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ABSTRACT. This paper develops the philosophy and technology needed for adding a
supremum operator to the interpretability logic ILM of Peano Arithmetic (PA). It is well-
known that any theories extending PA have a supremum in the interpretability ordering.
While provable in PA, this fact is not reflected in the theorems of the modal system ILM,
due to limited expressive power. Our goal is to enrich the language of ILM by adding
to it a new modality for the interpretability supremum. We explore different options for
specifying the exact meaning of the new modality. Our final proposal involves a unary
operator, the dual of which can be seen as a (nonstandard) provability predicate satisfying
the axioms of the provability logic GL.

1. INTRODUCTION

The aim of this paper is to bring closer together the two main approaches to the study
of interpretability. As we will explain below, one of them currently lacks expressive power
for properly talking about the other.

Given first-order theories T and S, possibly in different languages, we say that T inter-
prets S, and write T �S, if there is some structure-preserving translation from the language
of S to the language of T , such that the translations of all theorems of S are provable in T .

Interpretability can be seen as generalized provability: T is required to prove everything
that S proves modulo some well-behaved translation. As such, it allows us to compare the-
ories talking about different objects, such as Peano Arithmetic (PA) and Zermelo-Fraenkel
set theory (ZF). In fact, the notion of interpretability is a natural candidate for giving a
precise meaning to the intuitive idea of one theory being stronger than another one. Seen
from a semantic perspective, an interpretation of S in T gives rise to a uniform way of
constructing a model of S inside a given model of T . Interpretations therefore give rise to
relative consistency proofs.

The study of interpretability may roughly be divided into two traditions, briefly outlined
below. For a more comprehensive overview, the reader is referred to [32].
The lattice of degrees. Seeing interpretability as a measuring stick for theories naturally
leads one to study the space of all theories ordered by this relation. A degree is a collection
of all theories that are equally strong as a given theory, i.e. that all mutually interpret each
other. We write [S] for the degree of S.

Among the first results concerning interpretability degrees is a strengthening of Gödel’s
Second Incompleteness Theorem by Feferman. Denote by ConPA the usual consistency
statement of PA. In [4, Theorem 6.5], it is shown that not only is ConPA unprovable, it is
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also “uninterpretable”: [PA] 6� [PA+ConPA]. Jeroslow ([12, Theorem 3.1, 3.2]) showed
that the degrees intermediate between [PA] and [PA+ConPA] form a dense partial order.
It follows from his work that the interpretability ordering is dense (see [28, p.798]). Mon-
tague ([20, Theorem 1]) proved the existstence of an infinte set of finitely axiomatized
subtheories of PA, all of which are mutually incomparable with respect to the interpretabi-
lity ordering.

A systematic study of interpretability degrees was undertaken independently by Švejdar
and Lindström ([7, p.402]). Švejdar studied the structure (V ,�) of the degrees of finite
extensions of PA. He proved, among other things, that this structure is a distributive lattice
([28, Theorems 4.4, 4.7]). Lindström was concerned with the structure of the degrees of
all r.e. extensions of PA ([15], [17]). However he also showed that this structure is in fact
isomorphic to (V ,�) ([15, p.348, Theorem 3]).

Our interest in provability logic makes it natural to focus on (V ,�). Note first that
[PA+>] is the minimum and [PA+⊥] the maximum element of this structure1. It is easy
to see that the infimum of [PA+A] and [PA+B] in (V ,�) is [PA+(A∨B)]. However the
supremum of [PA+A] and [PA+B] is in general not [PA+(A∧B)]. Švejdar shows that
the supremum of [PA+A] and [PA+B] may taken to be [PA+ϑ ], where ϑ is obtained by
the Diagonal Lemma as a sentence such that2:

(1) PA ` ϑ ↔∀x(Conx(ϑ)→ Conx(A)∧Conx(B)).

Interpretability logic. Interpretability, like provability, is a syntactical notion, and can there-
fore be formalized in the language of arithmetic. We can thus ask: which statements con-
cerning provability and interpretability (between its finite extensions) are provable in PA?

It turns out that using modal logic allows one to answer this question in a neat way. The
system GL of propositional provability logic contains a unary modality �, interpreted as
formalized provability in PA. It follows from the work of Hilbert and Bernays ([11]), Löb
([18]), and Solovay ([27]), that the theorems of GL are exactly the propositional schemata
involving formalized provability that are provable in PA.

The system ILM of interpretability logic is obtained by adding to GL a binary modality
� for interpretability. It was proven independently by Berarducci ([1]) and Shavrukov
([24]) that the theorems of ILM are exactly the propositional schemata involving formalized
provability and interpretability that are provable in PA.
Plan of this paper. Given the two traditions in the study of interpretability, it is natural to
ask how they relate to each other. The starting point for this paper is the following question:
does the modal logic ILM “know” that (V ,�) is a lattice?

The fact that the infimum in (V ,�) is given by disjunction is indeed reflected in the
axioms of ILM. On the other hand, Švejdar’s construction of a supremum employs a lan-
guage much more complex than that available in propositional modal logic. Indeed, the
supremum turns out not to be definable in ILM.

We want to boost the expressive power of ILM by adding to it a new modality whose
intended interpretation is a supremum operator in (V ,�). As we will see, Švejdar’s con-
struction is only one out of many ways of obtaining the supremum of given elements in

1Someone used to Boolean algebras has to think of the lattice (V ,�) as being upside down: the weakest
theory > is the bottom element, and the strongest theory ⊥ is the top element of (V ,�).

2Conx(C) denotes the consistency statement for IΣx +C, where IΣx is as usual PA with induction restricted to
Σx–formulas. In Švejdar’s original construction, the sentence Conx(C) is taken to be the consistency statement for
C together with the first x axioms of PA. For our purposes, it is more convenient to use the stratification sequence
based on IΣx instead.
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this structure. Since each of these can, in principle, be used to specify the meaning of the
new modality, we are faced with a design choice.

Section 3 discusses various considerations to be taken into account in the midst of this
embarrassment of riches. Švejdar’s construction, along with its dual discovered by Visser,
are studied in Section 4. Section 5 introduces our favourite way of interpreting the new
modality: a combination of conjunction with a certain unary operator that we call a supre-
mum adapter. The idea and first examples of supremum adapters are due to Shavrukov.
Supremum adapters may be seen as certain nonstandard provability predicates. This per-
spective is explored in Section 6, where we study the bimodal logic of such a nonstandard
notion of provability, together with ordinary provability.

2. PRELIMINARIES

This section introduces the basic notions used in the paper. The reader is advised to go
through it lightly in order to return when some fact or definition is used.

2.1. Arithmetical Theories. We consider first-order theories in the language L of arith-
metic containing 0, S (successor), +, ×, and ≤. As usual, a formula is said to be ∆0
(equivalently: Σ0 or Π0) if all its quantifiers are bounded. A formula is Σn+1 (Πn+1) if it is
of the form ∃x0 . . .xn A, with A a Πn (Σn)-formula. For each natural number n, we define a
term n of L by letting 0 = 0, and n+1 = Sn. Given that, we will often write n instead of
n.

The basic facts concerning 0, S, +, ×, and ≤ are given by the axioms of the theory Q
of Robinson Arithmetic ([7, Definition I.1.1]). The theory Q is Σ1-complete, meaning that
it proves every true Σ1-sentence. The theory PA of Peano Arithmetic results from adding
to Q the induction schema for all L -formulas.

As usual, IΣn is the fragment of PA obtained by restricting the induction schema to
Σn-formulas. Note that IΣn ⊆ IΣn+1 for all n. We recall that for n > 0, IΣn is finitely
axiomatizable ([7, Theorem I.2.52]). The theory I∆0+exp results from adding to I∆0 an
axiom stating the totality of exponentiation. We note that I∆0+exp is finitely axiomatizable
([7, Theorem V.5.6 ]) and contained in IΣ1 ([7, Theorem I.1.50]).
Metamathematics. It is well-known that arithmetization of syntax can be carried out in
I∆0+exp. We assume as given some standard gödelnumbering of L -formulas, and write
pAq for the gödelnumber of A. We shall often identify a formula with its gödelnumber,
writing for example B(A) instead of B(pAq).

Let S be a recursively enumerable (r.e.) extension of I∆0+exp. Since any r.e. relation
can be represented in a natural way in I∆0+exp by a Σ1-formula ([3]), there is a Σ1-formula
σ representing the axioms of S in I∆0+exp, i.e. we have

A is an axiom of S iff I∆0+exp ` σ(A).

Using σ , one can define in a natural way (see [4, Definition 4.1]) a Σ1-formula Prσ repre-
senting (inside I∆0+exp) provability in S. In this paper, we will write PrS instead of Prσ ,
having in mind some standard Σ1-representation σ of the axioms of S in I∆0+exp. To
further simplify notation, we shall write �S for the formula PrS. � and �0 will be used as
shorthand for �PA and �I∆0+exp respectively. By �x we denote the formula containing x as
a free variable, and such that for n > 0, �n (the result of substituting n for x in �x) is �IΣn .
The symbol 3S is used for the dual of �S, i.e. as an abbreviation for ¬�S¬A.

We use the dot notation as usual, thus �SA(ẋ) means that the numeral for the value of
x has been substituted for the free variable of the formula A inside �S. If the intended
meaning is clear from the context, we will often simply write �SA(x) instead of �SA(ẋ).
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We recall that any theory S extending I∆0+exp is provably Σ1-complete, meaning that for
any Σ1-formula A,

I∆0+exp ` A(x)→ �SA(ẋ).

It is well-known that if S is as above, then the Hilbert-Bernays-Löb derivability conditions
hold for �S verifiably in I∆0+exp:

(1) if S ` A, then I∆0+exp ` �SA
(2) I∆0+exp ` �S(A→ B)→ (�SA→ �SB)
(3) I∆0+exp ` �SA→ �S�SA

In fact, 2 and 3 also hold with internal variables ranging over the sentences A and B.
The following theorem is known as the Diagonal Lemma, or Gödel-Carnap Fixed Point

Lemma.

Theorem 1. Let A be a Σn (Πn)-formula whose free variables are exactly x0, . . . ,xn. There
is a Σn (Πn)-formula β with exactly the same free variables, and such that

I∆0+exp ` β (x1, . . . ,xn)↔ A(pβ (v1, . . . ,vn)q,x1, . . . ,xn).

We say that β (x1, . . . ,xn) is a fixed point of A(x0 . . . ,xn).

Theorem 1, together with the Hilbert-Bernays-Löb derivability conditions for �S, im-
plies that Löb’s principle for �S is verifiable in I∆0+exp ([2, Theorem 3.2]):

I∆0+exp ` �S(�SA→ A)→ �SA.

Principles valid in the Gödel-Löb provability logic GL (see Section 2.3) can thus be used
when reasoning about S in I∆0+exp.

Consider the sequence of theories {Tn}n∈ω , where T0 = I∆0+exp, and for n > 0, Tn =
IΣn. The basic facts concerning {Tn}n∈ω are verifiable in I∆0+exp:

I∆0+exp ` �A↔∃x�xA(2)

I∆0+exp ` ∀x,y(�xA∧ x < y→ �yA)(3)

Furthermore, I∆0+exp verifies that each Tn+1 proves uniform Πn+2–reflection for Tn:

(4) I∆0+exp ` ∀x (�x+1(∀A ∈Πx+2→∀y(�xA(ẏ)→ A(y)))) .

That (4) holds was first stated in [21]; an inspection of the proof shows that it can be
verified in I∆0+exp. Throughout this paper, we shall refer to properties (3) and (4) as
monotonicity and reflection respectively.
Oracles. We recall that for n > 1, there is a partial truth definition trΠn for Πn-sentences in
I∆0+exp ([7, Section V.5(b)]). The formula trΠn is Πn and satisfies Tarski’s conditions ([7,
Definition I.1.74].

Let S be an r.e. extension of I∆0+exp. Using trΠn , one can define in a natural way the
provability predicate �Πn

S of S together with a Πn-oracle. Thus �Π1
x is an intensionally cor-

rect provability predicate for IΣx together with a Π1-oracle. Note that �Π1
x is a Σ2-formula.

It follows from (4) that I∆0+exp ` ∀x�x+1¬�x⊥. Inspection of the proof shows that it
goes through when we add Π1-sentences that are known to be true to formal proofs, thus
we have: I∆0+exp ` ∀x�x+1¬�Π1

x ⊥. Also this property will be referred to as reflection.

2.2. Interpretability. The notion of interpretability that we are interested in is that of
relative interpretability, first introduced and carefully studied by Tarski, Mostowski and
Robinson ([29]). Since all theories considered here have pairing, it is safe to focus our
attention on one-dimensional interpretations.
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Definition 2. Let S and T be first-order theories whose languages are LS and LT . An
interpretation j of S in T is a tuple 〈δ ,τ〉, where δ is an LT -formula with one free variable,
and τ a mapping from relation symbols3 R of LS to formulas Rτ of LT , where the number
of free variables of Rτ is equal to the arity of R. We extend τ to a translation from all
formulas of LS to formulas of LT by requiring:

i. (R(x1, . . .xn))
τ = Rτ(x1, . . .xn)

ii. (A→ B)τ = Aτ → Bτ

iii. ⊥τ =⊥
iv. (∀xA)τ = ∀x(δ (x)→ Aτ)

Finally, we require that T ` ∃xδ (x), and T ` Aτ for all axioms A of S.

We write j : T � S if j is an interpretation of S in T , and T � S if j : T � S for some j.
We say that T and S are mutually interpretable, and write T ≡ S, if T �S and S�T . In this
paper we are concerned with interpretability between finite extensions of PA, i.e. theories
of the form PA+A, where A is an L -sentence. We write A�B as an abbreviation for
PA+A�PA+B.

Interpretability, like provability, is a syntactical notion, and can therefore be formalized
in PA. We write A� B for the arithmetical sentence expressing that PA+ A interprets
PA+B.

The following theorem concerning interpretability over PA is referred to as the Orey-
Hájek Characterization.

Theorem 3 (I∆0+exp). The following are equivalent:
i. A�B

ii. For all n, PA ` A→3nB
iii. For any C ∈Π1, PA ` B→C implies PA ` A→C

Theorem 3 is implicit in [22], and was first explicitly stated in [6] and in [8]. Item iii
was added in [5]. Inspection of the proof shows that it can be verified in I∆0+exp.

2.3. Modal logic. We denote by L� the language of propositional modal logic containing
a unary modality �, and by L�� the language L� together with a binary modality �.
Provability logic. The axiom schemata of the Gödel-Löb provability logic GL include all
propositional tautologies in the language L�, and furthermore:

(K) �(A→ B)→ (�A→ �B)

(L) �(�A→ A)→ �A

The inference rules of GL are modus ponens and necessitation:

if GL ` A, then GL ` �A.

We note that GL ` �A→ ��A (see e.g. [2, p.11]).
The axiom schemata of the interpretability logic ILM include all propositional tautolo-

gies in the language L��, the axiom schemata of GL, and:
(J1) �(A→ B)→ A�B
(J2) (A�B)∧ (B�C)→ (A�C)
(J3) (A�C)∧ (B�C)→ (A∨B)�C
(J4) A�B→ (3A→3B)
(J5) 3A�A

3We assume here that S is formulated in a purely relational way. This restriction is not essential – function
symbols can be replaced by relation symbols by a well-known algorithm (for details, see [31, Section 7.3]).
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(M) A�B→ (A∧�C)� (B∧�C)

The rules of ILM are modus ponens, and necessitation for �.

Definition 4. Let ϕ be an L -formula with one free variable. A ϕ-realization is a function
∗ from the propositional letters of L� to L -sentences. The domain of ∗ is extended to
all L�-formulas by requiring that it commutes with the propositional connectives, and
furthermore

(�A)∗ := ϕ(pA∗q).

Given an L -formulas ϕ and ψ with one and two free variables respectively, the no-
tion of a ϕ-ψ-realization (a function from L��-formulas to L -sentences) is defined in a
similar way.

Theorem 5. Let T be a r.e. and Σ1-sound extension of I∆0+exp, and let PrT be an inten-
sionally correct provability predicate of T. Write R for the set of all PrT -realizations. Then
for all A ∈L�,

GL ` A if and only if for all ∗ ∈R, I∆0+exp ` A∗.

The direction from left to right follows by the fact that the Hilbert-Bernays-Löb deriv-
ability conditions for PrT are verifiable in I∆0+exp ([11], [18]). The proof of the other
direction with T = PA is due to Solovay ([27]). De Jongh, Jumelet and Montagna ([13])
extended the result to Σ1-sound theories containing I∆0 + exp.

We recall that a theory is said to be essentially reflexive if it proves the consistency of
each of its finite subtheories, and the same holds for every consistent extension in the same
language. It is well-known that PA is essentially reflexive ([7, Theorem III.2.35]).

Theorem 6. Let T be r.e., essentially reflexive, and Σ1–sound. Let PrT be an intension-
ally correct provability predicate of T, and Int an L -formula (with two free variables)
representing interpretability in T. Write R for the set of all PrT–Int–realizations. For all
A ∈L��,

ILM ` A if and only if for all ∗ ∈R, T ` A∗.

Theorem 6 was proven independently by Shavrukov ([24]) and Berarducci ([1]).

3. METHODOLOGICAL CONSIDERATIONS

Write (V ,�) for the degrees of finite extensions of PA, ordered by the relation of
interpretability. As mentioned in Section 1, it was proven by Švejdar that the structure
(V ,�) is a lattice. Our question is whether this fact is seen from the perspective of the
interpretability logic ILM.

Indeed, the fact that (V ,�) is a lower semilattice is reflected in the axioms of ILM.
Principles J1 and J2 imply that the ordering given by � is reflexive and transitive, and
furthermore that A�A∨B and B�A∨B, i.e. that [A∨B] is a lower bound of [A] and [B]
in (V ,�). Principle J3 states that it is in fact the greatest lower bound, i.e. the infimum of
[A] and [B].

To see that, in general, the supremum of [A] and [B] is not [A∧B], it suffices to consider
the so-called Orey sentences discovered by Orey in [22, Theorem 2.4]. An Orey sentence
is any sentence O with >�O and >�¬O. An Orey sentence and its negation are thus
both in [>], and hence also their supremum is an element of [>], which is clearly not the
case for the sentence O∧¬O.

A quick way to convince oneself of the existence of suprema in (V ,�) is via a detour
through the structure (D ,�) of interpretability degrees of all r.e. extensions of PA. It
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follows from Theorem 3 that the supremum of [PA+A] and [PA+B] in (D ,�) is [S],
where S is the following infinite theory:

S := PA+{3nA∧3nB | n ∈ ω}.
By Lindström’s result ([15, Theorem 3]), we know that (D ,�) and (V ,�) are isomorphic;
thus the supremum of [PA+A] and [PA+B] in (V ,�) must also exist.

In Section 1, we saw Švejdar’s direct construction of suprema in (V ,�) (see (1), or
Theorem 10 in Section 4). The latter, however, employs a language much more compli-
cated than that available in the propositional system ILM. Indeed, as shown in appendix
A.1, the existence of interpretability suprema lies beyond the expressive power of ILM.

We thus want to enrich the language of ILM by adding to it a new binary modality ?,
together with the following axiom S, stating that ? is an interpretability supremum:
(S) (C�A)∧ (C�B)↔ (C�A?B).

We want to interpret ? as an arithmetical formula.The following definition states what we
are looking for.

Definition 7. An L -formula σ with two free variables is a supremum implementation if
for all L -sentences A,B,C, we have that PA ` (C�A)∧ (C�B)↔C�σ(A,B).

Given a supremum implementation σ , we can extend the notion of an arithmetical real-
ization to include formulas of the extended modal language:

(5) (A?B)∗ := σ(pA∗q,pB∗q).

Let R be the set of all realizations where the ILM part is as in Theorem 6, and ? is
interpreted as in (5). Denote by ILMS the system ILM together with axiom S. Then it is
clear that for all modal formulas A,

If ILMS ` A , then for all ∗ ∈R, PA ` A∗.

In other words ILMS is arithmetically sound. For arithmetical completeness, we need to
make sure that all propositional schemata involving σ that are theorems of PA are also
provable in ILMS. However, it turns out that what exactly is provable in PA about a supre-
mum implementation is far from determined by the fact that the latter satisfies Definition
7. For example, while for any such σ it is clear that σ(A,B) and σ(B,A) are, verifiably in
PA, mutually interpretable, there is no a priori reason why

(6) σ(A,B)↔ σ(B,A)

should be provable in PA, or even true (see Appendix A.2). On the other hand, the supre-
mum implementations we encounter in the following sections all satisfy (6).

Given the above, should we add A?B↔ B?A to the axioms of ILMS? The answer de-
pends on which supremum implementation(s) we have in mind. In contrast to formalized
provability and interpretability, there is no strong intuition as to what constitutes a natural
supremum implementation. Thus our choice will depend on practical and esthetical crite-
ria. For example, we prefer implementations that allow for a nice Kripke semantics. The
following definition states some nice features that a supremum implementation could have.

Definition 8. Let A,A′,B,B′ range over all L -sentences, and let σ be an L -formula with
two free variables. We say that σ is extensional if

PA ` A↔ A′ and PA ` B↔ B′ ⇒ PA ` σ(A,B)↔ σ(A′,B′),

and σ is provably extensional if the above is verifiable in PA, i.e.

PA ` �(A↔ A′)∧�(B↔ B′)→ �(σ(A,B)↔ σ(A′,B′)).
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We say that σ is monotone if

PA ` A→ A′ and PA ` B→ B′ ⇒ PA ` σ(A,B)→ σ(A′,B′),

and provably monotone if the above is verifiable in PA, i.e.

PA ` �(A→ A′)∧�(B→ B′)→ �(σ(A,B)→ σ(A′,B′)).

We note that the above properties are ordered by strength, with extensionality being the
weakest.

We conclude this section by considering a supremum implementation property that is
so nice that we did not even think of it before Shavrukov gave us an example.

Definition 9. A supremum implementation σ is adapted if there is an L -formula τ con-
taining one free variable, and such that for all L -sentences A and B,

σ(A,B) = τ(A)∧ τ(B).

We call a formula τ as in Definition 9 a supremum adapter. A supremum adapter is
thus a unary operator that, in combination with conjunction, provides us with a supremum
implementation4.

4. VARIETIES OF SUPREMUM IMPLEMENTATIONS

This section studies the supremum implementation based on Švejdar’s argument show-
ing that (V ,�) is a lattice, as well as a dual construction discovered by Visser. These
implementations are given as fixed points of certain arithmetical formulas. We prove the
existence of unique explicit fixed points for these formulas. The purpose of this section is
mainly methodological; it can be safely skipped without affecting insight into the rest of
the article.

4.1. Definition and verification of the target property. As mentioned above, it follows
from Theorem 3 that the infinite theory

(7) PA+{3nA∧3nB | n ∈ ω}

is an interpretability supremum of PA+A and PA+B. The idea of Švejdar’s construction
is to compress the information contained in (7) into a single sentence.

Theorem 10 ([28, Theorem 4.4]). By Theorem 1, let ϑ be such that

PA ` ϑ ↔∀x(3xϑ →3xA∧3xB).

Then ϑ is (verifiably in I∆0+exp) a supremum of A and B in (V ,�).

We note that the complexity of ϑ is Π2. A dual construction, yielding a Σ2-supremum,
was discovered by Visser.

Theorem 11. By Theorem 1, let ϑ be such that

PA ` ϑ ↔∃x(�x¬ϑ ∧ (3xA∧3xB)).

Then ϑ is (verifiably in I∆0+exp) a supremum of A and B in (V ,�).

Proof. Argue in I∆0+exp. We show that
i. ϑ �A and ϑ �B

ii. Whenever C�A and C�B, also C�ϑ

4We think of τ as adapting A and B, so that their conjunction can be used to get the supremum.
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We first show i. By Theorem 3, it suffices to show that ϑ implies 3nA and 3nB for any
standard n. Assume ϑ . Thus there is some a with �a¬ϑ , 3aA, and 3aB. By essential
reflexivity, a must be greater than any standard n. By monotonicity, we thus have 3nA and
3nB for any such n.

For ii, let C be such that C�A and C�B. We claim that C∧¬ϑ �ϑ . Note that ¬ϑ

is the sentence ∀x ((3xA∧3xB)→3xϑ). Since C�A and C�B, by Theorem 3 we have
that C implies 3nA and 3nB for any standard n. But then C∧¬ϑ implies 3nϑ for any
such n, whence C∧¬ϑ �ϑ again by Theorem 3. Finally, note that clearly C∧ϑ �ϑ . By
axiom J3 of ILM, we therefore have (C∧ϑ)∨ (C∧¬ϑ)�ϑ , i.e. C�ϑ . �

Strictly speaking, theorems 10 and 11 do not yet provide us with supremum imple-
mentations in the sense of Definition 7. Corresponding to Theorem 10, we would want a
formula σ with two free variables, such that for any sentences A and B,

(8) PA ` σ(A,B)↔∀x(3xσ(A,B)→3xA∧3xB).

Such a formula can be found by using Theorem 1 (see Appendix B.1). Having this in mind,
we shall from now on say Švejdar’s supremum (implementation) to refer to a formula σ as
in (8); similarly for Visser’s supremum.

4.2. Existence of unique explicit fixed points. The suprema introduced above are given
as fixed points of certain formulas. Before proving the existence of unique and explicit
fixed points for these formulas, we examine a surprising feature of Švejdar’s construction.
Švejdar’s supremum of A and B is obtained as a fixed point of the following formula5:

∀x(3xY → (3xA∧3xB)).

In particular the supremum of ⊥ and ⊥ is given as a fixed point of

(9) ∀x(3xY →3x⊥).

Example 12. Write Ψ⊥(Y ) for the formula in (9). We have the following:

i. If PA ` ϑ ↔Ψ⊥(ϑ), then PA ` ϑ ↔⊥
ii. PA 0⊥↔Ψ⊥(⊥)

In other words every fixed point of Ψ⊥(Y ) is equivalent to ⊥, however ⊥ itself is not a
fixed point of Ψ⊥(Y ) To see that i holds, suppose that PA ` ϑ ↔Ψ⊥(ϑ), i.e.

PA ` ϑ ↔∀x(�x>→ �x¬ϑ).

Since PA ` ∀x �x>, it follows that PA ` ϑ ↔ �0¬ϑ . Since IΣ1 ` �0¬ϑ →¬ϑ by reflec-
tion, we thus have PA ` ϑ ↔⊥. For ii note that Ψ⊥(⊥) is ∀x(3x⊥→ 3x⊥), i.e. it is a
tautology and thus clearly not provably equivalent to ⊥. �

Example 12 demonstrates that the formula Ψ⊥(Y ) is not extensional, i.e. it is not the
case that for all sentences A and B,

(10) PA ` A↔ B ⇒ PA `Ψ⊥(A)↔Ψ⊥(B).

Indeed, if ϑ is a fixed point of Ψ⊥(Y ), then as shown above PA ` ϑ ↔⊥. On the other
hand Ψ⊥(⊥) is a tautology and therefore not provably equivalent to Ψ⊥(ϑ) – since the
latter is equivalent to ϑ and hence to ⊥.

5The capital variable Y indicates that we are interested in fixed points with respect to this variable.
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We thus cannot apply to ∀x(3xY → (3xA∧3xB)) Smoryński’s method ([26]) for es-
tablishing the uniqueness of fixed points of arithmetical formulas6. The following theorem,
due to Shavrukov, shows that unique explicit fixed points nevertheless exist.

Theorem 13. Let ε(A,B) be the formula

(�0¬A∨�0¬B→ �0⊥) ∧∀x(�x+1¬A∨�x+1¬B→ �x+1(�x¬A∨�x¬B)),

where A and B are regarded as internal variables ranging over L -sentences. Then
i. PA ` ε(A,B)↔∀x (3x ε(A,B)→3xA∧3xB)

ii. For any ϑ , if PA ` ϑ ↔∀x(3xϑ →3xA∧3xB), then PA ` ϑ ↔ ε(A,B)

Proof. See Appendix B.2. �

A similar result holds for Visser’s supremum implementation.

Theorem 14. Let ε(A,B) be the formula

∃x (�x(�x¬A∨�x¬B)∧ (3xA∧3xB))

where A and B are regarded as internal variables ranging over L -sentences. Then
i. PA ` ε(A,B)↔∃x (�x¬ε(A,B)∧ (3xA∧3xB))

ii. For any ϑ , if PA ` ϑ ↔∃x(�¬ϑ ∧ (3xA∧3xB)), then PA ` ϑ ↔ ε(A,B)

Proof. See Appendix B.2. �

It follows that any formula ε as in Theorem 13 or in Theorem 14 is a supremum imple-
mentation (using items i. and the proofs of theorems 10 and 11). With the explicit versions
at hand, we can learn a bit more about Švejdar’s and Visser’s suprema.

Theorem 15. Švejdar’s and Visser’s supremum are both extensional.

Proof. See Appendix B.3. �

Theorem 16. Visser’s supremum is not monotone.

Proof. See Appendix B.4.
�

Open Question 17. Is Švejdar’s supremum monotone? �

5. SUPREMUM ADAPTERS

The idea and the first examples of supremum adapters are due to Shavrukov. The ver-
sions introduced here were obtained by analyzing and simplifying the latter. Define

σ(A) := ∀x(3Π1
x >→3x+1A)

τ(A) := ∃x(�Π1
x ⊥∧3xA)

where A is regarded as an internal variable ranging over sentences. Write OA for either
σ(A) or τ(A). In this section, we show that O is a supremum adapter, i.e. that for all
L -sentences A, B, and C, it is provable in PA that

(C�A)∧ (C�B) ↔ C� (OA∧OB).

In fact, we show that the above is already verifiable in I∆0+exp.

6Smoryński’s method for showing the uniqueness of fixed points of an arithmetical formula Ψ(Y ) relies on
Ψ(Y ) being PA–substitutable, meaning that PA `�(A↔ B)→ (Ψ(A)↔ Ψ(B)) for all A and B. Note that if
Ψ(Y ) is PA–substitutable, then it is also extensional in the sense of Definition 8.
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Lemma 18 (I∆0+exp). For all n, PA ` OA→3nA.

Proof. Straightforward from the definition of σ , τ , and the fact that IΣn+1 `3Π1
n > for all

n by reflection. �

Lemma 19. I∆0+exp ` ∀z (�z(¬OA∨¬OB)→ �z(�z¬A∨�z¬B)) .

Proof. Argue I∆0+exp, assuming

(11) �z(¬OA∨¬OB).

We first show that (11) implies

(12) �z(�
Π1
z ⊥→ (�z¬A∨�z¬B)).

Suppose first that (11) is �z(¬σ(A)∨¬σ(B)), i.e.

(13) �z(∃x(3Π1
x >∧�x+1¬A)∨∃x(3Π1

x >∧�x+1¬B)).

It follows that

(14) �z∃x(3Π1
x−1>∧ (�x¬A∨�x¬B)).

We reason in �z. By (14), let y be such that ¬�Π1
y ⊥∧ (�y+1¬A∨�y+1¬B). Assuming

�Π1
z ⊥, we have y < z, whence by monotonicity �z¬A∨�z¬B. We exit �z. Note that we

have shown (12). The other possibility is that (11) is �z(¬τ(A)∨¬τ(B)), i.e.

(15) �z(∀x(�Π1
x ⊥→ �x¬A)∨∀x(�Π1

x ⊥→ �x¬B)).

From this it follows that �z∀x(�Π1
x ⊥→ (�x¬A∨�x¬B)), whence clearly also (12). Thus

we have (12) whenever (11) holds. We now show that (12) implies

(16) �z(�
Π1
z (�z¬A∨�z¬B)→ �z¬A∨�z¬B).

To see that (16) holds, reason inside �z, assuming

(17) �Π1
z (�z¬A∨�z¬B).

If �z¬A∨�z¬B, we are done. So assume that not: �z¬A∨�z¬B, i.e.

(18) 3zA∧3zB.

Since (18) is a Π1-sentence, we have �Π1
z (3zA∧3zB) and thus �Π1

z ⊥ in combination with
(17). The desired conclusion �z¬A∨�z¬B now follows by (12). Exiting the world inside
�z, we have established (16). From the latter it clearly follows that

(19) �z(�z(�z¬A∨�z¬B)→ �z¬A∨�z¬B),

and thus �z(�z¬A∨�z¬B) by Löb’s principle for IΣz. �

Lemma 20 (I∆0+exp). For all n, PA `3nA∧3nB→3n(OA∧OB).

Proof. Argue in I∆0+exp. By contraposition, it suffices to show that for all n,

IΣn+1 ` �n(¬OA∨¬OB)→ �n¬A∨�n¬B.

Fix an n. From Lemma 19 it follows that

IΣn+1 ` �n(¬OA∨¬OB)→ �n(�n¬A∨�n¬B).

Since IΣn+1 ` �n(�n¬A∨�n¬B)→ (�n¬A∨�n¬B) by reflection, we are done. �

Theorem 21 (I∆0+exp). For all L -sentences A, B, and C,

(C�A)∧ (C�B) ↔ C� (OA∧OB).

Proof. Straightforward consequence of lemmas 18, 20, and Theorem 3. �
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6. NONSTANDARD PROVABILITY PREDICATES

The supremum adapters introduced in the previous section can be seen as consistency
statements corresponding to certain (nonstandard) provability predicates. We shall now in-
vestigate the consequences of this perspective, showing in particular that these provability
predicates satisfy the principles of the provability logic GL. In Section 6.3, we establish
some principles for the bimodal provability logic of such a nonstandard notion of provabil-
ity, together with ordinary provability.

We use modal notation, writing HA and O· A for the sentences σ(A) and τ(A) as in
the previous section. The provability predicates N and M· are defined as their duals, i.e.
NA := ¬H¬A and M· A := ¬O· ¬A. Spelling this out:

NA = ∃x(�x+1A∧3Π1
x >)

M· A = ∀x(�Π1
x ⊥→ �xA)

Thus an L -formula A is N–provable just in case there is some n such that A is provable (in
the usual sense) in IΣn+1, and the theory IΣn together with a Π1-oracle is consistent. Note
that since for all n it is true (in the standard model) that IΣn together with a Π1-oracle is
consistent, the extension ofN in the standard model coincides with ordinary PA-provability
defined by �. However this might not be the case in a model where PA together with a
Π1-oracle is inconsistent. This is why we say that N is a nonstandard provability predicate
for PA. Note also that N is a Σ3-formula.

As for the other triangle, we note that a formula A is M· -provable if for all n, a proof of
inconsistency of IΣn together with a Π1-oracle implies the existence of a usual IΣn-proof
of A. We note that M· is a Π2-formula.

6.1. Relating the two triangles. Arguing in PA, let µ + 1 be the smallest number such
that IΣµ+1 together with a Π1-oracle is inconsistent. It is easy to see that if µ + 1 exists,
then

NA↔ M· A↔ �µ+1A

If µ +1 does not exist, i.e. if PA together with a Π1-oracle is consistent, then NA is equiv-
alent to �A, while M· A is equivalent to >. Both N and M· are therefore equivalent to �µ+1,
the only difference being in how the latter is interpreted in case µ +1 does not exist. This
leads to the following alternative definition of N and M· :

(20) NA :=

{
�µ+1A if �Π1⊥
�A otherwise

(21) M· A :=

{
�µ+1A if �Π1⊥
> otherwise

Using the above observations, we see that the two triangles are closely related.

Lemma 22. i. PA ` NA↔ (3Π1>∧�A)∨ (�Π1⊥∧M· A)
ii. PA ` M· A↔ (NA∨3Π1>)

Proof. For i, reason in PA. First suppose NA. From the definition of N, it follows that also
�A. If 3Π1>, we are done. If �Π1⊥, then NA and M· A are equivalent, whence M· A. For the
other direction, suppose that 3Π1> and �A. Then NA follows straight from the definition.
And if �Π⊥, then M· A if and only of NA. The proof of ii is similar. �
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Given existential sentences A = ∃xA′ and B = ∃yB′, we write A ≤ B for the sentence
∃x(A′ ∧∀y < x¬B′). Thus A ≤ B says that the formula A has a witness, and this witness
is smaller than or equal to the smallest witness of B. Similarly, we write A < B for the
sentence ∃x(A′ ∧∀y ≤ x¬B′). If C is of the form A ≤ B we write C⊥ for B < A, and if C
is of the form A < B, we write C⊥ for B ≤ A. Note that C⊥ implies ¬C, but not the other
way around. Thus C⊥ can be seen as a strong negation of C. We write �∗A for ∃x�xA, and
similarly �Π1∗ A for ∃x�Π1

x A.
It is easy to see that

PA ` NA↔ �∗A≤ �Π1
∗ ⊥.

Now, N⊥A is the sentence �Π1∗ ⊥ < �∗A. Rewriting the definition of M· according to the
witness comparison notation, we see that M· is equivalent the negation of the latter:

PA ` M· A↔¬(�Π1
∗ ⊥< �∗A).

Thus PA ` M· A↔¬N⊥A, whence M· is, in a sense, the double negation of N.

6.2. Provability logic of M. We use the symbol M to refer to either N or M· . We show that
I∆0+exp verifies the principles of GL for M.

Theorem 23. (1) If PA ` A, then PA ` MA
(2) I∆0+exp ` M(A→ B)→ (MA→ MB)
(3) I∆0+exp ` MA→ MMA

Proof. Item 1 follows by reflection, and item 2 by principle K for IΣx. For 3, we first
consider NA. Ague in I∆0+exp, assuming ∃x(�x+1A∧¬�Π1

x ⊥). We want to show

(22) ∃x(�x+1∃y(�y+1A∧¬�Π1
y ⊥)∧¬�Π1

x ⊥).

Let x be such that�x+1A and¬�Π1
x ⊥. We have�x+1�x+1A by GL for IΣx, and�x+1¬�Π1

x ⊥
by reflection. Therefore �x+1(�x+1A∧¬�Π1

x ⊥), and thus clearly also (22). It remains to
consider M· A. Assuming ∀x(�Π1

x ⊥→ �xA), we want to show:

∀x(�Π1
x ⊥→ �x∀y(�Π1

y ⊥→ �yA)).

Suppose �Π1
x ⊥. We get �xA by assumption, and thus also �x�xA and �x∀y ≥ x�yA.

On the other hand, we have by reflection �x∀y < x¬�Π1
y ⊥. Combining the above yields

�x∀y(�Π1
y ⊥→ �yA) as required. �

Theorem 24. By examining the proof, it is clear that Theorem 23 also holds with internal
quantifiers in items 2 and 3. �

As explained in Section 2.1, it follows from theorems 23 and 1 that

PA ` M(MA→ A)→ MA,

and thus that GL is arithmetically sound with respect to M. We note that since M is not a
Σ1-formula, arithmetical completeness does not follow by the usual method. However, as
has been shown by Shavrukov, GL is nevertheless arithmetically complete with respect to
N (see the forthcoming preprint [10]).

Open Question 25. Is GL arithmetically complete with respect to M· ? �
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6.3. Joint provability logic of M and �. We establish some principles for the joint prov-
ability logic of a supremum adapter provability, together with ordinary provability. As
before, we use the symbol M to refer to either N or M· .

Lemma 26. I∆0+exp ` �A→ M�A.

Proof. It is easy to see that S→ MS holds (verifiably in I∆0+exp) for any Σ1-formula S.
The desired result follows by noting that �A is a Σ1-formula. �

Lemma 27. I∆0+exp ` �(�B→ A)↔ �(�B→ MA)

Proof. Argue in I∆0+exp. By Theorem 21, ¬A ≡ O¬A, whence by Theorem 3, ¬A is
(provably in PA) Π1-conservative over O¬A and vice versa. Since 3B is Π1, this means
that�(¬A→3¬B)↔�(O¬A→3¬B). The desired result follows by contraposition. �

Taking > for B in Lemma 27, it follows that I∆0+exp ` �A↔ �MA.
Monotonicity. Returning to the business of supremum implementations, we use the above
lemmas to show that supremum implementations based on our supremum adapters are
monotone.

Lemma 28. ` �(A→ B)→ �(OA→ OB).

Proof. Argue in PA. If �(A→ B), then �(¬B→ ¬A), and thus �M(¬B→ ¬A) by the
remark under Lemma 27. By the principles of GL for M and for �, this implies �(M¬B→
M¬A), which in turn implies �(OA→ OB). �

6.4. Joint provability logic of N and �. We consider the joint provability logic of N and
�. There are several reasons that make N a preferred object of study compared to M· . As
explained above, in contrast to M· the formula N is an extensionally correct provability
predicate for PA (albeit a nonstandard one). Second, we know that GL is arithmetically
complete with respect to N, while we do not yet know whether the same holds for M· .
Finally, as is easily seen from the definition, we have that NA→ �A. On the other hand,
there seems to be no modal principle relating M· and � in such a simple way.

Theorem 29. We note the similarlity of N to the Feferman provability predicate:

�fA := ∃x(�xA∧3x>)

As shown in [4, Theorem 5.9], �f is an extensionally correct provability predicate for PA,
however at the same time PA ` 3f>. The existence of �f illustrates the need for a more
careful formulation of Gödel’s Second Incompleteness Theorem than what is commonly
stated. The Feferman provability predicate �f has been further studied in [19], [30], and
[25].

Recall that NA = ∃x(�x+1A∧3Π1
x >). Thus N differs from �f by a Π1-oracle, and by

a “+1”. Removing the Π1-oracle, we obtain the formula ∃x(�x+1A∧3x>) that is easily
seen to be equivalent to �A. Remove the “+1” we obtain:

(23) MfA := ∃x(�xA∧3Π1
x >).

Inspecting the proof of Theorem 21, it is clear that everything works when taking the dual
Of of Mf for O. Thus Of is also a supremum adapter.

On the other hand, the modal principles valid for Mf are rather different from those
valid for N. It is easy to see that PA ` Of>, from which it follows that Mf cannot satisfy
the principles of GL. Indeed, examining the proof of Theorem 23, the “+1” in the definition
of N seems to be essential for establishing transitivity (MA→ MMA).
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There is no a priori reason for preferring a supremum implementation based on N to
one based on Mf . The advantage of the GL-satisfying version is that it satisfies a very well
studied modal logic. As we will now see, also the joint provability logic of N and � has a
relative in the existing literature. �

Denote by L�M the language of propositional modal logic containing two unary modal-
ities � and M.

Definition 30. The axiom schemata of GLS include all propositional tautologies in the
language L�M, the axiom schemata of GL for both � and M, and furthermore
(T1) MA→ �A
(T2) �A→ M�A
(T3) �A→ �MA
(T4) �(�B→ MA)→ �(�B→ A)

We note that (T3) and (T2) imply �(�B→ A)→�(�B→MA). In contrast, (T4) does
not follow from the weaker �MA→ �A. We denote by GLT the system GLS, with axiom
(T4) replaced by �MA→ �A.

Open Question 31. Is GLS arithmetically complete with respect to � and N? �

The system GLT was studied by Lindström ([16]) due to its relation to Parikh’s rule.
The latter allows us to infer A, given that we have established the provability of A. It is
thus a sort of reflection rule. Since Parikh’s rule is admissible in PA, adding it to PA does
not yield new theorems. As shown in [23], it does yield speed-up, meaning that some
theorems have much shorter proofs when Parikh’s rule is allowed. The equivalence of
Parikh provability and ordinary provability is however not verifiable in PA. Writing �p for
the formula representing Parikh provability, we have

PA ` �pA↔∃x�xA,

where �x denotes the x-times iterated version of �. Using the above, it is not difficult to
see that the principles of GLT are valid when interpreting the modal symbol M as ordi-
nary provability, and � as Parikh provability. Indeed, it was proven by Lindström in [16]
that GLT is arithmetically complete with respect to this interpretation. In [9], it is shown
that GLT is also the arithmetically complete joint provability logic of slow and ordinary
provability.

We note that both of the above interpretations of GLT are with respect to a pair of
provability predicates where one is the ordinary provability predicate, and the other a non-
standard Σ1 provability predicate for PA. Our conjecture for the system GLS on the other
hand involves the ordinary provability predicate, together with a nonstandard Σ3-predicate.
Dealing with the complexity of N while trying to answer Question 31 remains a challenge
for future work.
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[6] Hájek, P.: On interpretability in set theories I. Comm. Math. Univ. Carolinae 12, 73–79 (1971)
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APPENDIX A. METHODOLOGICAL CONSIDERATIONS

A.1. Undefinability of suprema in ILM. We show here that the existence of suprema in
(V ,�) is not expressible in the modal system ILM.

Lemma 32. Let A be an L��-formula. Then there exists a formula Ap containing no
occurrences of � and �, and such that

ILM ` �⊥→ (A↔ Ap)
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Proof. By induction on the complexity of A. The base case and the propositional cases are
trivial. If A = �B or A = B�C for some B, C, then we can take > for Ap (this is easily
seen by using soundness and completeness of ILM with respect to Veltman frames, see
[14]). �

Theorem 33. There is no L��-formula S, such that for all L��-formulas A, B, and C,

ILM ` (C�A)∧ (C�B) ↔ C�S(A,B).

Proof. Suppose that such a formula S exists. Then in particular

(24) ILM ` (>�A)∧ (>�B) ↔ >�S(A,B).

Let Sp be purely propositional as in Lemma 32. Using completeness of ILM with respect
to Veltman frames, it is easy to see that

(25) ILM ` ��⊥→ (>�S(A,B)↔>�Sp(A,B)) .

By (25), and arithmetical soundness of ILM, we have

PA ` ��⊥→ (>�S∗(A∗,B∗)↔>� (Sp)∗(A∗,B∗)) ,

where ∗ is any arithmetical realisation for ILM. Combining with (24), we get for any
arithmetical realization *,

(26) PA ` ��⊥→ (>� (Sp)∗(A∗,B∗) ↔ (>�A∗)∧ (>�B∗)) .

Since Sp is purely propositional, there are 16 possibilities. We will show that in each case,
there are L -formulas A and B such that

PA ` (>�Sp(A,B) ↔ (>�A)∧ (>�B)) → �⊥.
Combining the above with (26), we get PA ` ��⊥→ �⊥ in all cases, a contradiction.

Argue in PA, assuming >� Sp(A,B) ↔ (>�A)∧ (>�B). We use reasoning war-
ranted by ILM to show >�⊥, which is equivalent to �⊥.
1. Sp(A,B) = >. We have >�>, and therefore by assumption (→) >�⊥ (taking ⊥ for

A).
2. Sp(A,B) =⊥. Take > for A and B. We have >�>, and therefore by assumption (←)
>�⊥.

3. Sp(A,B) = A. Take> for A and⊥ for B. We have>�A, and thus by assumption>�B,
i.e. >�⊥.

4. Sp(A,B) = B. Like the previous case, but take > for B and ⊥ for A.
5. Sp(A,B) = ¬A. Take ⊥ for A. Then >�¬A, whence by assumption >�A, i.e. >�⊥.
6. Sp(A,B) = ¬B. Like the previous case, but take ⊥ for B.
7. Sp(A,B)=A∧B. Take as A an Orey sentence O, and for B the sentence¬O. Then>�O

and >�¬O, by the fact that O is an Orey sentence, so by assumption >�O∧¬O, i.e.
>�⊥.

8. Sp(A,B) = A∨B. Take ⊥ for A and > for B. Then >�A∨B, so by assumption >�A,
i.e. >�⊥.

9. Sp(A,B) = ¬A∧¬B. Take ⊥ for both A and B. Then >�¬A∧¬B, so by assumption
>�A, i.e. >�⊥.

10. Sp(A,B) = ¬A∨¬B. Take ⊥ for A. Then >�¬A∨¬B, so by assumption >�A, i.e.
>�⊥.

11. Sp(A,B) = A∧¬B. Take > for A, and ⊥ for B. Then >�A∧¬B, so by assumption
>�B, i.e. >�⊥.

12. Sp(A,B) = ¬A∧B. Like the previous case, but take ⊥ for A and > for B.
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13. Sp(A,B) = A→ B. Take > for B and ⊥ for A. Then >�A→ B, so by assumption
>�A, i.e. >�⊥.

14. Sp(A,B) = B→ A. Like the previous case, but take ⊥ for B and > for A.
15. Sp(A,B) = A↔ B. Take⊥ for both A and B. Then>�A↔ B, so also>�A, i.e.>�⊥

by assumption.
16. Sp(A,B)=¬(A↔B). Take> for A and⊥ for B. Then>�¬(A↔B), so by assumption

also >�B, i.e. >�⊥.
�

Theorem 34. The above proof proceeds by showing that if suprema were definable in ILM,
then ��⊥→ �⊥ would be provable in PA. Note that since ��⊥→ �⊥ is true, the same
argument cannot be used to show that the existence of the supremum is not expressible in
ILMω , the modal logic of interpretability statements that are true (in the standard model).

�

Open Question 35. Are interpretability suprema definable in ILMω ? �

A.2. A Non-commutative supremum. We construct a supremum implementation τ , such
that τ(A,B)↔ τ(B,A) is not always provable in PA. Let σ be any supremum implementa-
tion. Let τ(A,B) be the formula

(A≤ B→ σ(A,B)∧�¬σ(A,B))∧ (B < A→ σ(A,B)∨3σ(A,B)) ,

where A and B are regarded as internal variables ranging over sentences. By A ≤ B we
mean that the gödelnumber of A is smaller than or equal to the gödelnumber of B.

We show first that τ is a supremum implementation. Argue in PA. We first show
τ(A,B)� A. In case A ≤ B, we have �(τ(A,B) → σ(A,B)), and thus also τ(A,B)�
σ(A,B). Since σ(A,B)� A, also τ(A,B)� A by transitivity of �. In case B < A, we
have �(τ(A,B)→ σ(A,B)∨3σ(A,B)), and so also τ(A,B)�σ(A,B)∨3σ(A,B). Since
by axiom J5 of ILM, 3σ(A,B)�σ(A,B) we get

σ(A,B)∨3σ(A,B)�σ(A,B)

by axiom J3 of ILM, and so σ(A,B)∨3σ(A,B)� A by the fact that σ(A,B)� A, and
transitivity of �. Thus τ(A,B)�A follows again by transitivity of �. The argument for
τ(A,B)�B is similar. It remains to show that if C is such that C �A and C �B, then
C � τ(A,B). We clearly have C � σ(A,B) for any such C. Consider first the case that
A≤ B. Then

�(τ(A,B)↔ σ(A,B)∧�¬σ(A,B)).

Since D�D∧�¬D is a theorem of ILM, we have that σ(A,B)�σ(A,B)∧�¬σ(A,B),
and therefore also σ(A,B)� τ(A,B) by transitivity of �. In case B < A, we have that
�(τ(A,B)↔ σ(A,B)∨3σ(A,B)), and so �(σ(A,B)→ τ(A,B)), whence again σ(A,B)�
τ(A,B). Thus if C�σ(A,B), then also C� τ(A,B).

Finally, we show τ is not commutative with respect to provability. For that, let A and
B be distinct L -sentences (thus under a reasonable gödelnumbering, their gödelnumbers
are also different). We assume without loss of generality that A < B, and suppose for a
contradiction that PA ` τ(A,B)↔ τ(B,A). By definition of τ , this means that

(27) PA ` σ(A,B)∧�¬σ(A,B)↔ σ(A,B)∨3σ(A,B).

It follows from (27) by propositional reasoning that PA ` �¬σ(A,B), and thus PA `
¬σ(A,B). But this means that σ(A,B), i.e. the supremum of A and B, is in the degree
of [⊥], contradicting our assumption.
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APPENDIX B. VARIETIES OF SUPREMUM IMPLEMENTATIONS

B.1. Obtaining supremum implementations. We show how to turn Švejdar’s construc-
tion into a supremum implementation as in Definition 7. The case of Visser’s construction
is similar. Let Sub(x,y,z) be an intensionally correct formula representing in I∆0+exp sub-
stitution of numerals for free variables in formulas. Thus for all m, n, and all L -formulas
A,

I∆0+exp ` Sub(pA(u,v)q,m,n) = pA(m,n)q,
By Theorem 1, there is a formula σ with two free variables, and such that

I∆0+exp ` σ(A,B)↔∀x(3x Sub(pσ(u,v)q,A,B)→3xA∧3xB),

where A and B are seen as internal variables ranging over L -sentences. By properties of
Sub,

I∆0+exp ` σ(A,B)↔∀x(3x σ(A,B)→3xA∧3xB).
Thus the formula σ is exactly what we were looking for.

B.2. Unique explicit fixed points. We prove theorems 13 and 14, repeated here as theo-
rems 37 and 41. We start with the following lemma.

Lemma 36. Let ε(A,B) be the formula

(�0¬A∨�0¬B→ �0⊥) ∧∀x(�x+1¬A∨�x+1¬B→ �x+1(�x¬A∨�x¬B)),

where A and B are regarded as internal variables ranging over L -sentences. Then
i. I∆0+exp ` �0¬ε(A,B)↔ �0⊥

ii. I∆0+exp ` ∀x(�x+1¬ε(A,B)↔ �x+1(�x¬A∨�x¬B))

Proof. For the nontrivial direction of i, reason in I∆0+exp, assuming �0¬ε(A,B), i.e.
(28)
�0 (((�0¬A∨�0¬B)∧30>)∨∃x((�x+1¬A∨�x+1¬B)∧¬�x+1(�x¬A∨�x¬B))) .

(28) implies �0(30>∨∃x¬�x+1(�x¬A∨�x¬B). Since for any C, ¬�x+1C implies ¬�0⊥
by monotonicity, it follows from (28) that �030>, and therefore �0⊥ by Löb’s principle.

For ii, reason in I∆0+exp, and let x be arbitrary. Assume first

(29) �x+1(�x¬A∨�x¬B).

To show that �x+1¬ε(A,B), reason in �x+1. Suppose for a contradiction that ε(A,B). By
(29), let µ ≤ x be the minimal number s.t. �µ¬A∨�µ¬B. If µ = 0, then �0⊥ follows by
ε(A,B), which is a contradiction since we have ¬�0⊥ by reflection. Thus µ = y+ 1 for
some y, whence ε(A,B) now gives us

(30) �y+1(�y¬A∨�y¬B).

Since y+1 < x+1, from (30) we get �y¬A∨�y¬B by reflection, contradicting the mini-
mality of y+1. We conclude that ¬ε(A,B).

For the other direction, assume �x+1¬ε(A,B). Reason in �x+1. Note that ¬ε(A,B) is
the sentence

(31) ((�0¬A∨�0¬B)∧30>)∨∃y((�y+1¬A∨�y+1¬B)∧¬�y+1(�y¬A∨�y¬B)).

If the first disjunct holds or some y< x witnesses the second disjunct, then by monotonicity
we have that �x¬A∨�x¬B. If the smallest witness of the second disjunct is some y ≥ x,
then (by monotonicity) ¬�x+1(�x¬A∨�x¬B). Thus (�x¬A∨�x¬B)∨¬�x+1(�x¬A∨
�x¬B), or in other words

�x+1(�x¬A∨�x¬B)→ �x¬A∨�x¬B.



20 PAULA HENK AND ALBERT VISSER

Leaving the inner �x+1–world, we have shown: �x+1(�x+1(�x¬A∨�x¬B)→ �x¬A∨
�x¬B). By Löb’s Theorem we can conclude �x+1(�x¬A∨�x¬B) as required. �

Theorem 37. Let ε(A,B) be the formula

(�0¬A∨�0¬B→ �0⊥) ∧∀x(�x+1¬A∨�x+1¬B→ �x+1(�x¬A∨�x¬B)),

where A and B are regarded as internal variables ranging over L -sentences. Then

i. I∆0+exp ` ε(A,B)↔∀x (3x ε(A,B)→3xA∧3xB)
ii. For any ϑ , if PA ` ϑ ↔∀x(3xϑ →3xA∧3xB), then PA ` ϑ ↔ ε(A,B)

Proof. For i, argue in I∆0+exp, and assume ε(A,B). Using contraposition, it suffices to
show that for all x, �x¬A∨�x¬B implies �x¬ε(A,B). Suppose �x¬A∨�x¬B. If x = 0,
then ε(A,B) implies �0⊥, and hence trivially �0¬ε(A,B). If x = y+ 1 for some y, then
by ε(A,B), we have �y+1(�y¬A∨�y¬B) and hence �y+1¬ε(A,B), i.e. �x¬ε(A,B) by
Lemma 36. For the other direction assume ¬ε(A,B), i.e. the sentence in (31). By Lemma
36 i, the first disjunct implies (�0¬A∧�0¬B)∧30ε(A,B), and by Lemma 36 ii the second
disjunct implies ∃x((�x+1¬A∨�x+1¬B)∧3x+1ε(A,B)) In either case ∃x(�x¬A∨�x¬B∧
3xε(A,B)), i.e. ¬∀x(3xε(A,B)→3xA∧3xB), which is what we wanted to show.

For ii, it now suffices to show that any two fixed points of the formula ∀x(3xY →
(3xA∧3xB)) are provably equivalent in PA. Let n be s.t.

IΣn ` ϑ ↔∀x(�x¬A∨�x¬B→ �x¬ϑ) and IΣn ` σ ↔∀x(�x¬A∨�x¬B→ �x¬σ).

We show that IΣn ` σ↔ ϑ . Using Löb’s Theorem, it suffices to show IΣn `�n(ϑ ↔ σ)→
(σ ↔ ϑ). We argue in IΣn and assume �n(ϑ ↔ σ). By monotonicity and validity of K for
�n, we have for all x≥ n:

(32) �x¬ϑ ↔ �x¬σ .

Assume σ . In order to show ϑ , it suffices to show ∀x(�x¬A∨�x¬B→ �x¬ϑ). Assume
�x¬A∨�x¬B. By σ , we get �x¬σ . By essential reflexivity, it must be that x≥ n, and thus
�x¬ϑ follows by (32). �

We now turn our attention to Visser’s supremum. We first prove a few lemmas.

Lemma 38. Suppose that IΣn ` ϑ ↔∀x(�xϑ → �x¬A∨�x¬B). Then

IΣn ` ∀x≥ n�x(∀y < x(�yϑ → �y¬A∨�y¬B)).

Proof. By necessitation,

IΣn ` �n(ϑ ↔∀x(�xϑ → �x¬A∨�x¬B)),

whence we can use ϑ and ∀x(�xϑ → �x¬A∨�x¬B) interchangeably in �x if x≥ n.

IΣn ` x≥ n→ �x∀y < x(�yϑ → ϑ) (reflection)

→ �x∀y < x(�yϑ →∀z(�zϑ → �z¬A∨�z¬B)) (fixed point version of ϑ )

→ �x∀y < x(�yϑ → �y¬A∨�y¬B)

�

Lemma 39. Suppose that IΣn ` ϑ ↔∀x(�xϑ → �x¬A∨�x¬B). Then

IΣn ` ∀x≥ n(�xϑ ↔ �x(�x¬A∨�x¬B)).
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Proof.

IΣn ` x≥ n→ (�xϑ → �x∀y(�yϑ → �y¬A∨�y¬B)) (fixed point version of ϑ )

→ �x(�xϑ → �x¬A∨�x¬B) (instantiating ∀)
→ (�x�xϑ → �x(�x¬A∨�x¬B)) (K-axiom)

→ �x(�x¬A∨�x¬B) (since �xϑ → �x�xϑ )

→ �x∀y≥ x(�y¬A∨�y¬B) (monotonicity)

→ �x∀y≥ x(�yϑ → �y¬A∨�y¬B)

→ �x∀y(�yϑ → �y¬A∨�y¬B) (Lemma 38)
→ �xϑ (fixed point version of ϑ )

�

Lemma 40. Let ε(A,B) be the formula ∃x(�x(�x¬A∨�x¬B)∧3xA∧3xB), where A and
B are regarded as internal variables ranging over sentences. Then

I∆0+exp ` ∀x(�x¬ε(A,B)↔ �x(�x¬A∨�x¬B)).

Proof.

I∆0+exp ` �x¬ε(A,B)→ �x∀y(�y(�y¬A∨�y¬B)→ �y¬A∨�y¬B)(33)

→ �x(�x(�x¬A∨�x¬B)→ �x¬A∨�x¬B)(34)

→ �x(�x¬A∨�x¬B)(35)

→ �x∀y≥ x(�y¬A∨�y¬B)(36)

→ �x∀y≥ x(�y(�y¬A∨�y¬B)→ �y¬A∨�y¬B) ∧(37)

�x∀y < x(�y(�y¬A∨�y¬B)→ �y¬A∨�y¬B)(38)

→ �x∀y(�y(�y¬A∨�y¬B)→ �y¬A∨�y¬B)(39)

→ �x¬ε(A,B)(40)

Step (35) is Löb’s Theorem, step (36) monotonicity, step (37) the previous step together
with propositional logic, and step (38) reflection. �

Theorem 41. Let ε(A,B) be the formula

(41) ∃x(�x(�x¬A∨�x¬B)∧ (3xA∧3xB).

where A and B are regarded as internal variables ranging over L -sentences. Then

i. PA ` ε(A,B)↔∃x (�x¬ε(A,B)∧ (3xA∧3xB))
ii. For any ϑ , if PA ` ϑ ↔∃x(�¬ϑ ∧ (3xA∧3xB)), then PA ` ϑ ↔ ε(A,B)

Proof. Item i is an immediate consequence of Lemma 40, together with the definition of
ε(A,B). For ii, assume IΣn ` ϑ ↔∃x(�x¬ϑ ∧ (3xA∧3xB)). By contraposition,

IΣn ` ¬ϑ ↔∀x(�x¬ϑ → (�x¬A∨�x¬B)).

By Lemma 39 and reflection,

(42) IΣn ` ¬ϑ ↔∀x≥ n(�x(�x¬A∨�x¬B)→ �x¬A∨�x¬B).

On the other hand, we have by reflection

(43) IΣn ` ∀x < n(�x(�x¬A∨�x¬B)→ �x¬A∨�x¬B).
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Combining (42) and (43), we have IΣn ` ¬ϑ ↔∀x(�x(�x¬A∨�x¬B)→ �x¬A∨�x¬B),
whence by contraposition, IΣn ` ϑ ↔ ∃x(�x(�x¬A∨�x¬B)∧ (3xA∧3xB)), i.e. IΣn `
ϑ ↔ ε(A,B) as required. �

B.3. Extensionality. We prove Theorem 15 from Section 4. We start with a lemma.

Lemma 42 (I∆0+exp). Let ε(A,B) be as in Theorem 37. Then

IΣn+1 `ε(A,B)↔(44)

(3nA∧3nB)∧∀x≥ n(3x+1(3xA∧3xB)→3x+1A∧3x+1B)(45)

Proof. By propositional reasoning, we see that ε(A,B) is equivalent to

(46) (30>→30A∧30B)∧∀x(3x+1(3xA∧3xB)→3x+1A∧3x+1B).

Argue in IΣn+1, assuming (46). By reflection, 30>, and therefore 30A∧30B from the first
conjunct of (46). Now let x < n. By reflection for IΣx+1 (remember that we are reasoning
inside IΣn+1), we have that

�x+1(�x¬A∨�x¬B)→ (�x¬A∨�x¬B),

i.e. by contraposition,

(47) 3xA∧3xB→3x+1(3xA∧3xB).

Since we have 30A∧30B, we can apply (47) and the second conjunct of (46) to get
3x+1A∧3x+1B for all x < n, and thus 3nA∧3nB. The other conjunct of (45) clearly
follows from (46). This finishes the proof from (44) to (45). For the other direction, we
note that 3nA∧3nB implies 30A∧30B, taking care of the first conjunct of (46). For the
other conjunct, it suffices to show that for 1≤ x < n,

(48) 3x+1(3xA∧3xB)→3x+1A∧3x+1B.

This follows because we have 3x+1A∧3x+1B for all such x by assumption. �

Theorem 43. Let ε(A,B) be as in Theorem 37. Then

I∆0+exp ` �(A↔ A′)∧�(B↔ B′)→ �(ε(A,B)↔ ε(A′,B′))

Proof. Clearly it suffices to show that

I∆0+exp ` �x(A↔ A′)∧�x(B↔ B′)→ �x+1(ε(A,B)↔ ε(A′,B′)).

Argue in I∆0+exp, assuming

(49) �n(A↔ A′)∧�n(B↔ B′).

Now argue inside IΣn+1. Using Lemma 42 it suffices to show that

(50) (3nA∧3nB)∧∀x≥ n(3x+1(3xA∧3xB)→3x+1A∧3x+1B)

if and only if

(51) (3nA′∧3nB′)∧∀x≥ n(3x+1(3xA′∧3xB′)→3x+1A′∧3x+1B′).

Since (49) is a Σ1-sentence, its truth carries over to our current surroundings inside IΣn+1.
By monotonicity and modal reasoning, it follows that for all x≥ n,�xA↔�xA′ and 3xA↔
3xA′; similarly for B and B′. Given that, the equivalence of (50) and (51) is clear. �

Theorem 44. Let ε(A,B) be as in Theorem 41. Then

I∆0+exp ` �(A↔ A′)∧�(B↔ B′)→ �(ε(A,B)↔ ε(A′,B′))
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Proof. We shall show that

I∆0+exp ` �x(A↔ A′)∧�x(B↔ B′)→ �x(ε(A,B)↔ ε(A′,B′)).

Argue in I∆0+exp, assuming

(52) �n(A↔ A′)∧�n(B↔ B′)

Argue in IΣn. We want to show that

(53) ∃x(�x(�x¬A∨�x¬B)∧ (3xA∧3xB).

if and only if

(54) ∃x(�x(�x¬A′∨�x¬B′)∧ (3xA′∧3xB′).

Since (52) is a Σ1-sentence, its truth carries over to the world inside IΣn. By monotonicity
and modal reasoning, it follows that for all x≥ n, �xA↔ �xA′ and 3xA↔3xA′, and also
�x(�xA↔ �xA′) (again using that �xA↔ �xA′ is Σ1). Similarly for B and B′. Given that,
the equivalence of (53) and (54) is clear.

�

B.4. Failure of monotonicity for Visser’s supremum. We prove Theorem 16.

Theorem 45. Let ε(A,B) be ∃x(�x(�x¬A∨�x¬B)∧ (3xA∧3xB), where A and B are
seen as internal variables over L -sentences. The formula ε is not monotone.

Proof. It suffices to show that there is a sentence A for which

(55) PA 0 ε(A,A)→ ε(>,>).
In fact we can take for A the sentence ε(>,>). We note that:

ε(>,>) = ∃x(�x�x⊥∧3x>)(56)

ε(ε(>,>),ε(>,>)) = ∃x (�x�x¬ε(>,>)∧3xε(>,>))(57)

Recall that by Lemma 40,

(58) I∆0+exp ` ∀x(�x¬ε(>,>)↔ �x�x⊥)
Using (58), we see that, verifiably in I∆0+exp, (57) is equivalent to

(59) ∃x (�x�x�x⊥∧3x3x>)
Thus in order to show (55) it suffices to show

PA 0 ∃x (�x�x�x⊥∧3x3x>)→∃x(�x�x⊥∧3x>).
Suppose for a contradiction that ∃x (�x�x�x⊥∧3x3x>)→ ∃x(�x�x⊥∧3x>) is prov-
able in some IΣn. Argue in IΣn. From our assumption, it follows that in particular

(60) (�n�n�n⊥∧3n3n>)→∃x(�x�x⊥∧3x>).
Assume �n�n�n⊥∧3n3n>, and let x be such that �x�x⊥∧3x>. Since we have reflec-
tion for all m < n, it must be that x ≥ n. But if x > n, then �n�n�n⊥ implies �x⊥ by
monotonicity and reflection. Thus it must be that x = n. We now exit the world inside IΣn.
We have shown:

IΣn ` (�n�n�n⊥∧3n3n>)→ (�n�n⊥∧3n>);
It follows by propositional logic that

IΣn ` �n�n�n⊥→ �n�n⊥.
By Löb’s Theorem, we now have IΣn ` �n�n⊥, a contradiction. �


