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Abstract. Combinatorial auctions are mechanisms for allocating
bundles of goods to agents who each have preferences over these
goods. Finding an economically efficient allocation, the so-called
winner determination problem, is computationally intractable in the
general case, which is why it is important to identify special cases
that are tractable but also sufficiently expressive for applications. We
introduce a family of auction problems in which the goods on auction
can be rearranged into a sequence, and each bid submitted concerns
a bundle of goods corresponding to an interval on this sequence, pos-
sibly with multiple gaps of bounded length. We investigate the com-
putational complexity of the winner determination problem for such
auctions and explore the frontier between tractability and intractabil-
ity in detail, identifying tractable, intractable, and fixed-parameter
tractable cases.

1 INTRODUCTION

Combinatorial auctions [8] are mechanisms to allocate goods in
which bidders are permitted to place bids on bundles of goods. They
are widely used in practice, e.g., to auction off radio spectrum li-
cences or the rights to serve different bus routes. The design of com-
binatorial auctions poses many challenges that are relevant to Arti-
ficial Intelligence (AI). This includes algorithm design based on AI
techniques such as heuristic-guided search [e.g., 26], the design of
expressive bidding languages building on insights from knowledge
representation [e.g., 6], and the analysis of the strategic behaviour of
agents participating in an auction [e.g., 28].

Due to the combinatorial structure of the bids, the winner determi-
nation problem (WDP), i.e., the problem of computing an allocation
that maximises the revenue for the auctioneer isNP-hard in the gen-
eral case [25, 18] (e.g. Rothkopf et al. [25] observed that the problem
is equivalent to a weighted set packing problem). It therefore is im-
portant to identify special cases, so-called “tractability islands”, that
permit efficient solutions but that are also sufficiently expressive for
applications of interest. This approach was pioneered by Rothkopf
et al. [25] who identified several structural restrictions on the range
of permitted bids that render the WDP polynomial, and it was fur-
ther refined by, amongst others, Conitzer et al. [7] and Gottlob and
Greco [14].

In this paper we introduce a family of auction problems located at
the frontier between tractability and intractability. Consider the ex-
ample on the lefthand side of Figure 1, where six bidders each submit
a bid for several connected cells on a construction ground put up for
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auction. If we rearrange the cells as shown on the righthand side of
Figure 1, to obtain a sequence of cells (i.e., of goods on auction), we
find that some of the bids (e.g., A and B) end up as intervals. By a
result of Rothkopf et al. [25], the WDP is polynomial in case there
is such a mapping under which all bids end up as intervals. In our
example, however, some of these intervals have (small) gaps. A gap
consists of consecutive positive integers missing within a bid, e.g.,
the bid C on the left-hand side of Figure 1 is mapped to an interval
with a gap of size 2. We study the family of combinatorial auction
problems that can be mapped into a linear structure such that all bids
correspond to discrete intervals with a number of gaps of bounded
length. Note that the example shown in Figure 1 requires one of the
dimensions of the ground to be constant. This happens, for instance,
in auctions for a swath of offshore waters (see Rothkopf et al. [25]).
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Figure 1. Bids A–F on cells of a construction ground (left), and the same
auction problem mapped to a linear structure (right).

Depending on what restrictions we impose exactly on these
gaps, we obtain either tractability,5 intractability, or fixed-parameter
tractability results. For the most part, we assume that the goods are
represented by distinct positive integers 1, . . . , n, such that the bids
have the structure we are presenting results for. An exception is The-
orem 10, where we do not assume such on ordering to be given.

In Section 3 we show that the WDP can be solved in polynomial
time if all bids correspond to intervals with multiple gaps of length at
most ` each, for some fixed integer ` (as we will see, the case of ` = 2
is of particular interest). This result thus significantly extends the
original result of Rothkopf et al. [25]. It has immediate applications
by identifying a large family of auction problems that can be solved
efficiently in practice.

5 By tractable we mean that the problem can be solved in polynomial time
with respect to the size of the input.



In Section 4 we identify several cases for which the decision vari-
ant of the WDP isNP-complete. These are negative results, but they
nevertheless are important in that they clarify the transition between
tractable and intractable cases. All of our results of this kind deal with
auction problems where bids concern small combinations of goods
that are very close to the case of intervals with gaps covered by our
positive tractability result mentioned earlier:

• Every bid is of the form {i, i+1}∪{j, j+1} with j− i = b
√
nc

(where n is the number of goods). Thus, every bid concerns two
intervals of length 2 each, and the results applies even when we
fix the distance between these two intervals to always be b

√
nc.

• Every bid is for an interval of length 2 together with an arbitrary
third good, i.e., it is of the form {i, i+ 1, j}.

• Every bid is either for an interval of length 3, i.e., it is of the form
{i, i + 1, i + 2}, or for a set of 2 arbitrary goods, i.e., it is of the
form {i, j}. Thus, a single auction instance may include bids of
both of these types.

We thus refine known results showing that the WDP is NP-hard if
bidders may bundle two intervals together [7] and if bids on three
arbitrary goods are permitted [25]. As both 3-intervals and 2-sets
alone have a polynomial WDP [25], our third intractability result also
shows that tractable instances are not closed under taking unions.

Finally, in Section 5 we provide new insights on how parts of the
input influence the computational hardness by showing that the WDP
is fixed-parameter tractable with respect to the following parameters:

• the maximum length s of the section in each interval within which
any subset of elements may be missing;

• the combined parameter (g, k) consisting of the maximum num-
ber g of goods in a bid and the minimum number k of bids that
have to be deleted such that the remaining problem can be repre-
sented using intervals.

Thus, for auction instances where the above parameters are small
constants, the WDP can again be solved efficiently. These results
complement previous work on the parameterized complexity of com-
binatorial auctions [19]. Amongst the results of Loker and Lar-
son [19] are that the WDP is W[1]-complete with respect to the rev-
enue and is in FPT with respect to the number of distinct atomic
bids. Moreover, they present complexity results for different restric-
tions of the so-called bid graph.

The remainder of this paper thus is organised as follows. Section 2,
besides covering relevant background material on combinatorial auc-
tions and parameterized complexity, formally introduces our nota-
tion and terminology. Our tractability results are presented in Sec-
tion 3, our intractability results in Section 4, and our fixed-parameter
tractability results in Section 5. Section 6 concludes.

2 PRELIMINARIES
In this section, we introduce relevant notation and terminology for
combinatorial auctions as well as a number of specific structures we
will use to describe auction instances of special interest. We also
recall basic concepts from the theory of parameterized complexity.

2.1 Combinatorial auctions, WDP
By N := {0, 1, 2, . . . }, we denote the set of non-negative integers.
Our notation is similar to that of Rothkopf et al. [25]. A combina-
torial auction can be described as a triple C = (A,P, b), where

A := {1, . . . , n} is the set of goods (or assets, or items) to be sold
by auction (subsets of which are called combinations), P is the set
of permitted combinations C ⊆ A on which bids may be placed,
and b : P → N is the mapping representing the bids (which can be
thought of as a list of pairs, each consisting of a combination and
a price). The number b(C) is the largest bid submitted for C, and
b(C) = 0 if no bid is submitted for C. We will not model the bid-
ders, but the set of submitted bids only. This can be thought of as
each bidder being single-minded and submitting one ‘atomic bid’
(one desired combination), or as fewer bidders submitting a union
(an OR-expression) of such atomic bids each. An outcome W of an
auction is a set of pairwise disjoint combinations of P . The revenue
rev(W ) of an outcome W is defined as rev(W ) :=

∑
C∈W b(C).

The WINNER DETERMINATION problem (WDP) asks, given a
combinatorial auction C = (A,P, b), for an outcome maximising
the revenue. Its decision version asks, given a combinatorial auction
C = (A,P, b) and a positive integer k, whether there is an outcome
W such that rev(W ) > k.

2.2 Discrete intervals, longest paths, item graphs
For i, j ∈ A, let [i, j] := {x ∈ A | i 6 x 6 j} denote a discrete
interval, i.e., A = [1, n]. Thus, [i, j] = ∅ if i > j.

We will use the problem LONGEST PATH for directed acyclic
graphs (DAGs) to derive some of our tractability results. Let G =
(V, E) be a directed graph with edge weights given by g : E → N,
and let π = (v1, v2, . . . , v|π|) be a directed path in G, where |π|
is the number of vertices on the path. We define the length of π
as the sum of its edge weights

∑|π|−1
l=1 g((vl, vl+1)). The problem

LONGEST PATH then asks, given a DAG G = (V,E) with edge
weight function g and two vertices vi, vf ∈ V , for a directed path
π = (vi = v1, v2, . . . , vf = v|π|) of maximum length. This prob-
lem can be solved in linear time O(|V |+ |E|) [27, p. 661].

Given a combinatorial auction C = (A,P, b), a graph with ver-
tex set A is called an item graph if the bids induce connected sub-
graphs [7]. A structured item graph has bounded treewidth.

2.3 Parameterized complexity
The computational complexity of a problem is usually studied with
respect to the size of the input I of the problem. Parameterized com-
plexity theory [10, 12, 22] additionally takes into account the size of
a so-called parameter which is a certain part of the input, e.g., the size
of the solution set or the maximum number of goods in a combina-
tion in a combinatorial auction. A problem is called fixed-parameter
tractable (is in the class FPT ) with respect to a parameter k if it
can be solved in time f(k)|I|O(1), where f is a computable function
and |I| is the length of the encoding of I . This means that the run-
ning time of the corresponding algorithm is polynomial in the size of
the input, but may be exponential or worse in terms of the parame-
ter k; hence, for small values of k, the problem might be solvable ef-
ficiently. We will extend this definition to two-dimensional parameter
spaces [23], considering a combined parameter of the form (k1, k2).

3 TRACTABLE CASES
Rothkopf et al. [25] show that WINNER DETERMINATION is solv-
able in quadratic time if all permitted combinations are discrete in-
tervals. In this section, we extend their result to the case of discrete
intervals with multiple gaps of length at most ` each, for some fixed
integer `.



The case of intervals with up to one missing element can be solved
in time O(n3) by adapting the dynamic programming algorithm
from Rothkopf et al. [25]. We first consider intervals with gaps of
combined length at most 2. More precisely, we show that the WDP
is solvable in polynomial time for combinations

CMi,j := [i, j] \M, 1 6 i 6 j 6 n,

with ∅ ⊆M ⊂ [i, j], M ∩ {i, j} = ∅, and 0 6 |M | 6 2.

Theorem 1. Let C = (A,P, b) be a combinatorial auction with
P := {CMi,j : 1 6 i 6 j 6 n ∧M ⊆ [i + 1, j − 1] ∧ |M | 6 2},
where CMi,j := [i, j] \ M . Then an optimal outcome for C can be
found in time O(n|P |) = O(n5), where |P | is the cardinality of P .

Proof. We construct a DAG so that all possible outcomes of the auc-
tion are represented as an edge-weighted path, where the first and
the last vertex are fixed. The bids themselves will be represented as
edges with positive weights.

Let us first look at how an outcomeW is represented as a path πW .
Let W := {CM1

i1,j1
, CM2

i2,j2
, . . . , C

M|W |
i|W |,j|W |

} be any outcome and
w.l.o.g. we assume i1 < i2 < . . . < i|W |. The bids on combinations
ofW will be represented in the same sorted order on πW . A vertex on
πW represents which items of the auction are assigned at this stage
of the path. We will only consider paths starting in the vertex where
no items are assigned and ending in the vertex where all items are
assigned. Items are assigned when an edge is used to reach the next
vertex of a path. We will use two kinds of edges: Edges with weight
0 assign items to the auctioneer, i. e., these items are not sold, and
edges with positive weight assign a combination to the corresponding
bidder—the vertex reached via the edge reflects this change. The sum
of the edge weights of πW will then correspond to the revenue ofW .

The following observation on “overlapping” combinations allows
us to limit the number of required vertices in the graph. We say
two combinations CMi,j , C

M′

i′,j′ ∈ P overlap if they are disjoint and
[i, j] ∩ [i′, j′] 6= ∅.

Observation 2. The union of two overlapping combinations yields
again an interval with at most two missing elements.

This is obvious if one combination is contained in the missing el-
ements of the other. Otherwise we consider two overlapping com-
binations CMi,j , C

M′
i′,j′ ∈ P with i < i′ (the case i > i′ is analo-

gous). Since the two combinations are disjoint, we have i′ ∈ M and
j ∈ M ′. Thus, the missing elements of the union are a subset of
M \ {i′} ∪M ′ \ {j} with cardinality 6 2.

The set of vertices of the graph is

V := {vMi : 1 6 i 6 n+ 1 ∧M ⊆ [2, i− 2] ∧ |M | 6 2}.

In the vertex vMi , all items of [1, i− 1] \M are assigned. We write

asgd
(
vMi

)
:= [1, i− 1] \M

for the set of assigned items in a vertex vMi ∈ V . The first vertex
of every path we consider is v∅1 , where the set of assigned items is
empty and the last vertex is v∅n+1, where every item is assigned. The
reason for condition M ⊆ [2, i − 2] in the definition of V is that
every set of assigned items is an interval with at most two missing
inner elements. Let

C := {C ∈ P : b(C) > 0}

be the set of combinations with non-zero bids. We represent the bids
with weighted edges. For every combination CMi,j ∈ C we add a
directed edge from v∅i to vMj+1 with weight b(CMij ):

E1 := {(v∅i , vMj+1) : CMi,j ∈ C}.

Furthermore, for every combinationCM
′

i′,j′ ∈ C, we add an edge from
vMi to vM

′′
i′′ with weight b(CM

′
i′,j′), if i′ ∈M and

asgd
(
vMi

)
∪̇ CM

′
i′,j′ = asgd

(
vM

′′
i′′

)
(1)

holds, where ∪̇ denotes the disjoint union of two sets. The weight
of this edge is uniquely defined, since the union is disjoint. In or-
der to extend the outcome with a combination CM

′
i′,j′ it is necessary

that the union in Equation (1) is disjoint, since every item can be
sold only once. From Observation 2, we know that the union of two
overlapping combinations is again an interval with at most 2 missing
elements. So we add the following edges:

E2 :=
{

(vMi , v
M′′
i′′ ) : M 6= ∅ ∧

(
∃CM

′
i′,j′ ∈ C : i′ ∈M ∧

asgd
(
vMi

)
∪̇ CM

′
i′,j′ = asgd

(
vM

′′
i′′

))}
.

The edges in the graph with weight greater than 0 are

Eb = E1 ∪̇ E2.

There can be edges with weight 0, since not all items have to be sold.
We set

E0 :=
(
{(v∅i , v∅i+1) : 1 6 i 6 n} ∪

{(vMi , v∅i ) : 4 6 i 6 n+ 1 ∧M 6= ∅}
)
\ Eb.

The reason for condition i > 4 is that for smaller i the set of assigned
items cannot have missing inner elements.
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Figure 2. Winner determination for intervals with gap 6 2: The path with
maximal weight from v∅1 to v∅6 yields the winners of the auction with the

bids b(C
{2}
1,3 ) = c, b(C{3,4}2,5 ) = d, b(C∅4,4) = e, b(C{2,4}1,5 ) = f and

b(C∅3,5) = g. The dashed edges have weight 0. The vertices not reachable

from v∅1 are omitted.

It is not hard to see that a path π with maximal weight from v∅1
to v∅n+1 in the graph G := (V,Eb ∪ E0) corresponds to an optimal
outcome W of the auction (see Figure 2 for an example) that can be
retrieved by calculating O(n) differences:

W := {Dp : ep is an edge of the path π with weight > 0},



whereDp := asgd(vM
′

i′ )\asgd(vMi ) for the edge ep = (vMi , v
M′
i′ ).

A detailed analysis yields |P | ∈ O(n4), |V | ∈ O(n3) and |Eb ∪
E0| ∈ O(n5). The graph can be constructed in time O(n5) and it is
directed and acyclic—note that for every edge (vMi , v

M′
i′ ) we have

asgd(vMi ) ( asgd(vM
′

i′ ). Therefore, by finding the longest path in
G, we can solve the WDP in O(n5). This concludes the proof of
Theorem 1.

For the following tractability result, we make use of structured item
graphs. We recall the corresponding definitions: For a given combi-
natorial auction C = (A,P, b), a graph with vertex set A is called
an item graph if the bids induce connected subgraphs. A structured
item graph has bounded treewidth. Conitzer et al. [7] show that the
WDP is tractable if a structured item graph is given, i. e., they solve
the WDP for this case inO(|T |2(|B|+ 1)tw+1) using dynamic pro-
gramming, where T is a tree decomposition with width tw of an item
graph for the instance of the WDP and |B| is the number of bids.
Note that, however, it is NP-complete to check whether a combi-
natorial auction has a structured item graph of treewidth k, even for
k = 3 [14]. Thus, identifying natural classes of auction instances for
which we actually know the treewidth of the corresponding struc-
tured item graph is important and of immediate practical interest.
Next, we identify a large class of combinatorial auctions that have
structured item graphs. Since we explicitly give an item graph with
bounded treewidth (see Figure 3 for an example), we obtain that the
WDP can be solved efficiently for this class. The permitted combina-
tions are discrete intervals with gaps consisting of at most ` elements
each, with ` being a fixed positive integer. These gaps have to be sep-
arated by at least one element that is contained in the combination.

1 2 3 4 5 6

1, 2, 3, 4

2, 3, 4, 5

3, 4, 5, 6

Figure 3. Item graph for bids on intervals with gaps of size at most 2 (left).
The graph is chordal and the maximum clique size is 4, so the treewidth is 3
(see tree decomposition on the right). For criteria on upper and lower bounds
for the treewidth of a graph see Bodlaender and Koster [4, 5].

Theorem 3. Let ` ∈ N, C = (A,P, b) be a combinatorial auction
with P := {C ⊆ A : ∀k ∈ [min(C), max(C) − `] : C ∩ [k, k +
`] 6= ∅}. Given m bids, an optimal outcome can be found in time
O
(
n2(m+ 1)`+2

)
.

Proof. First, we construct an item graph for this class of permitted
combinations. Consider the graph G := (A, E) with

E := {{a, b} ⊆ A : 1 6 |a− b| 6 `+ 1}.

We show by contrapositive that G is an item graph. Let C ⊂ A be
an arbitrary set of items not inducing a connected component of G.
Then there are two items c, d ∈ C with c < d, |c− d| > `+ 2 and
f 6∈ C for all c < f < d (otherwise there is a path connecting the
items of C). This implies

C ∩ [c+ 1, c+ 1 + `] = ∅.

Hence, C is not a permitted combination.

In order to show that G is a structured item graph, we construct
a tree decomposition of G with bounded width. For the underly-
ing structure we choose the path (X1, X2, . . . , Xn−`−1), where the
bags are defined as

Xi := {j ∈ A : i 6 j 6 i+ `+ 1}.

It is easy to see that the conditions of a tree decomposition are sat-
isfied. Every bag contains exactly ` + 2 elements, the width of the
decomposition is therefore ` + 1. For any bag Xi, the induced sub-
graph G[Xi] is a clique, thus ` + 1 is also a lower bound for the
treewidth. Consequently, the treewidth of G is `+ 1.

For combinatorial auctions with structured item graphs, we can
solve the WDP with the algorithm of Conitzer et al. [7, p. 214].
The running time of this algorithm for the structured item graph G
with treewidth ` + 1 and the tree decomposition we constructed is
O(n2(m+ 1)`+2).

Note that Theorem 1 is a special case of Theorem 3. However, the
proof of Theorem 1 will be useful for deriving Theorem 9. It also
yields a better running time than Theorem 3.

4 INTRACTABLE CASES
In this section, we further explore the frontier of tractability for the
WDP for intervals with gaps and consider very restricted instances
for which the WDP nevertheless becomes NP-complete. The fol-
lowing theorem can be obtained by a simple reduction from the WDP
for 2× 2 rectangles [25, Theorem 9], by mapping these rectangles to
a linear structure as depicted in Figure 1.

Theorem 4. The WDP is NP-complete for combinatorial auctions
C = (A,P, b) with P := {{i, i+ 1}∪ {j, j+ 1} : j = i+ b

√
nc},

even if all bids have value 1.

The WDP is equivalent to solving the maximum weighted indepen-
dent set problem in a bid graph, where each vertex corresponds to
a bid, weighted with the value of the bid, and there is an edge be-
tween two vertices if and only if the corresponding combinations
have a non-empty intersection [cf., e. g., 19]. This connection im-
plies, by a result of Fellows et al. [11, Theorem 1] on the param-
eterized complexity of k-INDEPENDENT SET for multiple-interval
graphs, W[1]-hardness—with respect to the revenue of the auction—
of the WDP for combinations of the form I1 ∪ I2, where I1, I2
are discrete intervals and where all bids have value 1. Further, the
work by Bar-Yehuda et al. [1, Corollary 2.3] implies NP-hardness
(and APX -hardness) of the WDP for combinations of the form
{i, i+1}∪{j, j+1} and bids with value 1. However, in Theorem 4
we restrict the distance between the two intervals of each bid, i.e., we
require j = i+

√
n for each combination {i, i+ 1} ∪ {j, j + 1}.

The WDP is alsoNP-complete if bids are allowed on intervals of
length 3 and on combinations with two elements.

Theorem 5. The WDP is NP-complete for combinatorial auctions
C = (A,P, b) with P := {[i, i + 2] : 1 6 i 6 n − 2} ∪ {{i, j} :
i, j ∈ A}, even if all bids have value 1.

Proof. To show NP-hardness, we use a reduction from the NP-
complete problem 2P1N-SAT, a variant of the satisfiability prob-
lem for a collection of clauses where each variable occurs ex-
actly two times as a positive literal and one time as a negative
literal [29, p. 238f]. Let ISAT be an instance of 2P1N-SAT. Let



pv1 nv pv2

gx gy gz

Figure 4. Construction of the bids for a variable v ∈ V . The items pv1 and
pv2 represent the occurrences of v, and nv the occurrence of ¬v, respectively.
Furthermore, the items gx and gz correspond to the clauses containing v,
and gy corresponds to the clause containing ¬v. If a clause contains more
than one variable, the corresponding clause item occurs in the construction
for multiple variables. The dashed lines indicate that the two connected items
belong to the same bid. Additionally, three consecutive items of the same
shade of grey represent one bid each. Altogether there are seven bids shown
in the figure: Two medium grey, two light grey and three dark grey bids. The
light grey and the medium grey bids simulate possible variable assignments:
v 7→ 1 (v 7→ 0) corresponds to an outcome where the two medium (light)
grey bids are accepted. In the first case the items pv1 and pv2 can be used
to accept the bids containing gx and gz . In the second case the situation is
analog for nv and gy .

V := {v1, v2, . . . , vn} denote the set of n variables and C :=
{c1, c2, . . . , cm} the collection of m clauses of ISAT. For every vari-
able vi ∈ V , we create seven consecutive items

7(i− 1) + 1, 7(i− 1) + 2, . . . , 7i,

and for every clause cj ∈ C one item gj := 7n + j. Overall, we
create n := 7n + m items. For better readability we define

pvi1 := 7(i− 1) + 2,

pvi2 := 7(i− 1) + 6,

nvi := 7(i− 1) + 4,

where pvi1 and pvi2 represent the occurrences of vi and nvi the oc-
currence of ¬vi, respectively. Let xi, zi and yi be the indices of
the clauses containing the literals represented by pvi1 , pvi2 and nvi ,
respectively. We create seven bids with value 1 for every variable
vi ∈ V (see Figure 4 for a visualisation):

Bvi 7→1 := {7(i− 1) + 3, nvi , 7(i− 1) + 5},
B′vi 7→1 := {7(i− 1) + 1, 7i},
Bvi 7→0 := {7(i− 1) + 1, pvi1 , 7(i− 1) + 3},
B′vi 7→0 := {7(i− 1) + 5, pvi2 , 7i},

B1
vi := {pvi1 , gxi},

B2
vi := {pvi2 , gzi},

B¬vi := {nvi , gyi}.

We now show that ISAT is satisfiable if and only if there is an outcome
of the auction with revenue k > 2n + m.

“⇒”: Let φ : V → {0, 1} be an assignment that satisfies all
clauses. For every variable vi ∈ V we accept the bids on Bvi 7→φ(vi)
and B′vi 7→φ(vi). This is possible since

Bvi 7→1 ∩B′vi 7→1 = Bvi 7→0 ∩B′vi 7→0 = ∅

and because these bids are on subsets of [7(i − 1) + 1, 7i], i. e.,
items that only occur in bids created for the variable vi. This yields
a revenue of 2n. For every clause cj ∈ C there is at least one literal
satisfied by φ, otherwise the clause would not be satisfied. Let lj
be any satisfied literal of the clause cj . By construction, the item
representing lj is still available and only contained in exactly one bid
involving the item gj . Therefore, we can accept one additional bid
for every clause, resulting in an outcome with revenue 2n + m.

“⇐”: LetW be an outcome of the auction with revenue > 2n+m.
We first show that all clause items must have been sold. Suppose

to the contrary that there is an item gj which is not contained in
an accepted bid. Then, we can accept at most m − 1 bids involv-
ing clause items. The remaining bids are Bvi 7→1, B′vi 7→1, Bvi 7→0

and B′vi 7→0 for every variable vi ∈ V . Since (Bvi 7→1, B
′
vi 7→1) and

(Bvi 7→0, B
′
vi 7→0) are the only pairs of these bids having an empty

intersection, we can accept at most 2n additional bids. Consequently,
the revenue is at most 2n + m − 1. This is a contradiction, thus all
clause items have been sold.

We show that the accepted bids involving the clause items induce
a partial mapping φp : V → {0, 1} such that at least one literal is
satisfied in each clause. Every accepted bid involving a clause item
contains exactly one other item representing a literal that determines
φp for the corresponding variable, i. e., φp assigns to the variable the
truth value that makes the literal satisfied. This cannot result in an
inconsistent assignment, as we will show now. Suppose the result is
an inconsistent assignment. Then, there is a variable vi ∈ V such that
B¬vi and at least one of the bids B1

vi and B2
vi are accepted. In this

case only one of the bids Bvi 7→1, B′vi 7→1, Bvi 7→0 and B′vi 7→0 can be
accepted, so the achievable revenue is at most 2n+m−1. Again, this
is a contradiction, so the assignment is consistent. Every variable not
assigned by φp may be chosen arbitrary, since φp already satisfies
one literal in each clause. So φ : V → {0, 1} with

φ(vi) =

{
φp(vi) if φp(vi) ∈ {0, 1},
1 otherwise,

is an assignment satisfying all clauses of the ISAT instance.
This construction can clearly be done in polynomial time, so the

WDP isNP-complete as claimed.

We could have obtained a similar result by adjusting the proof of
Conitzer et al. [7] showing that permitting bidders to bundle two in-
tervals together yields a NP-hard instance of the WDP: The same
structure arises if we restrict VERTEX COVER to cubic graphs in their
reduction, but then the proof still contains bids of value 1 and 2.

Since the WDP is solvable in polynomial time if either all per-
mitted combinations are intervals or if all permitted combinations
consist of at most two elements only [25], Theorem 5 implies the
following corollary.

Corollary 6. The class of tractable instances of WDP is not closed
under union.

In the next theorem, bids are allowed only on combinations consist-
ing of two consecutive elements and an arbitrary third.

Theorem 7. The WDP is NP-complete for combinatorial auctions
C = (A,P, b) with P := {{i, j, k} ⊆ A : j = i + 1}, even if all
bids have value 1.

In order to prove this theorem, we make use of the following lemma.

Lemma 8. Let G = (V, E) be a connected cubic graph. There is
a bijection β : E → {1, 2, . . . , |E|} so that for each vertex v ∈ V



there are two incident edges that are mapped to consecutive integers.
Such a bijection can be found in linear time.

Proof. Let G = (V, E) be a cubic graph with vertices
v1, v2, . . . , vn. By the handshaking lemma, every cubic graph has
an even number of vertices. Hence, we have n = 2m for some pos-
itive integer m. We extend G, so that every vertex has even degree:
For every i = 1, 2, . . . , m we add a vertex wi and connect it to the
vertices v2i−1 and v2i (see Figure 5).

v1 v2 v3 v4 . . . v2m−1 v2m

w1 w2 wm

Figure 5. Extension of a cubic graph G with vertices v1, v2, . . . , v2m to
a (non-cubic) graph G′, so that every vertex has even degree. The edges of G
are hinted at below the vertices (every vertex is incident to three edges) and
depend on the specific graph. For every i = 1, 2, . . . , m we add a vertex wi
and connect it to the vertices v2i−1 and v2i (depicted in grey).

The resulting graph G′ = (V ′, E′) is connected and every vertex
has even degree, because every v ∈ V has degree 4 in G′ and every
w ∈ V ′\V has degree 2. Thus,G′ has an Eulerian circuit and we can
find one in linear time with Hierholzer’s algorithm [17]. Consider an
arbitrary Eulerian circuit in G′. Starting from w1 (or any other ver-
tex wi ∈ V ′ \ V ), we traverse the edges in the order in which they
appear on the circuit. Let j be a counter initially set to 1. Each time
we encounter an edge e ∈ E, we set β(e) := j and increment j by
1. Every vertex v ∈ V is once both entered and left via edges con-
tained in E, since exactly one incident edge is not in E. Therefore,
two of the incident edges are assigned to consecutive integers.6 An
Eulerian circuit visits every edge of a graph exactly once, so this ap-
proach yields a bijection with the desired property. With suitable data
structures, the traversal of the edges can be done in O(E′) = O(E)
and the test whether e ∈ E in O(1). Overall, the construction needs
linear time.

Blumrosen and Nisan [3, p. 271] use a reduction from INDEPEN-
DENT SET to prove that the WDP isNP-complete. Since INDEPEN-
DENT SET remains NP-hard when restricted to 2-connected cubic
planar graphs [20, p. 10 f.], we can apply Lemma 8 and prove Theo-
rem 7 using a reduction from the restricted version of INDEPENDENT

SET in an analogous manner.
We can further strengthen some of these results, using refined
NP-completeness results for several variants of the tiling prob-
lem [2, 21]. We then obtainNP-completeness of the WDP with per-
mitted combinations P1 := {{i, i + 1, j} ⊆ A : j = i + r ∧ r ∈
{b
√
nc, b
√
nc + 1}} and P2 := {[i, i + 2] : 1 6 i 6 n − 2} ∪

{{i, i+ b
√
nc} : 1 6 i 6 n− b

√
nc}, respectively, even if we only

allow bids with value 1. If we replace b
√
nc in the definition of Pi,

i = 1, 2, with a constant value, the WDP can be solved in polyno-
mial time even if we remove the restriction to bids of value 1 (see
Theorem 3).

6 At this point, it is important that we chose a vertex w 6∈ V as a starting
point. Otherwise, this would not necessarily hold for the start vertex.

. . . v∅i

vMj+1

. . .

. . .

. . .. . .

. . .

. . .

. . . v∅j+1
. . .

b
(
CM

i,j

)

Figure 6. Representing partial assignments where the set of assigned items
is not necessarily an interval. We create an edge from v∅i to vMj+1 if and only
if there is a bid on CMi,j . For M = ∅, this is an interval bid. If M 6= ∅, we

create an edge from vMj+1 to v∅j+1, possibly with weight 0 (if this edge does
not represent an existing bid). The outgoing edges from vMj+1 for the case
M 6= ∅ are explained in Figure 7. We do not have to consider the incoming
edges separately, because they can be regarded as outgoing edges from other
vertices.

5 FIXED-PARAMETER TRACTABLE CASES

In this section, we investigate the influence of certain parts of the in-
put on the computational hardness of the WDP. We consider two pa-
rameters and obtain fixed-parameter tractability with respect to each
of them.

Theorem 9. For s ∈ N, let C = (A,P, b) be a combinatorial auc-
tion with P := {CMi,j : 1 6 i 6 j 6 n ∧ ∃k ∈ A : M ⊆
[k, k + s − 1] ⊆ [i + 1, j − 1]}, where CMi,j := [i, j] \M . Given
m bids, an optimal outcome for C can be found in time. O(n3s24s),
which can also be expressed in terms of the number m of submitted
bids as O(n2m2s). Hence, the WDP is fixed-parameter tractable
with respect to the length s of the section in each interval within
which any subset of items may be missing. More precisely, the param-
eter s is defined as follows. For each combination C corresponding
to a bid, let sC denote the minimum natural number such that all
missing elements of C are within an interval [kC , kC + sC −1] with
kC ∈ A. Then, the parameter s is the maximum sC for the given
instance.

Proof. We will only sketch the proof, since it is similar to the proof
of Theorem 1. Given an instance of WDP as described, we create
a graph in which the longest path between two designated vertices
corresponds to an optimal outcome of the auction.

Again, in a vertex vMi all items of [1, i− 1] \M are assigned. We
start by creating a path from v∅1 to v∅n+1. An edge on this path has
weight 0 if and only if there is no bid on the corresponding item. The
two designated vertices are again v∅1 and v∅n+1, i. e., the longest path
from v∅1 to v∅n+1 in the final graph will correspond to an optimal out-
come of the auction. Now, we will create further vertices and edges
such that every outcome of the auction is represented as an weighted
path from v∅1 to v∅n+1 in a specific order, i. e., if we sort an arbitrary
outcome by the first element of each combination, then the contained
combinations appear in that order on the corresponding path. For ev-
ery bid on a combination, we create vertices and edges as shown in
Figures 6 and 7.

If an edge has non-zero weight, it is weighted with the maximum
value that someone has bid on a combination leading to this edge.
Since there might be several different combinations leading to the
same edge, we label the edge also with the corresponding bid.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n v
{4, 5, 7}
9

5 7 10 13 14 C
{6, 8, 9, 11, 12}
5,14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n v
{9, 11, 12}
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n v
{4, 5, 7}
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n v∅9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n v
{4, 5, 7}
9

5 7 C
{6}
5,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n v∅9

Figure 7. Possible transitions from a vertex vMi with M 6= ∅. We consider
an example which can be easily generalised; here we have i = 9 and M =

{4, 5, 7}. The assigned items are dark grey and the unassigned ones are light
grey. The circles in one row visualise the corresponding combination with a
non-zero bid on the right. On the bottom we have the case of a bid on a subset
of M . Since we construct the outcomes of the auction in a specific order, we
do not have to consider item 4 on this path any more. If there is a bid on
C ⊂ M with 4 ∈ C, then we create a separate edge, e.g., a bid on {4, 5}
would lead to an edge to v

{7}
9 . It can happen that several bids lead to the

same successor; in this case we consider only the one with the highest value
and set the weight of the edge accordingly. If there is no bid as depicted in
the middle, we create an edge to v∅9 with weight 0. This ensures that the path

can be extended by combinations that do not overlap with v
{4, 5, 7}
9 . Finally,

there may be bids on combinations overlapping with v
{4, 5, 7}
9 that are not

subsets of M = {4, 5, 7} (shown at the top). Item 4 is again omitted.

The correctness of this construction can be shown in a similar fash-
ion as for the proof of Theorem 1. We will briefly comment on the
correctness of the case depicted on top of Figure 7. The set of vertices
in the constructed graph is

V := {vMi : 1 6 i 6 n+ 1 ∧
∃k ∈ A : M ⊆ [k, k + s− 1] ⊆ [2, i− 2]}.

Actually, fewer vertices may suffice, e.g., if V contains vertices that
are not reachable from v∅1 . The important property in the top case
is that the successor, say vM

′
j+1, reached via a combination, say CMi,j ,

is also an element of V , i. e., the length of the section with missing
elements does not increase. Since we represent the combinations of
an outcome in the order described above, we may disregard all items
lower than i. Consequently, M ′ is a proper subset of M—due to the
overlap we have |M ′| 6 |M | − 1. Hence, vM

′
j+1 ∈ V .

A major difference to Theorem 1 is that V and E are not of poly-
nomial size. Here, the number of vertices is exponential in s. We
have |V | ∈ O(n22s). It is not hard to see that the asymptotic num-
ber of edges is dominated by the top case in Figure 7. Let us consider
an arbitrary vertex vMi with M 6= ∅. The section with missing el-
ements of a combination, say CM

′
i′,j′ , as depicted in the top case is

partly fixed because it has to contain i− 1. For this reason, there are
only O(s) possible starting points for M ′. Further, there are O(s)
possible values for i′, since i′ ∈M , and O(2s) possibilities for M ′.
Finally, there areO(n) possible values for j′. Thus, we can conclude
|E| ∈ O(|V |s22sn) = O(n3s24s). It is easy to see that |E| is also
inO(n2m2s), since there areO(m) outgoing edges for every vertex.
The graph obviously is directed and acyclic, therefore computing a
longest path from v∅1 to v∅n+1 that yields an optimal outcome of the

auction requires time O(n3s24s) or, expressed in terms of the num-
ber m of submitted bids, time O(n2m2s).

We can represent the combinations Ci of a combinatorial auction
with b(Ci) > 0, 1 6 i 6 m, as a binary matrix (cij)16i6m,16j6n
with cij = 1 ⇔ j ∈ Ci (cf. the integer program of Rothkopf
et al. [25]). If this matrix has the consecutive ones property (C1P),
i.e., if the columns can be permuted so that all ones appear consecu-
tively in every row, the WDP can be solved in polynomial time [25].
Dom [9, p. viii and pp. 79–118] shows that the problem of deleting
a minimum number of rows—corresponding to combinations in our
case—to transform a given matrix into one with the C1P is fixed-
parameter tractable with respect to the combined parameter (∆, d),
where ∆ is the maximum number of 1-entries per row and d is the
number of rows that may be deleted. Building on this result we can
prove the following theorem.

Theorem 10. The WDP is in FPT for combinatorial auctions
C = (A,P, b) with unrestricted P w.r.t. the combined parameter
(g, k) consisting of the maximum number g of goods in a bid and
the minimum number k of bids that have to be deleted such that the
remaining problem can be represented using intervals without gaps.

The parameter k above can be thought of as a measure for the “dis-
tance” [16] of a given instance from an instance that is tractable; here
the tractable instance consists of intervals and k describes the simi-
larity to such an instance.

A result by Fomin et al. [13] implies that the WDP is in FPT
with respect to the number of bids that need to be deleted so that the
corresponding bid graph becomes an interval graph. However, Fomin
et al. make the assumption that “an interval deletion set is provided
as a part of the input, as it is an open question whether INTERVAL

VERTEX DELETION is FPT ” [13, p. 352]; this is a restriction we
do not use in Theorem 10.

6 CONCLUSION
We have introduced a new domain into the study of combinatorial
auctions, consisting of all those allocation problems in which the
goods can be arranged in a sequence in such a way that every bid
concerns a discrete interval with multiple gaps of bounded length
each. As already pointed out by Rothkopf et al. [25], even the sim-
plest such scenario, namely the one without any gaps at all, is of some
practical interest, e.g., for selling licenses for radio frequencies. Al-
lowing for gaps increases flexibility and thereby makes this model
relevant to a wider range of applications, as illustrated, for instance,
by our introductory example on auctioning off the cells making up a
construction ground.

For the case without any gaps at all, the problem of computing
an optimal allocation was previously known to be solvable in poly-
nomial time. We have systematically explored the extent to which
this positive result can (and cannot) be generalised. If each inter-
val has arbitrarily many gaps of at most some fixed length, there
still is a polynomial algorithm. On the other hand, for several other
seemingly mild extensions, we have established NP-completeness
results, thereby demonstrating just how subtle the difference be-
tween tractability and intractability can be. This complements previ-
ous work on the fine-grained complexity analysis of group decision
making in AI [see, e.g., 15]. Finally, we identified two parameters
that, when kept fixed, render the WDP tractable.

Our proofs employ both familiar and novel techniques. Specifi-
cally, the proof of Theorem 1 makes use of the tractability of the



LONGEST PATH problem for directed acyclic edge-weighted graphs,
which is a helpful graphical representation of a dynamic program-
ming approach.

An interesting question remains for most of the (fixed-parameter)
tractable results, Theorem 10 being the exception: What is the com-
putational complexity of recognizing instances with the considered
structures if an ordering of the goods is not provided as part of the
input? It may be the case that such a decision procedure is not con-
structive in the sense that it can be used to find an ordering with the
desired properties if one exists. Then it would be interesting to know
how hard it is to find such an ordering.
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