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0. Introduction. This paper has a dual purpose. The first one is
the exposition of a modification of a proof of Solovay's first
completeness theorem for PA. We will give a method to prove
this theorem which does not use the recursion theorem and which
clarifies the arithmetical presuppositions underlying the proof.
This will be done in chapter 2. Chapter 1 is included merely to
introduce the subject matter and to provide two examples which
are the starting point of the second subject of this thesis, to be
treated in chapter 3. This second subject is a partially successful
attempt to strengthen Solovay's arithmetical completeness the-
orem to infinite sets of formulae.

1. Interpretations of modal logic in arithmetic.

1.1. The language Lg of propositional modal logic is defined as
follows:
Lg:= {1,-,),(,(O}UP, where P is some set of propositional
letters, 1 a propositional constant (falsum), — a binary
connective (material implication) and O a modal operator. The
class of well-formed formulae SEN g of Lg is the smallest class
such that: -

PZS SEN_q,

1eSEN_q,

@,peSENg = (@ > P)eSEN g,

and @e SEN p=0@ e SENq.
Boolean connectives V, A, 7, & will be used as abbreviations
with their standard meaning. Instead of (O(p—-1)— 1) we will
sometimes write O@. It is common practice to let P contain
infinitely many symbols. We adopt this convention here, unless it
is explicitly stated that we study some finite set of
propositional letters.

1.2. The semantics for modal formulae is developed by means of
so-called Kripke-models. A model M for Lg is a triple <M,R,IF>,
where M is a non-empty set, R a binary relation on M and I some
~ subset of MxP. <M,R> is called the frame F of the model. We can
uniquely extend the forcing relation to all modal formulae in the
following manner (writing xlF¢@ for <x,@>el and x¥K@ for
<X, 0>¢1F):

for all xeM:



for X=p for some propositional atom peP: xl-p iff xl-p in the
original sense,

for X=@—-y: xl-x iff xk@ or xl-y,

for x=0¢: xl-Xx iff for all yeM such that xRy: yl-@,

and, finally xk¥ 1.

1.3. The modal system that primarily concerns us here, is the so-
called modal provability logic L. This system is defined as the
smallest class of modal formulae containing:

all tautologies of propositional logic;

all expressions of the form O@—-0O0¢,

O(e—»y)—-(O¢@—0y), or O(Oe—-@)—>0O4;

and closed under the following two rules of inference:

Fe=FOQ;

if Fe—-y and k@, then Fy.
The axiom O@—-0O0¢ is put on the list rather to stress its im-
portance than for its indispensability, since it can actually be
derived from the other axioms and rules. The next result is of
essential interest to us here.

1.4. Theorem. @ is not a theorem of L if and only if a model
M:=<M,R,IF> exists such that:
(i) M is finite, say M={1,...,n};
(ii) R is a transitive and conversely well-founded relation on M,
this means:
V'x,y,ze M(xRyAyRz— xRz) and no infinite ascending chain
XoRXx1RX,... of elements of M exists;
(iii) for all jeM, if 1< j<n, then 1Rj;
(iv) 1 7.

This theorem is known as the modal completeness theorem for L
with respect to the finite, transitive and conversely well-
founded frames. For its proof one may consult Smorynski[1985].
We will now concentrate on models for infinite assumption sets
which can consistently be added to the system L.

1.5. Definition. A set of expressions A is called consistent
with respect to L if and only if for no conjunction XoA...AXn of
elements of A, 71 (XoA...AXn) is provable in L. We will simply
write A¥LL for "A is consistent with respect to L".



Unfortunately, we cannot hope to prove strong completeness of L.
That is, for certain assumption sets A such that A¥_1l, we need
models M which necessarily contain infinite ascending R-se-
quences if we want all formulae of A to be forced in some node of
the model. These models therefore lack the property of converse
well-foundedness.

We will now give two examples of such infinite assumption sets,
neither of which can be forced in one single node of a conversely
well-founded model.

1.6. Example. Let P, the set of propositional letters, be infinite,
say: P:={po, P1, P2,...}. Consider the following infinite set of modal
expressions (writing 0@ for @AY ):

A:={0(0Opn+1 =pn) InelN }u{ T1py }.
We claim that this set A of modal expressions is consistent with
respect to L. Moreover, any model which contains a node in which
all expressions occurring in A are to be forced, is bound to lack
the property of converse well-foundedness.
Suppose ALl . In that case, we would have:
LFIE(Op1 = po)A...A(OPm+1 = Pm)]—=po, for some m> 0. How-
ever, we can define a finite model M =<M,R,I> as follows:

M={0,..,m+1},

Vx,yeM (xRy = x<y),

VxeMVneN (xlFp,e x> n).
It is clear now, that OIFCI(0Opq = po)A..AE(OPm+1 = Pm) holds,
whereas, on the other hand, Ol T1pg is the case. By theorem 1.4 we
can conclude that our assumption is absurd. It follows, that A is
consistent. The diagram summarizes the proof ( atoms shown only
when forced):

Po Po, P1 Po, P1, P2 Po,.--,Pm
e 2 S @ == =
0 1 2 3 m+1

Nevertheless, no transitive and conversely well-founded frame
can provide a model for all formulae of A if they are all to be
forced in some node of it. To see this, we assume the existence of
such a model M :=<M,R,IF>, R transitive, which contains a node xo



such that xo IF@ for all @eA, and construct an infinite R-se-
quence as follows:
Xo IF Tpo, since TIpg€eA.
Suppose x; to be found such that x;lF 71p; and x; =xo or XoRX;.In
that case some Xj+1 €M, satisfying Xj+«1 IF 7pj+1 and x; R Xj+1 is
bound to exist, since x;lF T10pi+¢ is a direct consequence of the
fact that the formula (Opj+1—pi ) occurs in A and is therefore
forced in xo. But now we have Xo R Xj+1 by transitivity, so we
can repeat the process.
This construction produces an infinite R-sequence xoRXx{Rx5 ... of
elements of M.

The next example was suggested by de Jongh. It shows us that we
can obtain a similar negative result, using only a finite stock of
propositional letters.

1.7. Example. We can define a sequence <@np>, of modal expres-
sions containing but a single propositional letter p as follows:
@o:= pa0l;
@n:= pAO I pATONL AOMTL for n>0;
where OnX denotes the formula x prefixed by n boxes.
With this sequence we define an infinite assumption set A which
has the same properties as the one we used in the example above:
A= {(CEi»OOP 1) [ 1eN JU{O O o).
Statement: A¥ L. Suppose we could derive a contradiction from
A in L. Now let {O(Ci=» OO @ +1) | i<mIu{OO @} for some
meN be the finite subset of A responsible for this contradiction.
By theorem 1.4 we are done, once we have constructed a finite,
transitive and conversely well-founded model M =<M,R,IF> which
verifies this finite subset. We define:
M:={<x,y>l x,ye NAy <xAx <m+2}. It goes without saying
that we could have used any numbering of the nodes of the
model.
To define Ron M we set:
CKYORKXLYD o (y=0AX< X)V(X=Xx'Ay < y').
It is readily observed, that R is transitive and well-founded on M.
For the forcing relation we define:
XY IFp iff y=1.
The situation thus obtained may be displayed as in the diagram
below:



<0,0> <1,0> <2,0> <m+2,0>

D <m+2,1>

® <m+2,m+2>

From the definition of the various @,'s we can conclude: <x,y>I-(@;
if and only if y=1Ax=i+1. So <0,0>F @ for all i such that.
0<i<m+1. But also <0,0> OO+ for all i such that
0<i<m+1 holds, so we may safely conclude that, for any rele-
vant i, <0,00IFO ;- OO W 49 . The same type of argument applies
to the axioms of the form O(O@;—» OO @i+q ). Suppose <x,y>IFO @y
for <x,y>#<0,0>. In that case we would have <x".y'>I-(@; for some
<x',y'> satisfying <x,y>R<x"y'>, hence <x,y>R<i+1,1>. But then we
have: y=0AXx<i+1, from which we can conclude <x,y>R<i+2,0>.
Since <i+2,0>IF O @i4q will hold, we can conclude: <x,y>IFOO @41 .
On the other hand, we also have <0,0>IF OO @, thus the model
verifies the given initial segment of A. Therefore, A is consis-
tent with respect to L. But, if we are to construct a model on
which all formulae of A are verified, we run into the same
difficulty as in the previous example. Suppose all formulae of A
to be true in some node Xp of @ model. Apparently, we would have
XolF OO o. But then, because (O @e—» OO @) is in A, there
should be some x4 in the model such that xoRxy and x1IFO @A OO @y
. Again, there should be some X, in the model such that x4Rx2 and
X2l O AOO P2, and so on. In other words, we can construct an
infinite R-sequence of elements of this model in just the same
fashion as we did in the previous example.



1.8.Interpretations. An interpretation of a set of modal for-
mulae is a function ( )* that assigns a sentence @* of Peano
arithmetic to each modal expression @ and obeys the following
criteria:

(L)*= 0=1;

(@-y)* = *—>y*;

(O@)* = 3p proof (p,"@*").
It is obvious that, once ( )* has been defined for each proposi-
tional variable in the modal language used, the translation of the
entire set of formulae is completely determined.

In chapter 3 the substitutionary nature of the interpretation
function ( )* will become a matter of interest. As it is often
used implicitly, the next trivial lemma is formulated.

1.9.Lemma. For every set of modal propositional variables P and
every interpretation function ( )*, the following holds:
Let, for each p in P, a sentence sp of arithmetic be given, such
that PAFspe<p*. Then, for every modal expression @, the for-
mula @*e @** js provable in Peano, if ( )** is defined by:
p**=sp.
The proof of this lemma is by induction on the length of the modal
formulae.

1.10. Solovay's first Completeness Theorem (Solovay[76]).
This theorem is formulated as follows:
Let @ be any modal expression, then: k@ if and only if PAF@*
for every interpretation ( )* of the modal language used, pro-
vided it satisfies the three clauses of the preceding paragraph.

Naturally there is no need to bother about the number of
propositional variables here, because any modal expression can
contain only a finite number of them. The implication from the
left to the right is of no concern to us here. The proof is simple,
due to the fact that Peano arithmetic is closed under the axioms
and rules of L whenever the provability predicate is substituted
for the modal operator [O0. The arithmetical versions of the rules
and axioms of L are exactly the three L6b conditions and L&b's
theorem which are fulfilled in Peano arithmetic. The conditions
imposed upon the interpretation function will do the rest. The



remaining implication will be treated below. The modification of
Solovay's proof which we will present below, is based on an idea
of Franco Montagna and was further simplified by Dick de Jongh.

In section three we will use Solovay's second completeness the-

orem:

1.11. Second Completeness Theorem (Solovay[76]).
Let S be the smallest set of modal formulae containing all theo-
rems of L, all formulae of the form O@— @ and closed under
modus ponens, then, for all modal formulae @:
@e3 if and only if NE@* for all ( )* satisfying the criteria of
paragraph 1.8 (cf. Solovay[76]).

2. A revised proof of Solovay's theorem.

2.1 The proof of the completeness theorem is based on the idea
that a certain class of Kripke-models can be embedded in Peano
arithmetic. We have already seen that any modal expression
which is not derivable from the axioms of L, gives rise to the
construction of some countermodel on which @ is falsified. The
embedding of such a model in its turn was carried out by Solovay
by defining, with the aid of the recursion theorem, a recursive
function h which paces through the model in a highly peculiar
way. Intuitively speaking, one can describe the Solovay function
as follows: as values it takes only numbers denoting the nodes of
the Kripke-model in question. The next value can only be the same
as the previous one or one which is accessible from it by means
of the relation R in the model. Thus it is clear that this function
eventually reaches a limit. This 1imit is used to specify more
exactly the next value each time, namely in the following way:
for each argument the function takes the same value m as the
previous one, unless the argument codes a proof in PA of the fact
that for a certain number n, R-accessible from m, the limit of the
function is not equal to n. It is therefore clear that it is mainly
the eventual value of that function, its limit, so to speak, which
plays a role.

As the technical part of the proof involves only the mutual rela-
tions between these limit assertions, we may be tempted to de-
fine corresponding sentences, using nothing but the desired con-
nection with the other sentences. More precisely, we may replace



each expression "1=1i" we come across in the original proof (the
eventual value of h is i), by a single sentence A;, the definition of
which is an exact imitation of the conditions under which 1=i
became true. It is important to notice that these conditions can
all be spelied out in the form of finite conjunctions, claiming the
existence or non-existence and order of succession of certain
proofs, namely proofs of other expressions of the form T11=j. But
within proof predicates only codes of these expressions occur. It
seems plausible therefore to define each A; by means of a fixed-
point equation, containing only codes of these Aj's. It will be
demonstrated below, that, in doing so, the alternative sentences
satisfy the same lemmas as the original ones did. This makes
them equally suitable to perform as arithmetical interpretations
of the modal logic.

2.2. Definitions. Let F=<M,R> be a finite, transitive and con-
versely well-founded frame. M={1,..,n} and for all j, if 1<j<n,
then 1Rj.
We'll use the following abbreviations:

iBRj for i=jViRj;

ioj for T1iRjA T1jRi.
The n-ary fixed point theorem produces a set of sentences Ao,...,An
in the language of Peano arithmetic, which satisfy the following
requirements:

PAF A e OINA /1)R(i\ﬂ|:|-1>\,;

for all i such that 1 <i<n:
PAFX e OTIAA {)R(j\ﬂm—mj/\ AN (O < O,

ioj kRBi
) KB

"OA<0OB" here is the usual notation for:
“3p [proof(p,"A")A 13q < p proof(q,"B™)]".
Finally, we define:
Ao:="1 \Y/ Ai .
1<i<n
2.3. Lemma. The set of sentences {\o,...,An} of PA defined as in
2.2 has the following properties:
1) PAF W ;.
0<i<n

2) INE Xo .



3) For all i such that 0 <i<n, PA+\; is consistent.
4) PAF X— {)Rﬂj\ﬂmﬂxj for all i>0.
5) PAF Aj— /R O™ for all i>0.

TiRj

This lemma is the main clue to the proof of Solovay's complete-
ness theorem. If we replace each expression of the form A; by
1=1, we get the original lemma (cf. Solovay[76], lemma 4.1).

2.4. Smoothing the proof. For reasons of economy, it is useful
to prove lemma 2.3 within a more general framework. This will
show us exactly which properties of PA are used to prove lemma
2.3. We take for this purpose a modified version of R™, the modal
system of Guaspari and Solovay that accounts for the behaviour of
witness-comparison formulae (cf. Guaspari and Solovay[79]).
We first recall that R~ is an extension of L in which the class of
well-formed formulae is enlarged by the so-called witness-
comparison formulae, viz. those of the forms OA<OB and
OA<OB. R™ is axiomatized by adding to L the axiom schemata
(cf. de Jongh[87]):

A—-[OA for all boxed and witness-comparison formulae. It is to

be noted, that, since R~ is an extension of L, the same schema

applies to the closure of this class under conjunctions and

disjunctions, the so-called Z-formulae, as well; this gives us

the Z-completeness axiom;

the order axioms (for all O-formulae A, B, C):

(01) A ASBVB<XA,;

(02) AXB—A;

(03) AXBABXC—-AXC;

(04) AXB—AXBA T1BXA.
We extend R~ as follows: for any F=<M,R>, being a finite,
transitive and conversely well-founded frame, with M={1,..n) and
1Ri for all i such that 1<i<n, let R be defined by adding the
following axioms to R~ (we assume the language to contain
propositional constants Lo,..., Ly ):
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O(LieO7LA A0,

for each i such that 1<i<n:
O( Ly O7LA ?R(]\"ID"ILJ-A {x]\ 33({ (OL<O7L;));
Koj
O Lo W L)
1<ig<n

These axioms will be referred to as the /imit axioms. In addition
to these, we let Rg contain O((OLis O L;A0L;<0 7L )
for all i,j such that 0 <i,j<n and i#j, as so-called proof apart-
ness axioms. In the next two paragraphs we will mention some

properties of Rg that will be needed for the proof of lemma 2.3.

In the following discussion the frame F is to be thought of as
fixed.

2.5.Theorem (Soundness of RF). An interpretation ( )* of sen-
tences in the language of R into the language of arithmetic is
called F-sound if and only if ( )* fulfils the criteria cited for ( )*
in paragraph 1.8 and, in addition to these:

for all formulae @, y:

(Oe<0Ow)*=3p [proof(p,"@* " )A13q< p proof(g,"y*")];

(Oe<Oy)*=3p [proof(p,"@*")A13q<p proof(q,"y*™)];

for all i such that 0 <i<n:

Li*=X; (in the sense of definition 2.2.);
Soundness of Rg is formulated as follows: for all interpretations
()* of sentences in the 1anguage of R the following holds for any
@ in that language: R F@ = PAF@*.

The proof is straightforward by induction on the length of proof
in Rg, since PA is closed under the same rules and axioms we
have at our disposal in R provided ( )* is F-sound. We will use
this theorem extensively in the proof of lemma 2.3.

A Kripke-model for R~ is a finite, tree-ordered Kripke-model for
L in which witness-comparison formulae are treated as if they
were atomic formulae and in which the following two require-
ments are fulfilled:

if ilFA<B and iRj, then jIFAXB;

each instance of the order-axioms is fulfilled at each node.
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Completeness of R is stated as follows:
R™F @ iff @ is valid on all finite, tree-ordered Kripke-models
for R™ .

In the case of Rg, defined as in paragraph 2.4, this theorem im-

plies:

2.6. Theorem (completeness of Rf).
If R- k@, then a finite, tree-ordered Kripke-model for R~
exists, in which all limit-axioms and proof-apartness axioms
are forced at each node, and on which @ is falsified.
Proof. This result is a consequence of the completeness theorem
for R™, because we have :
REF@ < R F8—-@, where 8 is the finite conjunction of limit
axioms and proof apartness axioms listed in the definition of
Re.
The implication from the right to the left is easily proved. The
other direction is proved by induction on the length of proof in
Re. To obtain the desired result, we should check whether any
proof of a formula @ in Ry can be transformed into a proof of
8 — @ in R™. But this can cause no difficulty, since any axiom of
Rg is either an axiom of R™ or a consequence of 6. Besides, if the
last rule applied in a proof in Rg of some formula ¢ had been the
necessitation rule (from kX infer FOX), then we could use
8 —» 086 which is a theorem of R™. X

A simple proof of the completeness theorem for R~ can be found
in De Jongh [87].

Now we are ready to commence the proof of lemma 2.3.

Proof of lemma 2.3. Fix a finite, transitive and conversely well-
founded frame F=<M,R>, with M={1,..n) and 1Ri for all i such that
1<i<n. Let Ao,..,An and R be as in definitions 2.2 and 2.4. We
first show:

- =
a) RFF Lo 14)11\<n 0L
As the implication from the right to the left is obviously prov-
able, we will concentrate on the opposite direction. Suppose the
contrary to be the case. By theorem 2.6 we would have a finite,



12

tree-ordered Kripke-model for R~ with limit axioms and proof
apartness axioms forced everywhere in the model and with some
bottom-node ko such that kol-LoA qu-u.i :

Now, we must have: kol-OLjA..AO L A /AN 1O7Ly, for
some k such that 1 <k <n. Jelir...
First we remark that we are free to replace the symbol "<" in the
limit axioms by "<", due to the fact, that the apartness axioms
are forced in ko.
If k=1, we derive a contradiction straightaway, since then we
would have kolFO L, A AN —07L;, which implies a fortiori:
KolFO™L;A /)(\‘1E'J“1LJ ]ﬁrl\l’_‘l—lL,dD"lL] But now we obtain:
Kol Liy, contradlctmg kolr- Lo. We may therefore assume k> 1. As
any instance of the order axioms is forced at ko , we can stipu-
late, without loss of generality, that at ko the following is
forced:
O7L, X0 LjsA ... AO LGy SO L 5.
At this point, we can construct a subset {m4,...,m;} of the set of
indices {1,...,k} as follows:

mq:=1;

Mp+1 := m for m being the smallest index number in {1,..k} such

im,R im and koll-D"Limh X0O7Lyy, . If no such m exists, set 1=h

and Mp+1 =My .
It will be understood that this construction comes to an end in
any case, because the set {1,..,k} is finite. Again if 1=1, we obtain
an absurd situation. In that case, we would have kol /X\ 0L,
since otherwise some j=i4 had been in {lm1 . ,1m,} Now we have
kolr-/)(\l:l"'lh1 -<E]—lLJ , since Ly, was first in line anyhow. But this
1mmedlately leads to kolFLj; , contradicting kolFLo . So we may
assume 1> 1. By means of a finite induction procedure we will
now prove the following: for all p such that 1 <p <1:

kol /A \W (OL<O7Ly)).

o e
The case of p=1 is trivial, since i =iq .
Induction step: suppose kol- /X\ \W (O7Lk<O77Lj)). Now let j
be such, that jemp. . ™ g
There are two possibilities: either jomp as well, or not.
In the first case we obtain kol \W (O1Lg<O7L;)) by
KBmp+1

induction hypothesis, for kBmp implies kBmp+1 .
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In the latter case mpRj must hold. But the definition of mp.4 im-
plies: kol O Lip . SO7L; whence kol y]/ (O7L<O7Ly)
follows by propositional logic. KBMp+1

This completes the induction procedure. Since im, has no R-suc-
cessors in {i1,...,ix}, we can conclude by now:

Kok O 71, A 1_/)(\ 20A AN W (OL<O07L) .

m R] joim, ko]

Im BJ
But this implies koII-L,-m] contradicting kolFLo . The proof is hereby
completed, since nothing specific about the set {iy,..ix} had been
presupposed apart from its being non-empty.

b) If 1 <i<n, then REFLi—» /A TO7Ly . This is immediate from
. - iRj
the definition of R; .

Combining a) and b) we get 4) of lemma 2.3 by soundness.

c) Rg contains all tautologies of propositional logic, so we have
RikLoV Lo from which RZ F Oygn L; is readily deduced. Em-
ploying soundness, this accounts for 1) of lemma 2.3.

As all theorems of PA hold in the standard model, we must have
INEAX; for some i such that 0 <i<n. But then NEXg must hold,
since for any i=0 we would have PAF T1A; in case A\; were true.
Combining this with 4) of lemma 2.3, we obtain NE Oé)i(\@ﬁl’_‘l“l)\j.
This settles 2) and 3) of lemma 2.3.

d) If 0<i<n, then RiFLi—»0O7 Lo .

By a) we have RFFO7Lij— Lo . Applying the necessitation rule
(Fe=1+0Og) we infer: RFOOTL;—»07Lo . As O7L; is a boxed
formula, O7Lj—»007L, is a theorem of Rg. The proof is now
completed, since R L= 0O 7L, is a direct consequence of the
definition of R..

e) If 0<i<nand iRj, then REFLj—0O7L;.

Proof. If iRj is the case, we have RgFO™Lj— T1L; by the limit
axiom that defines L;. Arguing as in d) we obtain the desired re-
sult.

f)If0<i<nand 0<j<nand iej, then RgFLj—O7L;.
Proof. Fix i and j such that ioj. By the definition of R we have:
REFLi— ]/)3\ WO« Oy ).
koj"
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More specifically, we obtain:

RiFLi— ]AJ\ y} (O L=< O7Lj ).

JBj kej’

As the order axioms will arrange the various expressions O 7Ly
of the consequent in one way or another, we have:

ReF /A \W‘(DﬂLﬁD"ILJ )— \¥/ /_x\ (OL< 0Ly ).

JBJJ kej’ kBl J°‘

But the consequent in the 1ast formula is a Z-expression implying
7Ly, so: RfF lﬂg\ PBVi(DﬁLMEIﬂLj- )—O7Lj, which completes

this proof. J'Bj kej'

g) Putting d), e) and f) together, we obtain:
R;I—Li—éEl('WLoA Q)(j\"le/\ ?F%‘TLJ-) forallisuchthat 0<i<n

Applying soundness, this settles 5) of lemma 2.3. X

2.7. About the completeness theorem. Let M =<M,R,IF> be a
finite, transitive and conversely well-founded model with
M={1,..,n} and for all i if 1< i< n, then 1Ri. As usual, we expand
M by adding an extra node O to it and defining OlF as equivalent to
1l for all propositional letters. By definition 2.2 we obtain
sentences Aog,...,Ap satisfying lemma 2.3. We define an interpreta-
tion ( )* by setting for all peP:

\W nj.If there is no i such that ilFp, then set: p*:="0=1".
The fonov[\J(mg lemma provides the necessary clue to the com-
pleteness theorem:
Lemma: for all modal expressions @, if 1<i<n, then

ilFg=PAFX;— @* and
iFe=PAFN— T@*,

The proof is exactly the same as the original one, with each ex-
pression of the form 1=1i replaced by A;, so we will not give it
here. It will be understood, that in fact any set of sentences
No,...,An Of Peano which satisfy the requirements of definition 2.2
can be used to obtain a suitable interpretation.
Our explanation concerning the adapted proof of Solovay's result
is now completed.
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3. Solovay's theorem for infinite sets of formulae.

3.1. Consistent interpretations of sets of formulae. One
of the first questions which may arise within the context of
Solovay's completeness theorem with respect to sets of modal
formulae, is the following: if A is a set of modal formulae such
that A¥LLl, can we define a consistent interpretation (in the
sense of paragraph 1.8), such that A*={@*|@eA} is consistent
with respect to Peano arithmetic? The answer is simply yes. As a
matter of fact, the so-called uniformisation of Solovay's com-
pleteness theorem gives an interpretation ( )* such that for all
modal formulae @*, the following holds:

L if and only if PAF@* (cf. Visser[81] and Artyomov[80]).
This means that, for any consistent set A of formulae, the
interpretation ( )* gives a consistent set of sentences A*. Actu-
ally, e.g. in the example of paragraph 1.6, we would like more,
namely an interpretation ( )* which interprets formulae OA in A
not so much as formulae which can be consistently assumed to be
provable, but which actually are provable. Similar considerations
apply to the second example. A. Visser[88] succeeded in giving an
interpretation with the desired properties for the first example.
We will sketch here a general method which applies to very well
behaved sets of sentences consistent with respect to S ( Solo-
vay's extension of L which is arithmetically complete for the
formulae which under any interpretation become true sentences).
In particular, the method applies to both examples 1.6 and 1.7.
Unfortunately, we have as yet been unable to give some nice suf-
ficient conditions for our method to be applicable.

3.2.Example. A unary predicate A(v) exists, satisfying:
PAFVX[ A(x)e (OA(x+1)A 13y < x proof(y, "A(0)™))].
Applying this predicate, we are able to translate the infinite as-
sumption set A of paragraph 1.6. The translated set has already
been studied within the context of descending hierarchies of re-
flection principles (cf. Visser[88]).
Define, for each ieIN: pj*:=A(i), where i is the numeral corres-
ponding with i.
Claim: PA¥po*. Proof. Suppose the contrary to be the case and let
q+1 be the code of the shortest proof of A(0). Since for any q'<q
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we have: PAFA(qQ') = PAFA(Q'+1) we are forced to conclude:
PAFA(g+1). This will immediately lead to:

PAF Tproof(g+1,"A(0)"), which is absurd. But now we derive:
VielN PAF 3y <i proof(y,"A(0)"), whence follows: VielN
PAFDG(OA(i+1)—> A(i)). Apparently, the addition of the set of
axioms {E(Opj+1*—pi* ) | ieN } to Peano is redundant. This in-
sures that the defined interpretation of A is a suitable one. X

In order to generalize the above result, we will first concentrate
on sequences of models which are to be used in arithmetical in-
terpretations of infinite assumption sets. It is clear that, for any
A consistent with respect to L, we will have a set of finite
models which verify a given initial segment of A. But what we
need is a sequence <Mp>, of models such that any model in it is
an extension of its predecessor and that any finite subset of A is
verified by some model M, in the sequence and subsequently by all
of its successors. Hence the following definition:

3.3. Definition. <Mp>p = <<Mp, Rn,ll-Mn»n is called a sequence of
models for an assumption set A={Xo0,X1,X2,...} consistent with
respect to L if and only if the following clauses are fulfilled:

for all nelN:

(a) MnCMp+1 ;

(b) VieMn: il p & il . P;

(c) Vi,jeMn: iBnj < iRn+1];

(d) Mp is finite, say Ma={1,..Kn};

(e) Ry is transitive and conversely well-founded on My, ;

(f) VieMp(iz=1=> 1R,i);

(g) 1 Ky, X0A-.AXn -

The following lemma is a kind of strong completeness theorem
for L with respect to sequences of models:

3.4.Lemma. Let A={x;| ieIN} be properly infinite, so AF_10O"1L
for all n>1. If A¥Ll, then a sequence of models for A exists.
Proof. Let in the following ®x for any set of modal formulae X, be
defined as the set of all subformulae of formulae in X, closed
under negation in the following sense:

if @e®y and not @="1y for some formula g, then T1@edy.
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Assume A ¥ L. Fix an enumeration of all formulae occurring
boxed in &5 . Let  be a maximal L-consistent extension of A
within &5 . Set N'y:=I. If 'y has been constructed for a finite
sequence denoted by m, then we construct My.¢iy from it only if
10w ¢My , by taking a maximal consistent extension of the set
{Oy,p | Ogpelrytu{Oe;, " @;}. Before we define a sequence of
models, we will first regroup the maximal consistent extensions.
Let for all nelN, W, be the smallest set such that:

FoEWR

Fmx<i>€EWn if TmeW, and —'DLP"E@(xo-uxn) .
In the first place it is clear, that, for all neiN, W, is finite, since
the number of formulae of the form T0@ which are in @, . ,1s
eventually exhausted as our construction goes on. In the second
place, we will obtain Wo,cC Wpn+¢ for all nelN (c denoting proper
inclusion here), provided that the elements of A have been
arranged in a suitable way. This is easily proved by induction on
the length of the indices of the various [I's, observing that
@50 %t ©Bixg...xpe ) 1S deTinitely true.
It is evident now, that an enumeration w: N\{O}—» U W, exists,
such that wqi=I¢, and Wy, ={w,...,wy, } for k, being ??}ug number of
elements of W, . To obtain a sequence of models, we define, for
all neN:

Mn ={1,...kn};

iRpj iff for wi=Ip, wy=Iq, p is a proper initial segment of q;

iﬂ,—.,np iff pew;.
Hereby obviously a sequence of models is defined. This sequence
of models will from now on be referred to as the L-canonical
s.o.m. for A (even though the sequence is not uniquely determined
by this process). The clauses (a)-(f) are now easily proved. As to
clause (g), we will prove: for all Qe ., neN:

VieMy, pew; & Tl @ .
For atomic formulae this is clear from the definition of "’ﬁn. The
cases ="y, p=yYAX are straightforward. Suppose @ =0y.

"=". if O@ew;, then for all j such that iR,j, @ew; holds,

which is clear from the definition of R,, hence by induction

hypothesis: jliﬁntp. This is exactly what is needed to conclude

iIIHnEJtp.

"e="rif Oeewiand T0Qe@(, 4, then T0@ew;. There must

be some j such that w;e W, and iRnj and T@ew;. But then jeM,
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and, by induction hypothesis jll-Mnﬁ(p, which is sufficient to
conclude: M 0.
Now (g) is clear, for Xme€®(x, x,N W1 for all m such that
o<m<xhn, so 1"F1n XoA...AXn . X

3.5. Corollary. Let <M,>, be the L-canonical s.o.m. for A such
that A#_LLl. A modal formula @ is called stably true in 1 if and
only if a melN exists, such that for all n>m, 1l @ holds. The
following statement results from the construction of the L-
canonical s.o.m. for A:
for all @e®a, either @ or 71 is stably true in 1.

Proof. Fix @ e®a. Apparently, @e&., . , for some melN. Examin-
ing the proof of the foregoing lemma we can conclude: @ew;
=115 @ But the same will hold for all n such that n>m, since
Bixo. xm ©2Bixo..xn} - 1HUS, since either @ewqor T@ews , we can
infer Vn>m 1l @ or Vn>m 1l 76 X

Our next aim is to incorporate some modal syntax within Peano
arithmetic.

3.6. Encoding modal logic. We will use some encoding of modal
formulae as finite strings of symbols. Let in the following "X
be the numeral corresponding to the code of XelLg. We can extend
the coding of symbols © ~° to the class of all well-formed
formulae of Lg by means of two primitive recursive functions,
formalized in Peano arithmetic (extended with symbols for
primitive recursive functions) as imp(vy,v;) and box(v4), which
satisfy the following:
Ty Ti=imp( T, Ty T )and TO@ :=box( T@™).

We can use this encoding to formalize the interpretation function
which assigns a sentence in the language of arithmetic to each
modal formula as described in paragraph 1.8.

3.7. Formalizing interpretations. In order not to make things
too illegible, we will restrict ourselves to the case where L
contains a single propositional letter p.

A binary function, formalized as inter(vq,v;) exists, such that the
following is provable in PA (using impl as the name of a two-
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place function in PA which gives the code of the implication of
its arguments):

.
voifvy="p7;

"0=1"if vy= "17;
Vv, va,x,y inter(vq,vy) = ¢ impl(inter(x,vs),inter(y,v;))

if vy =imp(x,y);
"Ipproof(p,inter(x,vy)) ™ if vi=box(x);
0 otherwise.

\

By the representation theorem we are free to introduce this
function, since it is clearly primitive recursive (assuming right
bounds for imp and box). What inter(v4,v2) actually yields, is the
code of the interpretation of a modal formula. The first variable
ranges over codes of modal formulae and the second over codes of
arithmetical expressions intended to replace the propositional
letter p in an arithmetical interpretation.

In the following paragraphs we assume that certain properties of
sequences of models as defined in 3.3 can be described by arith-
metical expressions. Explicitly stated, this amounts to the fol-
lTowing:

3.8. Description of a sequence of models. Let <Mp>, be a
sequence of models for a A such that A¥LLl. We will assume
<{Mp>n to be described within PA arithmetic in the following
sense:
(a) iRpj is primitive recursive in i, j and n. It will be repre-
sented by formula v{Ry,v3 of PA.
(b) kp for Mp={1,..kn} is primitive recursive in n. It will be
represented by a function symbol ky, of PA.
(c) Assuming that illf,,n “p° is primitive recursive, we can
conclude that ill,:,n @ is primitive recursive in i, n and the
code @ of @ (using (a) and (b)), since it can be defined by
means of recursion in the code of ¢ and the truth-value of any
of the subformulae of @, which can be determined in a finite
amount of steps. Thus, we assume it to be represented by a

formula v, Il-Mv2v3 of PA.



3.9.Definition. Let <Mp>, be a s.om. for A such that A¥_Ll. In
case A is properly infinite, viz. AF_0O"L for all n> 1, we can
rearrange the elements of A in such a way, that kp>n for all nelN.
We define a PRIM predicate rel' in the language of arithmetic as
follows:

rel'(vy,vo):="13pXx,n p<V1AX<V1AN<K V1A
[V1=kn+1/\1"—MnXA }
proof(p, impl(inter(x,v,),"0=1"))

The first variable in rel' is intended to range over all nodes of
models in <Mp>n , the second over interpretations of the proposi-
tional letter p as in the definition of inter in paragraph 3.7. The
purpose of this definition can be described as follows: let v, de-
termine the interpretation of a set A of modal formulae in a
language with one single propositional letter p. If A* is incon-
sistent with PA, then some finite subset of A must be responsi-
ble for this inconsistency. Therefore some x being the modal code
of a finite conjunction of elements of A must exist, such that
proof(p,"("*inter(x,v2)*"— "*"0=1"%")") holds for some p. But
this finite conjunction has a model in <Mp>, . This really is a
paradoxical situation. For each v,, rel'(v4,vy) is true for those v;
below which no such paradoxical situation can arise. These vq are
the relevant nodes in the s.o.m.. We collect some facts about rel:

3.10.Lemma. Let A, <My>, and rel' be as above and let F be a
sentence of arithmetic and ( )* an interpretation of modal for-
mulae in the language Lg={l,—,(,),0}u{p} which assigns F to p.
Define: A*={x*|xeA}. The following holds:
If PA+A*F0=1, then for some ieN, NE Trel'(i,"F 7).

Proof. If PA+A*F0=1, then we do have a number po coding the
shortest proof of a sentence of the form XA A X, —0=1 from
the axioms of PA, so, proof(po,<inter(xe,"F™),"—","0=1">) holds
for Xp equal to ”'xh/\.../\ xjm“" . Let ng by the definition of <Mp>y
be such that ¥n>ng 1||F|n Xjg A X This no can be found
primitive recursively, since no <max{jq,..,jm}. As for all neN
kn>n, we can choose a n>ng such that po< k,+1AXe< k,+1.
This yields the desired result.
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3.11. Embedding a sequence of models. Let <M,>, be a s.om.
for a properly infinite A such that A¥_Ll. We use the following
abbreviations:
iRj for In(i <knAj<knAiRnj);
iBj for iRjvi=j;
ioj for T1(iBjV jRi);
ilF “p " for3ni Il;1n p.
Moreover, we assume R to be provably monotone, that is
PAFVi,j(iRj—j>1i). This is just a matter of renumbering the
nodes of the various My's in an orderly way. Let in the following N,
neg and subst be formalizations of primitive recursive functions,
such that the statements:
N(k)="k";
neg(rqj-l)=r—1({]-l’_
subst("A(vq)7,"tT)="A(1)"
are provable in PA for k being any numeral, ¢ any sentence and
A(v4) any predicate containing the free variable vq and t any term.
For technical purposes we add an extra node O to the s.o.m. and
define: OlFp if and only if 1I-p. Our equipment is now sufficiently
developed to make the following definitions (using Pr—(p,vs,j)
short for proof(p,neg(subst(vz,N(j))))).
Jilvy,va,vz):=VijlviRjArel'(j,v2)— T13pPr-(p,vs,j))A3pPr-(p,vz,vq)
ATel'(vy,va)Advg >vyiTrel'(vg,vo);
Javq,va,v3):=VjlviojAarel'(j,vo) = Iklkojarel'(k,vo) AKRiA
3p (Pr-(p,v3,k)A 13 <pPr-(p,v3,jND);
Limsolvq,va,vz)i=(vi=1AJ1(vq,va,v3)IV
(V1> 1AJ1(v1,Vo,Vv3)AdaVy Vo, v3));
Lim(vq,vo,v3):=(vi=0AVVs(vs=0— T1Lim s o(Vs,vo,v3)))V
(v1¢OALim>0(v1,v2,v3)).

One instantly notices the similarity between these definitions
and those of the sentences in 2.2. Apart from the variable v,
(which only serves within the context of a fixed point definition
as will be explained below), J{ and J, resemble closely the
schemes from which Aqand A; for i>1 in 2.2 were drawn. The
difference is, that the finite disjunctions and conjunctions are
replaced by quantifiers ranging over the relevant nodes of the
given s.o.m. only.
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Let F be the formalization of a primitive recursive function, such
that F("A\(v{)")="3i[A(i)AilF T p " 1" is provable for every A
containing v1 as a free variable. By the free variable-version of
the fixed point theorem we obtain a formula A(vy) of PA-arith-
metic as a fixed point of the expression Lim(v¢,F(v3),v3). Thus, we
have:
PAFVvVi(Avy)eoLimlvy,"IilAG)AdlE Tp 17,7 A (vy) ).
Unraveling the definitions, we can easily prove the following
three clauses (writing rel(i) for rel'(i,F("A(v4)")) and O7A(i)
short for 3pPr-(p,"A(vq)™,i) and likewise in witness-comparison
formulae):
(a) PAFA(0) e Vi(i=0— TIN(i));
(b) PAEX(1) e ON(1)AVj(1RjArel(j)— 107IA(j))
arel(1)a3j > 1rel(j);
(c) PARFVi>1(A(H)eON()AVj(iIRjArel(j)— 10O 7A(]))
AVj(iejarel(j)—3klkojarel(k)AkRiA
OXK)<ON(GID Arel(i)adj > irel(j).

3.12. Consistency lemma. Let A be properly infinite and such
that A¥LLl and let <Mp>, be a s.o.m. for A. An extra node O is
-added and OI-p is defined as equivalent to 1I-p. We invoke 3.11 to
get a predicate A(vq) satisfying clauses (a), (b) and (c) as above.
We define an interpretation of all modal formulae by stipulating:

p*:=3iA()AilF TpT).
This is a consistent interpretation of A.
Proof. Suppose that a conjunction Xj AN Xj,, of elements of A
would exist, such that PAF _‘(Xﬁ/\---/\ xjfn). By lTemma 3.10 we can
assume the existence of numbers ip and nog such that ng<ip and
1 llﬁnox“/\.../\ Xim Kng* 1=10 and rel'(ip, "p* )AVi<igrel'(i,"p*7).
Since the last expression is equivalent to a Ag-formula, we ob-
tain: PAFYi(rel'(i,"p* ") e i< ip), hence Vi> ipIA(i) is a theorem
of PA. We can therefore rewrite clauses (a), (b) and (c) as fol-
lows (writing R for Ry, ):

(@)PAFNO) & W A1)

<i<ip

(bYPAFAT) O N 1)A A O 3G)
1<i<ip

(c)YPAFX(1)eOA(I)A /A—lm—m(J)A A\\WD"MKHD—I)\(J)
foranlsuchthat1<1<1o kJ
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We will now concentrate on M, =<M, R, |lp|n0>.51nce we already
had Mn0={1,..., kno}, we know that, by the definition of rel’, (a'),
(b) and (c') involve exactly the nodes of Mp . This means that we
can apply lemma 2.3 to the set of sentences {A(i)l 0 <1< kp}. To
avoid confusion we define an interpretation ( )** as follows:
pxxi= W D)
Mno

It is evident, that p**«p* is a theorem of PA. By lemma 1.9 we
can now conclude: PAP—‘I(x;*A...Ax}‘r:). But, on the other hand,
since 1 "ﬁnoxh’\'“/\ Xj, » We obtain PARA(1 )—ex’j‘1*/\.../\x}‘n’1‘ by the
completeness theorem (cf. 2.7). Thus, PA+x(1) would be incon-
sistent, contradicting 3) of lemma 2.3. This completes our proof,
because the assumption was apparently absurd. X

As a matter of fact, something stronger than consistency can be
obtained from the interpretation defined in 3.12. We will for that
purpose invoke the following lemma, which may be considered as
the relativised counterpart of lemma 2.3.

3.13. Lemma. Let A(v4) for a given s.o.m. be defined as in 3.11.
We will use the following abbreviation:

c(n):= Trel(n)AVn'<nrel(n).
Furthermore, we use the symbol no as a formalization of a
primitive recursive function which gives us the index number m
of the model My such that n=kmpm+1 if c(n) is the case. The fol-
lowing statements are provable:

1) PAFVnlc(n)- 3li< nA(i)];

2) NEX(O);

3) PAFVnlc(n)» (N0)e Vi(0< i<n- 107 (i) ))];

4) PAFVnlc(n)->Vi(0<i<nAXi)->Vj(iRnj— 107NN,

5) PAFVnlc(n)->Vi(0<i<nAXN(i)—>0O3j iRnojAN(j))].
Proof. If we compare these statements to those in lemma 2.3, we
see that 1) and 2) correspond to 1) and 2) of lemma 2.3, so do 4)
and 5). 3) occurs as a) in the proof of the same lemma. The proofs
of 1), 3), 4) and 5) are essentially as before. The only difference
consists in the fact that the numeral n determined by the cardi-
nality of the Kripke-model which provides a bound to the whole
process described in the proof of that lemma, is replaced by the
term kp here. All the iterated conjunctions and disjunctions in
that proof are replaced by bounded quantifiers. One just has to
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note, that it is provable in PA that every finite set of proofs
contains a smallest one.

As to 2) we remark that this follows immediately from (b) and (c)
at the end of 3.11. X

Just as in the proof of Solovay's completeness theorem, we can
apply this lemma to obtain:

3.14. Lemma. Let A be a properly infinite assumption set of
modal formulae, consistent with respect to L. Let <M,>, be a
s.o.m. for this A, with an additional node O for which the forcing
relation is extended in the usual way and let A(v4) be defined as in
3.11. We define an interpretation of all modal formulae as in the
consistency lemma, by stipulating:

p*:=Ji[A()AilF “pT 1
We already know, by 3.12, that ( )* is a consistent interpretation
of A. The following statement holds:

for all modal formulae @:

PAFVnlc(n) > Vi1 <i<nANi) - (@*eily  T@7 )]
Proof. By induction on the length of (:
(@=p. This case is clear by the definition of p* and 1) from lemma
3.13. So is the case where (=1.
The case where @@=y —X is straightforward by induction. The
difficult case is @=0y.
i Ihno Oy ": By the definition of I we have:

PAFYVnlc(n)-»Vi(1 <i<nAi Ihno Oy " -
Vij(iRnoj—]j Ihno L))

Thus, by induction hypothesis:

PAFVnlc(n)-»VYi(1 <i<nAi Ihno TOW T ATjiRpj AN) > g *)],
hence

PAFYnlc(n)—=Vi(1 <i< nAilhn:‘DqJ'“ AO[3] iRnej AN(j)1-0Ow*)],
applying 5), we now obtain:

PAFVnlc(n)-» Vi(1 <i<nAi l|:,n0 TOy T AN - 0Oy*)]
"7ilg,, T Ow 7" By the definition of I we have:
PAFYnlc(n)-»Vi(1 <i<nA i lhno Oy T —>3j(iRpejA

j lhno Ty )l

By induction hypothesis, we have:

PAFVnlc(n)-»Viji(1 <j<nAp*A T g Ty - NG,
hence, as the other formulae involved are Ay,

PAFYnlc(n)-»Viji(1 <j<nAOy*A 1] o, TP T =07
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Combined with our first remark and 4) of lemma 3.13, this yields:
PAFVnlc(n)-»Vi(1 <i<nA i o TOp T AOp* - IN(i)]
Our proof of lemma 3.14 is now completed. X

We will now direct our attention towards Solovay's second com-
pleteness theorem (cf. 1.11). The most interesting implication of
this theorem is obviously the one which states that for every @
such that S+@ is consistent, that is 7@ ¢3, there is an inter-
pretation ( )* which makes @ a true sentence of arithmetic. In
order to extend the notion of 3-consistency to infinite assump-
tion sets, we give the following definition:

3.15. Definition. Let, for any assumption set A of modal for-
mulae, As be defined as the smallest extension of A containing
all formulae of the form O@—¢@ for O@e®A and closed under
modus ponens. A is called S-consistent if and only if As#| L.

It will be argued below that, under certain conditions, the inter-
pretation we used in the consistency lemma is not only a
consistent one, but even permits us to take the standard model of
arithmetic as a model for the entire interpreted set. So, for a
certain class of assumption sets we can strengthen the second
completeness theorem to: if A is S-consistent, then an
interpretation exists, such that NE@* for all ¢ in A. Unfortu-
nately, it is at this point unclear for which type of infinite as-
sumption set these conditions can be fulfilled. In particular, this
applies to condition (c) of the next theorem.

3.16. A larger case of truth. Let in the following A be S-
consistent and properly infinite. we will assume that a s.o.m.
<Mp>n for A exists, with the following properties:

(a) <Mp>p is stable for all subformulae of formulae in A, so:

for all @ged®a, either @ or 71( is stably true in 1;

(b) for all O@e®A, O@— @ is stably true in 1;

(c) relevant stability is provable, that is:

for all Qed,, if Vn'>n1 I}F,n,tp, then PAFVYNn'>n1 “ﬁn- TR
Now let O be an additional node to <Mp>, and the forcing relation
for O defined as usual and let ( )* be defined by:
p*:=3i[A(i)AilF pl. The following holds:



for all Qeda:

InVn'>n1lg @=PAFXO0)-¢* and

InVn'>n1 If—n T@=PALXNO0)—> T1p*,
Proof. The cases where @=1 or @=¢—X or @=p are easily
proved, using induction and stability.
Suppose @=0ye®p and InVn'>n1 II- .Oy. By our assumptions
we have: InVn'>n1 . W, SO, by induction hypothesis:
PAFX(0)— y*. But, since also PAFVn'>nVi1Ri g, "~y fol-
lows from our assumptions, we obtain:
PAFVnlc(n)-»Vi(1 <i<nAXi)- y*)], so PAF3n(c(n))— y*. But
since PAF TIA(0)—3n(c(n)) follows from the definition of A(0),
we obtain PAFy*, so evidently PAFX(0)—-Oy*.
Now suppose that Oy is stably false in 1. By the definition of rel
we can conclude: PAFOw* —3n(c(n)). By lemma 3.14 we obtain:
PAFOw*— TA(1). Applying formalized Z-completeness, this
yields: PAFOyw*—>0O7A(1), so combining this with Temma 3.13,
clause 3), we obtain PAFOw* — IA(0). This completes our proof.
As a direct consequence of this proof, we obtain (since NEX(0)):

NE@* for all geA. X

As we have already pointed out, this result cannot be extended
straightaway to the class of all assumption sets A which are S-
consistent. Although for each S-consistent A a s.o.m. <Mp>, exists
which has properties (a) and (b), we can take the L-canonical
s.o.m. for As for this purpose, this is not immediately clear as to
property (c). The reason why relevant stability might not be
provable in a canonical s.o.m., is that the construction of this
type of sequence involves the use of maximal consistent sets of
formulae. On the other hand, we can, for certain assumption sets,
use a s.o.m. which is considerably smaller than the canonical one.
A fine example is provided by the assumption set defined in 1.7.

3.17. Example. Let a sequence <@u,>, of modal formulae be de-
fined as in 1.7. Define an assumption set A={X0,X1,X2,...} as fol-
lows:

Xo=<0@o;

Xi+1=0(O@i» OO Qi+1 ).
As we have already seen, A is consistent with respect to L. It
will be clear that A is even S-consistent. Now let a sequence
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<Mp>n be defined as follows (using f(<i,j>)=i(i+1)/2+j+1 as a
standard enumeration of ordered pairs):

Mp:={f(<x,y>)x,ye NAYy < xAx < n+2};

(<X YO)R FKXLYD) = (y=0Ax< X )V(X=Xx'Ay <Yy");

fKxy>) I p ey=1.
It is easily verified that this defines a s.o.m. for A. Arguing as in
the consistency lemma, we obtain a formula A(v¢), inducing a
consistent interpretation ( )* for this A. Since all relevant
properties of this s.o.m. can be described by quite simple predi-
cates, we may safely assume that relevant stability is provable.
This is the case since the formulae X; have a very simple uniform
shape and for all subformulae of X; it is exactly clear at which
nodes they are forced and at which nodes they are not. So we can
conclude: NE@* for all @eA (using 3.16). Another interesting
feature of this s.o.m. is, that we can prove that PA+x(1) is con-
sistent. We reason as follows:
PAFVnlc(n)-»Vi(1 <i<n-o(i=1ei I;-:,nc TOORo ")) This s
immediate from the construction of the s.o.m., so using lemma
3.14, we obtain: PAFVnlc(n)A IX(1)> A (0)vOO 7 @o*]. Suppose
that TIA(1) were a theorem of PA, then O7A(1) would be a the-
orem of PA as well, so, using lemma 3.13, we would obtain:
PAFVn(c(n)-» OO @e*). But, since OO @oe A, this yields:
PAFOOO T @o*—-007@e*, whence follows, by L6b's rule:
PAFOO@o*, contradicting the consistency of A¥*. 2(
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