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THE MODAL THEORY OF INEQUALITY
PREFACE

The standard semantics of modal and tense logic is based on one binary
relation, called the alternative, respectively precedence relation. It is a
fairly obvious generalization to allow several binary relations and
corresponding operators. One special such relation is the inequality
relation. In this thesis we study the formalisms obtained from the modal
and tense logical ones by adding an operator corresponding to the
inequality relation.

The questions and problems dealt with in this thesis can be divided
into three kinds:

(i) old questions/problems, such as: what is the logic of a special
structure like 2 or @; which first order properties are
definable, and conversely, which formulas define first order
conditions?

(ii) new questions/problems, such as: how does the new operator
interact with the modal and tense logical operators; when, i.e.
on which class of frames, does each formula in the extended
formalism become equivalent to one in the old formalism; and, if
any, which sets of formulas in the extended formalism are valid
on precisely one frame?

(ii1) transfer problems: which techniques and results from the modal
and tense logical formalisms generalize to the extensions of
these formalisms?

Chapter 1 introduces the basic notions, and examines which of the
(anti-) preservation results that are known from ordinary modal logic are
still valid in the extended formalism. Next, Chapter 2 studies the
expressive powers of the various formalisms. Chapter 3, then,
characterizes the translations of formulas into first order formulas, and
determines the classes of models that are definable by means of formulas
in this new formalism. In Chapter 4 we give complete axiomatizations for
several special structures, as well as two incompleteness results and
corollaries to these results. Finally, Chapter S describes two large
classes of first order definable formulas in the new formalism; it ends
with a digression on first order definability in other extensions of the
modal formalism.

Results and notions belonging to ordinary modal or tense logic that
are not credited can be looked up in van Benthem [1985]. Other results or
notions not credited are due to the author and/or are trivial.
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CHAPTER 1
INTRODUCTION

In this chapter we first briefly review notation and terminology. Next we
examine some of the model-theoretic properties of formulas in the
enriched formalisms. Finally we introduce general frames for modal logic
extended with an operator for inequality. These structures will be used in
Chapter 4.

§1.Basics

We begin with some definitions. The (multi-) modal languages to be
considered here have an infinite supply of proposition letters(p, g, r, ..), @
propositional constant L (falsum), the usual Boolean operators - (not), v
(or), a (and), = (if .. then ..), and < (if and only if). Furthermore, they
contain unary operators. The basic case is the language L(¢) with the
operators ¢ (possibly) and O (necessarily) - ¢ being regarded as
primitive, and O being defined by =¢o-. In general, L(Oy, .., Op) denotes the
(multi-) modal language with operators 04, ..., Op. The semantic structures
are /rames, i.e. ordered pairs ( W, R) consisting of a nonempty set W with
a binary relation R on W. To save words, we assume from now on that F
denotes the frame ( W, R). In addition to these frames, structures M (= (F,
V)), called mode/s, will be used, consisting of a frame F together with a
valuation NV on F assigning subsets of W to proposition letters.
Now comes the basic truth definition:

1.1. DEFINITION. Let M be a model, w € W, and let g be a modal formula. Then
M E glw] (in words: ' is true at w in M) is defined inductively as follows:
(i)  Meplw] iff w e V(p), for proposition letters p,
(11)  ME~¢lw] iff not M E glw],
(1)) ME(paplw]iff ME glwland M E ylw],
(iv) M E oglw] iff for some v € W we have Rwv and M E ¢[v].

The definition of ‘M Oglw]' follows from (iv) using the abbreviation o =
-0, For tense logic M k ¢{w] is defined in the same way except that the
clause for ¢ is replaced by two clauses for F and P:

(v)  MEFglw]iff for some v € W we have Rwv and M E ¢[v],
(vi) ME Pyg[w] iff for some v € W we have Rvw and M k ¢lv].

The definitions of ‘M £ Gglw] and 'M E Helw]' follow from (v) and (vi) using
the abbreviations G = -F- and H= -P-.

1



2 Introduction [Ch.1,81

Using this definition F & glw] is defined by, for all valuations V on F,
(F, V) E glw] Next, F k ¢ is defined by, for all w € W, F k g[w]. It is obvious
how these notions may be extended to the case of a set of formulas.

The language L(¢,D) will be our main interest in this thesis; here,
the operator D is defined by

(vii) MEDyplw]l @ ME ¢lv], for somev z w.

(The proposal to consider this operator is due to several people
independently, including Ron Koymans and Gargov, Passy & Tinchev [1987])
D's dual -D- is denoted by D. Using the D-operator some useful
abbreviations can be defined:

Ey := ¢ v Dy (there exists a point at which ¢ holds),
Ay := p A Dp (¢ holds at all points), and
Uy := E(p o D) (9 holds at a unique point).

Lower case Greek letters ¢, g, X, ... will be used to denote (multi-)
modal formulas. ¢ is called a o,D-7ormu/a, if ¢ € L(o,D); ¢ is called a
modal formulg it ¢ € L(0), etcetera.

Clearly, the notion of frame equivalence depends on the language we
are using. This fact is reflected in our notation, e.g. F =¢p G will denote
the fact that F and G validate the same ¢ € L(¢,D). Likewise, the theory of
a frame F depends on the language we are using, so Thep(F) := { p € L(o,D)

| F g}, etcetera.
Every now and again we want to know whether a (multi-) modal

formula corresponds to a first order formula. The next definition fixes
the first order languages we will be dealing with:

1.2. DEFINITION. (i) Lo is the first-order language with one binary predicate
constant R as well as identity. Lo-formulas will be denoted by ., B, ¥, ...
(i1) Ly is the first-order language with one binary predicate constant R,
identity, and unary predicate constants Py, P, ..., P, Q, ... corresponding to
the proposition letters of the (multi-) modal 1anguage.

The following notions are useful when dealing with the correspon-
dence theory of L(¢,D).

1.3. DEFINITION. (i) If 9 is @ 0,D-formula and « is an Lo-formula, then
8(p,0) iff for allF, allw e W, F £ ¢lw] & F E alw],
M1 ={yp|for some & € Lo, S(p,a0) },
P1={a| for some ¢ € L(¢,D), 8(y,x) }.
(ii) Furthermore, if o is an Lo-sentence, then
8(p,a) iff forallF,FEp & F EQ,
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o1 ={ | for some a € Lo, E(p,0) },
®1={a| for some ¢ € L(¢,D), 8(p,00) }.

& is the relation of /ocal equivalence. 8 is the relation of g/obal
eguivalence 1f 8(y,a), where o has the free variable x, then &(g,Vxa).
From this connection between & and & it follows that M1 ¢ M.1. By
Theorem 7.4 in van Benthem [1985] the converse inclusion does not hold.

1.4. EXAMPLES. (i) A useful first order condition on R that is not definable
in L(¢) is irreflexivity. In L(o,D) we have 8( op — Dp, —Rxx). To prove
this, let F ¥ op = Dplw]. Then for some valuation V on F we have (F, V) E
op A =Dplw], so we find an R-successor v of w such that p holds at v; by
the second conjunct v = w, and so Rww holds. Conversely, if Rww holds,
putting V(p) = { w } falsifies op — Dp at w.

(ii) By an analogous argument we can prove that &( Dp —= op, Yy Rxy), and
s0 (Yy Rxy) € TL1.

(ii1) In chapter 2 we show that the Lo-sentence 3x Rxx is outside ®1.

We now turn to syntactic matters. A logic is here a set of formulas
L containing classical tautologies and closed under the rules of Modus
Ponens and Substitution

._¥p)
SR: oty

We deal only with normal logics, i.e. logics containing the distribution
formulas

AO. O(y = y) — (O9 = Oy) and
Al. D(p = ¢) = (Dyp = Dy),

as well as the axiom schemes

A2. ¢ - DDy (symmetry),
A3. DDy — (¢ v Dy) (pseudo-transitivity) and
Ad. o9 = (pvDy) (relation between ¢ and D),

and closed under the necessitation rules

? and _r
Oy Dy.

So, our definition of a normal logic extends the 'classical’ definition of a
normal modal logic. (Of course, this definition applies only to logics in
L(o,D); however, the extension of this definition to e.g. L(F,P,D) is
obvious.)
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D, denotes the basic logic. It was first defined by Ron Koymans in
his Koymans [1989]. Finally, we use p € L and i p or L F ¢ as synonyms,
thus assuming that + denotes an axiomatic system in which all formulas
of L are derivable; if y is derivable in the basic logic we sometimes write

F ¥

We end this section by stating some useful results which are either
well-known or easy to prove.

1.5. LEMMA. Let L be a normal logic. Then

(i) Ifpe yeL, then 0p © Oy, op © oy, Dp < Dy, Dy © Dyel.
(i) o> yeL, then Op = Oy, op = oy, Dp - Dy, Dy - Dy e L.
(i11) oO(pay) « (Op A DOy €L

(iv) D(pay) © (DpaDy) €L

(v) o(pvy) < (opvoy) el

(vi) D(pvy) < (DpvDy) el

§2. Preservation; anti-preservation; filtrations; cluster theory

To get some idea of the model-theoretic properties of ¢,D-formulas, we
examine their behavior under the four well-known modal operations: p-
morphisms, generated subframes, disjoint wunions and ultrafilter
extensions. Finally, we extend the notion of modal filtration to L(¢,D), and
make a few remarks on the ‘cluster theory' of L(o,D).

Preservation

It appears that most of the preservation results known from L(¢) no
longer hold for L(¢,D). To show this we need some definitions.

1.6. DEFINITION. (i) A function f from a frame F to a frame F7 is called a p-
morphism it

(1) forall w,v €W, if Rywv then Rof(w)f(v), and

(2) for all w € Wy and v € Wo, if Rof(w)v then there is a u € W,

such that Rywu and f(u) = w.

(i) A frame Fy is called a generated subframe of a frame Fa (notation: Fy
G Fo)if

(1) Wi Wy

(2) R1=R2N(W;x W), and

(3) forallw e W;,andv e Wp, if Rowv thenv € W;.
(iii) Let { F; | i € I } be a collection of frames. Put F; := { W;, R}), where W; =
{d,wy|weWw}and R = { ( (i,w), (i,v)) | Riwv }. Then the aisjoint union
@®{F;|iel}of the collection{F;|iel}isthe frame(U{ W, |iell,
UWR|iel)
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A proof of the following fact can be found in van Benthem [1985]:

1.7. FACT. Moaal rormulas are préserved under surjective p-morphisms,
generated subrrames and disjoint unions.

We now show that, in general, ¢,D-formulas are not preserved
under these operations.

1.8. REMARK. (1) ¢,D-formulas are not preserved under p-morphic images. A
counterexample is provided by DT. This formula holds on Fo, but fails on
its p-morphic image Fy:

Fo: R e ) Fi: °
w2 w3 Wi

(ii) Next, ¢,D-formulas are not preserved under generated subframes:
consider the formula DT, as well as the frames Fz ¢ F4 in the following
picture. Obviously, F4 £ DT, but F3 ¥ DT.

Fq: b o Fz: ¢
W W3 Wy

(111) Finally, ¢,D-formulas are not preserved under disjoint unions either.
Let Fy be as in (1), and define Fs := ®{ Fy | 1 = 1, 2 }. Then Fy& —DT, although
Fs £ DT.

Anti-preservation

Another important notion in classical modal logic is that of an ultrafilter
extension.

1.9. DEFINITION. (i) Let F be a frame, and G € W. Then

L) ={weW|WeWRwWv-veD)}
(i1) The witrariiter extension ve(F) of F is the frame ( W, Rg), where W is
the set of ultrafilters on W, and ReU{U holds if for all & € W: (%) € Uy =
T € Us.

Now, modal formulas are anti-preserved under ultrafilter
extensions, that is, if ve(F) £ ¢ then F £ ¢. For L(¢,D) this result still
holds good. This fact is readily seen to follow from the next lemma.

1.10. LEMMA. Let V be any valuation on F. Derine the valuation Vg on ve(F)
oy putting Vep) = {U | V(p) € U ). 7hen, for all uitrafiiters U on W, and
all ©,D- rormuias ¢, { ve(F), Vi) £ ¢lU] & V(p) € U.
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PROOF. This is by induction on ¢. The cases p=p, -, ¢ A X, ¢y are proved in
van Benthem [1985], Lemma 2.25. The only new case is ¢ = Dy,

Suppose V(Dy) = {w | vz w (v € V(¢)) } € U. We must find an ultra-
filter Uy z U such that { we(F), Vi) E ¢lU1]. First assume that U contains a
singleton, and hence that it is a principal filter, -sayU={X c W | X 2
{wo 1} Then

{wolc{w|Ivzw(ve V(y)}, ie Ivzwylve Vg

Now, { v } € U, otherwise we wouldhave @={v} n{wp} € U. Let U be the
ultrafilter generated by { v }. So, since { v } ¢ U, we have U =z Uy.
Furthermore,

veV(y) = Vg o{v}
3 V(y) € Uy,
s ( ve(F), Vi) k ylUj] € Vi(y), by the TH,
2 ( we(F), Vi) E Dy{U], since Uy z U.

Next, suppose that U does not contain a singleton. Since V(Dy) € U, we find

some wo € V(Dy). Let v be the associated point z wgo such that v € V(y).

Again, we have { v } € U. We can now proceed as in the previous case.
Conversely, let V(Dy) € U. We have to show that { ve(F), Vg) ¥ DylU]

Since V(Dy) ¢ U, wehave Gl ={w | VW (vzw-v¢V(y)}eU, whence ¢ =z

@. Pick some wg € Cl.

Clearly, if wo € V(y), then @ = W and V(y) = @. Consequently,

v ultrafilters Uy : V(y) € Uy,
> W ultrafilters Uy : { we(F), V) ¥ ¢lUq], by the IH,
= ¥ ultrafilters Uy z U : { we(F), VE) ¥ ¢lUq],
> { ve(F), V) ¥ Dy[U].

If wo € V(y), then € = { wp } = V(y), and U is generated by Q. For any ultra-
filter U; z U we have C ¢ Uy - otherwise Uy would equal U. So,

W ultrafilters Uy : Uy z U = G = V(y) € Uy,
> W ultrafilters Uy z U ( ve(F), Vi) ¥ ylUy], by the TH,
> ( we(F), Vr) ¥ DylUl ]
1.11.COROLLARY. For any rrame F, and a/l ¢ € L(o,D), ve(F)E¢p > F E .
We immediately obtain a non-definability result from this corollary:

1.12. COROLLARY. 3X Rxx /s not ©,D- adelinable

PROOF. Evidently, ( N, <) E =13x Rxx. However, some straightforward cal-
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culations show that for any nonprincipal ultrafilter U on N we have ReUU.
Therefore, ve(( N, <)) E IXRXX. [ |

Filtrations

Besides the four operations discussed up to now, there is another
important modal concept: /7/tration Modal filtrations - which are defined
by the first three clauses in Definition 1.13 - can not be applied to sets of
o,D-formulas directly: let Wy = { v, w }, Ry = @, and let Vq be any
valuation; put Wo ={u}, Ro={{u,u) }, and let V5 be an arbitrary valuation.
Finally, define 3 := { T, DT }; then g : W1 = W, defined by g(w) = g(v) = u,
is a modal filtration with respect to 2 from { Wy, Ry, Vi) to ( W2, Ro, Vo).
However, { W1, Ry, V1) E DT and { Wo, Ro, V2) ¥ DT.

Things can be mended quite easily: we extend the definition of a
modal filtration with only one new clause to obtain the definition of a
o,D-fil tration.

1.13. DEFINITION. Let My (= { Wy, Ry, V1)) and My (= ( W, Ro, V2)) be models,
and let = be a set of ¢,D-formulas closed under subformulas. A surjective
function g : My = Mo is said to be a ¢,D- 77/iration with respect to 2, if
(i)  forall w, v € Wy, if Rywv, then Rog(w)g(v),
(ii) for all w € Wy, and all proposition letters p in 2, w € V(p) iff
glw) € Va(p),
(iii) for all w € Wy, and all op € 2, if My E oglw], then My F
o glg(w)],
(iv) for all w € Wy, and all Dy € 2, if My £ Dylw], then My E
Dylg(w)].

1.14. LEMMA. /1 g /s a ©o,D-fiitration wrt. 2 from My to Mo, then, ror all
w € Wy, andall o,D-formuias ¢ € 2, My E 9lw] 777 Mo E glg(w)].

PROOF. Trivial. ]

Next, we construct a filtration analogous to the standard example of
amodal filtration, i.e. analogous to the moda/ coligpse.

Let M (= (W, R, V)) be a model, and let Z be a set of ¢,D-formulas
closed under subformulas. Extend I as follows. Let { Dy | i € 1 } be an enu-
meration of all formulas Dy € I such that Mk ¢ A Dglv], for some v € W,
and extend the language by adding new proposition letters { g | 1 € 1}.
Expand M to a model M* for this new language, by verifying g; in one and
only one point in which g holds. Put =* :=3 U{q | i €l}.

As far as the formulas in Z are concerned, M* behaves just like M,
since none of the gi's occurs in 3. Now, define the model My = ( Ws, Rs, V3),
usinggw)={ e I* | M* k glw] }, by
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Ws = glw],
Rsg(w)g(v) =Wy [Op e 3 A Op € glw) = p € gV)],
Vi(p) == { gw) | p € g(w) }.

It is obvious that g is a filtration with respect to Z* from M* to Ms. Re-
stricting V5 to the original language, yields a filtration g with respect to
> from M to Mz = ( W5, Ry, Vs), where Vs is Vs restricted to the old lan-
guage. This model is called the ¢,D- co//gpse of M with respect to Z.

REMARK. An alternative way to define the o,D-collapse would be to take the
ordinary modal collapse, and to double points that correspond to more than
one point in the original model. The inductive proof that corresponding
(doubled) points verify the same formulas is similar to e.g. part 3 in the
proof of Theorem 2.5.

Using the o,D-collapse it is easily verified that ¢,D-formulas
satisfy the Zinite moadel property : any formula which is not universally
valid is refuted on some finite model. For if ¢ is not universally valid, then
M E ~glw], for some model M. Taking the ¢,D-collapse of M with respect to
the set of subformulas of ~p, we see that ¢ is refuted on a finite model.

cluster theory
Segerberg [1970] proves the following for L(o):

The Buildozer Theorem. For every transitive, connected (transitive,
connected and reflexive) model, there is an equivalent strict linearly
(linearly) ordered model.

The increase in expressive power we gain by adding the D-operator
to L(¢) is reflected by the fact that the theorem does not hold for L(¢,D):
consider the model M= ({0, 1}, { (0,0, (0,1}, (1,0), {1,1) }, V), where V is
defined by V(p) = { 0 } for all proposition letters p. In each point in M the
formula (p A =Dp) v (=p A =D=p) holds, for each p. From this it follows that
each equivalent N of M must have |N| = 2. Furthermore, in each point in N
the formula (p = o-p) A (=p — op) must hold; it follows that N's points
must be related to each other. Finally, reflexivity follows since op A ¢-p
must hold in each point. S0 M = N, and N can not be a linearly ordered
model.

Nevertheless, the central notion in Segerberg's proof of the
Bulldozer Theorem will appear to be very useful in L(¢,D). It is the notion
of a c/uster:

1.15. DEFINITION. The c/usters of a transitive frame F are the equivalence
classes of W under the equivalence relation x = y iff (Rxy A Ryx) v x = 4.



ch.1,82] Preservation; anti- preservation; filtrations; cluster theory 9

Clusters are divided into three kinds: proper, with at least two elements,
all reflexive; simple, with one reflexive element; and degenerate with one
irreflexive element.

In Chapter 2 we will sometimes want to show two frames
equivalent. We will do this as follows: (i) choose a formula ¢ that is
invalid on the one frame, and let V be a valuation refuting y; (ii) consider
the ¢,D-collapse of the resulting model with respect to the set of
subformulas of ¢; this model may be viewed as a finite linear sequence of
clusters; (iii) turn this model into a model on the second frame, while
preserving the invalidity of ¢.

A similar application of clusters can be found in Chapter 4, Section
3, where we consider the canonical model of a logic, take a suitable
filtration, and turn this filtration into a model on 2, to prove that logic
complete for 2.

§3. Algebras; general frames

We define the algebraic semantics for L(¢,D), and we also introduce
general frames for L(¢,D), as well as functors connecting the algebras and
general frames.

The algebraic semantics is a simple modification of the algebraic
semantics for modal logics.

1.16. DEFINITION. A modal algebra with a aifrerence operator (or d-algebra
for short) is an ordered tuple A =( A, m, d) where A is a Boolean algebra,
and m and d are unary operations on A such that

mO0=d0 =0,

m(xUy) = mx U my,
d(xuy) = dx U dy,

x < ddx, where dz := dZ,
ddx < (x U dx), and

mx < (x U dx)

hold for all x, y € A.

Any frame F induces an algebra A(F) = { p(W),1,-,nm,d), where | =
W, - is complementation with respect to W, n is intersection, and m and d
are defined by

m(%)={vew|3IweL (Rww)},
dB)={veWw|IweL (vzw)l
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One easily proves this d-operator to be a rather trivial operator, in the
sense that it does not create any new sets. If U € p(W) and |U| > 2, then
d(U) = W. For, let U2 {uy, up } and w € W; if w z uy, then w € d(U), and if w
= Uy, then w z Uz and w € d(U). Similarly, if [U] = 1, then d(U) = W\U, and
d(@) = @. So in all cases, applying the d-operator does not yield a new set.

Given a logic L, we define an equivalence relation =_ on the formulas
of L, by identifying formulas which can not be distinguished by : ¢ =
iff L F ¢ < ¢ Now, let [¢]. denote { y | ¢ ~ ¢ }, and consider the
Lindenbaum-Tarski algebra A_ for L, where AL = ( { [¢]. | ¢ a formula },1,-
,n,m,d), where

[l Nyl =9 A ¢l
[l =[],
1 = [T]L,
miyl. = [o9],

diypl = [Dyl.

This definition is justified by the rule of replacement of equivalents for
classical logic. The usual properties of classical propositional calculus
are then expressed in the fact ( { [¢} | ¢ a formula },1,-,n) is a Boolean
algebra. The last two clauses are justified when L is closed under the
rules

oy and o8
Oy < Oy Dy © Dy.

By Lemma 1.5, this is indeed the case. And finally, by our definition of a
logic A, satisfies Definition 1.16.

The following notion will be used in Chapter 4:

1.17. DEFINITION. A general frame ( F, W) consists of a frame F and a non-
empty set W ¢ p(W) such that

(i) W isclosedunder nand -,

(i) UeW s m(), dU) € W,
where m and d are the operators used to define A,

A valuation on a general frame is a function taking its values in W.

It is clear that the (full) general frame ( F, p(W)) is equivalent to
the frame F. Furthermore, if ( F, W) is a general frame, then A F, W)) =
(W,1,-,nm,d) - with m and d defined as before - is an aigebra in the
sense of Definition 1.16.

Finally, a two-way connection between algebras and general frames
is established, by defining, for A an algebra in the sense of Definition 1.16,
F(A) = ( Wa, Ra, Wa), where
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Wa 1s the set of ultrafilters on A,
(W,v) e Ry iff foreachae A, ifaevthenmaew,
Wa={{wewWs|aew}|aeAl

Clearly, F(A) is a general frame.

we are not going to use d-algebras in this thesis - we only
introduced them because we wanted to introduce general frames, and a
general frame is nothing but a frame with a d-algebra (on a subset of its
powerset) attached to it. Nevertheless, we do want to make a remark
about them.

For ordinary modal algebras (i.e. d-algebras without the d-operator)
we have a representation theorem saying that A°F(A) = A, where a € A is
mapped onto the set of ultrafilters on A containing a. In proving that A-F
is an isomorphism one of the things one has to show is that mar(A-F(a)) =
A°F(m(a)), where m is the m-operator in A, and mar is the m-operator in
A°F(A). Any attempt to prove a corresponding identity for the d-operator
gets stuck. :

The reason for this is that we loose all information about the d-
operator when we apply the functor F to A. Whereas the m-operator gives
rise to the relation Ry on F(A) which in turn gives rise to mar in A°F(A),
the d-operator is lost in passing from A to F(A). This is because we have a
fixed interpretation in mind for the D-operator, notably the inequality
relation. If we wanted to treat d on a par with m we would have to
associate a relation S with it in passing from A to F(A) just as we
associated Ra with m. But would this relation S be real inequality?
Evidently some work needs to be done here.



CHAPTER 2
SOME COMPARISONS

We investigate the expressive powers of L(o,D) and L(F,P,D), and compare
them to those of L(¢) and L(F,P). We point out that in one case at least
adding the D-operator to L(F,P) does not enlarge its expressive power.
Next we show that, unlike L(¢) and L(F,P), L(¢,D) and L(F,P,D) have enough
expressive power to make the notion of categoricity a meaningful one. We
end this chapter by making some remarks about L(D).

§1. L(o) and L(o,D)

One way to compare the expressive powers of two languages is to examine
their ability to discriminate between special (read: well-known)
structures. For example, in contrast to L(o), L(¢,D) is able to distinguish
Z from N:

2.1. PROPOSITION. (1) { N, <} =4 ( 2, <).
(”) ( N; <> #0,0 ( Z: <)'

PROOF. (i) If (2, <) ¥ o, for some ¢ € L(¢), then { 2, <, V) E ~¢[w] for some
w € 2, and a valuation V. The subframe generated by w is isomorphic to
( N, <). So by preservation under generated submodels, we have (N, <, V') E
—¢plw], where V'(p) = V(p) n N, for all p. Conversely, any valuation V on
(N, <) gives rise to a valuation V' on { Z, <) which is equivalent to V on
(N, <). Therefore, if (N, <, V) k =¢n], then( Z, <, V') E =g[n].

(ii) This follows from the fact that the existence of a (different)
predecessor is expressible in L(o,D): we have &(p — Dop, Iy (x z y a
Ryx)). |

So ¥x3y (x z Y A Ryx) is an Lo-sentence definable in L(¢,D), but not in
L(o). Other well-known Lo-conditions undefinable in L(¢) are irrefiexivity

and anti-symmetry. By the next result, these conditions do have an L(o,D)-
equivalent:

2.2. PROPOSITION. (Koymans) £very universal Lo- sentence 1s ©,D- derinable.
PROOF. For Vx1..Xn BOOL(RX;xj, Xi = X;j) take
Ugs a ... AUgy = BOOL(E(q; A ©qj), E(qi A q;)). [
This result can still be improved upon:

12
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2.3. PROPOSITION. A// TI\-sentences in R, = oF the purély universal rorm
VPy..VP, VX1...V¥n BOOL(Pixij, RXixj, Xi = ;) are ©,D-aerinable

PROOF. Let p1, ..., Pm, G1, ..., On D€ proposition letters such that each of p, ...,
Pm iS different from each of gy, ..., Gn. Now take

Uqy A ... a UGy — BOOL(ECq;, A pi), E(gi 4 o), ECqj 4 g5)). n

It is a well-known fact that two finite, rooted frames that validate
the same L(¢)-formulas, are isomorphic. This result is improved upon in
L(¢,D): from Proposition 2.2 it follows that any two finite frames are
isomorphic iff they are o,D-equivalent. (For, finite frames are isomorphic
iff they have the same universal first order theory) We state this
corollary officially, and give an alternative proof.

2.4. PROPOSITION. /77 F (= {( Wy, Ry)) and 6 (= { Wo, Ro)) are rinite frames,
henF =6 /77T F=4p 6.

PROOF. The direction from left to right is obvious. For the converse, let W;
={ wy, .., wp }, and suppose that p1, ..., p, are different proposition letters.
Let @ be defined by

/A Epi A AL W (pi A =Dp)l a AL A\ (pj = =l a AL M (pj = Opyl],
1<izn 1<ign 1<i=j<n }S}:rr‘\
<

where 0 = ¢, if Ryw;jw; holds, and O = ¢, otherwise.

Next, put V(pi) = { w; }, then { F, V) £ &, and so =& ¢ Thep(F) and ~& ¢
The,p(G). Hence, we find some valuation V' on 6 such that ( 6, V') £ &v'],
for some v' € Wo. By construction there exist vy, .., Vo € Wo,- which are
different and which enumerate Wo completely -, such that V(py) ={ vy }, ..,
V(pn) = { va } Finally, defining f : Wy = Wy, by wjr— v, gives an
isomorphism. =

You should be convinced by now that adding the D-operator to L(¢)
greatly increases the expressive power. On well-orderings, however, both
L(¢) and L(o,D) can only recognize the sort of things they already
recognize below w2; for L(¢) this result was proved in van Benthem [1989].
For L(o,D) this result follows from the theorem we are about to prove.

25. THEOREM. /7 ¢ € L(¢,D), anad F Is g well-ordered rframe such that
F ¥ 9, then there Is a well-ordered frame 6 < w2 having G ¢ .

PROOF. Since this proof uses a construction which recurs in the sequel, it
will be given in quite some detail. The proof consists of several parts.
Suppose that for some valuation V, anda wo € W, M (= (F, V)) £ ~9lwgl. By
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means of filtration we obtain a finite model on which ¢ fails. Next, this
model is made into a well-ordering of order type < w2 Finally, we show
that ¢ fails on this well-ordering as well.

(1).Let - be the set of subformulas of -y, and define I to be 3~ U { oy |
Dy € Z-}. Consider the finite model Ms = ( Ws, Rs, Vs), where W5, Vs (and
the function g) are defined as in the definition of the o,D-collapse, and
Rsg(w)g(v) = Yoy e = (oy € glw) = oy, ¢ ¢ g(v)). (That g is indeed a fil-
tration with respect to 2 from M to Ms follows from the fact that R is
transitive.)

Note that Rs inherits some properties of Ro: Rs is both transitive and
linear. The first property follows from the definition of Rs, using
transitivity in M. And since g is a Ro-homomorphism, Rs is a linear order-
ing.

Consequently, Ms may be viewed as a finite linear sequence of clusters.
Each nondegenerated cluster consists of a maximal set of points mutually
Rs-related. Within each cluster, points verify the same Z-formulas of the
form oy

(2). Next, Ms will be blown up into a well-ordered model N = { Wy, Ro, Vo).
Put Wo = @, Ro = @ and Vo(p) = @, for all proposition letters p. N will be
defined by examining the consecutive clusters one after another, until all
clusters have been taken care of. Each cluster will give rise to extensions
of Wo, Ro and Vo. We start this process with g(0).

Suppose that T is the cluster we have to take care of, and that we already
have a well-ordering { Wo, Ro) and a valuation Vo,- then the sum of { Wp, Ro)
and an ordinal o will again be a well-ordering.

- if G is a degenerated, put Wo := Wp + 1, extend Vo by verifying a proposi-
tion letter p € 2 in the newly added point iff w € Vs(p), where B ={w };

- if G is simple, put Wo := Wp + ©, and extend Vo by verifying a proposition
letter p € 2 in all newly added points iff w € Vs(p), where B={w };

- if B is proper, put Wo := Wo + 0. Assume G = { wy < ... < wg }, where < is
an arbitrary linear ordering on G. Informally, Vo is extended by repeating
W1 <. < wx 0 times on the newly added copy of w. Formally, Vo is extended
by putting: (all natural numbers mentioned in the next few lines are
assumed to be elements of the newly added copy of &)

0 € Vo(p) iff wy € Vs(p);
1 € Vo(p) iff wo € Vs(p);

k-2 € Vo(p) iff wk-1 € Vs(p);
k-1 € Vo(p) iff wy € Vs(p);
k € Vo(p) iff wq € Vs(p);
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k+1 € Vo(p) iff wo € Vs(p);

It is evident that this process yields a well-ordered model N. As Ms is
finite, N is a well-ordering of order type smaller than 2|

Before proceeding to prove that ¢ fails on N, we introduce some
notation: if v € Ms, V will be used to denote (a) point(s) corresponding to v
inN.

(3). CLAIM. Forall ve X, andall v € Mz, Ms E glvl 777 N E ¢[V].

PROOF (of the claim). By induction on ¢. The only interesting cases are ¢ =
oy, p=Dy

- p= oy = If My E oylv], then Mz £ ¢[ul, for some u such that Rzvu. g is a
Rs-homomorphism, so RoVl. By the IH it follows that N k ¢[T], for some T
such that RoVl. And so N £ oy[V].

«: Now suppose N E oy[V]. Then for some T € Wp, such that RoVU, we have N
E ¢[T]. By construction Rsvu holds, and by the IH we have Ms k ylu]; so Ms
o ylvl

- p=Dy. =: If Mg E Dylv], then Mz E y[ul, for some u z v. By construction we
have V z T, and so the IH yields N k ¢[T], for some T z V. Thus N k Dy[V].

«: At this point it appears why we began the proof by extending Z- to a
larger set 3. Assume N k DylV], then we can find some U € Wp such that
both T z V and N Ek ¢[T] hold. Now, suppose that U corresponds to v. Then v
has to be reflexive in Ms, i.e. Rsvv. By the IH it follows that Mz F oylv].
Since Dy € X, we have oy € 3. By appealing to the original model M we
find:

M E oyl"g 1(v)], by filtration,
> ME Dy["g-1(v)"], M is well-ordered, and hence irreflexive,
= Ms E Dylv], by filtration.

Next suppose that T does not correspond to v, then u =z v, and by the IH we

immediately obtain Ms E Dylv].
This completes the proof of both the claim and the theorem. |

§2. L(¢,D) and L(F,P)

Using similar methods we prove the following theorem which compares
the expressive power of L(¢,D) to that of L(F,P), by looking at @ and R.

2.6. THEOREM. (I)( @, <} #rp (R, <).
() (Q, <} =op (R, <).
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PROOF. (i) Consider the formula X := O(Gy — PGy) — (Gy — Hy), where Oy
abbreviates Hp a p a Gp. We have (@Q, <) ¥ X, but (R, <) E X.

(i) First, assume that (R, <) ¥ p for some ¢ € L(¢,D). So, ( R, <, V) E ~wlr]
for some r € R, and some valuation V on R. Using the ST-translation as
defined in Definition 3.1, we find that ( R, <, V) E 3x ST(—y). Now, 3x ST(—y)
is in Ly, S0 an application of the Downward Lowenheim-Skolem Theorem
yields (@, <, V) E Ix ST(=yp), where V'(p) = V(p)IQ for all p, so ( Q, <, V) E
—~yplq] for some g€ @, and { @, <) ¥ ¥.

Conversely, assume ( @, <) ¥ ¢. We construct a model N (= ( W, R, V)) of
order type A such that N ¥ ¢. The construction is analogous to that of the
previous theorem.

(1). Let Ms be as in Theorem 2.5. This time Rz is not only transitive and
linear, but successive as well, both to the right and to the left. It is easily
verified that Rs has the latter property, by observing that g is a <-homo-
morphism.

Moreover, Ws does not contain adjacent degenerated clusters. For, suppose
a, b € Ws are two adjacent irreflexive points, i.e. we have Rsab and b does
not succeed any successor of a. Let g, r € @ be such that g(q) = a, g(r) = b.
As @ is linear, we have either g < r orr < g. If the latter holds, we also
have Rsba, and by transitivity it follows that a, b are Rs-reflexive. So g <
r. @'s being dense yields an s € Q such that g < s < r, and, consequently
both Rsag(s) and Rzg(s)b hold. But then a, b can not be adjacent points.

(2). Next, we replace each cluster with an ordering that has either order
type A or 1+A. To define a valuation on orderings that replace proper
clusters we will use the following trick. Suppose that G = { wy < ... < wg }
is a proper cluster - where < is an arbitrary linear ordering on T.
Consider the interval [0,1] ¢ R together with a strictly monotone in-
creasing sequence (ap), such that ap = 0 and Lim a, = 1. Remove 0 and 1,
replace G by (0,1) and define V on this copy of A by repeating wy < .. < Wy
w times on the sequence (ay)y, and giving r € (0, 1)\{ a, }, the same valuation
w1 has.

Now, Ms is a sequence of clusters that is successive to the left, so M
‘begins’ with a cluster G that is either simple or proper. In both cases
replace G by an ordering of type A and give all points w's valuation in case
B ={w}isasimple cluster, or apply the above method in case G is
proper.

Consider the next cluster ©:

- if 8 = { w } is degenerated, then & must be succeeded by a nonde-
generated cluster &, by our previous remarks. Replace G and & by an
ordering of type 1+A, give the initial point w's valuation, and treat A as in
the previous case;

- if 8 = { w } is simple, replace it by 1+A and give all new points w's
valuation;

- if G is a proper cluster, replace it by 1+A, give the initial point the
valuation of one of B's points, and apply our special method to A.
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Notice that the final cluster is either simple or proper, since Ms is
successive to the right. It follows that the resulting model N will have
order type A+m-(1+A) = A, for some m € N.

(3). Similar to part 3 in Theorem 2.5. [ |

REMARK. The proof that Ws does not contain adjacent degenerated clusters,
is essentiallyLemma 1.1 in Segerberq [1970].

Combining Proposition 2.3 and the Theorem we see that Q and R can
not be distinguished by purely universal Ti-sentences. Of course, we al-
ready knew this, since Q = R and since all purely universal Ti-sentences
are first order definable. However, the only proof of this last fact we
know of, requires some heavy machinery, whereas the proofs given here
are not too complicated. (Cf. van Benthem [1985], Cor. 3.13.)

Before proceeding to the next section, let us pause to state that
when attention is restricted to linearly ordered frames, D is locally
definable in L(F,P): on such frames Dy is locally equivalent to Py v Fy.
However, the D-operator can not be defined globally in L(F,P) - not even on
linear orderings. For, the frame ( { 0 }, { (0,0) }) is a (tense logical) p-
morphic image of {( Z, <), and F,P-formulas are preserved under such p-
morphic images, but the latter frame validates the formula DT, while the
first one refutes it.

By the previous theorem P can not be defined globally in L(¢,D) - not
even when we restrict attention to linear orderings.

§3. L(F,P) and L(F,P,D)

We describe a class of frames on which every ¢ € L(F,P,D) is equivalent to
a y € L(F,P). As usual, we need some definitions.
Consider the following bounded version of connectedness:

2.7. DerINITION. (i) Let i € N,o. A frame F is called /-connected if for any
w, Vv € Wwithw zv, there exists a sequence of points wy, ..., Wg such that
(Dwi=w, (2) wg=v, (3) for each j (1 < j < K), either RwjWj+1 Or RWj+1wj,
and (4 Kk < i.

(i) F is called <w-connected if F is i-connected for some i € N,o.

Notice that the sequence wy, ..., wx is not required to be a linearly
ordered sequence in the sense that either Rwiw2 A ... A RWg-1Wg O RWgWg-1
A ... Rwaw1 holds. By the definition structures like

W

/N

w ¢ o w3
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are also <w-connected.
We now define mappings ()] taking F,P,D-formulas to F,P-formulas.

2.8. DEFINITION. (i) Let i € N,o. Then OP; is the set of sequences of operators
of length 1, that are built up using only F and P.
(i1) Let i € N,o. The /-transiation (-); : L(F,P,D) = L(F,P) is defined by:

P —p
(peo9)] +— (@) ° (p)}, where e = v, a or =,

(=)} +— =(p)]

(Pp)} +— P(9)],

(Fo)} +— F(o),

(D9) +— [0€\>(<)/pi0(up)’{] v [OGO\XWONJ)’{] v. v I[F(p)i v P(p)]
These translations are designed to help us remove occurrences of the D-
operator in F,P,D-formulas that are evaluated on irreflexive, <w-
connected frames. One might think that the last clause in Definition 2.8 is
unnecessarily complicated for that purpose. E.g., why not take

(D9} > Pi()} v .. v P(p)] vF(9)} v..vFi(e)]

instead? The answer is simple: such a definition can not deal with the
frame F we pictured above. Notice, for instance, that this frame is 2-
connected and that F ¢ DFT[w4] holds, although F ¥ PPFT v PFT v FFT v
FFFTIwil. To be precise, the alternative clause only works when the
sequences wi, ..., Wx in Definition 2.7 are required to be linearly ordered.

2.9. PRrOPOSITION. (1) Zet 1 € Nyo, and let ¥ be an irrerlexive, i-connected
frame. 17 ¢ € L(F,P,D), then F E ¢lw] /77 F & (o)W, for a// w € W.
(1DF k¢ 777F E (9.

PROOF. (i) An induction on ¢. Since i is constant in this proof, we write ¢*
instead of (y)]. All cases but ¢ = Dy are trivial. Suppose F ¥ Dylw]. Then for
some valuation V we have (F, V) ¥ glw'], for all w' z w. By the IH, ( F, V) ¥
¢*[w'], for all w' z w. Since F is irreflexive and i-connected, all w' z w -
and only those - can be reached using sequences of operators in OP; U
OPg-1) U ... UOPy. It follows that

(F, V) ¥ [OE\)(()/piO(tp N v [Oeo\%(fi_”O(tp Nv .. vI[F(p™) v P(p™)]Iw],
that is, (F, V) ¥ (D)*[w], and so F ¥ (Dp)*[w], as required. The converse is

proved similarly,
(ii) Immediate from (i). | [}
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2.10. COROLLARY. L&t Fy, Fp be two irrefiexive <w- connected rrames. 7hen
Fi=fppF2 777 F1=fpFo2.

Proor. One direction 1s obvious. To prove the other one, assume that Fq =fp
F> and let 1 € N,o be minimal such that both Fy and F2 are i-connected.
Choose ¢ € L(F,P,D) such that Fy ¥ ¢ By the Proposition we have Fy ¥ (y)].
Since Fy =fp F2, we also have Fp ¥ ()], and another application of the
Proposition yields Fo ¥ 9. Similarly, if F2 ¢ ¢, for some ¢ € L(F,P,D), then
Fi #9350, Fi=fppF2 n

The following Corollary shows that new results about the ordinary
modal and tense logical formalisms can be obtained by studying the
extended ones.

2.11. COROLLARY. Fix 1 € N. On the class of irreflexive, I-connected rrames
every purely universal M- sentence is F,P- gerinable

ProoF. Combine Corollary 2.10 and Proposition 2.3. ]

REMARK. It is obvious that Corollary 2.10 can be adapted to obtain a
description of a class of frames on which every ¢ € L(¢,D) is equivalent to
some ¢ € L(¢): in the definition of an i-translation we would have to leave
out the clause for formulas of the form Py, and replace the clause for Dy

by
(D)} > Fi(g)} v Fi=1(p)] v .. v F(p)].
The resulting analogue of Corollary 2.10 would then be: Let Fy, F2 be two

irreﬂe)dve, ngmetric and <w-connected frames. Then F] =oD F2 iff F]
=5 F2.

Corollary 2.10 seems to be a best possible result. As soon as we
leave out irreflexivity and replace <w-connectedness by plain connected-
ness, the two notions of equivalence no longer coincide. We use the
following frames to prove this:

"OLQLQ00L0Q

and

°L QU000

lllll

Formally: F ={ N, R), where R={{n,m)|n=morm=n+1 };and 6 = ( 2, S),
where S = {{n,my | n=morm=n+*1} So, both F and G are neither
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irreflexive nor <w-connected. We claim that F =fp G, but F #pp 6. To
prove this, we will need a definition and a proposition:

2.12. DEFINITION. (i) Let H (= { W, T)) be a frame with w € W. Sp(H,w) is
defined by

(1) SoHw)={w1},

(2)  Sp+iHwW) =SyHw) U {v € W | for some u € Sy(H,w) Tuv or

Tvu }.

(i1) The FP-rank Rep(y) of an F,P-formula ¢ is defined by

(1) Replp) = O for proposition letters p,

(2)  Rrp(—9) = Rep(y),

(3)  Rep(y A p) = max(Rep(),Rep(y)),

(4)  Rep(Fy) = Rep(P9) = Rep(p) + 1.

2.13. PROPOSITION. Zet V, V' be two valuations on G resp. F. Suyppose that
for all w €N and all n <w we have V'(p) N Sp(F,w) = V(p) N Sy(6,w) 7or
every proposition letter p. Ir ¢ € L(F,P) and Rep(9) < n < w €N, en
(G, V) E glw] 777 {F, V') E ¢lw].

PROOF. An induction on ¢. Unravel the relevant definitions, and use the fact
that Sp(F,w) = Sp(G,w) for allw 20, andn < w. [

2.14. COROLLARY. F =¢p G.

PROOF. If G E ¢, then F k ¢, because F is a (tense logical) p-morphic image
of 6, via the functionf:6 — F defined by: f(a) = 0, if a < 0, and f(a) = a if
a>0.1f 6 ¥ g, then (G, V) F ~p[w], for some w € Z, and some valuation V.
We can assume that w > Rep(¢) + 1, and consequently that w € N. By putting
Vi(p) = {v eN|ve Vi) } for every proposition letter p, the Proposition
yields F # ¢. [ ]

On the other hand, one easily sees that F #pp 6, by examining the
formula Up — DFp.

§4. Categoricity

This section is devoted to showing that the notion of frame categoricity
does make sense in L(¢,D) and L(F,P,D).

2.15. DEFINITION. A set O of (multi-) modal formulas is called (7rame/
categorical if there is, up to isomorphism, only one frame validating 9. &
is called A-categorica/ if, up to isomorphism, g has only one frame of
power A validating it.
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In L(o) (and L(F,P)) it is quite useless to count the number of (non-
isomorphic) frames validating a single formula, or for that matter, a set
of formulas. For, any such set & having one frame validating it, has
arbitrarily many frames validating it:

2.16. PROPOSITION. Let F £ T, where T c L(¢) or T C L(F,P), and /el 1 be 2
set or Ingices. Then roreach i €1, there is a rrame Fy £ T such that F; #
Fy iriz].

PROOF. Assume that O ¢ L(o). The case that 9 ¢ L(F,P) is proved similarly.
Put Fo:=F. If 1 >0 and i € 1, define A; to be the smallest cardinal A such
that A > |Fj| holds for all j < i. Put F; := &J{ F | k < A }. A simple counting
argument shows that F; # Fj, if 1 z j. Furthermore, using the well-known
preservation results for L(¢) (cf. Fact 1.7) it is easily verified that F;
g, foreachi €l n

However, in L(¢,D) we do have categorical theories. Let F be a finite
frame, having n elements. We claim that Thep(F) is categorical. Suppose
that 6 £ Thep(F), then |G| = n, because by a result in the next section all
finite cardinalities are definable in L(¢,D). Now, from Section 1 we know
that the notions of isomorphism and ¢,D-equivalence coincide in the case
of finite frames. It follows that F = G.

we now turn to the notion of w-categoricity. This notion too is
rather meaningless in L(o):

2.17. PROPOSITION. /7T 75 & theory in L(o) or L(F,P) that is valid on some
countably infinite frame, but invalrad on every rinite frame, then J is not
w- categorical

PROOF. Again, assume that O < L(¢). Let F £ ¥, and |F| = Ro. If F is
connected, then F & F validates 9" without being isomorphic to F. If F is
not connected, then let w € W and consider the subframe Fy, of F generated
by w. Then Fy validates T, so by assumption it has power Ro; finally, it
can not be isomorphic to F because it is connected. |

Notice that the set T in the above proof must be invalid on every
finite frame. For, if ¥ ={oL}and F1 = ({0}, @), then F1 k0L and Fy, =
®n{ F1 | n € N} EOL Furthermore, for any frame G, we have 6 £ 0L iff 6
E Vxy —Rxy. So, if 6 is a countably infinite frame such that 6 ¢ OL, then 6
= Fy. Therefore, T is w-categorical.

From the Proposition it follows e.g. that Tho(@Q) is not w-
categorical, and more generally, that the complete o-theory of an infinite
connected frame is not w-categorical. However, Thep(Q) turns out to be
w-categorical, i.e. up to isomorphism Thep(@Q) is valid on exactly one
countable frame, notably Q.
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2.18. PROPOSITION. 77¢ complete ©,D- theary or Q 1s w- categorical

PROOF. Obviously it suffices to give ¢,D-formulas which are equivalent (on
frames) to the axioms for the theory of dense linear orderings without
endpoints.

(1) 8(oop-op, Yxyz(x<yay<z-=x<2),

(2) B(UpaUg—E(paq@),Vxyz(x<yay<x-x=y),
(3)  8(Up = E(p o =op), VX (A% < X)),

(40 8(UpaUg—E(paoq vEQaop), Vxy(x<yvy<x),
(5) 8(op-oop, Yxydz(x<y-=>x<zaz<y),

(6) 8(DT, Ixy (x z y)),

(7) 80T, Vx3y (x < y)),

(8) given (3), we have 8( Up - Dop, Vx3y (y < x)).

The proof that these equivalences do indeed hold is straightforward. n

The F,P,D-theory of another well-known structure, notably 2, turns
out to be categorical. To see this, we repeat the following result from van
Benthem [1983] section 11.2.2:

2.19. THEOREM. Z /s F,P-gerinable on the cl/ass of connected strict partial
oraerings.

From this result it follows that Z is F,P-definable on the class of
all strict linear orderings. Since this class is defined by universal first
order sentences, by Proposition 2.2 it is also definable in L(F,P,D). So to
end up with 2, first we only consider strict linear orderings, and among
these we then single out Z. By Proposition 2.2 and Theorem 2.19 this can
be done inside L(F,P,D).

In short, we have proved:

2.20. THEOREM. 2 s £, R D-derinable
We immediately obtain:

2.21. COROLLARY. The pp(2) /s categorical

§5. L(D)

We finish this chapter by proving some results on L(D). All pure D-
formulas turn out to be first-order definable:
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2.22. PROPOSITION. L(D) € 1 N1,

PROOF. Using the ST-translation as defined in the next chapter, such for-
mulas can be translated into equivalent second-order formulas containing
only monadic predicate variables. By a result in Ackermann [1954] these
formulas are in turn equivalent to first-order formulas. [ |

Although ‘infinity’ is not D-definable by the previous result, we do
have

2.23. PROPOSITION. (Koymans) A4// Finite cardinalities are derinable in L(D).
PROOF. For all n € N, |W| < n is defined by
A Upi = W E(pi A pj),

1<isn+1 1si<jsn+1

while |W| > n-1 is definedby A Wp; = E W (pj » Dpy). [
1<i<n 1<izn

All first order formulas over identity can be defined as a Boolean
combination of formulas expressing the existence of at least a certain
number of elements. Since these formulas are definable in L(D) by the
previous proof, it follows that on frames L(D) is equivalent with first
order logic over =,



CHAPTER 3
MODEL THEORY

We characterize the Ly-formulas that are (locally) equivalent to a ¢,D-
formula on models, and present three conditions on classes of models with
a single distinguished point such that such a class is definable by means of
a o,D-formula if and only if it satisfies these conditions.

§1.L¢-formulas having a o,D-equivalent on models

Ordinary modal formulas, when interpreted in models, are equivalent to a
special kind of first order formulas. Adding the D-operator does not
change this. We can simply add a clause in the transiation ST for modal
formulas. (For the sake of completeness we repeat the entire definition.)

3.1.DEFINITION. Let x be a fixed variable. Then
(i)  ST(p) = Px,
(ii)  ST(=y) = ST(y),
(ii1) ST(pa %) = ST(y) A ST(X),
(iv)  ST(o¢) = 3y (Rxy » ST(w)x:=yD),
(v)  ST(Dy) = 3y (x z y A ST(pIx:=yD),

where y is a variable not occurring in ST(y).
Since the equivalences

MEglwl  iff MEST(p)w], and
MEy iff ME VXST(yp)

hold, some well-known facts about L{ become applicable for L(o,D). For
example, one has a Lowenheim-Skolem theorem for models, as well as a
compactness theorem for ky, where A kyn ¢ iff for all models M we have
that ME A impliesME .

Ly-formulas of the form ST(y) for some ¢ € L(¢,D) can be described
independently in the following way:

3.2. DEFINITION. The set of ma-rormuias is the least set & of Li-formulas

such that:
(i)  Px €, for unary predicate letter P and all variables x,

(ii) ifxe %, then e %,
(ifi) ifa, pe B, then(axap) e B,

24
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(iv) if a € & and x, Y are distinct variables, then 3y (Rxy A o) € &,
(v) if x €% and x, y are distinct variables, then 3y (x zy A @) €
©.

To be precise, the translations ST(p) of ¢,D-formulas ¢ are md-
formulas having exactly one free variable. To be even more precise, Li-
formulas of the form ST(y), for some ¢, belong to the following subset of
the set of md-formulas:

3.3. DEFINITION. The set of Mo-7ormulas is the least set & of Li-formulas

such that:

(1)  Px €%, for every unary predicate letter P and all variables x,

(i) ifa e, then ~a e,

(i11) if o, p € T have the same free variable, then (A g) € G,

(iv) if € &, x, y are distinct variables, and y is «'s free variable,
then 3y (Rxy » o) € %,

(v) if e, x, yare distinct variables, and y is o's free variable,
then3y (x zy a ) € .

3.4. LEMMA. £very ma-formuia & IS equivalent to a Boolean combination of
Ma-formulas, each with their free variables among those or .

PROOF. A simple generalization of van Benthem [1985], Lemma 3.4. |

3.5. COROLLARY. £wery ma-rformula having one free variable is equivalent to
an Ma-rormuia

PROOF. A Boolean combination of Md-formulas having the same free vari-
able is itself an Md-formula. ]

The first result of some importance in this chapter is a semantic
characterization of the md-formulas in terms of invariance under p-
relations. It generalizes a corresponding result for L(¢) in van Benthem
[1985]. However, whereas the proof given there uses an elementary chain
construction, the proof we present uses saturated models.

According to Corollary 3.5 the characterization will also be a
characterization of the (translations of) ¢,D-formulas in L. As usual we
need to state some definitions and facts first:

3.6. DEFINITION. (1) (Koymans) A binary relation Z is said to be a p-re/ation
between two models My (= ( W1, Ry, V1)) and My (= ( Wo, Ro, Vo)), if
(1) if Zwv, then w, v verify the same proposition letters,
(2) if Zwv, and w' € Wy such that Ryww’, then Zw'v' for some v' €
W> such that Rovv',
(3) if Zwv, and v' € W such that Rovv', then Zw'v' for some w' €
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Wo such that Ryww’,
(4) if Zwv, and w' € Wy such that w z w', then Zw'v' for some v' €
Wo such thatv z v/,
(5) if Zwv, and v' € Wq such that v z v', then Zw'v' for some w' €
Wo such that w z w',
(6) domain(Z) = Wy, range(Z) = Wo.
(i) An Ly-formula a(xy, .., X3) 18 Jnvariant rfor p-relations if, for all
models My and Mo, all p-relations Z between My and Mo, and all wy, ..., Wy €
W1, Wi, ..., Wy € W2 such that Zw wy, ..., ZwWpW,, we have My E alwy, ..., wpl
iff Mo E alwy, ..., Wyl

REMARK. If Z is a p-relation and Zwv holds, then either this is the only Z-
connection for w and v, or both w and v are Z-related to at least two
other points. So, Z may be split up in a bijective part where w € W; has
only one Z-related v € Wp (and vice versa) and several clusters of Z-
related worlds such that each world in such a cluster is Z-related to at
least two worlds (of the other model) in that cluster.

3.7. FACTS. (i) For all o,D- formulas ¢, TigM; k 9lf=) 777 {i €1 | Mk glf(1)] }
el

(ii) Let M be a structure, let U be an uitrariiter. Then M is isomorphic to
an elementary submodel or the uitragpower TiyM.

(1i1) Let L be any countable rirst-order language, /et U be a countably in-
complete ultrarfilter over a set 1, and /et {M; | 1 € 1} be a collection of
L- structures. Then the ultraproduct TIyM; 7s w-saturated

PROOF. (1): TIyM; E 9f~] = TIyM; E ST(P)[f =]
s> {1el| M e ST(PIf()] } €U, the Theorem of L 08,
>{iel| MM Eglf(dl}el.

(11) & (1i1): Chang & Keisler [1973] Cor. 4.1.13. resp. Thm. 6.1.1. |

We can now prove the result we announced:

3.8. THEOREM. An L1-formula o conlaining at /éast one rfree variabie x Is
equivalent to an ma-rormuia irr & Is invariant ror p-reiations.

PROOF. A simple induction proves that every md-formula is invariant for p-
relations.

Conversely: suppose & has this property, and suppose FV(x) =
{ X1,...% }. Define ma(ax) = { g | g is an md-formula, o k g, FV(B) € FV(x)}.
We shall prove that m7(a) £ o By the compactness theorem it then
follows that g k o for some p € m7(x) such that kg © «.
Assume Mg (= { Wo, Ro, Vo)) E md(a)lwy, ..., wpl. We need to prove that My E
alwy,...,Wpl. Introduce new individual constants wy, .., Wp to stand for the
objects wy, .., Wp, and define L* = L1 U { wy, .., Wy }. Expand Mo to an L*-
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model My by interpreting wy as wy, .., Wy as Wy In the remainder of the
proof we use the following notation: if g € Ly, then g* = glxi:=wy, ..,
Xn:=Wpl; and if T Ly, thenT*:={p* | p€T 1.

Let To:= { g | Mo E plwy, ..., Wal, B is an md-formula, FV(g) ¢ FV()}, and
suppose { Bo, ..., Bn }* = T* C Tp to be finite. Then there exists an L*-model
N* such that N* E * A A\T*. For, suppose such a model does not exist, then

N* £ (g A..A B), for every L*-model N* £ o,
> F o = (B A By,
3 (Bo A..A By) € M)
> Mo E (Bo A..a BpdlWi, ..., Wpl, since My E ma(c)wy, ..., Wl

Contradiction! By the compactness theorem we obtain an L*-model M*  o*
A MTh.

Now, let U be a countably incomplete ultrafilter over N, and consider the
w-saturated ultrapowers

MuMp =: { W1, Ry, W11, o, Win, V1)
and
MuM* =: (W2, R2, W21, ..., Wap, Vo).

By the Theorem of Los it follows that both w1, ..., Wi and woy, ..., Wop
realize Tp, since in each ultrapower all factors realize To. The same
argument yields TiyM* F o™,

Define a p-relation Z C Wy x Wp between the (Ly-reducts of) TyMy and
MyM* by putting

Zwv = for all o,D-formulas ¢:
(W1, R1, Vi) E ¢lw] & ( Wo, Ry, V2) F ylv]

At this point it appears why we defined To: to make sure the p-relation 2
can 'start’ at the interpretations of wq, .., Wp: ZW11W21, ..., ZWinWwon. We
have, for example, Zw11Wa1:

(W1, R1, Vi) E glwqq]

> ( Wi, Ry, Vi) E ST(plwi1]

> { W1, R1, Wit, ., Win, V1) E ST()®

> ST(p)* € Ty, otherwise My £ =ST(p)w1], and so
—ST(p)* € Ty, and MyMy £ ~ST(9)*,
i.e. (Wi, Ry, Vi) E =ST(pwi1]

2 { Wo, Ro, Wo1, ..., Wop, Vo) E ST(p)*

> ( W2, R, V2) F glwaq];

the implication from left to right is proved similarly.
Let's verify that Z is indeed a p-relation by checking the conditions in
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Definition 3.6:

(1) By definition.

(i1) Assume Riww' and Zwv, with w, w' € W and v € Wo. We have to prove
that 3v' € Wao: Rowv' A Zw'v'. Define ¥ to be { o,D-formulas ¢ | iyMy *
plw'] 1. We claim that ST(¥) U {Rvy} is finitely satisfiable in (MyM*,v).
Suppose for a moment it is not. Then

(MyM*,v) E VY (Rvy = ~MST(P)), for a finite 2 c ¥,
> MyM* E VY (Rxy = = AST(BNIV],
> MMy E VY (Rxy = —/AST(@)w], since Zwy,

contradicting the fact that MiyMy £ Rxy a A ¥[ww'] Now, (TTyM*,v) is w-
saturated, because it is a finite expansion of an w-saturated model, so for
some v' € Wo we have (TTyM*,v) £ AST(¥) a Rvx[v']. But then we have Zw'v'l
(ii1) Similar to (ii).

(iv) Assume w z w' and Zwv, with w, w' € Wy and v € Wo. We have to find
some V' € Wo, such that v z v’ and Zw'v'. Define ¥ to be { ¢,D-formulas ¢ |
MMy & ¢lw'] 1. Again, we claim that ST(¥) U {v =z y} is finitely satisfiable
in (TTyM*,v). Suppose it is not, then

(MyM*,v) E 73y (v z y A 7MN\ST(P)), for some finite 2 C ¥,
= MYM* £ 23y (x z Y A NST(@)IV],
> MyMp E -3y (X z Y A "AST(®))w], since Zwy,

contradicting the fact that TiyMg £ x z y o A¥[ww']. Finally, (MTyM*,v) is w-
saturated, and so we find a v' € Wo such that (TlyM*,v) E AST(¥) av z x[v'].
But then Zw'v' holds!

(v) Similar to (iv).

(vi) This is trivial: let w' € Wy, we must find a v' € Wo such that Zw'v'. If
W' = Wiy, we have Zw'woy. Otherwise, wiy z w', Zwy1woq, and condition
(iv) gives us the v' € Wy we are looking for. Hence, domain(Z) = W;. Of
course, using (v) one proves that range(Z) = Wa.

Now, a's invariance for p-relations yields TiyMy & &*. According to Fact
3.7.(ii) we have My < TIyMg, and so My E a*, i.e. Mo k alwy, ..., wpl. ]

§2. Definability of classes of models

In his Rodenburg [1986] Piet Rodenburg uses a proof similar to the one we
gave for Theorem 3.8 to characterize the definable classes of models of
intuitionistic propositional logic. A reading of this characterization led to
the results in this section.

For the remainder of this section the basic notion of frame is taken
to be ( F, w), with a distinguished world w (as in Kripke's original publi-
cations). Similarly, the basic notion of model is taken to be ( F, w, V). Our
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definability result will concern classes of such models. In this context,
preservation of a formula ¢ under an operation ® on such models means: if
OUW,R,w, V) =(W,R,w, Vyand (W, R, w, V) E glw], then also { W', R,
w, VY E plw'l

Wwe need the following definition:

3.9. DEFINITION. A class ¥ of first order structures for the first order
language L is called an e/ementary c/ass if there is a sentence & € L such
that 3 is the class of all models of «.

The next lemma is the key to our definability resuit:

3.10. LEMMA. Let K be a ciass of rirst order siructures L. Then ¥ 7s
elementary class 1r and only Iir both Yo and i1ts complement are closed
unaer ultraproaucts and 1somorbhisms.

PRrOOF. Chang & Keisler [1973] Corollary 6.1.16. [ ]

As a corollary to Theorem 3.8 we give a characterization of the
definable classes of models.

3.11. THEOREM. Let M be a class of moadels. Then M = { M (= (W, R, w, V)) |
ME glwl} 7or some ¢ € L(o,D) 777 W Is closed unger p-relations, ultra-
proaucts, while the complement of Mo Is closed under ultraproaucts.

PROOF. Introduce an individual constant w to stand for the object w, and
define L* =Ly U { w }. Obviously, if M is a model, it is also an L*-model:
one merely has to interpret w as M's distinguished point. In the remainder
of the proof we use the following notation: if g € Ly, then g* = plx:=w].

IFM={ME=(W,R w, V)| ME gwl} for some ¢ € L(¢,D), then M,
is closed under p-relations and ultraproducts. The complement of I, is
defined by { =ST(p)* }, hence closed under ultraproducts by the theorem of
Los

For the other direction, suppose that M and its complement satisfy
the stated conditions. Since M. is closed under p-relations, it and its
complement are closed under isomorphisms. Both T, and its complement
may be viewed as L*-models, so by Lemma 3.10 there is a sentence o* € L*
such that for all models M we have M € L if and only if M £ a*.
We may safely assume that w occurs in o - for if it doesn't we can
consider the equivalent formula (&* » w = w). Now Il is closed under p-
relations, so o is invariant under p-relations: let Z be a p-relation
between (W, R, V) and { W', R’, V'y such that Zuv, whereue Wandv € W'. We
must prove that ( W, R, V) k o[u] if and only if (W', R', V') E a[v].
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Now,

(W,R, VWEaUl & (W,R,u, V)EX*,
s (W,R u Ve,
e (W, R,v, Ve M, by closure under p-relations,
s (W,R,v, VYEa",
e (W, R, VYEalvl

By Theorem 3.8 « is equivalent to an md-formula with the same free
variables. Since & has only got one free variable, the equivalent md-
formula must be an Md-formula by Corollary 3.5. Such formulas are
translation of ¢,D-formulas, so « is equivalent to ST(y), for some ¢ €
L(o,D). [ ]



CHAPTER 4
AXIOMATIC THEORIES

In this chapter we prove completeness theorems for several logics in
L(¢,D). First we define the logic of linear orderings and prove it to be
complete. After that, we present a logic that is the logic of both the dense
linear orderings without endpoints and the orderings having type n. Next,
the logic of 2 is determined; we end this chapter by presenting two
incomplete logics, the second of which is used to show that the
completeness part of the well-known Sahlgvist theorem has no
straightforward extension to L(o,D).

First we repeat the definition of the 10gic Dpy:

4.1. DEFINITION. (Koymans) The logic Dy, is obtained from the basic modal
logic K by adding the axiom schemes Al - A4,
Al. D(p = y) = (Dyp = Dy),
A2. v - DDy,
A3. DDy — (¢ v Dy),
A4 op - (pvDy),
as well as a 'necessitation’-rule for D:
Fpp, ¥ 2 Fpp, D

Dr, turns out to be the basic logic in L(¢,D):

4.2. THEOREM. (Koymans) for a// 2 < L(o,D), 9 € L(o,D) we have I tp ¢ /1T
2 Em .

In proving the implication from right to left in Theorem 42, one
looks for a model verifying > + -y Firstly, one considers the Henkin-
model, in which the D-operator is associated with the abstract
‘accessibility-relation” Rp. This model turns out to ‘verify Dp+Z+-¢.
Finally, one proves that Rp can be turned into real inequality.

Using similar methods we describe the logic determined by the
class of linearly ordered frames.

§1. A logic strongly complete w.r.t. linear orderings

We define Dyip:

4.3. DEFINITION. Djp is the logic obtained from Dy by adding the axiom
schemes AS - A7:

31
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A5, oy = Dy, (irreflexivity)
A6. Oy — 00Oy, (transitivity)
A7. 9 = opv Dy = oy (Tinearity)

The following Definition and Lemma are used in proving the
completeness of Dy

4.4, DEFINITION. Let L be a normal logic, and suppose that A, " are maximal
L-consistent sets. Then

RpAr =Wy (pel » Dpe A), or equivalently Vo (Dype A = p€eln),

Ro A= Vo (pel » ope A), or equivalently Ve (Ope A » pe).

Some notation: if R is a binary relation then R is the converse of R,
e R={Y|WuxyeR}.

45. LEMMA. Let L be a normal logic. Then

() 7Zor all maximal L-consistent 3, If o9 €, then ¢ € A for some
maximal L- consistent set ARy 3,

(i) ror all maximal L-consistent 2, 17 Dy € 2, then ¢ € A Tor some
maximal L- consistent set ARpS,

(111) WAl (RpAl’ = Rpl'A),

(iv) WAIrZ (RpAT ARplZ = RpAZ v A =3),

(v)  JFLFAS, then VAT (Re AT = RpAD),

(Vi) JFLFAB, hen YATZ (Ro Al ARTZ = R AZ),

(vii) XL+ A7, then VAT (RpAl = Ro Al v Re T A).

PRoOF. (ii1) follows from A2, (iv) from A3. (v) - (vii) follow from AS - A7
respectively. [ ]

If Rp can indeed be regarded as real inequality in the, if necessary
reshaped Henkin-model for Dy, then this model has to be a strict linear
ordering by parts (v)-(vii) of the previous lemma.

We can now prove the completeness theorem for Dyip.
4.6. THEOREM. Dyin 78 Strongly complete with respect to linear oraerings.

PROOF. We prove that Z + ¢ iff for any linearly ordered model M, if Mk 2,
then M E .

's": As always, the proof is by induction on the length of derivations.

‘«" For future reference we split the proof in two parts.

(1). Assume Z ¥ ¢, and let 2o be any maximal consistent superset of Z+-y.
For each maximal consistent set A, choose a unique name t. Next, define a
model Mo := ( Wo, Re, Rp, V) by putting
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Wo = { t | At is a maximal consistent set },
Rovw, just in case RpAyAw,

RovW, just in case Ro AyAw,

V(p) ={v | pe Ay}, for all proposition letters p.

Then, for all g, all v e Mp: 9 € Ay © Mo E ylv], and s0 Mo F MZ g A ¢lwgl,
where wg is the name for 2.

Now, apply the Generation Theorem to Rp (cf. Fact 1.7 or van Benthem

[1985], Lemma 2.11) to obtain a submodel My of Mo such that wo € My and
such that M; is closed under Rp. By Lemma 4.5. (v) My is also closed under
Ro. Clearly, parts (iii) and (iv) of the same Lemma ensure that Rp holds
between any two different points in M.
(2). We are not done yet. My might contain Rp-reflexive points. To get a
model with real inequality we proceed as follows: let v be an Rp-reflexive
point. Since Rp-reflexivity implies Re-reflexivity by Lemma 45.(v), we
cannot simply remove the Rp-1o0p in v. Instead, replace v by a copy N(v) of
N with its standard ordering, with real inequality, and with v's valuation
everywhere. New points v, € N(v) are to be related to the old points u as
follows:

Rpuvy, if Rpuv and u z v;
Rpvpu, if Rpvuand u z v;
RoUVn, if Ro uvand u z Vv,
RoVpu, if Rovuand u z v.

Repeat this procedure for all Rp-reflexive, Re-reflexive points, and let My
be the resulting model. (So now, two different points may have the same
maximal consistent set associated with them: that's why we started out
by taking names for the maximal consistent sets - instead of these sets
themselves - as the universe of Mo.)

Now Mo is a standard model, i.e. @ model in which Rp is real
inequality. So we are done once we have proved the following:

CLAIM. For any w, andany u € My, we have My k olul 777 Mo E glunl, where
Un = U, /77U a@lréeagy was Rp- irrefiexive in My, and U, € N(U) otherwise.,
PROOF (of the claim). This is an induction on the complexity of ¢. The cases
¢p=p, Ty, ¢ A Y are straightforward. ‘

- ¢ = oy. First observe that if Rouz holds in My, we have RsUnZ, in Mo
Then:

My E oglul = My E ylz], for some z € My such that Reuz,
> Mg E ylz,], for some z, € Mg, by the IH,
> My E oylu,], since by our remark Re Uz, holds in Mo,
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Conversely,
Mo E oylun] = Mok ylz], for some z € Mp such that Reunz,
Now, take any z' € My such that (z'), = z; in My Reuz' holds, s0

s My £ ylZ'], by the TH,
> M E oylul, since Rouz' holds in My.

- o= Dy. Similarly.

This completes the proof of both the claim and the theorem. n

§2. A strongly complete logic for @

As we announced in the introduction, the ¢,D-logic determined by @
coincides with the ¢,D-logic determined by the class of all dense linear
orderings without endpoints. To fix the logic of this class, we employ the
method used in the proof of Theorem 4.6. To determine the logic of @, we
adapt the method used in de Jongh, Veltman and Verbrugge [1988] to L(¢,D).

Before moving on to the completeness proofs, we have to define the
logic we want to prove complete:

4.7. DEFINITION. D, is the logic obtained from Dij, by adding the axiom
schemes A8 - A10:

A8.  oT, (successiveness to the right)
A9. ¢ - Doy, (successiveness to the left)
A10. OOy - Oy (denseness)

Of course, the F,P,D-logic for @ would contain PT instead of A9.
However, as the following Lemma proves, we can simulate the P-operator
just enough in L(¢,D).

4.8. LEMMA. Let L be a normal logic, and suppose that A, T, 2 range over
maximal L- consistent sets. 7hen

(i) /T L+ A8, then YWAI Ry Al',

(i1) 7L F A9, then YAI (RpAl A Rel A,

(i11) 77 L+ A10, then YATAZ (Ro AT = Ro AZ AR 2IN).

PROOF. Since parts (ii) and (iii) are more or less non-trivial, we prove both
of them.

“(i1) Obviously, it suffices toprove { y | Dye A} U{ oX | X € A} consis-
tent. Assume the contrary, then we have (omitting the subscript L in k)
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W1, oo W, OX1, s ©Xm b L, fOr sOMe Dyy, ..., Dun, X1, ) Xm € A
= F Ay = (A0,
> F DMy = ~(Moxy)), by D-necessitation,
> + MDy = D(Mo X)), by Al and + DAy = ADy;. (*)

But, for any v, 5,

F (oY A 08) = —0o(Yab), 3
3 + D(oy A 08) = Do(y A B), by D-necessitation.

Applying this result to (*), we get

F MDy = Dol Xy), _
» Do(M X)) € A, since Dy € A,
= Do(MXy) € A, by definition of D,
> (/MX;) € A, by A9,
s MX; ¢ A Contradiction,

(i11) Suppose Rovw. Again, we only have to show that { ¢ | Oy € A} U { 0X
| x €} ¢ L Note:

$1, oy Yy X1, o OXm F L, TOr SOMeE Oyy, ..., Oy € A,
and X1, .., Xm€ T,
> My b (A0X),
= My F WO,
=> My F OW-YX,,
> MOy + OOW-YX;,
= MOy F OW~YXy, by ATO.

Now, MOy € A, SO D\X/‘l')(,j € A, and \X/"lXj €. Contradiction. u

REMARK. Another proof of parts (i) and (iii) of the Lemma would run as
follows: axioms A8 and A10 satisfy the conditions of the well-known
Sahlgvist Theorem for L(o) (cf. Section 5, and Sahlqvist [1975], Sambin
[1980]). Among other things this result tells us that A8 and A10 are first
order definable, and that their corresponding first order properties hold
in the canonical model.

Here come the completeness theorems for Dy;

4.9. THEOREM.
(1) Dy /s strongly complete with respect to dense linear orderings
without enapoints.

(i) Dy /s Strongly complete with respect to orderings of tyoe n.
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Proor. (i) Copy part (1) of the proof of Theorem 4.6, and modify its part (2)
by replacing Rp-reflexive points u by a copy Q(u) of @ with its standard
ordering, with real inequality, and with u's valuation everywhere,
etcetera.
(i1) There's an uninteresting proof which runs as follows: if A ¥ ¢ in Dy
then (i) yields a dense linearly ordered model without endpoints in which
A+g holds at some point. Using the Downward Lowenheim-Skolem
Theorem we can take a suitable countable elementary submodel in which A
+ =g still holds at some point. By Cantor's Theorem this model has to be
isomorphic to Q.

Here is a more interesting proof which uses the methods of de Jongh
et al.[1988]:
'3": As usual, proving soundness is left to the reader.
‘e’ Let A be a maximal Dy-consistent set. Of course, it suffices to define
a countable dense linear ordering ( I, <) without endpoints, and a
valuation V on {( 7, <), such that for some t € I, t € V(p) iff ¢ € A. More
precise, we construct such an ordering and associate a maximal Dy-
consistent set It with everyt € I, where

(a) thereisate T withli = A,

(b) ift<t', thenRoMit,

(c) iftzt, thenRplilt,

(d) if opeli, thenpely for somet' > t,
(e) ifDpely, thenpely for somet' zt.

Next, putting V(p) = { t | p € It }, one easily verifies that for all ¢, t € V(y)
iff p € I, - which completes the proof.

Let { ¢ | i € N } enumerate all formulas of the forms ¢y and Dy in
such a way that each such formula occurs infinitely many times. For each
n € N we construct a finite structure ( Ty, <) such that (b), (c) hold for the
M's associated with the t's € T,. At even stages we will select Ii's in such
a way that all of T,'s elements satisfy (d) for some specific og, or (e) for
some specific Dy. By adding ‘enough’ points at the odd stages we make sure
that the resulting ordering will be dense and without endpoints.

Stage-1.
Top={t}, rt_' = A,

Stage 2n.
Let oy be the n-th formula. We can distinguish several possibilities:
: If op gl forallt € Topn, put Tonet := Ton
II. If opely, for some t € Ty, and if for all such t there isat' € Ty,
suchthatt <t and p € 'y, put Top+1 := Ton.
Let Ton = { to, .., tk }, wWhere tg < .. < tx. Assume that oyp € I, for
some t € To, while forno t' > t, ¢ € 'y, There are two possibilities:
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ML

Iv.

11

opel and opgly,

o€l Let t be anew point, andput t > t', for all t' € Tan. Since o¢
€ I, Lemma 45 (i) yields a FtRol“t such that ¢ € . By Rp-
transitivity and by parts (v) and (iii) of the same Lemma, we have
that for all I, such that tj € Tan, both Rplilt and Rplily, hold. Extend
Tan in the obvious way to obtain Topes.

op ¢ M, Let 1 be the Targest index such that o¢ € M\, . We may
assume that for all t; > t; we have ~p € [’ ty Another apphcatlon of
Lemma 4.5.(1) yields a rport such that p € ' We have

I.Ro ™ = Rolyl™ and RplTy,, by Lemma 4.5.(v) and (iii),
2. Ft I"tm > Rorql“t is) and Rnf‘t‘ﬂl“ti,
3 0pd My, and el s not Ry, I,
494y, =Tzl

> RplTy,,, by Lemma 45.(iv), 1. and 2,

* Rol, I Or Rel'Ty,,,, by Lemma 4.5.(vii),

> RolMy,,, bY 3.

Let t' be a new point in between t; and tj+1, and put 'y = I". Then, if s
<t we have Relsly, and if t' < s we have Rt Is. Finally, using Re -
transitivity (Lemma 4.5.(vi)) and parts (v) and (iii) of the same
Lemma, we see that if s z t' then both Rpl't's and its converse hold.

Next, suppose that Dy is the n-th formula. Once again, we can distin-
guish several possibilities:

If D ¢y, for all t € Ton, put Tonet = Ton.

If Dp € I, for some t € To,, and if for all such t there isa t' € Ty,
suchthatt zt and p € 'y, put Top+1 := Top.

Let Ton = { to, .., t }, where to < .. < ti. Assume that Dy € [}, for
some t; € Ty, While fornot € To, we have botht ztjand p €Ity
Lemma 4.5.(11) yields a I" such that Rolt[" and ¢ € T. By part (vii) of
the same Lemma Rply[" implies Rol[™ or RolTy. Assume that Roli[”
holds. (The other case is similar.)

(*) If i = Kk, then t; 1s maximal in Tan. By Ro-transitivity it follows
that Ro s holds for all s € Ton. S0 Rpls™ and Rpl'Ts hold for all such
s, by Lemma 4.5.(v) and (iii). Now, let t be a new point, put t > s for
allsinTo,, let iy =T, and add t to To, to obtain Ton+1. We are done.

If i zk, then

Ro ity » Roly[t.,,» by Lemma 4.5.(v),
» RoM, M, by Lemma 4.5.(111),
» Rol,,lor I, =T, by Lemma 45.(iv) and
the fact that Rpl; til“ ,
» Rpl,, since p € T\,
> Roly, [ Or RolT,,,, by Lemma 4.5.(vii).
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If R, holds, go back to (*) and repeat the procedure with i+|
instead of i. Otherwise, Ro [Ty, holds and we are done: again, by Re -
transitivity it follows that I is Rp-related to I's for all s € To,. Now,
let tbeanewpoint,put M =rands<tifss<tjandt <sif s 2 tj.
Adding t to To, defines Ton+1. (Since Toq is finite this procedure will
eventually decide where we have to put " among the t's.)

Stage 2n+ 1.
This is where we make sure that < will be a dense linear ordering which
has no first or last element. Let Tone1 = { to, .., tk }, Where to < .. < t.
Lemma 4.8 parts (i) and (ii) yield an R, -predecessor 'y foreach i, 0 < t <
k, as well as an R -successor for I, The third part of that Lemma gives
new points in between each pair of points. It is obvious how to obtain
Ton+2.

Finally, let @ := T-y U YU (Tn). Then I is a countable dense linear
ordering without endpoints satisfying (a)-(e). By Cantor’'s Theorem ( I, <)
has to have order type n. ]

REMARK. Notice that leaving out the odd stages in the preceding proof yields
an alternative proof for the completeness of Dyip.

§3. A complete logic for Z

We can not hope to prove any logic strongly complete with respect to
(2, <). This is easily concluded from the fact that compactness fails. A
well-known example is provided by { ¢O-p, op, ¢2p, ¢3p, ... }.

This failure implies that completeness of the D-logic for Z will
have to be proved differently than in S1 and §2. The method we will use is
inspired by the method H.C. Doets used in his Doets [1987] to prove the
standard tense logic for Z complete. Now, let us begin by defining Dx:

4.10. DEFINITION. The logic Dty is obtained from Dy, by adding the axiom
schemes A8, A9 as wellas Al l:
All. @y = ¢) = (o009 — O9).

What is essentially D-logical about Dy? Compare Dy with the well-
known modal and tense logical logics for Z:

Modal logic for Z Tense logic for Z D-logic for 2
o¢->00 ¢ Gp->GG ¢ Oy-00 ¢
o{pa09- ¢) v O(paDY~ ¢) Fp > G(pvPPVFy) YADY - opvD(P-0 ¢)

-- P$ > H(pvPovFe) | --



Ch. 4, 3] A complete logic for 2 39

oT FT oT
-- PT P 5 Doy
o(Og- 9) » (oO9-0 ) G(GP- 9) > (FGP-G 9) o(og- 9) » (omy-0 9)

- H(H9> 9) - (PHY-H ¢) --

-- -- P > Doy

S0 Dy does not differ too much from either the modal or tense logic for Z2
- although Dy contains real irreflexivity and linearity, whereas the other
two only contain right-linearity or left- and right-linearity.

Moreover, our proof that Dt is indeed the D-logic of Z is not really
different from the completeness proofs of the modal and tense logics for
Z. (Cf. Segerberg [1970] and Doets [1987].) We need the following simple,
but very useful lemma:

A11LEMMA. /FMED;, and ¢ ={w | M E ¢lw] } /s non-empty and ypwara-
bounded, then $¥ has a maximum.

PROOF. Doets [1987]. m
4.12. THEOREM. Dy 78 complete with respect to 2.

PROOF. Suppose ¢ VDS ¢, where & is finite. Consider the normalized Henkin-
model as defined in e.g. Theorem 4.6, where Rp-reflexive points are now
replaced by a copy of Z. By Lemmas 4.5 and 4.8 the resulting model M (=
(W, R, V)) is a strict linear ordering without endpoints.

Next, consider the ¢,D-collapse Ms - as defined in Ch.1, §2 - of M w.r.t. the
set 3 of subformulas of e U{ 9} U{ oy |Dye & U{ -9} } Asin the proof
of e.g. Theorem 2.6 we find that Ry is transitive, linear and successive,
both the right and to the left. Moreover, Wz consists of a finite linear
sequence of clusters. We describe a method for getting rid of
nondegenerated clusters that are neither initial nor final.

Let B be such a cluster, and let a € Ws\G be an immediate successor
of G. Then for some Oy € I we have My £ Oyla] and My ¥ Oylc] for all ¢ €
G. So, by filtration (-Oy) is upward bounded and non-empty, and
according to Lemma 4.11 it has an R-maximum m. Notice that gim) € G: by
the maximality of m we have Rxm for each x such that g(x) € G, so Rscg(m)
for all ¢ € G; furthermore, we can not have Rsag(m), since Mz # Oylm] and
M £ Oylal, so Rsg(m)a - but then g(m) must be an element of G, since g(m)
is a successor of G, while a is an immediate successor of G.

Now choose a strict linear ordering <' on G such that g(m) is the <'-
last element. Letting B~ :={ae Ws\B | Ybe BRsab }and B+ :={a € W\ G |
Vb € G Rsba }, define F to be the frame
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(G, Rsl(BxB) + (B, <) + ( T, Rsl(B+xT)),

and Ms to be the model ( F, Vs). One can prove by induction that for all y €
3, and all v € Ws, we have Ms k ylv] iff M5 E ylv]. The only non-trivial case
is when Ms ¥ Oylv], for some v € B. Then My ¥ Oylg(m)], and hence by
filtration we find that M ¥ oylm]. So there exists an element k in M such
that Rmk and M # ylk]. Obviously g(k) succeeds G. By filtration again we
find that Ms ¥ ¢{g(K)], so by the IH also Mz ¥ 4[g(k)L. By the definition of Ms
it follows that My ¥ Oylvl.

Repeating this trick a finite number of times, we end up with a
finite model M* having the form:

mo—h'—hc—hc e g0 —b0 %%
2

where the first ellipse represents the initial cluster, and the second one
represents the final cluster. By our previous remarks we have for all y €
3 and all v € Wy, Ms E ylv] iff M* E ylv]. Now the initial cluster G, gives
rise to a linear ordering wq <' .. <" Wy just like the other nondegenerated
clusters did. (Gj is nondegenerated because My is successive to the left.)
Gin is to be replaced by w*, and the valuation is to be expanded by
repeating wy <" ... <' Wy 0 times on w*:

LW L < W< W <L < W,

Let N be the resulting model. One proves by induction that for each y € 2
and each w € M* E y{w] iff N £ ¢{W], where W is a copy of w, if w has been
multiplied, and w otherwise. The only non-trivial case is when N k Dy[W],
for some w in the initial cluster G, So for some v z w we find N E y{v].
The case that v z X for all x € Gy, is trivial, so assume that v = X, for some
X € Gip. Then

M* E yix], by the IH,
> Mz E ylx],
> Mz E oylx], since Ry is reflexive,
= M k oylk], for some k such that g(k) = x, by filtration,
(notice that by definition oy € 31),
= Mk Dylk], because M k oy = Dy,
= Ms k Dylx], by filtration,
> M" E Dylx],
> M E ylyl, for some y z x.

So we find two different points (x and y) at which ¢ holds - at least one of
these must be different from w. Consequently, M* £ Dy{w].
Similarly, the final cluster B = { wy <' .. < W, } - where <’ is an
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arbitrary linear ordering on G - is to be replaced by a copy of w, on which
Wi < ... < W, isrepeated v times.

It is easily verified that the resulting model N* is isomorphic to
(2, <), and that & U { ¢ } holds at some point in N*. [

§4. A simple incomplete logic

Thomason [1972] gives an example of an incomplete logic, a simplified
version of which is described in the sequel. We adapt this example to
obtain an easy incompleteness result in L(o,D).

4.13. DEFINITION. The logic ID is obtained from D, by adding the axioms A5,
A6 and A12, where

AS. o9 = Dy,

A6. Dy — 0O0OY,

A12. O¢ ¢ — o0y (The so-called McKinsey Axiom.)

We need the following result:

414, LEeMMA. Let F £ ID, then

(i) R 7sirrefiexive

(i1) R /s transitive,

(iii) F e V¥x3y (Rxy a Vz (Ryz = z = y)).

PROOF. (i) and (ii) are straightforward. (iii) is Lemma 7.2 in van Benthem
[1985]. n

In fact AS defines irreflexivity, A6 defines transitivity, and given
A6, A12 is equivalent to the condition mentioned in Lemma 4.14.(iii). So all
ID-axioms are first order definable. This means that ID is a much simpler
example of an incomplete logic then Thomason's incomplete logic, which,
in its simplified version, consists of the above McKinsey and the LGb
Axiom O(Oyp — ¢) = O¢ It is well-known that the Lob axiom is outside of
M. 1: it defines transitivity plus well-foundedness of the converse relation.
(Cf. van Benthem [1985].)

One proves that the logic consisting of these axioms is incomplete
by proving (a) that the McKinsey axiom forces the existence of an R-
irreflexive point in frames validating it, while the Lob axiom forbids the
existence of such points, and (b) that nonetheless, this logic is consistent.
Using a similar method we will show that ID is incomplete.

So, first we prove that there are no frames validating ID:
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415. Lemma {F |[FEID} =@,

PrOOF. Suppose that F k£ ID, and let w € W. By part (ii1) inLemma 4.14, there
exist wi, wo such that Rwwy, Rwiwsp and Rwawa. However, by part (i) in
the Lemma w2 must be an irreflexive point. ]

4.16. LEMMA. ID /s consistent

PROOF. Let W be the set of finite and cofinite subsets of N. We claim that
the general frame (N, <, W) validates ID. It is easily verified that all the
closure conditions of Definition 1.16 are satisfied. Both the transitivity
and irreflexivity axiom are valid already on ( N, <), and so on { N, <, U,
Since all valuations have to take their values in W, it follows that for any
formula g and any valuation V, we have that either V(g) or V(=y) contains
an interval [m,~) for some m. From this it follows that for all n € N we
have (N, <, W) k Oop = o0yln]. ]

4.17. THEOREM. ID /s incomplete

Proor. If ID were complete, it would be inconsistent by Lemma 4.15 - con-
tradicting the previous Lemma. ]

What this incompleteness result shows is that the minimal ¢,D-
logic D, is too weak to produce all valid inferences in L(¢o,D). Of course,
there may be stronger ‘base logics" in the context of incompleteness
phenomena in L(¢) van Benthem [1979] considers weak second oraer /ogic
as a particular example. This deductive system contains some first order
base complete with respect to modus ponens, similar axioms for the
second order quantifiers, and the following form of ‘first order
instantiation’ for first order formuias y:

VYPy = ¢[P:=y].

Deducibility in this system will be denoted by ro. Let ¢ € L(¢,D) contain
the proposition letters py, .., pn. Then the universal closure of the
standard translation Y3T(y) is VP ... VP, ST(y). Through the second order
transcription v +— V3ST(y), weak second order logic may be used as a
modal base logic. We claim that L is still not derivable from ID in weak
second order logic:

4.18. PROPOSITION. ID o 1.
PROOF. Consider the general frame ( N, <, W) as defined in the proof of

Lemma 4.16. By Lemma 9.16 in van Benthem [1985] the only Lo-definable
subsets of N are the finite and cofinite ones. So by definition W is closed
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under Lo-definability.

Following van Benthem [1979] we define the following notion of
‘weak second order consequence’: let 3 U { ¢ } be a set of formulas in the
second order language with one binary first order predicate constant R
and unary predicate variables; then Z ko ¢ iff

for all general frames ( F, W) satisfying
(1) W is closed under Lo-definability, and
(1) (F, W) e Z[f], where f is an assignment of points in W
to individual variables, and of sets of points in W to
(unary) predicate variables,
we have (F, W) k [f]

The first condition ensures that VYPy — ¢[P:=y] will be true in ( N, <, W)
under any assignment. An easy induction on the length of derivations
shows that = o ¢ implies 2 ko ¢ Finally, an application of this result to
the (second order translations) of the ID-axioms proves the Proposition. m

So, having weak second order logic as our base logic does not
safeguard us from incompleteness phenomena.

$5. An even simpler incomplete logic

We prove (i) that the obvious extension to L(¢,D) of the completeness part
of the Sanhlgvist Theorem does not hold, and (ii) that not every logic L C
L(o,D) that has the finite model property is complete. We will prove
claims (1) and (i1) using an extremely simple incomplete logic.

Here it is:

4.19. DEFINITION. The logic DnA13 is obtained from Dp by adding axiom
scheme A13:
A13: ¢ = Dy

4.20. PROPOSITION. (i) Let A range over maximal DmAl3-consistent sets.
Then M A (RpAA).

(i1) 8y — Dy, L).

(iif1) {F|FEDnAI3}=0.

PROOF. To prove (i) use the axiom A13. (ii) is easy, and (iii) follows from
(i), ]

4.21. PROPOSITION. DnA13 78 consistent.
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Proor. Consider the general frame ( F, W), where F = ({0, 1}, 8, z) and
W ={@,1{0, 1}}. Obviously, (F, W) £ Dy. Moreover, {( F, W) £ ¢ = Dy, for if
(F, W, Vy £ ¢[0] or { F, W, V) £ g[1], for some valuation V on { F, W), then
V(p)={0, 1}, and so {( F, W, V) £ Dg[O] and { F, W, V) £ Dy[1]. N

4.22. THEOREM. DnA13 /s incomplete
PROOF. Combine Proposition 4.20 (iii) and Proposition 4.21. n

Before stating our next result we repeat an important theorem
about L(o):

THE SAHLQVIST THEOREM. Let ¢ Le a moaal formula which 1S equivalent to a
conjunction or rormuias of the rorm o™y = X) where

() X 7/spositive,

(i) arter eliminating - from ¢ anad rewriting ¢ with -
occurring only in rront of proposition letters, no positive
occurrence of @ proposition letter 1s in a subrormuia of ¢ of
the rorm v v gy or oy within the scope of some 0.

Then Ky (= the logic obiained rrom K by aading ¢ as an axiom Scheme) 1s
complete and ¢ corresponds to a rirst order rormula errectively
oblainable rrom .

A Sahlgvist Theorem for L(¢,D) would describe a class G of ¢,D-formulas
such that for any v € T the logic Dy (= the logic obtained from the basic
logic in L(¢,D) by adding ¢ as an axiom scheme) is complete, and such that
any such g corresponds to a first order condition.

Any such class G should extend the original class defined above. The
obvious candidate would be the class of all ¢,D-formulas ¢ = y, where y
is positive and ¢ satisfies some condition similar to the above condition
(11). However, if we want the completeness-part of the Sahigvist Theorem
to hold for formulas in this class, the condition on the antecedent
formulas can not be as 'simple’ as condition (ii). Otherwise the formula
p — Dp would be an admissible formula - but it is incomplete by Theorem
4221 In short, Theorem 4.22 has the following

4.23. COROLLARY. 7he completeness part of the Sahigvist Theorem has no
obvious extension to L(¢,D).

On the other hand, in Chapter 5 we will show that the second
(correspondence-) part of the Sahlgvist Theorem does have an obvious
extension to L(¢,D).

In fact the completeness part of the Sahiqvist Theorem does not
even have an obvious extension to L(D)! Simply take the basic logic in L(D) -
which is Dy, with all the axioms in which a ¢ or O occurs left out - and
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extend it by adding axiom schema A13. (Cf. Koymans [1989] for a precise
definition of the basic logic in L(D).)

what's next? A useful result about L(¢) says that any logic L C L(¢)
that has the finite model property (f.m.p.) is (weakly) complete. We will
show that this result does not hold for logics L ¢ L(¢,D), by proving that
DmA13 has the f.m.p.

we need the following Proposition:

4.24. PROPOSITION. DnA13, consiaered as a bimodaal logic whose semantics is
based on two abstract relations Re and Rp, 1S complete w.r.t. the c/ass or
all rrames (W, Ro, Roy hat satisry:

(i) ¥xy (Rpxy — Rpyx),

(i1)  ¥xyz (Rpxy A Rpyz — Rpxz v x = 2),
(111} ¥xy (Roxy = x = y v Rpxy),

(iv) VX Rpxx.

PROOF. The Proposition may be proved using a Henkin-type completeness
proof. ]

4.25. COROLLARY. DA 13 has the rrmp.

PROOF. Assume that DnhA13 ¥ 9. By Proposition 424 we find a model M; (=
{ Wi, R},, Rg, V1)) satisfying conditions (i)-(iv) in Proposition 4.24 such
that My £ —9plwgl for some wo € W. By the Generation Theorem we may
assume that wo generates M;. Using this fact and condition (ii) it is easily
verified that any two different points are R}-related. Moreover, by
condition (iv) R} is reflexive, so R} is total.

Let 2 be the set of subformulas of -, and for w € W put Z(w) =
{0 €3 | Mk olwl} We define a filtrated model My = ( Wo, R2, R3, V2) by
putting

Wo={Z(w)|wew},
RZ2ab=VyeZ (Oye€a= yebh),
Riab=Vyes (Dyea=»yeb),
Volp) = {Z(w) [ peZ(w) }.

A simple induction shows that for all w € Wy and all y € 2 we have
My E olw]iff Mo E 42 (W)l
S0 Mo E ¢[Z(wg)]. Moreover, My is finite and Mo E DnA13. The first of these

Claims is obvious, and to prove the latter we only have to show that Mp
satisfies conditions (i)-(iv). Let's do so.
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(1) Assume REZ(UZ(v), and let Dy € S(v); we have to show that y € Z(u).
Since Dy € Z(v) it follows that My £ Dylv], and since R} is total on Wy we
have Rivu, so My k glul and y € Z(u).

(i) Assume RZ(WZ(v), REZ(V)Z(W) and S(u) z S(w). Let Dy € 3(u); we
have to show that ¢ € Z(w). Again, we have M; k Dylul, because Dy € Z(u).
Since R} is total on Wy we have Rjuw, so My F ¢iwland y € Z(w).

(iii) Assume RZZ (W3 (v) and Z(u) z Z(v). Let Dy € 3(u); we have to show
that € Z(w): but this is similar to the previous case.

(iv) Let 2(u) € W and Dy € Z(u). We have to show that y € Z(u). Yet again,
we have M; k Dylul, because Dy € Z(u). Since R} is reflexive it follows that
M; k ylul Hence y € Z(u).

To complete the proof we only have to show that Rg can be turned
into real inequality. To this end we apply the method of doubling Rp-
reflexive points to Mo: let n € My, then n is Rg—reﬂexive; replace n by two
points ny, n2 and put Rpning and Rphany, and for all m z n, Rpnim, Rphom,
Rpmnq and Rpmna. Finally, ny and ny are to have the same valuations as n,
i.e. n1, no € V(p) if n€ Vo(p), for all proposition letters p. Repeat this
procedure for all Rg—reflexive points, and let Mz be the resulting model. A
straightforward inductive proof similar to that of the Claim in the proof
of Theorem 4.6 establishes that

M2 E 9ln] iff Mz E ¢[n1] and M3 E glno]

holds for all formulas ¢. S0 Mz E DyA13 and Mz F ~glw] for some w in Mz.
Now, Rp is real inequality in Mz: it holds between any two different

points, and it is irreflexive, so Mz is a standard model. Finally, since Mz is

finite, Mz is finite as well. [ ]

4.26. THEOREM. Mot every logic L € L(0,D) that has the rmp. 7s complete.

PROOF. DnA13 has the f.m.p. by Lemma 4.25, but by Theorem 4.22 it is
incomplete. ]

Notice that the Theorem also holds for L(D): take the basic logic in
L(D) and extend this logic by adding axiom schema A13. It is easily verified
that our entire argument can be adapted to this logic. (Cf. Koymans [1989]
for a precise definition of the basic logic in L(D).)

We end this Chapter by stating some speculations. Recall that
according to BLu//s 7heorem all modal extensions of S4.3 are complete.
(Here S4.3 is the modal logic of the reflexive linear orderings.) We
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conjecture that it no longer holds for ¢,D-logic. Another conjecture of
ours is that there is some general theorem saying that most of the well-
known modal logics like T, S4, S5 have a straightforward extension to
complete logics in L(¢,D). Finally, we think that simple examples can be
found in L(¢,D) for most of the well-known ‘pathologies’.



CHAPTER 5
FIRST ORDER DEFINABILITY

we describe two large classes of first order definable ¢,D-formulas. We
show that these results have no straightforward generalization to
languages with n-ary modal operators, where n > 2.

§1. Two theorems on first order definability in L(o,D)

S.1. DEFINITION. (i) A formula ¢ is said to be monotone in the proposition
letter p, if, for all models M=( W, R, V), for all w € W and all valuations
V' satisfying V(p) € V'(p), if M E ¢[w], then (W, R, V'} E ¢[w].

(i1) ¢ is said to be pos/tive if ¢ is built up using T, L, proposition letters,
A, v, ¢, 0, D and D. Notice that each positive formula is monotone in all its
proposition letters.

5.2. PROPOSITION. For all ©,D- formulas &, all & € Ly, and all proposition
letters p we have:

() 8(p,0) & 8ylp:=-pl,a), and

(1) 27 ismonotone in p, then g€ M1 777 plp:=1] € M1,

PRrooF. (i) Straightforward.

(1) Let ¢ be monotone in p. Then, for every frame F, and all w € W, F £ ¢p[w]
iff F E glp:=L)lw]. From left to right this is obvious. The other direction
follows from the fact that { w € W | F £ L[w]} = @ and the assumption that
¢ is monotone in p. n

The first theorem in this section extends Theorem 9.8 of van
Benthem [1985] - which applies to L(¢) - to L(¢,D). Before proving it, we
introduce some useful abbreviations:

Oip abbreviates O..(i times)..Og, o iy, Diy, and Diy: similarly;
Ri*1xy (i > 0) denotes 3z; (Rixz; A Rz;y),
x zi+1y (i > 0) denotes 3z; (x 21 z; A Z; z Y).

One definition is needed:

5.3. DEFINITION. (i) We write [X1, X2, .. | O1, O, ..] to denote the set of
objects generated by X1, X2, ..., Uusing the operators 01, O, ... {In the sequel
these objects will either be operators or formulas.)

(i OP :=[ ()| O, D], where () denotes the empty sequence.

(111) If O € OP, and x, y are variables then the Lo-formula RT(D,x,y), called

48
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the route from x to y descrived by 0, is defined as follows:
- if @ =(), then RTO,x,y) = x = y;
-if 0 =00, i > 0, then
RT(O,x,y) = 3zi+1 (RiXzis1 A RTDD", Zj+1,y)),
-if 0 =D, i >0, then
RT(B,x,Y) = 3zj+1 (x=iZj+1 A RT@O', Zj+1,4)),
-if0 =0, i > 0, then RT®,x,y) = Rixy,
-if 0 =Di, 1> 0, then RT(Q,x,y) = x 2 y.

5.4. THEOREM. et
(i) eellp,gr..|{0]|0e0P)l]|v,a 0Dl and
(i) ¢ be apositive rormuia

Then ¢ = y€ M1,

PROOF. First we reduce the theorem to the case without occurrences of 'v'
in ¢. To this end the obvious propositional and o,D-equivalences can be
employed to rewrite ¢ as a disjunction of formulas built up using Op, L, T,
A, ¢ and D:

olpvy) = (09 v oy),

D(p v ) = (Dyp v Dy),

((pvy) = X) = (¢ = X)aly = X)),
PpAlpyvX) @ (pay vipaX)

Next, write ¢ = ¢ as a conjunction of implications, each of which has one
of these disjuncts as its antecedent.

Then remove all proposition letters occurring in ¢ = ¢ but not in both ¢
and y. Let p be such a proposition letter. If p occurs in g, then ¢ = y is
monotone in p, and we are allowed to substitute L for p by Proposition
5.2.(i1). Otherwise, use Proposition 5.2.(1) and consider (¢ = )[-p := p] in
stead of ¢ = ¢ Then L can be substituted for p in this formula, since it is
monotone in p.

Let = ybe a formula obtained in this way. ST( — ¢) can be written in
such a way that no two guantifiers bind the same variable. In this way, we
obtain a 1-1-correspondence between the occurrences of ¢, 0O, D and D in
(p = ¢) and the bound variables in ST(p = y).

Next, consider the antecedent ST(g) in ST(p — ¢). Since we only have to
pass occurrences of 'a', all existential quantifiers can be moved to the
front. This yields Jys..3uk ¢, so ST(¢ — ¢) may be written as Vy;..Vy (¢
- ST(y).

Let u be a variable not occurring in ST(p = y), and let |p| be an occurrence
of the proposition letter p in ¢, and suppose that y; is the unique bound
variable corresponding to the innermost occurrence of a ¢ or D, the scope
of which contains |p|. Define v(|p|) := yi. If such an occurrence of ¢ or D
does not exist, put v(|p]) = x.
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Now, |p| occurs in the scope of an O € OP. Put CV(|p|,#) = RT@ v(|p]),w).
CV(p,p) is defined to be the disjunction of all formulas CV(|p|,9), where |p]
is an occurrence of p in ¢ By taking alphabetic variants we can make sure
that the formulas CV(p,p) and Vyi..Vyk (¢ = ST(y)) do not share any bound
variables.

By substituting, for each proposition letter p and corresponding predicate
constant P, and each variable z, the formula CV(p,¢)u:=z] for Pz in
Yyi..Vy (¢ = ST(y)), we obtain the Lo-equivalent s(p = ¢) of p = ¢ We
have proved the theorem, once we have shown that for all frames F and all
weWFEyp- ywliff FEs(p— glwl

The direction from left to right is a universal instantiation, and needs no
proof. Conversely, suppose that for some valuation V we have (F, V) k ¢lw].
We have to show that (F, V) F y{w]. Now,

(F, VY Eglw] = (F, V) F 3y1.. 3y ¢lw]
> (F, VY E ¢[w, Wy, ..., W], for some wy, ..., wg € W.

Define a valuation V' by putting, for v € W,
V'(p) = {v|F ECV(p,pIw, W1, ..., W, V11,

where v is assigned to u. Obviously, we have, for all proposition letters p,
Vi(p) € V(p), as well as {F, V) E ¢'[w, w1, .., wil. Let ¢" be the result of
substituting the formulas CV(p,¢) for the P's in ¢. And let ¢ be obtained
from by applying the same substitution to ST(y). Then,

(F, VY E ¢lw, wy, ., W]
> (F, VY E¢'[w, wy, ..., wgl.
s (F, VY Eylw, wy, .., wi, since F E s(p — g)w],
s (F, V') E ST(p)[w].

Applying the fact that g is monotone in all its proposition letters, and the
fact that for all proposition letters p, and all v € W, we have V'(p) € V(p),
we immediately obtain that (F, V) E ST(y)w], and so that (F, V) F yiw]. =

Our next theorem generalizes the previous one. Restricted to L(o) it
appears in van Benthem [1985] and Sahlgvist [1975]. Again a definition is
needed:

5.5. DEFINITION. We define positive and negative  occurrences of
proposition letters p in a formula:
(1) p occurs positively inp,
(i1)  pdoes not occurin L, T,
(1i1) 1f p occurs positively (negatively) in ¢, it occurs positively
(negatively) in y —= ¢, and negatively (positively), and
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accordingly positively (negatively) inpa gy, pvy wapand yv
¢, negatively (positively) in g,

(iv) if p occurs positively (negatively) in ¢, it occurs positively
(negatively) in o, Oy, Dy and Dy

5.6. THEOREM. Suppose that 9 €[L,T,p,0,7, .. | v, o, 0, 0, D, D1 satisfies
rfor all proposition letters p init, either
(1) no positive accurrence or p 1s in a sublormula of the form ¢ A
X, Oy or Dy within the scape of some ¢ or D, or
(1) no negative occurrence of p 18 in a sublformula of ¢ of the
rorm A X, or Oy or Dy within the scape of some o or D.
7hen v € M1,

ProorF. First we reduce the theorem to a special case. If some proposition
letter p occurs only positively in ¢, then ¢ is monotone in p, and by
Proposition 5.2 we can consider ¢[p:=1] in stead of ¢. If all occurrences of
p in ¢ are negative, then p occurs only positively in ¢lp:=-pl, and we can
consider this formula in stead of ¢, since y € M1 iff ylp:=—p]l € M1 by the
same proposition. Then we consider (g¢lp:=—pDIp:=L1] Applying the
proposition again, and removing double negations, we make sure that every
remaining proposition letter satisfies condition (2) of the theorem.
Now, consider the negation of formula just obtained, and rewrite it as a
formula y built up using (negations of) proposition letters, 1, T, v, A, ¢, 0,
D D. This can be done by using the equivalences —oX < O-X, —OX ©
-, DX © D-X, -DX « D-Y¥, ==X ¢« X and the De Morgan laws. The
resulting formula has the property that no positive occurrence of a
proposition letter in y remains in a subformula of ¢ of the form X v & or
o X, or DX in the scope of some O or D.

CLAIM 1. Let OX (DX) be a subformula or v. Then O, (DX) s equivalent to
a conjunction of rformulas of the form Op and n-rormulas,- where O € OP
anda where an n-rormula is a rormuia in which no proposition letter occurs
positively

Proor (of claim 1). An induction on X. The following cases are trivial: X =
P, P, L, T, X1 4 X2

Now, iIf X = X1 v X2 or X = 0¥y or X = DXy, then no proposition letter
occurs positively in it, by our remark preceding this claim. That is, in
those cases X already is an n-formula.

If X = 0OX;4, we have - using the IH -

X1 © 011 A.. A0Dn A X2 A A Xim,
where 6; € OP, and X2, ..., Xm are n-formulas, and so

O0%; < 001p1 A ... A00pPn A OX2 A ... A O¥m,
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and the RH3 formula has the required form.
If X =D¥X1, we can proceed similarly. B Claim

Now, replace each occurrence of OX or DX in g which does not 1ie within
the scope of another O or D by equivalents given in Claim 1. Let ¢ be the
resulting formula.

CLAIM 2. £ach subformula X, of ' 1s equivalent to a qisjunction or ror-
mulas burit up using rormuias or the form 5p, n-rormuias, a, ¢, D.

PROOF (of claim 2). Yet another induction. The cases X =p,p, L, T, X1 v X2
are trivial, and if X = X1 A X2 we can use the propositional distributive
laws.

If X = oYX, we have - using the IH -:

X1 < "a disjunction of the proper kind",

and
oX1 © of ),

and distributing ¢ over the disjuncts in the RHS formula again yields a
disjunction of the proper kind.

If X =D¥y: similarly.

If X, = OX; or DX, then - by the above - X is either an n-formula or of the
form Op. B Claim

Applying this second claim to ¢/, we obtain a disjunction ¢" = gy v .. v 4y,
where gy, ..., 4y, are built up as indicated. Now, ¢ © -y © ¢ © -y’ S0
© g AL A g Since p € L1, if each =y € TIL1, we only have to consider
these formulas —.

For a start, notice that ST(y) can be written in the form 3yi..3yk ¢ as in
the proof of Theorem 5.4; this time, however, only with respect to those
occurrences of ¢ and D that have a positive occurrence of a proposition
letter in their scope. For each p, define CV(p,y) as in the proof of the
previous theorem, and substitute it in Vy;..Vyx ¢. This yields the required
equivalent s(—w;) of -y, It's obvious that for all frames F, and all w € W,
F £ ~ylw] implies F £ s(-g)wl.

Conversely, suppose that for some valuation V we have ( F, V) k ¢lw], and
so (F, V) k ¢lw,wq, .., wil, for some wy, ..., wx € W. Using the formulas
CV(p,y) to define a valuation V' as before, we find that (F, V') k glw,wy, ...,
wil, and V'(p) € V(p) for all proposition letters p. It is easily verified that
F £ yilw,wy, .., wil, where ¢ is obtained from ¢ by substituting the
formulas CV(p,y) for the P's. Finally, s(y) = Vy1..Vyk ¢i, SO F E s(g)lw] m
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§2. Excursion: adding other operators to L(¢)

Let I be an index set, and let L(¢,01,02,..) be the language obtained from
L(o) by adding (binary) modal operators ¢, for i € I. A close inspection of
the proof of Theorem 5.4 shows that this result can be extended to
L(0,0 1,0 2,..). For, as Johan van Benthem pointed out to us, the one feature
of the operators occurring in the antecedent formula that is central to
that proof, notably their distributivity over v, is shared by each o
assuming that each ¢j corresponds to a binary relation Rj, one easily
verifies that for every L(¢,01,02,.)-frame (W, R, Ry, Ry, ..) we have
{W,R,R1,Ro, .} E<ilpvy) « (ojpvopforalliel

So adding more unary modal operators to L(¢) gives rise to a fairly
straightforward generalization of Theorem 3.4 As far as possible
generalizations of Theorem 5.4 are concerned, the following extension is a
less harmless one: let # be a binary modal operator defined by

M=(W,S, V)Ep# ylx] iff Jyz (Sxyz and M k& ¢ly] and M E y[z]).!

(Here we assume that the semantics of _an n-ary modal operator is to be
based on an (n+1)-ary relation.) Its dual # is given by

M=(W,S, VyE o # ¢[x] iff Wyz (if Sxyz then M £ gly] or Mk ¢(z]).
We see that # too distributes over v:

ME (91 v o) # ¢lw]
& Jlyz ( Swyz and M E ¢y v polyl and M E y(z])
& Jyz (Swyz and M E ¢yl and Mk ¢{z]) or
Jyz ( Swyz and M k poly] and M k ¢[z])
& ME(pr#y) v (p#pwl

Therefore, the following restricted form of Theorem 5.4 holds for L(#):
p— ype M1, if pispositiveand g is inlp, q, r, .. | v, a, #]. Notice that the
full version of Theorem 5.4 for L(#) introduces universal quantifiers over
disjunctions. For, the full version allows antecedent formulas ¢ € [#ip, #iq,
#ir, .. | v, , #], where #ip abbreviates (.. (p # p) # ... # p) (with i occur-
rences of p). Now, modal formulas in which universal quantifiers range
over a disjunction are known to lead us outside of .1. (Cf. van Benthem
[1985] Chapter 10.) So one might expect that things go wrong here - and
indeed they do.

To prove this, we present a formula ¢ — ¢ € L(#), such that ¢ is

! The recent rise of the so-called ‘Interpretability Logics’ where a binary modal operator > is
added to the provability logic L, adds interest to the present considerations.



54 First order definability [Ch. 5,82

positive, ¢ is in [#ip, #ig, #ir, .. | v, A, #], and ¢ = v is equivalent to a
formula X in L(¢) that is known to be outside of .1,

5.7. PROPOSITION. Zet M= (W, R, S, V) be an L(o#)-mode] such that M
Satisries YxXYz (Sxyz « RxY Ay = 2). 7hen for all X € W:

(i) MEoglx] 777 ME 9# glx],

(i) Meo(pvelx] 777ME o # ylX],

(111) M e oO9lx] 777 ME 9 # ¢lx]

PROOF. (1) M k oylx] & Ty (Rxy and M E ¢ly])
& Jyz (Rxyand y = zand Mk glyl and M k ¢[z])
& 3lyz (Sxyz and Mk glyl and M £ ¢[z])

& MEp# gx]
(i1) Similar. (ii1) Immediate from (ii). [ ]
Let
o = 0(ap v p) = o(op A P)
and

pr=#2p > [((p#p)Aap)# ((p#D)AD)]

5.8. COROLLARY. Zel F =( W, R, S) v an L(o,#)- Irame such that Yxyz (Sxyz
o Rxyay=2). 7henF e wlxl /77 F e wixl, forall x e W.

5.9. LEMMA. (van Benthem [1985]) go ¢ T.1.

PROOF. Consider the sequence of frames Fo, Fz, Fg4, ..., where Fp, = { Wy, Rp)
andWp={0,1,.,n}YandRy={{0,i)| 1 <i<n}U{{1,2),.,M1,n, M1 n
> 2 }. Notice that F,, k goln] for all ag? n. Now assume that g is equivalent
to a(x) € Lo. Using the compactness theorem for Lo we find an infinite
frame F containing a point w without predecessors which is succeeded by
infinitely many points each having exactly one predecessor other than w,
and exactly one successor. Moreover R is irreflexive and there are no
loops of finite length,

Now a(x) can be falsified in w by putting a point in V(p) iff both its
successor and its predecessor other than w are not in V(p). [

5.10. THEOREM. 91 ¢ 1.

Proor. Consider the proof of the previous Lemma. We will modify it in the
following way. Extend each frame Fp in that proof to an L(¢o#)-frame by
putting ¥xyz (Sxyz < Rxy a y = 2). By Corollary 5.8 we have F, £ ¢[0] for
oad n, since Fp E woln] for such n. Since all F, have F, k£ ¥xyz (Sxyz < Rxy
A Yy = 2) we may assume that the infinite frame F we find in the proof of
the previous Lemma, also has F £ ¥xyz (Sxyz < Rxy a y = 2). By Corollary
5.8, again, we find that ¢ is refuted at w. ]
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