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Abstract. We consider the theory IΣµ, where µ is the least x such that IΣx
together with all true Π1-sentences is inconsistent. We show that the provabil-

ity logic of IΣµ coincides with that of PA, i.e. the Gödel–Löb provability logic
GL. While arithmetical completeness of GL with respect to PA is established

by using a single Solovay function, our proof for IΣµ relies on a uniformly

defined infinite sequence of such functions.

1. Introduction

The provability predicate M, introduced and studied in [HV, Section 6], proves
handy for obtaining suprema in the lattice of interpretability degrees of finite ex-
tensions of Peano Arithmetic (PA). For this reason, M is called a supremum adapter
in [HV]. We define it as:

Mϕ := ∃x
(
�xϕ ∧ ∀y < x3Π1

y >
)
.

where �x is the provability predicate for IΣx + exp, and 3Π1
x > the consistency

statement for IΣx + exp together with all true Π1-sentences. Modulo an index
shift, this almost coincides with the definition in [HV]. The equivalence of the two
versions holds in IΣ1, but not in I∆0+exp. Our present amended variant allows
us to keep the induction footprint of the arguments in subsection 4.2 reasonably
minimal.

We say that a theory T is 1-inconsistent if there is a proof of contradiction in
T together with all true Π1-sentences. If PA is 1-inconsistent, we denote by µ
the smallest x such that IΣx is 1-inconsistent. In a sufficiently strong metatheory,
M-provability is easily seen to coincide with provability in IΣµ, where IΣµ := PA
in case PA is 1-consistent. In the standard model, M-provability must therefore
coincide with ordinary PA-provability. On the other hand, this equivalence is not
verifiable in PA since, by the Second Incompleteness Theorem, PA does not prove
its own 1-consistency.

In this paper we are interested in the PA-provable propositional schemata involv-
ing M, i.e. the provability logic of M. We show that the latter coincides with the
Gödel–Löb provability logic GL of the ordinary PA-provability predicate �.

Our M is a cross between two well-studied notions of provability, namely Feferman-
provability and 1-provability. The Feferman provability predicate Mf is defined as:

Mfϕ := ∃x (�xϕ ∧3x>),
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where 3x> is the consistency statement for IΣx + exp. The joint provability logic
of Mf and � was worked out in [Sha94]. We note here that since PA ` ¬Mf⊥, the
provability logic of Mf is different from GL.

Given a theory T containing I∆0+exp, n-provability refers to provability in T
together with all true Πn-sentences. We write �Πn

T for the provability predicate of
this theory. Smoryński ([Smo85, 3.3.9]) showed that the provability logic of each

�Πn

T is GL. The polymodal logic GLP, introduced by Japaridze ([Dzh88]), contains
a modality �n for each n. Generalizing Japaridze’s result, Ignatiev ([Ign93]) showed

that GLP is the joint provability logic of �Πn

T for all n. A simplified proof of this
result was given by Beklemishev ([Bek11]).

Prerequisites. We assume the reader to be familiar with basic notions and facts
concerning arithmetical theories as presented, for example, in [HP93, Chapter I].
Knowledge of Solovay’s proof of arithmetical completeness of GL ([Sol76]) is useful.

Acknowledgements. We wish to thank Lev Beklemishev for discussing the arith-
metical completeness proof for M with the first-named author during her stay in
Moscow; his insights proved to be very useful. We are grateful to Fedja Pakhomov
for proving Theorem 3, and for his permission to include it here.

2. Preliminaries

We introduce the basic notions and results used in the paper. The reader is advised
to go through this section lightly in order to return when some fact or definition is
used.

2.1. Modal logic. Denote by LM the language of propositional modal logic con-
taining a unary modality M. The axiom schemata of the Gödel–Löb logic GL include
all propositional tautologies in the language LM, together with (K) and (L):

(K) M(A→ B)→ (MA→ MB)

(L) M(MA→ A)→ MA
The inference rules of GL are modus ponens and necessitation:

if GL ` A, then GL ` MA.
We recall that GL ` MA→ MMA (see e.g. [Boo93, p.11]).

A GL-frame is a finite non-empty set W together with a transitive irreflexive binary
relation ≺ on W . For a, b ∈W , we write a � b if either a = b or a ≺ b. A GL-frame
〈W,≺〉 is said to be rooted in case there is some w ∈ W such that w � a for all
a ∈ W . A GL-model is a triple 〈W,≺,〉, where 〈W,≺〉 is a GL-frame, and  a
valuation assigning to every propositional letter a subset of W . We extend  to
all LM-formulas by requiring that it commutes with propositional connectives, and
interpreting ≺ as the accessibility relation for M:

M, a  MA if for all b with a ≺ b, M, b  A.

Given M = 〈W,≺,〉, we write M  A if M, a  A for every a ∈ W . We write
F  A if M  A for any model M whose underlying frame is F .
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It is well-known (see for example [Boo93, Chapter 5]) that GL is modally complete
with respect to the class of GL-frames:

Theorem 1. GL ` A iff for every GL-frame F , F  A. �

2.2. Arithmetical theories. We work with first-order theories formulated in the
language L of arithmetic containing 0, S, +, ×, and ≤. A formula is bounded or ∆0

(equivalently, Σ0 or Π0) if all quantifiers occurring in it are of the form ∃x ≤ y or
∀x ≤ y. A formula is Σn+1 (Πn+1) if it is of the form ∃x1 . . . ∃xk ϕ (∀x1 . . . ∀xk ϕ),
with ϕ a Πn (Σn)-formula, and ∆0(Σ1) if it is obtained from Σ1-formulas by using
propositional connectives and bounded quantification.

A formula ϕ is ∆n in a theory T if T ` ϕ↔ σ and T ` ϕ↔ π for some Σn-formula
σ and Πn-formula π.

Given a class Γ of formulas, IΓ is the theory obtained by adding to Q the induction
schema for Γ-formulas. The theory of Peano Arithmetic (PA) is given as

⋃
n∈ω IΣn.

For n > 0, IΣn is finitely axiomatizable ([HP93, Theorem I.2.52]).

The graph of exponentiation is definable in I∆0 by a ∆0-formula exp (see
[HP93, Theorem V.3.15]). We denote by exp the axiom stating the totality of
exponentiation. We recall that I∆0+exp is finitely axiomatizable ([HP93, Theo-
rem V.5.6]), and that IΣ1 ` exp ([HP93, Theorem I.1.50]).

A formula is ∆exp
0 if all quantifiers occurring in it have the form ∃x ≤ exp y or

∀x ≤ exp y. It is well-known that any ∆exp
0 -formula is ∆1 in I∆0+exp.

Theorem 2 ([HP93, Remark I.1.59(3)]). Let f, g and k be ∆exp
0 -defined provably

total functions of I∆0+exp. Suppose that h is defined from f and g by primitive
recursion, and majorized by k. Then h is ∆exp

0 -definable and provably total in
I∆0+exp, and moreover the defining equations of h are provable in I∆0+exp. �

We assume some standard formalization of syntax and provability in I∆0+exp.
In particular, �x is the conventional provability predicate for IΣx + exp, with x a
free variable. We write � for the provability predicate of PA, where we assume that
for all ϕ, �ϕ is provably equivalent in I∆0+exp to ∃x�xϕ. The symbol 3xϕ is
used as shorthand for ¬�x¬ϕ.

The sequence (�x)x<ω of provability predicates is monotone in the sense that:

I∆0+exp ` �xϕ ∧ x ≤ y → �yϕ.

As usual, �xϕ(ẏ) means that the numeral for the value of y has been substituted for
the free variable of the formula ϕ inside �x. If the intended meaning is clear from
the context, we will often write �xϕ(y) instead of �xϕ(ẏ). Recall that I∆0+exp is
provably Σ1-complete, i.e. that for any Σ1-formula σ:

I∆0+exp ` σ(y)→ �0σ(ẏ);

and that I∆0+exp verifies the Hilbert–Bernays–Löb (HBL) derivability conditions
for �x:

I∆0+exp ` �x(ϕ→ ψ)→ (�xϕ→ �xψ)

I∆0+exp ` �xϕ→ �x�ẋϕ
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The validity of Löb’s principle for �x follows from the above together with the
Fixed Point Lemma (see [Boo93, Theorem 3.2]). Thus

I∆0+exp ` �x(�ẋϕ→ ϕ)→ �xϕ,

and so principles valid in GL can be used when reasoning about �x in I∆0+exp.

Löb’s Theorem for I∆0+exp facilitates a short proof (see for example [Bek03, proof
of Lemma 2.4]) of the closure of I∆0+exp under the reflexive induction rule:

∀x (�0∀y < ẋϕ(y)→ ϕ(x))

∀xϕ(x)
.

Reflexive induction, as a general method for reasoning about linear orderings in
arithmetical theories, first appears in the work of Schmerl ([Sch79, p. 337]).

It is well-known that in I∆0+exp there is a partial satisfaction predicate SatΠ1(ϕ, y)
for Π1-formulas, where y and ϕ are internal variables ranging, respectively, over as-
signments and L-formulas. The formula SatΠ1

is Π1 and satisfies Tarski’s conditions
([HP93, Theorem I.2.55]). Defining TrΠ1

(ϕ) to be the formula saying that ϕ is a
sentence and ∀y SatΠ1

(ϕ, y), it is clear that TrΠ1
is Π1, and that for any Π1-formula

π(x),

I∆0+exp ` π(x)↔ TrΠ1(π(ẋ)).

(By our conventions for the dot notation, π(ẋ) is a sentence from the point of view
of TrΠ1

.) With TrΠ1
, we can define the provability predicate �Π1

x for 1-provability
in IΣx + exp:

�Π1
x ϕ := ∃π (TrΠ1

(π) ∧ �x(π → ϕ)).

Similarly, the provability predicate �Π1 for 1-provability in PA is defined as:

�Π1ϕ := ∃π (TrΠ1(π) ∧ �(π → ϕ)).

It is then clear that for all ϕ, �Π1ϕ is provably equivalent in I∆0+exp to ∃x�Π1
x ϕ.

We note that �Π1
x is Σ2. It follows from [Smo85, 3.3.9] that the principles of GL for

�Πn
x are valid in I∆0+exp. It is well-known that �Π1

x is Σ2-complete, i.e. that for
any Σ2-formula ς,

I∆0+exp ` ς(y)→ �Π1
x ς(ẏ).

[HP93, Theorem I.4.33] shows that IΣk+1 proves the consistency of the set of all
true Πk+2-sentences. Since IΣk + exp is axiomatized by a single Πk+2-sentence,
IΣk+1 proves the consistency of IΣk + exp + Π1-truth. An inspection of the proof
reveals that it can be formalized in I∆0+exp; thus we have

I∆0+exp ` �x∀y < ẋ 3Π1
y >.

We shall refer to the above property as reflection.

3. M as provability in IΣµ

Recall that the provability predicate M is defined as Mϕ := ∃x (�xϕ∧∀y < x3Π1
y >).

As mentioned in Section 1, we can think of M as provability in IΣµ, where µ is the
least x such that the theory IΣx is 1-inconsistent. In order to make this precise, let
µ = x be the formula(

¬�Π1⊥ ∧ x =∞
)
∨
(
�Π1
x ⊥ ∧ ∀y < x3Π1

y >
)
.
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The uniqueness of µ is provable in I∆0+exp:

I∆0+exp ` µ = x ∧ µ = y → x = y.

As for existence, note that since ∃x�Π1
x ⊥ is Σ2 and the least number principle for

Σ2-formulas is equivalent to induction for Σ2-formulas ([HP93, Theorem I.2.4]), it
is clear that IΣ2 ` ∃xµ = x. Using this, it is easy to see that according to IΣ2,
provability in IΣµ coincides with M-provability:

IΣ2 ` ∀ϕ (Mϕ↔ �µϕ),

where �∞ is defined to be �.

The following theorem is due to F. Pakhomov.

Theorem 3. IΣ1 0 ∃x µ = x

Proof. We show that there is a model M of IΣ1 where PA is 1-inconsistent, but
there is no smallest a such that IΣa is inconsistent. M is constructed as the union
of an ascending chain (Mi)i<ω of models, where Mi � �Π1⊥ and Mi � PA for all
i. Denote by mi the least element such that Mi � �Π1

mi
⊥. We shall ensure that for

all i,

i. mi > mi+1

ii. Mi ≺Σ1 Mi+1 (Mi+1 is a Σ1-elementary extension of Mi)

We note that M :=
⋃
i<ωMi is a model with the desired properties: from (ii) it

follows that for all i,

Mi ≺Σ1
M.

Using this, it is easy to show that M � IΣ1 and furthermore for all a ∈M, we have
that M � �Π1

a ⊥ if and only if Mi � �Π1
a ⊥ for some i.

It remains to show that a chain (Mi)i<ω with the required properties exists. We
proceed by induction on i. Let M0 be any model of PA with M0 � �Π1⊥. Now
suppose that we have constructed a model Mi of PA with Mi � �Π1

mi
⊥ ∧3Π1

mi−1>.

Since Mi � 3Π1
mi−1>, we have Mi � 3Π1

mi−1�
Π1

ṁi−1⊥ by Löb’s principle for �Π1
mi−1.

In fact we have Mi � 3Π1
mi−1(�Π1

ṁi−1⊥ ∧ 3Π1

ṁi−2>), for Mi � �mi−13
Π1
mi−2> by

reflection. In other words, Mi thinks that the theory

T := IΣmi−1 + Π1-truth + �Π1

ṁi−1⊥+ 3Π1

ṁi−2>

is consistent (where Π1-truth is to be understood in the sense of Mi). By the
Arithmetized Completeness Theorem (see e.g. [McA78, Theorems 1.7 and 2.2]),
there is an end-extension Mi+1 of Mi with Mi+1 � T . Since T contains π(ȧ)
whenever Mi � π(a) and π(x) is a Π1-formula, we see that Mi+1 is in fact a Σ1-
elementary end-extension of Mi. Sincemi−1 is nonstandard, we have Mi � �mi−1ϕ
for each axiom ϕ of PA whence, from the external point of view, Mi+1 is a model

of PA. We now have Mi ≺Σ1
Mi+1 � PA and Mi+1 � �

Π1
mi−1⊥ ∧3Π1

mi−2>. Thus it
suffices to put mi+1 = mi − 1. �
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4. The provability logic of M

We are interested in interpreting the modality of LM as the provability predicate M.

Definition 4. A M-realization is a function ∗ from the propositional letters of LM
to L-sentences. The domain of ∗ is extended to all LM-formulas by requiring that
it commutes with propositional connectives, and

(MA)∗ := ∃x (�xA
∗ ∧ ∀y < x3Π1

y >).

We prove that GL is the provability logic of M, i.e. the following:

Theorem 5. GL ` A iff for all M-realizations ∗, PA ` A∗.

We first prove arithmetical soundness, i.e. the left to right direction of Theorem 5.

Lemma 6. i. If PA ` ϕ, then PA ` Mϕ.

ii. IΣ1 ` M(ϕ→ ψ)→ (Mϕ→ Mψ)

iii. IΣ1 ` Mϕ→ MMϕ

Proof. (i) Assume PA ` ϕ. Then IΣn ` ϕ for some n, whence PA ` �nϕ. Since
PA ` ∀y < n3Π1

y > by reflection, we thus have PA ` Mϕ.

(ii) follows from monotonicity together with the HBL-conditions for �x.

(iii) Assume Mϕ, and let x be such that �xϕ and ∀y < x3Π1
y >. By Σ1-completeness

and reflection we obtain �x(�xϕ ∧ ∀y < x3Π1
y >), thus MMϕ as required. �

Verifiability of Löb’s principle for M follows from Lemma 6 by the usual argument
(see [Boo93, Theorem 3.2]). This concludes the proof of arithmetical soundness. �

4.1. Arithmetical Completeness. Our proof of the remaining direction of The-
orem 5 proceeds, as usual (see [Sol76]), by showing that any finite Kripke frame for
GL can be suitably embedded into PA, and is closely related to Beklemishev’s arith-
metical completeness proof for GLP ([Bek11]). The latter uses a sequence (hi)i<m
of Solovay functions, where m is some standard number. In contrast, we need an
infinite sequence (hy)y<ω of such functions, uniformly defined by a single formula.

We start with an informal description of the construction, based on the view of M
as provability in IΣµ. Given a finite GL-frame F = 〈W,≺〉 with root 0, we consider
a family of Solovay functions (hy)y<ω climbing up the accessibility relation ≺ of
F . The function h0 is the usual Solovay function for I∆0+exp: it starts at 0 and
moves upon the emergence of I∆0+exp-proofs concerning its own limit. Similarly,
each hy+1 is like the usual Solovay function for IΣy+1, except that it starts where
the previous function hy came to rest.

We write x : �yϕ to mean that x is (the code of) a �y-proof of ϕ. Given a reasonable
coding of proofs, we have that the formula x : �yϕ is ∆exp

0 , and furthermore that
every x is the proof of at most one sentence.
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Letting `y denote the limit of hy, we would like the functions (hy)y<ω, with
hy : ω →W , to satisfy:

h0(0) = 0, hy+1(0) = `y, and

hy(x+ 1) =

{
a if hy(x) ≺ a and x : �y`y 6= a,

hy(x) otherwise.

We are interested in the value `µ, i.e. the limit of the function hµ, where `µ is
defined to be limy→∞ `y in case µ =∞. We would like to to show that the sentence
`µ = a is a natural arithmetical representative for the node a, in the sense that for
some theory T ⊆ PA,

i. if a 6= 0, then T ` `µ = a→ �µa ≺ `µ,

ii. if a ≺ b, then T ` `µ = a→ 3µ`µ = b.

It might seem, at first sight, that T has to be at least as strong as IΣ2: as seen above
(Theorem 3), the existence of µ is not known to IΣ1. Moreover, each function hy+1,
as presented above, is genuinely more complex than the usual Solovay function: it
is defined by using the limit of hy, the natural representation of which is at least
Σ2. It is therefore not obvious that the basic basic properties of hy and `y can be
verified in I∆0+exp or even IΣ1. By tweaking the construction we shall nevertheless
succeed in making everything work smoothly in I∆0+exp.

4.2. A multi-stage Solovay function. We start by defining an auxiliary function
hy,a — the Solovay function for �y, starting off at node a (where both y and a are
parameters represented by free variables).

Definition 7 (I∆0+exp). For y < ω, a ∈W , the function hy,a : ω →W is defined
by:

hy,a(0) = a

hy,a(x+ 1) =

{
b if hy,a(x) ≺ b and x : �y`ẏ 6= b,

hy,a(x) otherwise.

The formula `y 6= b (Definition 9 below) depends on the formula χ representing
the family of functions (hy,a)y<ω,a∈W . The self-reference in the definition of hy,a is
handled, as usual, by the Fixed Point Lemma. We note here that the definition of
hy,a only relies on the gödelnumber of `ẏ 6= b, and the latter can be obtained from
y, b and pχq by a function whose totality is known to I∆0+exp.

It follows from Theorem 2 — for example, by using that W is finite — that the
function h(y, a, x) = hy,a(x) is ∆exp

0 -defined and provably total in I∆0+exp, with
its defining equations also provable in I∆0+exp.

We write limhy,a = b for the formula

∃x hy,a(x) = b ∧ ∀x hy,a(x) � b.
Since hy,a(x) is ∆exp

0 , we have that limhy,a = b is provably equivalent in I∆0+exp
to a ∆0(Σ1)-formula. The formula limhy,a = b states that b is the �-largest element
in the range of hy,a. By using the following lemma, we can think of limhy,a = b as
saying that b is the limit of hy,a.
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Lemma 8. i. I∆0+exp ` x′ ≤ x→ hy,a(x′) � hy,a(x)

ii. I∆0+exp ` ∃!b limhy,a = b

Proof. (i) is proven by internal induction on x. Since hy,a(x) � hy,a(x + 1) by
definition, the inductive step follows by using the transitivity of �.

(ii) Since � is antisymmetric, uniqueness is immediate from the definition of
limhy,a. For existence, we show by external induction on the converse of ≺ that
for all c ∈W ,

I∆0+exp ` hy,a(x) = c→ ∃b limhy,a = b.

This is sufficient, since I∆0+exp proves that hy,a(0) = a. From (i) we have that

(1) I∆0+exp ` hy,a(x) = c→ (∀x′ ≥ x hy,a(x′) = c ∨ ∃x′ ≥ x c ≺ hy,a(x′)) .

Argue in I∆0+exp, assuming hy,a(x) = c. If the first disjunct in (1) holds then, us-
ing (i), we have limhy,a = c, while if the second disjunct holds, then ∃b limhy,a = b
by the induction assumption. Thus in either case ∃b limhy,a = b as required. �

Definition 9 (I∆0+exp). The formula `y = a, with free variable y, is defined as:

∃s (s = (l0, l1, . . . , ly) ∧ l0 = limh0,0 ∧ ∀z < y lz+1 = limhz+1,lz ∧ ly = a) .

A sequence s is a y-witness if it satisfies the first three conjuncts in the formula
above. If s also satisfies the fourth conjunct, then s is a witness for `y = a. We
write `y 6= a for the negation of `y = a.

Given Definition 7, it is clear that any y-witness is a sequence of elements of W .
Since the latter is finite, the leading existential quantifier in `y = a can be bounded
by a term of the form exp(k · y), where k is a sufficiently large standard number.
Recalling that limhy,b = c is a ∆0(Σ1)-formula, we thus see that `y = a is a
∆exp

0 (Σ1)-formula. Reasoning about the formula `y = a by induction on y can
therefore be problematic in I∆0+exp. The following lemmas state that several
properties of `y = a are nevertheless verifiable in I∆0+exp.

Lemma 10 (I∆0+exp). For each y, there is at most one y-witness. In particular,
`y = a and `y = b imply a = b.

Proof. We reason in I∆0+exp. Suppose that (l0, . . . , ly) and (l′0, . . . , l
′
y) are both

y-witnesses. We prove by ∆exp
0 -induction that for all i ≤ y, li = l′i. By Lemma 8(ii)

it is clear that l0 = limh0,0 = l′0. Supposing that li = l′i, we have again by Lemma
8(ii) that li+1 = limhi+1,li = limhi+1,l′i

= l′i+1. �

If follows from Lemma 10 that we can treat `y as a partial function in I∆0+exp.

Lemma 11. i. I∆0+exp ` x < y ∧ `y = b→ ∃a `x = a

ii. I∆0+exp ` x < y ∧ `y = b→ `x � b

iii. I∆0+exp ` `y = 0↔ ∀z ≤ y ∀x hz,0(x) = 0.

iv. I∆0+exp ` `y = a ≺ b→ 3y`ẏ = b

v. I∆0+exp ` `y = a 6= 0→ �y`ẏ 6= a.
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Proof. We argue in I∆0+exp. (i) Suppose that (l0, . . . , ly) is a witness for `y = b.
If x < y, then clearly (l0, . . . , lx) is a witness for `x = lx, so we can put a = lx.

(ii) Suppose that (l0, . . . , ly) is a witness for `y = b. If x < y, then an x-witness
exists by clause (i), and by Lemma 10 it is an initial segment of (l0, . . . , ly). We
prove by ∆exp

0 -induction on z ≤ y that z′ < z implies lz′ � lz. It follows from the
relevant definitions, together with Lemma 8, that lz � limhz+1,lz = lz+1. Assuming
lz′ � lz, we thus obtain lz′ � lz+1 by transitivity of �.

(iii) We have ∀z ≤ y ∀x hz,0(x) = 0 iff ∀z ≤ y limhz,0 = 0 iff (l0, . . . , lz), with all
li = 0, is a witness for `z = 0.

(iv) By Definitions 7 and 9, together with the transitivity and antisymmetry of �.

(v) Assume that `y = a 6= 0, and let (l0, . . . , ly) be the witness for `y = a. By
∆exp

0 -induction, let y′ ≤ y be minimal such that ly′ = a. Since a 6= 0, by the
definition of `y and hy,c, we have that �y′`y′ 6= a. We show �y′`y 6= a, from which
�y`y 6= a clearly follows. Argue in �y′ :

Suppose that `y = a. Since `y′ 6= a, we have y′ < y, and so `y′ ≺ `y by
clause (ii). Let b be such that `y′ = limhy′,b. We thus have ∀x hy′,b(x) ≺ a.
By Σ1-completeness, we also have �y′`y′ 6= a. By definition of hy′,b, this implies
∃xhy′,b(x) = a, hence a � limhy′,b i.e. `y � `y′ , a contradiction. �

Lemma 12. i. I∆0+exp ` `y = a 6= 0→ �Π1
y ⊥

ii. I∆0+exp ` 3Π1
x > → `x = 0

iii. I∆0+exp ` ∀x < y3Π1
x > → `y = limhy,0

iv. I∆0+exp ` limhy,0 = a→ �ya � `ẏ.

Proof. (i) Argue in I∆0+exp, letting (l0, . . . , ly) be the witness for `y = a 6= 0.
Using ∆exp

0 -induction, we can assume that y is minimal such that ly 6= 0, thus
either y = 0 or ly−1 = 0. It follows that `y = limhy,0, and so

(2) limhy,0 = a.

Since a 6= 0, we have by Lemma 11(v) that

(3) �y`y 6= a.

Reason in �Π1
y :

We claim first that `y = limhy,0. If y = 0, this is clear from the definition. And if
y > 0, then we have `y−1 = 0 since, using Lemma 11(iii), the latter is equivalent
to a true Π1-formula. Since (2) is a true conjunction of a Σ1- and a Π1-formula,
it is also true here, whence it follows that `y = a, contradicting (3).

(ii) By reflexive induction, it suffices to show:

I∆0+exp ` �0∀z < x (3Π1
z > → `z = 0)→ (3Π1

x > → `x = 0).

Argue in I∆0+exp. If x = 0, then, since `0 = limh0,0 and the latter exists by
Lemma 8(ii), we have the claim from clause (i) by contraposition. So let x > 0, and

suppose that �0(3Π1
x−1> → `x−1 = 0) and 3Π1

x >. Since �x3
Π1
x−1> by reflection,

it follows that �x`x−1 = 0. Since 3Π1
x > is equivalent to Σ1-reflection for �x and

`x−1 = 0 is equivalent to a Π1-formula by Lemma 11(iii), we now have `x−1 = 0.
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But this means that `x is equal to limhx,0, and thus it exists by Lemma 8(ii).
Finally, `x = 0 follows by contraposition from clause (i).

(iii) Argue in I∆0+exp, assuming ∀x < y3Π1
x >. For y = 0 we have `y = limhy,0

by definition. For y > 0 we have `y−1 = 0 from clause (ii) together with the
assumption, and so again by definition `y = limhy,`y−1

= limhy,0.

(iv) Suppose that limhy,0 = a, whence in particular ∃xhy,0(x) = a. Reason in �y:

Using reflection, we obtain ∀x < y3Π1
x >, and so `y = limhy,0 by clause (iii).

By Σ1-completeness we have ∃xhy,0(x) = a from outside, and so a � `y by the
definition of limhy,0. �

Remark 13. While, as shown above, `y is a partial function in I∆0+exp, its totality
is, in general, not provable in I∆0+exp. Consider the frame with W = {0, 1} and
0 ≺ 1. From the definition of hy,a it is clear that

(4) I∆0+exp ` �y⊥ ↔ limhy,0 = 1.

As in the proof of Theorem 3, we see that there is a model M of I∆0+exp and a
sequence (mi)i∈ω of elements of M, such that

i. M � �mi
⊥ and M � mi > mi+1 for all i

ii. For all k ∈M, M � �k⊥ if and only if for some i ∈ ω, mi < k

It follows from the above that M � �⊥, and M � 3n> for all standard n.

Let m be any element from (mi)i∈ω, and suppose for a contradiction that `m = a
is witnessed by s = (l0, . . . , lm). If a = 0, then by Lemma 11(ii) also `m−1 =
0; thus `m = limhm,0 = 0. However since M � �m⊥, from (4) we have that
limhm,0 = 1. Thus it must be that `m = 1. Let i ≤ m be the minimal coordinate
of s with li = 1 = `i. Since M � 30>, it follows from (4) that i > 0. Thus
`i−1 = limhi−1,0 = 0, and so ¬�i−1⊥ by (4). On the other hand, `i = limhi,0 = 1,
and so �i⊥, contradicting the properties of M. �

Write L = a for the formula

∃y
(
`y = a ∧ ∀x < y3Π1

x >
)
∧ ∀z

(
∀x < z3Π1

x > → `z � a
)

stating, intuitively, that `µ = a.

Lemma 14. i. I∆0+exp ` ∃!aL = a

ii. I∆0+exp ` ∀x < y3Π1
x > → `y � L

iii. I∆0+exp ` �z`ż � L

iv. I∆0+exp ` �z(�Π1

ż ⊥ → L = `ż)

Proof. (i). Since � is antisymmetric, uniqueness is immediate from the definition.
For existence, we show by external induction on the converse of ≺ that for all
a ∈W ,

I∆0+exp ` `y = a ∧ ∀x < y3Π1
x > → ∃b L = b.

We note that this is sufficient, for I∆0+exp ` `0 = limh0,0 ∧ ∀x < 0 3Π1
x >. Argue

in I∆0+exp. From `y = a ∧ ∀x < y3Π1
x > we have by Lemmas 11(ii) and 12(iii):

∀z > y
(
∀x < z3Π1

x > → `z = a
)
∨ ∃z > y

(
∀x < z3Π1

x > ∧ a ≺ `z
)
.
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If the first disjunct holds, then, using Lemma 11(ii), we have that L = a. And if
the second disjunct holds, then ∃b L = b follows by the induction assumption.

(ii) Immediate from the definition of L, by using Lemma 12(iii) to see that `y exists.

(iii) Within �z we have ∀x < z3Π1
x > by reflection, and thus `z � L by clause (ii).

(iv) Argue in �z, assuming �Π1
z ⊥. By clause (iii) we have that `z � L. Suppose

for a contradiction that `z ≺ L. In particular, there is some x with

L = `x ∧ ∀y < x3Π1
y >.

Since �Π1
z ⊥, the second conjunct implies that x ≤ z. On the other hand the

assumption `z ≺ `x implies, using Lemma 11(ii), that z < x, a contradiction. �

Lemma 15. If a ≺ b, then I∆0+exp ` L = a→ OL = b.

Proof. Argue in I∆0+exp. Assuming L = a, we have

(5) ∀z
(
∀x < z3Π1

x > → `z � a
)

If ML 6= b for some b � a, then there is some y with �yL 6= b∧∀x < y3Π1
x >. Using

(5) we have that `y � a ≺ b. Now �y thinks:

Suppose that `y = b. Since a ≺ b, we have b 6= 0 whence �Π1
y ⊥ by Lemma 12(i).

By Lemma 14(iv), the latter implies L = `y i.e. L = b, a contradiction.

Back in I∆0+exp, we conclude �y`y 6= b, contradicting Lemma 11(iv). �

Lemma 16. If a 6= 0, then I∆0+exp ` L = a→ M a ≺ L.

Proof. Argue in I∆0+exp. Assume L = a, and let y be such that

`y = a ∧ ∀x < y3Π1
x >.

It follows from Lemma 12(iii)–(iv) that �ya � `y. Given that a 6= 0, we also
have �ya 6= `y from Lemma 11(v). Combining the above yields �ya ≺ `y. Since
�y`y � L by Lemma 14(iii), we obtain �ya ≺ L, whence clearly also M a ≺ L. �

Definition 17. LetM = 〈F ,〉 be a finite GL-model. The modelM0 is obtained
by appending a new root 0 to M; the truth values of propositional formulas at 0
are set arbitrarily. Apply Definition 7 to M0, and define the M-realization ∗ by
letting

p∗ :=
∨

M0,ap

L = a.

Lemma 18. Let M and ∗ be as in Definition 17. For all B ∈ LM, a 6= 0,

if M, a  B, then I∆0+exp ` L = a→ B∗.

Proof. Using Lemmas 15 and 16, we prove the claim simultaneously with

if M, a  ¬B, then I∆0+exp ` L = a→ ¬B∗

by induction on the structure of B. �

Lemma 19. i. N � L = 0, where N is the standard model.

ii. For all a 6= 0, L = a is consistent with PA.
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Proof. (i) follows from Lemma 12(i).

(ii) Note that by (i) and Lemma 15, we have N � OL = a for all a, whence also
N � 3L = a (recall that since N � 3Π1>, we have N � �ϕ↔ Mϕ for all ϕ). �

We prove the remaining direction of Theorem 5.

Proof. If GL 0 A, then by Theorem 1 there is a finite rooted GL-model M with
w 1 A for some w in M. Let ∗ be the M-realization as in Definition 17. By
Lemma 18, I∆0+exp ` L = w → ¬A∗. Since PA does not prove L 6= w by Lemma
19(ii), it therefore cannot prove A∗ either. �

Open Question 20. What is the joint provability logic of M and �? For a candi-
date, see [HV, Definition 6]. �
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