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Preface

Interpretability has been studied extensively; see e.g. Visser [1989] for numerous references. It
has been used to establish results on decidability and undecidability of theories and on relative
consistency, and to compare the strength of theories.

Given some fixed axiomatic theory 7', interpretability over 7' may be considered in two ways.
It may be studied as a unary predicate on axiomatic theories, say UnlInterp,(A), which stands for
‘T interprets T + A’; or as a binary relation between axiomatic theories, say BinInterpy(A, B),
which stands for ‘T'+ A interprets 7'+ B’. Accordingly, the modal analysis of interpretability in
the spirit of Solovay’s analysis of provability may be undertaken using either a unary or a binary
modal operator. Smorynski was the first one to treat the unary interpretability predicate as a
modal operator (‘T’), and Svejdar was subsequently the first one to introduce a binary operator
(‘>’) to be interpreted as the binary interpretability relation.

Now, interpretability as a binary relation between theories seems to be the basic no-
tion, since unary interpretability is reducible to it; in the above notation: Unlnterpp(4) «
BinInterpp (T, A), or: IA « T > A. This thesis contains five loosely connected chapters on the
modal logic of interpretability — all but one treat interpretability as a binary modal operator.
These five chapters are preceded by the introductory Chapter 1, in which we briefly survey our
notation, and list some axioms and definitions.

In their important 1990 paper Dick de Jongh and Frank Veltman prove the modal com-
pleteness of several interpretability logics. In Chapter 2 we present new proofs for the modal
completeness of some of the systems de Jongh and Veltman deal with. In stead of using de
Jongh and Veltman’s method — which is based on the machinery of finite maximal consistent
sets contained in some large adequate set — we use infinite maximal consistent sets and small
adequate sets.

The main result in Chapter 3 builds on Albert Visser’s proof of the arithmetic completeness
of ILP with respect to finitely axiomatized sequential theories that extend IAy + SupExp. By
proving some additional propositions we will be able to turn Visser’s proof into a proof of the
arithmetic completeness of ILP*.

As we pointed out before, the main emphasis in this thesis will be on binary interpretability
logic. However, for several of the binary systems introduced in Visser [1988] we will precisely
determine their unary counterparts, i.e., their subsystems in which the formula A in A > B isin
fact T. This will be done in Chapter 4.

In Chapter 5 we introduce the notion of an internal definition; this is a schema of the form
f(A,B) < A > B, where f(A,B) is a formula in the modal language that contains ‘0’ and ‘¢’
only. Using such schemas we will study the hierarchy of L-conservative extensions of IL.

Compared to most of the other chapters the sixth and final one has a somewhat light-
hearted flavor. In it we make some general remarks on the modal theory of the language £(0J, >)
of interpretability logic. We also characterize the first-order formulas that are equivalent to
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formulas in a natural extension of £(OJ, ).
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1. Axioms and Models

The first section contains the necessary preliminaries. The systems IL, ILP and ILM are intro-
duced as well as their semantics. In Section 2 we discuss some theorems and derived rules of
IL.

1 Introduction

The languages we consider all extend the language £ of propositional logic, i.e. they contain
an infinite supply of proposition letters p, ¢, r, ... as well as the usual connectives. We use
L(®1,...,0n) to denote the modal language with operators ®1,...,®,. Upper case letters will
be used to denote modal formulas. Mostly, we will be concerned with logics in the languages
£(0,>) and £(0,I). Here ‘T is the usual provability operator, while the intended interpretation
of aformula A > B (in an arithmetical theory T') is “T'+ B is relatively interpretable in T+ A’. The
unary operators ‘11’ and ‘I’ are defined by ‘0% A := A AJA’ and TA := T > A’, respectively.

We now introduce the basic interpretability logics; they are all devised by Albert Visser,
and discussed extensively in Visser [1988] and [1990].

1.1 Definition. (i) The provability logic L denotes Propositional Logic plus

(R1) FA/FA— B = B,
(R2) HFA =04,

(L1) O(A — B) — (0A — OB),
(L2) 04 — O0OA4,

(L3) O(BA — A) — DOA.

(ii) The interpretability logic IL is obtained from L by adding the axioms

(J1) O(A — B) — (A> B),

(J2) (A> B)A(B>C)— A C,
(J3) (A C)A(B>C)— AVBD>C,
(J4) A> B — (0A — OB),

(J5) QA D> A.

(iii) Several axioms have special names:

(F) (Al> (}A) — [O0-A,

(W) A> B— A (BAO=A),

(P) A> B—0O(A> B),

(M) A> B— (AANOC) > (BADOC),
(Mo) A> B — (QAANDOC) > (BADOC).

If X is the name of some axiom, then ILX denotes the system IL 4+ X.

Next we define the so-called Veltman models for interpretability logic:
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1.2 Definition. (i) An L-frame is a pair (W, R), where W is a non-empty set and R is a
transitive, conversely well-founded relation on W.
(i) If R is a binary relation on some set W, and w € W, then wR = {w' € W | wRw'}.

Moreover, R := {(y,z) |zRy} and R := {(z,y) |ztRy or z = y }.
(i) An IL-frame is an L-frame (W, R) with an additional relation S, for each w € W, which

satisfies:
(1) Sy is arelation on wR,

(2) Sy is reflexive and transitive,
(3) if v/, w”’ € wR and w Rw”, then w'S,w”.

We will often write S for { Sy, | w € W }. To save words we assume from now on that F denotes
the frame (W, R, S). Moreover, primes, sub- and superscripts of F are supposed to distribute
over W, R, S, e.g., F! = (W' R, S?).

1.3 Definition. An IL-model is given by an IL-frame F together with a forcing relation I+

satisfying:
ul- 04 <= Vv (uRv = vl A),

ulFAD> B <= Vv(uRvandvlF A = Jw (vSyw and w I B)).

We write F = A if w - A for every IF on F and w € W. To save words we assume from now
on that M denotes the model (W, R, S,IFF). Moreover, primes, sub- and superscripts of M are
supposed to distribute over W, R, S and I-.

1.4 Definition. (i) An ILP-model is an IL-model that satisfies the extra condition: if

wRw RuS,,v then uSyv.
(ii) An ILM-model is an IL-model satisfying the extra condition: if uS,vRz then uRz.

In their 1990 paper de Jongh and Veltman prove the following (modal) completeness results
for IL, ILP and ILM:

1.5 Theorem. (i) IL is complete with respect to finite IL-models.
(i1) ILP is complete with respect to finite ILP-models.
(iii) ILM is complete with respect to finite ILM-models.

2 Some Theorems and Derived Rules of IL

We prove some theorems in IL and use these to give an alternative, [J-free axiomatization of IL.
Then we use the modal completeness results mentioned in Section 1 to show the IL-validity of
some rules.

2.1 Proposition. (i) ILF0OA4 — -Ap> 1
(i) ILF OA o —(A > L);
(ii) Let J5' = A> AANDO-A. Then J5 and J5' are equivalent over IL\ J5.

Proof. Clearly, (ii) is immediate from (i). To prove (i), note
ILFOA - O(T — A)
—0(-A— 1)
—=AD 1, by J1.

Conversely,
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ILF-AD> L — (0—A — OL1), by J4
— (O7T — O4)
-_ DA-
(iii) Observe
LFA— (AANO-A)VO(AAO-A)
LEDO(A — (AAO-4) VvV (A ADO-A))
IL\J5+F Ap> (AAO-A)V Q(AADO-A), by J1
Now
IL\J5+F AANO-A> AADO-A, and
IL\J5+ J5F Q(AAO-A) > AANTO-A
so J2 yields
IL\J5+J5F A> AADO-A.
Conversely, assuming J5', we have
IL\J5+F AV OAD (AV OQA)ADO-(AV QA). (*)
Furthermore,
LEO-(AVQA) — O-A.
So
LE(AVOA)AO-(AV QA) — (AVOA) AO-A
— A.
By R2 and J1 this implies IL\ J5 F (AV QA)AO~(AV QA) > A. Together with (%) and J2 this

yields IL\ J5+ J5'F AV QA D> A. Finally, L+ QA — AV QA implies IL\ J5 F QA D> AV QA4,
so by J2 we have IL\ J5+ J5 F QA > A. ]

Using the equivalence [JA <« —A > 1 we provide an alternative, [-free axiomatization of
IL.

2.2 Definition. IL* denotes Propositional Logic plus

(R1*) FA,FA— B =F A4

(R2*) FA— B =+ Ap> B;

(J1*) (AANB)> L — A -B;

(J2*) (A> B)A(B>C)— AD C;
(J3*) (A CYA(B>C)— (AVB)D> C;
(J5*) A> AA(AD> B).

In addition, IL* contains the definition A := —-A > L.

2.3 Proposition. If IL* - A then ILF A.
Proof. Tt is sufficient to show that IL is closed under the IL*-rules and that IL proves all IL*-
axioms. Now, closure under R1* is trivial, and if ILF A — B, then IL+ A > B by R2 and
J1, so IL is closed under R2*. It is clear that J2*, J3* are IL-derivable, and given the fact that
ILFOA — A D> 1, it is clear that J1* is. So it remains to be proved that IL - J5*. We have
ILFAANO-4— AANDO(A — B)
— AAN(A> B), by J1,

SO
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ILF ANO-A> AA(AD> B), by R2 and J1.
Together with Proposition 1.3.(iii) and J5 this implies that IL - J5*. n

2.4 Proposition. If IL} A then IL* | A.
Proof. We show that IL* proves all IL-axioms, and that it is closed under all IL-rules. Closure
under R1 is trivial. As to R2, note that IL* F A implies IL* + —=A — L implies IL* - —=A > L
— but this means IL*  OJA.

To show that IL* proves L1, we have to show that IL* F ((AA=B) > L) A(=AD> 1) —
~B > L. Now,

I*+ (AA=-B)> L) A(mAD> 1) = ((AA-B)V-4) > L, by J3* (*)

Furthermore, IL* + =B — (AA-B)V =4, so IL* =B > (AA-B)V —A, by R2*. Thus, by (%)
and J2* it follows that IL* - (AA-B)> LA (A D> 1) — —B > 1, as required.
As is well-known, to show that IL* proves L2 it suffices to show that IL* proves L3. Now

IL*F (FAA(RAD L) D L—=AD (mAA(—AD L) A (RAA (A D> 1)) > L, by J5*
—-oAD> 1, by J2¥,

which means that IL* F L3.
J1 is immediate from J1*; J2 and J3 are J2* and J3*. To show that IL* F J4, it is

sufficient to show that IL* F Ap> B — (B> 1L — A D> 1) — and this is just a special case
of J2*. Finally, to show that IL* F J5, we only have to show, by Proposition 2.1.(iii), that
IL*+F A> AA(A D> L) — which is just a special case of J5*. u

Next we derive closure of IL under various rules of inference. We need the following notions:

2.5 Definition. (1) A frame F is a subframe of a frame Fy if (1) Wy C Ws, (2) R, =
RyN(Wy x W1) and (3) for all w € W1, S = S2w N(W1 x W1). F is a generated subframe
of F, if F; is a subframe of F, such that, for all w € Wy, v € Wy, if wRyv then v € Wy,
and such that for all w, v € Wi, u € Wy, if vS3,u then u € Wj.

(ii) A model M; is a submodel of My if F; is a subframe of F;, and for each proposition letter
p{weWi|lwikp}={weWs|wlp}NW;. If, in addition, F; is a generated subframe
of F3, then M is a generated submodel of Mas.

2.6 Proposition. If M is a generated submodel of M, then, for all w € W and all formulas
A, wik A ff wlik, A
Proof. Induction on A. ™

2.7 Proposition. (i) IL+ A ¢f ILF O4;

(i) IL-A> Biff ILF A— (BV {B);

(i) ILF A> B iff ILF- QA — OB.
Proof. (i) One direction is an application of rule R2, while the other direction is an easy appli-
cation of the preceding ‘Generation Theorem’.

(ii) One direction is easy:

ILF A— BV {B = ILF (A — BV (B), by R2,
= ILF A B, by'J1, J3 and J5.

The converse direction may proved semantically, using a trick known as ‘Smoryniski’s trick’.
Assume that IL If A — BV QB. By the completeness theorem for IL, there is an IL-model

M; = A— BV QB (Figure 1):
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w @ A, —B,—CB w A, —B,—=©B

Figure 1. Figure 2.

We may safely assume that M, is generated by w. Define M, by appending a new root
wg to M as follows (see Figure 2):

- Wy = {’LU()}UW1;

- Ry = Ry U {{wp,v)|veW;}. Soforall ve Wi, vR; = vRy;

- for all old points v, S, remains the same, while Sy, is the reflexive closure of Rs U
{{w,w) } on woR;

- for all old points v, v Ik p iff v IF; p, and wp I+ p for all p (or for some p, or ...).

Then M is an IL-model, and for all C and v € Wi, v s C iff v IF; C. Moreover, let
WS4, then v = w or wRv; in both cases we find v |1 =B, so v IF2 = B. Hence, we have woRaw
and w I3 A, while for no v € wS} y,, v -2 B. Therefore, wg -2 =(A > B) and ILK A > B.

(iii) The direction from left to right is immediate by axiom J4 and rule R2. The proof of the
converse uses Smoryiniski’s trick, and is similar to the second half of (ii) above. N

If, in the above proofs, the ‘input-model’ in the application of Smorynski’s trick is an ILP
(or ILM-) model, then so is the ‘output-model’. Therefore, if ILS denotes either IL, ILP or ILM,
then:

2.8 Proposition. (1) ILS+ A f ILS F O4;
(i) ILSFA> B iff ILSF A — (BV {B);
(i) ILSF A B iff ILS+ QA — OB.



2. A New Approach to Modal Completeness Proofs

In this chapter we give new modal completeness proofs for several well-known systems. These
new proofs use infinite maximal consistent sets in stead of the finite ones used in de Jongh and
Veltman [1990]. Our approach has the advantage that it can do without the large adequate sets
employed in that paper.

Section 1 contains the necessary preliminaries. Section 2 contains the modal completeness
proofs of IL and ILP. We have not been able to prove completeness for ILM using our method
— the problems besetting our attempt are set out in Section 3. The reader whose main interest
lies with modal logic may move directly to Chapter 4 after having read this chapter; there, he
or she will find further applications of the method described below.

1 Introduction

We start with some definitions. Let ILS denote either IL or ILP.

1.1 Definition. Let I', A be two maximal ILS-consistent sets. Then I' < A (A is a successor
of '), if

(1) A, 04 € A for each A €T
(ii) OA € A for some A ¢ T'.

We write T < AforI'=A or I' < A.

1.2 Definition. Let I', A be two maximal ILS-consistent sets. Then A is a C-critical successor
of ' if

(i) T <4
(ii) =4, O0-A € A for each A such that A> C €T.

We repeat two results from de Jongh and Veltman [1990]. Originally they were proved
for finite maximal ILS-consistent sets contained in some finite large adequate set. By a simple
compactness argument, however, their proofs apply equally well to the infinite sets considered
here, so we will state the two results without proof, and in the form in which we will need them.

1.3 Proposition. Suppose T' is a mazimal ILS-consistent set. If —=(B > C) € T', then there
exists a C-critical successor A of T', such that B, 0B € A.

1.4 Proposition. Suppose T' is ¢ mazimal ILS-consistent set with B > C € I'. If there is an
E-critical successor A of T with B € A, then there exists an E-critical successor A’ of T' with

C,0-CeA

1.5 Proposition. ILF —~(B > C)— {B.
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One final definition is needed before we can prove the completeness of IL:

1.6 Definition. A set of formulas ® is adequate if

(1) if B € ®, and C' is a subformula of B, then C € ®,
(ii) if B € ®, and B is no negation, then =B € ®.

Let & be a adequate set. Then we say that a formula $B is almost in ®, if, for some C,
Bp>CedorCp> Bed,orif, for some C, B=-C and [IC € ®.

Assuming that negations —A are written as A — L, any non-empty adequate set contains
1.

2 The Modal Completeness of IL and ILP

Although we prove the modal completeness of IL and ILP separately, the definition of the struc-
ture (Wr, R) is common to both proofs. We therefore introduce it independently of the com-

pleteness proofs.
Given some infinite maximal ILS-consistent set I', and a finite adequate set ®, (Wr, R)

consists of pairs (A, 7), where the maximal conistent sets A are needed to handle the truth
definition for formulas in I' N ®. We use the sequences of formulas 7 to carefully index the pairs
we put into Wr. In this way we make sure that (Wr, R) will be a finite tree.

Let us get to work now. For the time being, let I' be an infinite ILS-maximal consistent
set, and let ® be a finite adequate set. We use @, 7,. .. to denote pairs (A, 7). And if w = (A, 7),
then (@)o = A and (w); = 7. We write ¢ C 7 for o is an initial segment of 7, and o C 7 if 7 is
a proper initial segment of 7.

2.1 Definition. Define Wt to be a minimal set of pairs (A, 7) such that
(i) (T, () € Wr;

(i) if (A,7) € Wr, OB € A is almost in ® and C € ®, and if there is a C-critical
successor A’ of A with B, (0-B € A’, then <A’,TA((B, C’))) € Wr for one such A,

Define R on Wr by putting wRv iff (@)1 C (9)1.

In a series of Propositions we now establish the main facts about (Wr, R). First of all, our
‘indexing mechanism’ ensures that Wr is finite:

2.2 Proposition. Wr is finite.

Proof. Since |®| = m < w is finite it follows that |[{ 0B € T'| QB is almost in ® }| = n < w, for
some n. So I' gives rise to adding at most n - m new elements to Wr. Now each of these new
elements will contain one less formula of the form () B, where (B is almost in ®. So each new
element will give rise to adding at most (n — 1) - m elements. Continuing in this way we see that

Wl <1+ 15 (=) -m) <w. .

2.3 Proposition. If (A,7) € Wr and E occurs as the second component in some pair in T,
then —E € A.

Proof. Show by induction on the construction of Wr that if (A,7) and E are as stated, then
-F, [0-F € A. u

2.4 Proposition. If w, v € Wr and (@)1 C (9)1, then (@)o =< (¥)o.
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Proof. The proof is by induction on n = max (1h((®%)1),1h((?)1)). The case n = 1 is trivial. So
let ('ll_))l - ('1_1)1, lh((l_))l =n+1 and (1_))1 = ((Bl, Cl>, ceey (Bn,Cn), (Bn+1, Cn+1>>.

First assume that (@); = (?);. By construction Wr contains @', ¥’ such that (@); =
(@)1~ (Bp41,Cnt1), (D)o = (@')o and ()1 = (¥')17 (Bn41,Cns1), (D)o > (¥')o. By the
induction hypothesis we have (')o < (@')o and (@')o < (?’)o. It follows that (7)o = (@')o, and
hence %' = @'. Now for each pair (B, C) at most one C-critical % with B, O0-B € (#)o > (?')o
is added to Wr. Therefore w = ¥ and (w)o < (¥)o as required.

Next assume that (@); # (?)1. Let ¥’ be an immediate predecessor of 3. Then (w): C (7)1,
so by the induction hypothesis (@)o < (7)o < ()0 as required. =

2.5 Proposition. (Wr,R) is a tree.

Proof. Since transitivity and asymmetry are straightforward, we only have to prove that for each
@ € Wr the set of its R-predecessors is finite and linear. Finiteness follows from Proposition
2.2. To prove linearity, assume that @, v are two R-predecessors of w. Then (@), C (w); and
(1_1)1 C (’U_))l, SO (’ﬁ)l g (1_})1 or (l_))l g (ﬁ)l (*) Ifu # 17, then (ﬂ)o ﬁ (5)0 or (l_l)() ﬁ (ﬁ)o or
(€)1 € (¥)1 or (¥)1 € (@)1. By the preceding Proposition it follows that (i) (#)1 € (¥)1 or (ii)
()1 € (@)1 If (i) holds, then by (x) we have ()1 C (%)1, hence ¥ Ru. Similarly, if (ii) holds then
4R, as required. -

2.6 Theorem. ILt A iff for all finite IL-models M, M |E A.

Proof. Soundness is immediate. To prove completeness, assume that IL I/ A. Let ® be a finite
adequate set containing —A, and let ' be a maximal IL-consistent set with =A € I. Construct
(Wr, R) as above — using infinite maximal IL-consistent sets. Then R has all the properties
required. Define S on W by putting vSz @ iff

()1 = (W)~ {(B,C))"r and (@); = (@)1~ {(B’,C)) "0, for some B, B, C, T and 0.

Then S has all the properties required. We complete the proof by putting w I p iff p € (W),
and proving that for all F' € ®, @ € W we have w - F iff F € (@)o. The proof is by induction
on F. We first consider the case F = B> C.

First assume that B > C ¢ (@)o. Then we have to show that 35 (WRv A B € (¥)o A
Vi (5Sg% — —C € (@)o)). Now B > C ¢ (w)o implies =(B > C) € (@), and so {B € (w)o, by
Proposition 1.5. Moreover, QB is almost in ¢. By Proposition 1.3 there is a C-critical successor
A’ of (@)o with B, O~B € A’. We may safely assume that 5 = (A/, (), ™ ((B,C))) € Wr.
Then wRv and B € (v)g. Moreover, if 9S54, for some & € Wr, then C occurs as the second
component in some pair in (%);. So, by Proposition 2.3, =C € (u)q as required.

If, conversely, B > C' € (w)o, then we have to prove that Vo (WRVAB € (¥)o — Ju(0Sgu A
C € (1)o)). So let © € Wr be such that wRv. By construction v is E-critical for some E € ®.
According to Proposition 1.4 there is an E-critical successor A’ of (@)q that contains C, O-C.
Since B > C € (@)o and B € (¥)g > (®)o, it follows that QB € (w)o, and therefore OC € (w)o
by axiom J4. Since {C is almost in ®, we may assume that & = (A/, (@)™ ((C, E))) € Wr.
Clearly, we have 9S4 and C € (4)o as required.

Now, the case F' = [OB follows from the previous case, since IL proves OB « (=B > 1),
and if OB € ®, then -OB, 1 € ® and {—B is almost in P. ]

The same apparatus can be used almost without modification to prove the modal com-
pleteness of ILP using small adequate sets.

2.7 Theorem. ILPF A iff for all finite ILP-models M, M = A.

Proof. Soundness is immediate. To prove completeness, assume that ILP I/ A. Let ® be a finite
adequate set containing —A, and let I' be a maximal ILP-consistent set with =4 € I'. Construct
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(Wr, R) as above — this time using infinite maximal ILP-consistent sets. Then R has all the
properties required. Moreover, every @ € Wr differing from (T, (())) has exactly one immediate
predecessor. S is defined on Wr by putting vSzu iff

(@)1 = (@)1~ 7 ((B,C)) and (@), = (@), "7 ((B’,C)) "o, for some B, B', C, T and 0.

One easily verifies that S has all the required properties. We complete the proof by putting
w I+ p iff p € (W)o, and by proving that for all ' € ®, w € Wr, we have w I F iff F' € (0)o.
Once again the proof is by induction on F. And once again, the case F' = [IB follows from the
case F'= B > C, so we may restrict ourselves to the latter case.

The case that B > C' ¢ (w)o is entirely analogous to the corresponding case in the com-
pleteness proof for IL.

Finally, assume that B > C' € (w)o. Then we have to show that Vo (WRv A B € (7)p —
Ju (8SguAC € (u))). So assume that wRv and B € (9)o. Since (Wr, R) is a tree, we can find a
unique immediate predecessor @’ of 3. Then B > C € (@')q and since B € (v)g > (@')g, we also
have QB € (@')o and therefore §C € (w')), by axiom J4. By construction (¥)o is an E-critical
successor of (@) for some E € @, and (9); = (@'):” ((D, E)) for some D € ®. Now Proposition
1.4 yields an E-critical successor A’ of (@) with C, O-C € A’. Since ¢C is almost in @, we
may assume that & = (A, (@');”((C, E))) € Wr. Clearly, Sg# and C € (@)o as required.  m

3 On the Modal Completeness of ILM

The construction used above to prove IL and ILP complete, cannot be used without modification
to prove the modal completeness of ILM. There are several reasons for this.

In general, ILM-models are not trees. But, as we pointed out before, the ‘indexing mecha-
nism’ used in Section 2 makes (Wr, R) into a tree. This problem may probably be overcome by
choosing some other indexing mechanism. But there is a more serious difficulty.

Let T be some maximal ILM-consistent set, and suppose that (A > B)A (B > A) € T.
By axiom M, AADO(-AA-B) > BAO(-AA-B) € T. Now assume that we have an R-
successor Ay with AAO(-AA-B) € A;. Then there must be some Sp-successor Ay of A; with
B ADO(-AA-B) € Ajy. Clearly, Ay cannot be an R-successor of A;. Similarly, A, asks for an
Sp-successor Ag with A AO(—A A —=B) € Ag, which cannot be an R-successor of Aj, etc. At
present I see no way to avoid having to introduce infinite S-chains in situations like these.

(It may be worthwhile to solve these problems. Consider the system ILWM,. Visser [1989]
conjectures that it embodies precisely the principles valid in all £%-axiomatized theories with
designated natural numbers satisfying 1Ay + ©2;. Now, we cannot use the method based on the
machinery of finite maximal consistent sets contained in a large adequate set to prove ILWM,
modally complete. For, if we want to apply the axiom M, we need to have (A ACIC > BADOC
available for any A > B and [JC in the adequate set; we leave it to the reader to check that
this may turn the adequate set into an infinite one, that contains infinitely many non-equivalent
formulas. So we have to use another method to prove ILWM  complete w.r.t. some class of finite
models. It may be that some variation on the method employed in Section 2 will work; but to
find this out, we first have to solve the problems mentioned in this section.)



3. The Arithmetic Completeness of ILP*

In his Visser [1990] Albert Visser proves that ILP completely axiomatizes the interpretability
logic of finitely axiomatized sequential theories extending IAg + SupExp. To introduce the topic
of this chapter, we briefly mention some steps in the proof of Visser’s completeness theorem.
The completeness part is proved by contraposition. That is, if ILP I A then, by the modal
completeness of ILP, there is a so-called Friedman model (of ILP) in which A fails. Using this
model (and a Solovay-like function) an interpretation (-)* of £([J, I>) in the language of arithmetic
is then defined. After that, and relative to some fixed finitely axiomatized sequential theory U
. that extends IAg + SupExp, it is shown that A* is not derivable. One of the key results needed
in showing this, is a result by Friedman that gives a characterization of interpretability in terms

~ of consistency:

Let T and S be finitely axiomatized sequential theories, then T interprets
S iff IAg + Exp proves that the consistency of T' (with respect to cut free
proofs) implies the consistency of S (with respect to cut free proofs).

A proof of this result may be found in Visser [1990], Section 7.4; before Visser, Smoryriski gave
a proof in his Smorynski [1985b)].

Now, let U be some finitely axiomatized sequential theory extending IAg+ SupExp. Given
the above characterization, one naturally defines (-)* to be a map which assigns to A > B a
formalization of the right hand side of this characterization, where T'=U + A and S = U + B.
(Of course (-)* is defined on other formulas in the usual way.)

The main aim of this chapter is to show that ILP* axiomatizes all A € £([J,>) such that
for all interpretations (-)* of the kind described above, A* is true (i.e., true on the standard
model).

This chapter is organized as follows. The first section contains a characterization of deriv-
ability in IL¥, ILP” and ILM" in terms of derivability in IL, ILP and ILM respectively. Except
for some things that take up too much space, we repeat must of the preliminary assumptions,
definitions and results from Visser [1990]; this is done in Section 2. Then, in Section 3, we prove
our completeness result.

1 w-Versions of Several Systems

It is well-known that L can be axiomatized without the rule R2. An inspection of the simple
proof of this fact — as given in e.g. Smorynski [1985a] — shows that IL (and ILP, ILM, ...) has
an R2-free formulation as well.

In the sequel we consider the system IL* which is the extension of IL (in its R2-free
formulation) by the axiom schema of Reflection: DA — A. The systems ILP“ and ILM“
are defined in a similar way. Our main goal is to characterize derivability in IL” in terms of
derivability in IL — as a corollary to this result we obtain such characterizations for ILP“ and
ILM”. In working towards this goal we follow Smoryniski [1985a] Ch. 2 Sect. 4 rather closely.
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Let Sub(A) denote the set of subformulas of A.

1.1 Definition. Let A € £(O,>). An IL-model M with root wqg is called A-sound if (i)
for every B such that O0B € Sub(A) we have wg |- O0B — B, and (ii) for every C such that
C > D € Sub(A), for some D, we have wo - C — ¢C.

We now adapt Smorynski’s derived models to the present context.

1.2 Definition. Let M be an IL-model with root wg. The derived model M’ is defined by

W'=WU{w_1} (w-1 new);

R’ is the transitive closure of RU { (w_1, wo) };

S': forve W,S, =8, and Sy_, is the transitive closure of Sy, U {(wq,wo) } U
{ (0,0} | woRo };

H:if ve W, then v IH piff v IF p, and w_1 IF p iff wo IF p.

A sequence of successive derivations is denoted M), M) .. with respective roots w_1, w_s,

Notice the following:

() if ve W, E € £(O, ), then v I- E iff v - E;
(i) if v,u € W, then vRu iff vR(My;
(ifi) if v € W, then S, = S5™.

(1), (i1) and (iii) together allow us to omit (nearly) all superscripts. Some other properties are

(iV) Swo € Sw_y €...CSu_, C ..

(v) Sw_ npyy | (Rlw-n] x Rlw_p]) = Suw_,;

(vi) if WonRvSy_ (,,, u then u # w_y,, since w_,, Rv implies w_,, # v and since the only

Sw_ (n41)~BTTOW that arrives at w_,, also starts at w_y;

(vii) if w_nRvSw_(n_‘_l)z, then w_, Rz.
1.3 Proposition. Let M be an A-sound model, and M) the n-th derived model. Then for
all E € Sub(A), wo - E iff w_, Ik E.
Proof. This is by induction on n. Of course it is enough to prove the case n = 1. This is by
induction on E. We only consider the case £ = C > D. Suppose wp I C > D, and w_, Rv,
v I C. Then we must find a z with vS,,_,z and z IF D. Now w_; Rv implies wg = v or woRuv.
If wy = v, then wy - C, so wg I QC, by A-soundness. So

u - C, for some uRwq
= zIF D, for some z with uS,,z, since wo IF C > D
= zIF D, for some z with uS,,_,z, since Sy, C Sy_,-

Now w_; RvRu implies vS,,_, u, and by the transitivity of S,,_, this implies vS,,_, z as required.
If wo Rv, we can proceed in a similar way.

Next suppose that w_; IF C > D, and woRv,v I- C. Then we must find a z with vS,,2
and z = D. By definition woRv implies w_;1Rv, so we find a z with vS,_,z and z I+ D.
By remark (vii) above woRvS,_,z implies woRz. But then we have vS,,z, because S,_, |
(R[wo] X R[wo]) = Sw,- L

1.4 Proposition. If M is A-sound, then so is M),
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Proof. This is by induction on n. It suffices to prove the case n = 1. Assume that 0B € Sub(4),
then we have to show that w_; I OB — B. So suppose that w_; I OB, then wy I B. By

Proposition 1.3 it follows that w_; I B.
Next, assume C > D € Sub(4) and w_; I+ C. We have to show that w_; I ¢C. By

Proposition 1.3 we have wg I C, and therefore w_; I ¢C. =

We say that a formula A is true on a model M with root wy, if wo I A. A is valid on a
model if it is forced by each point in that model.

1.5 Proposition. Let A € £(0O0,>). Then

(1) ILY F A iff A is true on all A-sound IL-models;
(i) IL+ A iff A is valid on all A-sound IL-models.

Proof. (i) If A is true on all A-sound IL-models then

1L+( A @B—BAr A (c_><>0)) FA
OBeSub(A) Cp>DeESub(A4)

S0
n+( A @B-BA A (@-C—-0)ta4,

DOBeSub(4) C>DeSub(4)
whence ILY F A.

To prove the converse, suppose that A is false on an A-sound model M with root wg. We
show that IL“ I/ A, by showing that for any finite set X, IL + Agpcx(0OB — B) I/ A. By
Proposition 1.4 each model in the sequence M(® M . is an A-sound model on which A
is false. It suffices to show, for any given finite set X, there to be some ny such that w,, I+
Aopsex (0B — B). But this is simple: we have either w_,, I OB for all n, whence w_, I+ B and
w_p IF OB — B, for all n, or wy, | OB for some ng, whence w_, I OB and w_,, - OB — B
for all n > ng.

(ii) If IL + A then A is valid on all IL-models and, hence, on all A-sound IL-models.

To prove the converse, assume IL I/ A. Then we find an IL-model M with root wg such
that wy I A. If M is A-sound, then we are done. So assume that M is not A-sound. Then
wo If OB — B, for some (0B € Sub(4), or wo [ C — QC for some C > D € Sub(A). In the
first case wg I B, hence w_, | OB and w—, IF OB — B, for all n > 0. In the second case
wq IF C, hence w_, IF QC and w_,, I C — OC, for all n > 0.

It follows that if M) is not A-sound, then this is witnessed by formulas OBy, ...,0B,
and Cy > Dy,...,Cy > Dy different from the ones that caused M to be A-unsound. Reasoning
as above, we find that w_, - -0OB; A ... A=OB,, AQC, A...QCy, for all n > 1. Since Sub(A)
is finite, we find an ng such that M(™0) is A-sound. Since we clearly still have wq IF A in that
model, we have proved (ii). =

We can now prove the main result:

1.6 Proposition. Let A € L(O,>). Then the following are equivalent:

1) I+ A

(i) IL+ (/\DBeSub(A)(DB — B) A Ao pesun(a)(C — OC)) — A
Proof. By Proposition 1.5 we have IL A iff A is true on all A-sound IL-models, i.e. on
all models of IL + (Aggesun(ay(@B — B) A Acopesun(a)(C = 0C)). So IL” F Aiff IL

(/\DBeSub(A)(DB — B)A /\C>Desub(A)(C - OC)) — A u

Proposition 1.5 can also be used to obtain the following reduction of IL to IL“:
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1.7 Proposition. Let A € £(0O,>). Then ILF A iff IL* - OA.

Proof. IL+ A implies IL F A implies IL* F OJA. And, conversely, by Proposition 1.5.(i) IL* |
[JA implies that [JA is true and hence valid on all [JA-sound models. Part (ii) of Proposition
1.5 yields IL - CJA, so IL - A. n

An inspection of the proof of Proposition 1.6 shows that IL may be replaced by ILP, and
also by ILM:

1.8 Proposition. Let A € £(O,).
(1) The following are equivalent:

(1) ILPF A

(i) ILP+ (/\DBeSub(A)(DB — B) A Aco pesuba)(C — OC)) — A
(2) The following are equivalent:

(i) ILM* - A

(i) ILM+ (/\DBeSub(A)(DB — B) A Ao pesun(a)(C — OC)) —A.

2 Arithmetic Completeness: Preliminaries

In this section we briefly review the various notions needed and assumptions made to prove ILP”
arithmetically complete. We will not provide full details; these may be looked up in Pudlak [1985],
Visser [1988], [1990] and Wilkie and Paris [1987].

Officially we will be working in the language £* — which is the relational version of the
language of arithmetic — in which successor, addition and multiplication are (2-, 3- and 3-place)
relation symbols. So, the only terms of £* are the variables and 0. We will, however, pretend
that we are working with function symbols.

An L*-formula is called A if all its quantifiers are bounded. 1A, is PA with induction
restricted to Ap-formulas. Now in IAy we can prove almost all the basic properties of natural
numbers. However, IAg does not prove the existence of fast growing functions, like exponentia-
tion. It is well-known that it is possible to define ‘y = 2%’ in 1A, at least as a partial function
(cf. Pudldk [1985]). Moreover, for reasonable functions f like exponentiation, IAg + ‘f is total’
implies IAq(f) — where the bounding terms also involve f.

Define |z| := py. (25¢ > Sz), and wi(e) := 20717). Q; denotes the axiom Ve3y (y = w;(x));
Exp denotes the axiom Vz3y (y = 2%); supexp is the ‘stack of twos’ function: supexp(0) = 1,
supexp(n + 1) = 2°Pe*P("); SupExp denotes the axiom Vz3y (y = supexp(z)).

We make the following assumptions on the theories 7' we will be considering. We assume
that T is given by an R} -formula az(z) having just z free plus the relevant information on what
the set of natural numbers of T is; ar gives the set of codes of non-logical axioms of the theory
(cf. Wilkie and Paris [1987]). We assume that the numbers of T" satisfy IAg + ;. Furthermore,
the theories we will consider will be assumed to be finitely axiomatized and sequential:

2.1 Definition. A theory T is finitely aziomatized if its axiom set is given by a disjunction of
formulas of the form ¢ = n, where n codes a formula.

The notion of sequentiality is due to Pudlék (in a slightly different form):

2.2 Definition. Let T be a theory such that the numbers of T satisfy 1Ay + Q4. T is called
sequential if in it one can form sequences of any of its objects, i.e., if there is a relation (s), = a
such that T proves
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(i) Vs,z,a,b ((s)s = aA(8)s = b — a=b);
(ii) Vs3aVy (3b ((s)y = b = y < 2);
(iii) JsVz,a (—(s)s = a);
(iv) Vs,a,z (Vy < z3b ((s)y = b) —
—3VVy <z ((s')y =b—= (y<zA(s)y =b)V(y=zAa=10))).

Wilkie and Paris [1987] show that IA(+€2; is a completely adequate theory for arithmetizing
syntax. E.g., if T is a theory satisfying the assumptions made above, we can formalize in 1A+
(as an R}-formula) Proofz(z,y), which represents the relation ‘y is a proof of the formula 2 from
T’°. We can further define Provy(z) := Jy Proofr(z,y), and Op(z) := Provy(z), Or = -~Or—.

To apply Friedman’s characterization of interpretability for finitely axiomatized sequential
theories as mentioned in the introduction to this chapter, we need a notion of cut free proof. We
follow Visser [1990] (which follows Wilkie and Paris [1987]) in choosing tableaux provability. We
let TabInconPr(T, x) denote the formalization of ‘x is a tableau proof from 7" of a contradiction’.
We write TabProofr(z,y) for TabInconPr(U, z), where U is T plus the negation of the formula
coded by y. Furthermore, Ar(y) := 3z TabProofr(z,y); Vr = = Ar -, and TabCon(T) :=
Vz —TabProofr(z,"L").

It is well-known that 7' is inconsistent in the usual sense just if there is a tableau proof from
T of a contradiction. The advantage of such tableau proofs is that they only contain subformulas
of the sentences in T'. The disadvantage however is that they are in general ‘iteratedly exponen-
tially longer’ than conventional proofs. So in general IAy + Exp will not prove Opp — Apep.
On the other hand IAq + SupExp does prove this implication, i.e., IAg + SupExp proves cut
elimination.

Using the notation introduced in the previous paragraphs, we rephrase Friedman’s charac-
terization of interpretability: let U and V be finitely axiomatized sequential theories. Then
IAg+ Exp U > V < Aggp(TabCon(U) — TabCon(V)).

This result inspired Albert Visser to define an alternative semantics for ILP:

2.3 Definition. A Friedman structure is a tuple F = (W, b, P, Q)), where

(i) W#0;
(ii) b€ W and for all z € W, bQx;
(i) @ C W?2 is transitive, irreflexive and upwards well-founded;

(iv) PCQ;
(v) for all 2, y, 2, if zQyPz then zPz.

Moreover, we let R := Qo P, i.e., z Ry iff 3z 2zQz Py.
2.4 Definition. A Friedman model is a pair (F,IF) where F is a Friedman structure, and I+
satisfies the usual clauses, with R as the accessibility relation for ‘C1°, and

zlFA>B <<= Vu(eQu = By(uPyAylA) = 3z(uPzAzIF B))).

2.5 Theorem. ILP is complete with respect to finite Friedman models.
Proof. Visser [1990], Theorem 8.1. ]

In fact, in his completeness proof Albert Visser shows that we can take @Q to be a tree,
and that we may assume P to be given in ‘Carlson-style’. That is, we may assume that there is
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a set X C W such that the root b is an element of X, and such that zPy iff zQy and y € X.
Moreover, the elements £ € X have the additional property that z Py implies z Ry.

3 Arithmetic Completeness: The Main Result

For the remainder of this chapter, let U be a As-sound finitely axiomatized sequential extension
of IAg + SupExp.

3.1 Definition. An interpretation (-)* of £(0,>>) in the language of arithmetic assigns to
every A € £(O,>) a sentence A* of the language of arithmetic, such that for all 4, B, p

(i) if p is a proposition letter, then p* is a sentence of the language of arithmetic;
(i) T*is‘0=0; L*is ‘0 =1’
(i) (Ao B)* is A* o B*,foro € {A,V,—};
(iv) (~A)" is ~(A%);
(v) (OA)* is Oy (A4A*);
(vi) (A D> B)* is Apzp(Vu(4*) — vy (B*)).

3.2 Theorem. Let A€ L(O,0>). Then the following are equivalent:

(i) ILPF (/\EIBGSub(A)(DB — B) A Ao pesun(a)(C — OC)) —A
(i) ILP* + A
(iii) A* is true for all interpretations (-)*.

The equivalence of (i) and (ii) is Proposition 1.8.(1). The implication (ii) = (iii) is clear. So we
need only prove (iii) = (i) to complete the proof of the Theorem. This is by contraposition.

If (i) does not hold, then, by the modal completeness of ILP with respect to finite Friedman
models, there is such a model Mg = ({2,...,n},2, Py, Qo,l-o) with

2k ( A\ @B—=BA A (C—00)) and 2o A.

OBeSub(A) Cp>DeSub(A)

The fact that 2 I (/\DBGSub(A)(DB — B)A Acwpesub(a)(C — OC)) means of course that M
is A-sound.

As we pointed out in Section 2, we may assume that @) is a tree, and that P, is given in
‘Carlson-style’ by a set Xy: zPoy iff xQoy and y € Xg, and 2 € Xy. M is the result of appending
a double new root to Mg. That is, M = ({0,1,2...,n},0, P,Q,I), where

z=0and y#0, or

o zQy iff {:c:la.ndy> 1, or
zQoy.

ezPyiff eQyand y€ X := X, U {0}

. z>1land zlFgp, or
ezl piff {x:Oand?ll—op.

3.3 Proposition. Let B € Sub(A4). Then 2o B iff 21+ B iff 01+ B.

Proof. The first equivalence is trivial; the proof of the second one is similar to the proof of
Proposition 1.3, and uses the A-soundness of M. ]
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Next we define by the Recursion Theorem:

H(Q) =0
y, if H(z)Py and TabProofy(z, L # y),
y, if H(z)Qy and TabProof gzp(z, L # y),
H(z), otherwise.

L := the unique z such that JyVz > y (H(z) = z).

H(z+1) =

3.4 Proposition. The formula ‘H(x) = u’is Ao(2%).

3.5 Proposition. Let 0 < z,y <n. Then
(1) 1A +ExpFz <y — H(z)QH(y);
(ii) IAq + Exp F ‘L exists’;
(iii) IAg+ExpF L=z« 3y(H(y) = z) AVuv (H(u) =z Av>u— H(v) =z).
Proof. This is part of the proof of Theorem 8.2 in Visser [1990]. n

Define, for proposition letters p € Sub(4),
p*:=\{L=il0<i<nandilp},

and let p* be arbitrary for p ¢ Sub(A). Obviously, this completely determines (-)*.

3.6 Proposition. Let ¢ € 1. Then IAo+ Exp ARpzpY — Ay
Proof. Visser [1990], Lemma 8.2. n

3.7 Proposition. UF L € X.
Proof. Reason in U: by Proposition 3.5.(ii) L exists. So assume L = ¢ ¢ X. Then, by the
definition of H, i > 0 and AggpL # i.

Now, step outside U for a minute and recall that U extends IAg+SupExp. By Consequence
7.3.7 in Visser [1990], IA, + SupExp proves I13-reflection for 1A + Exp. Therefore, back inside
U we have L # ¢ — a contradiction. n

3.8 Proposition. Let 0< j<n. Then

(i) Ao+ Exp F L =0A0Pj — Vy L = j;

(i) IAg+ExpF L=0A0Qj — VEgzpL = j.
Proof. (i) Reason inside IAg + Exp. Assume L = 0AQPjAAyL # j. L = 0 implies Vz >
0(H(z) = 0), by Proposition 3.5.(iii). So if TabProofy(u,L # i) then H(u) = 0Pj, and hence
H(u+ 1) = j — a contradiction.

(ii) Similarly. n

3.9 Proposition. Let 0 < i< n, and B € Sub(A4). Then

(i) iFB = IA¢+Expk L =1i— B

(i) i B = IAg+Expt L =i — ~B*.
Proof. This is part of the proof of Theorem 8.2 in Visser [1990]. Let us only note that in the
course of his proof the author proves

Claim 1. if for all j with ¢Pj, j I C, then IAg+Expt+ L =i — AyC*;
Claim 2. if for some j with iPj, j I C, then IAg+ Exp F L = i — Ay C*. ]



Chapter 3: The Arithmetic Completeness of ILP* 17

3.10 Proposition. Let B € Sub(A). Then

(i) 0l B = IAp+ Exp+ L =0— B%;

(ii)) O B = 1Ao+Expt L =0— —B*.
Proof. Needless to say, this is by induction on B. The cases B is a proposition letter, B = —C,
B = CAD are trivial. The case B = [OC follows from the case B = C > D. Before proving this
case, we assume that the induction hypothesis holds for C and prove two claims:

Claim 1. if for all j with 0Pj, jI- C, then IAg+ Exp F L =0 — AyC*;
Claim 2. if for some j with 0Py, j I C, then IAg +Exp - L =0 — —~AyC*.

o

Proof of Claim 1. By the preceding Proposition we have
NikC= A1Ay+ExprL=j—C"

0Pj 1Pj
Moreover,
NilkC=2Ic,
OPj
= 01+ C, by Proposition 3.3,
= IAg+Expt+ L =0 — C*, by the induction hypothesis.
So
NikC= N\IAc+ExpkL=j—C",
OPj 0Pj
= Ao +Expt \/ L=4—C",
0Pj
= Ao +Exptay \/ L=i— apC™. (%)
0Pj

Now, by Proposition 3.7 we have U F L € X, so IAg + Exp F Ay Vogj L = j. By (%) it follows
that

I1Ao + Exp F AyC*, and
IA¢+Expk+ L =0— AyC*,
as desired. MClaim 1
Proof of Claim 2. Suppose 0Pj, j I C. Then
j(OPjAjIFC) = 3j(0Pj AIAg+Expt L = j — —C*), by Proposition 3.9
= Jj(0Pj AIAg+ExpF Ay(L =i -C"))
= 3j(0Pj AIAg+ ExpF Vy L = j — —AyCY).
Now apply Proposition 3.8.(i):
IA¢g+ExpF L =0— —-AyC*. ®Ciaim 2

Let us get back on track, and continue with the proof of the Proposition. Assume B =
C > D and 0 B. Then we have by Claims 1 and 2 of the preceding Proposition that for every

J with 0Q7,

IAg+ExpF L =j— (VyC* — VyD*). (%*)
By Claims 1 and 2 of this Proposition, we also have
Ao+ ExpF L=0— (VyC* — vyD*), (Fkx)

because 0Py implies 0Ry.
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Furthermore,
IAg+ Exp | ‘L exists’ => 1A+ Exp F Aggp v L=3j
0Qj
= [Ag + Exp F Apyp(VyC* — Yy D*), by (%) and (»kx),
= IAg+Expt+ B*
= IA¢+Exp+ L=0— B*.

Finally, we assume that B = C > D and 0 | B. Then there must be some j with 0Qj,
and for some k with jPk, k I+ C, while for all ¥’ with jPk’, k' I D. Then by the Claims of the
preceding Proposition, IAg+Exp - L =j — VyC* and IAg+ Expt+ L = § — Ay—D*. So

35 (0Qj AIAg + Exp b Aggp(L = j — ~(VyC* — VyD*))
F AEzp(VUC* — VUD*) — AE:::pL 75 i
+ VEpr =] —‘AEW(VUC* — VUD*)).
Now IAg + ExpF L =0 — VgL = j, for j with 0Qj, by Proposition 3.8.(ii). Therefore
IAg+ExptF L=0— "AEzp(VUC* — VUD*). ]

One final Proposition before we can complete the proof of Theorem 3.2:

3.11 Proposition. In the standard model L = 0.

Proof. We first show that IAg + Exp F L = jA {1 >0 — AyL # j. Reason in 1Ay + Exp:
assume L = j and j > 0. By the Least Number Principle for Ag-formulas it follows that
Az (H(z+ 1) = j A H(z) # i). By the definition of H we have Agg,L # j or AyL # j. By
Proposition 3.6 it follows that Ay L # 1.

By Proposition 3.5.(ii) L exists. If j > 0 then our remarks above yield

L=j=>UFL#]
= L#3],

by the As-soundness of U. This is a contradiction, so L = 0. n

Proof of Theorem 3.2. This is almost immediate now:
2o A = 0IF A, by Proposition 3.3,
= IAo+ Expt L = (Q — —A*, by Proposition 3.10.(ii)

Since 1A + Exp proves only true theorems and L = ( is true by Proposition 3.11, it follows that
—A* is true i.e., A* is false. [ ]



4. Unary Interpretability Logic

In Smorynski [1989] the author asks what the logics of unary relative interpretability are. Le.,
if IA abbreviates T > A then what are the logics in £([0,I)7 We device systems ils in £(OJ,I)
such that for all A € £(O,1), ILSF Aiffils- A — where S=T, P, M, W.

First we present our axiomatizations and describe some of their properties. After that, we
prove each of these systems ils complete with respect to ILS-models. From this, we immediately
obtain conservation and arithmetic completeness results. Finally we show the existence of unique
and explicitly definable fixed points for these systems.

1 Introduction

In this section we introduce the various systems and state some of their properties. We start
with some definitions.

1.1 Definition. (i) The unary interpretability logic il is obtained from the provability logic L
by adding the axioms
(I1) 101,
(I2) IAAD(A — B) — 1B,
(I3) I(AV QA) — 14,
(I4) TAAOT = OA.
(ii) Several axioms have special names:
(p) 1A — OIIA,
(m) TA - I(AAOL).
ilp denotes the system il + p and ilm denotes the system il + m. For other axiom schemes X we
will simply refer to ILX N £([,I) as ilx.

One easily shows that for all A € £(0J,I) we have, if ils - A then ILSF A, by proving that
all ils-axioms are derivable in ILS:

1.2 Proposition. For all A€ £(O,X), if ils+ A then ILSF A.

Proof. First we show that IL F I1, 12, I3, I4.
I1 Notice that by J1 and J5 we have ILF 0L > 01 and IL - ¢O0L > 0L, so by J3 we get

ILFOLVOOL > 0L (%)

Furthermore
ILFO(T — (T AOL) V(T AOL)),
= ILFO(T —0OL v oOL),
= ILFTeOLVOOL, by JI,
= ILFT>0OL, by J2and (%),
= ILFIOL.
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I2 By J1 we have
IL+FO(A — B) — A B,
= ILFT> AANOA—-B)—>Tb> B, byJ2
= ILFIAADO(A — B) —1B.

I3 As before we find

ILFAVOAD A,
> ILFT>AVOA— T A, byJ2,
= ILF I(AV QA) — IA.

I4 By J4 we have IL F IAA OT — OA.

Let us check that ILP F p and ILM F m. Clearly, we have ILP |- p. To prove ILM F m, recall
first that ILM + W. It follows that ILMFT> A —T> (AAOL), ie. ILMF m.

Now, suppose that A € £(00,I) and il F A; since we have IL |- I1, 12, I3, I4, it follows
that IL - A. Similarly, if ilp - A then ILPF A, and if ilmF A then ILMF A. u

Before proceeding to prove the converse of the Proposition, let us try and discover some of
the theorems and derived rules of il.

1.3 Proposition. (1) If i+ A, then il IA; so in particular, il IT;
(i) I+-04—-14
(i) I+ IA — I(AADO-A)
(iv) ilp F m.
Proof. (i) Note
dFA=ilFOL— A
= i+ 0O0L — A), by R2,
= IIFIOLAO0OL — A), by I1
= il 1A, by I4.
(ii) This is immediate from (i) and 2.
(iii) Observe
dFIASTAADOA — (AAO-A)V O(A AO-A)), since L C il
— I((A AO-A) V O(A A O-A4)), by 12,
— I(AADO-A4), by I3.
(iv) We have
ilpFI4A —0OIA
— O(QT — QA), by I4,
— 0O(O0-A — 0O1)
—-OAAO-A - AADOL)
—I(AANO-A)AOAADO-A — AADOL), by (iil)
—I(AADOL), by I2. =

It is clear that by part (iv) of the Proposition ilm C ilp. In the sequel we will show that
ilp € ilm. It will also appear that ilw can be taken to be ilm.
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The fact that il is closed under the rule F A = F 1A might lead one to expect that the
I-operator is just an ordinary unary modal operator, say like [J, and that its semantics may be
based on a binary relation. This is not the case, however.

To show this, let us restrict ourselves for a moment to the O-free fragment of £(0J,I), and
assume that (W, T, IF), with T C W2, is an appropriate model for that fragment, i.e.,  I- I4 iff
y - A, for all y with zT'y. Then one easily verifies that (W, T,I-) E I(A — B) — (IA — 1B).
But, if il is supposed to axiomatize the provable £([,I)-formulas in IL, then we must have
il ¥ (A — B) — (IA — IB), since IL If I(A — B) — (IA — IB). So the semantics of the
I-operator cannot be based on a binary operator.

Assuming that il does indeed axiomatize £(0J,I) N il, we find that Proposition 1.2.7.(ii)
implies il F IA iff il F AV QA. Moreover, - IA =} A is not a derived rule of il: we have
il FI0OL, but il i/ OL because IL K OL.

2 Modal Completeness: Preliminaries

To prove the converse of Proposition 1.2 we show that ils is complete with respect to finite
ILS-models. For s = T and s = p we use the method employed in Chapter 2 to prove the
completeness of IL and ILP. The completeness of ilm is established using the method of de
Jongh and Veltman [1990].

2.1 Definition. Let I', A be two maximal ils-consistent sets. Then A is called a C-critical
successor of T if
(i) T < A;
(ii) IC ¢ T;
(i) -C, O-C € A.

2.2 Definition. A set of formulas ® is adequate if

(i) if B € ®, and C is a subformula of B, then C € @,

(ii) if B € ®, and B is no negation, than =B € ®.
Let @ be a closed set. Then we say that a formula B is almost in ®, if )B € ® or if IB € ®
or B=T.

Assuming that negations —A are written as A — |, any non-empty adequate set contains
1 and T.

2.3 Proposition. i+ -IB — {T.

In our construction of countermodels for non-derivable formulas, we need two Propositions.
The first one is analogous to Proposition 2.1.3, the second one is analogous to Proposition 2.1.4.
Both of them hold for each of the systems under consideration here. However, to prove the
converse of Proposition 1.2 for ilm we will need a special version of the second Proposition. This
version will be proved in Section 4.

2.4 Proposition. Let T' be a mazimal ils-consistent set such that —IC € T'. Then there is a
mazimal ils-consistent C-critical successor A of T.

Proof. Let A be a maximal consistent extension of

{D,0D|ODeT}U{~C,O~C}uU{OL}.
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Notice that if such a A exists, it must be a C-critical successor of I'. Since
{D,O0D|ODeT}U{0OL}CA

it is a successor of I'. (Note that 0L ¢ T, since otherwise [JC' and IC € T.) And because
{~=C,0-C} C A it is also C-critical.

We only have to prove { D|OD € T}U{~C}U{OL} consistent, since 0L implies OF
for all E. Now, suppose that this set is inconsistent. Then there are D,,...,D,, such that
Dy,...,Dp, =C, OLF L. Then

Dy,...,D, 01 - C,
= 0ODy,..., 0D, FOOL — C), by R2,
= 0ODy,...,0Dp FIC, by I1 and I3,

So I' F IC. This contradicts the consistency of T'. [ ]

2.5 Proposition. Assume that IC € T, and that A is a mazimal ils-consistent E-critical
successor of T'. Then there is a mazimal ils-consistent E-critical successor A’ of T such that

CeA.
Proof. Assume that there is no such A’, then there are [1D;,...,[0D, € T such that
Dy,...,D,, OD,...,0D,, -E, O-E, C}+ 1,
S0
Dy,...,D,, OD4,...,0D, FC — EV{QE,
=0D,,...,0D, F0O(C — EVQE), by R2.

Then T'+ O(C — EV QFE). Since IC € T', axiom 12 yields T'F I(E' V QF), and by axiom I3 we
also have I' F IE. It follows that IE € I' — which contradicts the fact that IF ¢ T. =

We are now ready to prove the converse of Proposition 1.2. As we pointed out before, if
for some A € L£([0,I) we have is if A, then to show that ILS I A, it suffices to produce an
ILS-model refuting A — this will be done separately for each of the systems under consideration

here.

3 The Modal Completeness of il and ilp
Let us proceed without delay. We use the notation from Chapter 2.

3.1 Definition. Define Wr to be a minimal set of pairs (A, 7) such that

(i) (T, () € Wr;
(i) if (A, 7) € Wr, OB € A is almost in ® and C € ¥, and if there is a maximal ils-

consistent C-critical successor A’ of A with B, [I~B € A’, then (A/,77((B,C))) €
Wr for one such A’.

Define R on Wr by putting wRv iff (w)1 C (9)1.
Recall the following key properties of (Wr, R) from Chapter 2:

3.2 Facts. (i) Wr is finite;

(i) if (A, 7) € Wr and E occurs as the second component in some pair in 7, then =F € A;
(iii) if w, v € Wr and (@)1 C (9)1, then (@)o =< (9)o;

(iv) (Wr,R) is a tree.
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3.3 Theorem. Let A€ L(O,I). Then il+ A iff for all finite IL-models M we have M = A.
Proof. As usual proving soundness is left to the reader. To prove completeness, assume that
it/ A. We want to produce an IL-model refuting A. Let ® be a finite adequate set containing
—-A, and let T be a maximal il-consistent set containing ~A. Construct (Wr, R) as above —
using infinite maximal il-consistent sets. Then R has all the desired properties. Define S on W
by putting 3Sgu iff

(¥)1 = (@)1~ {(B,C))"r and (@); = (@)1~ ((B’,C)) "o, for some B, B’, C, 7 and 0.

Then S has all the properties required. We complete the proof by putting @ I+ p iff p € (@)o,
and proving that for all F € &, w € W we have w I+ F iff F € (w)o. The proof is by induction
on F. We only consider the cases F = {B and F = IC.

If F = QB € (w)g we have to show that 39 (WRv A B € (¥)o). Note first that QB is
almost in @, and that L € ®. By a well-known argument there is a successor A’ of (w)y with B,
O-B € A’. Moreover, A’ is a L-critical successor of (@)o. For, {B € (w)o implies $T € (w)o,
so IL € (w)o would imply QL € (W), by axiom I4 — which is impossible; therefore, I.L ¢ (w)o.
Furthermore, it is clear that =L, O0=1 € A’. Put o := (A’,(@); " ((B,L1))). Then we may
assume that ¥ € Wp. It is clear that WwR? and B € A’ as required.

If F = QB ¢ (w)o then 0B € (w)o, and we have to show that Vo (WRv — —B € (¥)o).
But this is obvious from the definitions.

Assume IC ¢ (w)o. Then —IC € (w)o, and by Proposition 2.3 T € (@)o. By the induction
hypothesis we have to show that 3% (WRv A Va (8Sg@ — —~C € (@))). Apply Proposition 2.4,
with T' = (@)o, to obtain a C-critical successor A of T, and define ¥ := (A, (@), ™ ((T,C))).
Since T € (w)q is almost in ®, we may assume that ¥ € Wr. Furthermore, if % € S5 then C
occurs in (&)1, hence =C' € (@)o, by Fact 3.2.(ii).

Assume IC € (w)o. By the induction hypothesis we have to show that Vo (wRv —
Ju (vSpu A C € (u)o)). So let v € wR. Then (7)o > (W), so OT € (@w)o, and therefore
QC € (®)o by axiom I4. By construction @ is E-critical for some E' € ®. Now, apply Propo-
sition 2.5, with I' = (@)o, A = (9)o, to obtain an E-critical successor A’ of T' that contains C,
O-C. Since ¢C is almost in ®, we may assume that @ = (A’, (w);"((C, E))) € Wr. Clearly, @
does the job. ]

3.4 Proposition. Let A€ £(O,I). Then ilF A off ILF A.

Let il“ denote il without the rule R2, but with all instances of the schema [JA — A.
Propositions 3.4 and 3.1.6 imply:

3.5 Proposition. Let A € L(O0,I). Then the following are equivalent:
1) I*+HA
(i) i1+ (Aapesu(ay @B = B) A Arcesunia) 0T) = A.

Let us not waste any time, and prove the modal completeness of ilp right away.

3.6 Theorem. Let A € £(O0,I). Then ilp b A iff for all finite ILP-models M we have
ME A.

Proof. Soundness is immediate. To prove completeness, assume that ILP I/ A. Let ® be a finite
adequate set containing —A, and let I’ be a maximal ILP-consistent set with =A € I'. Construct
(Wr, R) as above — this time using infinite maximal ILP-consistent sets. Then R has all the
properties required. Moreover, every @ € Wr differing from (I‘, (())) has exactly one immediate
predecessor. S is defined on Wr by putting 9S;u iff

()1 = (@)1"7"((B,C)) and (&), = (@)~ 7" ((B’,C)) 0, for some B, B, C, 7 and 0.



24  Chapter 4: Unary Interpretability Logic

One easily verifies that S has all the required properties. We complete the proof by putting
@ I+ p iff p € (@), and by proving that for all F € ®, @ € Wr, we have @ |- F iff F € (w)o.
Once again the proof is by induction on F. The case F' = (B is entirely analogous to the
corresponding case in the completeness proof for il. So we only consider the case F' = IC.
Assume IC ¢ (@w)o. Then we may copy the proof for the corresponding case in the com-

pleteness proof for il.
Assume IC € (w)o. By the induction hypothesis we have to show that Vo (wRv —

Ju (8558 A C € (@)o)). So assume ¢ € wR. Since (Wr, R) is a tree, we can find a unique
immediate predecessor @' of 4. Then IC € (@')y by axiom p. Obviously, ¢T € (w')y and
therefore OC € (@')g, by axiom I4. By construction (?)o is an E-critical successor of (@')g
for some E € @, and (9); = (@')1” ((D, E)) for some D € ®. Now Proposition 2.5 yields an
E-critical successor A’ of (w)o with C, O0-C € A’. Since {C'is almost in & we may assume that
@ := (A, (@)1 {(C, E))) € Wr. Clearly, 5Sy# and C € (), as required. n

3.7 Proposition. Let A € £(O0,1). Then ilp+ A iff ILPF A.

Let U be a Xj-sound finitely axiomatized sequential theory that extends IAg + SupExp,
and let (-)* range over the kind of arithmetic interpretations described in Chapter 3. Then:

3.8 Proposition. Let A€ L(O,1I). Then ilp+ A iff for all (-\)*, U F A*.

Proof. By Visser [1990] we have for any A € £(0O,>), ILP + A iff for all (:)*, U + A*. So, in
particular, for A € £(0,I) we have ILP - A iff for all (-)*, U F A*. The result now follows from
Proposition 3.7. n

Let ilp*” denote ilp without the rule R2, but with all instances of the schema (04 — A.
Propositions 3.7 and 3.1.8 imply:

3.9 Proposition. Let A € L(O,I). Then the following are equivalent:
(i) ip“ F A
(i) idp F (/\DBGSub(A)(DB — B) A Arcesub(a) OT) — A

Let U be a Ag-sound finitely axiomatized theory that extends IAg + SupExp, and let (-)*
be as in Proposition 3.8. Then:

3.10 Proposition. Let A € L(0O0,1I). Then ilp” - A iff A* is true for all (1)*.
Proof. Combine the preceding Proposition with Proposition 3.8 and Theorem 3.3.2. ]

4 The Modal Completeness of ilm and ilw

The most elegant proof for the modal completeness of ilm we have been able to find is rather
similar to the completeness proof of ILM as given in de Jongh and Veltman [1990]. In our
construction of a model we can use sets and sequences of formulas in stead of the sets and
sequences of equivalence classes of formulas employed in the proof in that paper.

4.1 Definition. A set of formulas ® is called an ilm-adequate set if

(i) @ is closed under single negations;
(ii) @ is closed under subformulas;
(iii) I0L, IL, IT, OT € &;
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(iv) if IA € ® then QA € ®.

4.2 Definition. Let I', A be maximal ilm-consistent subsets of some given adequate set @.
Let IC € ®. Then A is called a C-critical successor of T if

(1) T < A;
(i) IC ¢ T;
(iii) =C, O-C € A.

~ Note that successors of C-critical successors of I' are again C-critical successors of T'.
We restate Proposition 2.4:

4.3 Proposition. Let I' be a mazimal ilm-consistent set in ® such that =1C € I'. Then there
is a C-critical successor A of T' with A mazimal consistent in ®.

Proof. Since the adequacy conditions ensure that the relevant formulas are in ®, we can copy
the proof of Proposition 2.4. ]

We need a special version of Proposition 2.5:

4.4 Proposition. Assume that IC € T, and that A is a mazimel ilm-consistent E-critical
successor of T'. Then there is a mazimal ilm-consistent E-critical successor A’ of T' such that
C € A’ and such that for all OB € ®, if (1B € A then OB € A’.

Proof. Assume that no such A’ exists. Then there are OD,,...,0D, € T, 0B,,...,0B, € A
such that

Ds,...,D,, ODy,...,0D,, OBy,...,0By, —=E, O-E, CF 1,

SO
Di,...,Dp, ODy,...,0D, F CAO(BLA...A Bp) = EV OE,
=0Dy,...,0D, FOC AO(B A ... ABp) — EV QE).

Then ' F O(CAO(By A... A By) — EV QE). Now, I' I IC, so by axiom m also T' -
I(CAO(B1 A ...ABy)). An application of axiom I2 now yields I' - I(E V QE), from which it
follows by I3 that I' - IE. By the adequacy conditions this implies IE € T' — this, however,
contradicts the consistency of T, because IE ¢ I' by the fact that A is an E-critical successor of

T. n

Let T be a given maximal ilm-consistent set. The E-critical successors A’ produced by the
previous Proposition will be called special E-critical successors of T'.

4.5 Definition. Let ® be an (ilm-)adequate set, and let T' be a maximal ilm-consistent subset
of ®. Then T is said to have depth n if the maximal length of a complete chain I' = Ty < ... < Ty,
in ® is n + 1 — where all I';s (0 < ¢ < m) are maximal ilm-consistent subsets of ®.

4.6 Theorem. Let A € L(O,I). Then ilm F A iff for all finite ILM-models M we have
MEA.
Proof. Proving soundness is left to the reader. To prove completeness, assume that ilm lf A. We
construct a finite ILM-model refuting A.

Let ® be a finite adequate set containing —A, and let I be a maximal ilm-consistent subset
of ® that contains —A. Define W to be the smallest set of pairs (A, 7) such that

() T=AorT <A
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(ii) 7 is a finite sequence of formulas from ®, the length of which does not exceed the
depth of T minus the depth of A.

So W is finite. Unfortunately, the sequence 7 no longer provides sufficient information on
the ‘C-critical’ status of A. Define R on W by putting wRo iff (@)o < (7)o and (w); C (9)1.
Then R is transitive and conversely well-founded. Before defining S we need a definition: let
w,7 € W, then v is called a C-critical R-successor of w if

(1) (v)o is a (plain) C-critical successor of (w)o;
(i1) (@)1 = (@)1 (C)" 7, for some 7.
We can now define S on W. Put 95z iff
(1) v,u € ¥R;
(2) (w1 € (V)13
(3) for every B € ®, if OB € (¥)o, then OB € (@)o;
(4) if ¥ is a C-critical R-successor of @, then so is .

This time it is less obvious than before that S has all the properties required, so we will
spell out the details:

e Sy C wR x WR is obvious;

e so are reflexivity and transitivity;

e if ¥,% € WR and 9 R# then we clearly have (1), (2) and (3). And since successors of
C-critical successors are C-critical successors as well, we also have (4). So vS4%;

e assume that vSzu R4’ — we have to show that Ru’ holds. By (2) we obviously have
(9)1 C (@')1, and by (3) and the fact that (@)o < (@)o it follows that (7)o < (@')o.
Therefore, 7 R%’'.

Now, to complete the proof we define - on W by putting @ I- p iff p € (@)o, and show
that for all ' € ® we have @ |- F iff F € (@)o. The only interesting case in the inductive proof
is the case F = IC.

Assume that IC ¢ (@)o. Then —IC € (w)o. By the induction hypothesis we have to show
that 3v (wWRv A Va (9Sgt& — —C € (@)o)). Apply Proposition 4.3 with T' = (@w)o to obtain a
C-critical successor A of T'. Define & := (A, (0)1(C)). Then € W. Let & € Sy, then @ is a
C-critical R-successor of w, because v is one. Therefore, =C € (@)o.

Assume IC € (@)g. By the induction hypothesis we have to show that Vo (wRv —
Ju (vSpuAC € (4)o)). Suppose first that v is an E-critical R-successor of w. Apply Proposition
4.4 with T' = (w)o and A = (¥)o to obtain a special E-critical successor A’ of T' that contains
C. Put @ := (A’,(?)1). Now the depth of A’ cannot be larger than the depth of A, because all
formulas of the form (B that are in A, are also in A’. So & € W. Clearly, vSgz4 holds. If, on
the other hand, ¥ € WR is not an E-critical R-successor of w, then (@) < (7)o is all we know.
But () is a L-critical successor of (w)q. For, then we have

* (w)o < (V)o;

e if 0T ¢ (w)o, then OL € (w)o — which is impossible; so OT € (@)o. Now, if
Il € (w)o, then axiom I4 implies that ¢_L € (w)o, and this too is impossible,
therefore we must have IL ¢ (@)o;

e ~1, O-1 € (7)o is immediate.

Applying Proposition 4.4 once again, with T' = (@)g, A = (¥)¢ and F = L, we get a special
L-critical successor A’ of I with C' € A’. Finally, @ := (A’,(%);) does the job. ]

4.7 Proposition. Let A € £(0O,I). Then ilmF- A if ILMF A.
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‘Let U be an extension of I¥; that is £;-sound. Define:
e >y ¢ <= Vx € I} (Outex — Dutyx).
()* is called a U-IICons interpretation of £(J, >) if

(1) (-)* maps proposition letters to sentences of the language of U;

(i) (-)* commutes with the connectives;

(i) (OA)* is Oy (A4*);

(iv) (A> B)* is (4*) by (BY).
4.8 Proposition. Let A € £(O,I). Then ilmtF A iff for all U-IICons interpretations (-)*,
Utk A,
Proof. This follows from the corresponding result for A € £(0,>) and ILM (cf. Montagna &
Hajek [1989] and Visser [1989], Theorem 10.1), together with Proposition 4.7. n

Let ilm* denote ilm without the rule R2, but with all instances of the schema OJA — A.
Propositions 4.7 and 3.1.8 imply:

4.9 Proposition. Let A € L(O,I). Then the following are equivalent:
(i) im“F A
(ii) imtE (/\EIBGSub(A)(DB — B) A Aicesuv(a) OT) — A

Define a formula A € £(0O,>) to be w-valid if A* is true in the standard model for
all 'normal’ arithmetic interpretations (-)* with (OA)* is (a formalization of) ‘PA F A*’, and
(A > B)* is (a formalization of) ‘PA + A interprets PA 4 B’.

4.10 Proposition. ilm” precisely aziomatizes all w-valid formulas A € £(0,T).

Proof. This follows from the corresponding result for A € £(0,>) and ILM* (cf. Berarducci
[1989]), together with the preceding Proposition and Proposition 4.7. ]

We end this section with some remarks on the hierarchy of extensions of il.

4.11 Proposition. (‘lw =ilm’) Let A € £L(00,I). Then ilmtF A iff ILWF A.

Proof. Since m is a substitution instance of the axiom W, the direction from left to right is
immediate. Conversely, if ilm I/ A then ILM If A by Proposition 4.7. Now, recall that ILMF W
by Proposition 1.2, therefore ILW I/ A. =

4.12 Proposition. ilm is the unary interpretability logic of all reasonable arithmetics.

Proof. Let ul be the unary interpretability logic of all reasonable arithmetics. By Visser [1988],
Section 9, ILW is valid for arithmetic interpretations in all reasonable arithmetics, hence the
same holds for ilw = ilm. It follows that ilm C ul. On the other hand, in essentially reflexive
theories U like PA binary interpretability and >}, are provably extensionally equal (cf. Visser
[1989], Section 10). Hence by Proposition 4.8 ilm is the unary interpretability logic of PA. It
follows that ul must be contained in ilm. Therefore, ul = ilm, and ilm is indeed the unary
interpretability logic of all reasonable arithmetics. ]

As another corollary to Proposition 4.11 we find that the (real) hierarchy
ILP

N\
IL — ILF — IIW — ILWM, ILMP

N\ /7
ILM
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partly collapses when we only consider formulas A € £(00,I):
il — if — idw =— ilwmy — im — ilp ——— ilmp.

There is no total collapse, however, since ilm # ilp, ilf # ilw and il # iif. We conjecture that
ilp = ilmp.

4.13 Proposition. (i) ilm # ilp;

(ii) ilf # ilw;

(iii) il # ilf.
Proof. (i) It suffices to show that ilm If IC' — OIC. Consider Figure 1 below. We clearly have
w I Ip, since every R-successor of w has an Sy,-successor at which p holds. However, v does not
force Ip, for it has an R-successor (u) that is not S,-succeeded by a point at which p holds — so
w I ~Ip.

(ii) It suffices to show that ILF I/ m. Consider Figure 2. We claim that w - F, ie., wi- A >
QA — [O-A for all A€ £(0O3,>). Suppose that w - A> QA. Then

(i) if b Athenal- A
(it) d I A — otherwise d - ¢A, which is impossible
(iii) for each B,alF B <= ¢l B
(iv) el A — otherwise c I QA, which is impossible
(v) alF A, by (iii) and (iv)
(vi) bIF A, by (v) and (i)
(vil) wlO-A4, by (ii), (iv), (v) and (vi).

On the other hand w | m, for we have w I- T > p, whereas w I T & (p AOL), since b
has no S,-successor at which p AL holds.
(i) We have ilf - IQT — 0L or, equivalently, ilf - $T — —I{T, by axiom F. On the other

hand, we have il i/ T — —IQT, as is clear from the model in Figure 3. n
L o
u O a Al I
~ S
~ p
oe— — — — — > @ L J o— —9o o
v u’ b c d T
o ® L
w w w
Figure 1. Figure 2. Figure 3.

(Plain arrows denote R-links. Reflexive S-links and S-links induced by R-links have been left
out.)

Part (ii) of the Proposition may be used to answer a question of Dick de Jongh:

4.14 Proposition. ILW is not conservative over ILF for formulas in one proposition letter.
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5 Unique and Explicit Fixed Points

We present a model-theoretic proof for the Explicit Definability of Fixed Points in il.

First we introduce some notation. We use A(p) for a formula in which p possibly occurs; p is
said to occur modalized in A(p) if p occurs only in the scope of a O or I. A(C)) denotes the result
of substituting C for p in A(p). From the il-axioms we can deduce the following extensionality
principle:

(E) O(A < B) — (IA < 1B).
Let srq denote R1, R2, L1, L2, L3 and E. Then sry proves

(S1) sroF B« C = sro - A(B) « A(C)
(S2) sro 0% (B < C) — (A(B) « A(C))

If p is modalized in A(p), then

(§3) sro - O(B < C) — (A(B) < A(C))
(LR) sto- B — (OA — A) = srpF B— A

5.1 Theorem. (Uniqueness Theorem) Assume that p occurs modalized in A, then
sto = (O% (p = A(p)) AD* (¢ = A9)) — (p < 9)-

Proof. By S3:
H (O (p = A(p)) AD* (¢ = A(9))) — (O(p <= ¢) — (p < 9)),
so by LR
F (@ (p = A(p)) AO* (g = A(9))) — (p < 9)- u

From the fact that il extends L it is obvious that to prove the existence of explicit fixed
points in il it suffices to find a fixed point for IB(p), i.e., to find a formula C such that il - C' —
IB(C). After that we can proceed as in the standard proof for L — cf. Smoryniski [1985a].

We need the following result:

5.2 Proposition. Let M be an il-model, and w € M. Then we have w - IB(OL) iff
w - IB(IB(OL)).

Proof. We list some simple facts about arbitrary w. We write u lFpa, A iff u - A and for all
v € uR, v [f A and we write wRu for wRu or w = u.

(1) if wlFmae B(OL) then w - O-B(OL1);

(i) if w i+ O-B(OL) then, if wRu, then u - OL <= ul-1IB(OL);

(iil) if w lFpmae B(OL), then, if wRu, then u - B(OL) < ul- B(IB(OL));

(iv) if wiFmee B(OL), then, if wRu, then u lbpep B(OL) <= u ke, B(IB(OL));

(v) if wiFpmae B(OL), then w ke, B(IB(OL));

(vi) if w lFmee B(IB(OL)), then w ke B(OL), for assume that w by, B(IB(OL)), then
w - O-B(0OL) by (v), so by (ii) we have for all u with wRu, u - IB(OLl) <= ul-0OL,
hence w ke B(OL).

Now, assume that w I IB(0L) and that wRv holds. We have to find a u such that vSy,u
and u I B(IB(OL)). wRv implies the existence of a v with vSy,u and u I B(OL). Since
vSyuRy implies vS,, v, we may safely assume that u I, ,, B(OL). But then » I+ B(IB(OL1)),
by (v).

Conversely, let w IF IB(IB(.L1)), and assume that wRv. We have to find a u with vS,u
and u |- B(OL). Since wRv holds we find a u such that vS,u and u - B(IB(OL)). Again, we
may safely assume that u lFp,4, B(IB(OL)). Then (vi) yields u Ik B(OL). u
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By our previous remarks and the completeness results from Section 3 it follows that

5.3 Theorem. For each A(p,q1,-..,4qn) € L(O,I) in which p occurs modalized there is a
provably unique B(q1,...,q,) € L(O,I) such that i+ B(q1,...,q,) < A(B(q1,...,qn))-

5.4 Remark. Another way to prove the fixed point theorem for il would be to use the existing
fixed point theorem for IL (cf. de Jongh and Visser [1989]) together with the conservation results
obtained above. To see this we repeat the key lemma de Jongh and Visser use to obtain the
explicit definability of fixed points in IL (without, however, explaining the notions not used in
this thesis):

Let U be any extension of SRy satisfying:
Every formula A(p) of the form O0B(p) or B(p)#C(p) has a
fixed point such that A(p) < D.

Then:
For every formula A(p) with p modalized, there is a formula

D such that p does not occur in D, A(p) < Dand U+ D «

A(D).
An inspection of the inductive proof of this lemma shows that if the formula A(p) of the form
OB(p) or T#C(p) has its fixed point in £(0J,I), then so does every A(p) € L£(O,I) with p
modalized. An appeal to our conservation results then completes the explicit definability theorem
for il, ilp and ilm.



5. Internal Definitions

We study several axioms of the form f(p,q) < p > ¢, where f(p, ¢) € £(0). Such a biconditional
will be called a defining schema. Its left-hand side is called an (internal) definition.

After having presented some examples of definitions in the first section, we use several of
these in Section 2 to find out more about the hierarchy of extensions of IL.

1 Introduction
Before considering some examples, we define a new notion. Every definition f(p,q) of p > ¢ gives
rise to a translation (-)/ : £(O,>) — £(0O) in a canonical way:
(p)f =p, for proposition‘ letters p,
(AoB)Y = A7 oBf, o=V,A —,
(-4 =~(a"),
(04! =04’),
(A> B) = f(A7, BY).

1.1 Definition. Let f(p,q) be a definition, and (-)/ its associated translation. Then f(p, q) is
called a good definition for a formula A if L + AS; f(p, q) is called a good definition for a set of
formulas X, if it is good for all A € X.

Definitions for IL

Here is a minimal good definition for IL:

1.2 Proposition. Qp — Qg is a good definition for IL; it is implied by every good definition
for IL.
Proof. The first part is left to the reader; the second part follows from axiom J4. [

Some variations on {p — (g also yield good definitions for IL. Let I be a finite subset of

w\ {0}. Then ZI denotes the definition:
0p — 09) A A (©'p — O%9).
iel
It is a simple exercise to check that each ZI is a good definition for IL. Let J C ((w\{0}) x w)
be finite. Then ) » ) .
Wp—0)A N\ @ADL - (gAF L))
(s.5)ed

is a good definition for IL, as the reader may verify.

Let MAX =0O(p — qV {q). Since it is not entirely trivial to check that M AX is good for
IL, we will supply some details:
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1.3 Proposition. MAX is a good definition for IL.
Proof. Let (-)™ denote the translation associated with M AX. We only show that L F (J2)™,
ie.,
LFO(A™ — B™VOB™)AOB™ — C™ VvV OC™) — OA™ — C™ V OC™).
Omitting the superscripts we have:
LFO(A— BV{B)AO(B — CV C) —=0(0B — O(C Vv OC))
—0(0B — 0C'V 00C)
—0O(¢B — ¢C), by L2
—0(QB — C Vv C)
—=0O(BV ¢B — CVOC)
—0(A - CVOC). ]

1.4 Proposition. Let f(p,q) be a good definition for IL. Then L+ (A — BVQB) — f(A, B).
Proof. By J1 we have
LFO(A— BV{B)— f(A,BV{B)
— f(4,B), by J5 and J3. ]

By Proposition 1.2 it follows that we have, for any good definition f(p,q) for IL, that
L+0O(A — BV{OB) — f(A,B) and L+ f(A,B) — (QA — QB). For definitions of the form
Of(p, q) this may be strengthened to:

1.5 Proposition. Let Of(p, q) be a good definition for IL. Then
L+0Of(A,B) « 0O(A — BV {B).

Proof. We only have to prove the implication from left to right. This may done using Smorynski’s
trick. Assume that the implication is not provable, then we find an L-model M; with root w,
such that w; | Of(A,B) — O(A — BV {B). Then there must be a wy with w; Rw, and
wy I f(A,B) AOf(A,B) AAA-BA-OB. Let Mj be the submodel generated by ws, and
let M3 be the result of appending a new root ws to My (cf. Sections 1.2 and 3.1). Then
ws - Of(A, B), but w3 I (0A — QB) — which contradicts the assumption that f(p, ¢) is good
for IL. [

Definitions for ILP

It is left to the reader to check that neither (Qp — {g) nor any of the ZI is good for ILP. On
the other hand, axiom L2 implies that M AX is a good definition for ILP.

Smoryrisky [1989] introduces the schema O(Qp — Qg) < p > ¢. Let PRC = 0O(0p — ¢g).
(Here PRC stands for ‘Provable Relative Consistency’.) We leave it to the reader to check that
PRC is good for J1, J2, J3, J5 and P, but not for J4.

There is an obvious way to remedy this defect: simply add {p — (g to PRC. By checking
all axioms, one easily verifies that the resulting definition, PRC™, is good for ILP. One can
generalize this procedure to the following Proposition:

1.6 Proposition. Assume that f(p,q) is a good definition for J1, J2, J3 and J5. Then
f(p,9) A (Op — ©q) is good for IL.

Note, by the way, that O%(Qp — ¢g) is a minimal good definition for ILP: it is entailed
by every other good definition for ILP. For, let f(p,¢) be such a definition, then L+ f(p,q) —
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(Op — Og) by J4. So L+ 0Of(p,q) — O(0p — Og), by R2 and L1. Now, Lt f(p,q) — Of(p,q)
by axiom P, therefore L F f(p,q) — O(Op — Og9) A (Op — 09).

Definitions for ILM
It is easily verified that neither ((p — ¢)¢) nor any of the ZI is good for ILM. To see that PRC*
is not a good definition for the axiom M, consider the following L-model (transitive R-arrows
have been left out):

W

It is a routine matter to check that w I- O (Qp — Qq), but w I O (Q(p AOr) — O(g ATP)).
To see that, on the other hand, M AX is a good definition for ILM, we only have to show

that L (M)™. Note that
LFO(A— BV {OB)—-D0OAADOC — (BVOB)ADOC)
—O(AAOC — (BAOC) V (OB AOC)).

Now, L + OB ADOC — (B AOC). Therefore, L F O(A — BV ¢B) — OAAOC —

(BAOC) V Q(B AOC)), as required.
For some time it was thought that M AX was the only good definition for ILM; however,

there are in fact infinitely many good definitions for ILM:

1.7 Proposition. Let n €w. Then O(p — ¢V Oq) VO (g AOL) is a good defintion for ILM.
Proof. The case n = 0 is proved above. Here we will prove the case n = 1. Let (-)* be the
translation associated with O(p — ¢V Qq) V O(¢ ALL). We only check that L (J2), and leave
the other cases to the reader. To prove that L} (J2)* we have to show that

L+ (O(A— BVOB)VO(BAOL) A (OB — CVOC) V H(C ATL))
— QA= CVOC)VH(C AQL).

Assume the antecedent. If we have ((C A [0L) then there is nothing to prove. So assume
=Q(C AOL). Then O(B — C V QC). If we have [0(A — BV {B), then we can use the proof of
Proposition 1.3 to get [0(A — C' V {C). So suppose we have =[J(4 — B V QB), then we must
have {(B AOL). Together with O(B — C'V ¢C) this yields O(C AOL), and we are done. m

By Proposition 1.4 any good definition f(p, q) for ILM is implied by O(p — ¢ V {g). The
following result, which is due to Dick de Jongh, states that any good definition f(p,q) for ILM
implies O(p — ¢ V Og) V O(g AOIL):

1.8 Proposition. Let f(p,q) be a good definition for ILM. Then L+ f(p,q) — O(p —
gV Oq) Vv O(gADlL).

Proof. Suppose L does not prove the implication. Then we find a Kripke model M for L with
root w such that w I+ f(p,q), O(p AO%q), O(g — —OL). It follows that there is a v with wRv
and v |- p A%t =g, and that ¢ is not forced on the endpoints of M.
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Now reduce the model to p and ¢, turn it into a tree (cf. Smoryniski [1985a] for the details),
and define y I r iff vRy, where r ¢ {p, ¢ }. Using the fact that ¢ is not forced on endpoints, one
easily verifies that w I f(p,q) — (O(p AOr) — O(¢ ADr)), and so LY f(p,q) — (O(p AOr) —
O(q AOr)). However, since f(p,q) is a good definition for ILM, we have

L+ f(p,q) — f(pAOr,q AOr), by axiom M
— (O(p AOr) — O(g AOr)), by axiom J4.

So we have reached a contradiction.

How to Get New Good Definitions from Old Ones

Let X be some set of axioms in £(0,>). Given a good definition for X, there are several ways
of making new ones out of it. One way was indicated above:

(i) If f(p,q) is good for J1, J2, J3 and J5, then f(p,q) A (Op — Qqg) is good for IL.
Here are some other ways:

(i) If fi(p,q) and fa(p,q) are good for IL (ILP, ILM), then so are fi(p,q) A f2(p,q) and

D+f1 (P; q)
(iil) If f(p, q) is good for IL, then O0* f(p, q) is good for ILP.

2 On Extensions of IL

We first establish a simple result to make sure that substitution will work properly.
One easily verifies that if f(p, q) is good for J1 and J2, then

L+ f(A,B)> A> B+OD < E)— (D> F < E> F),
L+ f(A,B) > A> B+OD « E)— (F> D « F b E).

Let F(p) denote a formula in which p possibly occurs, and let F(D) = F(p)[p := D]. Using
EXT it is a routine matter to show that for f(p,q) as above we have

L+f(A,B)y»A>BFD—E = L+f(A B)— A B}l F(D)« F(E).

EXT

This substitution principle may then be used to prove the following Proposition:

2.1 Proposition. Let f(p,q) be good definition for J1 and J2, and let (-)/ be its associated
translation. Then for all D € £(O,>), L+ f(A,B) < A> B+ D « Df.

Proof. A simple induction on D. n

2.2 Proposition. Let f(p,q) be a good definition for X C L(O,>), and (-)! its associated
translation. If L+ X + f(A,B) < A> Bt D, then L+ DY.

Proof. Induction on the length of the derivation of D from L+ X + f(A,B) « A> B. ]

Propositions 2.1 and 2.2 may be used to give an alternative characterization of some good
definitions.

2.3 Proposition. Let f(p,q) € £(O), and let X C £(O,>) contain J1 and J2. Then f(p,q)
is a good definition for X iff L+ X + f(A,B) — A D> B is conservative over L.



Chapter 5: Internal Definitions 35

Proof. =: If D € £(0), then

L+X+ f(A,B)y~A> BFD
= L D7, by Proposition 2.2,
= Lt D, since D € £(0) implies D = D7.

<: Suppose that L+ X + f(A, B) < A > B is conservative over L. If f(p, q) is not good for
X, then L/ D7 for some D € X, so by conservativity L+ X + f(A, B) «& A > Bl D’. But by
Proposition 2.1 L+ X + f(A,B) < A> B+ D « D/ whence L+ X + f(A,B) < A> Bl D
— which contradicts D € X. =

2.4 Proposition. Assume that f(p,q) is a good definition for J1 and J2. If f(p,q) is a good
definition for X C £(O,r>), then L+ f(A,B) —« A> BF X.

Proof. Suppose L+ f(A,B) < A> Bl D, for some D € X. By Proposition 2.1 it follows that
L+ f(A,B) < A> Bl Df and LI/ D/ — but then f(p,q) can’t be good for X. (]

It follows that if f(p, ¢) is good for IL, then L+ f(A,B) <« A> B = IL+ f(A,B) <~ AD> B.

2.5 Proposition. Assume that f(p,q) is a good definition for J1 and J2. If f(p,q) is a
good definition for X C £(O,>), then L+ X + f(A,B) « A> B iff L+ f(A,B) ~ A> B
aziomatizes L + X.

Proof. =>: We have to prove that for all D

L+f(A,B)~> A>BFDifL+XF D.

The direction from left to right is easy since L+ X F f (4, B) « A > B, while the other one
follows from the previous Proposition.

<: If L+ f(A, B) « A > B axiomatizes L+ X, then we have in particular L+ X F f(4, B) «
ApD B. u

2.6 Definition. A logic X D IL is called a mazimal L-conservative extension of IL, if X is an
L-conservative extension of IL, while Y 2 X implies that Y is not L-conservative.

2.7 Proposition. Let f(p,q) be a good definition for IL. Then L+ f(A,B) <+ AD> B isa
mazimal L-conservative extension of IL.

Proof. Suppose f(p, q) is good for IL. By Proposition 2.3 we have that L+ f(A,B) < A> Bisan
L-conservative extension of IL. To show it is maximal, assume that Y 2 L+ f(A,B) — A> B,
say Y - D, while L+ f(A,B) < AD> Bl D. Let (-)? be the translation associated with f(p, ).
Then by Proposition 2.1 we have that L+ f(4,B) <+ A> B+ D < D/ and Y - D < D/,
therefore Y  D/. On the other hand L+ f(4, B) < A> Bl D, so Lt/ D/. Since D/ € £(0),
this proves that Y is not L-conservative. ]

This last result may be used to show that no good definition for IL, ILP or ILM can be
derivable in IL, ILP or ILM respectively. For suppose the contrary, say IL F f(A,B) < A > B,
then L + f(A,B) < A > B axiomatizes IL, by Proposition 2.5. By Proposition 2.7, then, it
would be a maximal L-conservative system — which is certainly not the case, since IL C ILP.
To show that neither ILP nor ILM proves a good definition for itself, one uses the fact that both
are contained in the L-conservative system ILMP.

Johan van Benthem pointed out to us that these non-definability results may also be
obtained using a so-called Padoa counterexample. The idea is to give two models with identical
W, R and |- (on the proposition letters p and ¢), but with different S, in such a way that

e both of these models are IL-models;
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e their extensions of p > ¢ are different.

Clearly, if two such models exist, we can not have ILF p > ¢ < f(p, ) for any f(p,q) € £(O).
One easily verifies that the following two models satisfy the conditions mentioned above:

p q Jo) q
- - — — — Ll o @

® o
WO Wl
(Note that both models are ILM- and ILP-models, so the above proof also shows the non-
definability of ‘>’ in ILM and ILP.)

Recall that in section 1 we found Ry good definitions for IL: each of the ZI (where I is a
finite subset of w \ {0}) is good for IL. So the picture that emerges frome Proposition 2.7 is the
following. We have one ‘basic’ L-conservative system, IL, that can be extended in (at least) Rq
essentially different ways without destroying L-conservativity:

IL +MAX

ILMP IL +PRC *

ILM ILP
g P
IL

(Here, we write IL+X, where X is some definition, to denote IL+X ([p := A],[¢ := B]) « A > B;
{I; }jew is some enumeration of the finite subsets of w \ {0}.)

Several natural questions arise at this point:

e Are all maximal L-conservative extensions of IL of the form L+ f(A, B) <« A > B for some
good definition for IL?

e What is going on high up in the picture? E.g., is there one big L-conservative extension of
IL that contains all other L-conservative extensions of IL?

We have no answer to the first question, but we conjecture that it has a negative answer.
As to the second question, any system that contains all L-conservative extensions of IL cannot
itself be a conservative extension of L. For let X be such a system. Then X extends both
L+0%0A— 0B) > A> Band L+0(A — BV {$B) < A D> B. Since LI/ OV (0A — OB) —
O(A — BV{QB), X properly extends both of these systems, therefore it cannot be L-conservative
by Proposition 2.7.



6. On the Modal Theory of £(0O0,>)

The first section of this chapter has a less formal character than the rest of this thesis; it contains
some general remarks on the modal theory of £([J,>). In Section 2 we characterize the first-order
formulas (in some appropriate first-order language) that are equivalent — on Veltman models
— to a formula in a natural extension of our modal language.

1 Some General Remarks

We make the following change in notation. Let F be an £(0,>)-frame, i.e., a triple (W, R, S)
with W # 0, R C W? and S C W3. From now on we write M = (F, V) in stead of M = (F,II)
to denote a model on F. Here, V is a function V : PROP — 2%, where PROP is the set of
proposition letters. ‘M | A[w]’ (A is true at w in M) is defined inductively by

MEplw] iff weV(p)
ME-A[w] if M Afw]
MEAAB[w] iff M E Afw] and M [ Bluw]
M E QA[w] iff Fv(wRvAM E Alv])
MEAD> B iff Yo(wRvAM E Av] = u(vSyu AM | Blu])).

Furthermore, M = A if M | Alw] for all w € W; F | A[w] if, for all valuations V on F,
(F,V) E Alw), and F | Aif, for all w € W, F |= Alw].

As is well-known, £(0)-formulas can be translated into first-order ones in a language £
that contains one binary predicate symbol R, and unary predicate symbols P corresponding to
the proposition letters in £(0O):

(1) v(p) = Pe

(2) 7(=B) = —~7(B)

3) 7(BAC)=1(B)AT(C)

(4) 7(OB) = Vy(zRy — 7(B)[z := y])

where y is a variable not occurring in 7(B). As a matter of fact, all £(0J)-formulas translate into
a two-variable fragment of the above first-order language, e.g., the two-variable transcription of
O0(p — Oq) is

Vy (zRy — 3z (yRx A (Pz — 3y (zRy A Qy))))-
Note that 7 is not surjective, even on equivalence classes of formulas. Not all formulas in £;
— or even in the appropriate 2-variable fragment thereof — are the 7-transcription of an £(0J)-
formula. E.g., Vy(zRy) is not equivalent to an £(0J)-formula: unlike £(O)-formulas it is not

preserved under disjoint unions.
It is clear that 7 may be extended to £([J,>) by adding a clause for ‘>’

(5) 7(A> B) =VYy(zRy A r(A)[z := y] — Fz (ySsz A 7(B)[z := 2])).
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Here, y and z are variables not occurring in 7(A4) and 7(B). Note that this translation takes
£(0, >)-formulas into a three-variable fragment of the appropriate first-order language. Here
too 7 is not surjective, not even with respect to the 2-variable fragment. This is witnessed by
the same formula as the one given above.

In van Benthem [1989] a modality is defined to be a function on sets defined by some
first-order schema
Az.p(z, A1, ..., An)
which is continuous in the sense of commuting with arbitrary unions of its arguments 4; (1 <
i < n). (Obviously, for the “dual” version of the operator, one has to substitute ‘intersections’
for ‘unions’.) A typical example may be read off from the above clauses defining ‘M = Aw]’:

QA = Ae.y (zRy A Ay)).
Now, the definition of ‘>’ in this A-notation is
Az.F(A, B) = Az.Vy (xRy A A(y) — 3z (ySzz A B(2))),

or, equivalently,
Az.F(A, B) = Az Vy3z (zRy A A(y) — (ySzz A B(2))).

One easily verifies that Az.F'(A, B) is not continuous:

Az.F(A,BUC) # Az.F(A,B)UAz.F(A,C).
Neither does it commute with intersections of its arguments:

Az F(ANB,C) # Xx.F(A,C)N Ae.F(B,C).

So ‘>’ does not qualify as a modality according to van Benthem’s definition. One obvious way out
is to drop this definition, and to try and find a more liberal one. There are, however, several good
reasons for excluding operators like ‘>’ from a general theory of modal operators in the spirit of
van Benthem [1989]. One such reason is that we have a good duality theory for modalities in the
sense of van Benthem, while no such theory is available for operators like ‘>’. Let us elaborate
a bit.

An alternative to the Kripke-like structures for ordinary modal logics is offered by so-called
‘modal algebras’. These are Boolean algebras with operations (that is, functions from A" to A,
for any n, where A is the carrier of the Boolean algebra). According to the famous representation
theorem in Jénsson and Tarski [1951] there is a unique way of passing from a Kripke frame to
a modal algebra, and back. This duality between Kripke structures and modal algebras has
proved to be very useful in classical modal logic. (Cf. van Benthem [1985].) Now, passing from
an £(0, >)-frame to some sort of algebra is easy — one merely has to use the clauses for ‘¢’ and
‘>’ used to define ‘M |= A’. Unfortunately, the Jénsson and Tarski representation result is only
concerned with operators that are definable by a first-order formula of the form 3z, ...3z, ¥
(or dually: Vz; ...Vzy, 1), where ¢ is quantifier free. By a result in van Benthem [1989] all van
Benthem’s modalities are indeed of this form. But clearly, any operator corresponding to ‘>’ has
to have a V3-definition; therefore the Jénsson and Tarski representation result cannot be applied
here to get back into the realm of frames.

When interpreted in frames, £(0O, >)-formulas get second-order transcriptions, with equiv-
alences
F = Alw] < FEVP ...VP, r(A)w]
FEA < FEVP...VP,7(A),

proposition letters occurring in A. One of the rare general results in classical modal logic, the
well-known Sahlqvist Theorem, is, among other things, concerned with the following question:
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which modal formulas define first-order conditions on frames? Here, we will not attempt to
obtain any general answers or results concerning this issue. We only want to point out that even
syntactically very simple £([, >)-formulas may already define second-order conditions.

As an example we consider the formula T > p — —(T > —p). Now, ordinary modal
formulas in which a quantifier combination V3 occurs in the antecedent of an implication are
known to lead us outside of the realm of first-order definability (cf. van Benthem [1985]) — so
one might expect that the formula T &> p — —(T > —p) is not first-order definable. And indeed,

it is not.

1.1 Proposition. Let M be an £(0O,>)-model such that M |=Veyz (ySzz — ©RyRz). Then,
forall we W,

(i) M EDOQA[w] iff M =T > Alw);

(i) M E 0OA[w] iff M | (T > —A)[w].

1.2 Proposition. Let F be an £(O,>)-frame such that F E Veyz (ySez < ©RyRz). Then,
foralwe W, F E0O0p — Q0p[w] iff FET > p— (T > -p).

1.3 Proposition. OQp — QUp is not first-order definable.

Sketch of the Proof. In van Benthem [1985] an uncountable Kripke frame F is defined such
that F = OQp — QUp. It is then shown that this formula fails on some countable elementary
substructure F’ of F. From this the Proposition follows. ]

1.4 Proposition. T > p — =(T > —p) is not first-order definable.

Proof. Consider the ‘proof’ of the preceding Proposition. The frame F in that proof may be
expanded to an £(O,>)-frame by putting Vzyz (yS;z « zRyRz). By Proposition 1.2 it follows
that F T > p — (T > —p). Being a first-order sentence, Vzyz (ySzz < zRyRz) holds on
F'. But then, by another application of Proposition 1.2, 7/ £ T > p — —(T > —p). We may
conclude that T > p — =(T > —p) is not first-order definable. n

2 Relations between Models

The first-order formulas ¢ = ¢(z) that are (equivalent to) a translation of an £(O)-formula can
be characterized using the following relation between L£([J)-models:

2.1 Definition. A relation Z between two £(0J)-models M, and M3 is called a bisimulation
if it is non-empty and if it satisfies

(i) if 1 Z23, then x;, 2 satisfy the same proposition letters (or unary predicates);
(ii) if 21 Zz, and 21 Ry, then there exists a y, € W, such that 2o Rays and y; Zys;
(iii) similar to (ii) — but in the opposite direction.

Now L([)-formulas are invariant for bisimulations, i.e., if Z is a bisimulation between M;

and My then
if wy Zws, then M; | Alwi] iff My | Alws),

for all A € £(0). Conversely, if a first-order formula ¢ = ¢(z) is invariant for bisimulations, then
it is equivalent to a translation of an £([)-formula (cf. van Benthem [1985], de Rijke [1989]).

Given this model-theoretic characterization of the translations of £(0)-formulas, it seems
natural to try and find a characterization of the translations of £([J, t>)-formulas in terms of their
invariance under some relation between £([J, >)-models. The minimal conditions a bisimulation
has to fulfil to preserve true formulas of the form A > B are
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(iv) if 21 Zz9 and z2Rays, then there is a y; with z; R1y1, y1 Zy2 such that for all z; with
Y1515, 21 there is a z9 with 21225 and Y2524, 29;
(v) similar to (iv) — but in the opposite direction.
Let an extended bisimulation be a bisimulation that satisfies the extra conditions (iv) and
(v). Then a straightforward induction establishes that

2.2 Proposition. L(O,>)-formulas are invariant for extended bisimulations.

In his Vissser [1988] Albert Visser uses a notion of bisimulation that is similar to our
extended bisimulations. He uses his notion to show that every Veltman model for IL (or ILP
or ILM) is bisimular to a simplified Veltman model for IL (or ILP, ILM respectively). The
simplification consists of having one binary relation S in stead of a number of binary relations
Sw. The clause for ‘>’ in the definition of a forcing relation is then changed to

wl-AD> B < Yv(wRvAvIFA = Ju(wRuAvSuAul- B)).

Some additional motivation for the notion of extended bisimulations may be found in the
following result:

2.3 Proposition. Let M1, My be two finite £(O,>)-models. If for all A € £(O,>), M1 E
A[w] iff M2 | Alws], then there ezists an ezxtended bisimulation between My and M, that
connects wy and ws.

Proof. Define wZw' iff for all A € £(0,>), M; = Afw] iff M5 | A[w']. We claim that Z is an
extended bisimulation. We only check conditions (ii) and (iv) of the definition.

(ii) Assume that z;Zz5 and x1R;y:, and suppose that there is no y, € W> satisfying zaRays
and y; Zy,. Let zaRy := {ui,...,u, }. Then for each u; we have —y; Zu;. By the definition of
Z this implies the existence of formulas A; such that M [ A;[y1] and M = A;[u;]. Since M, is
finite, A = V/; A; € £(O,>). Then

Ml ’= _'A[yl] a'nd: for all Ui, MZ I: A[ui]a

SO

M; | -0OA[z1] and M, | OAfz,],

which contradicts 1 Zz,.
(iv) Assume that z1 2z and x2R2ys. Suppose that there is no y; satisfying condition (iv). Let
z1Ry := {ui,... un }. Then for each u; we have either

not u; Zys
or
there is a z1; with u;S15, 21; without there being a zy; with 21;Z22; and Y252z, 22;.

By the definition of Z the first case yields formulas A; such that M; | A;[u;] and My | —A4;[ya].
Since M; is finite we have A =/, 4; € £(O,>) and so

M; | Aly;], for all u; with —u; Zy,, and M, = —A[ys].

Assume that y2S2z, = {v1,...,v }. Then the second case implies that for each v; there is a
formula B;; such that M, I——— B;; [Zli] and M, |= —B;; [’Uj]. So, letting B; = /\j B;;, we find

Ml }: B,'[Zl,'], and for all vy, Mz # "IB,'['I)J'].
But then M, | -A >/, B;[21] and M, [£ —A > \/; B;[z,], which contradicts z; Zz,. n

Although this notion seems a plausible candidate for a characterization of the transcriptions
of £(O,>)-formulas, it does not fit. Without going into details here (but cf. Remark 2.8), and
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without claiming to have pinpointed the causes of these difficulties, we think that they have to
do with

(i) the fact that our first-order formalism now essentially needs at least three variables
— while we are trying to characterize this fragment by focusing on its formulas with
one free variable;

(i) the fact that we are working with a quantifier combination V3:

Vy(zRy A Py — 3z (ySz;z A Qz)).

Given (i) it seems much more appropriate to work with a formalism allowing up to three
free variables. This motivates the following definitions:

2.4 Definition. We define the first-order language £,; C £;. Fix three variables z, y, z, then

(i) Pz € Ly; for each unary P € Ly;

(ll) ifp, ¢ € 'Cpi; then also ~p, p AY, VY, o> ¢ € [:pi;
(iii) if ¢(z,y) € Lpi, then Iy (zRy A p(z,y)) € Lps;
(iv) if p(z,y,2) € Lp;, then Iz (ySe2z A p(z,y,2)) € Ly,

and similar patterns for the other variables.

Note that the formulas ¢ = ¢(z) € £p; that contain one free variable are a proper superset
of the set of the r-translations of £(OJ,>)-formulas. E.g., 3y (¢Ry A 3z (ySz2 A Pz)) is in L,;,
but it certainly is not the transcription of some A € £([J,>). Nevertheless, we like to think that
the set of p(z) € Lp; with one free variable, forms a natural extension of the set of translations
of £(O,>)-formulas.

Ordinary bisimulations may be viewed as a relation between sequences of objects of length
at most 2. In stead of imposing some extra condition on the relation between single objects,
as with the above eztended bisimulations, the right way to generalize the notion of bisimulation
seems to be the extension to sequences of objects of length larger than 2:

2.5 Definition. A trissimulation between two models M;, M is a non-empty relation Z be-
tween objects in Wy, Wa, between ordered pairs (z1,y1) € W2 and (z2,y2) € W2, where z1 Ry,
and z2R2y2, and between triples (z1,y1,21) € W3 and (22, y2,22) € W3, where z; R1y1 51,21
and z3 Roy2Saz,22, satisfying:

(i) if zy Zxa, then x;, 25 satisfy the same proposition letters (or unary predicates);
(ii) if 1 Zz5 and 21 Ry, then there is a y, such that (21, y1) Z(z2,¥2);
(iii) similar to (ii) — but in the opposite direction;
(iv) if (x1,%1)Z(x2,y2) and y;S1, 21, then there is a zo with (21,91, 21) Z(22, Y2, 22);
(v) similar to (iv) — but in the opposite direction;
(vi) if (21, y1)Z(x2,y2), then both z, Zz5 and y; 2y, and if (z1, y1, z1) Z (2, Y2, 22), then
21229, 112Y2, and 21 Z2,, and also (z1,y1) Z(z2,y2)-

The first thing to note is that £(0,>)-formulas are invariant for trisimulations, i.e., if Z
is a trisimulation between M; and My, and wy Zws,, then M; | A[w;] iff M2 | Afw,] for all
A € £(0,>). And more generally:

2.6 Proposition. Let ¢ = ¢(z) € Lpi. Then ¢ is invariant for trisimulations.
We are now ready to prove an invariance result for £;:

2.7 Theorem. Let ¢ = ¢(z) € L1. Then ¢ is equivalent to an Lyi-formula iff it is invariant
for trisimulations.
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Proof. One direction is the preceding Proposition. To prove the other one, assume that ¢(z) € £4
is invariant for trisimulations. Define X, := {9(z) € L,i| ¢ = ¥ }. We will prove that X, = ¢.
By the compactness theorem it then follows that 9 |= ¢, for some ¢ € X,,. Hence |= ¢ « 1.
Assume that My | X, [w]; we have to prove that M, |= p[w]. Introduce a new individual
constant w to stand for the object w and define £}, := Lp; U{w}. In the remainder of this
proof we use the following notation: if ¢ € Lp; then ¥* = ¥[z := w], and if T' C £,; then
T* := {4*|¢ € T'}. Of course M, is easily expanded to an £j;-model M7 by interpreting w

as w.
Let Ty := { ¥ € Lpi | M1 = ¥[w] }, and assume that T' C Tp is finite, say T = { 91,...,%, }.

We claim that there exists an £;;-model (N, w) | ¢* A AT*. For suppose that such a model
does not exist, then

N, w) - /\T*, for every £,; — model (N, w) such that (N, w) |= ¢7,
=E —»—a/\T*
=>-ATeXx,
= My E =\ T[w], since My = X, [w].

However, AT € Tp, and so My = A\ T[w] — contradiction.

By compactness we obtain an Ly;-model M3 := (M2, w) |= ¢* A ATg. Now let U be a

countably incomplete ultrafilter on w, and let M3 := Iy M} and M} := LIy M3. It follows that
M and M are w-saturated (cf. Chang & Keisler [1973], Theorem 6.1.1). By the Lo$ Theorem
we find that the interpretations ws and w4 of w in M3 and M, respectively, both realize Ty,
and that M} = ¢*. Define a trisimulation Z between M3 and M} by putting

z1Zxy <= for all Y € Ly,
Ms [ Plea] iff My | ofzs];
(21, 1) Z(x2,y2) <= z1R3y; and z2 R4y and for all ¥ € L,
Ms | Yleiy] iff My = ¢lzay];
(1, y1,21) Z(x2, Y2, 22) <= 21 R3y1 S5z, 21 and 22 Ray2S2-,22 and for all ¢ € Ly,
Ms = Y[y 21] iff My | Y[zayszs).

Note that Z satisfies condition (vi) of Definition 2.5. Let us check the other conditions as well.
Z is non-empty because we have wzZws:

Ms = Plws] = (Ms,w) |= 4"
= ¢* € Ty, otherwise (My, w) E -9,
—¢* € Ty and (M3, w) |= 9",
= My, w) 9"
= My | plwd],
and the converse implication is proved similarly. Next we check conditions (i)~(v) in Definition

2.5.

(i) By definition.

(ii) Assume that z;Z2z; and z; Rgyi; we have to find a y, with (x1,y1)Z(z2,y2). Consider
U = {¢ € Lpi| M3z = ¢[z1y1]}. Then ¥(x;) U {x2Ry} is finitely satisfiable in M,. For
suppose not, then there is a finite ¥y C ¥ with

My EVy (zRy — = \ To(, y))[z2]
= My = -3y (sRy A= J\ Wo(z,))[z2)
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= M3 E -Jy(zRy A —./\ Wo(z,y))[z1], since 21 Zxs.

But this contradicts the fact that M3z | 2Ry A A ¥(z,y)[z1,¥1]. So ¥(x2,y) U {x2Ry } is a
type of (Ma,x2). Because this model is w-saturated we find a y, € Wy such that (My,x3) |
x2 Ry A N\ ¥(x2,y)[y2], i.e., My = 2Ry A \¥(z,y)[x2y2]. We conclude that (z1,y1)Z (22, y2).
(ii1) Similar to (ii).

(iv) Suppose that (z1,11)Z(z2,y2) and y1S3z,21. This time we are looking for a z; with
(z1,y1,21) Z(22,y2,22). We now consider ¥ = {9 € Ly; | M3 | ¥[z1y121] }, and claim that
U(x2,y2,2) U{y2Sx,22 } is finitely satisfiable in My. Again, if it is not, there must be a finite

My EVz (ySzz — = \ Yo(z, 9, 2))[@212]
= My -3z (ySzz A ﬁ/\ Vo(z, y, 2))[z2y2]
= Mz E -3z (ySzz A —-/\ Uo(z,y,2))|[z1y121], since (21, y1)Z(x2,Y2). (*)

But this contradicts the fact that M3 | ySe2 A\ ¥(z,y, 2)[z1y121]. So ¥(x2,y2,2)U is a type of
(M4, x2,y2). Because this model is w-saturated we find a zo € Wy with (My,X2,y2) | y25x,22A
A ¥ (x2,¥2, 2)[22], ie., My |E ySez A A\ Y(2,y, 2)[z2,y2, 22]. Hence (z1,y1,21) Z(22, Y2, 22)-
(v) Similar to (iv). ‘
So we have a trisimulation Z between M3 and MJ. Now consider the following diagram:

My Mo,

M: < TgM:= My M =TgM; = M.

We have
MiE " = MiE "
= Mj = ¢*, by invariance for trisimulations,
=> MiE¢
= M E plu]. ‘ »

2.8 Remark. The starred line in the above proof is precisely where we use the fact that we
are working in £,;. For this is where we use the fact that we have more than one free variable
available, and the fact that 3z (ySz2z A (2, y, 2)) € Lp;.

2.9 Remark. Since finite models M, M5 are always saturated, we have, as a special case of
the above proof, that the following are equivalent:

(i) My | Alwi] iff M3 | Alw,)], for all A € Ly

(ii) there exists a trisimulation between M; and M, that connects w; and ws.
We end this chapter with a corollary to Theorem 2.7:

2.10 Proposition. Let M be a class of £(0,>)-models. Then M = {M | M | A} for some
A € Ly iff M is closed under trisimulations and ultraproducts, while its complement is closed

under ultraproducts.
Proof. f M = {M|M |= A} for some A € Lp;, then M is closed under trisimulations and
ultraproducts. The complement of M is defined by —Vz 7(A), hence closed under ultraproducts
by the Los-theorem.
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Conversely, suppose M and its complement satisfy the stated conditions. Since M is closed
under trisimulations, it and its complement are closed under isomorphisms. So there is an £;-
sentence ¢ such that for all models M, M € M iff M | ¢ (cf. Chang and Keisler [1973],
Corollary 6.1.16). We may safely assume that ¢ = Vz 9, for some 1. Now, M is closed under
trisimulations, so 9 is invariant for trisimulations. Therefore, the Theorem yields an A € £p;
such that

Yz (r(4) < ¢)
EVer(4) «Vey
EVar(A) < ¢.

SoMeM <= MEg¢ < MEVzr(A), and A defines M. m

The End.
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