

This is the basic rule of replacing provable equivalents in standard algebraic logics - being
the minimum required for a compositional semantics of the quantifier.



It would be of interest to merge the two lines of extending first-order semantics: generalized
power sets, and allowing dependencies, but we will not do so in any detail. > Another proof
system, and arguably the base logic for Antonelli’s style of analysis, arises if we drop even
the (UG) rule, and merely retain (T) and (EXT). Then we get basic classical propositional
logic with an added generalized quantifier Qx.¢ interpreted by any family of subsets:

M, s [=Qx.¢@ iff {din M | M, s[x:=d] |- ¢} EPM

The earlier truth condition for the existential quantifier Ex then refers to a generalized
quantifier satisfying the further condition that all its subsets are non-empty. In particular,
we see this reflected in the rule of Universal Generalization in basic A-logic. In the presence
of his Equivalence Rule, (UG) amounts to just adding one special axiom

=FEx. L6

In all, an interesting landscape of new weak first-order logics is opening up here, starting
from very weak systems, and then progressively adding further features such as monotoni-
city or distributivity. This landscape lends itself to comparative analysis in terms of deduc-
tive power, but also in terms of translations, relative interpretations, or other connections.

Algebraic content and proof analysis Playing with basic A-logic reveals more combinatorial
content than might show at the surface. Thus, in assessing this system, syntax and proof
theory play a role in addition to semantic considerations about its models. This is why we
will include a few formal derivations in what follows. In particular, we find it instructive to
look for algebraic equations that the quantifiers satisfy in the Lindenbaum-Tarski algebra of
the logic. Basic A-logic obviously lacks laws of monotonicity or distribution over disjunction,
but it does validate, for instance, the following basic prenex distribution law:

Ex. (a AEx. f8) <= (Ex.a A Ex. 8)7

5 Uniformity is achieved in Antonelli 2013 by using the same generalized quantifier for all variables. A
weaker version would give each variable x its own quantifier, moving to a neighborhood version of
the modal Crs-style semantics in Andréka, van Benthem, and Németi, 1998. (This suggestion was
made by Wes Holliday.) We will return to the matter of uniformity of the Antonelli semantics below.

6 (T) and (UG) prove =Ex. L, using an empty set of assumptions. Conversely, if we can prove ¢ from a I
not containing x free, then we can prove =@ <= L by (T), and then Ex. =@ <> Ex. L by the Equivalence
Rule, whence we get I [- 7Ex. =@ using the formula =Ex.  as an axiom, by applying the (T) rule.

6 (T) and (UG) prove =Ex. L, using an empty set of assumptions. Conversely, if we can prove ¢ from a I
not containing x free, then we can prove =@ <= L by (T), and then Ex. =@ <= Ex. L by the Equivalence
Rule, whence we get I [- 7Ex. =@ using the formula =Ex.  as an axiom, by applying the (T) rule.

" Here is a proof by the above rules. (a) From the (T)-valid {Ex. } |- @ <= (a A Ex. ), using (EXT),
derive {Ex. } |- Ex. o <= Ex. (a A Ex. ). It follows by (T) that /- (Ex. a A Ex. ) — Ex. (a A Ex. 3). (b) By
using (T) once more, {Ex. } |- Ex. a <= Ex. (a0 A Ex. B) also implies that {Ex. §, Ex. (o A Ex. B)} |- Ex. .
(c) Next, from the (T)-valid {=Ex. B} |- (@ A Ex. ) <= L, using (EXT), derive {=Ex. B} |-Ex. (a A Ex. B) <
Ex. 1, and using (T) plus the earlier proof of =Ex. L, derive that |- Ex. (o A Ex. 3) — Ex. . Putting (b)
and (c) together, by applications of (T), we derive that - Ex. (a 2 Ex. B)) — (Ex. a A Ex. 3).



Furthermore, with this useful principle in place, it is easy to show, for instance, how all the
further laws of a standard proof system for first-order logic, such as monotonicity or distri-
bution of E over v, become explicitly derivable from basic A-logic when we add the earlier-
mentioned axiom @ — Ex.@ of Existential Generalization. 8 Incidentally, the interest in this
syntactic exercise is not so much in quickly retrieving standard first-order logic from basic
A-logic, but rather to get a concrete feeling of what precise proof power returns us to the
undecidable system that we started with.

As for other system observations, it also makes sense to go down in power from basic A-
logic, rather than up. For instance, it is easy to see that

Fact Ex. Ex. Ex. a & Ex. Ex. ais valid in basic A-logic, but no longer valid in the
weaker system of basic Qx-logic. But Qx. Qx. Qx. Qx. @ < Qx. Qx. a is still

valid in this weaker system. 9

Semantic correspondence analysis As for the landscape of logics suggested by Antonelli, it
is intuitively clear how various intermediate axioms express conditions on generalized
quantifiers lending themselves to immediate semantic analysis, now reading formula
variables in a second-order sense as ranging over all subsets of the model. Construed in this
way, for instance, the additional axiom of

Existential Generalization ¢ —=>Exg

says that all non-empty sets belong to the Antonelli generalized quantifier, which, with the
non-emptiness for the base logic, makes that quantifier the standard one. Similar analyses
work for monotonicity or distribution laws for the existential quantifier.

Two broader perspectives Let us now look at two streams of work in the earlier literature
that connect with the program of exploring weak predicate logics sketched here. In each
case, we only make a few observations, mostly without proof. We believe that an interesting
conglomerate of topics is coming to light here concerning decidable semantics and decidable
fragments for first-order logic, that we will address at greater length in a follow-up paper.

8 These facts are easy to prove using the auxiliary inference rule: “from |- ¢ — Ex. yto |-Ex. ¢ — Ex. ¢’
that can be derived from our prenex law.

9 For a change, we give a semantic proof for these claims. Let M be a model and s an assignment of
objects to variables. For any formula ¢, set X(¢, s) := {d EM : M, s[x := d] |- ¢}. Now, the set X(Ex. ¢, s)
is always the whole domain of M or the empty set &J by the truth definition. Thus, quantifier
iterations with the same variable only involve two issues: whether Q accepts &, and whether it
accepts M. Checking all 4 combinations for this, it is easy to see that 3 of them (including the Antonelli
quantifier itself) satisfy the equivalence Ex. Ex. a < Ex. Ex. Ex. a. However, the fourth quantifier Q with
O € PM and with M & PM keeps switching its truth values for iterations in each round, validating only
Ex. Ex. @ & Ex. Ex. Ex. Ex. a. Indeed, the latter principle holds in all 4 cases. We could even go further
with these prima facie somewhat unusual principles, and classify generalized quantifiers by their
behavior on the preceding iteration laws.



Logics of generalized quantifiers Logics with added generalized quantifiers have been
studied extensively since the 1950s, although these systems largely consisted of systems
FOL(Q) consisting of first-order logic in its standard interpretation with some new
generalized quantifier Q added. Going one step further, Vadnianen 1978 considers systems
that add the generalized quantifier to a propositional base without the standard first-order
quantifiers present - though still retaining the standard assumption, coming already from
Mostowski and Lindstréom, that the sets in the quantifier be closed under isomorphism,
making the quantifier express essentially a numerical criterion. In particular, Anapolitanos
and Vaidndnen 1981 showed that the weakest such logic is decidable, using a semantic
tableau technique. We cannot survey this work here, but merely note that it shows formal
resemblances to Antonelli’s program, even though the generalized quantifiers in Antonelli’s
semantics are not necessarily closed under isomorphic images. 10

These remarks are just a start. We believe that many existing results and themes from
current generalized quantifier theory (cf. the survey Peters and Westerstahl 2006) can be
brought to bear on generalized semantics for weak predicate logics.

Intermezzo: Antonelli’s proof of decidability This is a good point to mention a worry that
occurred to us in thinking through Antonelli’s decidability proof for his logic via reduction to
the Guarded Fragment. We believe that the result is correct, but that the argument as stated
is flawed - though in an interesting way.

Antonelli’s proof gives a translation tr from the basic quantifier language that involves the
following essential clause:

tr(Qx. ¢(x,y)) =
Fu(G(x u, y) 2 V2(G*(z, u, y) = tr(@(z,y)) 2 Y2(G(2 u, y) = tr(¢(z,y)))

It is easy to show that, if a formula in Antonelli’s language has a model as described above,
its translation is in the Guarded Fragment, and it has a two-sorted standard model that
treats subsets as new objects, with an obvious interpretation of the two guard predicates.
Next, one shows that, if a guarded formula tr(@) has an arbitrary standard model, this model
induces what Antonelli calles a ‘multi-dimensional model’ for ¢ where the generalized
quantifier now consists of a set of finite tuples of objects: these sets arise because of the
dependence of the guard predicates on the tuples of objects assigned to the parameters y.
Interpretation of Qx. ¢(x, y) then checks whether the set of witness tuples (e, d), with d the
fixed objects assigned to the parameter variables y, belongs to the quantifier.

Finally, Antonelli claims that we can go one step further: basic A-logic as defined above is
also sound for the broader class of multi-dimensional models, and hence ¢ is consistent, and
hence by his completeness theorem, ¢ has an intended model.

10 Anapolitanos and Vadndnen 1981 do consider non-isomorphism-closed models for generalized
quantifiers as an intermediate stage in their argument before giving an ingenious construction that
guarantees permutation invariance. Conversely, with the same specialization in mind, one could
investigate versions of closure under isomorphism for Antonelli’s semantics.



A problem We believe that the final claim of soundness for multi-dimensional models is
incorrect, since it breaks down on a delicate point of notation. The rule (EXT) is indeed valid
in the multi-dimensional semantics, if

the premise I' |-a <= finvolves formulas with the same free variables x, y,

as is assumed in Antonelli’s soundness proof. However, the general rule of basic A-logic does
not assume this equality of variables, and it should not - since in general, we need the
inhomogeneous case, say to prove the validity

Qx.Px <> Qx.(Px A y=y)

But in the latter case, there is no guarantee that the two quantifiers introduced in the
conclusion, referring to sets of tuples of different arities, support an equivalence - and one
can also see that Antonelli’s guarded translations do not yield equivalent formulas here.

Even so, we believe that Antonelli’s decidability result is correct, and that the preceding
difficulty can be fixed by several methods: changing the translation to one going into the
larger decidable ‘loosely guarded fragment’, ‘preprocessing’ the formulas first modulo
validity to improve performance of the translation, or reducing to generalized quantifier
results like those for the generalized semantics of Anapolitanos & Vdandnen 1981. However,
we also see the result as provable by just using natural direct techniques for establishing
decidability, such as the ‘mosaics’ of Németi 1995. We defer a proof to a follow-up paper.

Local generalized semantics However this may be, the above difficulty can also be turned
into a positive point, since there is independent interest to the case where the proof does
work. Antonelli’s guarded translation does establish the following

Fact A-validity is decidable over multi-dimensional models.

This modified observation has independent interest. It concerns a natural ‘local’ variant of
the original uniform semantics where the model had just one generalized quantifier for the Q
in all contexts. In contrast, multi-dimensional models have a family of quantifiers Q¢
depending on the tuples of objects interpreting the free variables in formulas Qx. ¢(x, y). This
distinction between natural local and uniform variants will return below.

We conclude with two comments. First, we believe that Antonelli’'s semantics in either
uniform or local variants has the Finite Model Property. Next, this raises the interesting issue
of finding the exact computational complexity for either local or uniform A-logic.

Next we turn to a final related perspective, that connects up with both Antonelli’'s semantics
and generalized quantifier theory in a natural way.

Modal neighborhood models Several of the preceding points suggest one more analogy that
may be fruitful in thinking about Antonelli’s program, namely, with modal logic.

For a start, the preceding correspondence results for generalized quantifier axioms are
reminiscent of modal correspondence theory for axioms over frames. Also, the spirit of the



Crs semantics or its equivalent generalized assignment semantics - that we have mentioned
as a useful comparison case - is modal. Typically, Crs models validate monotonicity and
distribution over disjunctions, just as in the minimal modal logic.

But if there is a modal angle here, why are the latter principles absent from basic A-logic?
The analogy we see here is with a well-known semantic move toward generality in modal
logic, from relational graph models to neighborhood models where each world has a family of
neighborhoods attached to it. In such models,

A box modality [Jpis true at world s if ¢ holds throughout some neighborhood of s -
or in a still more minimal version that drops even upward monotonicity, if the set

of all worlds where g@is true is a neighborhood of s.

Now note that a family of neighborhoods as used here is, essentially, just an arbitrary
generalized quantifier. Thus the conceptual step from Crs models to Antonelli’s generalized
models seems similar to that from relational to neighborhood models in modal logic. In this
light, one might see modal neighborhood languages as fragments of the full first-order
language with respect to the generalized semantics discussed here.

We believe that this analogy may be a fruitful one, including the taking of themes from the
currently quite active area of modal neighborhood semantics to our current setting, such as
the model theory of appropriate generalized notions of bisimulation, or the introduction of
richer modal languages suggested by neighborhood models.

In this setting, an earlier point returns in an illuminating form. Neighborhood models for
modal logic have local families of sets depending on the current world. This is a special case
of the above-mentioned ‘local semantics’ for generalized quantifiers Q4. 11 Accordingly, basic
neighborhood logic is local, and this is reflected in its validities, which are axiomatized by a
minimal proof system that just contains replacement of equivalents and propositional
inference - with upward monotonicity of the modality added for the monotonic version.

If we want a uniform version with only one family of neighborhoods (generalized quantifier)
throughout, new principles of inference are needed, such as the rule that (EXT) is always
allowed from sets of boxed premises. We will not pursue these analogies with A-semantics
here, except to note that they go through even in small details. 12

We end with a few more general points about the program considered here.

What is the right language? Often generalized semantics suggest richer languages with
more distinctions than the original language over the initial models. For instance, the above-
mentioned Crs semantics has new ‘polyadic quantifiers’

11 In this connection, note also that Crs semantics has variable assignments as its basic items, not the
individual objects themselves as in Antonelli 2013 (cf. also the point made in Footnote 5) - and this
difference mattered, e.g., to treating dependence and independence of variables.

12 For instance, Antonelli’s guarded translation shows similarities with the embedding of the basic
neighborhood logic into standard relational polymodal logic in Kracht and Wolter 1999.
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introducing tuples of objects in a way that is no longer definable from iterated single
quantifiers, though the base logic of polyadic quantifiers remains decidable. Antonelli, too,
discusses such quantifiers, but it is not clear to us if these represent a substantial extension
to what might be the natural formalism for his generalized quantifier models. What logical
language best fits these models? 13

A less radical approach would look at basic A-logic, or its underlying more general quanti-
fier Q-logic, adding the standard existential quantifier 7 and perhaps others with their usual
meanings, the same way we kept the standard Boolean operators fixed in his logic. This
richer language allows us to move some of the earlier semantic observations (e.g., those on
correspondence) into the object language. For example, the non-emptiness condition in the
semantics of the quantifier Ex is expressed by the first-order formula

Ex.p— Ix.@
We forego further exploration of this multi-quantifier system.

Wider semantics, or narrower fragments? A general theme in our own work has been a
search for precise correspondences between two perspectives:

(a) generalizing a semantics for a whole logical language, and (b) sticking to

standard semantics for a suitably chosen matching fragment of that language.

What fragment of first-order logic then matches basic A-logic? One answer is the subset of
the Guarded Fragment that one gets through Antonelli’s translation for the local semantics
(modulo the above qualifications). Are there more perspicuous matching fragments? And
what about the weaker base logic that we obtained by restricting the Equivalence Rule to its
algebraic essentials - or the still weaker logic of one arbitrary generalized quantifier? 14

Conclusion With this brief note, we hope to have shown that Antonelli’s generalized first-
order semantics opens up new lines of inquiry that are well-worth investigating, while it also
ties in naturally with two major existing research programs: logics for generalized
quantifiers, and modal logics with neighborhood semantics.
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