Institute for Language, Logic and Information

NEW FOUNDATIONS

A SURVEY OF QUINE'S SET THEORY

G. Wagemakers

ITLI Prepublication Series
X-89-02

343

University of Amsterdam



Institute for Language, Logic and Information
Instituut voor Taal, Logica en Informatie

NEW FOUNDATIONS

A SURVEY OF QUINE'S SET THEORY

G. Wagemakers
Department of Mathematics and Computer Science

University of Amsterdam
Received February 1989 Master's Thesis, supervisor H.C. Doets
Correspondence to:
Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 Grimburgwal 10

1018WB Amsterdam 1012GA Amsterdam



Foreword

With this paper, I hope to provide a thorough introduction to NF, a set theory contending with ZF
as a basis for mathematics.

The amount of literature available on NF is not so extensive, but working it through will
undoubtedly cost more time (and perhaps headaches too) than reading my condensed survey of that
material.

I'd like to express my thanks to Dr. Doets for drawing my attention to this interesting set theory
when I got stuck in a subject concerning model-theoretic algebra, and for helping me to struggle
through the literature.

I'd also like to thank Prof. Boffa for sending me some material I otherwise would have lacked.

Finally, I hereby express my deep regards to Prof. Quine for inventing the theory, so that we all
could take notice of its beauty.
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Introduction

The comprehension principle which asserts that the set { x| ¢ } exists for all formulae @ of the first
order predicate calculus with binary relation € expressing membership, leads to three well-known

antinomies:

- Cantor himself recognized the fact that the universal set V={ x| x=x } couldn't exist as it would be
equal to its power set, which contradicts the fact that there can be no surjection of any set x onto
Px;

- Burali-Forti derived a similar contradiction by considering the set OR of all ordinal numbers, well-
ordered by the canonical <. The ordinal number of OR would be one exceeding all ordinal
numbers;

- Russell derived a less intricate, purely logical, contradiction by considering the set A={ xIxex }.
It follows that A A if and only if A¢ A. Actually this contradiction is distilled from the proof
involving Cantor's antinomy where the set { x| xefx } is considered; in the supposition about the

existence of V, f is taken to be the identity map.

To rid set theory of these apparent inconsistencies numerous proposals have been made, of which
the system ZF (or Zermelo-Eraenkel set theory) obviously has been accepted by mathematicians all
over the world as the basis for their work (sometimes they supplement it with the axiom of choice -or
a weakened form of it- to be able to derive their results).

In ZF the antinomies are avoided by modification of the comprehension principle into the separation
axiom: given a set b the set { xe bl @ } exists. As we lose a lot of standard set-theoretical operations,
these have to be postulated separately: the axiom of pairing, and the axioms of sum and power set.

Of course, ZF also comprises the axiom of extensionality stating that sets are determined by their
elements. To generate enough of mathematics, the existence of at least one infinite set is provided for
by the axiom of infinity. Fraenkel spotted a shortcoming and added the axiom of substitution; and
lastly one has the option of considering only regular sets by adding the axiom of regularity.

The three above-mentioned antinomies are excluded in ZF because the sets involved cannot be
formed by means of the axioms.

Another way to keep the antinomies out is contained in (a modern variant of) Russell's type theory

TT. In contradistinction with most other set theories, the underlying logic is many-sorted: it contains
a denumerable hierarchy of typed variables x;, y;, Zj, -..... (for each ie w). The formulae of TT are

built by logical combinations of modified forms of atomic formulae: only atoms of the form x;€ y;;1
or x; =Yyj are admitted in the language. Formulae which are thus formed are called stratified.
The axioms of TT are the following axioms of extensionality and comprehension (for all i€ ®):

EXTjy1: VXir1 Yie1 [ VZi (Z€Xjy1 © Zi€ ¥ir1) = Xjp1 =Yig1 ]
COMP;i. 10 () Jyir1Vxi (Xi€¥iz1 € 9) , for stratified ¢ not containing yj;, 1 free.



( the initial pair of parentheses stands for universal quantification over the variables different from x
which occur free in @)

Models of type theory take the form (M, My, My, ......,€yq) where the Mj's are sets, and

e E U{ M; XM, ; lie® }. M, has to be non-empty because we want to be able to use all the
theorems of general many-sorted first order logic, in particular the scheme Vx, ¢ — 3x;, ¢. The
elements of M, are individuals: they contain no elements.

The effect of all this is that sets (except individuals) contain only members of next lower type and
thus the antinomies are excluded by the fact that x¢ x is a meaningless formula, V cannot be formed
and ordinals are reproduced from type to type: the set of ordinals of a specific type has an ordinal
number of a type one higher so it cannot be equated with that of its elements by means of <. ‘

As it is apparent that (B, PB, P2B,....,e ) is a model of TT for every non-empty set B, TT is |
consistent, and for adequacy purposes can be consistently enlarged by adding axioms of choice for
all levels and an axiom of infinity stating in effect that there exist infinitely many objects of type 0 (by
defining the set of finite sets with elements of type 0 and requiring that { x| x;=x }is not contained
in it).

Though being consistent, TT has some serious drawbacks which some people may even find
repugnant: notions reappear at each level from some point on upwards; examples of this
phenomenon are the quasi-universal sets V,, ; ={ x;1x;=x; } and the quasi-empty sets
A, 1 ={x1%;#x; }, as are the natural numbers reappearing in each type from level 1 upwards. Even

arithmetic comes to us in various types.

Moreover, TT doesn't admit the Boolean algebra of sets: unions and intersections are only defined
for sets of equal type; the complement -x ceases to comprise all non-members of x, but comes to
comprise only those non-members of x of next lower type.

Mathematicians are not accustomed to keeping track of the levels sets are in, and when one drops the
subscripts on variables for better readability, assuming the subscripts to be big enough to allow
existence of the sets under consideration, one has to be very careful to avoid unstratified formulae:
whereas for instance xe y and yex are perfectly stratified, their conjunction is not.

This reduplication of notions in various levels led Quine in [37] to the definition of his "New
Foundations" or NF for short. In NF, the type differences in TT are dropped so that the language
is the same as that of ZF; it is only in the comprehension axiom-scheme that we retain the
stratification proviso. For this purpose, a formula ¢ is said to be stratified if it is possible to assign
types to all variables in ¢ so that it becomes a formula of TT. Of course, bound variables may be
renamed if necessary. So xey and Vx (yex) A xey are stratified, but xe x and xe y A yex are not.

The axioms of NF are thus:

EXT: Vxy[Vz(zexe>zey) > x=y]
COMP: () Jy Vx(xeye ) , for stratified @ not containing y free



Note that EXT and all instances of COMP are stratified .

Like ZF, NF is not known to be (in)consistent (not even relative to some other set theory),
although it may appear that Cantor's antinomy can be derived in it as NF incorporates a universal
set. That this is not the case is one of the peculiar facts in NF, at least for someone with ZF-glasses

on.

The purpose of this paper is to shed some light on the partial and relative consistency results obtained
in the last fifty years regarding NF.

The first chapter will make the reader familiar with the basic notions and operations in NF, which
are used in chapter 2 to derive the remarkable fact -proved by Specker- that the (full) axiom of choice
does not hold in NF, whereas the axiom of infinity (thus) does. Chapter 3 comprises the partial
consistency results due to Jensen and Grishin (consistency of NFU and NF3 ), as well as the
axiomatic reduction of NF to NF, also due to Grishin.

Lastly, chapter 4 is about relative consistency results derived by means of the 'permutation
method', in particular some relatively consistent facts about the comparison of certain finite cardinal
numbers.

To keep things readable, I will not always be too formal in the definitions and derivations; the reader
who wishes to check that everything has a strictly formal equivalent will easily be able to do so.

All the definitions and derivations will apply to NF when not explicitly indicated otherwise.

One final remark here: while it is perfectly possible to define equality in NF (as in fact Quine
originally did), this brings with it its own complexities, see for instance [Cocchiarella 76], and we
will assume equality to be a basic notion of the underlying logic, for which the identity axioms hold.



1. Preliminaries

§1. basic notions

Comprehension assures the existence of a set whose elements are just the ones that fulfil a stratified
¢, and extensionality assures that there is exactly one such set. It is customary to denote this set by a
new term { x| ¢ } which is called an abstraction. Note that in NF meaningfulness of { x|y } is only
postulated for stratified y, but we will see shortly that some unstratified formulae also determine
sets.

It is convenient to use these new terms in our language as a kind of abbreviations, but then of course
we have to prescribe how to obtain abstractionless transforms of the formulae we write down. This
is done in the following way (when writing down a formula with an abstraction, the abstraction will
always occur in one of the following three ways, never alone):

ye{xlgo} = o[x/y] (or:3Jz[yezAVx(xez-9)])
{xlpley = Jz[zeyAVx(x€z Q)]
y={xlp} = Vx(xey<>9)

Furthermore, when ¢ and y are (possibly unstratified) equivalent formulae, extensionality assures
that { x| @ }={ x|y } (when these sets exist). So we may freely switch between equivalents in our

derivations.

From the above-mentioned abstractionless transforms it is clear that when { x| ¢ } is assigned a type
one higher than that of x (so when ¢ has no free variables besides x, an arbitrary type), these
transforms are stratified whenever @ is. This will help us checking stratification without having to

transform formulae to perhaps monstrously long abstractionless ones.

When @ has at most x as a free variable, { x| } has no free variables and so is a constant. In type
theory these constants ‘reappear’ in all levels from some point on upwards; in NF we say they are
typeless and may be assigned arbitrary type. Two or more occurrences of the same constant in a
formula may even be assigned different types to achieve stratification.

When ¢ has free variables besides x, { x| ¢ } obviously is an operation on these extra variables. In
connection with these operations, it is convenient to speak about the relative type of terms. This is in
fact a terminology borrowed from TT, but as the type subscripts have disappeared in NF, we can no

longer talk about the exact type of sets.
Thus {x} has a type one higher than that of x; xUy={ zlzex v ze y } will have the same type as

that of x and y, which have to be of equal type for stratification purposes, although subsequent
substitution may circumvent this (see below).



We write A for the empty set { x| x#x } (or even { x| L } where L is taken to be a false stratified
sentence, for instance 1 = Vx (x#x) ).
The universe is V={ x|1x=x } (oreven V={ xI—11} ).

One easily sees that NF admits the complete Boolean algebra of sets, while ZF does so too except
for the complement -x ={ z| z¢ x }. Likewise, other set-theoretical operations like N (intersection),
U (sum), {.} (singleton), {.,.}(unordered pair) and P (power set) are seen to be given by stratified
formulae.

Note that by instantiation we are able to form sets determined by unstratified formulae. For
instance, xUy exists for all x and y; by taking {x} for y we get the set xU{x}={ zlzexvz=x }.
One might fear to be able to derive Russell's antinomy by keen substitution, but apparently this is
impossible: xe x does not seem to be equivalent to the conjunction or disjunction of two stratified

formulae.
When we have available an operation F on variables x, an obvious generalization of abstraction is

(Fxl@}={z|Fx(z=Fx A @) }

This notation will often be used for brevity. Of course, z=Fx A ¢ will have to be stratified in order to

form the set by comprehension.
An important operation formed by this principle is Pyx={ {y} yex }. It participates for instance in

the definition of the set of natural numbers Nn (the finite cardinals of Frege-Russell type): 0 and 1
are given by {A} and P,V respectively (the sets of sets with 0 elements and 1 element), while

addition (needed for the definition of Nn) is defined by

x+y ={ zuwlzex Awey AzNw=A }

Given an operation F on variables x , we may be able to form the set which consists of the closure
of some set y with respect to F:

Clos(y,F):ﬂ {wlyeswAVxz(xewAz=Fx —>zew)}

Obviously, for stratification purposes, x and z must have the same type . So F must be a 'type-
preserving' operation. Thus, for any type-preserving F, Clos (y,F) will exist. The type of
Clos (y,F) is clearly the same as that of y.

We are now able to define the set of natural numbers which will become to be the set of finite
cardinals:

Nn = Clos ({0}, .+1)



One might wonder why we haven't defined Nn like  in ZF, which is formed by closure of {A}
under the operation x*=xU{x}. The reason is that, though there is no difficulty in forming all
+

separate elements of ® (see above), problems arise when we try to form  itself by closure: z=x™ is

not stratified, so we have no easy way of showing that Clos ({A},.1) exists.

It is very easy to derive the following facts about Nn and + :

(1) 0Oe Nn

(2) VneNn (n+1eNn)

(3) Vne Nn (n+1z0)

(4) 0AVneNn[¢on— @(n+1)] = Vne Nn ¢n for stratified ¢

(5) + is commutative, associative and 0 acts as a neutral element.

(1) and (2) are direct consequences of the definition of Nn; (3) follows because, for all y and z,
yU{z}=A is impossible, so Vx (A¢ x+1); (4) is proved by considering the set { x| ¢x } which
contains Nn by definition of Nn and the premiss. This is of course the reason that ¢ must be
stratified. In fact we could have stated a less restrictive requirement: it suffices that { x| ¢x } exists.

(5) again is a simple consequence of the definitions.

(1) to (4) constitute the Peano-axioms except for the facts that induction is (primarily) only possible
for stratified formulae, and that injectiveness of .+1 on Nn is missing, but the latter will turn out to
be equivalent to the axiom of infinity (see next section), which is provable in NF.

There may be some doubt whether Nn contains all 'natural numbers', that is, whether the apparently
intended process of forming Nn by starting with 0, taking the successor, the successor thereof, and
sO on, may arrive at A at a certain point (and, hence, stop from there on) because the universe
doesn't have any more elements than already contained in some xe UnNn. Intuitively, this amounts
to saying that A¢ Nn if and only if V is infinite, which is in fact the case as is shown in the next

section.

To define general cardinal numbers as sets of equinumerous sets, we have to define functions and
thus relations, so we are in need of an ordered pair. Now it is possible in NF to define an ordered
pair which doesn't raise the type, but this again is (technically spoken) an equivalent of the axiom of
infinity which is not available until after the next chapter. For this reason, we temporarily assume to
have available an ordered pair (x,y) for all x,y of the same type which lifts the type by k.
Kuratowski's ordered pair {{x},{x,y}} which is obviously present in NF has k=2, Quine's
ordered pair as described in section 2 has k=0. For the moment, it suffices to use the former, but
when we wish to show the equinumerosity of x and the Cartesian product of x with some singleton
(for arbitrary x) we will have to use the latter.



We write f: x—y for "f is a function from x into y" and f: x~y for "f is a bijection from x onto y".
Defining the binary relation ~ by x~y < 3f (f:x~y), ~ is easily seen to be an equivalence
relation so we are at the point where we can define our cardinal numbers. All this can be done in
NF, as equivalence relations and equivalence classes are NF-notions. Cardinal numbers and the set
of cardinals are defined by

Xl={yly~x} (=the equivalence class of x with respect to ~)
NC={IxlIxeV }

We define natural ordering relations < and < on NC by

<={ (m,n)eNCzli\ab(aem/\ben/\ag-b)}

I={ (xy)lx=y }
<=L-1I

<is a partial ordering on NC; Ixl| <lyl is equivalent to the statement that there is an f: x—y which is
1-1.

As V=PV, we have |VI=IPVI. Doesn't this contradict Cantor's theorem? No, it doesn't, because in
its usual form Cantor's theorem is unstratified: Ix| has a type one lower than that of IPxI, so we have
no obvious proof of Ix| <[Pxl for arbitrary x. We would like to consider the set { yexlyefy } when
f: x ~ Px, but we cannot form this set by comprehension as ye x A y¢ f'y is not stratified: y¢ fy is an
abbreviation for =3z (ye z A (y,z)ef). Actually, it is even impossible to prove IxI <IPxl for arbitrary
X, as the 'function' relating y to {y} for ye x doesn't have to exist. Nevertheless, we do have an
alternative form of the theorem:

Theorem 1.1.1. (Cantor) Vx IPyxl < IPxl

The proof is just as in ZF: obviously IP; x| <IPx| as P;x = Px; and when we suppose that
f: Pyx ~Px, we derive a contradiction by considering the set A={ yex|ygf{y} } which exists

because yex Ay f{y} is stratified: ye f{y} is an abbreviation for -3z (ye z A ({y},2)ef).
A€ePx; suppose A =f{w}. One easily sees we A <> weg A.

For a lot of sets x, though, IxI <IPxI holds because x ~ P;x. Sets x for which x ~P;x are called
Cantorian, denoted by Can (x). Obviously —Can (V), as IP; VI<IPVI=IVI. In ZF all sets are

Cantorian.

So maybe we should have tried to define an ordered pair for sets with a type difference of one (for
instance (x,y)={{{x},y},{y}}), but of course, when we do so we lose the identity map I, and can
no longer define < in an easy manner.



§2. the axiom of infinity

Proposition 1.2.1. Nn € NCu {A}

Proof : by induction we prove Vne Nn (ne NCv n=A). 0=IAle NC; when n=A then also n+1=A,
while if n=Ixl and n+1#A, say yen+1, we have y =zU{w} where z~x and w¢ z. For arbitrary
a,b with a~x, be a, we then have au{b} ~ zu{w} because an f: a~ z can be easily extended by
f:b w. So n+1=lyl.

As we would like to view Nn as the set of finite cardinal numbers (which will turn out to be
appropriate after the proof of A¢ Nn in section 2.2.), we take the finite sets to be the elements of
UNn, which we denote by Fin.

Ve Fin is the obvious sentence to take as the axiom of infinity AL

In [Quine 45], the author defines a type-preserving ordered pair as follows:
first define a type-preserving operation F, next define (x,y) in terms of F:

{ Fz=(z-Nn) U{ n+1Inez"Nn }
x,y)={Fzlzex }U{ {0}UFzlzey }

Let us refer to this definition as Quine's pair.

Lemma 1.2.2. Vnme Nn (n+1=m+1 - n=m) — F is an injection

Proof: assume the premiss and suppose Fx=Fy, i.e.
(x-Nn) U{ n+1Ine x"Nn }=(y-Nn) U{ m+1 I me ynNn }.
Let ze x be arbitrary. Then either ze x-Nn or ze x"\Nn. When ze x-Nn, then also ze y-Nn
(z& Nn s0 —Ime Nn (z=m+1)); when ze x"Nn, we know that z+1=m+1 for some me y"\Nn
(as z+1€ Nn). So, by the premiss, z=me yN\Nn. This proves x Sy; the reverse inclusion y S x

is proved in the same way. Now apply the axiom of extensionality to derive x=y.
Lemma 1.2.3. Vnme NC (n+1=m+1e NC - n=m)

Proof: let n=Ixl and m=lyl, n+1 =m+1 =lzl. Then z=au{u} =bu{w]} for certain a, b, u, w with
a~x,u¢a, b~y, wgb. Now n=m because a~ b: when u=w this is immediate because then even
a=b; when ue b, we a, define f: a—b by fc=c when c#w, fw=u. Clearly f:a~Db.



Proposition 1.2.4.  The following are equivalent:
(1) V¢Fin  (i.e. Al)
(2) A¢ Nn
(3) Nn € NC
(4) Vnme Nn ( n+1=m+1 — n=m)

(5) Quine's pair acts as an ordered pair

Proof :

(1)>(2): we prove by induction Vne Nn (n#A ). O0={A}#A; suppose ne Nn and n+1=A. Then
Vxen—dy(yex)so Vxen(VEx). As Vx (xS V), we get by extensionality:
Vxen (x=V), so n=A or n={V}. The latter would imply Ve Fin, contrary to the assumption
of (1). So n=A, contrary to the induction hypothesis.

(2)—(3): this follows from proposition 1.2.1.

(3)—(4): this follows from lemma 1.2.3.

(4)—(5): suppose (x,y) =(u,v), i.e.

{Fzlzex }U{ {O}UFzlzey } ={ Fwlweu }u{ {0}UFwIlwev }.

Let ze x be arbitrary. As Fz does not contain 0, we have Fz=Fw for some we u. By lemma
1.2.2 and (4) we infer z=weu. So xS u; uEx is proved analogously. Let ze y be arbitrary.
Again, because Fa does not contain 0 for any a, we have {0} UFz= {0} UFw for some wev.
So Fz=Fw, and z=we v by 1.2.2.. So y € v; analogously vEy. Applying EXT, we see that
X=UAy=V.

(5)—(1): this is postponed until after the definition of 2™ for cardinal numbers m in section 2.1.

Remark 1: since Al is provable in NF, all the statements in the proposition above are, but the
proposition is interesting in its own right as, for the time being, five apparently completely
different statements can all act as an axiom of infinity. Moreover,

Remark 2: for future reference, it must be noted that we made use of EXT a couple of times in the
proof of Proposition 1.2.4.: we used VEXAXEV — x=V , and we needed EXT when

proving that Quine's pair is an ordered pair (once in 1.2.2.; twice in the proof of (4)—(5)).
When considering the (consistent) fragment NFU of NF, which we get when restricting EXT
to non-empty sets, i.e. replacing it by

EXT": Vxy (Jz(zex)—>[Vz(zex>zey)—x=y]),

we accordingly have to restate the propositions 1.2.1. and 1.2.4. . When we define 0 not to be
{A} but as { x| =dy (yex) }, the set of empty sets, it is very easy to see that 1.2.1. becomes
Nn € NCuU0: n=A implies n+1€0, but we don't know whether n+1=A (where A is an
arbitrarily chosen element of 0). Yet, as ne 0 implies n+1€0, we can prove 1.2.1. in the

mentioned modified form. Furthermore, in 1.2.4., (2) has to be replaced by Nn < V-0 and we
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have to add in (5) that Quine's pair only acts as an ordered pair for non-empty constituents (note
that, as 3x (xe V), the use of EXT in the proof of (1)—modified(2) can be replaced by an

application of EXT *).

The next proposition seems too trivial to state, but in fact it is very important in the disproof of AC
in the next chapter (together with strong induction below).

Proposition 1.2.5. VneNn(n+1#A —>n<n+l)

Proof: by induction on n. 0=IAl <I{A}I=1; assuming n+2 # A (where 2 is defined as 1+1), it
follows that n+1#A and n# A, so by 1.2.1. n, n+1, n+2 e NC. Obviously n+1<n+2 (as
n+2 =IxU{y}! for some xe n+1, y& x). Supposing n+1=n+2, we infer n=n+1 by 1.2.3,,
which is contradictory to the induction hypothesis. So n+1 <n+2, which concludes the proof.

Lemma 1.2.6. Vnme NC(m<n+l ->m<n)

Proof: supposing m<n+1, for some x, y, z we have n=Ixl, m=lyl, x Cyu{z}, z¢ y (since
x=yU{z} implies m=n+1, it must be so that x2yU{z}). When z¢ x, we infer xSy so m<n.
When ze x, then we x for some wey; yu{z}-{w} ~y and xS yuU{z}-{w}, so in this case m<n
also holds.

Theorem 1.2.7. (strong induction)  for stratified ¢:

QPOAVneNn[VmeNn(m<n— ¢m)— ¢(n+1)] - Vne NnnNC ¢n

Proof: let yn be the formula Vme Nn (m<n — ¢m). Assume @0 and Vne Nn (yn — ¢(n+1)). By
(weak) induction we prove Vne Nn yn (note that \ is stratified as @ is stratified):
* 0 is the sentence Vme Nn (m <0 — ¢m) which is equivalent to @0 as m <0 < m=0.
* let ne Nn, assume yn. Let me Nn, m<n+1. m <n+1 means m<n+1vm=n+1.
m<n+1: according to lemma 1.2.6., we have m<n, so ¢m follows from yn.
m=n+1: because yn, we have ¢(n+1), i.e. pm.
Let ne NnNNC. As n<n (this is the reason that we require ne NC!), we deduce ¢n from
Vne Nn yn.

Remark: when we try to prove strong induction for all ¢ for which { x| @x } exists, we encounter a
problem: for the induction on y to succeed, we would have to show the existence of the set
{xlyx} ={xIVmeNn(m<x—¢m) }
= [ [{xl-m<x}u{xlem}]
me Nn

=1 {zI3meNn (z={ x|-m<x }JU{xl¢m})}
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At first sight this set exists -whether { x| ¢x } exists or not- as unions always exist. But this is a
superficial analysis: the set behind [ has to exist so its defining formula has to be stratified to
form it by COMP. And we have no way of inferring this from the mere existence of { x| ¢x }.
We would in fact like to apply the substitution axiom SUB from ZF, but SUB doesn't hold in

NF (when NF is consistent): it implies the separation axiom, which implies
{xIx¢x }={xeVIx¢x }eV (as Ve V), but then we can establish Russel's antinomy.

Let us note finally that, while the concept of stratification involves only atoms and the connectives
A, v and —, the stratification proviso in COMP affects only atoms and quantifiers: when trying to
prove the existence of { x| ¢ } for arbitrary ¢ with induction on @, there is no problem with — and A
(as complements and intersections always exist), but problems arise at (atoms and) the induction step
for 3: we would like to rewrite { xI3y ¢ } to U{ z |y } where v is shorter than @, but xe U{ zly}
if and only if 3z (xe z A ), so this transcription only works when @ is of the form xe y A .
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§3. the axiom of choice

One form of the axiom of choice is the sentence "every set of non-empty disjoint sets has a choice
set", or in symbolic logic:

(AC) Vx[Vyex (y2A)AVyzex (y#£z > ynz=A)— IwVyex3lz(zeynw)]

(where 3!x @x is short for Ix x A VXy (@x A @y = x=Yy) ).
Thus written, it is almost unreadable, but it demonstrates the fact that AC is stratified (this fact is
being used in section 3.6., and has been used in the introduction when speaking about AC in TT).

Rosser proved in [53] that some well-known equivalents of AC in ZF remain so in NF; for better
legibility I state them in English (the notation Z; has been taken from the mentioned book ):

Z,: every setcan be well-ordered;
Z;: every set of non-empty sets has a choice function;
Z,: every partially ordered set x in which every simply ordered subset has an upper bound in x,

has a maximal element (Zorn's lemma).

One remark has to be made, though: a choice function usually states fxe x somewhere, but in order

to achieve stratification (essential in the proof of the equivalence of the Z's to AC) we have to modify
this to Jze x (fx={z}).
Actually, Rosser proved the equivalence of AC, Z,, Z3 and Z; restricted to sets of cardinality less

than or equal to a certain cardinal number -varying according to which form of AC is considered- but
these imply the equivalence of the 'full' variants of AC by taking IVI as upper bounds .

An interesting point is that instead of Z, we can take the sentence " V can be well-ordered " as V is a

set of which every set is a subset.
Moreover, other sentences proven to be equivalent to AC in ZF remain so in NF too, of which the
most important one is the trichotomy theorem, used in the next chapter when disproving AC:

Vmne NC (m<nvm=nvm>n)

(see lemma 2.2.1. for a proof of AC — trichotomy)
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2. The axioms of choice and infinity in NF

§1. the cardinal operators T. 2" and ®

In [53], Specker disproved the full axiom of choice by considering certain sets of cardinals 'close
to Q =1VI, thus indirectly proving the redundancy of 'axiom scheme 13' in [Rosser 53] (i.e.

1.2.4.(4)).

Before defining the three operators needed for the proof, we state

Proposition 2.1.1. (@) x~y &> P;x~Pyy
(b) x~y = Px~Py
Proof:

(a) when f:x~y, then g:P;x~P;y by g: {z}~ {fz} for ze x;
when f: Pix~Pyy, then g: x~y by g: z» U f{z} for zex

(b) when f:x~y, then g: Px~Py by g: z— f[z] for ze Px
(c) f:P{Px~PPxby fiz> { {w}Iwe Uz } for ze P{Px.

[all these functions exist by the fact that originals and images are equal in type]

Definition 2.1.2. Tz={yl3Ix(z=IxlAy~P;x)}
22={ yl3x(z=IP;xIny~Px)}
®z=Clos({z},2)-{A}

These formal definitions are merely given to show that the operations exist, but we will apply them
only to cardinal numbers. Thus, by proposition 2.1.1.(a) & (b):

2.1.3) Tixl =IP;xl and 2" 1 =PxI , while

(2.1.4) 2%2A & 3x (z=IPxl)

For the remainder of this paper, m, n and p are assumed to denote cardinal numbers (exception: m
and n may denote elements of Nn -of which we do not yet know whether it contains A or not- when

explicitly indicated).
T is type-raising while 2" is type-preserving, which is why ® could be defined as above. From the
definition of ® we deduce easily

(2.1.5)) neAAVm(meAAZm;&A—>2meA)—><I>n<;A , and
(2.1.6.) me $n &> m=nv Jpe (I)n(m=2p¢A ).
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As we are going to need it in the sequel, this is a good place to state the theorem that < is
antisymmetric. In the proof we make use of the fact that any function can be viewed as a type-
preserving unary operator (and vice versa):

* when f is a function, define F by Fz={ ul3w [ (z,w)ef Auew ] } (=fz when ze Dom (f); =A
when z¢ Dom (f) ). F is clearly type-preserving.

*when F is a type-preserving unary operator and x an arbitrary set, define f={ (z,Fz)|zex }. From
Vz3ly (y=Fz) it follows that f is a function from x onto { Fzlzex }.

Theorem 2.1.7. (Schroder-Bernstein) n<mAm<n—n=m

Proof: Let n=Ixl, m=lyl; let f: x—y and g: y—x be 1-1. Then h=gf: x—x is 1-1. h[x] = g[y] =x;
consider the sets A =Clos( g[y]-h[x],h) and B=h[x]"A

h[A] € A by definition of A, so h[A] & A Nh[x] =B; also

B=h[x]"A=h[x]N ((g[y]—h[x]) U h[A]) =h[x]"h[A] < h[A], so B=h[A] and h: A~B.
gly]-A =h[x]-A =h[x]-B so by A ~B it follows that g[y] ~h[x] (because

(glyl-A) nA=(h[x]-B) "B =A). As h[x] ~x and g[y] ~y, we infer x~y.

Corollary 2.1.8. n<m-—-—-mz=n

Before proceeding with an exploration of @, 2" and T, we first give the promised remaining proof
of 1.2.4.(5)—(1):
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Lemma 2.1.9. (a) 1.2.4.(5) > Vmne NC (m+ne NC)
(b) 1.2.4.5) = (2™#A A 2"2A — 2™2A )

Proof:
(a) When m=Ix|, n=lyl it follows by the existence of the sets { (z,(z,A))|zex } and
{ (z,(z,V))|zey } (due to the type-preserving nature of Quine's pair) that x~x X {A} and
y~yx{V}som+n=I(xx{A})U(yx{V})I (as obviously anb=A — lal +Ibl =laubl).

(b) Assume 2M2A=2" let P;xem, P;yen (apply 2.1.4.). Then, by Quine's ordered pair and
2.1.1.(a), P;x~P;(xx {A}) and Pyy~P;(yx{V}), so
Pl((xx {ADHu(yx{V}) ) =P (xx{A})UP;(yx{V})e IP;xI+P;yl =m+n.

Proof of 1.2.4.(5)—(1): IP;VI<IVI, so by 2.1.8. above —IVI <[P, VI, which implies that there is no
set x for which P;xe VI, so 2IVI=A. On the other hand, a simple proof shows Vne Nn ( 2"2A ):
0=IAlI=IP;Al so 20¢A. 1=P,;V=I{A}I=IP;{A}l, so 21¢A. It follows with induction from

2.1.9.(a) that Nn= NC. Apply this fact, 2.1.9.(b) and induction to derive Vne Nn (2n¢A ).
The inference is that Vne Nn (n#|Vl), whence V¢ Fin.

Some simple facts about the three operations under consideration are listed in the next proposition.
Remember that Q=[VI.

Proposition 2.1.10. (a) 2"#A >m<2™
b)m<Tn—-Ip<n(m=Tp)
() m<n<TQ—2"<2"
(d) nedm—->m<n
(e)m<TQ —>m, 2"e dm
@ m<neoTm<Tn
(g) -m<TQ & 2"=A & ®m={m}
(h) m<TQ —2T"=12™
(i) m<TQ — dm = {m}ud2™
() m<STQ — Idml =1d2"1+1
Proof:

(a) this is a reformulation of Cantor's theorem 1.1.1.
(b) Let m=Ixl, n=lyl. Ix <Tlyl =[Pyl implies the existence of an injection f: x—P;y. Obviously

f[x] =P,z for some z<y (viz. z={ weyl {w}ef[x] } ), so Ix| =IP;zl =Tlzl. Clearly IzI<lyl.
(c) Assume m<n and n<TQ. By (b), n=IP;xI for some x, whence m <TIxl, so m=P,yl for
some y €x by the proof of (b). Py &Px implies 2= [Pyl <IPxl = 2",
(d) Consider the set A={nlm<n}. 7
me A; when pe A and 2P#A, then m<p <2P by (a) so 2Pe A. Hence ®mE A by 2.1.5..
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(e) me @m is obvious; m < TQ implies m = Tp for some p =Ixl, so 2™ =[Pxl # A, whence

2™ ®m by 2.1.6.
(f) =»: m=Ixl,n=lyl, xSy so P;x=P,y, whence Tm=|Px| <[Pyl =Tn.
y 1 1Y 1 1

«: When Tm <Tn, then Tm =Tp for some p <n by (b), so m=p<n by 2.1.1.(a)

(g) -m <TQ is equivalent to —3x (m=IP;xl), which is equivalent to 2M=A by 2.1.4.. From
2™=A it follows that ®m ={m}: 2 is obvious; S: me {m}, and when p = 2"%A for some
ne {m}, then 2m¢A, contrary to the assumption. Conversely, ®m ={m} implies —m <TQ

because of (a) and (e).
(h) Assuming m < T, we deduce m =[P xI for some x; applying proposition 2.1.1.(c) we find

2™ = oP1P1¥_ ipp xi= 1P PxI =TIPxI =T 2™,
(i) Assume m<TQ, i.e. 27#A (so D2 #A).
*Ome {m}uCDZm: me {m}ufl>2m; when ne {m}u(DZm and 2n¢A, then clearly e 2™
(by 2.1.6.). Now apply 2.1.5..
*@2" < dm- {m}: 2"e ®m by (e), while 2" m by (a). If ne ®m- {m} and 2"2A, then
2" ®m by 2.1.6., and m<n by (d), so m<2™ <2" by (a) and (c), which implies 2"#m.
() Assume m<TQ. me ®2™ would imply 2™ <m by (d), but m<2" by (a). So me ®@2", that
is, (m}®2"=A, so I®ml ={m}ud2™ =1d2"+1.

From 2.1.10.(a) & (h) we see that the following situation exists:

T T T T
e 4 - 2 - 3 -
Q > TQ > TQ > TQ > ........
“«— Y «— «—
2° 2° 2 2°

[ In fact this requires a metamathematical proof by induction: we know 2TQ=Q; assuming

n+l n+2 n+l
2T 2110 wededuce 2T =2l Qorri0-1™0).

Having this infinite descending chain of cardinals doesn't contradict AC, however, because it is
seemingly impossible to form the set {Q, TQ, TTQ, ...... }: an attempt to define this set with the aid

of Clos will result in failure as T is not type-preserving. Our disproof of AC nevertheless depends on
the fact that AC implies the well-ordering of NC by < (see next section).

The following three propositions are going to be needed in the next section; as they don't depend
upon AC they are stated and proved here.
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Proposition 2.1.11. @DTm finite — Pm finite; that is:
Vne NnVm (I®Tml =n - ®me Fin)

Proof: If -m<TQ, then ®m={m}e 1.
If m <TCQ, then I®ml = 02™+1. Also Tm <TQ 50 IOTml = 102 ™+1 =IOT2"1+1. According
to proposition 1.2.5., we have IOT2™1 <I®Tml when |®T2™|e Nn.
Applying strong induction, the induction hypothesis gives us ®2" e Fin, so ®me Fin. The
actual conclusion reached at by the application of 1.2.7 reads Vne NnNNC...., but we can skip
NC because | @Tmle NC for all m.

Remark: Note that we had to use strong induction because we do not know (yet) whether
n+1 =10T2"+1 implies n= I®T2™. Also note that nothing is said (nor can be said) about which

natural number contains ®m.
In the following, 3n is an abbreviation for n+n+n (remember that + is associative).

Proposition 2.1.12. Vne NnNANC[3dme NoNANC(n=3mvn=3m+1 vn=3m+2) A
Vmp—(n=3m=3p+lvn=3m=3p+2vn=3m+1=3p+2)]

Proof: by induction on n.
0=3-0; Vp (0#3p+1 A0#3p+2) (as x+1#0 for all x).
Let n+1e NnNNC. Then ne NnNNC, so by the induction hypothesis there is an me NnNNC
such that n=3mvn=3m+1 v n=3m+2. Hence
n+1=3m+1vn+1=3m+2 v n+l =3m+3 =3(m+1).
Note that, in the last case, m+1e NC because m+1€ Nn and m+1#A (as m+1=A implies
n+1=3.A=A).
As n+1e NC, it is impossible that n+1 modulo 3 is two of 0,1,2 at the same time because of
lemma 1.2.3. and the induction hypothesis (n+1 =3p implies p #0, so p=1, and from this it
follows that p=q+1 for some qe NC: see the proof of lemma 2.3.2. on page 22).

Lemma 2.1.13. Vmn (m+ne NC - T(m+n) =Tm+Tn )

Proof: let m+n =Ixl, x =yUz where yem, zen, yNnz=A.

Lemma 2.1.14. Vne NnNNC (Tne NnNNC)

Proof: induction on n: TO=0; when n+1€ NnNNC, then T(n+1) =Tn+T1=Tn+1.
T(n+1)e Nn by the induction hypothesis; T(n+1)e NC because n+1e NC.
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Proposition 2.1.15. Vme NnNNC(m#Tm+1 Am#Tm+2)

Proof: assume me NnNNC and suppose m=Tm+1. We derive a contradiction with the aid of 2.1.12.
to 2.1.14.:
*m=3p :m=3p=T((Gp)+1=3Tp+1
* m=3p+1: m=3p+1 =T(Gp+1)+1=3Tp+2
* m=3p+2: m=3p+2 =T(3p+2)+1=3(Tp+1)
These three statements all contradict 2.1.12. because of lemma 2.1.14.; m =Tm+2 leads
analogously to a contradiction.
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§2. disproof of AC; proof of Al

Assuming AC, NC is simply ordered by <. But there is more: NC is even well-ordered by <. In
ZF, this is immediate when cardinals are defined as finite or initial von Neumann-ordinals, because
<is the restriction of the well-ordering of the class of ordinals to the class of cardinals.

Here we have defined cardinals in the Frege-Russell way, so we have to prove something.

Ordinals are defined in NF as equivalence-classes of ordinally similar well-orderings.
NO, the set of ordinals, is well-ordered by < defined by

o<, B = JRe o 3Se B "R is ordinally similar to an initial segment of S"

In particular, o <, B implies IDom(R)I < IDom(S)! for all Re a, Se .

Lemma 2.2.1.(AC) < well-orders NC

Proof: First we prove that NC is simply ordered by <: let x, y be arbitrary sets. Well-order x and y
with respectively R and S by means of AC. As NO is well-ordered by <, we have

No(R) <, No(S) v No(R) >, No(S) (where No(R') denotes the equivalence class of the well-
ordering R' under ordinal similarity). This implies Ix| <lyl v IxI >yl (as x=Dom(R) and
y=Dom(8S)).

Let A be a non-empty set of cardinals; B={ x| 3ne A (n=Ix) } (=UA). For all x,
Fx={RIR well-orders x }#A by AC. Let C={ Fx|xe B }. When x,ye B and Re FxNFy, it
follows that x=y (as R well-orders x and y) so Fx=Fy. So x, ye B and Fx#Fy imply
FxNFy =A.

Applying AC again, let D be a choice-set for C: Vxe B3!Re D (R well-orders x ). Let No(S)
be the <) -least element of { No(R)|Re D ADom(R)e B }; IDom(S)le A and

VReD (Dom(R)e B — IDom(R)!I = [Dom(S)I ). When Ixle A, there is an Re D which well-orders
X, 0 Ixl =Dom(R)| = IDom(S)I. So IDom(S)! is the <-least element of A.

Lemma 2.2.2.(AC) (a) 2"=A —|®Tml =2 or 3
(b) ®m finite — (IOTml =T |Oml+1 v IOTml=TIPml+2) , that is:
Vne NnVm (I®ml =n — |®Tml =T I®ml+1 or 2)

Proof:
@ 2M=A implies —m <TQ. Trichotomy gives us m>TQ, which implies Tm>TTQ and

2Tm > 2TTQ

* ZTm=TQ: O®Tm={Tm, TQ, Q}e3
* 2T S TQ: ®Tm = {Tm, 2™ }e2

=TQ. So we consider two cases:
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(b) By strong induction on n; note that the statement is stratified so induction is possible.
If I®ml =1, then 2™=A 50 |®Tml =2 or 3 by (a); as TI®Pml=T1=1, we infer
|®Tml =T I®ml+1 or 2.
If IOml > 1, then 2"#A so |®ml =1B2"1+1 by 2.1.10.(). 102" <I®ml because of
proposition 1.2.5.; the induction hypothesis says
IGT2™ =T1®2™+1 or 2, s0
IOTml = 102 ™41 = I0T2™+1 = TIB2™+2 or 3 =T(I®2™+1)+1 or 2=TIPml+1 or 2.
Applying strong induction, we infer
Vne NnNNC Vm (I®ml =n — |®Tml =T [dml+1 or 2).
The clause ne NC is clearly superfluous.

Remark: note that we only used the following consequence of AC: Vm (m<TQvm>TQ), and that
we only used it to start the induction.

Theorem 2.2.3. (Specker) NFF—-AC

Proof: Consider the set A={ m|®meFin }. A #zA as DQ={Q}. Assuming AC, let n be the <-least

element of A (apply 2.2.1.).

As @n is finite, @Tn is finite according to 2.2.2.(b) and lemma 2.1.14., so, by minimality of n,
n<Tn. So n=Tp for some p <n. ®Tp is finite, so Pp is finite by 2.1.11., which implies n<p.
So n=p and Tn=Tp =n. But then 2.2.2.(b) states that |®nl =T |®nl+1 or 2, contradictory to

proposition 2.1.15..
From 2.2.3. we infer that V cannot be well-ordered. When we prove that finite sets can be well-
ordered, we obtain as a corollary V¢ Fin.
Proposition 2.2.4. Vne Nn Vxen (x can be well-ordered )

Proof: very easy by (weak) induction. A can be well-ordered; when xen+1, we have x =yuU{z} for
some yen, z¢y; the well-ordering R on y given by the induction hypothesis can clearly be
extended to x by taking z as smallest element: x is well-ordered by RU{ (z,w) Iwex }.

So NFF AL and by 1.2.4. we infer Nn = NG, the injectiveness of .+1 on Nn, and the availability
of Quine's ordered pair. These facts will be tacitly assumed in subsequent chapters.
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§3. Rosser's counting axiom

From 2.1.13. (and the fact that Nn = NC) we see that

(1) TO=0
(2) VneNn (Tn=n - T (n+1)=n+1)

One would be apt to say that by induction it follows from (1) and (2) that
(CA) VneNn Tn=n,

but as T is type-raising we cannot apply COMP to show existence of the necessary set, neither does
it seem that any other method would supply us with it. In [Rosser 53], this statement is proven to be
equivalent to what Rosser calls the "Counting Axiom":

VneNn({meNnl0O<m<n }en),

which implies that when a finite set x is ‘counted' by relating its elements to consecutive natural
numbers, starting at 1, arrival at n when x is exhausted means that x has exactly n elements (when
we let 'xe n' stand for 'x has n elements' for ne NC). This principle is extremely important in

everyday mathematics as Rosser points out, for instance in complex function theory where it is stated
that the number of zeros minus the number of poles of a meromorphic function f inside a contour C

equals

1 (1@ 4,
i | f'z)

All theorems of mathematics that have to do with counting depend in one way or another on CA. So
it would be nice indeed to be able to prove CA, but, as Orey showed in [64], CA cannot be proved
in NF (unless NF is inconsistent). So, in particular, —3xVy (ye x <> y =Ty ). More on this in

section 4.2.

Just for the record, we here give the proof that CA is equivalent to the counting axiom as Rosser
formulated it.
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Lemma 2.3.1. VneNanen(P12x~ {meNnlO<m<n})

Proof: by induction on n; note that by introducing P12 we have made this a stratified statement.
When n=0, then x=A whence the statement is obvious; when xe n+1, there exist y, z for which
x =yU{z}, yen, z¢ y. By the induction hypothesis P12y ~{meNnl0<m<n}. So
P12x=P12yuP12{z} ~{meNnlO<m<n}u{n+l}={meNnlO<m<n+l}

(apply 1.2.5. and 1.2.6. for the last equality)
Lemma 2.3.2. Vnme Nn(n<m—3Ip(m=n+p+1))

Proof: by induction on n. If m>0, then m>1 so m=p+1 for some p: xem, ye V, x2 {y} implies
m=1+Ix-{y}l. Assume n+1 <m. Then also n<m so Ip (m =n+p+1) by the induction
hypothesis. As m#n+1, we infer p£0. So p >0, whence p = 1+q for some qe NC. Hence

m=(n+1)+q+1.
Lemma 2.3.3. VneNnVm(m<nvm=nvm>n)

Proof: by induction on n. Vm (m=20) is obvious; let ne Nn, me NC. The induction hypothesis
yields n<mvn=mvn>m. When m<n, we infer m<n+1 (as n+1e NC: Nn NC); when

m >n, we infer m =n+p+1 for some p by 2.3.2. So n+1 <m.

Theorem 2.3.4. VneNn(Tn=n)< VneNn({meNnl0<m<n }en)

Proof:

—: when xe ne Nn, by the premiss Can(x), so x~Px~ Plzx. By 2.3.1. then
x~{meNnl0<m<n}. As Nn&NC, we get {meNnlO<m<n }en.

«: when xe ne Nn, by the premiss and 2.3.1.(and the fact that Nn& NC): x~ Plzx. P;xeFin
because of 2.1.14., say P;xe me Nn. By 2.3.3.,, m<nvm=nvm>n. Let's consider these
three possibilities.

(*) m<n: by 2.3.2,, n=m+p+1, so x =yuUz for some yem, ze p+1, ynz=A. From
y~Px it follows that P1y~P12x~ x. From y € x we deduce P;y = P;x, so
n=|xI=[P,yl <IP;xI=m. This is contradictory to m<n.

(*) m>n analogously leads to a contradiction.

So m=n, whence x ~ Plx, i.e. Can(x), and Tn=n.
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3. The consistency problem for NF

§1. model-theoretic considerations

For a stratified formula ¢ of TT, define (p+ as the formula resulting from ¢ when all type-subscripts
are raised by unity.

Obviously, TTFe=TTHF (p+ for all stratified @, as a proof of ¢ can be "plussed" in totality to
yield a proof of (p+(and when 0 is an axiom of TT, ¢+ also is an axiom of TT).

The reverse implication TT F (p+ =TTk ¢ does not hold: taking the sentence Ixqy, (xo#y) for
¢, we see that TTF (p"' (hence TTH (p"') because TTEA;#V; but TTF ¢ because MF ¢ when
Myl =1.

To come to a set theory, originating from TT, where the reverse does hold, several ways are open

to us:

+
(1) TT = TT with the deduction rule 2— (rule of ambiguity) added;
¢

) TT =TT with all axioms of ambiguity added, i.e. all sentences of the form 6 <> o' where 6is

stratified;
(3) TNT = theory of negative types (Wang): the analogue of TT for types ranging over the set of

integers Z instead of ®. The axioms of TNT are thus:

EXT:  Vx [V (7 1€x © 7 1€y ) = X =i ] keZ)
COMPy: (O Iy VX 1 (X 1€Yx @) (ke Z; ¢ a stratified formula of TNT; y, not free in ¢)

Models of TNT are of the form M=(..., M_5, M_{,My,M;,M,....,€;) where
e S UM xM,,keZ);
(4) NF, where ¢ and (p+ become the same formula after the type-subscripts have been dropped.

In this section we are going to consider some connections between TT and NF, but it is interesting
to remark that the following are equivalent:

@@ TTko
(b) TNTHo
) Jieo TTHe Tt (i times+)

(a)=(b): the rule of ambiguity is provable in TNT.

(b)=(c): as a deduction of ¢ in TNT contains only finitely many formulae, we can add a certain
amount i€  to all occurring indices so that the deduction takes place in TT.

(c)=(a): simply apply the rule of ambiguity i times.
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When M =My, M{,M,,....,€)is a model of TT, so is M+= (M, My, Mg, ....., €) (where for
brevity € is used both times; in fact the second € is the first € minus My xM,).

Proposition 3.1.1 (a) ME ote M+I= o , for all stratified sentences ©;
() METT" & METT &M=M"
Proof:
(a) trivial

(b) =: assuming that M is a model of TT*, it clearly is a model of TT; let ¢ be a stratified
sentence. From ME 0 < o™ it follows that MEc & MEcT M+I= O, the last
equivalence being given by (a). So M= M.

&: assuming METT and M-=-M+, it remains to show that M is a model of all axioms of
ambiguity. Let ¢ be a stratified sentence. From (a) and the elementary equivalence of M
and M+, we see that MEG &M oo ME o™, which proves MEc & o™

Models of TT* are called ambiguous models of TT, models M of TT for which MEM+ are called
shifting models of TT. ’

Of course, an isomorphism f: M—N from one TT-model onto the other is a sequence (f;);c , of
bijections f; from M, onto N; for which the following holds:

for all ie m, and all xe M;, ye M, 1: xepyy ©fixey £y
+ fo fi B
An isomorphism f from M onto M ' then is a sequence of bijections My— M;—>My—....

(preserving € ) which is why f is called a shift and M a shifting model of TT.
In [Specker 62], an interesting connection between NF and TT is virtually stated and proved:
Theorem 3.1.2. NF and TT" have the same stratified theorems

The proof is model-theoretic and the one presented here, taken from [Boffa 77a] makes use of the
following isomorphism theorem (theorem 6.1.15 in [Chang-Keisler 73]).

Lemma 3.1.3 Two models are elementary equivalent if and only if they have isomorphic
ultrapowers

To apply this lemma here, we first redefine the concept ultrapower for TT-models
M=My, M, My, ....em ). For convenience, the concept is explained for models of a one-sorted

theory first.
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Let I ¢. An ultrafilter D over 1 is a set of subsets D € PI for which the following holds:
(H)IeD
2) X,YeD = XnYeD
(3)XeD & XsZsI=7ZeD
4) XeD & 1-XeD

When Ai =(A,;, ....) is a model of some language for each i€ I, and D is an ultrafilter over I, we
define an equivalence relation ~ 1, on the product 'HIAi ={f: I—)_UIAi IVieI(fie A,)} as follows:
ie ie

f~pg e {iellfi=gi}eD

The reduced product of the A;'s modulo D is the set [TA;={Ifl:fe 'HIAi } where |l is the
D ie

equivalence class of f under ~, . The ultraproduct IT-A; then is the model with as universe ITA;
D D

and as interpretations for the symbols in the language the following (a symbol with the subscript i
denotes the interpretation of that symbol in A,):

(1) when R is an n-placed relation symbol, R" is defined by
R*(If1 LIt 1, .15, 1) & {iellR,(f;1,f5i,.....,f,i) }eD

(2) when F is an n-placed function symbol, F" is defined by
F*(Ifl LI, ... 1, ) =1gl & {iellF;(fi,fi,...f,i)=gi}eD

(3) when c is a constant,
*
c =I (Cl) iel |

When all the A;'s are the same model A = (A, ....), the ultraproduct is called an ultrapower of A,

denoted by AI/D (its universe is denoted by AI/D). A fundamental theorem states that AI/D is
elementary equivalent to »A for any I and D.

For TT-models M= (M, My, M,, ....,€ ;) we define the ultrapower of M for appropriate I and D

as follows:

£ 3
MI/D = (MOI/D, MII/D, vy € M) with the € -relation defined as usual;

forIfle M, D, Igle My, /D: Iy gl e (iclifieygi}eD (ew)

Keisler's isomorphism theorem holds in this context: if M=N (i.e. they satisfy the same stratified
sentences), then MI/D = NI/D for some LD.
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When ME TT*, by 3.1.1.(b) M= M+ so for some I and D: MI/D = (M+)I/D. Because

(M+)I/D = (MI/D)+ and any model is elementary equivalent to all its ultrapowers, every ambiguous
model of TT is elementary equivalent to a shifting TT-model.

When N is a shifting model of TT, where f is the shift, a model of NF is given by (N(,,€ ) where
xey is defined as xe  foy: EXT and COMP follow directly from the corresponding axioms of TT
and the fact that f;; is bijective.

Consider the following diagram:

fo f; fp

. -1 -1e-1
did lfo J«fo f;

Ny - Ny = Ny —
Oid Oid Oid

-1

. . . -1e-1 -1e-1 -1
When i€ o, xeNiandyeNH_l,thenxeNylsequlvalcnttofO f1 ....fi_lxeNf1 f2 ....fi y(asf

-1

is a shift). This in turn is equivalent to fdl fl'l....fi !

xef 61 fl'l....f 1 1 y because of the definition of

€. So the sequence (id, f(; 1, f 61 fl'l, ....) is an isomorphism from N onto
#_
NO = (No, No, No, ceees € ).

Combined, the two facts above give us that every ambiguous model of TT is elementary equivalent
to a TT -model of the form N where N NF.

Conversely, for every model N of NF, N clearly is a an ambiguous (even a shifting) model of
TT.

So we have established the following

Lemma 3.1.4. METT" & INENF (M=N¥)

proof of theorem 3.1.2.: a theorem of TT" is a theorem of NF too because NF strictly contains
TT*. Conversely, when ¢ is a stratified theorem of NF, it holds in all models of the form N#

where NENF (because N and N satisfy the same stratified sentences). By lemma 3.1.4., we
infer that M F ¢ for all ambiguous TT-models M. So TT k. Because of the completeness of
(many-sorted) first order predicate calculus, it follows that TT* lo.

Corollary 3.1.5. every stratified theorem of NF has a stratified proof (i.e. a proof composed of
stratified theorems)
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Moreover, as L is stratified, we have

Corollary 3.1.6.  TT" and NF are equiconsistent.

As —AC is stratified, AC is refutable in TT" by theorems 3.1.2. and 2.2.3.. Crabbé proved in [84]
that adding two (specific) axioms of ambiguity to TT suffices to disprove AC, whereas
TT+AC+ (o<>c™) is consistent for any stratified 6 (so AC cannot be disproved in TT+ one axiom

of ambiguity).



28

§2. Boolean algebras

Definition 3.2.1. A Boolean algebra is a structure (X, N, U, € ) where X = PY for some set Y,
N, U and € are the usual set-theoretic operations intersection, union and
complement, and X is closed under these three operations (and thus contains ¢

and Y).
For a Boolean algebra (X, N, U, ©), the binary relation < on X is defined by

X <y & XNy=X.

An atom of a Boolean algebra is an element x#¢ for which ¢ <y <x implies
y=0V y=X.

An atomic Boolean algebra is one in which every element #¢ contains an

atom.

For brevity, we use the notation (X, <) for a Boolean algebra, assuming N, U and € to be basic
operations on X. Obviously, when XS PY and X contains P;Y, then X is atomic.

The result needed in the sequel is the following.

Theorem 3.2.2. all infinite atomic Boolean algebras are elementary equivalent

Proof: (sketch) Let (X, <) and (X,, <) where X; €PY; and X, €PY, be two infinite atomic
Boolean algebras. The elementary equivalence of (X, <) and (X5, <) is proved by means of an
Ehrenfeucht-game: a winning strategy for the second player in a game of length n is given by the
following.

By choosing an element of X (X,) at step i, the first player subdivides Y, (Y,) in 2i parts. The
second player takes care that he chooses an element of X, (X;) so that the "atomic" sizes of the
resulting parts resemble those in X; (X,): when such a part contains only finitely many atoms

(possibly only one), his choice will be one giving the corresponding part an equal number of
atoms; when such a part contains infinitely many atoms, his choice will be so that in the rest of
the game he will never be outwitted to reveal the possible finitude of the number of atoms
contained in the corresponding part: a number greater than or equal to 2n-i is effectively infinite,
as the remaining n-i steps are insufficient to reveal its finitude.

Note that the infinity of X, and X, makes it possible to follow this procedure: it is easy to show

that an infinite atomic Boolean algebra contains infinitely many atoms.

A statement whose proof very much resembles the one given above is lemma 3.4.5.: two countably
infinite Boolean algebras which satisfy two further conditions, are isomorphic.
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§3. k-stratified fragments of TT and NF

For k>0, TTy is defined as the fragment of TT generated by the first k types 0, 1,....,k-1. So the
language of TT} only has variables of type 0 to k-1. Formulae of TT,_ are called k-stratified. The
axioms of TTy (for k>2) are: extensionality for sets of type 1 to k, and all k-stratified
comprehension axioms. NF results from TT; when dropping the types; so the axioms of NF, (for

k >2) are extensionality, and comprehension for formulae which are (or rather: can be) k-stratified.
The language of NF, is the same as that of NF.
Note that EXT is 2-stratified and that instances of COMP are at least 2-stratified, so NF; and TT;

are both the elementary theory of equality.
E 3
TTk is defined as TT; with all k-stratified axioms of ambiguity added, that is, all sentences of the

form 6 <> 61 where G is a (k-1)-stratified sentence.

*
By a modified Specker-argument, we see that NFy and TTk have the same k-stratified theorems:

For M=(My, M, M, ..., M_1,€)ETT, (k>2), define M =(My, My, ..., My 5,€) and
M*=(M,My,....,M;_,€). M and M" are models of TT,_,.

Lemma 3.3.1. MFTT, & MFTT, &M =M"

Proof:
E3
=: assume ME TTk’ and let o be a (k-1)-stratified sentence. MFo < o+, SO

MEceMEceoMEsT oM Eo
&: assume ME TT, & M= M+, and let ¢ be a (k-1)-stratified sentence. Clearly

MEcoM EcoM EceMEst.

Lemma 3.32. METT, & 3N'ENF  M=(N,e) 4

Proof:
&=: obvious from lemma 3.3.1.

E 3 - -
=: when M is a model of TTk’ we have M EM+ by 3.3.1,,soM and M+ have isomorphic

ultrapowers by 3.1.3.: for some I and D we have (M')I/D = (M+)I/D. So for
N=MDETT, we have N =N", which implies that there is a shift

fo f1 fyo
N0—> Ni—....—> Nk-l’ while N=M. As in the proof of 3.1.4., this leads to the fact that

M is elementary equivalent to a model of the form (N', € ), ; where N'ENF.
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Theorem 3.3.3. NFk and TT: have the same k-stratified theorems

Proof: let G be a k-stratified sentence. When TT, -, also NFy -, as NFy includes TT,.

Conversely, when NFkI- 0, G holds in all models of NFy, so by lemma 3.3.2,, TT: Fo(asN

and (N, € ), satisfy the same k-stratified sentences for models (N, € ) FNF). Hence TT: Fo.

%k
So NFy and TTk are equiconsistent.

As NF is in a certain sense the limit of NFy for k—eo, it seems worthwhile to investigate the
consistency of NF} for k=1,2,3,.... in order to get some grip on the consistency problem for NF.
We will see in the next two sections that NF; is consistent, and that NF=NF,. But let us first show
that TTy-models may be assumed to be of a certain standard form.

Lemma 3.34. every TTy-model is, up to isomorphism, of the form
M=(My, M, M,,....My 1,€ )
where M;,; S PM,; (i=0, 1,....,k-2) and € ;= i<l£Jl{ (a,b)e M;xM,,laeb}
Proof: Let N=(Ny, Ny, N, ..., Ny _;, € ) be a model of TTy.. Define M inductively by
M;=h;[N;], where hy=id and h;: N;—PM, , is the function defined by
hiaw h;;[{ceN;;lceya}] (=l....,k-1;ae N)). Obviously M, _; =PM,; for all i <k-2;
defining €, as above, M becomes a model of TT which is isomorphic to N: for all i<k-1,
aeN;, beN;, ,, we have ac ybeh;ae h; b:

hpaeh; b <ae{ceNylceyb]}
o aeyb;

fori>0:

h;aeh, b <h, [{ceN; lceyalle h;[{deN;ldeyb}]
<3ddeN;(h;d=h; ;[{ceN,;lceya}]&deyb)

@aer

(=): leteeN;_; be arbitrary. Then
eeyas>ee{ceN; lceya}leoh; jeeh;d=eeyd

(the last equivalence being given by the induction hypothesis; the next to last by the premiss).
As NFEXT;, it follows that a=d, so a€ b follows from de b.

(&): when ae b, we have h;a=h, ; [{ ce N, ; | ce \ya }] by definition.

Remark: the only thing needed for the proof is NFEXT; for 0 <i<k-1.
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Let (for k>2) TT:’ (TT") be the theory resulting from TT; (TT) by adding the axioms G, (ne w),

where 0, =3x I1 (x.n#X.n) asserts the existence of at least n individuals.
n 01<i<j<n 07”0

Proposition 3.3.5.  All models of TT: are models of TT:’

*
Proof: Let M be a model of Tl‘k. Assume that M is a standard model as described in 3.3.4. above.
Suppose that My, is finite, say | M| =m. Because M; =PM,, (M; 2 P;M;; and M, is closed

under unions), it follows from m<m+1 < 2™ that MK Op41 but MF ol ..
m+1

So M,y must be infinite, whence M is a model of TT:.
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§4. consistency of NF3

The following proposition, as well as much of the next section, comes from [Boffa 77b]. From now
on, we will always assume our TT,-models to be standard.

Proposition 3.4.1.  TT, is equivalent to the elementary theory of atomic Boolean algebras (that is,

they are interpretable in each other)

Proof: when (My, M;, € ) TT,, we have M, 2P;M,, so (M;, €) is an atomic Boolean algebra.
When (B, <) is an atomic Boolean algebra, we define Mg =(M,, M;, €) by M, =the set of
atoms of B; M;=B; € =<. (B, <) is elementary equivalent to the Boolean algebra B*= PX, e

for a certain X (trivial for finite B; all infinite atomic Boolean algebras are elementary equivalent
by theorem 3.2.2.). As Mp*=(PX,PX, €) E TT2, and (B, <) =B* implies Mg =Mg*, we
have MgFTT,.

Corollary 3.4.2. (a) TT, = EXT+ existence of singleton, union and complement;
(b) NF, = EXT+ existence of singleton, union and complement;

(c) all models of TT;o are elementary equivalent;

(d) the models of TT: are exactly the models of TT;".
Proof: (a) to (c) are obvious. For (d), 3.3.5. states that any model of TT: is a model of TT;’; when

M is a model of TT;°, (c) tells us that M and M+ are elementary equivalent TT,-models,

whence MFTT, by 3.3.1. (also see [Boffa-Crabbé 751).

Corollary 3.4.3. (Grishin) NF; is consistent

The original proof of 3.4.3. given by Grishin in [69] is more intricate and makes use of the
compactness theorem in a subtle way. For this reason, we here give a sketch of his proof.

Definition 3.4.4. a Grishin-algebra on X is a countably infinite Boolean algebra A =PX which
includes P;X, and for which any infinite A€ A can be decomposed into two

equinumerous parts, that is, there is an A*eAsothat A*S A and
|Al=1A-A™I,
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Lemma 3.4.5. any two Grishin-algebras are isomorphic with respect to inclusion.

Proof: by a back-and-forth argument: let A =PX and B <= PY be two Grishin-algebras. Fix
enumerations of A and B. We construct new enumerations {A,}ic, > {Bjlicn, ©f A and B

respectively so that for any ne o the 2" parts in which X is divided by A,,...., A, have the same

powers as their counterparts in Y.
We start the enumeration by setting A;=X, B;=Y.

For even n, we take A __, to be the first element of our fixed enumeration not yet selected and

n+l
construct a B, , ; which behaves with respect to By....., B in the same way as A | ; does with

respect to A;,...., A . Example for n=2:

A2 X

A, to A, divide X in 2" parts; consider one of these parts, for instance A=A;NA,. When

A3 N A is finite, we can form a corresponding equinumerous part B< B; B, by the fact that B
contains all singletons and unions; when it is infinite, B;MB, is infinite too, so it can be
decomposed in two infinite parts. One of these parts is taken to be B. B, ; then is defined as the
union of all so constructed equinumerous parts when we iterate this procedure 2" times.

For odd n, the roles of A and B are interchanged.

When i, je w, we have

A,SA . o1A;NAS1=0&1B,NBSI1=0&B,CB.
i) i j i j i i]
so f: A—B, A ;- B, (i€ w), is an isomorphism with respect to <.

Grishin's proof of 3.4.3.: Suppose M= (M, M, M,, € ) is a model of TT3, where M; and M, are
Grishin-algebras. Let ¢: M;—M, be the S -isomorphism given by lemma 3.4.5.. Then the
functions f;: Mg—M; and f;: M; —>M, defined by
{fo a=b = o{a)=(b}  (aeM,, beM,)

f1=0

yield a shift of M: f and f; are obviously bijective (as ¢ is), and for all ae M, be M;:

acbe {ajcsbodla}sob e (fja}sfibefjacfb

Consequently, NF; is consistent. So it remains to construct a model of the form mentioned
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above.
Consider the theory T=TT;°+{in +1 Fin(x;,1)1i=0,1,2 } where Fin (x;, ;) expresses the fact

that x;, , is finite (for instance: Fin (x;,{)=x;,,€ UNn i+3> the definition
Nn = N { X5 04€x5AVy € x5 (yyt1ye Xs) } requires seven types).

By compactness, T is consistent, so by the Lowenheim-Skolem-Tarski theorem it has a
countable model. The part of this model formed by the first three levels M, My, M, is a model
of TT5. Obviously M; and M, are countably infinite Boolean algebras including all singleton
subsets; it remains to show that every infinite element of M; (M,) can be decomposed into two
equinumerous parts. Denote by Zr (x;, 1) (i=0,1) the formula of TT- expressing
“either x,, ; or x;,; without one element decomposes into two equinumerous disjoint sets".

In T, the sentence Vx;,  Zr (x;, 1) (i=0,1) is provable as Fin (x;, ) implies Zr (x;, ;); the
intricacy in the proof is that x,  ;, though externally possibly infinite, can be considered as
internally finite.

The provability of the sentence above implies that for every Ae M, (i=1,2), either A or A
without one element decomposes into two equinumerous sets; thus when A is infinite it

decomposes into two infinite sets, which completes the proof.
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§5. axiomatic reduction of NF to NE4

Define E;={ {{x(},y1} I X¢pey; }. The existence of E5 is assured in TT, for k =4: it is stated by a
4-stratified comprehension axiom: "E5 exists" (or "E3" for short) is the sentence

Az;Vwy (Woe 23 > Ixpy  [Vuy (e wy & [ug=y v Vv (vopeu; > vp=xy) 1) Axpey 1)

TT; is defined as the theory that results when all axioms of TT, are 'plussed'.

Proposition 3.5.1.  TT4=TT;+TT} +(E; exists)

Proof: obviously TT, implies the theory on the right. So it suffices to prove the axioms of TT, in
the right hand theory. All EXT-axioms of TT, and all 3-stratified COMP-axioms are axioms of

TT;+ TT;' . Accordingly it is left to prove every 4-stratified COMP-axiom in the right hand

theory. The problem is that when ¢ is 4-stratified, it possibly contains variables of type O to 3,

so we have to do something about this before being able to apply COMP-axioms in TT; + TT; .

Our plan is to rewrite ¢ to an equivalent formula ¢ which does not contain variables of type 0.
So we have to express atoms of the form ve v, or vg=w(, in a form that does not contain

variables of type 0 any more. Luckily, E5 codes vye vy, while vy=w, can be expressed by
{vg}={wy}. As itis possible that some occurrence of a variable of type O was bound by 3

(or V), one further adjustment has to be made for these cases: defining

S,=P;V; =P;{xy1x5=x }, the complete substitution plan to get (p* from ¢ looks as follows:

VOEVI = {{VO}’VI}GE?)
Vo=W > {vpl={wy}
HVOW(""{VO}“”) o g 3V1€ S2W(....V1....)

Clearly (p* and ¢ are equivalent in TT; + TT;- +E5 (we need TT}; for the existence of
{Xo},{xl, yl} and Sz).

When @ is a 4-stratified formula, { xy1 9(x() } = U{ Vi€ S, | (p*(vl) },and {x;19}={xl (p* }
(=1, 2) exist by means of TT; (sz) and appropriate COMP-axioms of TT;' .
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Proposition 3.5.2. TTs=TT,+TT};

+

TTg=TTs+TT,;

ctcetera,
_ + ++
TT=TT,+TT, +TT, " +....

Proof’: except for the last equality, the proof is analogous to that of the proposition above; existence
of E; doesn't have to be assumed here because it is already supplied for in TTy for k=>4.

Lastly,
TT =TT+ TTs+..=TTy+(TT,+TT} )+(TT,+TT, +TT, ") +...=

+ ++
=TTy+TT, +TT, " +....

Let, in NF, E be defined by E={ {{x},y}Ixey }

Theorem 3.5.3. [Grishin 72] NF =NF,= NF3 +existence of E

Proof: Clearly NF contains the other two theories. To prove the axioms of NF in NF, and NF; +E

we note that, by 3.1.2., for stratified sentences T, NFI-1 is equivalent to TT* 1. From 3.5.1.

and 3.5.2. we see that
TTX =TT+ {00716 a stratified sentence }

=TT4+TTI+ wt{oeoot)
=TT, +{ oot}
=TT3+TT;+E3+{ oot}
=TT;+E;+{c&0™)
So, when NFF1, we have TT,+ {66 }FFtand TT;+E5+{ o< 0™ } 1.
Consequently, NF, -1 and NF; +EF 1. As all axioms of NF are stratified, this completes the

proof.
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Boffa proves in [75b] that the reduction of NF to NF3+E is optimal (corollary 3.5.5. below).

Theorem 3.5.4. For each 3-stratified sentence o:
NFF (o — NF;+0 is consistent )

Proof: let us work in NF+o. Define M=(P,”V,P,V, V, € ,) where
{{x}}eply) & {x}eyy & xey.

One easily sees that M is a model of TT;’ +0. So TT§°+0' is consistent, which entails the

consistency of NF;+0 (as TT;° and NF have the same 3-stratified theorems by 3.3.3. and
3.4.2.(d))
Corollary 3.5.5. There is no consistent set of 3-stratified axioms which entails NF

Proof: let AT” be a 3-stratified version of the axiom of infinity , for instance
A" = Ix[x£#AAVyexTzex(ySzAy#z)]
(note that Ve Fin is not 3-stratified: V¢ Fin2=UNn3 requires 5 types)
Now suppose that X is a consistent set of 3-stratified axioms entailing NF. The theorem above

tells us that (as NFI AI*) we can prove the consistency of NF +AT" in X. This is in
Y 3

contradiction with Godel's second incompleteness theorem, as we can develop Peano-arithmetic
in NF3+AI*, hence in 2. (see for instance [Boffa 81])

Finally, let us remark that in [44], Hailperin reduced NF to EXT+finitely many 6-stratified
COMP-axioms. As NF=NF3+E, we can improve on this result by stating that NF can be

axiomatized by EXT + one 4-stratified COMP-axiom + finitely many 3-stratified COMP-axioms.
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§6. consistency of NFU: NF versus NFU

Replacing EXT by
EXT": Vxy(Jz(zex)—>[Vz(zexeozey)—x=y])

we come to the system NFU (U for Urelements). Jensen proved in [68] that this modification of
NF is consistent. The proof of the consistency of NFU given here has been taken from [Boffa 77a].

TTU is the analogue of NFU in TT: we replace EXT;, ; by

%
EXT, ;¢ VXu0Yie (3% (€ X)) = [V2(2€ X, © € Yi01) 2 X1 = Vi1 D

Let M =(M;, €);c , be @ model of TTU. For every increasing sequence of natural numbers

ip <ij <ip <.... we define a new model N=(M; ,€) of TTU as follows: for ac M; , be M;
n n

neow n+l

NEaeb =S MFHZ(aEZAb={Z}in+1-in-1)

where {z)™={...{z}....] (mtimes {.}); {z}’=z

Note that in M, z has type i +1, so b has type i . , as required.

Though a tedious thing to do, we check that N is a model of TTU.

EXT:+ :assume a,beM; andNF3Jz(zea)AVz(zea<>zeb), thatis,

1 n+l

1) ME3IAw(zewaa=(w} 1oty ang

@ MEVz[Iw(zewra=(w} ™70y 3w (zewab={w) n+1n7ly ],

E 3
We have to prove NFa=b, thatis, MFa=b. As MFEXT ; » it is sufficient to prove that
n

(3) MEF3Jz(zea) ,and
4 MEVz(zeae>zeb).

(@) wheni_, =1+, (1) reads MF 3z3w (ze w A a=w ), so (3) holds; while (2) reads
MEVz[3dw (zewAa=w) <> dw (zebAb=w)], so (4) holds.
(b) when i, 22+ ,, we deduce from (1):
ME 3w ( {w}i““—i nZe a) so (3) holds for z ={w}i n+17n2,
Assume ce M, n+1_1 and MFcea. From (1) it follows that
1

n+1

ME3z3w (ze w A a={w}in+1'in' /\c={w}in+1'in'2 ).
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By (2) then MF 323w (ze w Ab={w} M1 1!} o MEceb.
MEceb —cea is proved analogously.

COMP, ,: let ¢ be a stratified formula not containing y,, . ; free; let (p* be the (stratified) formula
resulting from @ when all types n are replaced by i ..

We have to prove
NE3y, . 1VX, (X4€Yps1 € @), that is,

i -i -1 *
(5) M|=3yin+lvxin[azl+in(xinezl+in/\yin+l={zl+in} n+l"n )(—)(P ]
(8) when ip,y =i +1, COMP;  givesusME3y;  Vx; (x; €y;  ¢>@"),50(5) holds.
(b) wheni, ,2i,+2, COMP, . gives MFJz, ; n‘v’xin (%4 EZ14i “ (p* ), supposing (p* does

. . i,,1-1.-1
not contain z; o free, so by taking y; n+1={zl H n} n+l"n " we see that (5) holds.

Note that we have used MF Vx; "{ xi}m exists" for all i and m.

We say that N has been extracted from M; notation: N <M. < is transitive.
We say that M forces a stratified sentence 6 (notation: M- 6) when NE 6 for all N<M;

M decides 6 when Ml 6 or MIF—o.
When M decides o, clearly MEG < o (as M+ <M).

Lemma 3.6.1. (Ramsey) If X is an infinite set and [X]n =G,UG,, where [X]n denotes the set

of all n-element subsets of X, then there is an infinite subset Y of X
such that [Y]" €G, or [Y]" €G,.
(no proof)

Lemma 3.6.2. (extraction lemma) for all stratified sentences G,
METTU =3IN<M (N decides o)

Proof: let k be greater than all types appearing in G. Define a partition G;, G, of [(o]k+1 as follows:
G1={ {io,il,....,ik} [ iO < 11 <....< ik& (MIO, Mil, ceeey Mik, ....)|= (6 };

G={{igrigs-riic) lHg <y << & (M, Mj s s My )G .

By lemma 3.6.1., let X be an infinite set of natural numbers i <i; <...<ij, <... such that

[X]k+1 c Gl or [X]k+1 c GZ’ and set N = (Mio, Mil,...., M1 , o). When [X]k+1 = Gl, then N
n

k+1
forces ¢; when [X] e G,, then N forces —0.
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Theorem 3.6.3. for all models M of TTU, NFU+{ oIMIF o } is consistent

Proof: define Z={ 6| MI-c }. By a variant of Speckers method, it is sufficient to show the
consistency of TTU+X. A finite part X' of TTU*+Z can be divided in three finite parts:

(1) axioms of TTU: G1seees Oy
(2) axioms of ambiguity: T, 1:1+,...., T, € tm+
(3) sentences forced by M: Vseeees Vp

Define £'={ 0y,...., Op, Tpserees Ts Vseeens Vp }. When a model N £M decides all sentences

in ", then NETTU so NF o, (i=1,....n); NET1, < 'l:"iL (i=1,....m) by the remark made just

above lemma 3.6.1.; and NF v, (i=1,....p) because M forces v;. So NF X'. By compactness, it
is thus sufficient to show that there exists an N <M deciding all sentences in X"; this is easily

established by iterating lemma 3.6.2. n+m+p times (< is transitive).

Corollary 3.6.4. NFU + Al + AC is consistent

Proof: it suffices to show that Al and AC are being forced by some model of TTU. Obviously,
(B,PB, P2B, ....,€ ) where B is an infinite set does the trick.

In NFU, 0 is the set of empty sets { x|—=dy(yex) }. Let A be an arbitrarily chosen element of 0.
In NFU + Al we have available Quine's ordered pair (x,y) for x,y¢ 0, as has been remarked in
section 1.2. (remark 2 after 1.2.4.).

Let H be the statement that there are no more urelements then non-empty sets:

(H) 101<I V-0l

Theorem 3.6.4. NF is equiconsistent with NFU + AI+H

Proof: We form a model of NF in NFU + Al +H. Let f: 0—>V-0 be injective. Define g: V—V by

gx = (fx, 0) for xe 0-{A}
g(fx,n) =(fx,n+1) for xe0-{A}, neNn
gx =X otherwise

By Al, g is injective. Its range clearly is V- (0-{A}).
Define € * < V2 by xe *y < xegy. Then (V, e *) is a model of NF:

EXT: Vz(ze *x > ze *y ) is equivalent to Vz (ze gx «<> ze g y). Because of the fact that
the only empty set in the range of g is A, we infer (by EXT *) gx=gy v gx=A=gy.So

x=y because g is injective.
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COMP: 3FyVx(xe *y <> @) is equivalent to JyVx (xe gy <> ¢). Obviously, y = g'1 {xlo}
is what we are looking for (more precisely, we infer AyVx (xe gy <> ¢) from
JzVx (xez <> @) and Vz3y (z=gy)).

So we have established that consistency of NFU + AI + H implies consistency of NF.
Conversely, NF includes NFU + AI+H (as NFFAIAO0={A}).

As stated in [Boffa 73], we obtain

rollary 3.6.5. NF is equiconsistent with NFU + Can(0)

Proof: As P,0< V-0, H follows from 0~ P,0. Boffa states that Specker's proof of NF—AC can
be reproduced in NFU except for the point that PP;x is equinumerous to P;Px for arbitrary x.
Here we must read Py as in the usual definition: Py ={ z| z&y }. This means that 0 =Py for all

y. Defining P'y =Py - (0-{A}), for which it follows by the same argument as in 2.1.1.(c) that
P'P;x~P,Px for all x (when we define P;x=x for xe 0), let us reconsider the proof of

PP;x ~ PPx. Obviously, Py=P'y U (0-{A}), so PP;x=P'P;x U (0-{A}) and

P,Px=P;(P'xu (0-{AD)= P,P'x UP;(0-{A}). From 0~ P,0 it follows directly that
0-{A}~P;(0-{A}); the equinumerosity of P'P;x and P;P'x together with the disjointness of the
unions involved then yield PP;x ~ P;Px. So (according to Boffa) Specker's disproof of AC can

be re-established, so Al can be proved. Theorem 3.6.4. now tells us that consistency of
NFU+Can(0) entails consistency of NF. Conversely, in NF 0={A}=P,0.
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4. Relative consistency results

§ 1. Quine's individuals; the permutation method

In [37], Quine wrote:
" "(xey)" states that x is a member of y. Prima facie, this makes sense only when y is a class.

However, we may agree on an arbitrary supplementary meaning for the case where y is an individual
or non-class: we may interpret "(xey)" in this case as stating that x is the individual y. "

In a footnote, he remarks: "this interpretation -along with extensionality- results in the fusion of
every individual with its unit class, but this is harmless."

Scott proved in [62] that it is independent of NF whether there exists an individual in Quine's sense;
this is, consistency of NF implies consistency of the two theories NF+3x (x={x} ) and

NF+-3x (x={x}).

The method used by Scott is known as the permutation method. We will now proceed to describe it.

Definition 4.1.1. a permutation is a bijective type-preserving unary operator

Remember that functions and unary operators are interchangeable notions as remarked above
theorem 2.1.7..

So when 7 is a type-preserving unary operator in NF,  is a permutation when
NFFVydzVx (y=nx <> x=2).

For a permutation 7 and a formula ¢, the z-transform (p7t of ¢ is defined as the formula resulting
from ¢ when all occurrences of xe y in @ are replaced by xe ny (where x and y are arbitrary

variables).

Theorem 4.1.2. for all permutations 7 and all formulae ¢: NFF ¢ = NFF (p7t

Proof: as the n-transform of a proof of ¢ is the tree consisting of all n-transforms of the formulae in
the proof, and the rules of inference are not influenced by taking n-transforms, it suffices to
prove the statement in the case where @ is an axiom of NF.

EXT: when @ is Vxy [ Vz (ze x <> zey ) = x=y ], then (pn is
Vxy[Vz(zetx <>zeny)— x=y]. Supposing Vz (ze tx <> zeny), we deduce
nx =1y by EXT. So x=y because = is injective.
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COMP: let ¢ be dyVx (xey <> ) where V is a stratified formula not containing y free. Then
(p’t is JyVx(xeny < 1|In ).y does not occur free in Wn and Wn is stratified as T is type-

preserving, so by COMP we infer 3zVx (xez <—>\;fn ). As T is surjective, there is a'y so
that z=my, which concludes the proof.

.- . . T . .
Proposition 4.1.3.  when & is a permutation such that NFF ¢, and NF is consistent, then
NF+¢ is consistent

Proof: suppose NF+@F L. Then NFF —@, so by theorem 4.1.2.: NFF (—1q))n. As (—.(p)n is —|(pn,

we derive a contradiction from NFF ¢" and NFH L.
Theorem 4.1.4. Jx (x={x}) and —3Ix (x={x} ) are relatively consistent to NF

p

Proof: it all comes to finding two permutations 7 and p so that NF - (pn A—Q", where @ is the

sentence 3x (x={x} ). ¢ is an abbreviation for 3xVy ( ye x <> y=x), so for permutations 7, (pn
is IxVy (ye mx > y=x), which can be abbreviated to Ix (rx ={x}).

When describing permutations, we will only indicate where they differ from the identity.

Let & be the permutation given by A«>{A} (so A and {A} are interchanged; 7 x=x for

x#A,{A}). As TA={A} we infer NFI-¢".

We have to work harder to get p:

define two type-preserving operations F and G by
A {A}
X A when x#A and Ae x
x> {{A}} when Aexand {{A}}ex
x> {A} when Aex and {{A}}ex

G: {x}~ {x,Fx}

We infer:

(1) Vx (x#Fx) : clear from the definition of F

(2) Vxy (G{x}#{y}) :clear from (i) and the definition of G

3) Vx (G{x}#x) : G{x}=x means x={x,Fx}, so x#A; we derive Ae x <> A¢gx:

suppose A¢x, then Fx=A so Ae {x,Fx}=x. Suppose Ae x = {x,Fx},
then it must be so that Fx = A (as x#A). But then, by definition of F,
Aex.
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@) Vxy (G{x}=G{y} > x=y): suppose G{x}=G{y} and x+y. Then we must have
Fx=y AFy=x, soxis A, {A} or {{A}}, whence Fx is (respectively)
{A}, {{A}} or A; and FFx is (respectively) {{A}}, A or {A}. But
then Fy =FFx #x.

From (2) it follows that P; VN G[ P; V] =A. Define the type-preserving operation p by
{x}¢>G{x}. Then Vx (ppx=x) and p is a permutation: for arbitrary y and z=py:

Y=PX < PPY=PX & Pz=px & z=X
where the last implication to the right follows from P,V NG[ P, V] =A, (4) and {x}={y}—x=y.

When px ={x} for some x, we infer x = ppx =p{x} =G{x]}, in contradiction with (3). So we

have NFF Vx (px#{x} ), that is, NF - —¢P.

The following extension of the method has been described in [Henson 73b].
When = is a permutation, define the sequence of type-preserving operators T ¢, T y, .... inductively

by:

TCOx:X
EIX':TCX

o X={n,yln, ;yen, x} whenn>1

The following lemma is easily proved.

Lemma 4.1.5. (a)foralln=>1: Ty YEMXORT YER X
(b)foralln=>1: T, is a permutation

Note that some elimination of abstractions is necessary to render meaningfulness to ¢™ n for n>2.

Theorem 4.1.6. Let ¢ be a formula with x=x;....x, as free variables. When ¢ can be stratified

by assigning the types l_<=k1....krl to x;....X,, (respectively), then

NFFo" oo (g (XDl (31

Proof: by induction on ¢.When ¢ is the atom x;=x,, the statement follows from the fact that 7, is
injective for all k; when @ is the atom x; € x,, then apply lemma 4.1.5.(a) k; times (k,=k;+1).
The induction steps for — and v are trivial, so consider the case where @ is 3x, . By the

induction hypothesis we have
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T
NFH Yy &V (TC kO(X()), Tckl(xl),.. .U kn(Xn))
(where kol-c is a y-stratifying assignment to xX). As nko is a surjective operation, the desired
result follows.

Definition 4.1.7. A sentence o is invariant if, for any permutation T, NFFo < ¢

An extension S of NF is invariant if all its axioms are invariant.

Note that every stratified sentence is invariant; Henson proves CA to be invariant in [73b], which by
the theorem below (the analogue of 4.1.3.) shows that permutation methods can not be applied to
show relative consistency of CA to NF.

Theorem 4.1.8. Let S be an invariant extension of NF. When there is a permutation & such

. . . .
that S+¢ " is consistent, then S+ is consistent.

Proof: When S+ —¢, then there are axioms ..., of S such that I (y;A...AYy, ) = —¢. By

theorem 4.1.2., we infer NFF (\vln/\..../\\ynn )— —.cpn. Invariance of y;,....,\,, implies

NFF (g A..Ay) — ﬁ(pn, so Sk —.(pn.

For the rest of this section, let S denote an invariant extension of NF.

The proof of theorem 4.1.4. shows that 3x (x={x} ) and —3x (x={x} ) are consistent relative to S.
Let us prove that the class of Quine-individuals doesn't have to be a set. To do this, we need some
more information about ordinal numbers.

There is a type-raising operation U defined on ordinal numbers analogous to the operation T on

cardinal numbers:
U (No(R)) = No (RP, (R))

where R is a well-ordering, No(R) its ordinal number and RP;(R) = { ({x},{y}) I(x,y)eR }.

The following lemma is proved analogous to the corresponding one for T; its proof can be found in
[Rosser 53] and [Henson 73a]. o, B and y denote arbitrary ordinal numbers.

Lemma 4.1.9. (@) o=« Ua=UPB
(b) a<yB e Ua<,UB
©) <y UB -3y (y<yBAa=Uy)
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Theorem 4.1.10. —JdyVx (xey «>x={x}) is consistent relative to S.

Proof: let ¢ be the mentioned sentence. Let T be the permutation given by {a}<> Ua (oie NO). The
n-transform of ¢ is —3yVx (xe ny <> nx={x} ). Suppose that there is a set y which satisfies
xe y <> nx={x}. Then we have oe ty & a=Uq, so { alazUa }=-tynNO exists.
Therefore there is a <, -least fe NO for which =Up. But this contradicts the lemma above:

when 3 <, UB we have 8 =Uy for some y< 3, but then y#Uy which contradicts the minimality
of B; when UB < B, we have UUB <, UB so UB #UUB, which also contradicts the fact that [3

is minimal.

As an application of the extended permutation method, we prove that there may be a set equal to its
power set, distinct from V.

Theorem 4.1.11. Ix (x£V Ax=Px) is relatively consistent to S.

Proof: the function f defined on P,V by f{x}=P;x is a bijection from P;V onto PP, V; P;xis a
singleton only when x is a singleton, say x={z}, and in that case f{x}={x}. So there is a
permutation & for which NFFnt{x}=P;x A nx=x. In particular,
ny{V} ={mxlIxen{V}}={nxIxeP|V}={n{z}lze V}=(Pzlze V}

={P,zlz € V}=PP,V=Pr{V}=Pr {V}
Now x=Py can be stratified by assigning the types 2 to x and 1 to y, so its n-transform is
equivalent in NF to T,x =Px ;y. The n-transform of x=V is equivalent in NF to 1t {x#V, so
letting x=y and noting that 7t ; { V}#V, this proves the nt-transform of Ix (x#V A x=Px). So that

sentence is consistent relative to S.
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§2. comparing n. Tn and 2TIl

Pyxl_ ,Tn

For a set x, and n=IxI, we have I[P;xI=Tn and IPxI=2 . So comparing Ixl, IPx| and IPxI|

comes to the same thing as comparing n, Tn and 2™ Cantor's theorem states Tn <2™ for all n, and
this is almost the only restriction on the possible relationships between the three cardinals. The only

other restriction is

Theorem 4.2.1. Vne Nn ( n;t2Tn )

Proof: (sketch) when Ae NC and A= ZTA, the situation resembles the one for Q: A>TA >T2A >.....
By a straightforward modification of Specker's disproof of AC, we can prove A¢ Nn. We will
sketch what this modification looks like.

The main ingredients of the proof of NF—-AC were:

(1) AC — £ well-orders NC;

(2) ®Tm finite — ®m finite;

BYVm(mLTQvm>TQ) — [ Pm finite — IOTml =TIOml+1 or 2 ]
(see the remark below 2.2.2.)

Then we considered the set {m | ®me Fin }, took n to be the minimal element of this set,
existing by means of (1), and derived n=Tn by means of (2) and (3); hence |®nl =TI®nl+1 or 2,
contradicting 2.1.15.

First of all, we have to avoid the use of AC here. This can be achieved by considering
WC={ Ixl | x can be well-ordered } instead of NC.

We want to treat A as the 'greatest' cardinal, so we have to replace £ everywhere in chapter 2
by A (and 2M2A by m<TA), and we have to replace @ by the operation ¥ defined by
¥m=®mN{plp<A}. Then we can prove
(1) £ well-orders WC;

(2") WTm finite — ¥m finite;

BYVm(m<TAvm>TA) - [ Wm finite = '¥Tml =TI'¥ml+1 or 2]

Next we consider the set {me WCI¥m € Fin}, which is non-empty when we further assume
Ae WC. The rest of the proof is analogous, and we conclude from the contradiction reached at
that :

AgWCv-VYm(m<TAvm>TA)

So we infer A¢ Nn from the lemmata 2.3.3., 2.2.4. and 2.1.14..

A model-theoretic method for proving the relative consistency of certain sentences, intimately related
to the permutation method, has been described in [Henson 69]. We will use it to show that for finite

. c e . T T T .
cardinals n, the remaining inequalities n<Tn<2 " Tn<n<2 "and Tn<2 '<n are all possible.
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Let A=(A,R) be an {e }-model. For automorphisms 6 of A we define a new {e }-model
A%-(A,R®) by xR & xR (8y).

Lemma 4.2.2. (a) 6 is an automorphism of Ae

(b) let ¢ be a formula with x as free variables, and let kbea
@-stratifying assignment to x. Then for all ac A:

Aol & Ak, ..., 0M(,)]

Proof:
(a) let a,be A. Then (0a, 6b)e R9<=> (Oa, 92b)e R
& (a,06b)eR  (as 0 is an automorphism of A)
& (a,b)eR’
(b) analogous to the proof of theorem 4.1.6.

In particular we have A% 6 o Ak for stratified sentences .

Definition 4.2.3. Nn*(n) = neNn An=Tn
n<*m = Nn*(n) A Nn*(m) An<m

Note that neither of the formulae Nn™(n) and n <*m is stratified.
Let A=(A,R) be an {€ }-model. Define the model A*=(A* R™) by
A*={ac AlA ENn*(a)}
{aR*bd:)a, be A* & AFa<™
When A is a model of NF, then A* is an infinite linear ordering (as NF is a model of n=Tn for all
ne ).

Theorem 4.2.4. Let S be a consistent stratified extension of NF; let (B, <') be an arbitrary
linear ordering; let By, B,, B3 be an arbitrary partition of B. Then there is a

model B of S such that

(a) Vb;bye B[ BEb;eNn & (b;<'b, & BEb;<b,) ]
VbeB, BEb<Tb

(b)4VbeB, BEb=Tb
VbeB; BETb<b
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Proof: let (Z, <") be the natural ordering of the integers. Define <; on BXZ by
(by,2) <1 (by,2y) & by<'byor (by=b, & 2;<"2,).
Identifying (b,0) with b for convenience, (B, <') becomes a subordering of (BXZ, <;).
As noted above, when A is an S-model, then A* is an infinite linear ordering. So we may
apply a theorem of Ehrenfeucht-Mostowski ([56]; [Vaught 66]) to obtain a model A=(A,R) of
S with the following properties:

(i) (BXZ, <) is a subordering of A*;
(ii) every automorphism of (BxZ, <;) can be extended to an automorphism of A.

Let the automorphism 6 of (BXZ, <,) be given by
(b,z-1) if be B,

0(b,z)=4(b,z) ifbeB,
(b,z+1) if be By

Let 0 also denote the extension of this automorphism to A. AY now is the model B whose
existence is stated in the theorem.

A%ES because all axioms of S are stratified and Ak S.

If (by,z;) < (by, 25), then AF (by, z;) < (by, z,) because of (i). So (by lemma 4.2.2.(b); x<y
can be stratified by assigning the same type to x and y): A%k (by»2) <(by, 2,). In particular,
when be B then
(1) A%k (b,-1)<b<(b,1)

Moreover, by the same argument: when b,, bye B and b;<'b, then A% b,<b,. For be B we
have by (i):

(2) AF Nn*(b),

s0 A be Nn and A% be Nn for all be B by lemma 4.2.2.(b). This proves (a).

From (2) it follows that for all be B: A Eb=Tb, hence A F 6b =T(6b). x=Ty can be stratified
by an assignment giving x a type one higher than that of y, so, again applying lemma 4.2.2.(b)
we get
(3) A%Eb=T(6D).

* when be B, then 8b=(b,-1) so by (1) we have A®E6b <b, whence by (3): A%Eob< T(6b).
4.2.2.(b) now yields A% b <Tb.
* when be B,, then 8b=b so (3) implies A%k b =Tb.

* when be Bs, then 6b=(b,1) so by (1) we have A%Eb< 6b, whence by (3) Ak T(6b) <6b
and thus A°ETb <b.
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Corollary 4.2.5. Let S be a consistent stratified extension of NF. Then S remains consistent
after adding the following two sentences:
dneNn(n<Tn)
dneNn(Tn<n)

Corollary 4.2.6. CA is not a theorem of any consistent stratified extension of NF

So, as CA is not provable in NF but n =Tn is provable for all ne ®, NF and all its stratified
extensions are w-incomplete.

Theorem 4.2.7 NFF 3ne Nn(Tn<n)—>3neNn(2Tn<n)
Hence consistent stratified extensions of NF remain consistent after adding
Tn
dneNn(2 <n)

Proof: (sketch) consider the set ®1. As n< 2" for all ne Nn, @1 is an unbounded subset of Nn. Let f
enumerate the elements of @1 in increasing order: f0=1; f (n+1)= 2an In fact there is a formula
¢(m,n) which is stratified when m and n are given the same type and which satisfies
fm =n <> @(m, n): take @(m, n) to be the the formula
dg: { peNnlp<m+l }>P1 [g0=1AVp<m( g(p+1)=2gp) Agm=n].

Strong induction on Nn then gives that the relation f defined by f ={(m, n) | ¢(m, n)} is the
function which enumerates @1 in the mentioned way.

We prove by induction on me Nn that f(Tm)=T(fm): (the induction is possible because the
mentioned sentence is equivalent to Vme NnVne Nn [ ¢(m,n) <> ¢(Tm,Tn) ] which is stratified)
* £ TO =f0=1=T1=T(f0)

* £T(m+1) = £ (Tme+1) =27 = 2T fmpe (1)

Let ne Nn satisfy Tn <n. Then T(n+1) =Tn+1<n (as Tn+1#n by 2.1.15.). So f T(n+1) <fn,

whence 2 "=T2™=Tf (n+1) =f T(n+1) <fn, so fn is the desired element of Nn.



51

Theorem 4.2.8. NFF Vmne Nn [ Tm <m<n=Tn— T(m+n) <m+n < 2T(m+n) ]

Hence consistent stratified extensions of NF remain consistent after adding
T
JdneNn(Tn<n<2 n)

Proof: by an informal argument using cardinal arithmetic as developed in [Rosser 53]. Let m,ne Nn
be such that Tm<m<n=Tn.
T(m+n) =Tm+Tn =Tm+n <m+n (the last inequality can be proved by induction on n);

2T(m+n)= 2Tm+Tn= 2Tm+n= 2Tm.2n.

As 1=T1, we have Tm>1, so 2Tm>2. Thus 22"< 2Tm_2n. As m<n, we have m+n <2-n, so

mn < 2-n < 2:2"< 2 T 0 Tm+n)

Pétry completed the fan of all possible relationships between n, Tn and 2Tn by showing in [75 & 77]
that any consistent stratified extension of NF remains consistent after adding

In(n€Tngn) and

In(n£2 " £n)

(n is necessarily infinite when one of these sentences holds).
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Epilogue

It has been an interesting journey through a mind-boggling set theory. Now it is time to reflect.
What of NF as New Foundations, as a new set-theoretical basis for mathematics? (as Rosser
intended when writing his extensive book [53]). Those mathematicians who need AC as an axiom
will not be pleased to use NF instead of ZF, but as ZF+—AC is as consistent as ZF+AC is
(namely, as consistent as ZF) their choice of assuming AC seems rather arbitrary; NF is simply
more outspoken in this instance: AC does not hold. Nevertheless, one of the basic theorems of

topology is Tychonoff's theorem stating product-invariance of compactness, which undoubtedly is
equivalent to AC in NF as well as in ZF. So topologists had better stick to ZFC.

Then we have the problems surrounding the counting axiom CA, which is a theorem of ZF but not
of NF. It is not impossible that CA is independent of NF although theorem 4.2.4. does not furnish
a proof of the relative consistency of CA to NF. When someone provides us with a proof that CA is
indeed relatively consistent to NF, then one can equally well assume CA as refute it. For everyday
mathematics, it seems a better course to assume it, just as in some parts of mathematics it is better to
assume the axiom of choice. The fact that CA intuitively is more correct than AC is no reason to
require of a set theory that CA can be derived, making no problem about the independence of AC; so
adding CA to NF for the purpose of developing mathematics easier is no odder than adding AC to
ZF. NF just seems to be more general than set theories in which every set is Cantorian.

Another problem is that induction is not possible for all formulae, but only for stratified ones (or,

more generally, for formulae ¢ for which { x| ¢x } exists). It is remarked in
[Fraenkel/Bar-Hillel/Levy 73, p163] that mathematical induction for all formulae can be added as an
additional axiom scheme to NF (although I don't see why).

Moreover, large sets (among which V) can not be well-ordered, but according to Quine [69, p296]
we can still reserve the right to assume that Cantorian sets can be well-ordered.

Here I have to give some credit to Fraenkel c.s. for remarking that the aesthetically fine basis of NF
(EXT+just one axiom scheme) becomes rather disturbed when we add to it all kinds of axioms to
provide for a trouble-free development of mathematics, but then again, I don't see why this would
bother us much: mathematicians were accustomed to using AC long before its relative consistency to
ZF was proved, so we can equally well assume additional axioms in NF for which it has been
proved, or perhaps will be proved in the future, that they are relatively consistent to NF. It is just the
basis of NF, which is insufficient to prove these additional axioms, which forced us to make a
choice between assuming them and refuting them.

Finally, there is the problem whether NF is at all consistent. Some partial consistency results have
been proved in this paper, and the reader might be convinced that NF is consistent, just as probably
everyone has the same happy feelings about ZF.
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Godel's second incompleteness theorem tells us that we will not be able to prove the consistency of
NF in NF itself (when NF is indeed consistent), so we have to look for a proof in some other set
theory -like ZF- or possibly a proof that NF is consistent when ZF is (and vice versa?). The search
for such a proof is one of the major tasks of the metamathematics of set theory. An interesting
approach of this goal has been made in [Boffa 88], where NF is related to the theory ZFJ, which
results from ZF when adding a unary function symbol J to the language and adding axioms stating
that J is an automorphism (which also leads to a quick proof of the consistency of NFU).

In view of this as yet unsolved problem, I'd like to quote the title of chapter 15 of [Rosser 53]:
"We rest our case".
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