Institute for Language, Logic and Information

ON THE COMPLEXITY OF ARITHMETICAL INTERPRETATIONS OF MODAL FORMULAE

L.D. Beklemishev

ITLI Prepublication Series X-90-03

University of Amsterdam

```
The ITLI Prepublication Series
      1986
                                                                                                                                              The Institute of Language, Logic and Information A Semantical Model for Integration and Modularization of Rules
      86-01
      86-02 Peter van Emde Boas
                                                                                                                                               Categorial Grammar and Lambda Calculus
A Relational Formulation of the Theory of Types
      86-03 Johan van Benthem
      86-04 Reinhard Muskens
                                                                                                                                               A Relational Formulation of the Theory of Types
Some Complete Logics for Branched Time, Part I Well-founded Time,
Forward looking Operators
      86-05 Kenneth A. Bowen, Dick de Jongh
86-06 Johan van Benthem
1987 87-01 Jeroen Groenendijk, M
                                                                                                                                                                               Type shifting Rules and the Semantics of Interrogatives
                                     87-01 Jeroen Groenendijk, Martin Stokhof
      87-02 Renate Bartsch
87-03 Jan Willem Klop, Roel de Vrijer
                                                                                                                                               Frame Representations and Discourse Representations
                                                                                                                                               Unique Normal Forms for Lambda Calculus with Surjective Pairing
      87-04 Johan van Benthem
                                                                                                                                               Polyadic quantifiers
                                                                                                                                               Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
      87-05 Víctor Sánchez Valencia
      87-06 Eleonore Oversteegen
      87-07 Johan van Benthem
                                                                                                                                               Categorial Grammar and Type Theory
      87-08 Renate Bartsch
                                                                                                                                               The Construction of Properties under Perspectives
      87-09 Herman Hendriks
                                                                                                                                               Type Change in Semantics: The Scope of Quantification and Coordination
      1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
     LP-88-02 Yde Venema
                                                                                                                                               Expressiveness and Completeness of an Interval Tense Logic
                                                                                                                                               Year Report 1987
     LP-88-03
     LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
                                                                                                                                              Going partial in Montague Grammar
Logical Constants across Varying Types
     LP-88-06 Johan van Benthem
                                                                                                                                               Semantic Parallels in Natural Language and Computation
     LP-88-07 Renate Bartsch
                                                                                                                                               Tenses, Aspects, and their Scopes in Discourse
    LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen
LP-88-10 Anneke Kleppe
                                                                                                                                              Context and Information in Dynamic Semantics
A mathematical model for the CAT framework of Eurotra
    ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen
MI_-88-02 Diel-1-7
MI_-88-02 Diel-1-7
MI_-88-03 Diel-1-7
MI_-
                                                                                                                              ogic and Foundations: Lifschitz' Realizabiility
The Arithmetical Fragment of Martin Löf's Type Theories with weak Σ-elimination
     ML-88-03 Dick de Jongh, Frank Veltman
                                                                                                                                              Provability Logics for Relative Interpretability
    ML-88-04 A.S. Troelstra
ML-88-05 A.S. Troelstra
                                                                                                                                              On the Early History of Intuitionistic Logic
                                                                                                                                              Remarks on Intuitionism and the Philosophy of Mathematics
    CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity CT-88-02 Michiel H.M. Smid

CT-88-03 Michiel H.M. Smid, Mark H. Overmars

Leen Torenvliet, Peter van Emde Boas

CT-88-04 Die Leen Torenvliet, Peter van Emde Boas

CT-88-05 A.S. Hoeista

Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity

General Lower Bounds for the Partitioning of Range Trees

Maintaining Multiple Representations of

Dynamic Data Structures

CT-88-04 Die Leen Torenvliet, Peter van Emde Boas

CT-88-05 A.S. Hoeista

CT-88-07 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity

General Lower Bounds for the Partitioning of Range Trees

Dynamic Data Structures
    CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette
                                                                                                                                              Computations in Fragments of Intuitionistic Propositional Logic
                                                                                                     Machine Models and Simulations (revised version)
A Data Structure for the Union-find Problem having good Single-Operation Complexity
     CT-88-05 Peter van Emde Boas
     CT-88-06 Michiel H.M. Smid
   CT-88-06 Michiel H.M. Smid

A Data Structure for the Union-find Problem having good Single-Operation Completion

CT-88-07 Johan van Benthem

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas

CT-88-09 Theo M.V. Janssen

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy

CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL

X-88-01 Marc Jumelet

Other prepublications:

On Solovay's Completeness Theorem
    1989 LP-89-01 Johan van Benthem Logic, Semantics and Philosophy of Language: The Fine-Structure of Categorial Semantics
    LP-89-02 Jeroen Groenendijk, Martin Stokhof
                                                                                                                                             Dynamic Predicate Logic, towards a compositional, non-representational semantics of discourse
   LP-89-03 Yde Venema
LP-89-04 Johan van Benthem
LP-89-09 Zhisheng Huang

ML-89-01 Dick de Jongh, Albert Visser

ML-89-03 Dick de Jongh, Franco Montagna

ML-89-04 Dick de Jongh, Marc Jumelet, Franco

ML-89-05 Rineke Verbrugge

ML-89-06 Michiel van Lambalgen

ML-89-07 Dirk Roorda

ML-89-09 Alessandra Carbone

CT-80-01 MC Sanchez Valencia

Lamber Calculi: Theory and Application

The Adequacy Problem for Sequential Propositional Logic

Peirce's Propositional Logic: From Algebra to Graphs

Dependency of Belief in Distributed Systems

Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables

Montagna

On the Proof of Solovay's Theorem

S-completeness and Bounded Arithmetic

The Axiomatization of Randomness

Elementary Inductive Definition

Lamber Valencia

Foundations: Explicit Fixed Points for Interpretability Logic

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables

The Axiomatization of Randomness

Elementary Inductive Definition

The Adequacy Problem for Sequential Propositional Logic

Peirce's Propositional Logic

From Algebra to Graphs

Dependency of Belief in Distributed Systems

Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables

The Adequacy Problem for Sequential Propositional Logic

Foundations:

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables

The Adequacy Problem for Sequential Propositional Logic

Foundations:

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables

Foundations:

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables

Foundations:

Extending the Lambda Calculus with Surjective Pairing is conservative

Rosser Orderings and Free Variables
                                                                                                                    Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
                                                                                           Provable Fixed points in I\Delta_0 + \Omega_1

Computation and Complexity Theory: Dynamic Deferred Data Structures
    CT-89-01 Michiel H.M. Smid
                                                                                                                                            Machine Models and Simulations
    CT-89-02 Peter van Emde Boas
   CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas
CT-89-04 Harry Buhrman, Leen Torenvliet
CT-89-05 Pieter H. Hartel, Michiel H.M. Smid
Leen Torenvliet, Willem G. Vree
CT-80-06 H.W.I.
                                                                                                                                                                                                                             On Space Efficient Simulations
                                                                                                                                            A Comparison of Reductions on Nondeterministic Space
                                                                                                                                            A Parallel Functional Implementation of Range Queries
  CT-89-06 H.W. Lenstra, Jr.

CT-89-07 Ming Li, Paul M.B. Vitanyi

CT-89-08 Harry Buhrman, Steven Homer
Leen Torenvliet

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet

CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet

CT-89-10 Sieger van Dennehauvel

The Public Lengure Resource Bounded Computations

The Public Lengure Resource Bounded Computations
   CT-89-06 H.W. Lenstra, Jr.
CT-89-07 Ming Li, Paul M.B. Vitanyi
  C1-89-10 Sieger van Denneheuvel

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas
X-89-01 Marianne Kalsbeek
X-89-02 G. Wagemakers
X-89-03 A.S. Troelstra
X-89-04 Jeroen Groone die Mariana Kalsbeek
X-89-05 A.S. Troelstra
X-89-04 Jeroen Groone die Mariana Kalsbeek
X-89-05 A.S. Troelstra
X-89-06 Jeroen Groone die Mariana Kalsbeek
X-89-06 Jeroen Groone die Mariana Kalsbeek
X-89-07 A.S. Troelstra
X-89-08 Jeroen Groone Groone die Mariana Kalsbeek
X-89-08 A.S. Troelstra
    X-89-04 Jeroen Groenendijk, Martin Stokhof
                                                                                                                                           Dynamic Montague Grammar, a first sketch
   X-89-05 Maarten de Rijke
                                                                                                                                           The Modal Theory of Inequality
   X-89-06 Peter van Emde Boas
1990 SEE INSIDE BACK COVER
```

Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project

Faculteit der Wiskunde en Informatica (Department of Mathematics and Computer Science) Plantage Muidergracht 24 1018TV Amsterdam Faculteit der Wijsbegeerte (Department of Philosophy) Nieuwe Doelenstraat 15 1012CP Amsterdam

ON THE COMPLEXITY OF ARITHMETICAL INTERPRETATIONS OF MODAL FORMULAE

L.D. Beklemishev
Steklov Mathematical Institute
Vavilova 42, 117966 Moscow GSP-1, U.S.S.R.

ON THE COMPLEXITY OF ARITHMETICAL INTERPRETATIONS OF MODAL FORMULAE

Beklemishev L.D. Steklov Mathematical Institute,

Moscow, November 1989.

It is a well-known fact that for any arithmetic sentence A $A \in \Sigma_1^{\mathrm{PA}} \Rightarrow \mathrm{PA} \vdash A \longrightarrow \mathrm{Pr}^{\Gamma} A^{\Gamma}$.

Here Pr stands for Gödel's formula expressing provability in Peano Arithmetic PA and Σ_1^{PA} denotes the class of sentences PA-equivalent to those in Σ_1 -form.

C.Kent [1] showed that the converse implication does not hold. Moreover, he found that for each natural number n there exists an arithmetic sentence \mathbf{A} such that

$$PA \vdash A \longrightarrow Pr^{\lceil A \rceil}$$
 and $A \notin \Delta_n^{PA}$.

D.Guaspari [2] rediscovered (a sharpened version of) this result applying his own techniques of partially conservative sentences. He also showed that arithmetically complex sentences implying their own provability cannot be constructed by some class of restricted means.

D.Guaspari posed a few problems generalizing one solved by Kent and himself, which are formulated in terms of provability interpretations of propositional modal logic.

DEFINITION. Let $\mathcal L$ be the language consisting of propositional variables p,q,\ldots ; boolean connectives \wedge , \vee , \longrightarrow , \longleftrightarrow , \neg and \bot ; modal operator \square .

An arithmetical interpretation f is a mapping of \mathscr{L} -formulae to arithmetic sentences which commutes with boolean connectives and translates \square as provability, i.e. for every modal formula ϕ

$$f(\Box \phi) = \Pr^{\Gamma} f(\phi)^{\gamma}$$
.

D.Guaspari noted that for any arithmetic sentence A obviously $PA \vdash A \longrightarrow Pr^{\lceil}A^{\rceil} \Leftrightarrow \text{there is a sentence } B \text{ s.t. } PA \vdash A \longleftrightarrow B \land Pr^{\lceil}B^{\rceil}.$

So, the original question is equivalent to one, whether there exist non Σ_1^{PA} (or even arbitrarily complex) arithmetic interpretations of the modal formula $p \wedge p$. D.Guaspari set the problem of cha-

racterizing those formulae of ℓ , which are Σ_1^{PA} under every arithmetical interpretation, and conjectured that they are exactly the formulae provably in the modal logic GL (called PRL in [3]) equivalent to disjunctions of boxed formulae, i.e. those of the form $\Box \phi$. An analogous conjecture was also made for the modal language enriched by witness comparison formulae.

These conjectures have been proved by A.Visser [4] and D.de Jongh & D.Pianigiani [5] respectively. The latter authors also extended the result to arbitrary theories containing arithmetic $\mathrm{I}\Sigma_1$.

The aim of present paper is to characterize the formulae of ℓ having bounded arithmetical complexity, i.e. whose arithmetical interpretations are all Δ_n^{PA} for some fixed n. It turns out, perhaps not very surprisingly, that such formulae are exactly those equivalent in GL to boolean combinations of boxed ones. In other words, each modal formula not equivalent to any such combination admits arbitrarily complex arithmetical interpretations. Thus, we may say that the "modal analog" of the arithmetical hierarchy with respect to PA collapses after the level of boolean combinations of Σ_1 -sentences.

It is easily seen that the formula $p \wedge p$ is not equivalent to any boolean combination of boxed formulae, so our result provides us with one more proof of Kent's theorem. However, it will be clear after reading the sequel that, when applied to this particular formula, our construction essentially goes along the lines of that of Kreisel & Lévy (cf also [6], [7]).

Let B_n^{PA} denote the collection of all arithmetic sentences PA-equivalent to boolean combinations of those in Σ_n -form.

THEOREM.

Suppose ϕ is a formula of $\mathscr L$ such that for no boolean combination ψ of boxed formulae $\mathrm{GL} \vdash \phi \leftrightarrow \psi$. Then for each $n \ge 1$ there exists an arithmetical interpretation f such that

$$f(\phi) \in \Delta_{n+1}^{PA} \backslash B_n^{PA}$$
.

In order to prove this theorem first of all we obtain some Kripke-style characterization of modal formulae GL-equivalent to boolean combinations of boxed formulae. We shall call the usual finite strictly partially ordered (not necessary treelike) Kripke models for GL just models (cf [3]). The expression $\mathcal{K} \vdash \phi$ will

denote the fact that ϕ is forced at the bottom node of the model K.

DEFINITION. A modal formula ϕ is called *stable* iff for all models $\mathcal K$ and $\mathcal K'$ with the same frame and the same forcing of propositional variables at all nodes except bottom ones

$$\mathcal{K} \vdash \phi \Leftrightarrow \mathcal{K}' \vdash \phi$$
.

LEMMA 1. A modal formula ϕ is GL-equivalent to a boolean combination of boxed formulae iff ϕ is stable.

PROOF. It is trivial that boolean combinations of boxed formulae are stable. We check the converse implication.

Suppose ϕ is stable. Clearly ϕ is a boolean combination of boxed subformulae $\Box\phi_1,\ldots,\Box\phi_k$ and propositional variables p_1,\ldots,p_m occurring outside any \Box in ϕ . Let ϕ^* denote the result of substituting in ϕ the constant \Box for all the occurrences of variables outside any \Box . Clearly, ϕ^* is a boolean combination of boxed formulae. We shall show that $\mathrm{GL} \vdash \phi \leftrightarrow \phi^*$. By the completeness of GL with respect to models it is sufficient to show that ϕ and ϕ^* are forced exactly at the same models (cf [3]).

Let $\mathcal K$ be an arbitrary model and let $\mathcal K^*$ denote the model with the same frame as $\mathcal K$ and the same forcing of propositional variables at all nodes except the bottom node, where (in $\mathcal K^*$) no variable is forced. Clearly we have

$$\mathcal{K} \; \vdash \; \Box \phi_{\dot{1}} \; \Leftrightarrow \; \mathcal{K}^{\star} \; \vdash \; \Box \phi_{\dot{1}} \quad \text{and} \quad \mathcal{K}^{\star} \; \vdash \; p_{\dot{j}} \; \Leftrightarrow \; \mathcal{K} \; \vdash \; \bot, \; \text{hence}$$

$$\mathcal{K} \; \vdash \; \phi^{\star} \; \Leftrightarrow \; \mathcal{K}^{\star} \; \vdash \; \phi.$$

By our assumption ϕ is stable, hence

$$\mathcal{K} \vdash \phi \Leftrightarrow \mathcal{K}^* \vdash \phi.$$

It follows that

$$\mathcal{K} \vdash \phi \Leftrightarrow \mathcal{K} \vdash \phi^*$$
.

Thus,

$$GL \vdash \phi \leftrightarrow \phi^*$$
.

COROLLARY 1. The class of $\mathscr{L} ext{-formulae}$ equivalent to boolean combinations of boxed ones is decidable.

Suppose now that ϕ is a nonstable formula. Let \mathcal{K}_1 and \mathcal{K}_2 be a pair of models obtained by Lemma 1, such that $\mathcal{K}_1 \vdash \phi$ and $\mathcal{K}_2 \vdash \neg \phi$. By identifying the corresponding nodes of \mathcal{K}_1 and \mathcal{K}_2 except the bottom ones and by adding a new bottom node below them we can construct a model $\mathcal{K} = (\mathcal{K}, \prec, \vdash)$, such that

- (i) $K = \{0, \ldots, k\}$ for some $k \in \mathbb{N}$;
- (ii) 0 is the bottom node of $\mathcal K$ and 1 and 2 are the only immediate successors of 0;
 - (iii) 1 and 2 have the same successors;
- (iv) for all $i,z,w \in K$, if 1 < z,w and z,w < i then either z < w or w < z;
 - (v) $1 \vdash \phi$ and $2 \vdash \neg \phi$.

Condition (iv) will be satisfied if we beforehand choose \mathbf{K}_1 and \mathbf{K}_2 treelike .

Our next goal is to describe a Solovay-style [8] embedding of such models into arithmetic. First of all, let us try to explain it informally. Since we are going to define a very complex interpretation, say f, it is of no importance for us, whether we shall work within PA or within some finite extension of it of low complexity. The new axiom we will add is the statement, that some Solovay-type function has the limit ℓ either in the node 1 or in 2. The words "Solovay-type" mean that for all $i \in K \setminus \{0\}$ and all formulae ψ of ℓ we will have

$$PA \vdash \ell = i \longrightarrow (i \vdash \psi \longleftrightarrow f(\psi)).$$

Thus, since $1 \vdash \phi$ and $2 \vdash \neg \phi$, we shall obtain

$$PA \vdash \ell \in \{1,2\} \longrightarrow (\ell=1 \longleftrightarrow f(\phi)).$$

At this point all we need is to define our function in such a way, as it would be an impracticable task not only for PA + $\ell \in \{1,2\}$, but also for any finite consistent extension of PA + $\ell \in \{1,2\}$ of low complexity, to distinguish whether ℓ equals 1 or 2. And it is here that we apply the trick of Kreisel & Lévy. It is worth mentioning that such an idea would not work, had not our frame been fully symmetrical with respect to transpositions of nodes 1 and 2.

Now we turn to explicit definitions. Let for $n \ge 1$ ${\rm Tr}_n$ denote the standard Δ_{n+1} -definition of truth for ${\rm B}_n$ -formulae, i.e. the standard arithmetic Δ_{n+1} -formula such that

$$PA \vdash \forall u \in B_n \text{ Pr}(u \stackrel{\cdot}{\longleftrightarrow} \lceil \text{Tr}_n(u) \rceil)$$

and

$$PA \vdash \forall u \notin B_n \neg Tr_n(u)$$
.

Further, let $\Pr_{u}(m,x)$ denote the primitive recursive formula expressing the predicate " m is (the gödel number of) a proof of the formula x from axioms of PA together with the additional axiom u ".

Given an arithmetic sentence B $\operatorname{Prf}_B(m,x)$ will abbreviate the formula $\operatorname{Prf}_{(B,X)}$ and $\operatorname{Prf}(m,x)$ will denote $\operatorname{Prf}_{0=0}(m,x)$.

By the routine formalization of the definition below with the aid of the Fixed Point Theorem one can define an arithmetic Δ_{n+1} -function h such that PA proves that h(0) = 0 and for all m h(m+1) is "computed" by the following instructions:

$$\underline{\text{if }} z > h(m), z > 1 \underline{\text{and}} \Pr(m+1, \lceil \ell \neq z \rceil)$$

$$\underline{\text{then }} h(m+1) = z$$

$$(1)$$

else if
$$h(m)=0$$
 and $\exists y_1, y_2 \le m+1$ ($Prf(y_1, \lceil \ell \ne 1 \rceil) \land Prf(y_2, \lceil \ell \ne 2 \rceil)$) (2)

then if
$$\exists z, u \le m+1 \ (\operatorname{Tr}_n(u) \land \operatorname{Prf}_u(z, \lceil \ell \ne 1 \rceil) \land \forall t, w < z \ (\neg \operatorname{Tr}_n(w) \lor \neg \operatorname{Prf}_w(t, \lceil \ell \ne 2 \rceil)))$$
 (3)

$$\frac{\text{then }}{\text{else }} h(m+1)=1$$

$$= \ln (m+1)=2$$
(4)

$$\underline{\text{else}} \ h(m+1) = h(m). \tag{5}$$

Here $\ell=z$ denotes the formula $\exists N \ \forall \ m>N \ h(m)=z$.

The following Lemma establishes the properties of our function h similar to those of the original Solovay's function (cf [8],[3]).

LEMMA 2.

- 1. $PA \vdash \forall m \ (h(m) \leq h(m+1)); PA \vdash \ell=0 \lor \ell=1 \lor ... \lor \ell=k;$
- 2. $i, j \in K$ and $i \neq j \Rightarrow PA \vdash \ell = i \longrightarrow \ell \neq j$;
- 3. $j>i>0 \Rightarrow PA \vdash \ell=i \longrightarrow \neg Pr^{\lceil \ell \neq j \rceil}$;
- 4. $i>0 \Rightarrow PA \vdash \ell=i \longrightarrow Pr^{\lceil \ell > i \rceil};$
- 5. PA + $\ell \in \{1,2\}$ is a consistent theory;
- 6. ℓ =0 is true;
- 7. $PA \vdash \ell \in \{1,2\} \leftrightarrow Pr^{\lceil \ell \notin \{1,2\} \rceil} \land \forall i > 1 \neg Pr^{\lceil \ell \neq i \rceil}$.

PROOF. Claims 1 and 2 follow immediately from the definition of h. Statement 3 is proved as in Solovay's paper; the following argument can be formalized in PA: "If $\ell \neq j$ is provable then it has PA-proofs with arbitrarily large gödel numbers. So, if $\ell = i$ then h is bound to make a move from i by clause (1) because j > i > 0.".

The proof of 4 is not quite the same as in [8], because our function h is not Σ_1 . Yet for all i>1 one can easily show that the sentence $\exists m\ h(m)=i$ is Σ_1^{PA} .

In fact,

$$\begin{array}{lll} \mathrm{PA} \vdash & \exists m \ h(m) = i \ \longleftrightarrow \ \exists m \ (\mathrm{Prf}(m, \lceil \ell \neq i \rceil) \ \land \ \forall y < m \ \forall j \in K \ (\lnot j \leqslant i \ \land \\ \mathrm{Prf}(y, \lceil \ell \neq j \rceil) \ \longleftrightarrow \ \exists z \leqslant i \ \exists x < y \ (\ \mathrm{Prf}(x, \lceil \ell \neq z \rceil) \ \land \ \lnot \ z < j \) \)). \end{array}$$

The (\longrightarrow) implication follows from the monotonicity of h, for if m is the least (gödel number of a) proof of $\ell \neq i$, h(y) is to be beneath i for all y < m. So, by clause (1), if at some stage y < m we receive a proof of $\ell \neq j$, where not j < i, h(y) is already to be not < j. And this is possible only if we have earlier received a proof of some sentence $\ell \neq z$, where z < i but not z < j.

In order to prove the converse implication we only have to check that h cannot make a move from beneath i before stage m. Since both 1 and 2 are beneath i, such a move can only be made by clause (1); but this is impossible because if h moved from some w < i to j, where not j < i, we would earlier have obtained a proof of $\ell \neq z$ for some z < i and z not < j. By property (iv) of the model \mathcal{K} , either w < z or z < w. The latter is not the case since w < j but z is not. So, h is bound to have moved from w to z earlier than to j. Absurd.

Suppose now that i>1. Then

$$\begin{array}{ccc} \text{PA} & \vdash & \ell = i & \longrightarrow & \exists m \ h \ (m) = i \\ & \longrightarrow & \text{Pr} \ \lceil \exists m \ h \ (m) = i \rceil \\ & \longrightarrow & \text{Pr} \ \lceil \ell \geqslant i \rceil \end{array}$$

But for all i>0 trivially

$$PA \vdash \ell = i \longrightarrow Pr^{\lceil \ell \neq i \rceil};$$

hence

$$PA \vdash \ell = i \longrightarrow Pr^{\lceil \ell \rangle} i^{\rceil}$$
.

We treat the case $i \in \{1,2\}$ in a different way. By clause (2), h is allowed to make a move to 1 only after having received both proofs of $\ell \neq 1$ and $\ell \neq 2$. It follows that

$$PA \vdash \ell=1 \longrightarrow Pr^{\lceil \ell \notin \{1,2\} \rceil}$$
.

We also have

$$PA \vdash Pr^{\lceil \ell \notin \{1,2\}^{\rceil}} \longrightarrow \ell \neq 0;$$

hence

$$PA \vdash \ell=1 \longrightarrow Pr^{\lceil \ell \notin \{1,2\}^{\rceil}}$$
$$\longrightarrow Pr^{\lceil Pr^{\lceil \ell \notin \{1,2\}^{\rceil}\rceil}}$$
$$\longrightarrow Pr^{\lceil \ell \neq 0\rceil}.$$

Thus we obtain

$$PA \vdash \ell=1 \longrightarrow Pr^{\lceil \ell \notin \{0,1,2\}^{\rceil}}$$
$$\longrightarrow Pr^{\lceil \ell > 1^{\rceil}}.$$

The case i=2 is fully symmetrical; so statement 4 follows. Claim 6 is trivial.

To check 5 and 7 notice that if PA proves $\ell \notin \{1,2\}$, then h is bound to make a move from 0.

REMARK. Note that statement 3 of this Lemma is weaker than the corresponding statement of Solovay, because we have not proved that

$$PA \vdash \ell=0 \longrightarrow \neg Pr^{\lceil \ell \neq 1 \rceil}$$
.

Although it might seem that our function h lacked this property, because h was to stay in 0 until we received both proofs of $\ell\neq 1$ and $\ell\neq 2$, nevertheless one can show within PA that once we have received one of these proofs we are guaranteed to receive the other. We shall put off the proof of this statement for it is needed only to improve slightly on a simpler result that we are going to obtain first.

Now we define an arithmetical interpretation f exactly as in Solovay's paper:

$$f(p) := \exists i (\ell=i \land i \vdash p).$$

As in [8] we obtain the following Corollary.

COROLLARY 2. For all nodes i>0 and all formulae ψ

$$i \vdash \psi \Rightarrow PA \vdash \ell = i \longrightarrow f(\psi)$$
.

LEMMA 3. Suppose $A \in \mathbf{B}_n$ is an arithmetic sentence, such that the theory PA + $\ell \in \{1,2\}$ + A is consistent. Then PA + $\ell \in \{1,2\}$ + A does not prove either $\ell = 1$ or $\ell \neq 1$.

PROOF. Since PA + $\ell \in \{1,2\} \vdash \ell = 1 \iff \ell \neq 2$ and 1 and 2 are symmetrical, we only have to prove that PA + $\ell \in \{1,2\}$ + A does not prove $\ell \neq 1$.

Suppose for a reductio that it does. Let m be the least (godel number of a) proof of $\ell\neq 1$ from an arithmetic sentence $B\in \mathbf{B}_n$ consistent with PA + $\ell\in\{1,2\}$, i.e.

 $\Prf_B(m, \lceil \ell \neq 1 \rceil)$, PA + $\ell \in \{1,2\}$ + B is a consistent theory and for all y < m and all $C \in B_n$

if $Prf_C(y, \lceil \ell \neq 1 \rceil)$ then PA + $\ell \in \{1,2\}$ + C is inconsistent.

Such a B exists because by Lemma 2.7 $\ell \in \{1,2\}$ is B_1^{PA} , hence $A \land \ell \in \{1,2\}$ is B_n^{PA} . Further we obtain

$$\begin{split} \text{PA} \, + \, \ell \in & \{1,2\} \, + \, B \, \, \vdash \, \, \text{Tr} \, \, \lceil B \rceil \, \, \wedge \, \, \text{Prf}_B(\mathfrak{m}, \lceil \ell \neq 1 \rceil) \\ & \quad \vdash \, \, \ell = 1 \, \, \vee \, \, \exists y < \mathfrak{m} \, \, \exists u < \mathfrak{m} \, \, \, (\text{Tr}_D(u) \, \, \wedge \, \, \text{Prf}_U(y, \lceil \ell \neq 2 \rceil)) \, . \end{split}$$

Reason in PA + $\ell \in \{1,2\}$ + B: "Let t be the least stage such that we have received both proofs of $\ell \neq 1$ and $\ell \neq 2$ by the moment t. So, since $\ell \in \{1,2\}$ the function h is not allowed to leave 0 before t. Thus, by clause (2), h is to make a move either to 1 or to 2. If not $\exists y < m \exists u < m \ (\mathrm{Tr}_n(u) \land \mathrm{Prf}_u(y, \lceil \ell \neq 2 \rceil))$ then h will move to 1 by clause (3) because B is true B_n .".

Further

 $PA + \ell \in \{1,2\} + B \vdash \exists y < m \exists u < m (Tr_n(u) \land Prf_u(y, \lceil \ell \neq 2 \rceil)),$ because by our assumption

$$PA + B \vdash \ell \neq 1.$$

We claim that there is a sentence $C \in \mathbf{B}_n$ such that C is consistent with PA + $\ell \in \{1,2\}$ and for some y < m $\Pr_C(y, \lceil \ell \neq 2 \rceil)$.

Otherwise we would have for all y,u <m that

either not $\Pr_u(y, \lceil \ell \neq 2 \rceil)$ and then $\Pr_u(y, \lceil \ell \neq 2 \rceil)$; or u is not a gödel number of a $\Pr_u(y, \lceil \ell \neq 2 \rceil)$; or e0 is not a gödel number of a e1.

or
$$u=\lceil C \rceil$$
, $\Pr f_u(y,\lceil \ell \neq 2 \rceil)$, $C \in B_n$ and $PA + \ell \in \{1,2\} \vdash \neg C$; then
$$PA + \ell \in \{1,2\} \vdash \neg Tr_n\lceil C \rceil.$$

In each case we obtain

PA +
$$\ell \in \{1,2\}$$
 $\vdash \neg \operatorname{Tr}_n(\mathbf{u}) \lor \neg \operatorname{Prf}_{\mathbf{u}}(\mathbf{y}, \lceil \ell \neq 2 \rceil)$.

Thus,

PA + $\ell \in \{1,2\}$ \vdash $\forall y < m \ \forall u < m \ (\neg \ \mathrm{Tr}_n(u) \lor \neg \ \mathrm{Prf}_u(y, \lceil \ell \neq 2 \rceil))$. It follows that PA + $\ell \in \{1,2\}$ + B is inconsistent. Absurd.

Applying now similar arguments to C and y instead of B and m respectively we obtain a sentence $D \in \mathbf{B}_n$ such that D is consistent with PA + $\ell \in \{1,2\}$ and for some x < y < m $\mathrm{Prf}_D(x,\lceil \ell \ne 1 \rceil)$. This contradicts our assumption that m is the minimal godel number of a proof of $\ell \ne 1$ from a \mathbf{B}_n -sentence consistent with PA + $\ell \in \{1,2\}$.

COROLLARY 3. For no sentence $A \in \mathbf{B}_n$

PA +
$$\ell \in \{1,2\}$$
 \vdash $A \leftrightarrow \ell = 1$.

PROOF. Suppose that

$$PA + \ell \in \{1,2\} \vdash A \leftrightarrow \ell = 1.$$

Then by Lemma 3 the theory PA + $\ell \in \{1,2\}$ + A is inconsistent. It follows that

$$PA + \ell \in \{1, 2\} \vdash \ell \neq 1.$$

Applying Lemma 3 again we obtain that PA + $\ell \in \{1,2\}$ is inconsistent. This contradicts Lemma 2.5.

Now we are in a position to prove the following weaker version of our theorem.

PROPOSITION. Suppose ϕ is a formula of $\mathscr L$ such that for no boolean combination ψ of boxed formulae $\mathrm{GL} \vdash \phi \longleftrightarrow \psi$. Then for each $n \ge 1$ there exists an arithmetical interpretation f such that $f(\phi) \not \in \mathbf{B}^{\mathrm{PA}}$.

PROOF. Let the model $\mathcal K$ and the function h be defined as above. By Corollary 2

$$PA \vdash \ell=1 \longrightarrow f(\phi)$$
 and $PA \vdash \ell=2 \longrightarrow \neg f(\phi)$.

So,

$$PA + \ell \in \{1,2\} \vdash \ell=1 \longleftrightarrow f(\phi).$$

If for some $A \in B_n$

$$PA + \ell \in \{1,2\} \vdash A \leftrightarrow f(\phi),$$

we shall get

$$PA + \ell \in \{1,2\} \vdash \ell = 1 \leftrightarrow A$$

contradicting Corollary 3.

Of course, this Proposition is weaker then the Theorem because it does not give us any upper bound on the complexity of the interpretation constructed.

To improve the result in this respect we have to do an additional piece of work.

LEMMA 4. Suppose ϕ is a nonstable formula. Then there is a model \mathcal{K} = (K , < , \vdash) such that

- (i) $K = \{0, \ldots, k\}$ for some $k \in \mathbb{N}$;
- (ii) 0 is the bottom node of K;
- (iii) 1 and 2 have the same successors and predecessors;
- (iv) for all $i,z,w \in K$, if 1 < z,w and z,w < i then either z < w or $w \le z$;
 - (v) the set of predecessors of 1 and 2 is linearly ordered;
 - (vi) for all subformulae ψ of formulae ϕ $0 \vdash \neg \psi \rightarrow \psi$;
 - (vii) $1 \vdash \phi$ and $2 \vdash \neg \phi$.

linearly ordered set T below them. The words "sufficently long" mean that T should be longer than the number of all boxed subformulae of ϕ . The forcing relation of propositional variables is defined arbitrarily on T.

By the Pigeon-Hole Principle there is a node $x \in T$ such that the same boxed subformulae of ϕ are forced at x as at the immediate predecessor of x. Clearly we shall have

$$x \vdash \Box \psi \longrightarrow \psi$$

for all subformulae $\square \psi$ of formula ϕ . Thus we may take x as the bottom node of the model required.

Let $\mathcal{K} = (K, <, \vdash)$ be a model as in Lemma 4. We modify the definition of our function h as follows: h(0)=0 and for all m

$$\underline{\text{if}} \ z > h(m), \ z \notin \{1,2\} \ \underline{\text{and}} \ \Pr(m+1, \lceil \ell \neq z \rceil) \tag{1}$$

then h(m+1)=z

else if
$$h(m) < 1$$
 and $\exists y_1, y_2 \le m+1 \ (Prf(y_1, \lceil \ell \ne 1 \rceil) \land Prf(y_2, \lceil \ell \ne 2 \rceil))$ (2)

then if
$$\exists z, u \leq m+1 \ (\operatorname{Tr}_n(u) \land \operatorname{Prf}_u(z, \lceil \ell \neq 1 \rceil) \land \forall t, w \leq z \ (\neg \operatorname{Tr}_n(w) \lor \neg \operatorname{Prf}_w(t, \lceil \ell \neq 2 \rceil)))$$
 (3)

$$\frac{\text{then }}{\text{else }} h(m+1)=1$$

$$\frac{\text{else }}{\text{else }} h(m+1)=2 \tag{4}$$

$$\underline{\text{else}} \ h(m+1) = h(m). \tag{5}$$

It is easy to see that all (the proofs of) statements of Lemma 2 except Statement 4 remain true for the modified function h. Now we are going to show that even a stronger version of 4 holds. The following technical claim is a generalized variant of Lemma 4.1.6 of [7] (cf also Corollary 2.23 [9]).

LEMMA 5. For all arithmetic sentences $A \in \mathbf{B}_{\mathbf{p}}$

$$PA \vdash \forall m \ Pr \ \exists x < m \ \exists u < m \ (Prf_{u}(x, \lceil A \rceil) \land Tr_{n}(u)) \ \longrightarrow A \ \rceil$$

PROOF. Since Pr commutes with restricted quantifiers it is sufficient to prove that

PA
$$\vdash$$
 $\forall m \ \forall u < m \ \Pr^{\Gamma} \ \exists x < m \ (\Pr^{\Gamma}_{u}(x, {}^{\Gamma}\!\!A^{\urcorner}) \ \land \ \Pr_{n}(u)) \ \longrightarrow \ A^{\ \urcorner}$ Clearly

$$\begin{array}{lll} \operatorname{PA} & \vdash & \exists x < m \ \operatorname{Prf}_u(x, \lceil A \rceil) \ \land \ u \in \mathbb{B}_n \ \rightarrow \ (\ \operatorname{Pr}(u \xrightarrow{\cdot} \ \lceil A \rceil) \ \land \ u \in \mathbb{B}_n \) \\ \\ & \rightarrow & (\ \operatorname{Pr}(u \xrightarrow{\cdot} \ \lceil A \rceil) \ \land \ \operatorname{Pr}(\lceil \operatorname{Tr}_n(u) \rceil \xrightarrow{\cdot} u) \) \\ \\ & \rightarrow & \operatorname{Pr}^{\lceil} \operatorname{Tr}_n(u) \ \rightarrow \ A \ \rceil \end{array}$$

 $\rightarrow \operatorname{Pr} \lceil \exists x < m \ (\operatorname{Prf}_u(x, \lceil A \rceil) \ \land \ \operatorname{Tr}_n(u)) \ \rightarrow \ A \ \rceil.$

On the other hand, since PA $\vdash u \notin \mathbf{B}_n \to \neg \mathrm{Tr}_n(u)$

 $\mathtt{PA} \; \vdash \; \forall x < m \; \lnot \, \mathtt{Prf}_u(x , \ulcorner A \urcorner) \; \lor \; u \; \not \in \; \mathbf{B}_n \; \longrightarrow \; \mathtt{Prf} \; \; \forall x < m \; \lnot \, \mathtt{Prf}_u(x , \ulcorner A \urcorner) \; \lor \; u \; \not \in \; \mathbf{B}_n \urcorner$

 $\,\, \to \, \Pr^{\, \Gamma} \, \, \exists x < m \, \, \, (\Pr^{\, \Gamma}_{U}(x \, , \, \, \lceil A \rceil \,) \, \, \, \wedge \, \, \operatorname{Tr}_{n}(u) \,) \, \, \to \, \, \bot \, \, \, \rceil$

 $\rightarrow \Pr^{\lceil} \exists x < m \ (\Pr^{\lceil} f_u(x, \lceil A \rceil) \land \Pr^{\lceil} f_n(u)) \rightarrow A \rceil.$

Thus PA \vdash $\forall m$ $\forall u$ Pr \vdash $\exists x < m$ (Prf $_u(x, \ulcorner A \urcorner)$ \land Tr $_n(u)$) \longrightarrow A \urcorner and Lemma 5 follows.

LEMMA 6. PA \vdash Pr $\lceil \ell \neq 1 \rceil$ \leftrightarrow Pr $\lceil \ell \neq 2 \rceil$.

PROOF. It is easy to see that

$$PA \vdash \ell > 1 \longrightarrow \exists i > 1 \ Pr^{\lceil \ell \neq i \rceil}$$
.

Besides,

$$PA \vdash \ell < 1 \land Pr^{\lceil \ell \neq 1 \rceil} \longrightarrow \neg Pr^{\lceil \ell \neq 2 \rceil}$$

because clearly h would make a move from beneath 1, if we received both proofs of $\ell\neq 1$ and $\ell\neq 2$. Hence

$$PA \vdash Prf(m, \lceil \ell \neq 1 \rceil) \rightarrow Pr \lceil Pr \lceil \ell \neq 1 \rceil \rceil$$

$$\rightarrow \Pr^{\lceil \ell < 1 \rightarrow \rceil} \Pr^{\lceil \ell \neq 2 \rceil \rceil}$$
.

On the other hand, by clause (3) of the definition of h

PA
$$\vdash$$
 Prf(m , $\lceil \ell \neq 1 \rceil$) \longrightarrow Pr $\lceil \ell > 1 \lor \ell < 1 \lor \ell = 2 \rceil$

 $\rightarrow \Pr^{\lceil (\exists i > 1 \ \Pr^{\lceil \ell \neq i \rceil}) \, \vee \, \neg \Pr^{\lceil \ell \neq 2 \rceil} \, \vee \, \exists x < m \ \exists u < m \ (\Pr^{}_{u}(x, \lceil \ell \neq 2 \rceil) \, \wedge \, \Pr^{}_{n}(u))^{\rceil}.$ Obviously

$$PA \vdash Pr^{\lceil}(\exists i>1 Pr^{\lceil}\ell\neq i\rceil) \rightarrow \ell\neq 2\rceil$$

and by Lemma 5

PA \vdash $\forall m$ Pr \sqcap $\exists x < m$ $\exists u < m$ (Prf $u(x, \lceil \ell \neq 2 \rceil) \land \text{Tr}_n(u)) <math>\longrightarrow \ell \neq 2$ \urcorner . It follows that

PA
$$\vdash$$
 Prf(m , $\lceil \ell \neq 1 \rceil$) \longrightarrow

 $\rightarrow \Pr \lceil \Pr \lceil \ell \neq 2 \rceil \ \rightarrow \ (\exists i > 1 \ \Pr \lceil \ell \neq i \rceil) \vee \exists x < m \ \exists u < m \ (\Pr \mathbf{f}_u(x, \lceil \ell \neq 2 \rceil) \ \wedge \ \Pr_n(u)) \rceil$

 $\rightarrow \Pr^{\lceil \Pr^{\lceil \ell \neq 2 \rceil}} \rightarrow \ell \neq 2^{\rceil}$.

By formalized Löb's theorem we obtain

$$PA \vdash Prf(m, \lceil \ell \neq 1 \rceil) \rightarrow Pr \lceil \ell \neq 2 \rceil,$$

whence

 $PA \vdash \exists m \ Prf(m, \lceil \ell \neq 1 \rceil) \rightarrow Pr \lceil \ell \neq 2 \rceil.$

The converse implication is symmetrical, so Lemma 6 follows.

COROLLARY 5. For all $i, j \in K$

$$i < j \Rightarrow PA \vdash \ell = i \longrightarrow \neg Pr \lceil \ell \neq j \rceil$$
.

This is trivial for $j \notin \{1,2\}$. Suppose j=1. The following argument can be formalized in PA:

"If $Pr^{\lceil \ell \neq 1 \rceil}$ then by Lemma 6 $Pr^{\lceil \ell \neq 2 \rceil}$, hence we are to receive both proofs of $\ell\neq 1$ and $\ell\neq 2$ by some stage m. Since $\ell< 1$ condition (2) will be satisfied, so h is bound to make a move either to 1 or to 2. Absurd."

We define the arithmetical interpretation f just as before and as in the proof of Solovay's second theorem (cf [8]) obtain the following

COROLLARY 6. For all subformulae ψ of formula ϕ

$$PA \vdash f(\psi) \iff \exists i \ (\ell = i \land i \vdash \psi).$$

is equivalent to a boolean combination of Consequently $f(\phi)$ formulae of the form $\ell=i$, because the quantifier $\exists i$ actually ranges over the finite set K. For $i \notin \{1,2\}$ it is easily seen that the formula $\ell=i$ is B_1^{PA} . Now for $i \in \{1,2\}$.

It follows immediately from the definition of h that

$$\mathtt{PA} \; \vdash \; \ell = 1 \; \longleftrightarrow \; \ell \in \{1,2\} \; \; \land \; \; \exists m \; \; (\exists u < m \; \; (\; \mathtt{Tr}_n(u) \; \; \land \; \mathtt{Prf}_u(m,\lceil \ell \neq 1\rceil) \; \; \land \; \;$$

$$\forall y < m \ \forall w < m \ (\neg Tr_n(w) \lor \neg Prf_{r_n}(y, \lceil \ell \neq 2 \rceil))))$$

 $\forall y < m \ \forall w < m \ (\ \neg \operatorname{Tr}_n(w) \ \lor \ \neg \operatorname{Prf}_w(y, \lceil \ell \neq 2 \rceil) \))).$ We have already seen that $\ell \in \{1,2\}$ is B_1^{PA} , hence $\ell = 1$ is $\Sigma_{n+1}^{\operatorname{PA}}$. But clearly

PA
$$\vdash$$
 $\ell=1 \leftrightarrow \ell\neq 2 \land \ell\in\{1,2\}$,

whence by symmetry of nodes 1 and 2 $\ell=1$ is also Π_{n+1}^{PA} . Thus $\ell=1$ and $f(\phi)$ both are $\Delta_{n+1}^{\mathrm{PA}}$.

We have received the desired upper bound on the arithmetical complexity of $f(\phi)$. To obtain the lower one we proceed just as in the proof of Proposition, because evidently Lemma 3 still holds for the modified function h.

I would like to thank D.de Jongh for useful discussions and V.Yu. Shavrukov for a number of comments on a draft of this paper.

REFERENCES

- 1. C.Kent. The relation of A to $Prov^{\lceil}A^{\rceil}$ in the Lindenbaum sentence algebra. Journal of Symbolic Logic, 1973, v.38, pp.295-298.
- 2. D.Guaspari. Sentences implying their own provability. Journal of Symbolic Logic, 1983, v.48, pp.777-789.
 - 3. C.Smorynski. Self-Reference and Modal Logic, Springer, 1985.
- 4. A. Visser. A Course in Bimodal Provability Logic. Logic Group Preprint Series No.20, 1987, Department of Philosophy, University of Utrecht, Heidelberglaan 2, 3584CS Utrecht.
- 5. D.de Jongh, D.Pianigiani. Solution of a problem of David Guaspari, manuscript, 1989, Amsterdam.
- 6. G.Kreisel, A.Lévy. Reflection principles and their use for establishing the complexity of axiom systems. Z.math.Log.Grundl. Math., 1968, Bd.14, S.97-142.
- 7. C.Smorynski. Incompleteness theorems. In: Handbook of Mathematical Logic, J. Barwise (ed.), North-Holland, 1977.
- 8. R.Solovay. Provability interpretations of modal logic. Israel J. Math., 1976, v.25, pp.287-304.
- 9. C.Bennet. On some orderings of extensions of arithmetic. Ph.D. Thesis, Department of Philosophy, University of Göteborg, Göteborg, 1986.

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does
LP-90-02 Jeroen Groenendijk, Martin Stokhof
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
Computation and Complexity Theory
CT-90-01 John Tromp, Peter van Emde Boas
Other Prepublications
X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke X-90-03 L.D. Beklemishev A Generalized Quantifier Logic for Naked Infinitives Dynamic Montague Grammar

Isomorphisms and Non-Isomorphisms of Graph Models A Semantical Proof of De Jongh's Theorem

Associative Storage Modification Machines

Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version Some Chapters on Interpretability Logic On the Complexity of Arithmetical Interpretations of Modal Formulae

