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It is a well-known fact that for any arithmetic sentence A
AerA > PA+~ A4 — Prfal,

Here Pr stands for Goédel’s formula expressing provability in
Peano Arithmetic PA and EEA' denotes the class of sentences PA-
equivalent to those in El-form.

C.Kent [1] showed that the converse implication does not
hold. Moreover, he found that for each natural number n there exists
an arithmetic sentence 4 such that

PA— A — Prfal and A4 ¢ AgA.

D.Guaspari [2] rediscovered (a sharpened version  of)
this result applying his own  techniques of partially
conservative sentences. He also showed that arithmetically complex
sentences implying their own provability cannot be constructed by
some class of restricted means. ' "

D.Guaspari posed a few problems generalizing one solved by Kent
and himself, which are formulated in terms of provability interpre-
tations of propositional modal logic.

DEFINITION. Let £ be the language consisting of propositional
variables p,q,...; boolean connectives A ,v ,— ,¢> ,7 and 1; modal
operator o. .

An arithmetical interpretation f is a mapping of #¢-formulae to
arithmetic sentences which commutes with boolean connectives and

translates o as provability, i.e. for every modal formula ¢

f(og) = Prif(¢)7.
D.Guaspari noted that for any arithmetic sentence 4 obviously
PA— A — Prlfal & there is a sentence B s.t. PA— A4 <> B A PrlBl,
So, the original question is equivalent to one, whether there
exist non EEA ( or even arbitrarily complex ) arithmetic interpreta-
tions of the modal formula pAop. D.Guaspari set the problem of cha-



racterizing those formulae of £, which are ZEA under every arithme-
tical interpretation, and conjectured that they are exactly the
formulae provably in the modal logic GL (called PRL in [3]) equiva-
lent to disjunctions of boxed formulae, i.e. those of the form o¢.
An analbgous conjecture was also made for the modal language en-
riched by witness comparison formulae.

These conjectures have been proved by A.Visser [4] and D.de
Jongh & D.Pianigiani [5] respectively. The latter authors also ex-
tended the result to arbitrary theories containing arithmetic IEl.

The aim of present paper is to characterize the formulae of £
having bounded arithmetical complexity, i.e. whose arithmetical
interpretations are all AgA for some fixed n. It turns out, perhaps
not very surprisingly, that such formulae are exactly those equiva-
lent in GL to boolean combinations of boxed ones. In other words,
each modal formula not equivalent to any such combination admits
arbitrarily complex arithmetical interpretations. Thus, we may say
that the "modal analog" of the arithmetical hierarchy with respect
to PA collapses after the 1level of boolean combinations of
Zl-sentences.

It is easily seen that the formula pAop is not equivalent to
any boolean combination of boxed formulae, so our result provides us
with one more proof of Kent’s theorem. However, it will be clear
after reading the sequel that, when applied to this particular for-
mula, our construction essentially goes along the lines of that of
Kreisel & Lévy (cf also [6], [7])-.

Let BgA denote the collection of all arithmetic sentences PA-

equivalent to boolean combinations of those in En—form.

THEOREM.
Suppose ¢ is a formula of ¢ such that for no boolean
combination Y of boxed formulae GL+~ ¢ < ¥ . Then for each n>1

there exists an arithmetical interpretation f such that

£(¢) € Ay \BI2.

In order to prove this theorem first of all we obtain some
Kripke-style characterization of modal formulae GL-equivalent to
boolean combinations of boxed formulae. We shall call the usual
finite strictly partially ordered (not necessary treelike) Kripke
models for GL just models (cf [3]). The expression K + ¢ will



denote the fact that ¢ is forced at the bottom node of fhe model K.

DEFINITION. A modal formula ¢ is called stable iff for all mo-
dels K and K’ with the same frame and the same forcing of proposi-
tional variables at all nodes except bottom ones

K v ¢ © K'n- ¢.

LEMMA 1. A modal formula ¢ is GL-equivalent to a boolean combi-
nation of boxed formulae iff ¢ is stable.

PROOF. It is trivial that boolean combinations of boxed formu-
lae are stable. We check the converse implication.

Suppose ¢ 1is stable. Clearly ¢ is a boolean combination of
boxed subformulae n¢1,..., u¢k and propoi}tional variables Py
e 1Pp occurring outside any o in ¢. Let ¢ denote the result of
substituting in ¢ the constant 1 for all the occurrences of
variables outside any o. Clearly, ¢* is a boolean combination of
boxed formulae. We shall show that GL+~ ¢ < ¢*. By the completeness
of GL with respect to models it is sufficient to show that ¢ and ¢*
are forced exactly at the same models (cf [3]).

Let XK be an arbitrary model and let K* denote the model with
the same frame as K and the same forcing of propositional variables
at all nodes except the bottom node, where (in K*) no variable is

forced. Clearly we have

*
K w n¢i e K w n¢i and K* = pj © K + 1, hence

K+ ¢ o k° + 4.

By our assumption ¢ is stable, hence

K+ ¢ o K + ¢.

It follows that

K ¢oKir o .

Thus,

GL— ¢ <> ¢ .

COROLLARY 1. The class of #£-formulae equivalent to boolean
combinations of boxed ones is decidable.

Suppose now that ¢ is a nonstable formula. Let Kl and Kz be a
pair of models obtained by Lemma 1, such that Klw—¢ and Kzn—1¢. By
identifying the corresponding nodes of Kl and KZ except the bottom
ones and by adding a new bottom node below them we can construct a
model K = (K, <, #), such that



(i) K = {0,...,k} for some k € N;

{(ii) 0 is the bottom node of K and 1 and 2 are the only imme-
diate successors of 0;

(iii) 1 and 2 have the same successors;

(iv) for all i,z,w € K, if 1< z,w and z,w <i then either z<w or
- WRZ;

(V) 1+ ¢ and 2#1¢.

Condition (iv) will be satisfied if we beforehand choose Kl and
Kz treelike .

Our next goal is to describe a Solovay-style [8] embedding of
such models into arithmetic. First of all, let us try to explain it
informally. Since we are going to define a very complex interpreta-
tion, say f, it is of no importance for us, whether we shall work
within PA or within some finite extension of it of low complexity.
The new axiom we will add is the statement, that some Solovay-type
function has the limit ¢ either in the node 1 or in 2. The words
"Solovay-type" mean that for all i € K\{0} and all formulae Y of £
we will have

PA- l=1 — (iw Y <> F(Y)).

Thus, since 1+ ¢ and 2#+-11¢, we shall obtain

PAr Le{1,2) — (=1 < f(¢)).

At this point all we need is to define our function in such a
way, as it would be an impracticable task not only for PA + £¢e{1,2},
but also for any finite consistent extension of PA + £2€{1,2} of low
complexity, to distinguish whether ¢ equals 1 or 2. And it is here
that we apply the trick of Kreisel & Lévy. It is worth mentioning
that such an idea would not work, had not our frame been fully sym-
metrical with respect to transpositions of nodes 1 and 2.

Now we turn to explicit definitions. Let for n>1 Tr denote the
standard An+l—definition of truth for Bn—formulae, i.e. the standard

arithmetic An+1—formula such that

PA- Y ueB Pr(ue«-> Mr (u)l)

and

PA— VYV u ¢ Bn 1Trn(u).
Further, let Prfu(m,x) denote the primitive recursive formula
expressing the predicate " m is (the gdédel number of) a proof of the
formula x from axioms of PA together with the additional axiom u ".



Given an arithmetic sentence B PrfB(m,x) will abbreviate the formu-

la Prf (m,x) and Prf(m,x) will denote Prfo_o(m,x).
rgl -
By the routine formalization of the definition below with the

aid of the Fixed Point Theorem one can define an arithmetic
An+l-function h such that PA proves that h(0) = 0 and for all m
h(m+1l) is "computed" by the following instructions:

if z >h(m), z >1 and Prf(m+1, Me=z1) (1)
then h(m+l)==z
else if h(m)=0 and 3 Y11Y,< mtl ( Prf(yl,'1¢11) A
Prf(yz,r£¢21) ) (2)
then if 3 z,us< m+l (Tr (u) A Prfu(z,fl#11) A
YV t,w< z ("Tr (v) Vv -1Prfw(t,r£¢21))) (3)
then h(m+1l)=1
else h(m+l)=2 (4)
else h(m+1l)=h(m). (5)

Here {=z denotes the formula 3N VY m>N h(m)==z.

The following Lemma establishes the properties of our function
h similar to those of the original Solovay’s function (cf [8],[3]).

LEMMA 2.

1. PA— Vm ( h(m) < h(m+l) ); PA+~ £=0vi=lv...Vi=Kk;

2. i,jeK and i#j > PA+ {=1i — 0#j;

3. j>i>0 > PA+— f=i — Pri=jl;

4, i>0 > PA+ =i — Prfe-il;

5. PA + £e{1,2}) is a consistent theory;

6. {=0 is true;

7. PA— £e{1,2} « Prleg(1,2}1 A Vis>1 ~Prie=il.

PROOF. Claims 1 and 2 follow immediately from the definition of
h. Statement 3 is proved as in Solovay’s paper; the following argu-
ment can be formalized in PA: "If £##j is provable then it has PA-
proofs with arbitrarily large goédel numbers. So, if ¢=i then h is
bound to make a move from i by clause (1) because j>i>0.".

The proof of 4 is not quite the same as in [8], because our
function h is not 21. Yet for all i>1 one can easily show that the
sentence dm h(m)=i is EEA.

In fact,



PA— dm h(m)=i <> Im (Prf(m, "e=il) A Vy<m VjeK (2j<i ~
Prf(y, Te=j1) — 3Jz<i Tx<y ( Prf(x,=z1) A1 z<j ) )).

The (—) implication follows from the monotonicity of h, for if
m is the least (goédel number of a) proof of &#i, h(y) is to be
beneath i for all y<m. So, by clause (1), if at some stage y<m we
receive a proof of {¢#j, where not j<i, h(y) is already to be not <j.
And this 1is possible only if we have earlier received a proof of
some sentence {#z, where z<i but not z<j.

In order to prove the converse implication we only have to
check that h cannot make a move from beneath i before stage m. Since
both 1 and 2 are beneath i, such a move can only be made by clause
(1) ; but this is impossible because if h moved from some w<i to j,
where not j<i, we would earlier have obtained a proof of &=z for
some z<i and z not <j. By property (iv) of the model XK, either w<z
or z<w. The latter is not the case since w<j but z is not. So, h is
bound to have moved from w to z earlier than to j. Absurd.

Suppose now that i>1. Then

PA+ ¢=i — dm h(m)=i
— Prdm h(m)=il
— Priezil,
But for all i>0 trivially
PA+ {=i — Prle=il;
hence
PA+ {=i — Prlesil,.

We treat the case i€{1,2} in a different way. By clause (2), h
is allowed to make a move to 1 only after having received both
proofs of ##1 and ¢=2. It follows that

PA+— 0=1 — Prleg(1,2}7.
We also have
PA+~ Prlig(1,2}1 — &=0;
hence
PA+— ¢=1 — Prieg(1,2}1
— Priprligq1,2)11
— Prie=ol.
Thus we obtain
PA+— ¢=1 — Prfig{o,1,2}1
— Pries11,



The case i=2 is fully symmetrical; so statement 4 follows.

Claim 6 is trivial.

To check 5 and 7 notice that if PA proves £¢{1,2}, then h is
bound to make a move from O.

REMARK. Note that statement 3 of this Lemma is weaker than the
corresponding statement of Solovay, because we have not proved that
PA+ {=0 — 1 Prle=11.

Although it might seem that our function h lacked this proper-
ty, because h was to stay in 0 until we received both proofs of £=1
and {2, nevertheless one can show within PA that once we have re-
ceived one of these proofs we are guaranteed to receive the other.
We shall put off the proof of this statement for it is needed only
to improve slightly on a simpler result that we are going to obtain
first.

Now we define an arithmetical interpretation f exactly as in
Solovay’s paper:

f(p) :=3i (&=i A iw p).
As in [8] we obtain the following Corollary.
COROLLARY 2. For all nodes i>0 and all formulae ¥
i Yy > PA ~ =1 — f(¥).

LEMMA 3. Suppose 4 € Bn is an arithmetic sentence, such that
the theory PA + £€{1,2} + A 1is consistent. Then PA + 2e{1,2} + A4
does not prove either £¢=1 or £=1.

PROOF. Since PA + {Le{1,2}+ =1 > =2 and 1 and 2 are
symmetrical, we only have to prove that PA + £e{1,2}) + A4 does not
prove {#=1.

Suppose for a reductio that it does. Let m be the least ( gddel
number of a ) proof of ##1 from an arithmetic sentence B € Bn con-
sistent with PA + 2€{1,2}, i.e.

PrfB(m,TI¢11) , PA + Le{1,2} + B 1is a consistent theory
and for all y<m and all C € Bn
if Prfc(y,rl¢11) then PA + £€{1,2)} + C 1is inconsistent.
Such a B exists because by Lemma 2.7 £€{1,2} is BEA, hence
A A le{1,2) is BgA. Further we obtain

PA + 2€{1,2} + B ~ Tr Bl A Prig(m, Me=171)

= ¢=1 v Jy<m Ju<m (Tr_(u) A Prfu(y,rl¢21)).



Reason in PA + £€{1,2) + B : "Let t be the least stage such
that we have received both proofs of ##1 and <2 by the moment t.
So, since £e{1,2} the function h is not allowed to leave 0 before t.
Thus, by clause (2), h is to make a move either to 1 or to 2. If not
Jy<m Ju<m (Tr (u) A Prfu(y,W#21)) then h will move to 1 by clause
(3) because B is true Bn‘"‘

Further

PA + £€{1,2} + B ~ dJy<m Ju<m (Tr (u) A Prfa(y;fl¢21)),
because by our assumption
PA + B +~ 1.

We claim that there is a sentence C € Bn such that € is con-
sistent with PA + 2€{1,2} and for some y<m Prfc(y,72¢27).

Otherwise we would have for all y,u <m that

either not Prfu(y,rl¢21) and then PA +~ = Prfu(y,fl¢21);

or u is not a gdédel number of a Bn-formula and then
PA + 1Trn(u);

or u =c?, Prfu(y,rl¢21) , C € Bn and PA + fe{1,2}+1 C; then

PA + 2e{1,2} + = Tran1.

In each case we obtain
PA + £e{1,2} + = Tr (u) v Prfu(y,f1¢21).
Thus,
PA + 2€{1,2} ~ VYy<m VYu<m (- Tr (u) Vv 1 Prfu(y,'1¢21)).
It follows that PA + £€{1,2)}) + B 1is inconsistent. Absurd.
Applying now similar arguments to C and y instead of B and m
respectively we obtain a sentence D € Bn such that D is consistent
with PA + le{1,2} and for some x<y<m PrfD(x;'I¢11)). This contra-
dicts our assumption that m is the minimal gédel number of a proof
of ¢=1 from a Bn—sentence consistent with PA + ¢e(1,2}.
COROLLARY 3. For no sentence 4 € B_ '
PA + 2€(1,2} ~ A <> i=1.
PROOF. Suppose that
PA + £€{1,2) ~ A <> f=1.
Then by Lemma 3 the theory PA + £€{1,2} + 4 1is inconsistent.
It follows that



PA + Le{1,2} + £&=1.

Applying Lemma 3 again we obtain that PA + 2€{1,2} 1is incon-
sistent. This contradicts Lemma 2.5.

Now we are in a position to prove the following weaker version
of our theorem.

PROPOSITION. Suppose ¢ is a formula of ¢ such that for no
boolean combination Y of boxed formulae GL+ ¢ «> ¥ . Then for each
n>1 there exists an arithmetical interpretation f such that f(¢)¢
B2,

PROOF. Let the model K and the function h be defined as above.
By Corollary 2

PA — 0=1 — f(¢) and PA +~ =2 —> £ (9).

So,

PA + Le{1,2} +~ £=1 <> f(9).
If for some A4 € Bn
PA + le{1,2} ~ A <> F(9),
we shall get
PA + £e{1,2}) - &=1 < A
contradicting Corollary 3.

Of course, this Proposition is weaker then the Theorem because
it does not give us any upper bound on the complexity of the inter-
pretation constructed. '

To improve the result in this respect we have to do an addi-
tional piece of work.

LEMMA 4. Suppose ¢ 1is a nonstable formula. Then there is a
model K = (K, <, ) such that

(i) K = {0,...,k} for some k € N;

(ii) 0 is the bottom node of X;

(iii) 1 and 2 have the same successors and predecessors;

(iv) for all i,z,w € K, if 1< z,w and z,w¥w <i then either z<w or
W<Z;

(v) the set of predecessors of 1 and 2 is linearly ordered;

(vi) for all subformulae ¥ of formulae ¢ Ow oY — ¥Y;

(vii) 1+ ¢ and 2wn¢.

PROOF. Let Kl and Kz be the given pair of (treelike) models
such that Klw- ¢ and K2»-1¢. We identify the corresponding nodes

of Kl and K2 except the roots and add a sufficiently long finite



linearly ordered set T below them. Thé words "sufficently long" mean
that T should be longer than the number of all boxed subformulae of
¢. The forcing relation of propositional variables is defined arbit-
rarily on T.

By the Pigeon-Hole Principle there is a node x € T such that
the same boxed subformulae of ¢ are forced at x as at the immediate
predecessor of x. Clearly we shall have

X+ oy — Y
for all subformulae oy of formula ¢. Thus we may take x as the bot-
tom node of the model required.

et XK = (K, < ,#+) be a model as in Lemma 4. We modify the

definition of our function h as follows: h(0)=0 and for all m
if z >h(m), z ¢ {1,2} and Prf(m+1, Me=z1) (1)

then h(m+l)=z
else if h(m)<1 and 3 Y11Y,S mtl ( Prf(yl,'2¢11) A

Prf(yz,r£¢27) ) , (2)
then if 3 z,u< m+1 (Tr (u) A Prfu(z,'1¢11) A
V t,w< z (~Tr_ (v) v -|Prfw(t,l'£¢21))) (3)
then h(m+1l)=1
else h(m+1l)=2 (4)
else h(m+1l)=h(m). (5)

It is easy to see that all (the proofs of) statements of Lemma
2 except Statement 4 remain true for the modified function h. Now we
are going to show that even a stronger version of 4 holds. The fol-
lowing technical claim is a generalized variant of Lemma 4.1.6 of
[7] ( cf also Corollary 2.23 [9]).

LEMMA 5. For all arithmetic sentences 24 € Bn

PA ~ Vm Prl Jx<m Ju<m (Prfu(x,rA1) A Tr (u)) — 4 1
PROOF. Since Pr commutes with restricted quantifiers it is

sufficient to prove that

PA ~ VYm Yu<m PrT Jx<m (Prfu(x,rA1) A Tr (u)) — A4 1
Clearly

PA + 3Jx<m Prf (x,727) AnueB — ( Pr(u — Ta1) Au e B )
— ( Pr(u —> Fal) A Pr(Tr_(u)’ —> u) )

— pPrfl Tr (u) — 4 1
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— Prl 3x<m (Prfu(X,FA1) A Tr (u)) — 4 1,
On the other hand, since PA +~ u ¢ Bn — 1 Tr_(u)
PA +~ VYx<m 1Prfu(x,FA1) vVu¢g Bn — Prl Vx<m wPrfu(x,rzj) vVu¢g Bn'I
— Prl Jx<m (Prfu(x,FZ1) A Tr (u)) — 1 1
— Prl Jx<m (Prfu(x,rAT) A Tr (u)) — 4 1,
Thus PA+~ VYm Vu Prl Jx<m (Prfu(x,FJ1) A Tr (u)) — 4 T and
Lemma 5 follows. ’ .
LEMMA 6. PA + Prli=11 «s pri=21.
PROOF. It is easy to see that
PA ~ &1 — Ji>1 Prle=il.
Besides,

PA +~ £<1 A Prie=11 — ~prie=21,
because clearly h would make a move from beneath 1, if we

received both proofs of ##1 and ##2. Hence
PA +~ Prf(m,=11) — priprli=111

— Prli<l — aPrfg=211,
On the other hand, by clause (3) of the definition of h
PA ~ Prf(m,T=11) — ( £=2 — 3Fx<m Ju<m (Prfu(x,fl¢21) A Tr (u)) ),
hence
PA ~ Prf(m, =11) — Prl=2 — Jx<m Ju<m (Prfu(x,'1¢21) A Trn(u))T.
Thus,
PA ~ Prf(m,=11) — Prfes1 v <1 v £=21
— Pri(Jis>1 Prle=il)yv aPrie=217 v Ix<m Ju<m (Prfu(x,f1¢21)A Trn(u))T.
Obviously
PA ~ Prf(3i>1 Prie=il) — £=21

and by Lemma 5
PA +~ VYm PrT Jx<m Ju<m (Prf  (x, Fg=2T) A Tr (u)) — &=2 L

It follows that
PA +~ Prf(m,=11) —
— Pripri=21 — (Ji>1 Prie=il)vix<m Ju<m (Prfu(x,72¢21) A Trn(u))'l

— Pripri=21 — =21,
By formalized Lob’s theorem we obtain
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PA +~ Prf(m,=11) — pPrie=21,

whence

PA +~ dm Prf(m, M=11) — Pri=21.
The converse implication is symmetrical, so Lemma 6 follows.

COROLIARY 5. For all i, j € K
i< j = PA +~ =i — aPrie=jl.

PROOF. This is trivial for j ¢ {1,2}. Suppose j=1l. The
following argument can be formalized in PA:

"If Prf¢=11 then by Lemma 6 Prfé=21, hence we are to re-
ceive both proofs of &#1 and ##2 by some stage m. Since {¢<1 condi-
tion (2) will be satisfied, so h is bound to make a move either to 1
or to 2. Absurd."

We define the arithmetical interpretation f just as before and
as in the proof of Solovay’s second theorem (cf [8]) obtain the
following

COROLLARY 6. For all subformulae Yy of formula ¢

PAr Ff(Y) ¢ i (=i A iw Y).

Consequently £ (¢) is equivalent to a boolean combination of
formulae of the form {¢=i, because the quantifier 3Ji actually ranges
over the finite set K. For i ¢ (1,2} it is easily seen that the
formula ¢=i is BiA. Now for i € {(1,2}.

It follows immediately from the definition of h that

PA +~ £=1 < 2€{1,2} A dm (Ju<m ( Tr_(u) A Prf (m, Me=11) A

Vy<m Vw<m ( " Tr_(w) v " Prf (y,Te=21) ))).
1 OPA v PA
We have already seen that £e{1,2} is Bl , hence ¢=1 is 2n+1.

But clearly

PA — =1 <> <2 A Le{1,2},
whence by symmetry of nodes 1 and 2 {¢=1 is also Hgﬁl. Thus =1
and f(¢) both are Agil'
We have received the desired upper bound on the arithmetical
complexity of f(¢). To obtain the lower one we proceed just as in
the proof of Proposition, because evidently Lemma 3 still holds for

the modified function h.
I would like to thank D.de Jongh for useful discussions and

V.Yu. Shavrukov for a number of comments on a draft of this paper.
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