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§0 Introduction

This master's thesis is a study in the field of bounded arithmetic.
Systems of bounded arithmetics are relatively small subsystems of PA
which contain at least

(1) basic axioms concerning the defining properties of O, the successor
function, addition and multiplication. Hence bounded arithmetics are
extensions of Robinson's arihmetic Q.

In addition they may contain

(2) the scheme of induction restricted to Ap-formulae, i.e. formulae
with only quantifiers of the form Ix<t, Vx<t (with t a term in the
language of the theory) or even a subclass of this class of formulae;
(3) defining axioms for [xI, which gives the length of the binary
representation of x;

(4) defining axioms for the binary ‘'smash' function 3#¥, where
x#y=2lyl | or an equivalent of this function. (The relation 2/X'lyl =z
can be defined by a Ag-formula y(x,y,z).)

(5) an axiom expressing the totality of exponentiation. (In Pudl4k [83b]
it is shown that the relation x¥Y=2z can be expressed by a Ag-formula.)
If the theory contains Ag-induction and axioms expressing the totality
of 3¢ resp. exponentiation, then it proves Ag(#)- resp. Ag(exp)-
induction.

Bounded arithmetic is interesting for various reasons.

In the first place, there are strong connections, which we shall not
explore here, between bounded arithmetic and complexity theory.
Secondly, an interesting part of metamathematics and proof theory can
be formalized in bounded arithmetic, for example, the incompleteness
theorems are provable. Here the smash function plays an important
role: it enables us to execute substitutions.

Moreover, bounded arithmetic is interesting from a philosophical point
of view. In this paper we will prove some technical results which shed
some light on a philosophical question concerning bounded arithmetic.



A vigorous and rather radical advocate of the philosophical advantages
of bounded arithmetic (without exponentiation) over and above PA is
Edward Nelson in his book Predicative Arithmetic [86]. His position is
finitistic. Thus he does not accept the existence of the set of natural
numbers. He considers exponentiation unacceptable, because it is an
idealized construction. He rejects the induction principle (for formulae
that are not A,), because he considers it to be impredicative: "The
induction principle assumes that the natural number system is given"
(Nelson [86, p.1] and he goes as far as to doubt the consistency of PA.
He proposes to work in theories that are interpretable in Q, which is
very weak and does not contain induction. Bounded arithmetic
consisting of (1), (2), (3) and (4) is interpretable in Q with methods
initiated by Solovay and further developed by Wilkie and Pudlédk (see
Pudlék [83]). The interpretations involved are of a very simple type:
they only involve relativization of quantifiers. Nelson baptizes theories
that are interpretable by relativization in Q Predicative Arithmetics:

"We would like to have have a formula A in the language of Q
be a theorem of Predicative Arithmetic if and only if Q[A] is
interpretable in Q. Perhaps this is possible, but I do not
know the answer to the following compatibility problem: if
Q[A] and QI[B] are interpretable in Q, then is Q[A,B]
interpretable in Q7"

In this paper we will give a strong argument against the robustness of
the concept of Predicative Arithmetic. We will show that there exists
an Orey sentence for Q, i.e. a sentence G such that both Q+G and Q+ G
are interpretable in Q. We will show this by the following means. A
substantial part of this paper will be devoted to the proof of various
formalized versions of the model existence lemma for tableau
provability in Buss's theory 512. A simple application of two theorems
of Paris and Wilkie [87] then provides us with the Orey sentence.

A theory is tableau consistent if none of the tableaux for this theory
closes. The model existence lemma for tableau provability says: if a
theory is tableau consistent then there is a model for this theory. This

model can be constructed from a tableau for the theory. '



In paragraph 1 we will give an intensional (in the sense of Feferman)
formalization of the notion tableau in the theory 512; here we will
heavily rely on the arithmetizations developed in Buss [86].

In paragraph 2 we show how to construct initial segments of the
leftmost consistent branch of a tableau. These initial segments
provide us with an interpretation of the axioms of a finite relational
theory A in 512 plus the tableau consistency of A. It will be shown that
this interpretation also serves to interpret the theorems of A.

In paragraph 3 we will then prove formalized versions of the results of
paragraph 2.

In paragraph 4 it is shown that the results of the paragraphs 2 and 3
also hold in case the theory A is infinitely axiomatized.

In paragraph 5 we will use the results of the paragraph 3 and 4 to
derive a provability principle of bounded arithmetic.

In paragraph 6, one of the results of paragraph 4 is used to construct
an Orey sentence for bounded arithmetic, and we will dicuss there
whether this constitutes a negative solution of the compatibility
problem for bounded arithmetic.

The remainder of this introduction is devoted to a description of 812 .
We will informally describe the predicates and functions defined in
Buss [86] (modulo some minor modifications) that we will need for the
formalizations.
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is the theory containing

(1) the basic axioms concerning the definitions of 0, the successor
function, addition, multiplication, Ixl, |3x] and #; (|3x] is the 'shift
right' function; it is equal to the entier of -;-x. For a complete list of
these axioms, see Buss [86, pp. 30,31])

(2) a weak type of induction for a restricted class of functions of the
polynomial time hierarchy, viz. PIND for Z?—formulae.

PIND is the following type of induction:

©(0) A Vx (@(3x]) = ©(x) - Vx @(x). |

To determine the class in the polynomial time hierarchy to which a
formula belongs the number of alternations of bounded quantifiers (i.e.
quantifiers of the form Ix <y, Vx<y) of the formula is counted.



A formula is Ag if it contains only sharply bounded quantifiers, i.e
quantifiers of the form 3x <lyl, Vx <lyl.

A formula @ is Z, if it is Ao or if it is of the form Ix<y g, Ix<Llyl y,
or Vx<lyl y, where g is 21

A formula @ is TT, if it is Ao or if it is of the form Vx<y g, I3x<lyl y,
or Vx<lyl g, where g is TI1

And similarly for Z, and 11,, fori>1.

A formula is A': with respect to 812 if it is, provably in 812, equivalent
to some Z?-formula and to some n?-formula.

The LIND axioms are induction axioms of the following type:
@(0) A Vx (@(x) » @(Sx)) —» Vx @(lx]).
812 proves LIND for 22— and Tl?-formulae, and PIND for H':-formulae.
Moreover, 812 proves the following type of minimalization for At;-
formulae @, which we will call inimization:
<lyl @(x,y) = 3x<lyl (@(x,y) A Vz<x T1¢(z,y)).
Tms follows easily with PIND:
Let @ be A‘}.
Then w(y) = 3x<lyl @(x,y) = Ix<lyl (@(xy) A Vz<x T1p(z,y)) is
At{, hence also Z,, so we can apply PIND ony.
Reason in 812. Clearly y(0).
Suppose w(L%y_l).
Suppose 3x <lyl @(x,y). From the basic axioms we know that
Iyl=l|_-;-y_|l+1, hence either 3x < -%y_]l @(x,y) or
e(lyl,y) A YVz<lylm(z,y).
In the first case, the induction hypothesis provides us with a
minimal x, in the second case lyl is minimal.

At first sight, LIND, PIND and inimization seem rather unwieldy.
However, properties of numbers needed for the arithmetization of
syntax, can be proven in 512 by considering the binary representation of
numbers. It turns out that PIND, which can be conceived of as going
from a string of O's and 1's of length n to a string of length n+1,
(instead of going from a number to its successor, as is done normally
in induction) is appropriate for proving the needed properties.



A function f is Z?—definable if it is defined by: f(x)=y = A(x,y),
where (1) A 23, and

(2) 312 F Vx 3y <t A(x,y) for some term t, and

(3)S% F Vx Vy Vz (Alxy) A Alx,2) - y=2).
A?-predicates containing function symbols for Zg-definable functions
are still A},
Buss shows that it is possible to define At:-predicates and Zt:—
definable functions in 512 in an inductive manner, by socalled p-
inductive definitions. Predicates and functions defined in this way are
intensionally correct: 512 proves their properties.

we will now give an informal description of the A?-predicates and 23-
definable functions we will frequently use in this paper. For precise
definitions, see Buss [86, pp.37-50, pp.116-118, p.126]

In 812 segences can be coded, and the predicate Seq(x) expresses that
X is @ sequence. Addition of an element z to a sequence x is indicated
by x*z. We get the sequence containing one element x by taking O*x.
Concatenation of two sequences x and y is written as x*¥*y.
Concatenation is more or less multiplication.

"The number of elements of a sequence x is given by Len(x). Due to
the special features of the coding, Ixl is much larger than Len(x).

There is a p-function for sequences: g(0,x) gives the number of
elements in the sequence x; B(i,x) gives the ith element of x, provided
that i <Len(x); if i>Len(x) then p(i,x)=x+1. If we concatenate a new
element to a sequence, then this will be the last element of the
resulting sequence.

We tacitly assume that all sequences are UniqSeq (see Buss [86,
p.481), in order to have the following property of sequences:

Sy F Seq(x) A Seqly) A Vi<Len(x) (p(i,x)=p(i,y) = x=y).

wWe will frequently use this property when we apply inimization to
prove that two sequences which both satisfy a certain A?—property,
must be equal. ‘

SubSeq(i,j+1,x) gives the subsequence of x which contains the ith
until the jth element of x in the order in which they occur in x.

For reasons of readability, we will indicate codes with "" instead of
names, for instance, we will write "(" instead of Buss's LParen, and
even "(37 for "("*"37, etc.



If @(z,x,y) is At,' then we can Z':-define a function f(x) such that f(x)
has as value the number of z <|xl such that @(z,x,y). f will be denoted
as (#z <Ixl) @(z,x,y).

Trees
A tree is coded by a sequence with two special symbols [ and ]

which denote the structure of the tree:

a In the tree a[bldlc], b and ¢ are the direct successors, or
b ¢ sons of a, which is the root of this tree, and d is the only
d son of b. a is the father of b and c. d and c are the Jeaves of

this tree. b is the first son of a, or the sonposition of b is
1, and the sonposition of c is 2. a has two sons, or the valence of a is 2,
whereas the valence of b is 1 and the valence of d is 0. The depth of a
is 0, the depth of b and c is 1, and the depth of d is 2.
[ is coded by 0, and ] is coded by 1;
albldlc] is coded by the sequence x=<a+2, 0, b+2, 0, d+2, 1, c+2, 1>.
The addition of the 2's is nessecary to be able to differentiate in the
code of the tree between the symbols [ and ] and the nodes, which are
by definition coded by a number > 2.
Because x is a sequence, we indicate the elements of x by their
position in the sequence x. For example, for the nodes we have:
Father(3,x)=1, Father(?,x)=1, Father(5,x)=3;
Valence(1,x)=2, Valence(5,x)=0;
Depth(5,x)=2, (but also: Depth(6,x)=2);
SonPos(3,1,x)=1;
Further we have:
Leaf(i,x) = Valence(i,x)=0,
Rootp(x)=a, |
Depth(x) is the maximum of Depth(i,x).
If a tree x is non-branching, i.e. if the valences of all nodes is 1, or O,
then x has one leaf, namely, if Depth(x)=n, the Len(x)=nth element of x.
For example: in a[b[c[d]]], which has depth 3, the 7th element, d, is the
leaf.



Pairing function

In 512 we can define the standard pairing function by
P(x,y)=z = 2z=(x+y)2+3x+y.

This is indeed the bijective pairing function, because
812 F Vxy 3lz P(x,y)=z and

812 F Vz 3lxy P(x,y)=2z.

So if we define

m1(2)=x = 3y P(x,y)=2z, and

Ta(z)=y = Ix P(x,y)=2,

then 11 and T2 are (Z?—defined) functions in 512.

Canonical terms
Under the provability predicate (see below) we use canonical terms
instead of the standardly used numerals. These are defined inductively
by :

Io=0

Iok = S50 Ik

Iok+1 = S30-I¢+S0.
The advantage of these canonical terms over standard numerals s(klo
is that the length of the canonical term Iy is proportional to the length
of k, whereas the length of a standard numeral s(klo is proportional to
k. The code of Ixis a Z?-definable function.

Formal system for predicate logic

In this paper we will use a different formal system from the one Buss
uses. We have axiom schemes

@ - (¢ - @)

(> (p > 8) » ((p>y) > (p—8))

(M- y)-> (Tg->y) - @)

Vx@(x) — @(t), t a term free for the variable x in @(x)
Vx(p = y) - (@ - Vxy), x not free in @

(@ - Vxy) - Vx(@ - y), x not free in @

equality axioms.

The derivation rules are Modus Ponens and generalization.



Provability predicates

We will use provability predicates as they are defined in Paris and
Wilkie [87]. A proof will be a sequence of formulae. If the theory T is
Zg—axiomatized, the provability predicate Provrt is Z'i.

With this provability predicate, 5%, is Z;-complete :
if @ is 35, then S, F @©(x) - Provs'("@(Iy)7).
Also, Prov satisfies the Lob-conditions:
if T is 3)-axiomatized and T F S, then
T = 512 F Provr("@™)
T FProvr("@™) = Provy("Provy("@™)")
TFProvi("@ — ¢™) = (Provi("@") — Provy("y™)).
Thus we also have, for @ is Z':,
SLF@— Y= 55F@— Provs)("y”).

Cuts, Initials, Inductivity

A formula @(x), with x free in @, is called inductive for the theory T
if
T F @(0) A Vx(p(x) = @(x+1)).
Note that if T contains induction for the class of formulae to which ¢
belongs, then the inductivity of @ implies T F Vx(x).

A formula @(x), with x free in @, is a cut for the theory T, if @ is
inductive for T and closed under <, i.e. if
T F @(0) A Vx(p(x) = @(x+1)) A Vx (@g(x) » Vz<x (@(2)).
We will sometimes write xe @ instead of @(x) if @ is a cut.
If @ is inductive for T and T contains minimalization axioms for the
class of formulae to which ¢ belongs, then ¢ is also a cut.

A formula @(x), with x free in @ is an initial for T if @ is a cut for
T and @ is closed under + and -, i.e. if
TF @(0) A Vx(p(x) = @(x+1)) A Vx (@(x) » Vz<x (@(2))

A VxVy (@p(x) A @ly) - @(x+y) A @(x-y)).

With the methods initiated by Solovay (see, for instance, Pudiak [83a],
Paris and Wilkie [87] or Nelson [86]), every cut can be closed under +, -
and . There exist however cuts that cannot be closed under
exponentiation (see Paris and Dimitracopoulos [82]).
we will indicate cuts and initials with capitals, for instance with I or
J.



we will write, if [ and J are cuts or initials for T,
IcJif T F Vx(I(x) - J(x)); and if IcJ we will also say: I is below J.

We will also consider the following theories:

IAg+ Q1

is the theory containing Q, the induction scheme for Ag-formulae, and
an axiom (indicated as £21) expressing the totality of the function xixl,
This function has the same growth rate as #, and the functionality of
one of them implies the functionality of the other. Therefore we can
identify the two. IAg+ Q1 is the system of Paris and Wilkie [87].
IAo+ 1 is interpretable in Q. (For proofs see Pudlék [83al, Paris and
Wilkie [87].)

Clearly 1Ap+21 F 512.

IAg+EXP

Is the theory containing Q, the induction scheme for Ag-formulae, and
an axiom expressing the totality of exponentiation.

There is a large gap between IAg+Q1 and IAg+EXP. IAg+EXP is not
interpretable in Q, whereas IAp+ Q1 is. Also IAg+EXP and
IAg+Q1+Con(IAg+Q4) are interpretable into each other (see Visser
[88]), even though IAg+EXP ¥ Con(IAg+S1) (see paragraph 5).



§1 A formalization of the notion tableau

In the construction of tableaux for finitely axiomatized relational
theories we will proceed as follows:
A tableau is a finite tree in which all nodes are sequences coding finite
sets of formulae. The root of a tableau is a node which contains axioms
of the theory. Successors of a node X are constructed by applying one of
the five tableau rules, respectively:

Definition 1.1

T := for any formula 171 in X, @ may be added;

« := for any formula 71(@ — y) in X, one may add ¢ and T1y;

B1:= for any formula @ —  in X, 7( may be added;

B2:= for any formula @ — ¢ in X, ¢ may be added;

3 := for any formula 3x@ in X, @(c[3x@x]) may be added;

& := for any formula T13xy in X, 7¢(c[0]) may be added,
and for any formula 3x@ in X such that @(c[3x@x]) is in X,
one may add Ty(c[3xepx]) to X.

If an immediate successor of a node X is the result of applying B4 for a
formula @ — g, then X has a second immediate successor, which is the
result of applying B2 for @ — y, i.e., the tableau splits in X (and vice
versa: if X has a Bg-successor for a formula @ — g, than X also has a
B1-successor for the same formula).

It is admissible for a node to be the same as its predecessor, but a
node which is closed, i.e. contains an atomic formula and its negation,
does not have successors.

A systematic tableau will be a tableau in which the rules defined above
are applied in the following fixed order: T, «, B1/B2, 3, §. Moreover,
these rules are applied to all formulae they can be applied to, except
for the B rule which is applied to an appropriately chosen implication
of the node to which B is applied, i.e. in a systematic tableau we apply
the following set of rules:

10



Definition 1.2

T := add, for all formulae 171 @ in X, @;

o := add, for all formulae T(@ — W) in X, @ and Ty;

B1:= add, for a systematically chosen formula @ — ¢ in X for which
neither 7@, nor ¢ is in X, 71 @;

B2:= add, for a systematically chosen formula @ — ¢ in X for
which neither 7@, nor ¢ is in X, ¢;

3 :=add, for all formulae 3x¢@ in X, @(c[Ixpx]);

& := add, for all formulae T13xy in X, and add for all 3x@ in X such
that @(c[3xex]) is in X, T yw(c[Ixex]) to X;
and add for all formulae 1 3xy in X, 7y(cl0]) to X.

Clearly, a systematic tableau is a tableau.

A tableau is closed if all its end nodes (leaves) are closed. A closed
tableau from AU ™1 @ is a tableau proof of @ from A; such a tableau is
also called a tableau proof of 1 from AU ™.

A theory A is tableau consistent if there are no proofs of 1L from A.

For infinite theories we also admit successors resulting from the
application of the rule

EX := add a finite number of axioms of A to X.

In a systematic tableau for an infinite theory after each application of
arule from the set t, o, B1/B2, ¥, 4, EX is applied in a systematic way.
We will make this more precise in paragraph 3, when we discuss
theories which have infinitely many axioms.

To prove the formalization of the model existence lemma in 812, we
arithmetize the notions of tableau and systematic tableau, using A': -

1

predicates and Zﬁ—definable functions. We use the notations and

conventions of Buss [86]. We will also use the following predicates:

I(x,y), which expresses that x and y are sequences, and x is an initial
subsequence of y; yS,x, which expresses the sequence y to be a
subsequence of the sequence Xx; z €x, which expresses z to be a subset
of X; zex, which expresses z to be an element of the sequence coded by
x; ze(i,w), which expresses that w is a tree of which the ith element
codes a sequence containing z as one of its elements; ORD(x), which



expresses X to be a sequence of which the elements are ordered
according to size; Node(i,w), which expresses w to be a tree and g(i,w)
a node of w.

These predicates are defined as follows:

Definition 1.3

I(x,y) = 3t <Len(y) (x=SubSeq(1, t+1,y))

yepx = 3i,j<Len(x) (y=SubSeq(i+1, j+1, x))

ZeX Seq(x) A Ji<Len(x) (z=p(i+1,x))

zex = Seq(z) A Seqg(x) A Vi(tez -tex)

ze(i,w) = (Tree(w) A i<Len(w) A ze(p(i+1,w)=2)

Node(i,w) = Tree(w) A i=0 A B(i,w)>2

ORD(x) = Seq(x) A Vi,j<Len(x) (1<i<j<Len(x) —» B(i,x)<p(j,x)

Clearly, I(x,y), yEpx, zex and ze(i,w) are A':-predicates, and so are
Jz(ze(i,w) A @(2)), Vz(ze(i,w) - @(2)), 3z(zex A @(z)), and

Vz(zex — @(z)), if @ is A?. Also zEX is Aﬁ'.

We will also write Vzex @(z) and 3zex @(z) for Vz(zex — @(z)) and
3z (zex A @(z)); and we will also write 3ze(i,w) @(z) for 3z(ze(i,w) A
@(z)) and Vz(i,w) @(z) for Vz(ze(i,w) = @(2)).

We have the following lemma.

Lemma 1.4
Vz Vx (ORD(x) — 3ly (ORD(y) A Vi(tey & tex V t=2)))

Proof

Suppose ORD(x).

If zex, then take y=x.

If z¢x, then Vtex (t <2) v i< Len(x) (B(i+1,x) > 2).

In the first case, take y=x * z.

In the second case we have, by inimization, a minimal such i. Then take
y=(SubSeq(1, i+1, x) * z) ** SubSeq(i+1, Len(x)+1, x).

In both cases, Y is ordered and unique. R

12



We also define a function which gives us, in case x is an initial
sequence of the sequence y, the part of y which comes after the last
element of x:
Tail(y,x)=2z = (I(x,y) A z=SubSeq(Len(x)+1, Len(y)+1, y))

vV (I(x,y) A 2=0)
Tail(y,x) is Z?-defined, and from the fact that SubSeq(-,-) is a function
follows that Tail is a function.

We assume A to be a relational theory, L to be the language of A, L* to
be L plus all special constants for existential formulae inL*.

The special constant for an existential formula coded by x will be
defined as (0 * 14) ** x ; we also admit the special constant (0 * 14 *
0) , which we need in case we deal with a branch of a tableau in which
no existential formulae occur.

To be able to use special constants in formulae we simultaneously
define predicates Term*, AtForm®*, Form*, and EForm, using Buss'
theorem [86, p.119] on p-inductive definability of A?—predicates.
Form™* differs from Buss' predicate Fmla in the following aspects: The
only logical symbols occurring in Form* are 3, 7 and —; Form™* does
not admit codes for ((3x <t)g) but only codes for ((Ix)(x <tA@)) and
for ((3x)@); the reason for this is that in the construction of tableaux
from A we are not interested in deciding which class of the polynomial
hierarchy the formulae occurring in the tableaux belong to; Moreover,
Term*, AtForm*, Form*, and EForm allow the use of special constants
in the construction of formulae and terms.

Because in our set-up we do not distinguish between different sorts of
variables, we can use the codes Buss uses for the class of bounded
variables to encode the relation symbols of L: we encode the relation
symbol Rj (i>1) from L by 14+i-4. We assume for simplicity that all
Rj are unary, and define Rel(x) as 3t >0 (x=14+4-t). We will write
Var(x) instead of FVar(x).

We simultaneously define in 812 the unary Ab,—predicates Term*,
AtForm*, Form™* and EForm by the following p-inductive definition:

13



Definition 1.5

(1) T Term*(0).

(2) If Seq(x) and Len(x)=1 and Var(g(1,x)) then Term*(x).

(3) If Seq(x) and p(1,x)=14 and ;
EForm(SubSeq(2, Len(x)+1, x)) V (Len(x)=2 A B(2,x)=0),
then Term*(x).

(4) If x is not required to be Term* by the above conditions then x is:
not Term*.

(5) TAtForm*(0).

(6) If Rel(x) and Term*(y) then
AtForm*((0 * "(" *x) ** (y * ")7))

(?) If xis not required to be AtForm™* by the above conditions, then x
is not AtForm*.

(8) 'Form*(0)

(9) If AtForm™*(x) then Form™*(x)

(10) If Form*(x) then Form™*((Q0 * (7)) **(x*")"))

(11) If Form*(x) and Form*(y) then
Form*((0 * "(7) *%(x* "> 7) ** (y *x M)7))

(12) If Form*(x) and Var(z) then
Form*(0 * "( (I %xz%x")7*x (x x r)7))

(13) If x is not required to be Form* by the above conditions then x
is not Form*

(14) If Form*(x) and Var(z) then
EForm(Q * "((37 *® z *7)" xx (x % 7)7))

(15) If x is not required to be EForm by the above conditions then x is
not EForm.

For legibility's sake, we stated this definition in a rather informal
way. An industrious reader, curious for the formal statement of this
definition, would readily observe that in fact two more predicates are
simultaeously defined, namely one expressing x to be an implication,
and one expressing that x is the negation of a *formula, and that
Form*(x) is defined as: Form®*(x) iff x is an atomic formula
(AtForm*(x)) or x is a negation of a *formula or x is an implication of
*formulae or x is an existential formula. We will now give a list of
definitions concerning formulae which we will need in the sequel. Each
predicate defined in this list is A':; moreover, of this list NOT(x) is
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equivalent (in 512) to the predicate expressing x to be a negation which
was defined in the p-inductive definition of Form* and IMP is
equivalent to the predicate which expresses that its subject is an
implication.

Definition 1.6

NEG(x,y) = Form*(y) A x=(0 * "(77) *x (y * 7)7)
NOT(x) = Jac, x (Form*(a) A NEG(x,a))
Pos(x)=y =~ = NEG(x,y) V (y=0 A TTForm™*(x))
DNeg(x,y) = Jac, y (NEG(x,a) A NEG(a,y))

DN(x) = Jacp x (DNeg(x,a))

IMPL(x,y,z) = Form*(y) A Form*(z)
A x=(0* T(7) %% (y* 7)) xx(z%r)7)

IMP(x) = Ja,bcp x (IMPL(x,a,b))
NEGImp(x,y,z) = 3ac, x (NEG(x,a) A IMPL(a,y,z))
NIMP(x) = Ja,bg,, x (NEGImp(x,a,b))
NEForm(x) = NOT(x) A EForm(Pos(x))

The importance of the observations made above is the following. Buss
shows in [86], Theorem 2, pp. 123,124, that 812 can prove theorems
involving p-inductively defined predicates. Inspection of this theorem
and of the formal version of Definition 1.5 shows that we can prove the
following lemma:

Lemma 1.7 “Unique Reading Lemma"
1.5% F Vx (Form*(x) —» AtForm*(x) v IMP(x) V NOT(x) vV EForm(x))
2. 512 F Vx (Form*(x) A AtForm*(x) —
TIMP(x) A TINOT(x) A 71 EForm(x)))

3. 812 F Vx (Form*(x) — Seq(x))
4.55 F Vx (Form*(x) — (8(1,x)="(" A g(Len(x), x)=")")
5. 812 F Vx (Form*(x) —» _

(#t <Len(x)) (B(t+1,x)="(")

= (#t<Len(x)) (B(t+1,x)=")")
6.55  Vx,a,b,y,z (IMPL(x,a,b) A IMPL(x,y,z) = a=y A b=2)
?. 812 F Vx,y,z (NEG(x,y) A NEG(x,z) — y=2).
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It will be clear that 2. of this lemma is just one instance of the
disjointness of the predicates AtForm®*(x), IMP(x), NOT(x), and
EForm(x) that are provable in 812.

We need the two last statements of this lemma for the following
reason: for the application of the tableau rules «, B4, and B2, we need
to be able to get T¢@ and ¢ from an implication @—y, and @ and Ty
from (@ — ). Define the following Ag—predicates:

Definition 1.8
Con(x) =y
NAnt(x)=y

3ag, x (IMPL(x,a,y)) V (IMP(x) A y=0)
Jac, x 3IbS, Y (IMPL(x,b,a) A NEG(y,b))
V (T1IMP(x) A y=0)
NConN(x) =y = 3a,bs, x (NEGImp(x,a,b) A NEG(y,b))
V (TINIMP(x) A y=0)
AntN(x)=y = 3ag, x (NEGImp(x,y,a)) v (TINIMP(x) A y=0)

These predicates readily give us Zg-definable functions Con(x),
NAnt(x), NConN(x), NConN(x): existence is clear, and unicity is provided
for by Lemma 1.7.

We can define a A?-predicate SC(x) which expresses that its subject is
a special constant and a binary Aﬁ-predicate SpeCon(x)=y which
expresses that y is the special constant belonging to the existential
formula x if x is EForm, and y is O otherwise.

Definition 1.9
SC(x) = Seq(x) A p(1,x)=14

A [(Len(x)=2 A B(2,x)=0) vV EForm(SubSeq(2, Len(x)+1, x))]
SpeCon(x)=y = (EForm(x) A y=<14,x>) V(TIEForm(x) A y=0)

Since it is easily seen that 812 proves existence and uniqueness of
SpeCon(x), we can consider SpeCon as a Zﬁ-definable function.

We will also need the following A?;predicates:

Var0oc(y,i,x), which expresses that x is Form*, and the ith element of x
is the variable y, and this is not inside a special constant, i.e.
VarOc(y,i,x) describes an in some sense ‘real’ occurrence of y in x.
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QVar(y,i,x) expresses that the variable y occurs on the ith place in the
formula x directly preceded by the code of an existential quantifier.
BVar(y,i,x) expresses that the variable y occurs bounded by an
existential quantifier on the ith place in the formula x.

FVar(x) expresses that the variable y occurs free on the ith place in
the formula x.

Deg(x)=y, expresses that either x is Form™* and y is the number of
logical symbols occurring in x, or x is not a *formula and y is Ix|+1.

Definition 1.10

VarOc(y,i,x) = Var(y) A Form*(x) A i>0 A B(i,x)=y

A T3jk (j<i<k<Len(x) A SC(Subseq(j+1,k+1,x))))

Var0c(y,i,x) A (i=1,x)="3"

VarOc(y,i,x) A 71QVar(x)

A 3jk<Len(x) (j+3< i<k A Form*(SubSeq(j,k+1,x))
AB(j+2,x)="3" A B(j+3,x)=Y)))

FVar(y,i,x) = VarOc(y,i,x) A 71QVar(x) A T1BVar(y,i,x)

Qvar(x)
BVvar(y,i,x)

Deg(x) =y = (Form*(x)
A y= (#t <Len(x))
((B(t,X)=r3.‘ \% B(t,X)=r—l" \V, B(t‘x)="_)")
A T3jk (j<t<k<Len(x) A SC(Subseq(j,k,x)))))
V (TFForm*(x) A y=Ixl+1)

Theorem 7 of Buss [86, p.46] shows that Deg(x) is a Zbrdefinab]e
function which takes as its value the number of logical symbols
occurring in x outside the special constants if x is Form™, and takes
value |x|+1 if x is not Form*. Lemma 1.7 shows that

Sy F Vx (Form*(x) — (Deg(x)=0 & AtForm*(x)))

Now we are ready to define A?-—predicates expressing that a collection
of formulae is the result of applying one of the systematic tableau
rules t,o,B1/B2.3.4, to some other collection of formulae. An example:
if x is a sequence of *formulae, and y the result of application of T to
X, then y is a sequence of *formulae which can be divided in two parts:



y contains x as an initial subsequence, and the other part (1) contains
all "™ for which (a) "T171@™ is in x and (b) "¢ is not in x; and (2) it
contains these "@" in order of size; (3) it contains nothing else.

For convenience we also define t(i,j,w) and «(i,j,w), etc., which
express that in case w is a tree with nodes i and j, t resp. « is applied
to node i, which results in node j.

Definition 1.11
t(x,y) = FormSeq (x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x))
A Ytex (teTail(y,x) & 3zex (DNeg(z,t) A tgx))

t(i,j,w) = t(pli,w)=2, B(j,w)=2)

FormSeq (x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x)) A VteTail(y,x) (tex)
AVtex (NIMP(t) —
Ja,zey 3bg,t (NEGImp(t,a,b)) A NEG(z,b))!
AVZzeTail(y,x) 3tex 3a,bs,t (NIMP(t)
A [INEGImp(t,z,b)2 v (NEGImp(t,a,b) A NEG(z,b))]))1

o(x,y)

o(i,j,w) = alp(i,w)=2, p(j,w)=2)

Comment:ad 1. t="1(a—b) and z= —b;
ad 2. t="1(z-Db);

In paragraph 2 we will show that 812 F Vx 3ly t(x,y), and the like for
the tableau rule « and the other tableau rules which we will define in
this paragraph. ‘

We define ternary A?—predicates B1(x,y,t) and po(x,y,t), in which t, if it
is an implication occurring in x, is split up under the condition that
neither the negation of its antecedent, nor its consequent occurs in x.

Definition 1.12
“B1(x,y,t) = FormSeq (x) A FormSeq(y) A I(x,y)
A [{tex A IMP(t) A [((NAnt(t)ex Vv Con(t)ex) A x=y)
V (T(NAnt(t)ex v Con(t)ex) A NAnt(t)ey)l}
v {(tgx v TIMP(t)) A x=Yy}]
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B2(x,y,t) = FormSeq (x) A FormSeq(y) A I(x,y)
A [{tex A IMP(1) A [((NANnt(t)ex Vv Con(t)ex) A x=Y)
V (T(NAnt(t)ex v Con(t)ex) A Con(t)ey)]}
V {(tgx v TTIMP(t)) A x=y}]

We will use these definitions to define predicates g1(i,j,w) and
Bo(i,j,w) which express that the node j of a tree w is the systematic
B1- respectively pp-successor of the node i of w, in the following
sense. If w is a tree, consider the depth k of node i in w. There are
unique a and z such that k=a+5-z and a<3. There is a unique t such
that t is mq(z). Then Bq(i,j,w) c.q. Bo(i,j,w) is true iff gq c.q. po is
applied to (g(i,w)=2, B(j,w)=2, t).

The reason that we define the p-rules in such a cumbersome way will
be explained in paragraph 2.

Definition 1.13

B1(i,j,w) = Tree(w) A 3k <lwl 3t <k ( k=Depth(i,w) A t=T1(k=2/5))
A B1(B(i,w)=2, p(j,w)=2, 1))

B2(i,j,w) = Tree(w) A 3k <Iwl 3t <k ( k=Depth(i,w) A t=m1( k=2/5))
A B2(pli,w)=2, B(j,w)=2, t))

To define A?—predicates expressing the application of the rules 3y and &
we need to be able to talk about the variable which is bound by the
outermost existential quantifier in an existential formula. We define
such variables by the zt{-definable function EVar :

EVar(x)=y = (EForm(x) A y=g(4,x)) V (TEForm(x) A y=0).

Moreover, we need a function which gives us @ in the formula ((3x)¢).
If we define the binary A?—predicate

B(x)=y = y=5ubSeq(6, Len(x), x),

then an easy verification shows that B(x) is the S'z-definable function
we looked for.

We also need a S’z-defined substitution function Sub (slightly different
from the substitution function Buss defines in [86, p.130]) which
replaces all free occurrences of a variable in a formula by a sequence,
for instance by a special constant. We take for Sub(v,x,z) the function
that satisfies the following predicate:
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Definition 1.14
Sub(v,x,z)=Yy = {Seq(v) A Var(x) A Form*(z)
A [([3i< Len(2) (FVar(x,i,z)
A Len(y) = Len(z) +
+ (Len(v)=1)-(##i<Len(z))(FVar(x,i,z)
A Vj<Len(z)3k< Len(y) (k=j+
+ (Len(v)=1)-(#i< j)FVar(x,i,z)
A (B(j+1,2)=x VvV BVar(x,j+1,2) V QVar(x,j+1,z)
- Blk+1,y)=(j+1,2))
A (B(j+1,2)=x A FVar(x,j+1,2)
— Vi<Len(v) (B(t+k+1,y)=p(t+1,v))))]
v (T3i< Len(z) (FVar(x,i,z) A y=2)1}
v {(7Seq(v) Vv Var(x) v 7/Form*(z)) A y=0}

1 . .
S, proves uniqueness and existence of Sub(v,x,z); moreover,
512 F (Var(v) v SC(v)) A Var(x) A Form*(z) —» Form*(Sub(v,x,z))

Now we are able to describe the y and & rule:

Definition 1.15
3(x,y) = FormSeq(x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x)) A VteTail(y,x) (t¢x)
A Yzex (EForm(z) — 3tey (t=Sub(SpeCon(z), EVar(z), B(z))))
A VteTailly,x) 3zex (EForm(z)
A t=5ub(SpeCon(z), EVar(z), B(z))))

&(x,y) = FormSeq (x) A FormSeq(y) A I(x,y)
A ORD(Tail(y,x)) A VteTail(y,x) (tegx)
A Yzex Yvex (NEForm(z) A EForm(v)
— [3w,zex (w=Sub(SpeCon(v), EVar(v), B(v))
— 3tey Iscpt (s=Sub(SpeCon(v), EVar(Pos(z)), B(Pos(2)))
A NEG(t,s))])
A Vzex [NEForm(z)
— 3tey Iscpt (s=Sub(SpeCon(0), EVar(Pos(z)), B(Pos(z)))
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A NEG(t,s)])
A {VteTailly,x)
{3scpt ([3zex Ivex Iwex (NEForm(z) A EForm(v)
A w=3Sub(SpeCon(v), EVar(v), B(v))
A s=5ub(SpeCon(v), EVar(Pos(z)), B(Pos(z)))
A NEG(t,s))]
vV [3zex (NEForm(z) A s=Sub(SpeCon(0), EVar(z), B(2))
A NEG(t,s)I)}))}

&(i,j,w) = &(p(i,w)=2, (j,w)=2)
Furthermore we define when a sequence of formulae is closed or open:

Definition 1.16

Closed(x) = FormSeq(x)A 3z,uex (AtForm*(z) A NEG(u,z))
Closed(i,w) = Tree(w) A Closed(p(i,w)=2)

Open(x) FormSeq(x) A T1Closed(x)

Open(i,w) = Tree(w) A Open(p(i,w)=2)

Using these definitions we now are able to construct a predicate
adequately expressing x to be a systematic tableau from a theory A.

We assume A to be axiomatized by finitely many closed formulae. Let
t4, .., tx be the codes for the axioms of A. We take the Ag-predicate
A(x) as follows:

Definition 1.17
A(x) = Seq(x) A Len(x)=k A Vi<k (i=0 - (i, x)=tj).

I.e., A(x) expresses x to be a sequence which contains the axioms of A
in a certain fixed order and contains nothing else. Gf course, there is a
standard number N such that A(N) and 812 proves that there is exactly
one x such that A(x).

A systematic tableau is a tree of which the root codes x such that A(x),
i.e. the root is x+2, and which satisfies some further requirements.

We assume A(x) to be a A':-formula adequately expressing x to be an
axiom of A, i.e. we take a(x) provably equivalent (in 512) tox=tq v.. Vv
X=1tk.
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In a systematic tableau the (systematic) rules are applied in fixed
order: T, &, B1/B2, §, 6. So T is applied to all nodes which occur on a
depth in the tree that is 0 mod(S), etc. The B-rules are applied as
follows: if x is a node with depth 2+5-P(t,v), then split t if t is an
implication in x.

Definition 1.18
STaba(x) = Tree(x)
A Vi< Len(x) (Node(i,x) — (Leaf(i,x) vV Valence(i,x)<2)
A FormSeq(g(i,x)=2)
A Depth(i,x) =0 — A(p(i,x)=2)
A Closed(i,x) — Leaf(i,x))
A Yi,j <Len(x) ((Open(i,x) A —Leaf(i,x) A Father(j,x)=i) —
[(Depth(i,x)=0 mod(S) A Valence (i,x)=1 A T(i,j,x))
v (Depth(i,x)=1 mod(S) A Valence (i,x)=1 A «(i,j,x))
V (Depth(i,x)=2 mod(5) A Valence (i,x)=2 A SonPos(j,i,x)=1
A 3k <Len(x) (k> j A Father(k,x)=i
A B1(i,j,x) A B2a(ik,x)))
Vv (Depth(i,x)=3 mod(5) A Valence (i,x)=1 A ¥(i,j,x))
v (Depth(i,x)=4 mod(S) A Valence (i,x)=1 A &(i,j,x))]

Clearly the definition of the predicate expressing its subject to be a
(possibly non-systematic) tableau from the theory A will very much
resemble the definition of STaba. There are three differences: (1) the
root of a non-systematic tableau need not contain all axioms of A, (2)
the tableau rules need not be applied in fixed order, and (3) the tableau
rules need not be applied to all formulae they can usefully be applied
to, or, in the case of the B-rules, need not be applied to the smallest
implication. We will not bother to exactly define the predicates needed
to express application of a non-systematic tableau rule, but we will
indicate them in bold face.
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Definition 1.19
Taba(x) = Tree(x)
A Yi<Len(x) (Node(i,x) — [(Leaf(i,x) vV Valence(i,x) <2)
A FormSeq(g(i,x)=2)
A Depth(i,x) =0 — Vze(i,x) (a(z))
A (Closed(i,x) - Leaf(i,x))1)
A Vi,j <Len(x) (Open(i,x) A TLeaf(i,x) A Father(i,j,x) —
[valence (i, x)=1 A (T(i,j,x) Vv oli,j,x) v ¥(i,j,x) v &(i,j,x))]
v [Valence (i,x)=2 A SonPos(j,i,x)=1
A 3k <Len(x) (k>1 A Father(k,x)=i A (B1(i,j,x) A B2(i,k,x))])

We also define:
ClTaba(x) = Taba(x) A Vi< Len(x) (Leaf(i,x) — Closed(i,x))
VA = T13x Cl1Taba(x)

In the sequel we will sometimes omit the subscript A if it is clear
that the theory concerned is A.

We will also use the predicate Tab(x,y) for which we use the following
modification of the definition of Taba(x): substitute in the definition
of Taba(x) the clause Depth(i,x)=0 — Vze(i,x) (a(z)) by the clause
Depth(i,x) =0 — Vze(i,x) (zey), and add a clause expressing that y is a
sequence of closed *formulae. Accordingly, the predicate Cl1Tab(x,y)
can be defined, and we will use the notation Vy for T13x Ci1Tab(x,y).
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§ 2 Search for an infinite branch in a systematic tableau

An infinite branch in the systematic tableau for a tableau-consistent
finite theory can be found in the following way: Start with the root of
the systematic tableau, which is tableau-consistent by hypothesis; if n
nodes are already chosen, take for the n+15t node a tableau-consistent
successor of the nth node. It is not difficult to see that if a tableau
rule is applied to a tableau-consistent node, then at least one of its
direct successors is tableau-consistent. If we also demand that in
every step the leftmost tableau-consistent successor is chosen, then
this procedure gives us the leftmost infinite branch with only tableau
consistent nodes from the tableau.
We could try to execute this procedure in the following way:
For every n, take the fully developed tableau up to level n, this is the
systematic tableau in which every node that is not closed or on depth n
has a successor; then take the leftmost branch in this tableau which
has only tableau-consistent nodes. These branches will fit into each
other, thus giving us the leftmost infinite branch. The fully developed
systematic tableau can be defined as follows:
FullTab(x,n) = STab(x) A Vi<Len(x) (Depth(i,x)<n

A (Leaf(i,x) = Closed(i,x) v Depth(i,x)=n)).

we will follow a different procedure, in which we construct initial
segments of the infinite leftmost tableau-consistent branch, without
reference to the fully developed tableaux. The first step consists in
taking the root of the systematic tableau. If a branch of depth n has
been constructed, then to get the branch of depth n+1 take the leftmost
systematic tableau-consistent successor of the leaf of this branch,
that is, apply to this leaf the systematic tableau rule which 'belongs
to' n mod(5), add the result of this application to the branch of depth n,
on the understanding that, if n mod(5)=2, we add the B{-successor if it
is tableau consistent, otherwise we add the Ba-successor.

In the definition of these initial segments of the leftmost tableau-
consistent branch we use the folowing A‘:—predicate, which expresses
its subject to be a branch of the systematic tableau from A:
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Definition 2.1
Bra(x) = Tree(x)
AVYi<Len(x) (Node(p(i,x) —
[FormSeq(p(i,x)~2)
A (Depth(i,x) =0 — A(B(i,x)=2))
A (DLeaf(i,x) —» Valence(i,x)=1)
A (Closed(i,x) — Leaf(i,x))])
AYi,j <Len(x) (Node(i,x) A Father(j,x)=i —
[(Depth(i,x)=0 mod(5) A ©(i,j,x))
v (Depth(i,x)=1 mod(5) A «(i,j,x))
v (Depth(i,x)=2 mod(5) A (B1(i,j,x) V B2(i,j,x)))
v (Depth(i,x)=3 mod(S) A ¥(i,j,x))
v (Depth(i,x)=4 mod(5) A &(i,j,x))])

We can now define, using this definition, the leftmost branch of the
systematic tableau from A with only tableau-consistent nodes:

Definition 2.2
Br(n)=x = Bra(x) A Depth(x)=n
A Vi< Len(x) (Node(i,x) - V(B(i,x)=2))
AVi,j <Len(x) {Node(i,x) A Depth(i,x)=2 mod(5)
A Father(j,x)=i — 3z <Len(x) ((Depth(i,x)=2+5.2
A T181(1,j,x)) = IV (x*NAnt(11(2))))}

Because of the occurrence of tableau consistency in several clauses of
the definition of Br(n)=x, this is not a zg—predicate, so that we cannot
hope to be able to define Br(n) as a Z?-defined function in 512.

Just as was the case with fully developed tableaux, we cannot hope to
prove in 812 that Br(n) exists for all n. This is because consecutive
application of the systematic tableau rules also requires existence of
exponentiation. For example, apply the rule & to a sequence of
formulae, say x, and let the resulting sequence be y. Then lyl is bounded
by IxI4: To get y from x we must add to x all the instantiations of
negative existential formulae in x with the special constants in x. The
number of negative existential formulae in x is bounded by Len(x), i.e.
by Ixl. The number of special constants occurring in x is also bounded by
Ixl. Hence the number of formulae that we must add to x to get y is
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bounded by Ix|2. Let zex be T13t, let s be a special constant in x, and
let v be the result of instantiation of 7@ with s . Both z and s are
bounded by x, hence Ivl is bounded by [xI2. There are IxI2 such v, so lyl is
bounded by IxI4 (in fact it is bounded by IxI+C-Ix|2+|x|4 for some
constant C, we left out x itself and the IxI2 extra comma's and codes
for brackets and 7). The same reasoning shows that if t(x,y), then
lyl < 2-Ixl; in general, if one of the systematic taleau rules is applied to
X, then the length of the resulting y is bounded by Ix|+B-IxI2+C-IxI3 +Ix|4.
Consider the family of functions fx: z » zK. An n times repeated
application of such fg to z results in z(kM), j.e. a proof of the existence
of fi(n)(z) for all n and standard z requires existence of kN for all n.
Now if Br(n)=y, then lyl is roughly equal to the value of fi(n)X(z) for a
k> 2. This shows that, as we have shown to be the case with
FullTab(n), we can not hope to prove existence of Br(n) for all n in 812.
However, using a theorem of Pudlék, we can define Br(n) as a function
on a cut, i.e. for every element n in this cut there does exist a unique
branch with depth n.

Induction Theorem 2.3 (Pudléak [83al)
For any formula @(x) there exists a formula J, which is inductive in 512,
such that for all cuts I such that IcJ

S, F (9(0) A Vnel (g(n) » @(n+1))) > Vnel @(n).

Proof
Define J as follows:

J(x) = @(0) A Vk<x (g(k) = @(k+1)) - Vk<x @(k).
we will check that J is inductive in S'y:
55 F§(0) = ©(0), s0 S5 F J(0).
Reason in 812. Suppose J(x), and suppose @(0) A Vk<x+1 (@(k) —
@(k+1)). By hypothesis we have @(0) A Vk<x (@(k) - @(k+1)), and
J(x), so by definition of J we have Vk<x @(k). Hence @(x); by
hypothesis @(x) — @(x+1), hence Vk <x+1 @(k). Hence J(x+1).
(It is however not necessarily true that J is provably closed under <
i.e. J need not be a cut.)
Let I be a cut in 812 such that IcJ. Suppose @(0) A Vxel (@(x)
—@(x+1)). Let xeI, we will prove @(x). Because IcJ: xeJ, so (by

?
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definition of J) @(0) A Vk<x (k) —» @(k+1)) - Vk<x @(k). By

hypothesis @(0). Let k< x. I is a cut, so it is closed under <, and xel,

hence kel. By hypothesis (k) — @(k+1). Hence Vk <x @(k), i.e., @(x).
=

We apply this theorem to the formula 3ly Br(n)=y. This gives us an
inductive formula J such that for all cuts I such that IcJ
s, F 3ly Br(0)=y A Vnel (3ly Br(n)=y — 3ly Br(n+1)=y) -

Vnel 3ly Br(n)=y.
So after closing J under <, 812 proves that if 3ly Br(n)=y is inductive
on J, then Br(n) is a function on J. The following two lemmata show
that 3ly Br(n)=y is an inductive formula of 512

Lemma 2.4
ShEF VX A (alX,Y) V 5(X,Y) VE(X,Y) V TX,Y)) - VY
SHE VX A B1(LY1,1) A B2(X.Y2,1) » VYq V VYa

Proof

Reason in 512. Suppose VX, a(X,Y) and VY. Then we can construct a
closed tableau from X in the following way: There is a closed tableau,
say p, from Y. (p might be non systematic.) The sequence coded by the
root of p, say Y’, is a subset of Y. From p we will construct a closed
tableau q which has root Y, and in which the rules will be applied to
the nodes in the same order and to the same formulas as they are
applied to in p. g will have the same form as p, and if a node n' from q
corresponds to node n from p, then the sequence coded in n is a subset
from the sequence coded in n'. It is clear how to proceed: Add, to all
nodes in p, the formulae of Y which do not occur in Y'. Clearly, for q so
constructed we have Igl <Ipl-(1+]Y]): to p we add at most Len(p) times a
set of length at most |Y]. (It is essential here that we do not demand g
to be a systematic tableau, or a tableau in which the rules for
construction of a systematical tableau are applied: in that case we
could not hope to be able to prove the existence of g in 512.)
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The proof of existence of such q, given p, is by PIND on p in:
x<p A Tab(xy) —
3q < 2lxl-2Ixl-lyl (Tab(q) A (B(1,9)=2)=y A Len(g)=Len(x)
A Vi< Len(qg) (Node(i,q) « Node(i,x)
A Node(i,q) —
(B(i,x)=2)<=(p(i,q)=2))).

Having constructed q, let r be the tree (0 * X+2 * "[7) %% (q * "]7) r jg
a closed tableau from X: q is a tableau and «(X,Y) guarantees r to be a
tableau, and if s is a leaf in q then it is a subset of a leaf from p,
which is closed by hypothesis, so s is closed.

The same reasoning works for ¥,4,T.

Suppose VX, B1(X,Y1,t), pa(X;Y2,t) and (VY1 A T1VY2), then again we
can construct a closed tableau from X: Suppose pq and p2 are closed
tableaus from respectively Y4 and Yo, with roots U and V. Now "fill in"
p1 and p2 the same way we proceeded above, to get closed tableaux qq
and q2 with roots Yq and Y. Then (0 * X+2 * T[7) ** q4 ** (qp * "]7)
is a closed tableau from X. R

Lemma 2.5

There exist Zﬁ-definable functions t(-), «(-), g1(-,-), B2(-,-), ¥(-), &(-),
such that t(x)=y iff t(x,y) and FormSeq(x), y=0 otherwise, and
Bi(x,t)=y iff Bij(x,y,t) and FormSeq(x), y=0 otherwise, etc.

Proof

We will prove the existence part of the functionality of T by Z':-PIND
on

t<x - Iy (yl<2:1tl A (T(ty) v (TFormSeq(t) A y=0)))

For x=0 we take y=0.

Assume t<|3x]- 3y (lyl<2-Itl A (T(ty) v (TFormSeq(t) A y=0))).
Let L%x_|< s <x and FormSeq(s). Consider v=SubSeq(1, Len(s), s), i.e. v
is s minus the last element of s. We have FormSeq(v) and v<|_51x_|. By
assumption there is a w such that lwl<2:lvl A t(v,w). So v is an
initial subsequence of w.
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Suppose TIDN(B(Len(s),s), i.e. the last element of s is not a double
negation. Let y be s ** SubSeq(Len(v)+1, Len(w)+1, w); then t(s,y) and
lyl <l2-sl.

If, on the other hand, DN(B(Len(s),s)), say b=p(Len(s),s) then let a be
such that DNeg(b,a). Now consider SubSeq(Len(v)+1, Len(w)+1, w) * a.
This sequence is not necessarily ordered. However, by Lemma 1.4, there
is an ordered sequence z such that Vk(kez < ke SubSeq(Len(v)+1,
Len(w)+1, w) * a).

Now T(s, s ** z) and Is ** z| < 2-Is|.

Unicity follows from the fact that t(xy) is A':, with inimization. For
suppose T(x,y) and t(x,z) and y=z, then there is an i such that
g(i,y)=p(i,z)

For the other tableau rules the proofs resemble the proof for T. In the
Bi functions the first variable indicates the formula sequence x to be
considered, the second the implication to be considered . =

Using the two preceding lemmata we can now prove that 3ly Br(x)=y is
an inductive formula of 512:

Lemma 2.6
Sy+VA F 3ly Br(0)=y A Vx (3ly Br(x)=y — 3ly Br(x+1)=y)

Proof

First we check that 5,+VA I 3ly Br(0)=y:

As we mentioned in paragraph 1, 512 F 3ln A(n). Moreover, 812 F
Tree(n+2) A Depth(n+2)=0, and VA implies Vn. This shows that
512+VA proves Br(0)=n+2, and that 812+VA proves uniqueness of Br(0).
Now reason in 512. Suppose there is a unique y such that y is Br(x). Let
u=Leaf(y). Then u is tableau consistent. We can construct Br(x+1) from
y, by taking the appropriate tableau successor v of u and putting [u+2]
in the tree y directly after u. To get v, we apply to u the tableau rule
which matches the depth of u in y (i.e. x). That is, take v="1(u) if x=0
mod(5). If x=2+5-2, take for v the result of the application of g1 or g2
to u and m¢(z); take for v the outcome of g4 if it is tableau consistent,
otherwise take the outcome of g2. Lemma 2.4 shows that either the
outcome of application of g1 to u is tableau consistent, or the outcome
of B2 is, because v is tableau consistent; and Lemma 2.5 shows that if
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we take for v the outcome of application of one of the other tableau
rules to u, then also v is tableau consistent, because u is. Lemma 2.6
shows that v is unique. Now by putting [v+2] in the tree y directly
after the node that contains u we get Br(x+1). R

It will now be clear that 512 proves that Br(-) is a function on the cut J.
In the sequel we will have to restrict ourselves to an initial below J.
Close J under +, - and 2.

The following lemma shows, among other things, that Br(-) defines a
unique branch along the initial J.

Lemma 2.7
512 F Br(n)=y A ze(i,y) —» zeLeaf(y)
512 F J(n) A Jm) A n<m A Br(n)=y A Br(m)=2z A te(i,y) - teleaf(z)

Proof
By inspection of the definitions of Tree and Br(n)=y it is easy to verify
that |
812 F n<m A Br(n)=y A Br(m)=z -
Br(m)=SubSeq(1, Len(y)=n+1, y) ** SubSeq(Len(y)=n+1, Len(z)+1, 2).
Moreover, Br(n) is a function on J, so that
512 F J(n) A J(m) An<m A Br(n)=y A Br(m)=z —
z=5ubSeq(1, Len(y)=n+1, y) ** SubSeq(Len(y)=n+1, Len(z)+1, 2).
(Note that we need J(n) and J(m) here: we cannot apply inimization
because Br(m)=z is not a A?-predicate.)
This immediately gives us
(1 8% F Jn) A J(m) A n<m A Brin)=y A Br(m)=z —
(xe(i,y) — xe(i,2)).
Using the fact that Bra (Definition 2.1) is Aﬁ we can show that 512
proves that if a formula occurs in a node on a branch of the systematic
tableau, it will occur in all its successors:
(2) 512 F Bra(y) A ze(i,y) - Vj<Len(y) (j>i A Node(j,y) — ze(j,y).
Reason in 512: Suppose Bra(y) and ze(i,y) and suppose there is a j>i
such that Node(j,y) and z¢(j,y). Then by inimization there is a minimal
such j. Let k> i be the father of j in y. Then by minimality of j, ze(k,y),
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and because fathers and sons in y are linked by the tableau rules, we

have I(p(k,y)=2), B(j,y)=2), which implies ze(j,y). Contradiction.

Combination of (1), (2) and the fact that, by definition of Br(-), 812

proves Br(n)=y — Bra(y), we get 812 F Bra(y) A ze(i,y) - zelLeaf(y)

512 F Br(n)=y A ze(i,y) — zeleaf(y)

Sy F J(n) A Jim) A n<m A Br{n)=y A Br(m)=2z A te(iy) - teleaf(2).
X

Now that we have a unique branch along the initial J we are almost
ready to define an interpretation. We first define a predicate K(x)
which expresses that x occurs somewhere on this branch, and a
predicate D(x) which expresses that x is EForm and occurs somewhere
on the branch, or x is O and is used as a special constant somewhere on
the branch. K will be used as the basis of the translation, and D will be
the domain of the interpretation.

Definition 2.8
K(x) = J(x) A 3n(Jn) A xeLeaf(Br(n)))
D(x) = (EForm(x) A K(x)) v x=0

We will need the following property of the set of formulae occurring in
the infinite tableau consistent branch on J, which was called the
Hintikka-property by Smullyan [68]:

Lemma 2.9
S5  DNeg(x,y) A K(x) — K(y);
sy F IMP(x) A K(x) = (K(NANt(x)) v K{Cons(x)));
Sy F NIMP(x) A K(x) = (K(AtN(x)) A K(NConN(x)));
812 F EForm(x) A K(x) — K(Sub(SpeCon(x), EVar(x), B(x));
S5 - NEForm(x) A K(x) —
Vz [D(z) = 3y 3t (t=Sub(SpeCon(z), EVar(x), B(x)) A NEG(y,t)
A K(y)l.

Proof
Reason in 812.

Suppose K(x) and DNeg(x,y). By definition of K we have J(x), there is
an n such that J(n), there is a unique z such that z=Br(n) and for this z
we have xelLeaf(z). If DNeg(x,y), then y < x; J is closed under <, so we
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have J(y). Remember that in branches of a systematic tableau as
defined in Definition 2.1 the rule T is applied to nodes occurring on
depth 0 mod(S). There is an m such that n<m < n+4 and m=0mod(5). J
is closed under successor, so J(m) and Jim+1), which imply 3lv
v=Br(m) and 3lw w=Br(m+1). By Lemma 2.8, xeLeaf(v). From the
definition of Br(-) it follows that w is the result of applying the
systematic T rule to the leaf of v and adding the result to v. Hence if x
is the double negation of y, y will be in the leaf of w.

Suppose IMP(x) and K(x). Then J(x) and there is an neJ such that
xeLeaf(Br(n). NAnt(x) and Cons(x) are smaller than x, so both are in J.
We need some stage m in J in which, according to the definition of Br,
the implication x is dealt with. Take m=2+5-P(x,n), where P is the
pairing function. From the definition of P, and from the fact that J is
closed under + and -, it follows that meJ.

Suppose EForm(x) and K(x). Let n be such that J(n), let z be Br(n)
with xeLeaf(z). From the definition of K we have J(x). Let m be such
that m=3 mod(5) and n<m<n+4. Then J(m) and J(m+1). Let v be
Br(m), then xeLeaf(v). Now let w be Br(m+1). Leaf(w) is the result of
applying the systematic & rule to the leaf of v, hence Sub(SpeCon(x),
EVar(x), B(x)) is in Leaf(w). From the fact that xeJ and that J is closed
under , we see that Sub(SpeCon(x), EVar(x), B(x))e J.

We leave the verification of the other clauses of this lemma to the
reader. 2

Another fact that we will need is that every axiom of A provably
occurs on the branch along J:

Lemma 2.10
If @ is an axiom of A, then 512+VA FK(Te™).

Proof

Let @ be an axiom of A. We will show that SHL+VA F J("@™) A 3n (J(n)
A "@ eLeaf(Br(n))).

Let m be the standard number such that A(m), i.e. m is the sequence
which contains the codes of the axioms of A. A(m) and "¢@ " em are true
A?-formulae, S0 512 proves A(m) and "¢ em. 812 proves that m+2 is the
code of a tree whose depth is 0, and VA implies Vm. Hence 812+VA
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proves Br(0)=m+2 A "@ elLeaf(m+2). Because J is a cut in 812+VA,
812+VA proves J(0). "@" is a standard number, so 512+VA proves
J("e™). &

We will now, in three consecutive steps, define an interpretation based
on K and D.

Definition 2.11
For every unary predicate R in the language L define the valuation (-)K’
as follows:

R(x)K' = K("R(cly])™) if y is an existential formula from L*
and x codes y,
K("R(c[0])") if x=0,
0=50 if not EForm(x) and xs=0.

We introduce for convenience the following notation:

We will write R[x] for R(-) instantiated with the special constant for x
if x is EForm or O; and

"RIx]™ for "(Rc*x*")",

@(X) indicates that X =x1, ..., xp are the free variables occurring in ¢

@[X] will be the obvious generalization of R[x] to formulae, i.e. replace

in @ all occurrences of Rx, if x is free in @, by RIx].

We define a translation (-)K' of formulae inL* inductively as follows:
on atomic formulae (-)K' is as defined above;

("@)K'=T1¢K';
(@ )K=k - yk';
((3) @)K =((IxN(D(x) A @K")).

Define the translation (-)K as follows:

if X1, ..., Xp are the free variables occurring in @, then (writing D(X)
for D(x1) A ... A D(xp))

@(X)K = D(X) - @(X)K',

(This completes Definition 2.11)



Clearly the domain of this translation is not empty, because O is in it
(Definition 2.8).

The translation (-)K provides us with an interpretation of the axioms
of the finite theory A in 812+ VA, that is the following theorem holds:

Theorem 2.12

If A is a finitely axiomatized relational theory, axiomatized by closed
axioms, then there is an interpretation (-)K such that for every axiom ¢
of A, SH+VA F @K

We need the following lemma.

Lemma 2.13
812 F VX (K("@[X1")) -» ©K)) for all formulae @(¥).

Proof
We prove this by induction on the degree of (.

Let Deg(@)=0. Then @ is R(x) for some variable x. Suppose D(x) and
K("R[x]1). By definition D(x) A K("R[x]™) implies R(x)X', which implies
by definition R(x)K.

We consider separately the case that @(x) is TIR(x). Suppose D(x)
and K("TR[x]™). We will show (TR(x))K, ie. D(x) = (R(X))K', ie.
T(D(x) A R(x)K'). Suppose D(x) A R(x)K'. Then we get by definition D(x)
A K("R[x]™); but by hypothesis D(x) implies K(" R[x]"). So we have
K("R[x]I") A K("RI[x]"), which implies, by definition of K and by
Lemma 2.7, 3n (J(n) A 3z (Br(n)=z A "RIx]"elLeaf(z) A
"R[x] " eLeaf(z))). But then Leaf(z) is not tableau consistent, as it
should be by the definition of Br(n). Hence —1(D{x) A R(x)K'), i..
(TR(x)K,

Suppose that for all formulae @(X) with Deg(@)<n, S, F Vx (D(X)
— (K("@[X1")) —» ©K)). Let Deg(@(X))=n.

Let @(X)="171¢(X). Suppose D(X) and suppose K(" 1 1¢[X1"). By
Lemma 2.9 this gives us D(X) — K("w[X17). Deg{y(X))<n, so by
hypothesis we now have ¢(X)K, ie. D(X) — (X)X By definition of
(-)K" this gives us D(X) = (T 1@(X)K', f.e. (T 1g(X)K,



We will leave the cases @="1(y — X) and @=(y — X) to the reader.

Let @(X)=3zy(z,X). Suppose D(X) and suppose K("@[X17). Then, by
Lemma 2.9, stating the Hintikka property for formulae in K, it follows
from K("@[X1") that 3z (D(z) A K("wlz,%x17). By the induction
hypothesis D(X) A D(z) A K("ylz,%1") implies y(z,X)K , i.e. D(X) A
D(z) — y(z,X)K'. This gives us, because we have D(X) as hypothesis,
3z (D(z) » y(z,X)K'). Hence D(X) —3z (D(z) » (z,X)K'), which is
(X )K. Hence K("@[X]1™) - @(X)K.

Let @(X)="13zy(z,X) and suppose D(X) and K("@[X17). With Lemma
2.9 we get Vu (D(u) - K("g[u,X]1") from K("@[X1"). Now suppose
D(u). Then we have D(X) A D(u) A K("T1y[u,X 1), which by induction
hypothesis gives us D(X) A D(u) - (y(u,X))K'. Because we supposed
D(X), an application of generalization gives us Vu (D(u) -
(g(u, ¥ )KY), i.e. 713u (D(u) A ¢(u,X)K'). Then clearly we have D(X)
— ~13u (D(u) A wlu,X)X'), which is by definition @(X)K. Hence
K("@[X]1") = @(X)K =

To complete the proof of Theorem 2.12, we only have to observe that
the axioms of A are sentences. Hence the form of Lemma 2.14 we apply
to @ if @ is an axiom of A, is 512 F K("@") » @K Lemma 2.10 shows
that for such @ S,+VA F K("@™). This completes the proof of
Theorem 2.12.

But we have more: 312+VA also proves the theorems of A under the
interpretation (-)K. Let ¢ be a theorem of A, i.e. Al @.Let g1, yo, ...,
Y, be axioms of A such that y1 A g2 A ... A Yy I @. Call this proof .
Replace every formula in 1 by its (-)K-translation. Theorem 2.12 shows
that there are proofs of w1K, yoK , .., and wpK from 5L,+VA. If we
take these proofs together and add K, the result is almost a proof of
©K from 512+VA. It might not be a proof yet for the following reason.
Suppose that in m we have applied generalization to the free variable x
in @(x,y). This gives Vx @(x,y). The respective (-)K-translations of
these formulae are: D(x) A D(y) — @(x,y)X and D(y) —» Vx (D(x) —
@(x,y)X'). This second formula does not follow directly from the first
with generalization: generalization of D(x) A D(y) — @(x,y)X' gives Vx
(D(x) A D(y) = @(x,y)X'). Hence we have to add Vx (D(x) A D(y) —
@(x,y)K') > (D(y) » Vx (D(x) - @(x,y)X")). This proves:
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Corollary 2.14

If A is a finitely axiomatized relational theory, axiomatized by closed
axioms, then there is an interpretation (-)K such that for every theorem
@of A, 5,+VAF @K, ie, if AF @, then 5,+VA F K.
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§3 A formalization of the model existence lemma
for finite theories

In this paragraph we will prove a formalized version of Theorem 2.12,
that is, we will prove

Theorem 3.1
Let A be a finitely axiomatized relational theory, axiomatized by
closed formulae.
Let 4 be some A':—preclicate with one free variable, such that a(x)
expresses adequately that x is the code of an axiom of A.
Then there is an 512-function (-)K, which associates with every code of
a formula in the language of A, a code of a formula in the language of
812, and which behaves like an interpretation, such that

512 F Vx (alx) = Provs’, +va(xK)).

The proof of Theorem 3.1 will consist in showing that the
interpretation of A in 512 +VA which we constructed in paragraph 2 can
be executed in 512.

The function (-)K of which Theorem 3.1 claims existence, will be the
formalized version of the translation (-)K defined in paragraph 2
(Definition 2.11). Just like the translation (-)K, the function (-)K will
be constructed from a function (-)K’, which is the formalized version of
the translation (-)K' defined in Definition 2.11.

we will define (-)K' as a 35-function which associates to every x, with
Form*(x), the code of the K'-translation of x. For example, if x is the
code of the atomic formula R(y), xK' will be the code of K("R[yl™),
where K(-) is the (812-) formula which we defined in Definition 2.8.
First we will define (Definition 3.2) for all formulae x a unique parsing
tree, which contains x in its root and parses x to all its subformulae.
Existence and uniqueness of these parsing trees will be proved in
Lemma 3.3. By working upwards from the leaves to the root in the
parsing tree, we will construct, step by step, a unique tree, which has
the same form as the parsing tree, and which contains the (-)K'
translations of all subformulae of x (Definition 3.5). Such a tree will
contain xK' in its root. Analogous to the definition of K' in paragraph 2,
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the code of the (812-) formula D(-), defined in Definition 2.8, will play
the role of the domain of the translation. Again, existence and
uniqueness of the tree which has in its root the K’ translation of x has
to be proved (Lemma 3.6).

We will show that (-)K' commutes, provably in S, with the logical
symbols (Lemma 3.9).

The function xK will be defined from the function xK', analogous to the
definition of (-)K from (-)X' in paragraph 2, by ‘adding' the code for a
formula which expresses that all free variables occurring in x are in
the domain D of the translation (Definition 2.10).

First we define a binary A?—predicate PT(w,x) which expresses that,
provided x is Form*, w is a tree which constitutes a parsing tree for x.

Definition 3.2
PT(w,x) = (w=0 A TIForm*(x))
V (Tree{w) A Form*(x) A Rootp(w)=x
A Yi<Len(w) (Node(i,w)
— (AtForm*(p(i,w)=2) — Leaf(i,w)))
A Yi<Len(w) (Node(i,w) —
([IMP(B(i,w)=2) — [Valence(i,w)=2
A 3j .k <Len(w) (SonPos(i,j,w)=1 A SonPos(i,k,w)=2
A IMPL(B(i,w)=2, B(j,w)=2, B(k,w)=2))]1]
A INOT(B(i,w)=2) — [Valence(i,w)=1
A 3k <Len(w) (Son(i,w)=k
A NEG(B(i,w)=2, B(k,w)=2))]1]
A [EForm(p(i,w)=2) — [Valence(i,w)=1
A 3k <Len(w) (Son(i,w)=k
A Blk,w)=2=B(g(i,w)=2))11))

To prove existence of a unique parsing tree w for every x, we will use
the fact that we can bound w in the formula 3w PT(w,x) by an 512—term
in x. Hence 3w PT(w,X) is equivalent to a Z?-formula, and we can use
Z?—PIND to prove existence.

That there is a term r(x) such that for all x there is a w <r(x) such
that PT(w,x) can be seen as follows. A parsing tree w of a formula x
contains all subformulae of x. There are at most |x| subformulae of x,
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and each of them is bounded in length by Ixl, i.e. w will have at most |x|
nodes, and these will have length <2-(Ix|+2). w will then contain at
most 2(Ix|-1) left and right brackets, and we have to add enough
commas. This gives us the upper bound 2-1x12+14-|x| for |wl.

Lemma 3.3
Sy F Vx 3lw (Iwl < 2:1x12+14-Ix] A PT(wW,X))

Proof
We prove existence by Z?-PIND.

If x=0 then TIForm*(x), so then we take w=0; clearly 812 F PT(0,0).
Reason in 812

Suppose that for all y < |_2X_| there is a parsing tree which is bounded
in length by 2-lyl2+14.lyl.

If T'Form*(x), then take w=0.

Let x be a formula.

- If x is atomic, then the parsing tree of x is O * x+2.

- Let x be an implication, say, IMPL(x,a,b). Then a<l_%x_| and b<L%x_|. By
the induction hypothesis there are parsing trees p and q for a, resp. b,
with Ipl <2-lal2+14-lal and Igql < 2:|bl2+14-|bl. Consider w=(0 * x+2 *
F[™) %% p ** (q* "]7). w is a parsing tree for x. Some counting will
show that Iwl < 2:[x12+14:|xl.

- We will not spen out the cases NOT(x) and EForm(x).

This shows that S5 F Vx 3w (Iwl < 2:Ix12+14:Ixl A PT(w,x)).

Unicity is proven as follows. Suppose ws=v. Then 3i<Len(w)
B(i,v)=p(i,w), so either 3i <Len(w) p(i+1,w)=p(i+1,v) or Vi<Len(w)
(B(i+1,w)=pg(i+1,v) A B(O,w)=pB(0,v).

In the first case, we get a minimal such i by inimization. Inspection of
the definition of PT will show such an i can not exist.

In the second case, we have Len(v)>Len(w), and I(w,v). Suppose
Len(w)=1. Then x is atomic, so that also Len(v) =1. If Len({w)> 1, then
consider Tail(v,w). Either Tail(v,w) has no nodes, which implies that v
is not a tree, and thus not a parsing tree, or it has a node. Inimization
then gives us a minimal i such that Node(i,Tail(v,w)). Let j be such that
g(j,v)=p(i,Tail(v,w)). If Depth(j,v)=0, then we have a contradiction
with the fact that v does not have more than one root. If Depth(j,v) >0,
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then there is some k< Len(w), such that Father(j,v)=k. Then we get a
contradiction with the fact that all possible sons of k are already in w.
2]

In the definition of the translation tree for a formula x we will use the
following predicate which expresses that its subject is a parsing tree:

Definition 3.4
PT(w) = PT(w, Rootp(w)).

We will now define the A?-predicate PreKT(z,w,c) which expresses
that

(1) w is a parsing tree,

(2) z is a tree with the same form as the tree w,

(3) until p(Len(w)=c, 2), z is identical to w,

(4) z contains the (-)K' translations of the formulae in w from
p(Len{w)=c,z) onward.

Ad (2). The following formula expresses that w and z are two trees of
the same form:
Tree(z) A Tree(w) A Len(z)=Len(w)

A Yi<Len(z) (MNode(i,z) — g(i,z)=pg(i,w)).

Ad (4). The translation tree will contain (if c is large enough) in its
leaves the intended (-)K'-translations of atomic subformulae, i.e. codes
of S,-formulae of the form K("RIx1™).

This implies that, in order to define PreKT, we need a zt{—definable
function s, which enables us to define the translation of atomic
formulae.

Definition 3.5
S(I'(Rx)’l)=r'(0 *l"('l % I‘R'| * 14) 3% 3% (x * l’)'l)'1.

Later on we will generalize S to get a function which replaces all free
variables of a formula by their special constants. For the moment
however, we will define S(x) as the identical function for x with
“TAtForm*(x).
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Moreover, for the definition of PreKT we need a substitution function
which can substitute "R[x]™ for y in the code of K(y). In paragraph 1 we
have already defined a substitution function (Definition 1.19). However,
this substitution function only admits substitution in formulae in the
language L*, whereas we now need substitution in K(-), which is a
formula in the language of 812. We will just assume that we have a
suitable predicate expressing formulahood in 512, which we can use in
our previously defined substitution function instead of Form™*.

We write "K(x)™ and "D(x)" for the codes for the 812-formulae K(x) resp.
D(x), which we defined in the previous paragraph. Renaming of
variables will sometimes be necessary. We will not spell out how this
should be done and just mention the fact that 812 can handle this.

Definition 3.6.a
PreKT(z,w,c) = PT(w)
A {lw=0 A z=0]
vV [w>0 A Tree(z) A Len(z)=Len(w)
A Yi<Len(z) (TNode(i,z) — B(i,z))=g(i,w)
A Vi< Len(z) (Node(i,z) A i<Len(z)~c — B(i,z)=g(i,w))
A Yi<Len(z) (Node(i,z) A i>Len(z)=c —
([Leaf(i,z) —» B(i,z)=2 = Sub(s(B(i,w)=2), "x7, "K(x)™))]
A [Vjk<Len(w)
([IMP(B(i,w)=2)A SonPos(i,j,w)=1 A SonPos(i,k,w)=2 —
B(i,2)=2 = (0* "(" * (B(j,z)=2) * "> 7) **
((B(k,z)=2) * ")"]
A [NOT(B(i,w)=2) A Father(k,w)=i —
(NEG(B(i,w)=2, B(k,w)=2) A NEG(p(i,2)=2, p(k,z)=2))]
A [EForm(p(i,w)=2) A Father(k,w)=i —
B(i,z)=2=("((3™ * EVar(p(i,w)=2) * ")(7) **
(Sub(EVar(p(i,w)=2), "x7, "D(x)7) * "A ") ** ((p(k,2)=2)*"))")]1]}

Definition 3.6.b
KT(z,w) = PreKP(z,w,|wl)

In the formula 3z PreKT(z,w,c) z can be bounded by a term in w and c.
This can be seen as follows. '



Because K is a fixed formula, the result of substitution of "R[x]” in
"K(-)" is linear in "R[x]"; and the code of R[x] is linear in the code of
R(x). Hence "K("R[x]")7, viz. Sub(s("(Rx)7), "y7, "K(y)7), is linear in
TR(x)”. Also the result of substituting "x” in "D(-)" is linear in "x”.
The K' translation of a formula y consists in replacing every atomic
subformula R(x) by the formula expressing it is in K, i.e. by K("R[x]™)
and relativising all quantifiers to D. Hence to get the (-)K'-translation
of y, we replace the element t of the sequence y by something that is
at most linear in t, so this (-)K'-translation of y is linear in y, say it is
bounded by h(y).

Now suppose PreKT(z,w,c). Then, if w is a parsing tree, we have
replaced at most c formulae occurring in nodes of w by their K'-
translations. All those formulae are smaller than w, so z can be
bounded by w+c-h{w).

This shows that we can use LIND on the Zﬁ-formula 3z
(z<w+c-h(w) A PreKT(z,w,c)) to prove Vw Vc 3z PreKT(z,w,lcl).

Lemma 3.7
812 F Vw 3lz KT(z,w)

Proof
We prove existence by LIND on 3z PreKT(z,w,c).
Reason in 512.

If 7PT(w) or w=0 take z=0.

Suppose PT(w). Suppose PreKT(z,w,c) and z<w+c-h(w), with h the
linear function described above.
Then w and z correspond with each other until the Len(w)=cth element
of w, i.e. SubSeq(1, Len(w)=c+1, w)=5ubSeq(1, Len(w)=c+1, 2).
Let d=Len(w)-=c.

If the last element of this subsequence, i.e g(d,w), is not a node,
then PreKT(z,w,c+1), and z< w+(c+1)-h(w)

Suppose B(d,w) is a node, say p(d,w)=f+2. Then f must be Form* (it
is provable in 812 that all nodes in a parsing tree code a formula).
- If f is an atomic formula, let g=(f).
If f codes a negation or an existential formula, then by definition of PT
there is a k, with d<k <Len(w), such that Son(d,w)=k.
- In case f codes a negation take g such that NEG(g, p(k,z)=2).
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- If f codes an existential formula, say 3x(, take g="((3x)}(Dx A" **
I'(P'l*l‘)"l'
- If f codes an implication, then there are k, 1 such that
d<k<1<Len(w) and SonPos(k,d,w)=1 A SonPos(1,d,w)=2. Then take g
such that IMPL(g, p(k,w)=2, B(1,w)=2).

Now let s=(SubSeq(1,d,w) * g+2) ** SubSeq(d+2,Len{w)+1,2), then
PreKT(s,w,c+1). Moreover, g(d,s)-~2 <h(g(d,w)=2), and we can safely
assume h(g(d,w)=2) <h(w); hence s <w+(c+1)-h(w).

Unicity of z in PreKT(z,w,c) is proved in the same manner as unicity of
w in PT(w,x) was proved in Lemma 3.3).

This gives us 812 F Vw,c 3lz PreKT(z,w,lcl).

Hence we have 812 F Vw 31z PreKT(z,w). b

The next scheme gives an impression of how PT and KT act on
formulae:

@ -y ©K'> yK’
@ i @K’ pK’
) -1((PK')
@ @K’
3xe@ 3x (D(x) A @K)
@ @K'
R(x) K("R[x]")

We can now define the basic translation (-)K' as a function on codes of
formulae:

Definition 3.8
xK'=sy = (Form*(x) A 3w 3z (PT(w,x) A KT(z,w) A y=Rootp(z)))
V (TFForm*(x) A y=0)
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Lemma 3.3 and 3.7 show that (-)X' is a function, i.e.

Lemma 3.9
Sy F Vx 3ly (xK'=y).

Moreover, inspection of the definitions of PT and KT makes clear that
S, proves that ()K" acts on atomic formulae in the desired way and that
(-)X' commutes with 71,- and 3:

Reason in 812. Suppose x is a formula, and NEG(x,t). The parsing tree w
for x readily gives us a unique parsing tree w' for t: take for w' the
subtree of w with root t, this is the SubSeq(3, Len(w)+1, w). By Lemma
3.2 there is a 2' such that KT(z',w'). Let z be such that KT(z,w), then by
unicity of KT we have z'=SubSeq(3, Len(w)+1, w). We conclude:
r(17tK'") ="(71"Rootp(z')") T =xK",

Likewise for — and 3.

This shows:

Lemma 3.10

S5 F ("R(x) ™)K =Sub(s(R(X),"y ™, K(y)™)

S, F DNeg(x,y) — DNeg(xK',yK')

S5 F IMPL(x,y,2) = IMPL(xK', yK’, ZK')

Sy - EForm(x) A EVar(x)=y A B(x)=z — xK'=(0 * "((37) ** (y * 7)(")
*x (TD(y)” * T A7) %% 2K,

As in paragraph 2, the translation (-)K will be constructed from the
translation (-)K' by adding to (-)K' a hypothesis which expresses that
all free variables in the formula in question are in the domain.

It is not difficult to see that we can do the following in 812.

For every formula x we can construct a unique ordered sequence, say Y,
which contains exactly the free variables v occurring in x. From this
sequence y we can construct a unique ordered sequence z which
contains for every element v in y, the code for D(v), i.e. for this
sequence z we demand:

Len(z)=Len(y) A Vi<Len(z) (B(i+1,z)=Sub(p(i+1,y), t, "D(1)™)).

From z we can construct a unique sequence w such that w is a formula
which expresses the conjunction of all elements of z. For example, if

44



45

2=¢21,22,23,24> then w=0*"((("*Zz1%x" A" %zox")A T Xz3*")A ¥ z4*")".
We write this unique sequence z as Dy. In the case x is a formula
without free variables, or not a formula at all, we define Dy as "0=0".
With D¢ we will now X;-define the transiation (-)K:

Definition 3.11
xK=Y = (Form*(x) A y= (0*"(7)**(py ®0 )ex(xK'xr)T)
V (T Form*(x) A y=0)

The relation between this function and the translation defined in
paragraph 2 is now as we announced it would be: if ¢ is @ formula then
the function (-)K defined just now gives us the code of K.

This function (-)K is the function that will fulfil Theorem 3.1. To prove
this theorem we will prove the formalized analogues of the lemmata
2.10 and 2.13. ,

The following lemma is the analogue of Lemma 2.10.

Lemma 3.12

Let A and A(x) be as in the statement of Theorem 3.1, and let K(x) be
the formula defined in Definition 2.8. Then

S, FVx (a(x) - Provs}sva("K(I) ™).

Proof

The proof of this theorem consists in showing that what we can
execute in 512 all steps of the proof of Lemma 2.10.

For all standard numbers n we can construct a proof of J(n), with J(.)
as in paragraph 2, from 512+VA. Hence

(1) 51 F Provs) «va(” J(In) ) for all standard n.

In particular S, I- PFOV52+VA( J(Ig) ™).

Remember that 52 proves A(x) & x=tq V .. V x=t,, for some finite set
of standard numbers ti. Hence

(2)83 FVx (a(x) = Provs).ga("J(I)™).

From the proof of Lemma 2.10 it follows that

812 F a(x) - (VA — xelLeaf(Br(0))). With Zﬁ—completeness applied to
A(x) it follows that 512 F a(x) - Provs,("VA — IyeLeaf(Br(Ipg)™), i.e.
(3)5% F A(X) - Provsheval"IxeLeaf(Br(Io))™).



From (1), (2) and (3), and the definition of K(x) as J(x) A 3n (J(n) A
xeLeaf(Br(n)) we see that
55 F A(x) = Provs,eval K(I) ™). =

The next lemma is the formal version of Lemma 2.13. To state this
lemma, we need the generalization of the function s, which we defined
in Definition 3.5, to all formulae.

I.e.,, we need a (Zg-definable) function s, which replaces every free
variable in a formula of L* by its special constant. For atomic
formulae we take s like in Definition 3.5. The generalization of this §
for atomic formulae will be: replace in the *formula x all occurrences
of atomic formulae of which the variable is free in x, by their s-
translation. We can Z?-define S for a formula x with the same method
we used for the definition the (-)K'-translation:

Construct from the parsing tree for x, from bottom to top, a tree that
contains in its leaves

(1) the s of the atomic subformulae of x if the variable in such an
atomic subformula is free in x,

(2) it contains the atomic subformula itself, if its free variable is not
free in x.

The tree so constructed will contain s(x) in its root. We will not spell
out the definitions and the existence and unicity proofs, because they
very much resemble the definition of the translation tree for (-)K', and
the proofs use the same tricks as the proof of Lemma 3.6. The fact that
S(x) is linear in x (see the discussion preceding Lemma 3.7) and that
the tree will not consist of more than Ixl nodes, provides us with a
bound for the tree. We define s(x)="1Ix", if 77/Form*(x), to get s(x) as a
function.

We define a E?-definable function

Definition 3.13
K(x) = Sub(s(x), "y”, "K(y)").

The following lemma is a formalized versiori of Lemma 2.14.
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Lemma 3.14
5y F Vx (Form*(x) = Provs, (0% (")**(K(I,)%" — )% *(xKx)7)))

Proof
we will prove this lemma more or less in the manner we proved Lemma
2.14; we will apply length-induction to n in the formula
Form*(x) A Deg(x)=n — Provs®, ((0%"(7)**(K(I,)%" — *)x*(xKx")7)),
L-induction can be applied for the following reason: In the construction
of the 312—proofs of (K(Ix)*" — "*xK) for the different cases, only a
fixed set of 812—proofs is used. Instantiation of these proofs with x is
an operation which requires only substitution, so that we can bound the
length of the resulting proofs with a polynomial in the length of x.
we will in this proof sometimes omit codes for brackets ( and ) for
reasons of readability.
First we treat the case Deg(x)=0.
From the definition of the translation (-)K (Definition 3.10), we
immediately see that
812 F Form(x) A Deg(x)=0 — xK=p,*" - "**K(I,).
We also know that
512 F Form(x) A Deg(x)=0 — Jycpyx (Var(y) A x="(R™*yx")"),
This shows that
Sy F Form(x) A Deg(x)=0 —
Jycpx (Var(y) A xK=(0*"(7)%*(D(y)*" — ")**(K(I,)*")")
="R(y)"K,
From Lemma 2.14 we know that
S, F Var(y) - (D(y) - (K("RIy]®) - R(y)K)).
Hence, by application of Zt,'-completeness of 512, and the properties of
the provability predicate, we get
812 F Form(x) A Deg(x)=0 — Provs’z(K(Ix)*"—-) 12xK)).
This proves the case Deg(x)=0.
From the p-inductive definition of Form* we know:
Sy - Deg(x)>0 — DN(x) V NIMP(x) v NEForm(x)
vV IMP(x) vV EForm(x)
v 3y, x (NEG(x,y) A AtForm*(y)).
Reason in 312 to get the induction step.
Suppose Form(x) A Deg(x)<n — Provs;(K(Ix)*"—e 7= xK))).
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we will prove the induction step for the cases of double negations and
existential formulae, and leave the other cases to the reader.

- Let Form(z) A Deg(z)=n A DNeg(z,x). Then Deg(x)<n and Form(x), so
by hypothesis Provs12(K(Ix)*"—-> *%xK)). Also, by 2': -completeness
applied to Lemma 2.9,

DNeg(z,x) — Provs;(K(Iz)*'-»‘*K(Ix)). Because (-)K' commutes with
the logical connectives

- Dz*'—->1*('1’1x)K' - Dz*r_,-**r(_,_l-.*xk',r)-.)_

By definition of D D,=2y. Hence Provs;(xK'**"—a(‘lﬂ“*xK'*")‘).
Several applications of formalized modus ponens give us
512 F Form(z) A Deg(z) <n A DN(z)— Provs;(K(Iz)*'a’*zK).

Let Form(z) A Deg(z)=n A EForm(z). Let x=Sub(SpeCon(z), EVar(z),

B(z)). Then Deg(x)<n. Let EVar(z)=t. Then by Lemma 2.9 we have
Provsz(K(Iz)*"—> 3t (D(t) A"*K(Ix))
By hypothesis we have Provs2(K(Ix)*" — 7*xK). By applying, under the
provability predicate of 5" 2, the reasomng which we used in the proof of
Lemma 2.14 for this case we get Provsz(K(I )%" s 1%2K),

We conclude, after application of LIND:

812 F Vx (Form(x) — Provs;(K(Ix)*"—a " %xK)). R’

We complete the proof of Theorem 3.1 by remarking that in 812, a(x)
implies Form*(x) and ox ="0=0" and s(x)="Ix". Then from Lemma 3.12
we get 812 F Vx (a(x) - Provs;(K(Ix)*'—y "%xK)). This, together with
Lemma 3.12 proves Theorem 3.1.

We also have theorem interpretability, i.e. the formalized version of
Corrollary 2.14.

Corollary 3.15
Let A be a finitely axiomatized relational theory, axiomatized by
closed formulae. '
Let 4 be some A':-predicate with one free variable, such that a(x)
expresses adequately that x is'the code of an axiom of A.
Then there is an 812-function (-)K, which associates with every code of
a formula in the language of A, a code of a formula in the language of
512, and which behaves like an interpretation, such that

Sy  Vx (Prova(ly) — Provs)sva(xK).
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Proof

The proof is an analogon of the proof of Corollary 2.14. Suppose
Proofa(p,x). p is a sequence of formulae, say p=<p1,p2,...pn>. Let pKbe
the unique sequence that contains the K-translations of the formulae in
p in the same order in which they occur in p, i.e., pK=<pK, poK, ..,
pnK>. Following the same reasoning which we used to get the desired
bounds for the translation tree of Lemma 3.7, we know that pK is linear
in p. Let a=<a4,a2,...,am> be the unique ordered subsequence of p such
that (i< j<m - aj=aj) A (zea & zep A A(z)). Theorem 3.1 states the
existence in 812 of 512+VA proofs qj for aiK, for every aj from a. Now
consecutively replace the aj by qj, to get the sequence qq ** qgp ** .. %%
dm. As we saw in paragraph 2, the result of the concatenation of qq **
G2 ** .. ** qm with pK is almost a proof in 55+ VA for xK. We only have
to add to this sequence some elements which are instantiations of the
rule (¢ - Vx ¢) = Vx (@ — y), where x is not free in @, to get a
sequence which indeed is a proof of xK from 812+VA. Because we add at
most Len(p) such elements, all of which are bounded in length by 2-|pl,
we can safely assume existence of the result of this procedure. 812
verifies that this new sequence indeed is a proof 512+ VA for xK. X
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§ 4 The model existence lemma for infinite theories

In this paragraph we will show that the two versions of the model
existence lemma proven above, (Theorem 2.12 and Theorem 3.1) and
their respective corollaries (Corollary 2.15 and Corollary 3.14), also
hold for infinite theories.

We assume in this section that the axioms of the theory A are
described by a unary predicate 4 such that NF a(n) iff n is the code of
an axiom of A. It will be shown that formalized model existence is
provable for an infinite theory A if 4 is 2'1. This is not a serious
constraint, because A'ﬂ—predicates are already suitable for the
description of the set of axioms of most theories. Predicates of this
class can describe the form of a formula, i.e. are suitable to
characterize theories that have a limited number of axiom schemes.

We start by redefining the notions of tableau and systematic tableau.
As we announced in paragraph 1, we have to admit addition of axioms
to the nodes of a tableau for an infinite theory A, and we do so by
adding an extra tableau rule. We call this rule EX, and it says: add to
the node X a finite number of axioms of A, i.e.:

EX(x,y) = FormSeq(x) A FormSeq(y) A I(x,y) A Vzey (z¢x — a(2)).

We formalize the systematic version of the extra rule in two stages.

Definition 4.1.a
EX(x,y,t) = FormSeq(x) A FormSeq(y) A I(x,y)
A f(a(t) A y=x*1t) v (Ta(t) A y=x)]

In a systematic tableau w for an infinite theory A we apply EX to all
nodes whose depth in w is odd, and we do this in the following way: if
the depth of node x is 1+2-t the successor of x will be x concatenated
with t, provided t is an axiom of A, otherwise the successor of x is
identical to x, i.e. if y is the successor of node x, and x is on depth
1+2-t then we have EX(x,y,t). Hence in systematic tableaux we apply
the following rule:
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Definition 4.1.b
EX(i,j,w) = Depth(i,w)=1+2-t A EX(B(i,w)=2, B(j,w)=2, t)

We modify the definition of systematic tableaux as follows:
- We fix standard number N, sufficiently large, such that
312 F 3x (xeN) AVx (xe N — a(x)). We replace the clause for the root of
the tableau x by the following clause:
Depth(i,x)=0 — B(i,x)=N+2;
- T is applied to nodes on depth 0 mod(10);
- o is applied to nodes on depth 2 mod(10);
- B is applied to nodes on depth 4 mod(10),
that is, we apply the following Bij-rules:
Bi(i,j,w) = Tree(w) A 3k <w (k=Depth(i,w) A t=m( k=4/10))
ABi(B(i,w)=2, B(j,w)=2, t)

- ¥ is applied to nodes on depth 6 mod(10);
- § is applied to nodes on depth 8 mod(10);
- add the clause that EX is applied to nodes on depth 1 mod(2)

Redefining the predicate Taba(-) only requires the following change:

- In the clause for open nodes with valence 1 add as an alternative
possibility the application of the non-systematic extra rule, i.e. add
the following clause:

v EX(B(i,x)=2, B(j,x)=2)).

Note that if A is not A':-axiomatized, then Tabp is, because of the
. b .
occurrence of 2 in the extra rule, no longer a A -predicate.

We will prove the following analogue of Theorem 2.12.

Theorem 4.2

If A is a relational theory, axiomatized by closed axioms, whose set of
axioms can be described by a unary arithmetic formula 4, then there is
an interpretation (-)K such that for all axioms @ of A, 512+VA F @K,

We will prove Theorem 4.2 by suitably adjusting the proof of Theorem
2.12.



It is not dificult to see how we have to adjust the definitions of the
predicates Bra(x) and Br(n)=y for infinite theories. We need not bother
~about the complexity of these definitions, cf. the discussion following
Definition 2.2.

Just as in the case of the other tableau rules we can define a (binary)
function Ex, which gives the tableau successor of a sequence of
formulae under application of the extra rule (cf. Lemma 2.6):

Ex(x,t)=y = (FormSeq(x) A EX(x,y,t)) V (T/FormSeq(x) A y=0)

Note that if A is not A%—axiomatized, then Ex is not a Z':-defined
“function. It is however not difficult to see that Ex is a function in 812,
and that is enbUgh for our purposes.

Again, Pudldk's induction theorem provides us with a 812+VA-cut J on
which Br is a total function, provided 3ly Br(x)=y is inductive in
5,+VA.

To show that 3ly Br(n)=y is an inductive formula also in the case that
A is an infinite theory, we need the following lemma to complete
Lemma 2.2.

Lemma 4.3
812 F Vx A EX(x,y,t) - Vy

Proof

—1Vy gives us a closed tableau t from y; concatenate x+2 with [t] : this
gives a closed tableau from x. X

The definitions of K and D and the translation (-)K are the same as in
the finite case; Lemma 2.9, 2.13 and 2.14 are also true in the infinite
casé, and have the same proofs (with some numerical changes in the
case of the proof of Lemma 2.9).

The missing link in the proof of the model existence lemma for infinite
theories is the proof of Lemma 2.10:

If @ is an axiom of A, then S,+VA F K("@™).
Suppose @ is an axiom of A. Because "@" is a standard number and
3lyBr(n)=y is inductive in 512+VA, we get a unique Br(1+2-"@"+1) in
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@™ is in the leaf Br(1+2-"@"+1). Also, because "@ " is standard and J
is an initial, 512+VA proves J("@7) and J(1+2-"@+1).

we may conclude that if @ is an axiom of A, S+ VA proves K("@”).

This completes the proof of Theorem 4.2.

As in the case of finite theories, we also have theorem interpretability
for infinite theories, i.e. Corrolary 2.14 is also true for infinite
theories. This is proven in exactly the same way as it was done for
finite theories A in paragraph 2.

Formalized version for infinite theories
we will prove Theorem 3.1 for infinite theories, i.e.

Theorem 4.4 |

Let A be relational theory with infinitely many axioms, all of which
are closed. Let A(-) adequately describe the set of axioms of A, and let
A be equivalyent in 812 to some Z': formula . Then there is an 512—function
(-)X from codes of formulae in the language of A to codes of formulae
in the 1anguage of 312, which constitutes an interpretation, such that

Sy F Vx (a(x) - Provs '+ ya(xK)).

Note that, in contrast to the unformalized version of this theorem in
the case A is an infinite theory, we need for this theorem that A can be
Z? axiomatized.

We need the lemmata 3.12 and 3.13 for infinite theories A.

Lemma 3.8 is also true if A is infinite.

The proof of Lemma 3.12 does not give any difficulties: just take a
version of the predicate Bra that expresses branchhood of the
systematic tableau of the infinite theory A. '

To prove Lemma 3.13 however, which reads 512 F Vx (a(x) -
Provs,+va("K(Ix)"), we need the following property of initials:



Lemma 4.5
Let T be a Z?-axiomatized theory extending 812. Let J be an initial in T,
i.e T proves J to be closed under 3, + and -, then

55 FVx Provy("J(10").

Proof
Because J is an initial in T, we have fixed numbers po, p+, and p., such
that

Sy F Proofr(po, ©J(0)7)

Sy F Proofr(ps, "Vy (J(y) » J(S50-y+50))™)

Sy F Prooft(p., "Vy (Jly) = J(S50-y)™).
To get a proof Ty such that 512 F Prooft(mg, "J(Ik)"), consider the
construction of Iy. It takes Ikl steps to get from Ig to Ix; in each of
those steps we go from It to Io¢ or I2t+1. To each step corresponds one
of the proofs pg, p+, and p.. Hence the proof Tk of J(Ix) will be the
concatenation of
(1) the proofs corresponding to the steps we have to take to get I,
(2) the necessary instantiations of the conclusions of these proofs, and
(3) necessary applications of modus ponens.
The instantiations (2) are instantiations of Vy (J(y) = J(S§50-y+S0))
or Vy (J(y) — J(S30-y)) with a canonical term Iy with t <k, hence we
have a bound |kl-B, with B some fixed constant, for the length of each of
them. Modus ponens is then applied to these instantiations.
Hence we can bound |mgl with |kl-(C-lk|+D) for some fixed constants C
and D, where D= 2-Max{lpol, Ip:l, Ip.1}+2, and C is 2-(B+2).This shows
that in 3w (Proofy(m, "J(Ix)™) we can bound |m| by Ikl-(C-lkl+D), i.e. we
can use PIND to prove the lemma.

-If x=0, we have 812 F Prooft(pg, "J(x)™).

-Suppose that for z=]_-21-x_| we have proof 1 such that
Sy F Il <1zl-(C-1z1+D) A Proofr(m, "J(Iz)).
By definition of L%xj we have x=330-z or x=350-z+50, hence
Ix=350-1z, or Ix=350-1,+S0.
Let Ix=330-1;. Concatenate m with p. (if p. is not yet a subsequence of
1), and with the instantiation of the conclusion of p. with Iz, and with
"J(S50-1;)7. The result is a T-proof ' of J(Iy).
Because z=|_:}xj, we havelzl=Ixl-1. C and D were chosen in such a
manner that also [’ <Ix|-(C-Ix|+D). &

S4



35

In case A is a finite theory, all axioms of A appear in the root of the
systematic tableau from A, so that the only thing we had to do was
prove that the axioms of A were in the leaf of Br(0). If A is infinite
and x is the code of an axiom of A, x will in any case be in the leaf of
Br(1+2-x+1). We will prove:
(*) Sy Vx(a(x) = Provgh+val K1),
To this end, it suffices to prove
(0) S5 F Vx(alx) = Provgh+ val"J(I) A J(I1+2.x51)

A 3ly (Br(l1+2.x+1)=Y A IxeLeaf(y))™)).
Because J is an initial in 812+VA we have, by Lemma 4.5,
(1) Sy Vx Provshe va(TJ(Ix) A J(I1s2.461)7).
By the unicity of Br(-) on J we have
(2) 512 F Vx Provs12+VA(rJ(I1+2.x+1) - Hly Br(I1+2.x+1=y1).
Br is defined in such a way that
55 Fa(x) » Vy(Br(1+2-x+1)=y — xeleaf(y)).
If ais 23, we get, by verifiable Zﬁ-completeness of 512,
(3) 512 Fa(x) - F’rovs12 ("Vy (Br(I1s+2.x+1)=y — IxeLeaf(y))™").
Combination of (2) and (3) gives us (0), which proves (*).

This proves Theorem 4.4.

To prove theorem interpretability, i.e. Corollary 3.15, we have to do
some additional work. We need a theorem of Parikh [71], in the
following form:

Theorem 4.6 Buss [87,p.83]

Let A(x,y) be a Ay-formula, and 512 F Vx 3y A(x,y).

Then there is a term r(x) in the language of 512 such that
512 F Vx 3y <r(x) A(x,y).

Theorem 4.7
Under the same conditions as in Theorem 4.4,
512 F Vx (Prova (x) — Provs;»,VA(xK).

Proof
Reason in 512 . Let p be such that Proofa(p,x). We follow the reasoning of
the proof of Corollary 3.15. There we showed that a (-)K-translation pK
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of p exists in 512, and that there is a unique ordered sequence a which

contains exactly the axioms of A that occur in p.

From Theorem 4.4 we know that 512 Fyea— Provs12+VA(yK)).

With Parikh's theorem this gives us

Sy - yea— 3g<r(y) Proofs+valg, yK).

Now reason as we did in the proof of Lemma 3.7 and substitute, one by

one, all elements y of a by the proof of yK in 512+VA. As in Lemma 3.7,

because we have a bound for all these proofs, we can show existence of

the final result of these subsequent substitutions.

Concatenate the result with pK, and, as in the proof of Corollary 3.15,

add necessary instantiations of the axiom (@ -»Vxy) - Vx (@ - w).
X



§5 A provability principle for IAg+ Q1

Theorem 4.4 readily gives us an interesting provability principle for
IAg+$21 which is a sharpened form of the second Lob condition.

O stands here for a standard provability predicate (cf. the
introduction). I.e. if T is a theory and y is a formula in the language of
T, we write

Oty for Provy("y ™).
We write

Oty for TOT Ty,
i.e. OTY expresses that y is consistent with T.
We write, if T is a relational theory and ¢ is a sentence in the
language of T,

Aty for 3x C1Tabr+ =1y(x),
i.e. ATy expresses that ¢ is tableau-provable from A.
Under the same conditions we write

Vi for V(T+y),
i.e. for T13x C1Tabr+y(x). So Vg expresses the tableau-consistency of
the theory T+uy. Clearly

Viy & TAT(Ty).

It is folklore that in IAg+ 4, tableau provability implies standard
provability, i.e. that every tableau proof can be transformed into a
stadard proof.

It is however not true that standard provability implies tableau
provability in IAg+ 4. Consider the transformation of an ordinary
proof x into a tableau proof y (see Schwichtenberg [?7, Corrolary
2.7.11). y will be of the order supexp(ixl, g(x)), where g(x) is the
supremum of the length of the cut-formulae occurring in x, and supexp
is defined inductively as follows: supexp(x,0)=x,
supexp(x,y+1)=2Supexp(x,y) In 1Aq+ Q1 superexponentiation is not a
total function in IAg+ Q1, because exponentiation is not total in
[Ag+ 2.

The following two lemmata show that in IAg+Q4, standard provability
does not imply tableau provability.
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Lemma 5.1 (Pudlék [85, Theorem 2.1])

Let T contain Q, be consistent and finitely axiomatizable. Let J be a cut
in T. Then

T £ (OTH.

Proof
For the proof, see Pudlék [85].

Lemma 5.2
Let T be a relational theory containing Q. Then
Ao+ Q1 # Orp - Avl.

Proof

Reason by contraposition, and suppose [IAg+Q¢ F O7@ — At@. Then
IAg+Q1 F Vi = O, and in particular

(1) T1Ag+Q1+V(IAg+ Q1) F O(1Ag+ Q1)

From a theorem of Paris and Wilkie [87, Lemma 8.10] we know that
IAo+EXP proves the tableau consistency of I1Ag+Q1:

(2) IAQ+EXP F V(IAg+R1).

with (1) we then get

(3) TAQ+EXP I O(IAg+R1).

From another result of Paris and Wilkie [87, Corrolary 8.8] we know
that for ﬂ?-formulae @, IAg+EXP F @ iff there is an IAg+Qq1-cut J
such that 1Ag+QqF @Y.

O(IAp+R21) is a 1101-formula, so we can aply this result to (4) to get an
I1Ag+21-cut J such that IAg+ Q21 F (O(IAg+ Q).

Let Vo be a finite fragment of IAg+ S such that J is a cut in Vog. Let V;
be a finite fragment of 1Ag+ £ such that V1 F (O(IAg+21))J. Take
V=VYo+V1+0Q. Then

(4) V F (O(1Ag+ Qi)Y

By the definition of the provability predicate it is clear that
O(I1Ap+S21) logically implies OV. Thus

(8) O(I1Apg+ Q1) F OV,

From (4) and (5) however, we can derive a contradiction with Theorem
9.1:



Let 1 be a proof of OV from O(IAg+ 21). We can associate with m a
proof mJ of (OV)J from (O(1Ag+£21)), by replacing every formula in 7
by its (-)J-translation (confer the proof of Corollary 2.14). Combine mJ
with a proof of (O(IAg+£1))d from V.

Thus we get

(8)V F (OV), =

This proof also shows that IAg+EXP ¥ O(1Ag+Q21).

The following theorem shows that although tableau provability is not
equivalent to standard provability in IAg+ ¢, standard provability
implies the provability of tableau provability.

The theorem can also be seen as a sharper form of the second L6b
condition. From the discussion preceding Lemma 3.1 it follows that in
general tableau proofs are considerably larger than standard proofs.
Still, as the following theorem shows, standard provability does not
only imply the provable existence of a standard proof, but also the
provable existence of a tableau proof.

Theorem 5.3 (Visser [88b])
Let T be a relational theory, of which the set of axioms, all of which
are sentences, can be described by a Zt;-formula. Let @ be a formula in
the language of T.
Then we have the following provability principle for IAg+Q1:

I1A0+Q1 F O1@ — Oja0+14A7¢.

Proof

Reason in IAg+R1.

Suppose (1) Ot6@.

Then O7(71¢@ — 1), so by the Deduction Theorem (2) Ot+-¢ 1. Le.
IAog+ Q1 verifies the existence of a proof of L ( i.e. a proof of ¢y ATy
for some formula g in the language of T) from T+ (.

Clearly Theorem 4.4 is also true for IAg+ 1, i.e. there is an I1Ag+Q1-
function (-)K which constitutes an interpretation such that

(3) IAg+ Q9 F DT+—1(p(qJ) - D]Ao+Q1+V(T+‘I(p)('-PK) for all ¢ in the
language of T.
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Note that, by commutation of (-)K with 71, the (:)K-transiation of 1 is
just 1.

(3) showes that from (2) we get (4) OjAoc+Q1+V(T+1g)(L). By the
properties of the provability predicate it is trivial that from (4) we
get (5) Oja0+1(V(T+1@) —» 1), ie. “

(6) O1A0+01(IV(T+710)), which gives us Oja0+01(TV171@), which is
by definition of V and A,

(?) O180+ 01 (AT0). =

For another proof of this theorem, see Visser [88b].
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§6 An Orey sentence for IAg+ Q14

The motivation for the material in this section was given in the
introduction.

We will use the notations developed in paragraph S with the following
modification: we will write Aja,+Q,("@7) and Via +0,("@™) for
Arpg+94(@) resp. Via +0,(@).

If I is a cut in the theory T, then we can use I to define a special kind
of interpretation, which is called relativized interpretation:

el = @ if @ is atomic,

(Ixe@)! = Ix (1(x) A @I)

(T = el

(@ > wl=el-yl

The interpretation thus defined only relativizes quantifiers.

If I is an interpretation which interprets all axioms of a theory T in a
theory D, we will writeD + TI

Theorem 6.1(Visser [88a])**

There exists an Orey sentence for IAg+Q1, in the following sense.
There is a sentence G, an IAg+Q1-cut I and an interpretation C, such
that

1A+ F(I1Ag+R21+G)]

IAg+ Q1 F(IAQ+ Q4+ 71G)C.

** when this thesis was completed, I learned about a letter from Solovay to Nelson, dated May
12, 1986, in which Solovay gives a Orey sentence for IAg+£21. This Orey sentence is constructed
in a very elegant way, using a function Log*(x), which approximates the inverse of supexp(1,y)
(i.e. it has as its value approximately the number of times the 2Log of x should be taken to arrive
at 1). Using Log*(x) Solovay also constructs two sentences ¢ and y, both interpretable on a cut in
IAp+£21, such that the sentence @ Ay (which is equivelent to EXP) cannot be interpreted in
1A0+821.
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The theorem is a consequence of a series of lemmas.
We have Godel's diagonalization lemma in IAg+Q9, i.e.

Lemma 6.2
Let w(x) be a formula with only one free variable x. Then there is a
sentence @ such that 1Ag+Q1 F @ e yw( ™).

A proof of this lemma can be found in Buss [87, p.124].

In the sequel we take G to be the sentence such that

IAg+R1 F G H_|A1A0+Q1(r61).
Note that in the expression A1A0+Q1 we take the relational version of
IAg+ 1.

Lemma 6.3
IAg+EXP F G

Proof

(1) By definition of G we have 1A+ Q1 F Ajpa +0,("G")— TG

IAo+EXP is stronger than IAg+ 1, so

IAo +EXP F Ajpq+0,("G™)—> TG

(2) On the other hand, G is a Tl(:-sentence. From a result of Paris and
Wilkie [87, Lemma 8.10] we know that IAg+EXP proves tableau
reflection for Zg—sentences: IAQ+EXP F Ajpy+,(767)> 6, if o is Zg.
Hence IAg +EXP F Ajpy+Q,("G™)— G.

(1) and (2) show that IAg +EXP proves A1 +,("G™). This proves the
lemma. X

Lemma 6.4
There exists an IAg+Qq-initial I such that IAg+ Q1 F(IAg+S1+G)L.

Proof

From Corollary 8.8 in Paris and Wilkie [87] we know that for 11(;—
formulae @, IAg+EXP F @ iff there is an IAg+ Q1-cut I such that
IAg+Qq Fel.
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This result gives us the existence of an IAg+Qq-cut I such that
IAo+ 1 FGI. Construct a cut J below I which is closed under +,- and
1, and on which we have induction for Ag-formulae. Then

IA0+ Q1 F(IAg+Q1+6). X

Lemma 6.5
There is an interpretation C such that 1Ag+ Q1 F(IAg+Q1+71G)C.

Proof

From Lemma 6.4 we have, by definition of G:

1A0+Q1 F(IAg+Q1+Via e 0, (716 ™))L

Theorem 4.2 tells us that there is an interpretation K such that
1A0+ Q21+ Viageq,("16™) F(1Ag+ Q1+ 6K,

Define an interpretation C in the following way: @C = (@K)I,
Then

1A0+ Q1 F(IAg+Qq+71G)C, B

This completes the proof of Theorem 6.1.

This Orey sentence for IAg+ ¢ is a strong indication that the concept
predicative arithmetic, as the collection of sentences interpretable in
Q, is not robust. The interpretability of both IAg+Q1+G and
IAg+21+7G in IAg+ Q1 seems to show that the putative definition of
predicative arithmetic is incoherent. One might, however, raise some
objections to this view. |

(1) The interpretability of IAg+Q1+G in IAg+ Q4 is proven (in the
lemmata 6.2-4), by impredicative means.

(2) Lemma 6.5 proves the interpretation of the relatlonal version of
IAp+R1+ 76 in IAg+ Qy.

(3) The interpretation of IAp+Q1+7G in IAg+ Q1 is not a relativi-
zation defined by a cut.

We shall discuss these objections each in turn.

Ad (1). The interpretability of IAg+Q1+G in IAg+Q4, proven by the
lemmata 6.2 and 6.3 and 6.4, is not established predicatively. It is
proven via provability in IAg+EXP, a theory which is not interpretable
in Q, and thus is not a predicative theory. Moreover, the proofs of
Lemma 8.10 and Corollary 8.8 of Paris and Wilkie [87] use
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modeltheoretic arguments. We conjecture however that is possible to
prove in IAo+ 1, on a cut, tableau reflection for Ti-sentences, by
using a restricted truth predicate: This will establish Lemma 6.4 in an
entirely predicative way.

Ad (2). By Lemma 6.5 we get an interpretation of the relational
version of IAg+ 1. However, we conjecture that is is possible to prove
Theorem 4.7 also for functional theories.

Ad (3). A third objection is that IAg+Q1+7G is interpreted in

IAg+ Q1 by an interpretation that also translates relation symbols, so
that it definitely is not a relativized interpretation defined by a cut.
We should note here that if @ is a sentence in the language of
arithmetic and @ is interpretable in I1Ag+ 21 by relativization on a cut,
then @ is true on the standard model IN: IN is @ model for IAg+ 4, and
on this model a relativization defined by a cut does not do anything,
because the cut js IN. This implies that Orey sentences @ for IAg + Q4
such that both ¢ and 1@ are interpretable in IAg+ Q4 by relativization
on a cut do not exist.
If one accepts model theoretic arguments, a distinction between
general interpretations and relativizations defined by a cut can clearly
be made. On nonstandard models of arithmetic, relativization def ined
by a cut constitutes an initial segment of the model. An interpretation
on the other hand, constitutes a model possibly different from N or the
non standard model. One could argue however, that from a finitistic
point of view there is no reason to prefer interpretations that only
relativize quantifiers to interpretations that also translate relation
and function symbols. That is, if one does not accept model theoretic
arguments, then the difference between interpretations and
relativizations is entirely formal, and it is not at all clear that this
formal distinction can motivate the predilection of relativizations
defined by a cut above general interpretations.
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