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1i.Introduction

Let X be a topological space. The set P(X) of
~all its subsets can be considered as a closure algebra
C(X); this algebra hsas étandard Boolean operations (U,
M, - ) and the topological closure operation. The
modal logic of this aigebra (denoted by L(C(¥X)) 1is a
normal extension of S4. In the well-known paper [1]
McKinsey and Tarski proved that, in many cases,
L(C(X))=54, in particular, for all locally-Euclidean
spaces.

In an appendix to their paper the authors ask
about properties of derivative algebras over
topological spaces. A derivative algebra D(X) over =a
ISpace X is defined as a Boolean algebra P(X) together
with the derivative operation (recall that a
derivative dY of 8 set Y is the. set of all 1limit
points of Y). The modal logic of this algebra (L(D(X))
can be defined equivalently in "Scott - Montague
style”. |

Let us recall this definition. Modal formulas are
built from the set PV of propositional ?ariables,
classical connectives v, .=, and the unary connective
0. Other connectives (=, A, ¢, T) are considered as
abbreviations (in particular, T is pvp, OA is —IHA).
We also set: _

 DA=DAA~A, OA=AvOA.

A valuation in a space X is a map ¢ : PV — P(X);
the pair (X,y) is then called a model in X, and the
triple (X,¢,x), with xe€X is a world in this model. The
predicate "a modal formula A 1is true in a world
(X,e,x)" (notatioﬁ: (X,¢,x)EA, usually abbreviated to
xEA) is defined inductively:
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1) If AePV then (X,e,x)EA iff xep(A).

2) If A = BvC then xEA iff xEB or xEC.
3 If A = =B then xkFA iff not xEB.
4 If A = OB then xEA iff there is & neighbourhood U

of x in X such that yEB for any yeU-{x}.
A formula A is called valid in X (notation: XEA)
iff A is true in any world of any model in X. Then the

logic L(D(X)) is exactly the set of all modal formulas

valid in X.

In the present paper a modal logtc is a
consistent set of hodal férmulas (i.e. there are
formulas besides this set) containing all classicsal
propositional tautologies and closed under three
rules: substitution, modus ponens and necessitation
(FA =» FOA)Y. If L is a8 1logic, and ©I' 1is a set of
formulas, L4 denotes_the least modal logic containing

(LUry.

Recall alsc that K4 is the 1least modal 1logic

containing O(p>q)>(0Op>Oq) and = DOp>D0p (p,q € PV),
S4 = K4 + Dpop; D4 = K4 + ©T.

It is well-known that L(D(X)) is always a modal
logic contaning K4. On the other hand, it does not
contain S4 (since the formula Opop is false in (X,p,x)
provided that e(p) = X - {x} ).

‘As it was observed by  Kuratowski [2], for any
nx1, L(D(Rn)) contains D4 .He found alsoc the identity
(1) d((x N d(-x)) U (-x N dx)) = dx N d(-x)

which holds in D(Rn) for any n22 but is falsified 1in

D(R). In fdct the essential part of (1) 1is the
inequality :

(2) dx nd(-x) =d((x Nnd(-x)) VU (-x N dx))

since the converse holds in any derivative algebra.
(2> correéponds to the modal formula

(3) (OpACTp)2>O((pACTR )v(TpACPR) ),

2

[



-and by distributivity, the latter is equivalent in D4
toy
(4) (OPAC—P)DO(Opadp),
or, by duslity, to
(:'51 : 0(¢ OpvOmp )>(OpvO-p ) .
Now =@ problem posed by McKinsey and Tarski
[1,p.B652] can be formulated in logical terms.
PROBLEM. To verify or to disprove the following

statements:

(MT1) L{D(R)) = D4.

(MT2) L(D(J)) = D4, (J is Cantor’'s discontinuum.)
(MT3) L(D(Q))' = D4,

(MT4) L(D(R™)) = D4+G .

(MT5) L(D(R")) = L(D(R®)) for any n>2.

Our aim is to prove (MTZ2) - (MTS5) and to disprove
(MT1). An additional cohsequence of our proof is the
decidability of D46 =D4+G . |

2. Completeness of D4G1
LEMMA 1 (cf. [131>. D4 < L(D(X)) fqr any
dense-in-itself topological space X. (Recall that a
space is called dense-in-ttself iff it has no isolated

I

points.)
We omit the proof because it is well-known that

K4 <€ L(D(X)), and XEOT immediately follows from the
density of X.
LEMMA 2% . Let X be a topological space satisfying the
following condition:
(5) for any open U and any xU there is open V = U
such that x€V and (V - {x}) is connected.

Then Xkﬁi.
Proof. Assume the contrary, then for some world

: Certainly, this féct might be known to RKuratowski in 1820.
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(X,9,x)F O(Opvp )A-OpA-O-p .

For any formula A, let us set

|A] = {y| (X,p,y)FA}

Since x € |O(DpvOp)| there exists an open U such
that xeU, U-{x}<|OpvOp] = I|p| v I|-p| (I means the
interior operation in X). By (5), U contains =
neighbourhood V of X such that  V=V-{x} is
connected.But xe|-Op| N |-O-p|, hence Vn|p|, Vn|-p|=@.
On the other hand, V £ |Bp|v|Tp| vields:
Vn|p| < |Op|, Vn|-p| € |D-p|. Thus,V is not connected,
and this is a contradiction.g

Now we shall describe Kripke semantics for 61
We suppose the reader to be familiar with notions of
truth in a world of a Kripke model, and of validity in
a Kripke frame. For a frame F, L(F) = { A| FFA } is a
modal logic called the modal togic of F. A class of

frames C determines a logic A iff A= n L(F).
FeC
Let (W,R) be a transitive Kripke frame; we define

some other relations on W:

(6) xRy <=> xRy v x=y (the reflexive closure of R).
(7) xﬁy <=> 3z (xRz & yﬁz) (the convergence retation
in (W,R)). |
(8) ﬁx = ﬁ N (R(x)>xR(x)}), xsW (the convergehnce
relation in R(x)).

(8) §x= 8 (ﬁx)n is the transitive closure of R (the .

n=1
connectivity relation in R(x)).

It is clear that R_ is an equivalence relation.
We call s frame (W,R) locally connected iff

(10 Vx,y,zeW (xRy & xRz » yR z).

PROPOSITION 3. For any transitive Kripke frame (W,R),
(W,R)):G1 iff (W,R) is locally connnected.

Proof. ("If"). Assume the contrary, then for some

world

4



(11) (¥,R,p,x)E O(DOpvp )amOpa-D-p.
" Let us prove that . ,

(12) V¥y,zeR(x) (yEDp & VR z = zEOp ).

It-is sufficient to show that for any n20
(13) V¥y,zeR(x) (yfﬁp & y§:z 3 zEOp).
(by a definition, RZ is the equality relation).

The case n=0 is trivial, so let us suppose (13)
to be true for n and check it for (n+l1l). Suppose also
y§2+1z & yEOp, then for some t, y§:t & tﬁz, so for

some u, tRu & zRu:

‘y Fig.1

Since yhﬁp we have t&ﬁp by (13), and upp (since
tRu),so zgECp (since zRu). On the other hand, (11) and
xRz yield zpEDOpvO-p. Thus zEOp.

Since (W,R) is locally connected we deduce from
(12) that ,

(14) xpCOp>O0p

But xEOpAO(Dpvrp) (by (11)), so xpoOp,and xEIOp
(by (14)), conseqgquently xEDp, in contradiction to
(11).

("Only if"). Assume the contrary, then for some

X,¥,2 We have v,z€R(x), but not yﬁxz.~ Let
p:PV — P(W) be a valuation such that e(p) = Rx(y).
Then

(W,R, P, %) FOPAC—D.

On the other hand, (W,R,e,x)E(DOpvOp). Really, -

take anz teRSx). If tep(p) then teRx(y),and ﬁ(t)SRx(y)
(since RxoRSRx by (7> gnd (8)). Hence~tth.

. If tf@(p) then teR (y), so R(t)th(y) = © (since
R _+(R)"'SR_ by (7) and (8)), and tkOp.
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Thus (11) holds for this ¢.g

OQur next step is to prove Kripke-completeness of
D461= D4+G1' This is done via weak <canonical models,
so let us recall corresponding definitions (cf.[3]).

MF Ik will denote the set of all modal formulas

whose propositionsal varisbles = are among
PV k = {pl,..., pk}. For a modal 1logic L, the set
LMk = LMFIk is called the k-restriction of L.

A definition of a weak canoni.cal model

is analogous to the

non-restricted case. Namely, Wer is the set of all

maximal L-consistent subsets of MFk (consistency of a

erk = (wl‘rk 3 Rer‘ ) 50)

m
set x means that -ngiAfﬂ,whenever ALs...,A € x);
(15) xRery <=> VA (DAex = Asy);

and ¢:PV — P(Wer) is a valuation such that for any
iz1) e(p,) = { erer | p,ex } if i<k, and e(p,) = ©
for any i>k. Fer = (Wer s Rer) is called a weak
canonical Fframe. It is transitive for any L containing
K4,

The following fact is known (in the
non-restricted case) as the Fundamental Theorem of
modal logic (cf.[41]).

PROPOSITION 4. For any AeMF [k and any xeW
1) (ﬂ%J% , X)FA iff Aex. '
2) ﬂaJWhA iff AeLlk.

From now on all Kripke frames in study are
transitive. Recall that a clot (or a cluster, cf.[4])
in a frame F=(W,R) 1is either a maximal non-empty
subset CSW such that CxCSR, or an R-irreflexive
singleton. The latter is called a degenerate clot. A
reflexive one-element clot is called trivial. A clot C
is called maximal (respectively, minimal) in V - (VEW)

iff R(CINVEC (respectively, iff R (CHXNVEC). xeW is

6



called minimal (maximal) in V iff it belongs to =

minimal (maximsl) clot. A successor of & clot C in W

is a minimal clot in (R(C)-C). A transitive Kripke

frame (W,R) 1is said to have Zorn property iff
VxeW Jy (xRy & y is maximal in W).

LEMMA 5 [5]). Any weak canonical frame of a modal logic
containing K4 has Zorn property. ‘

Proof. Suppose K4<L, and let F=(W,R) be a weak
canonical frame of L (W = Wer , R = Rer).

For x,yesW we set
(16) x<xy <=> xRy & =-wywRx v x=y.

In the case K4<l, , R is known to be transitive,
so < is a partial order. Now let us show that every
chain in (¥W,<) has an upper bound. Indeed, 1let Z be
such a chain. We assume that
(17) Z has no <-maximal elements
(otherwise there is nothing to prove), and consider

(18> s = U {A]| DAez}.

zEeEZ
This set is L-consistent. Really, suppose
Al,...,AmeS, then for any i, OA  belongs to some z €Z.

Since Z is & chain, we may also suppose. (without
losing generality) thsat z,<z,<...<z_. By (17), Z  has
no maximal elements, so R(zm)ﬂﬂ. Let wus pick some

veR(zm). Due to the transitivity and (18) we have

ziRv, and A sv (1=i=m). Thus ﬂ(iziAi) £ L by the
consistency of v. _ '

Since S is consistent, by Lindenbaum lemma, SSu
for some ueW. This u is an upper bound for Z. Really,
zRu for any zeZ (by (15),(18)). If uRzo for some zoez
then sz0 for any zeZ, so z<z since Z is a chain.
But this contradicts to (17). Therefore, z<u.

Mow from Zorn lemma we see that fdr any x<W, R(x)

has s maximal element, say y. This y is maximal in F

7
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For suppose v#t, yRt ; then not y<t (since vy is
<-maximal), and thus tRy (by (18)). But then t is in
the same clot as y. Therefore the clot containing y is

maximal.g
Now let a number k be fixed. For any t&{1,...,k}

we set
(18> q(t) IXNP A XN TP,
iet 15i< %, it

If (W,R,p,x) is a world of a Kripke model we set
(20) (x> {i |1=isk & (W,R,ex)kp,}, a(x)=q(s(x)).

The following statement is trivial:

LEMMA 6. (W,R,p,x)Fat) <=> &(x) = t.

Two worlds (W,R,p,x) and (W,R,p,y) in a Kripke
model are called MFlk-eguivalent iff (W,R,p,x)EA <=>
(W,R,p,y)EA for any AesMF k. A Kripke model 1is called
k-distinguished iff every two its: MF Tk-equivalent
worlds are equal. It follows immediately  from
proposition 4 that ﬂﬂ_r is k-distinguished.

’s
For any A<P({1,...,k}) we set

1l

(21) a(d) = >AOCq(t)a SN og(t).
k,

teh 15¢ tezh

AN

If C is a clot in (W,R,p) we set

(22) &(C) = { =(x)] xeC}, a(C) = a(&(C)).
LEMMA 7. Let C,D be maximal clots in a k-distinguished
Kripke model. If &(C) = &(D) then C = D.
Proof. We have:

Vu,veW (uRv & vRu & s(u)=e(v) =2 u=v);
indeed,it is easily seen by an induction on- AeMFlk
that ugA iff vEA (provided that u,v satisfy the

premise), and then u = v since our model is
k-distinguished.

Thus the relation - e(aj)=e(a' ) delivers a
bijective correspondence between aeC and a’<D. But

from &(C) = &(D) we conclude (again by an induction)

8



that a and a’ are MFlk-equivalent. Therefore C = D. g

LEMMA 8. The set of all maximsl clots in a

k-distinguished Kripke model is finite.
Proof. By lemma 7, this set is equivalent to some
subset of P({1,...,k}1). m

LEMMA 8. Let!(W,R,P) be a transitive k-distinguished

Kripke model, C be its maximal clot, and x be . its

maximal element. Then (W,R,e,x)Ex(C) iff xeC.
Remark. This fact seem to be well-known, nevertheless
it is not mentioned-e.g. in [4] or in [3]. Note also
that normal forms in S5 consist of disjuncts a(A).
Progf. "If" part is an easy consequence of lemma 6. To
prove "only if" suppose xEx(C). Let C’ be the -clot
containing x, then

8(C) = &(C").

Really, yeC’ only if xECa(y) (by lemma 8), only
if e(y)sS(C) (since xpo(C)). Hence &(C’' YSS(C).

Conversely, yeC only if xECq(y) (since xE(C)),
only if 3zeC’ zpkg(y) (since x is maximal), only if
£(y)eS(C') (by lemma B).

Finally by lemma 7, C = C', hence xC. g
LEHMA 10. Let C be a maximal clot in & weak canonical
Kripke model (W,R,e), then for any xeW, xpoa(C) iff
CER(x). -
Proof. "If" follows immediately from lemma 8. To prove

~

"only if" we apply alsoc lemma S.g

Recall that a Kripke frame (W,R) ié called serial
iff R(x)*©® for any xeW.
THEOREM 11 (Completeness theorem). D461 is determined
by the class of all transitive serial locally
connected Kripke frames (such a frame will be called
further a DAG  -frame). .
Proof.("Soundness".) Every AeD461 is wvalid in any
D4Gi—frame; this should be checked only for modal

9
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axioms. But axioms of D4 sre known to be valid in any

transitive serisl frame, and G1 is valid by

proposition 3.
("Completeness”.) Assuming that AeD4G1 we have to
refute A in some D4Gi—frame. AeMF Ik for some k, and

then A is not wvalid in FD by proposition 4. Thus

401tk
it is sufficient to show that Fer is a D4Gi-frame for
any L containing D4GI. The transitivity and the
seriality are well-known (cf. [4]), so 1let us ©prove
the local -~ connectedness. Sa we consider
erk ;V(W,R,¢), x=W, and prove that

(23) nyz for any y,zeR(x).

By Zorn property (lemma 5) we can choose. maximal
clots CSR(y), DSR(z); and to obtain (23) it is enough
to establish that
(24) DSR_(C).

Assume that (24)~fails. Let C1(=C),C2,...,Cn be
all maximal clots in RX(C) (their number is finite, by
lemma 8). From

CSR(y)SR(x) we have (by lemma 10)
n
(25) xECTO(  ©0(C,)) .

=1

n

From lemma 10 we also see that = 66a<c;) is
t=1 :

false throughout D, hence
(26) xpoD3

- But
(27) xEO(DBVIB)

Indeed, suppose teR(x). If teﬁx(C) then for any
ueR(t) some Ca is contained in R(u) ‘(1emma 5). Thus
u#ODa(Ci) (lemma 10), and tkDﬁ:

On the other hand, if teRx(C) then CyﬁR(t) = ©
for any i, and VueR(t) ukﬂODa(Ci), by lemma 10.

Thus (27) holds. Now from (25) - (27) we conclude

70



that a supstitution instance of G1 is falsg in x. This
contradiction proves (24). Therefore, Fer is locally
connected. g '

3. The finite model property

Our next step is to prove the finite model
property for D4Gl. For this purpose we use a variant
of the filtration method. To begin with, we . recall
some facts about filtrations (cf. [41,[6]1). ,

Let ﬂZ=A(W,R,¢) be a Kripke model, ¥ be 8 set of
formulas closed under subformulas. Elements x,yeW are
called eguivalent modulo ¥ (in M) iff \
(28) YAs¥ (M, x)EA <=> (M,y)EA;
this is denoted by XSy . He also set
(28) xR gy <=> VA (DAY & (M, x)FA = (M, yXEA).

Let h: W — ¥’ be an onto map . A model
M = (W ,R ,¥') is called a filtration of M through
(¥,h) iff the following holds:
(30) p(A)=h"'(p'(A)) for any AePVN¥;

and for any x,yeW
(31) h(x) = h(y) = x=gv,
(32) xRy = h(x)R’"h(y),
(33 h(xO)R"h(y) = xR(@)y. '
Remark, The construction in [B8] is a special case of
"this one; there h is & canonical map W — W/EA for
some A containing ¥.
LEMMA ‘12. Let M = (W,R,p) be a - Kripke model,
m = (@',R',p’}bbe its filtration through (¥,h). Then
fo; any x<W, Ase¥ '
(34) M,x)EA iff (WM ,h(x))EKA.
Proof. This is a somewhat modified "Filtration
theorem” from {4]. The proof is by an induction on the
length of A. Let us consider the only non-trivisl

case: A = DB. Assume that (34) holds for B, and let us

prove it for A.
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("If"). Suppose h(x)EOB. We have to show that
xEOB , i.e. VyeR(x) yEB. But yeR(x) only if h(x)R'h(y)
(32), only if h(y)EB (since h(x)EOB), only if yEB (by
(34)). ‘

("Only if"). Suppose xkDB. We have to prove that
h(x)EDB, that is Va<R’(h(x)) afEB. But a=h(y) for some
y (since h is onto), and from (33) we see that xR(Q)y.
Therefore yEB by (29), and a = h(y)EB by (34).g4
LEMMA 13. Let h: (W,R) — (W’,R’) be an isotone map of
Kripke frames (that is, a map satisfying (32)). Then
for any x,y,zeW, yﬁxz only if h(y)éé(x)h(zz.

Progf. First of =all we observe that yRz only if
h(y)ﬁ'h(z) (by (7),(32)). Then an easy inductive
reaéoning shows that y&iz only if h(y)ﬁ‘:(x)h(z)..

In what follows we assume that L = D461,
mﬂJ% = m = (¥,R,¢). For x,yeW we set
(35) M(x) = {C |C is a maximal clot in M & CSR(x)},
(36) xvgy <=> x=gy & M(x) = M(y).

It is clear thsat (%W) is an equivalence in W. So

we set

(37) W' = W/(~g),

and let h: W — W’ be the canonical onto map.
For a,belW’ we set

(38) aRb <=> 3xea Jyeb xRy,

(39) R’ :ngi(ﬁ)n (the transitive ciosure of R},

and finally for AePV we set
(40) ¢’ (A) = h(e(A)).
LEMMA 14. If M’ = (W' ,R’,p’) is defined by (35) - (40)
then M’ is a filtration of M through (¥, h).
Proof. We need to check conditions (30) -. (33).

© (81) holds trivially since h(x) = h(y) iff xvgy,

only if X=gy (by (38)).

The only non-trivial inclusion in. (30) is:

12
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h™ (e (A)) (=h""(h(p(A))))ISP(A). .

To show this suppose
xeh™ ' (h(p(A))). Then h(x) = h(y) for some ysp(A), and
X=gy by (31). Since yEA and As¥ we have xEA ,i.e.
xsp(A). -
To prove (32) suppose xRy. Then h(x)Rh(y) by
(38), and h(x)R’h(y) by (39). ‘ _

To  prove (33) suppose h(x)R" h(y). Then
h(x)(ﬂ)nh(y) for some n>0. Since h is onto there is a
sequence a ,& ,...,8 in W’ such that aozh(x),

By (38) there exist X, <a ,

anzh(y), and Vi aiﬂ 8,

Ve S8, such that xiRyi+1:

If DAs¥® and xEDA then XOFDA (since XSgX by
(31)). Thus y1hDA (since xoRy1 and R 1is transitive).
From X, Zgy, we have XI#DA etc. So we obtain xn_ihDA,
ynkA, and vyEA (since v, =Y Y. Therefore, demy..

A Kripke frame F separates a modal formula A from
a logic L iff all formulas from L are wvalid in F
whereas A is not. A logic L has the finite model

property (f.m.p.) iff any A€l can be separated from L

by a finite frame.

THEOREM 15. D4G  has the f.m.p.

Proof. Assume that AL, AeMFlk. Then A 1is false in
some world Cerk, X)) (proposition 4, Take
M = (W ,R" ,¢") as in lemmas 14. The set W’ is finite
since = (my)-class of an element x is exactly

characterized by its (=g )-class together with M(x).

13
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But the set W/E@ is finite (it can be imbedded into
P(¥)), and M(x) is a subset of some finite set (lemma
8).

Since not XxFA we see that not h(x)EA (lemma 12),
and to complete the proof it is encugh to show that
F' = (W' ,R") isAa D461—frame. But R’ is transitive by
(38). R is serial [4], so are R (by (38)) and R’
(since RER’ ). '

Finally, let us prove the local connectedness of
F’. According to (10) and (39) this means:

(41) Vk=1 ¥1z1 Va,b,ceW (a&kb &'aRlc = b(ﬁ'}ac).

This claim will be proved by an induction on
(k+1).

If k=1=1 then there .exist X, XZEh-i(a),
yeh *(b), zeh '(e¢) such that x,Ry, x,Rz. By Zorn
property (lemma 5) we can choose some maximal teR(y).
‘ Leaving the trivial case xzzt aside, from (36) and
(35) we conclude that szt. But Feris locally

uf‘ 2) ::946162)

connected (cf. the proof of theorem 11). Thus t§x z
2

whence h(t)ﬁ;c (lemma 13). Consequently bﬁ;c (since
aR*bR" h(t)). ‘

The inBuctive‘step is rather trivial. Suppose
max(k,1)=k>1. Then aR* *d, dRb for some d, and thus

dR;c by the inductive hypothesis. But we hsve also
dR’b, therefore dﬁ;b, and bﬁ;c since ﬁ; is

1<



transitive. g
From theorems 11 and 15 we deduce

COROLLARY 16. D46 is determined by the class of -all
finite D4Gi—frames.

4.Suitable frames

Now we will describe a more convenient narrower
class of finite frames for D4G1' For this purpose we

introduce some operations between Kripke frames

Let Fo = (WO,RO), F1 = (W1, Ri),be Kripke frames.
Their disjoint sum <FOLJF1) is the frame (W,R) in
which W = Woijl = (WOX{O})U(W1X{1}) (the
set-theoretic sum of Wo and Wi), and

R = ROLJR1 = {((x%,0),(y,0»| xRoy}U{((x,l),(y,l))l xR,
v}. It is easily checked thst the operation LJ is

associative up to an isomorphism. So, the disjoint sum
of n frames (F UJF,|}...UF,> can be defined as

«F,UF U OUF, .

The ordinal sum (F0+F1) is the“ frame (W,R) in

which W = W_[I¥ and R = {{((x,0),(y,0))| xR v} U

{((x,1),(y,1))] xRy} U (W x{0})x(¥ x{1}).

RUR N A

Fig.4 . Fig.5
A map f: Wo — Wl is called a morphism of Fo to

15
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F1 iff for any x W
(42) £(R (%)) = R (£(x)). _

An onto morphism is called a p-morphism; - an
injective morphism is called an imbedding. Each pair
of imbeddings jo:F2 — Fo, jl':F2 —> F1 has an amalgam
(in the categorial sense). It can be constructed as a
frame F=(W,S) in which W = (_|l¥ )/, o being the
least equivalence relation such that
(3,(x),0)p(3,(x),1) for any x<W,, and aSb <=> 3xea
Fyeb x(RoljRi)y. Then there exist canonical imbeddings

k k1 forming the commutative square.

OJ
. Fo L
Jo \?
Fz F
i, /‘1
F
1
Fig.6

It is easily proved that F is transitive whenever

///Fz
Fo \\T1 for such

amalgam, and Fo’ F1 will be wusually identified with

Fo and F1 are.

We will use the notation an
their canonical images in the amalgam. The operation
of amalgam is associative up to an isomorphism, so we

iptroduce iterated amalgams

Gi GZ Gn—i

NN, TN

1 2 3 n
Let w be the set of all finite sequences of
natural numbers; this 1is a tree ordered by the
relatioh = ("to be an initial segment”). w" is also
linearly-ordered by the lexicographic order <. —, <
denote corresponding strict orders. A denotes the
empty seguence. "k (respectively, kAa) denotes the
sequence obtained by putting the number k after

716
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(resp., before) the sequence o, _

A standard tree is a finite substructure T of
(w*, =) such that for any k
(43) AeT,

(44> aA(k+1)eT = aAkeT,
(45) o keT = oceT.

It is clear that any finite strictly ordered tree
is isomorphic to some standard tree.

The restriction of & transitive frame F = (¥W,R)}
to (R(x)u{x}) is denoted by F* and called the subframe
generated by x. F itself is called generated iff
W = R(x)u{x}.

It is well-known that L(F)SL(Fx) (the Generation
Lemma, [4]). ‘

Let F = (W,R) be a RKripke frame. xeW is called
its endpoint iff R(x)=®. E(F) denotes the set of all

endpoints in F.

Let T be a standard tree, with
E(T} = {ai:‘--:o“n}; a1'<--.'<an and 1et
G G
1 n-1
H= . o
F1 \\Fz C . \\Fn be an iterated amalgam in

which F, is generated by f3,. Then let

G ° ¢ _,
N TN

(B 3,) (3 )

2 n

T .
be the frame obtained from the ordinal sum (T+H) by

identifying every o with corresponding 3, .(this is,
so to say, an "ordinal amlagam”). Note that if ﬁi are
'replaced by some B; still generating Fi we will obtain
an isomorphic frame, so ﬁi need not be indicated in
the previous notation.

A particular case of this construction is n=1. In

7



this case H=F1, T is a finite irreflexive chain, and
the resulting frame 1is obtained from (T+F) by
identifying o and ﬁi‘

Now we are ready to give an inductive definition
of a suitable framef
(48) A finite non-degenerate clot is a suitable frame.

(47) If F,,..., F_ are suitable (nZl1) and C is a
finite non-degenerate clot then (C+F ||...[JF > is
suitable. ‘
“(48) If Fi,...,Fn are suitable (nzl1) and generated by
reflexive elements, Ci,...,Cm_1 are clots, and T is a
standard tree then C C

/ 1 n-1

F \F

1 n

is suitable.
Our next aim is to prove that D4G1 is determined

by suitable frames. So we will show that every finite
generated D4Gi-frame is a p-morphic image of some
suitable frame. )

Let us introduce some other auxilary notions. A
marked frame is é pair (F,e) in which F is a generated
transitive irreflexive finite frame, and g is a
reflexive symmetric relation in E(F) (a ‘"graph").
(F,p) is regularly marked iff p is a connected graph
»i.e. iff its transitive closure is universal on E(F).
A  marked p—morphism f: (Fi,pi) — (Fz,pz) of +two
marked frames is & p-morhism f: F1 — Fz (ef. (42))
such that for any x,yeFi
(48)'xp1y only if f(x)pzf(y).

An SM-tree is a marked standard tree (T,T) such

that for any «,peT
(50) orf3 iff «,B€E(T) & (a=v-3yeE(T)(a<y<Avi<y<a)).

18



Non-formally, orf3 & o#3 means that o and {3 become
adjacent if you draw the tree T on the plane without
self-intersections and yith putting all endpoints on a

horizontal line:

0,0 0,1 . 1 2,0,0 - 2,1

N :

0

B

A
Fig.7

LEMMA 17. Let (F,p) be a regularly marked frame;
u,veE(F). Then there exist an SM-tree (T,T) =and a
marked p-morphism £: (T,T) — (F,p) satisfying

(51) If t0 is the least,and tl_is the last element in
(E(T>, <) then f(to) = u, f(ti) = v,

Proof. By an induction on the cardinality of F.

If F is one-element we can take T = ({A},=).

To make an inductive step 1let us assume ‘that
F = (W,R), W = R(x_), and X is the set all immediate
successors of X, in F. If yv,z€X we set
(52) yoz <=> 3asR(y) 3bsR(z) apb.

Then o is a connected graph on X. Indeed, suppose
v,zeX, acR(y)NE(F), beR(z)NE(F). Since p is connected,
there exists a path: a = aipazp...paj = b, and by the
choice of X for any i there exists yieXﬁﬁni(ai). Hence
we have yoyzo...oyj_ioz, by (52).

Since o_is connected we can construct a o-path

involving all elements of X ("Ariadna thread"). Let

X 5o X, be such a path. Let (Fk,pk) be the
restriction of (F,p) to ﬁ(xk). By (52) for each
ke{l1l,..,n} we can find vkeE(Fk), uk+1eE(Fk*1) such

19



that VP, - We set also u =u, v _=v. VSo F can »be

pictured as

n n
F
Vn
see X,
. Fig.8
(But one should remember that xk’s are not necessarily

distinct, and that different Fk's are not necessarily
disjoint.)

Now we apply the inductive hypothesis to (F,.e.)
and obtsin & markgd p-morphism fk:(Tk’Tk) — (Ek,pk)
such that

(53) If tok is the 1least and t:k is the 1last in

(E(Tk),<) then fk(tok) = u,, fk(tik) = v,
Then we construct an SM-tree (T,7v) such that

b 3

: nooy
T = {Au U T,, T,

satisfie: 244) and (495) since all Tk do.)

Finally we define f:T — F such that
(54) £(A) = x,

(55) £(k™o) = £ (a).

This is a required p-morphism. Really, f is onto,
so X, satisfies (42). Since fk are p-morphisms we
have: £(=(k"e)) = £, (=(a)) = R(£, (o)) = R(E(k o)),

To check (49) let us look at the picture of T:

= {k e | aeT }. (It is clear that T

20



AN \/
MW A

‘Fig.8
“(Note that some of Ti's can be singletons.) A routine
proof shows that for o,B3<E(T):

crf » Tk (&,BEE(TY) v {e,BY={t,, t ,.  1).

Therefore arf3 only if f(o)pf(3). Indeed, this is
obviously true for any a,ﬁeTz (by (55)). Otherwise
[£Qo), (A} = {£(t, ), FCt, . 01={v,, u, .},  hence
f(ao)pf(3) ( by the choice of Vs uk+1?..
LEMMA 18. Every finite generated D4G -frame is a
p-morphic image of some suitable frame.
Proof. It goes by an induction on the 6ardinality of a
given frame F = (W,R). If F is a clot there is nothing
to prove, due to (46). So suppose it is not.

(i) Suppose W = R(x), then the clot C containing
.»,C_~ be all

x .
immediate successors of C in F, x «C , F =F ‘. All F,

are D4Gi—frames, so let f;ﬂ% — Fi be & p-morphism of
a suitable frame onto F . We set G = C+(G, [}... G ),
and identify C and Gi with their images in G. Then the

X is non-degenerate, C=¥. Let C1"‘

map f:G — F such that

y if yeC
FOD =1 £,(v) if yes,,
is a p-morphism ( a similar definition is in (54),

(855)).
(ii) Suppose W = R(x)U{x}, x is irreflexive. Let

V0~be the least set satisfying
(58) ero, _
21
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(57) Vy,=z (yez>& yRz & =3t (yRt & tRz) = zeVO).

In other words, (57) means that Vo contains all

“"strict immediate successors"” of every its element. So
all elements of Vo are irreflexive. We will say that a
clot in F is over Vo if it is & successor of some
, endpoint of Vo.‘Let Xi,...,Xn be all clots over Vo. By
(57) every Xi is non-degenerate. We pick xieXi and set

(58) V =V u{x ,...,x 1}, G = (V,8),
S5 = (R(VxV)) - {(x,,v) [1=isn,v=x}.
Thus G is generated and irreflexive,
E(G) = {x,,...,x }. Then we set

p = RN(E(G)XE(G))
(cf. (8)). This relation is obviously symmetric and
reflexive; it is a connected graph since F is 1loecally
connected (cf.(10)). Therefore we éan apply lemma 17
and obtain a marked p-morphism g:(T,T) — (G,p).

Fig.10 An example of forming G.
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X. - :
Each Fi =F ° is a D4Gl-frame, so by  the
inductive hypothesis there exist a suitable §£ and a
p-morphism f :® — F . Suppose | '
E(T) = {e,,..., e}, e <e,<...<e_,
Qj is the. accessibility relatiop in @j.
Then e’)."t'ej+1 iv1 (by (49)); that

is ﬁ(zj)ﬂ§(2j+1)¢0 for any j<m. Suppose alsc

and szz

(60) C, is & maximal clot in F, C SR(z DnR(z,  );
(81) Bj ig sn isomorphic copy of Cj, oj:Bj —> Cj is =
bijection.

Let‘Dj be the least clot in Wj, then ?iz D;&C
(for some‘@j). We set
Dj+<Bj_1148j[ij) if 1<j<m,
D1+(81[J@1)_ if j=1,
Dm+(Bm_1[me) if j=m.

(62) e

Every W; is a disjoint sum of suitable frames,

consequently ej is suitable (47). As ususally, @j and

Bj are identified with their images in 6; We choose
& €D  so that
F A

(83) fkcj)(éj) =z,

Such éj exists since fk(j) is a p-morphism.
Finally, we set
/ Bi\ Bm\_’l
e 8 e
1 2 m
(51) (52) (5m)
(64) H = ----------mmmmmmm oo ; @ denotes the
_ T :

accessibility relation in H,
(65) f:H — F,

cj(y) if yij,
f(y) = fk(j,(y) if ye?j,
g(y) if yeT.
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This definition is correct because g(ej) = zj-

= fk(j)(éj) (by (58) and (83)). It follows from (B63)

that
z .
(66) f£(8) = F ‘. _
Indeed, if 1;j<m then f(ej) = fk(ﬁ(Qj)UCfigcj
(by (82),(85)) = F ’ since fkj) is onto and by (80).
Cases j=1 and j=m bring nothing new.
To prove (42) we consider several cases.

(i) If yij then f(Q(y)) = f(Bj) = Cj (by
(B1)) = R(f(y)) since Cj is 8 maximal clot.
(iiy If ye@j-Dj then Q(y) = Qj(y), hence
fa(yy) = fk(j)(Qj(Y)) = R(fk(j>(Y)) = R(£(y))
(since fkcj) is a p-morphism). : :
~(iii) If yeDj , 1<j<m, then Q(y) = Qj(y)uB).UB).W1 and
fa{y)) = fkj,(Qj(?))Uf(Bj)Uf(Bj_i) =
= R(£(y))UC C . = R(E(y)) (since C UC,  SR(z)), by
(60)).

The cases (iv): yeD1 ,and  (v): yeDm, are

i

analogous to (iii).
(vi) Suppose ye€T-E(T). Then we have
(B67) £(a(y)INT) = 5(g(yl).

Really, f£(Q(y)NT) = f(=(y)) = g(=(y)) = S(&g(y))
by (B5) and since g is a p-morphism. .
(68) If yC%j then f(ej)SR(g(y)).

Indeed, g(y)Rg(ej) = zj (since g is a

p-morphism), hence FbjSR(g(y)), while f(Bj) = F‘j by
(68). ‘
(869) f(Q(y))QR(g(y)).

Indeed, £(Q(y)NT) = 5(g(y)) (by (67)) <=R(g(yl),
and Q(y)ﬂej is either empty or Bj. In the latter case
y=e and ‘f(Q(Y)ﬁej) = f(ej)SR(g(Y)) (by (68)).
Combining &ll this together we come to (88).

—
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(70> R(g(y))sf(y)).

To show this suppose g(y)Rt. 1If tev then
teS(g(y)) (by (58)), and tef(Q(y)) (by (67)). If teV
then corisider a chain from g(y) to t. Its initial
segment lies in Vo (by (57)) and afterwards it passes
through some-Xi (by our choice of Xi,...,Xn Y. Thus

g(y)SxiRt, and x, = zj for some j since g is onto.

z .
Hence teF 7, zjeS(g(y)) = g(=(y)) (since g is a

p-morphism ) = £(=(y))SE(Q(y)).
Now (42) follows from (89) and (78) (note that

g(y) =f(y)).u
PROPOSITION 19. D4G1 is determined by the class of zll

suitable frames. :

Proof. It follows from the definition that any
suitable frame F is a D4Gi—frame, hence D461£L(F)
(theorem 11). On the other hand, if AeD4G1 then AL (F)
for some finite D4Gi-frame F. Thus AeL(F”) for some xe
F (by- the Generation Lemma [4]). F* is a D4Gi-frame as
well. Consequently, it is a p-morphic image of some
suitable frame G(lemma 18), and L(G)SL(F™) by the
P-morphism Lemma [4]. Therefore, A<L(G).g

5. Topological semantics for D4G1

Now let X be a topological space, F = (W,R) be a
Kripke frame. An onto mapping f:X — F is called a
d-p-morphism iff
C(71) VueF df ‘(u) = £ (R T,

Existence of such a mapping is denoted by X —» F.
LEMMA 20, If F is a finite ZKripke frame and X —» F
then L(D(X))SL(F). | |
" Proof., Let M(F) be the modal algebra of the frame
F = (W,R). Recall that M(F) 1is the Boolean algebra
YP(W) of subsets together with the operation
R™*:U0 > R™(U). The map £ :U s £ *(U) is obviously

25
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a Boolean imbedding of P(W) into P(X). It is also an
imbedding of M(F) into D(X) since for any USW we have

df YUY = d( U £ (u)) = Udf (u) (since U is-

usy uEsy

finite) = U £ %R "(u)) (by (71)) £ U R uy) =

g -3 uey sy .
= f "(R “(u)). '. 4 '
Thus we obtain: L{(D(X))SL(M(F)) L(F).m
LEMMA 21. Let X be 3 dense-in-itself separable metric

space, and let B be a closed rare subset of X (i.e. B

has no inner points). For any pair m>0, 120, let Qme

‘be the frame

(eb, ... .bm'

Fig.11 . »
containing an m-element c¢lot and 1 1its reflexive
SUCCesSsors. Then there exists a d-p-morphism

g:X — & such that BSg "(b,).

Remark. Tarski lemma on ‘“dissectability” (ef.[1])
states in fact existence of = “e-p-morphism"” from X
onto §mz that is, of a map f such that
ef t(u) = £ (R Y(u)) for any ued . (compare to (71)).
It is clear that a d-p-morphism onto a reflexive frame
is always a c¢-p-morphism. Thus Tarski lemma (for

separable spaces) is a consequence of lemma 21.

Progf. Let {X1’Xz""} be "a countable set of open

balls forming a base for X. We will construct families

of sets <Aik)15iﬁé,kew ; (Bjk)isjfm,kew such that for

any i,j,k
(72> A, is a finite union of open balls whose
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closures are disjoint;
(73) i#i’ = cAikﬂcAi,k = g;
(74) B, SA; pry

(75) Bjk is finite;

(78) B B . . .

(7T) ALPB L = @

e
(78) Xk*‘isigiAik = i,k+1: - j,k+1: ik’
t
('?8) Xk+1gé':"1Aék = Ai,k+1nxk+1#g’ Jok+1 Xk+1#0 ?
(80> AikmB = ©;
(81> BjkﬂB = O;
§82) a*=3j’ = BjkﬁBj'k =

The construction goes by an induction on k.
Suppose k=0. (X-B) 1is infinite 'since X is

dense-in-itself, and B is closed, B#X. Then we choose

different points v1,...,viéB, and open balls A _<X-B
such that VieAeo , closures of =1l Au> are disjoint
and U cA < (X-B). (E.g. we can take
: _ .
A = {x|e(v. ,x) < 0.1lmin(p(v,,B), min (v,,v, ))}.) The
O 2 3 i - 3 3
set (X-B)- U cA.‘o is non-empty and open, consequently
=1 i
it is infinite (due to the density of X), and we can
find different points W s s W in it. Taking
gp = {wj} we see immediately that (72), (73), (7573,

(77>, (80}, (81) are true for k = O.

To make the (k+1) st step assume that all Atk ,

‘Bﬁ?, are constructed. We set
:
(83) Yk =‘U Aik
) =1
Now two cases are possible.

(1) Xk+1§Yk. Then we proceed according to (78).
(ii) Xk+lzﬂk . Then in fact

(84) X,  Ze¥,
7
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For, assuming the contrary we . obtain:

< - . .
Ichu-IcYk. But Ich+1 Xﬁ?+1 since Xkd is an open

ball, and IcYk = Yk by (72), (73), (83). Hence XkuSYk
in contradiction with (ii).

Now we set
' m

- on - UB

(85) Wo.= X ‘
J=1

R+1 ik’
(86) W = WO - B.
Since (Xk+1

(84)), such are also Wo (due to the density of X),
and W (because IB = ©).

Now we proceed as in the case k=0. We choose open

balls V

- cYk Y is open and non-empty (by

.V <W whose closures are disjoint
z2,k+1 . :
and such that U eV, ¥ - .The set (W- U cVi'k+1}

i=1 =1

1,3?*'1,."

being non-empty and open, is infinite, and we take

points bj %eq? 153=m, from there. Finally, we set
(87) B, 4us™ BV 18, o0 b
(88) Ai,k+1= A, Y Vé,k+1'

Then the statements (74>-(78), (78) hold
trivially. The first part of (72) is alsoc trivial. The
second one is proved by an induction: in the case (ii)
by our construction cV. N cV. =0 whenever i#i’,

i, k+1 i, k+1
and Cvi,k+1 k+1SW and by (85),(88).
By the construction, (73) is true for k=0. Making
an inductive step in the case (ii), by (88) we obtain:
CA, peaM G . g T (eA N eh OU(eh NV, Y
UCeh, N eV, e VeV aed™ eV euy) T CB N CA, , =0
(since all other disjuncts are empty, due to the
construction; note that cVi’k+iu cVi,‘k+1cWSX—cYk).
_ (77) 1s true for k=0 since w;zAio. Assuming it
for k,kfrom (87),(88) we have:
A N B = (Aikn Bjk) U (th+1m {bLk+1}) U

i, k+1 J, o Rk+1
= O i
u (Aékﬂ{bj’k+1})u(vi ﬁBjk) since bj’k+1evhku,

N cY, = @ since cV.
*k 2,

, R+ 1
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b,),k*‘iewsx..Yk ’v;,h+1cw§x_BJk <by (85),(88)).
- For a proof of (79) observe that in the case (ii)
Vi.k+1gw’ bj.k+1ew’ WSX)HI. '

(80) holds for k=0 by the choice of Ai° . If (80)
is proved for k then in the case (ii) we have:

A jrs™ B = (A 0B U (V, p ™ B =V, e B9

since v;'k+1§w = W_- B (by (86)).

A proof of (81) is almost the same. If k=0 then
B,S X-B by the choice of w, . In the case (ii) we
use (87), and bj’k+1€8, by (86).

(82) holds for k=0 because wjﬁwj, . In the case
(ii) from (87) we have

2 = n
k1 Bj’,k+1 Bjk Bj'k

since bj,k+1,bj,‘k+1ewo, and WOSX—(BijBj,k), by (85).
Now we can set (for any ie{l,...,1},

Je{l1,...,m}):

(89> Ai = S‘Aik‘, Bj = g Bjk ;

4 m

X-¢ U Aau U Bj),
t=1 =1

and we define g: X — sz by

(80) B

" a. if xeA
EA %

g(x) = b . if xeB . ,
7 7

b if xeB’
1 1
This definition is correct due to

(73),(74),(78),(77),(82); and let us prove that g is a

required d-p-morphism. To do this, we "check some.

inclusions.
(81) (X-U Ai)SdBj

3
Really, suppose x<U Ai. Since {Xk+1] k=0} is an
i
open base we have to show that Xk+1ﬂBj¢B whenever

xeX, , . But if xe(Xk+1-? Aa_) then Xk+1nBj#6 by (79).
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(92) dB S(x-U 4,).
, H
This is trivial since every Ai is open
((72),(88)), so Bf9£1 implies dBde(-Ai)S-AV
By the same reasonings we have

(893) dB<(X-U A ),

and
(84) dAiS(X- U Aa)'

oF i
(95) AeSdAa'

This 1is true since Ai is open and X is

dense-in-itself.

(986) BdeAé.

» A proof is analogous to that of (81): if xij
and xeXk+1 then Xk+1fm1¢0 by (79) (the premise of (79)

holds because xel’:,‘_jhxm1 ).

(87) B =dA,

is proved in the same way.

Now observing that g '(a,) = A,, g (b)) =B,
(provided that j=1), g "(b,) = B,UB] , we deduce (71)
from (81)-(87). Finally, we have BSg_i(bi) sihce' BSB;
(by (80),¢(81),(80)). |

We should slso notice that in the case 1=0 the
whole construction goes the same way, but without
mentioning Aik -m
PROPOSITION 22. Let F be 8 suitable frame.

(i) Suppose F = Fb, b is reflexive. Suppose also that
X is a spherical slice in Rn, n>0:

X = {xeRn[ risﬂx"Srz}, OSr1<r2 ,

Y = (x| Ix) = =, or x|l = x,}.

Then there exists a d-p-morphism f:X — F such
that
(98) £(Y) = {b}, '
(98) the restriction f|IX is also a d-p-morphism onto
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F.
(ii) Suppose C c__

F/i\ /mlF

i

F = e e
T
%%

Vis obtained by (48), 1=<k<m, szF , X is a non-null

closed ball in R” , n>0, Y is its sphere.

Then there exists a d-p-morphism f:X — F

satifying (99) and '

(100) £(Y)> = {a,}.

Proof. Proceeding by an induction on the «cardinality
of F we consider cases (46)-(48).

In the case (48) lemma 21 can be applied (as for
(99), we use the same argument as in the case (47)
" below). ‘ |
‘ (47): Suppose F = C + (F||...l4F,), beC. If
card C = m then let g;X — ém& be & d-p-morphism such
that Ysg *(b) constructed in the proof of lemma 21.
Returning to this construction we observe that
‘A= g7(a,) is a union of disjoint open balls (in XD,
say, A, = UU, (in fact, the number of disjuncts is

r

infinite, but this does not mastter).

Also UergIX since‘YSg_i(b), and thus U, is an
open ball in R” (congruent to { x | lIxll$r}). By the
inductive hypothesis, there exist d-p-morphisms
fir:Uir——»'Fi (88). -

Now & required d-p-morphism can be constructed as
follows:

g(x) if g(x)eC,
(101) f(x) = :
£, (x) if erir

T r
f is obviously onto.
(71) holds for any ueC because £ (u) = g *(u),
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1

£75(R™(u)) = g '(C), and dg (w) =g (C) (g is a
d-p-morphism).

So assume that ueF =(W ,R,), and let d, be the

derivative operation in Uir . We have:

-1

£ 1wy = f;‘<u) = U f::(u),
R™*(u) = R;*(u)C,
and
102y £ YR *(u)) = g ey v U d,, f;i(u).
Indeed, R )y = T ROOUE TR ) =
=g () VU IR = g N uUd, fm
r r

since fér is a d-p-morphism.

Thus
(103) £ (R (u))=sdf " (uyug” T(C).

Now let us prove that
(104) g *(Ccrysde *(uy.

Suppose x<g '(C), and let {X_,X_,...} be the base
used in the construction from the proof of lemma 21.
To obtain (104) it 1is sufficient to show that

-1 -1
Xk+;ﬁf (u>#9@ whenever xeXJ,?+1 (note ‘that xef " (u)

since xeg '(C)). But xeX,  implies X, £ UA, , and
A

Ai’k+1= Au‘?uvi'k+1 (88). But Vi'k+1ls'Uir for some r,
and f:i(u)ﬁUir¢0 since f _ is onto. By the choice of
Vi we, have LW SR Consequently,

f‘(u)nxk+1¢a. .
From (103) and (104) we obtain:
£7H (R (u))=df T (u),
and we have to prove the converse:
(105) df *(uystTH(R *(uy). '

Observing tﬁat»Ajﬂdf-i(u} = @& for any j#i (since.

Aj is open, and Ajﬁf‘i(u) = @) we conclude that
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df-i(u)sAiug-i(C). But
Aiﬂdf_i(u) = U(Uirﬁdf_l(u)) s Ud

r

-1
- fir(u), and

(105) follows from (102).

Therefore f is a d-p-morphism, and (88) holds by
the definition. :

To prove (88) we have to check (71) for h =.f[IX.

According to the definition,

£ (u) if u=b,
h™*(u) =
£7(b)-Y if u=b.
Thus, h (R '(u)) = £ *(R"*(u))-Y for any u. On
the other hand,
d_ £ ) = df T T(unIX = df”f(u)-v%
Therefore
(106) h™(R™*(u)) =d__ h™"(u)
holds for any u#b, and let us consider the case u=b.

We have:

h™*(R™"(b)) = h"'(C) = g "(C)-Y = dg”"(b)-Y
(since g is a d-p-morphism); and

d, h '(b) = d(g " (b)-¥)-Y. Now (108) for usb
follows from the inclusion '

dg”*(b)-Ysd(g *(b)-Y)
which is obvious since

dg”"(b) = d(g "(b)-Y)udY < d(g "(b)-Y)u¥.

Thus our consideration of (47) is over.

(48): In this case we have to prove the statement

(ii). The frame

A3 dz denotes the derivative operation in the subspase

Z of the space X.
33



(i.e. F—{uo} is a union of subframes sz, 1<1=s,
y
generated by succesors of u ). Suppose G,=F .
On the other hand, each Fj (1=j=m) 1is generated
by some reflexive a, ,and for any J there exists

unique 1j such that afﬂl s 1S;Fs. Alsc it is clear
j .
that each Gl contains some aj ; thus

(107) jr—elj is a map from {1,...,m} onto {1,...,s8}.
Since all non-null closed balls in R are
homeomorphic, we may assume that
X = {x| [Ix]}=23, ¥ = {x] [}x]l=2}.
He also set
X, =X, Y =Y,

and for any i>0:

~Xi = {xl “x"Sl/i}, Yi = {x{ uxuzl/i},

ﬁi = C(Xi~1_xa)'

Now looking at the zigzag diagramm

/ci\ /Ck. /Cn';—i
F F. ... F ... F N\F
1 2 Tk s m-1 m
Fig.12 :
we construct a sequence of frames: E1,E2,... obtained

by the oscillating movement along the zigzag,

34

N



beginning from Fk , Ck :

Fk ? Ck Pt T ? CmFI 2 Fm > Vw1 Fm-l ’ ?
Fz, Ci, Fx’ Ci, Fz,.. . s Fm_1 s Cm_1 , Fm s Cm_1 y .o
(Here is a precise definition:
F. if E=F., E =C_ ,
J+i ¢ TF 7 Tiva Ty
Cﬁ{ if Eizcj 3 Eiﬂsz+1 , J#m-1,
E. = C. if E=C. , E. =F. , 3=1
i+2 71 9 i+
F]._1 if Eisz . Eu4:Cf1 s
C if E. =C , E. =F |
- ) m—1 t+1 nm
C1 if Ei=C1 \ EiM=F1 . )

Due to the inductive hypothesis, there ‘exist
d-p-morphisms fi such that
(108) f :Ia — C. if E =C. ,
1 12 7 2 7
(108) fi:Aé — Fj s fi(YaUYi~z) {aj} if Eész.
(Note that 1 is even in the first case, and odd in the

It

second case. )
Furthermofe, if Eizcj we choose also =& non-null
closed ball
8. clAa, |,
T T
and a d-p-morphism hi such that

(110> hi:ei — Gb s hi(ei_lei> = {%g.

J . .
To construct ha we may sapply the inductive
. & .
hypothesis. really, either Gl= Gl’ », or G, can be
J J )
presented as ‘
/Di ' Dm\
e e
Gz =
. 7 - T'
(for some maximal clots,Di,.;.,Dm,).

In the first case the statement (i) is used (we

take r1=0). In the second case for some j'~we have
a. : .
d = Q,J
. 7 77
since the clot containing aj in minimal in F-(T-E(T));
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thus the statement’(ii) can be used, with F::Gz s
;i

k:=3°, a ::aj.

Fin:lly we define f:X — F as follows:
ug if x = O,
(111) f(x) = f;(x), if xeAi , 1 is odd,
fi(x) if xe(IAi—Si), i is even,
hé(x) if xeei , 1 is even,

f satisfies (100) since £(Y) = f1<Yo) = {a,} by (111)
and (108).

Qur @im is to prove that f is & d-p-morphism,
that is (for any xeX, ue<F)
(112) f(x)Ru = xedf *(u);
(113) xedf *(u) = £(x)Ru.

Let us begin with (112), and suppose f(x)Ru.‘ We
analyze all possible cases (114)-(117).
(114) xeAi , 1 is odd.

Then f(x) = fi(x) by (111), so f(x)Ru implies
xgdbbfzi(u) (since f. is a d-p-morphism). Now we

-1

observe that d, f;‘cu) < df:i(u) < df ‘(u).

(1135) xe(IAi—Bi;, i is even.

This is a variation of the previous case.

We have f(x) = fé(x), and f(x)Ru implies
f:?(u) (since f, is a d-p-morphism), and also

xedIAi

xedf_igu), since (IA;—Gi) is open and f = fz in some
neighbourhood of x.
(116)Axeeé .

If EizzF.j and q=1j, then £f(x) = hgx)eGq , .and

f(x)Ru implies u-eGq s xede hzi(u) (since h,

. (3 - .
is a d-p-morphism). But then we have xedhzi(u),

and hence xedf-icu) (since every X-neighbourhood of

X contsins a Gi—neighbourhood).
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(117) x = 0.

Then for some g, ueGq , and also . q = lj for some

J (by (107)). By our construction the sequence Ei is

'periodic, hence .

E, = Cj
for infinitely many i’s. For all such i’'s we have
f(ei) :»hi(se) = Gq (by (110)), therefore

£ uyra, # o |
, Thus every neighbourhood of © intersects £ "(u),
i.e. Oedf *(u).

To prove (113), we suppose xedf-l(u) and again
consider ail possible cases.
(118) Assume that erAi , 1 is odd; ,

Then xed, £ "(u) = d, £;'(u) (since f=f, in 4),
and f(x) = fi(;)Ru (since ; is a d-p-morphism).

(118) Assume that xeYi», i is odd.
If xed, £ '(u) then f(x)Ru is proved a&s in

3

'(118). So suppose xs—:’dA £

T

1(‘u). Then for some

X-neighbourhood V of x
vra, nE M (u)-{x} = ©

Z§;+1

e

X: e
Fig.14 -

Since xedf '(u) we obtain:
vaIa, nfTf(u) = e,
and we can choose V sma11 enough to be disjoiﬁt with
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i+l

If ernIAi”nf"(u) then u = f(y) =f, (v)<C,

T+
(provided that EH1=Cj).But f(x) = fi(x) = aé
(provided that Eiz Fq) and it remains to show that
C =R(a ).
) g

But this follows immediately from the definition
of the sequence E : if E= F then either E = C s
i 1 Q 1+l Q
or E = C .
g~-1
(120) Assume that XEY , 1 is even.

This case is analogous to (119) (there are two

possibilities here: either xedA £ (u); or not)
A ] i+l
(121) Assume that i is even, xe(IAi~ei).
Since (IAi~8i) is open we conclude that

“(u). Thus £(x) = f,(x)Ru since f . is 8

<

xedIA £

d-p-morphism.
(122) Assume that i is even, erei
Then xeciIeif_i(u)SdIeih;i(u) and  £(x) = h,(x)Ru

since hi is a d-p-morphism.
(123) Assume that i is even, xe(eé—IBi).
This case is analogous to (119). By (110), we
have f(x) = h, (x) =&, (provided that E = C )
If xede f (u) then f(x)Ru is proved as in (122)
Otherwi;e we can find & neighbourhood V of x such

that VSIA, , Vnenf '(u)-{x} = O,

Fig.15
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and we also have

Vn(IAi—ei)nf'i(u) = 0
'since xedf '(u). Taking yeV n (IA,-8,) n £ '(u) we
have '

, u = £(y) = £(y)=C, ,
and hence f(x)(=aj)Ru.

The only remaining case x = 0 is trivial.g
THEQREM 23. (i) Let X be ﬁ topological space having an
open subset homeomorphic to some R°, n>O0. Then
L(D(X))sb4G
(ii) If additionally X satisfies conditions of lemms 2
then L(D(X)) = D4G1
Proof., If Y |is an open subset of X then
L(D(X))L(D(Y)) since the map

A —ANY
yields a homomorphism of D(X) onto D(Y). Thus for' the
proof of (i) it is sufficient to show that

L(D(R"))=D46_ |

So suppose AeD4G1 . Then A is falsified in some
suitable frame F (proposition 18). But R"—»F by
proposition 22. Hence A<L(D(R")) by lemma 20.

The statement (ii) follows now from lemma 2.4

So we have a proof of (MT4) and of (MTS).
COROLLARY 24. L(D(X)) = D4G1 for any topological space

- X locally homeomorphic to R" , n>1.
Proof. Immediately from theorem 23 and lemma 2 (since
(R"-{0}) is connected).g

6. Topologital semantics of D4.

Now let us verify (MT2) and (MT3).
. We begin with Kripke semantics of D4, Transitive
serial frames will be called D4-frames.
PROPOSITION 25 (cf. [4]). D4 is determined by the
class of all finite generated D4-frames.
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Di—quasitrees are defined inductively:

(124) A finite non-degenerate clot is a D4-quasitree.
(125) If Fi,...,Fn are,D4-quasitrees (n>0) and C 1is
a finite clot then C+(F_|]...IF ) is a D4-quasitree.
LEMMA 26. Every finite generated D4-frame is a
p-morphic image of some D4-quasitree.

' A proof is analogous to cases (i), (ii) 1in the
previous proof of lemma 18 (the only difference 1is
that C may be degenerate in the case (ii)).

Thus we obtain ’

PROPOSITION 27. D4 is determined by the class of all
D4-gquasitrees.

Now recall that a topological space is called
zero—dimenstional iff 1its clopen (i.e. c¢closed-open)
subsets constitute a base of the topology.

PROPOSITION 28. Let X be & dense-in-itself separable
zero-dimensional metric space. Then X—»F fof any
D4-quasitree F.

Proof, Again we use an induction by the cardinality of
F.

If F is a finite clot we apply lemma 21.

If F=C+(F 4...UF__,> and C is a
~non-degenerate clot then we follow the proof of
proposition 22 (case (47)).

If F = C + (FolJ“'lJFm-1>’ C = {a}  is a
degenerate clot then we construct an infinite

splitiing of X as follows.

We choose a point yeX and clopens Y1 s Y2 .
such that
{V}F'"SYn+1SYnE"‘SY1£Yo: X,

p(y,Yh)Sl/n for any n>0.
Namely, 1if Yn is already constructed we choose a

clopen

<0

‘éfj



Y., S YN {x|e(y, 051/ (n+D)};
in any case Yn+1¢{y} since y is non-isclated in X.

Then we select a strictly decreasing subseguence-

of (Y )

nnew: .
{yl}c...<c2 1CZnC...czicZoz X.

n+
Since anYn we have
p(y,Zn}Sl/n for each n>0.
Thus '
nZz, = 1{iv:.
n
So by setting an (Zn—Z ) we obtain a

nti
non-trivial open splitting:

o
X-{y} = UX_,
n=0
such that

p(y,Xn)Sl/n for each n>0,
and it is clear that every Xn is dense-in-itself and
zero-dimensional.

By the inductive conjecture  there exist
" d-p-morphisms

f;:Xn - Fr(n) ?
r(n) being the residue of n modulo m.

Finally we set

. a if x = vy,

f(x) =

fn(x) if xeXn

Almost the same reasonings as in proposition 22
show that f is a d-p-morphism. Really, the
surjectivity Qf f is clear from the definition.

If xeXn then f(x) = fn(x), and

f(x)Ru & xedf *(u)
is proved as in the cases (114), (118).

If x = y then f(x)Ru for sny u#y; so we have to

prove that yedf ‘(u) for any u#y.

21
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1 -
km+i(u)’ and

s o]
But if ueF, then £ 'u) = UTF
k=0

-1 : . . -1
fkm+i(u) N ka+i # © since fkmﬂ is onto. 'Thus f "(n)

interéects infinitely many Xn's, and also
p(y,X )<1/n. Therefore yedf-l(u).. v
THEOREM 29. L(D(X)) = D4 for‘ any dense-in-itself
separable zero-dimensional metric space X.
Proof. Immediately from 1lemmas 1, 20 and from
propositions 28, 27.g

7. The real line.

The last logic considered here is L(D(R)). We use

formulas
@, = p,~ PO QN -p. o,

: 1<;<3, ;i d

Gz = D(DQ1VDszqQa)D°DﬁQ1VDﬂQ2VDﬁQ3

LEMMA 30. GzeL<§13) ’

(§13 was defined in lemma 21.)

Broof. Take a valuation ¢ in & _ such that e¢(p )={i}.
Then {x| thi} = {a,}, and b6, .g

LEMMA 31. RFGZ

Proof . Suppose xhﬂGz and set

la,| = {v| vea,3.

Since xt:D(VEIQi ) there is an open U such that xeU and
i

U-{x} = I|Q1(UI}Q2[UIlQ3].

Furthermore, let us take an open interval V such
that {x}<V<U. Then we obtain a non-trivial open
splitting :

V-{x} = V1UV2UV3
in which

Vj = Ilel N (V-{x}).

But this is impossible since (V - {x}) has only

two connected components.g
From these two lemmas we deduce

PROPOSITION 31. D4cD4+GéSL(D(R)).
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The following two 4statements seem to be very
probable. ,
CONJECTURE 1. L(D(R)) = D4 + Gz |
CONJECTURE 2. Every logic D4 + Gn has the f.m.p.,
n _ n ]
(G, denotes O(y DA )=y 04, @= p A XN P, ).

=0 7 ;o 7Y a=iga, e

Let us also indicate some open problems.
PROBLEM 1. To describe all 1logics L{(D(X)?} for
dense-in-itself metric spaces X. In particular, is
D4G1 the greatest of them?
PROBLEM 2. Is theorem 23 (ii) extended to the infinite
dimensional case? In particular, does it hold for

Hilbert space 1, (with the weak or with the strong
topology)?
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