Institute for Language, Logi¢c and Information

USING THE UNIVERSAL MODALITY:
GAINS AND QUESTIONS

Valentin Goranko
Solomon Passy

ITLI Prepublication Series
X-90-06

5305383

University of Amsterdam



The ITLI Prepublication Series

1986

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
86-06 Johan van Benthem Logical Syntax Forward looking Operators
1987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Norma! Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers :

87-05 Victor Sinchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonore Oversteegen ‘ Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type .Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks Type Change in Semantics: The Scope of (g:anliﬁcation and Coordination
1988 1 p.83.01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Going partial in Montague Grammar

LP-88-05 Johan van Benthem Logical Constants across Varying Types

LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation

LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program

ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: 1 jfschitz' Realizabiility

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Z-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early l%istory of Intuitionistic Logic
ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics
CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel HM. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures ;
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas  Towards implementing RL

X-88-01 Marc Jumelet Other prepublications: o Solovay's Completeness Theorem

1989 1 p.89-01 Johan van Benthemlogic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof =~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal Logic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinrich Wansin The Adequacy Problem for Sequential Propositional Logic

LP-89-08 Victor Sdnchez Valencia Peirce's Propositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic ‘and Foundations: Eyplicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Varjables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna  On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in 1Ag+Q;

CT-89-01 Michiel HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas ~ On Space Efficient Simulations

CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel H.M. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learninlg Simple Concepts under Simple Distributions and
Average Case Complexity ?or the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet  On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Denneheuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas T
X-89-01 Marianne Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality

-89-06 Peter van Emde Boas Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project
)1(9 0 SEE INSIDE BACK COVER : ® ¢ projee



Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

USING THE UNIVERSAL MODALITY:
GAINS AND QUESTIONS

Valentin Goranko
Solomon Passy
Sector of Logic
Faculty of Mathematics and Computer Science
Sofia University
Boul. Anton Ivanov 5, Sofia 1126, Bulgaria

Received June 1990



1. Introduction

The paper suggests a simple and natural enrichment of the usual
modal language X=¥X(0): we add an auxiliary "universal" modality @,
interpreted in the usual Kripke semantics for £ (on frames <W,R>
with Rsw®) by the Cartesian square w? of the universe, i. e. for
each ueW: x=Bp iff VycWy=—p).

0f course, this is definitély not a novelty. On the contrary, a
number of authors have, explicitly or not, introduced the universal
modality under different names and in different contexts, e.g. in
tense logic, cf. [Crel, [Bull, [Gol2]; in dynamic logic, cf. [PT13],
[PT2]; Just technically, cf. [Koyl. In this paper we propose a
systematic and purposeful investigation of this idea.

Indeed, taken in isclation, @ is nothing more than the well-
known old S5-modality. The point of the paper, however, is to
consider @ just as an aquxiliary modality, enriching the classical
modal 1language.

The enriched 1language 2@=2(D,@) turns out to be fairly
different from the ciascsical one. In particular the notions of
satisfiability, wvalidity and consequence in models become
interreducible as well as local and global first-order definability.
These peculiarities are sketched in Section 3.

' Section 4 deals with moddl defindbility in xﬁ. The universal
modality considerably strengthens the expressiveness of the
language. Model-theoretic characterizations of modal definability
(cf. [Benl) in x@ of classes of modal algebras, general frames,
arbitrary and A-elementary classes of frames are obtained based on
the notion of modally definable closure (see [Gorl). Z@-de{inability
is proved to be equivalent with seguential definability (see [Kapl)
in £. A number of first- and second-order frame conditions, which
are definable in £_ but not in £ are adduced.

o)

In section 5 the minimal normal xh—logic K@ is axiomatized and

a general completeness theorem (with respect to models) for the
family of normal extensions cof K@ is proved. Special attention is
paid te the so called nminimal extensions - 2@—10gics axiomatized

with schemata of ¥ over K@. Conservativeness of all minimal

extensions is shown.

(WS



Secticn 6 promotés a general study on possible transfer of
properties of ¥-logics to their minimal extensions. In . particular
the problems of transferring completeness, finite completeness and
decidability are investigated and severalipartial but representative
results are obféined. For a large class of £-logics, completeness is
shown +to transfer to their minimal extensions, including all
canonical ones as well as all complete logics having a theorem of
the fofm Dmpaﬂnp, for m<n (e. g. all completé extensions of K4).
Also the filtration technique is proved to be transferable. However,
the general transferring problems remain still open.

In section 7 several concrete completeness and decidability
results for logics having essentially fﬁ—axiomatics are stated and
zome other elegant applications of @ are csketched, including the
axiomatization of the so called "proper names" for possible worlds
(cf. [PT13, ([PT23}) and the axiomatization of the modality &
"necessary and sufficient" (cf. Humberstone, [Huml who calls it "all
and only") having semantics x=Rp iff Vy(:Ry & yF¢p). In general it
. seems that @ can fairly well play the role cf the so-called

admissible forms {(cf. [Gol21) for axiomatizations.

2. Preliminaries

2.1 Throughout the paper we fix a propositional modal language
£=2(0) of one modality O and its dual O=DFwDﬂ. We assume familiar
the notions of frame, model, &eneral frame, modal algebra and
validity in them as well as the basic frame constructions — subframe
Cthis will mean Eenerated subframe>, p-morphic imafe, disjoint union
and the basic «aléebratc constructions - subalgebra, homomorphic
image, direct product (for exact definitions see e.g. [HC1, [Eenl,
[Grdl). Some neotation: M—elx] will mean that the formula ¢ is true
at the world x of the model M; M—¢ will mean that ¢ is valid in M.
Notation for truth and validity in frames, general frames and modal
algebras will be analogous.

Also we use the categorical connections between general frames
and modal algebracs f(see [Goll1l): to each general frame § there

correspondse a modal algebra 8+ and to each modal algebra U the

X . A ,
general frame U which is its Stone representation.



If F ies a frame, then the underlying frame of (F+)* is called an
ultrafilter extensien of F, denoted by wue(F). F is called an

ultrafilter contraction of ue(F).
+ %
If ¥ is a general frame then (¥ )* is called a Stone

representation of ¥, dencted alsc Sr(J).

Another constructicn to be wused 1is ultraproduct of &eneral
frames (see [Golll or [B=nl). Note that this construction, applied
to a family of frames, yields a general frame (unlike the ordinary
ultraproduct of frames) since it regards frames as full general

frames. That is why it is called a &eneral wultraproduct.

2.2 Now we enrich the language £ with a new, call it universal,

modality @ (and its dual ¢), interpreted in the Kripke semantics on

~

a frame <W,F> by the Cartesian square W° of the universe W. Denote
the language thus cobtained by Z@ and the =zet of formulae of f@ by
FDR@. Here are some basic notions for the new language.

Anframe {or standard frame) for xé (S@—frame) is a Aframe
ZW,R,W > which will be identified with <W,R>. Operators O and B on
subsets of the universe are defined in a frame F=<{W,R>» as Ffollows:

fWw if X=W
Y = - e 3 =
0¥ {xeW / R({xYSXY and @X {G otherwice"

f-model is a pair <F,V>» where F is a frame and V is a valuation
in FUR@, obeying both the familiar conditions for an £-valuation and
the conditions for O and 8: V{Op) = OVie) and V(EBp) = @BV (p).

The notions of &eneral fh—frame is also defined in due standard
way as a pair <F,H> where F=<W,R>*» is a frame and WEPW) is closed
urnder the Roolean operatione, O and ‘@. Clearly, the operator @ does
not impose extra closure conditions and so we can identify /general/
£-frames with /gengral/-xb—frames. -

An x@—alSebra is a non-trivial modal algebra with an additional

_ . . s _ f1 if a=1
unary operator‘B, catisfying the condition: Ba = {6 otherwise for
each element a of the algebra.

It is easy to see that the 3@—algebra5 are exactly those

bimodal algebras which are isomorphic to 3+ for some general
fE—frame b

The notions of validity (=) in fg—mndels, general f@—frames,
£ _—frames and ”m—algebras are aleo defined in the standard way.

-

Closed formulae in 2é are the Boolean combinations of formulae




beginning with B. (this notion is borrowed from [PT21)

3. Some effects of the universal modality.

The universal modality makes possible to express global
properties (for the whole model or frame) by means of local ones.
This is grounded on the obvious fact that truth of a closed formula
at a point {(local wvalidity) 1is equivalent to validity of this

formula in the whole model - (global validity). Here are scme issues

of thics effect:

Proposition 3.1 1) Global validity of any xé-formula © is
equivalent toc local wvalidity of @eg.
2) Blobal ceonsequence MN=¢ is egquivalent to local (point-wise)

conseguence @(F)FTﬁ, where () = {@y / yell.

3 When I = {71,...,yn} then M =¢ is equivalent to the validity
F=E(71A...Ayn)ap. #

Analogous effect appears 1In first-order definability (cf.
[Benl): an fé—farmula p is (globally) first-order definable iff @&p
is locally first—-order definable.

fs it follows from [Chal, first—order definability in £ is
undecidable, so we cannot rely on effective syntactical
characterization of this property but only on sufficient conditions
like Sahlgqvist theorem (see [Sahll) and some generalizations (cf.
fBenJ). As a rule, these criteria are transferable here in the
following sense: if peFOR satisfies a concrete syntactical criterion
for first-order definability (say Sahlqvist?s) and ¢’ 1is obtained
from ¢ by replacing some arbitrary cccurrences of O by @, then ¢’ is
FOD tcoo. However, one should be cautious in rising more general
conjectures of this kind. An example: (Op-»00p} ~(0dp~>00p) 1is FOD
whereas (@p-+@8E8p)~{(D0p-»00p), which is equivalent to (O0p-+$0p), is not
(cf. [Ben, 7.4, 10.21).

Likewise, first-order definability in x@ is not decidable.
Anyway, a guestion rising:

Question 1: 1s first-order definability 1in 3@ decidable modulo

firet-order definability in £7



4. Modzl definability. _
4.1 Classes of frames modally definable in r@. \

If C is a class of 2@—frames then the modal theory of G,
MT_(C), is the set of all Z@—{ormulae valid in C. I+ I''is a set of

]
f@—formulae then FR(I) is the class of frames in which the formulae

of ' are valid.

Definition. A class of frames C is nmodally definable in 3@
(fa—definable) if there exists a set FSFDR@ such that for each frame
F: FeC iff F=I". The class of the modally definable classes of
frames in ¥ will be denoted by MD(£p). We will describe the
3@-de§inability in a model-theoretic fashion, by means of closure
under certain constructions.

Now we will define some operators on classes of algebras and
frames. Let A be a class of algebras of scme signature Q. Then we
deriote by [{A) /S(A), H(A), P(AY, ULAY/ the class of all isomorphic
coﬁies /subalgebras, homomorphic images; direct prodicts,
ultraproducts/ of algebras from A.

Analogously, let C be a class of frames. Then we denote by

If(C) /Hf(C), Uf(C), SR(CY, CuiC)/ the class C extended with all
isomorphic copies / p—morphic images, ultraproducts, Stone
representaticns, ultrafilter contractions/ of frames from C.

/
The same notation will be used for classes of general frames.

Fact 4.0 All of the operators defined above preserve the validity

of modal feormulce. # (see e.g. [Gol1ll)

Definition. Modally definable closure (MDC) of a class C of frames

in x@ ie tha csmallest xb-definable class [C] containing C.

Here is an explicit definition of [C3: [C]=FR(MT@(C)),

The definitions and notations for modally definable classes and
modally definable closures of classes of general frames, models and
modal algebras are in the same spirit.

The next resulte are obtained as analogs to those in [Gorl,
where definability in the bimocdal language E(R;—-R) (with modalities
both cver a2 relation and its complement) is studied. The univercsal

modality is euxplicitly definable in X(R,-R) by the formula
Bp e ([IRIpAL-R1p).
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Let M@ be the class of all Zb—algebras.

Lemma 4.1 m@ consists of simple al gebras Cwt thout proger

conéruences>. # (cf. (Gor, 3.31)

Lemma 4.2. I/ KsM_ then [KJ = HSP(K) n MM = [SU(K). # (cf. [Gor,
2.51)

The above resuvlt says that a class of $ﬁ~algebras i= modally
definable iff it is closed under isomofphisms, subalgekras and

ultraproducts.

Now we shall define specifically for fﬁ, a simpler version of

the notion of SA-constructicon introduced by Goldblatt and Thomason

in [GT] and used to characterize F-definability.

Definition. (cf. [Gorl) Let F=<W,R,H>» and F’=<{W’ ,R*>. F’ i=s said to
bhe a B-collagse of F iff there exists a complete atomic <subalgebra

+

. + + +
of ¥, $}=<N,R,N1> such that W' is the set of atoms of 3&,

 for each a,beW’: R’ab iff acSdb (i.e. VYxeadyebRxy)
and the following czondition holds:
VaeW’VXeNl(Vbew’(R’ab 3 b<sX) = RCalsX).

Llet C€C be.a class of general frames. The <class of all

@-cocllapses of C will be denoted by C@(C).

Theorem 4.3 1) If C is a class of frames then [C] = IfC@U{(C).
2) 4 class of frames C is in MDCED iff it s closed under

isomorphisms and @B-collapses of feneral ultraproducts. ¥ (cf. [Gor,

Z.113

The'essential difference between this characterization and the

classical case of Goldblatt % Thomason is due to the fact that in
the enriched 1language the notions of [generatedl subframe and

disioint union of frames are trivialized.

Definition A class of frames C is A-elementary iff there iz a set

ZSFDRO csuch that for each frame F, FeC iff FEe=Z.

Corollary 4.5 i) If € is «a class of frames closed under

ultraproducts then [C3=IfC@(C). # (cf. [Gor, 4.12, 4.13Z1)
Following the scheme from [Gorl one could obtain another, more

convenient characterization of the A-elementary classes in MD(Z@).

However, in the next section, we will have this characterization for

free 2 well as other results concerning modal definability in fﬁ.



4.2 Definability in f@ and sequential definability.

Kapron in [Kapl considers definability by means of sequents in
the usval modal language as follows.
Definition

1) A medal seguent in £ (f-seguent) is a pair <I,A of finite
cete cf formulae of &

2) An L-sequent <A is valid in a model M, notation M—=<TA>,
if (Vpel) (M=) implies {(ypeA) (M=y); ‘

I) <IL,AY is valid in a frame F, notation F=<I[A¥, if 4T A» is
valid in each model on Fg

4) A set of modal seguents = is valid in a frame F, Fke=E, if
each member of = is.

=) A class of frames C is modally seguentially-definable (MSD)
(we do not use the notions of "axiomatic" and ‘"sequent-axiomatic"”
class {(cf. [GT1 and [Kapl) because a class of frames can be defined
by a set or formulas or sequents but not axiomatized by this set) if
there exists a set Z of modal sequents such that for each frame F:

—

F== iff FeC. The class of modally sequent-definable classes in £

will be denoted by MSD(L).

Lemma 4.6 MSD(E) < MD(ZE).

Proof: Let a clase C be defined by a set of sequents E. For

each sequent o=<I,AeZ define pceFDR@:
o or w:r@w ? aZAga'

It iz eacsy to see, using Z.1, that for each mcdel M: M=o iff ME=—p .
So € is defined by the set of formuleae {po / oeZ2, # ) "

Now we are going to prove the cpposite inclusicn. This will be
done uveing & kind of normal forms of the formulae cf f@.
Definition. 1) An elementary conjuncticon /disjurction/ is any

formula of the type xA@onexlA...A@xs /1v920v@11v...v@15/, where

Xy x; €£(0)

2 ‘A conjunctive form, CF for short sdisjunctive form., DF-/, is any
conijunction sdisjunctions of slementary disjunctions {(conijunctions?.
By a standard propositional modeal argument, each CF is

equivalent to a DF and vice versa. So, by form we will mean either
CF or DF,

Proposition 4.7 For each formula ¢ and closed formula vy,

o
.



a) F=0(pewvy) e (Opvy)
b) =@ (pvy) € (Bpvy)
Proof: Standard semantic arguments, using 3F.1. #

Theorem 4.8 For each peFDR@'there is a form eguilvalent to p.

Proof: By induction on ¢. The Beoolean steps are standard. Let

¢ = 0Oy and y* = w,A...Awn be a CF of w. Then ¢ = DwIA...ADwn and
5.7.a2 guarantees that all Dwi’s have ecquivalent CF’s, and so does ¢p.

For ¢ = Wy, the proof is the same, using S5.7.b. #

Now let ¢* be some CF, equivalent to ¢ and XVonv@xiv...v@xs be

an elementary dicsjunction in ¢°. For each f@—medel m:

mng@znv@xi Ve v@):s iff M==u (,’)cv@)_’ov@xl Veos v@xs) if¥f
M=@xvOx VB V- « - VBx_ iff M—=B-x,> (Exv. .« vl8x VB, ) .
Let us denote by 7t(¢) the conjuncticon of such transformed

elementary disjunctions of ¢’. S0, 7lp) is a formula without nested

DCCUfrénces of @, such that for each xb—mcdel M: M=7lp) iff Mr—op.
Obvicusly each conjunctive member of the transformed type is
equivalent, with respect to validity in an f@—model (hence in a
frame), to the corresponding sequent <~z0,{x,x1...,xs,}>. This

obeervation and theorem 4.8 vyield an equivalence between segquential

definability in £ and definability 1in 2@.

Theorem 4.9 MSD({Z) = MD(f@). #

Moreover, definability and sequential definability coincide 1in

each polymodal language having @ explicitly definable.
Now some nice results from [(Kapl about sequent definability are

directly trancslated into 2@:

Corollary 4.10 A A-elementary class of frames is MD in f@ Tff Ut is

closed under p-morphisms and wultrafilter contractions. # (LKap,

theorem 71}
a first-order condition is definable in 2@ iff

In particular,

~d contractions. For

it is pressrved urder p-morphisms and ultrafilter

instance, VzaRxx and JuRxx are not definable in f@ sirnce the former

fails after an appropriate p-morphism (e.g. the only mapping from
L,y s U, ys,dy,x>>> onto <{ud, {{u,u>>*») and the latter f2ils after
an appropriate ultrafilter contraction (e.g. if N 1is the set of

rnatural number then 4N, <rp=IxRux but ue (LN, <) =3IRux).



Corollary 4.11 If C s a A-elementary class of frames -then
EC]=C”Hf(C>. # (cf. [Gor, 4.141])

This last result ics preserved in the enrichments of ¥ having @
explicitly definable. It has a methodological value: as a rule such
ernrichments vyield non-standard semantics; let a first-order
definable logic of such an enrichment cf £ is proved to be
complete with respect to this semantics (this is usually done using
classical technigues as canonical model, filtration etc.) Now the
problem arises how to prove "standard completenecse". For the purpose
of completeness of such a logic, only the frames carrying descriptive
general frames are sufficient; these frames are p—morphic images of
their ultrafilter extensions. So the class of non—-standard frames of
thie lecgic consists of all p-morphic images of standard frames.
Theresfore, if the logic is complete with respect to the standard
semantics then this should be proved using the ‘"copying" technigue

(i.e. construction of a standard p-morphic inverse image of all
ncn—-standard frames; cf. e.g. [GFT1).
Corollary 4.12 A class of $feneral frames C is MD In ré iff € 1is

closed under p-morphisms, ultraproducts and Stone representations,

and the complement of C is closed wunder Stone representations. #
([Kap, th. 61

Actually, the proof of ([¥ap, th. 61) gives something more:
Corollary 4.13 lfy € s a class of €eneral frames then

-1
[CI=SR "H,SRU, (C).

4.3 Some examples of conditions that are Z@—definable but not

Z-definable.

SEMANTIC CONDITION MODAL FORMULA
R = W° Op-Ep
IxVy-Ruy ‘o0L
Ix3IyRuy /R # O/ o0T

Wi =1 F-Ep

n+1

N < Py )

W] £ n i=1®pi +.V.®(piApj,
1#]

V:uVyVz (RxzsRyz) Op-E0p
VuVyVz (RxysRxz) Op~>0Ep

LT



V:VyVz (Ruz&u#z9Ryz) (pA®Op) »0p

VuVyVz (Rxy» (x=z~Ryz) p~O0Op-»>Ep

VuVyVz (i=zRyz) . pA®0p-»>Ep
’ Vi 3yRys ' ®BOp-p

S well—foundéd @8(0Op-p)-p

One could easily prove non—-definability in &£ of these conditions,

using the criteria of Goldblatt and Themason (6T, th.Z, th.g1).

5. Axiomatization and proof theory of fé-logics

In this section we consider normal modal legics in f@.

’

5.1 The minimal normal fg-logic K@. Standard and non-standard

models. Minimal extensions of £-logics in 2@.

The first question arising here is: what will the analog of K
in 2@ be?. In order to obtain this analog we have to add to K some
axiom schemata which would axiomatize the additional wuniversal

modaiity. Some schemata, coming at first sight are:

(@) @{p-»q)-» (Ep-Eg)
(refé) @p-p

N (sym@) £-EOp
(trans@) Gp->EBEp

(incl) E8r->0p.

These schemata determine that B is an SS5-modality with
corresponding equivalence relation U containing the relation R
corresponding to 0. This does not guarantee that U is a universal
relation but this property can not be expressed by means of modal
formulae since it is not preserved in disioint uniens. Indeed, we
shal! see {(as a consequence of the completeness theorem) that the
above schemata are all we can say about @E. The extension of the
minimal normal modal logic K with these schemata and the rule

(NEC ): ¥ will be called K .
| — =
impe) ;
Note that the rule (NEC@), combined with (incl), makes the rule

(NECD): $ redundant.
O¢
€o we have another semantics, larger than the one envisaged

thus far, semantics, also correct for 3@, viz. models over frames

<W.R,U> where U is an equivalence relation centaining R. These

10



2
frames, when U#W , will be said to be non-standard frames feor 3@ and

the frames {N,R,NE} will be standard ones. Analogous terminology
will be accepted for general frames and models over standard and
non—standard frames. From now on the notion of f@—{rame (xé—general
frame, fé—model) will include both standard and non-standard cases.
Definition A simple extension of K@, or Z@—lo%ic, is any extersion
of K@ by means of schemata of Zﬁ.
Definition Given an £-lo8ic L, the minimal extension of L in f@ is
the simple extension L@ of K@ with the schemata cof L, taken over 8@.
Now two general notions of completeness arise: completeness
th respesct to the general semantics and completeness with respect
the standard one. Of course we are interested in the latter, but,
with S5 in mind, it is clear that these two notionse are eqguivalent
cince each generated subframe (as a bi-relational frame) of a
£ ~frame ies a standard f@—frame and each formula refuted in a frame
ic refuted in come of its generated subframes. Combining the above
chservations with the usual canonical model technigue we obtain thke
€eneral completeness thecrem fer xg—lo&ics:

Theorem 5.1 All xg—losics are complete with respect to the cluass of

their standard Zg—models. #

In particular K@ proves tc be complete with respect teo the

stardard ¥ _—frames i.e. it is actually the minimal normal xb—logic,

o

analogous tc K.

5.2 Conservativity of the minimal extensions.
If Vic a valuation on a frame and I' a set of formulae, denote
VITY = (Vi) / pel?.
Lemma 5.2 Let M=<W,R, V> be an f@—modél. Then VIFORY = V[FDR@1.

FProof: Immediately follows from the observation that, in each

model, each formula, beginning with B is equivalent either te T or

Corollary 5.3 Llet L e an £-lo&lc and M=IF,V> 5& an L-nmodel. lLet W

be cbtained from M by extending V over FDR@ accordingly. Then M* s

a stardard L@—model.
Precof: Let ¥ be an axiom schema of L and w(wllpl,...,wk/pp) be

a substitution instance of yw in 3@. Then there exist wi’,...,wk’ €

s

11



FOR such that V(wi’) = V(wi) for i=1,...,k according to 5.2. Then

! { = ’ ’ = =1

k(w\wl/pl,...,wk/pk)) V(w(wp1 /pl,...,wk /pk)) W since

w(w,’/pl,...,wk’/pp) is an axiom of £ and M is an L-model. Obviously
- . ~ {

M is a model for the schemata concerning @, hence M is an L@—model.#

Note. In virtue of the above assertion we can consider each
model <W,R,V> both as an &-model and as a standard fb—model

(extending the valuation V over FOR@).

Corollary 5.4 EFach minimal extension L@ of an E£-loflc L s

conservative over L.

Proof: let peFOR and Lkp. Then by the general completeness
2
theorem for L Mk=p for some L-model M=<W,R,V>. Then M =<W,R,W ,V>,

with VYV spread over FOR is an L@~model refuting . #

@’
6. Transfer of results in minimal extensions.

When an enrichment £" of a (poly-)modal language ¥° |is
considered, one has a natural notion of minimal extension: if K° and
K" are the correspon- ding minimal normal logics in £ and £" and L’
is an £’ -logic (a simple extension of K’) then the minimal extension
in £" of L” is the £"-logic L", axiomatized over K" by the axioms of
L* over K'. Now a general question about translations arises: Let 9P
be come property of logics. Prove that if the £°-logic L’ enjoys the
property P then so does the minimal extension L". As a rule it is
not difficult to prove such results for particular logics but the

general transferring problems s=em quite puzzling.

6.1 Transfer of completeness. Strong completeness of ¥Y-logics.

Definition. An f@—logic'L is complete if for each peFOR@ such that
L4 there enists a frame F such that Fe=L and Fik—vp.

The preblems to be overcome while proving completeness of
f@—logics seem to be the same as those for ¥X-logics (the universal
modality is not expected to introduce new difficulties) so  the
methods will be the same too. Anyway one should surely prefer neot to
re—create here all familiar completensss achievements in  the usual

modal logice but to effortlescsly transfer as many of them as

possible to the enriched language. At least it seems quite plausible

and decirable:



Conjecture 1. If an ¥-logic L is complete, then its minimal

extension L@ is complete too.

Ac a first step toward attacking this conjecture {we hasten to
warn the reader that in this paper it will not be completely
decided) we will make some digression from x@ in order to translate

the problem inte an equivalent one in the original language £.

/

Definition Let L be an £-logic and o, peFOR.

1) The nermal g-theory over L, denoted by ThL(p)( is the set of
formulae derivable from LU{gy using MF and NEC; each weThL(p) is
said to be derivable in ThL(p), denoted pkcw; -

2 y is a semantic conseguence of ¢ over L, notation phfw, if
for each L-model M: M=—¢ implies M—y;

3) w is a normal semantic consequence of ¢ over L, notation

pﬁiw, if for each normal {(i.e. based on an L—frame)! L-—model i: M—p

implies Me=y.

Lemma 6.1 (Deduction lemma for normal o—-theoriec)

let L be an L£-loflc and ¢,weFOR. Then ¢Ftw 1ff there exists some
k

formula 6 of the type Dkuﬁm..AD gp, such that LI—6-»y.

Procof: An easy induction on the inference P #

Proposition 6.2 (General completeness theorem - generalized version)
Let L be an £-lofic arnd p,weFOR. Then pkrw iff phfw.

Proof: Since validity in a model is preserved under MP and NEC,
we obtain the soundness—-direction. Suppose pktw deoes not hold. Then
the set X = {ka / keNY}u{-y} is L-consistent: otherwise some +Finite
subset should be inconsistent hence pktw by 6.1. S0 there exists a
maximal L-thecry x containing X. Then ¢ is valid in the x—generated

submodel 1H§ of the canonical L-model while y is refuted in the root,

whence pkfw faile. #

In particular, when ¢ is T, one obtains the usual generszl
completenese theorem for £-logics. Now a gquestion arises: what will
be the general version of the completeness theorem with respect to

frames? A natursal candidate for an answer is the following

Conjecture 2. An X-leogic L is complete iff it satisfies the

condition: (%) for each ¢,yweFOR: prpw iFf prey. @



.~ A,

Notes.
1)y (%), when ¢ is T, expresses the completeness of L.
2) pktw implies p§=w in virtue of the soundness of L and the

L
preservation of validity in a model under MF and NEC.

Definition. An £-logic will be called stron8ly complete if it

satisfies the condition (X).
So conjecture 2 asserts that the strong completeness is not

stronger than the ordinary completeness. Now we are going to prove

that actually conjecture 1 and conjecture 2 claim the same.

Theorem 6.3 An £-lo&ic L 1is stronfly complete tTff its minimal

extension L@ is complete.
Proof: 1) Let L@ be complete, ¢,pweFOR and @th. Then there

existe an f-model M such that M=L, M—e and Mk=yw. Now regarding M
as an xb—model we have IRF=LB and Mr=Epe->LQy, so L@F~@pa@w, and hence
there exists a normal L@~m0del M*> such that M’ E=<E@ps3By, hence M =p

and M=y, i.e. prw.
2) Let L be strongly complete, peFOR@ and L@P—p. Then L@V—t(w),

so there exists a conjunctive member @x&(@xlv...v@xs) of 7T(p) for

some z,xl,...,xceFDR, which is not derivakle in L@. We shall Find

normal L-maodels ﬁ% such that ﬁHF=x and mi#sxi_for i=1,...,s. Aszunm

that for some i no such a model existe i.e. x;txi. Then, by *the
LF~6+xi for some

strong completeness of L, xktxi, whence by &.1.
kr

formula & = Dk‘XA---ADer- Therefore L@F—(DleA-g.AD x)exi; also
L@F—@x+(ukfo...ADk'x) hence L@F—@xexi 50 L@F—@xe@xi and

L F—@x»(@xlv...v@xs) — a contradiction. So, let ﬂH,...,ﬂL be the

g
normal L-modele with the desired property. Let M be their disjoint

union. Considered as an fﬁ—model M is a normal L@—modell such that
M—my and m#=@ﬂxi for i=1,...,s, SO m#=@x+(@xiv,..v@xs), therefore

M==7(p}, and so Mk=p.This shows that L@ is complete. #

Corollary 6.4
15 Each canonical £-logic is stronfly complete.

&> If L is a canonical £-logic, then L@ i1s complete.
Proof: Immediately by (the proof of) &£.2. #

In particular, in virtuse of a Fine’s result [Finl, all

first-order definable complete axiomatics are strongly comgplete and

hence their minimal extensions in fb are complete.

14



Corollary 6.5 If a complete £-lofic L contains a theorem of the

typeka—aump for some m,k such that m>k, then L is strongly cemplete

and hence L@ is complete. )
Proof: Let Lk-kaeDmp, m>k. Then the set {Dlw / ieNXu{y> 1is

/ i=0,1,...m—13uU{y} is L-consistent, since for

€

L—consistent iff {D1

~

paan i a2 theorem of L for =scme integer r such

that k<r<m. {More exactly we can choose r=m__&::+r0 where r, is the

each nm a formula O

remainder of n—k modulo m—k.) Therefore for each ¢ x<FOR, pktx iff

LF—(¢AD¢A...ADm—1¢)+x. On the other hand for each generated L-model
M:M—=p iff 7nh=¢ADpA...ADm_1¢fx] where x is the roct of M. Hence L is

strongly complete. #

E. g. each complete extension of K4 is strongly complete.

Question 2: Are the cenjectures 1/2 true?

The above assertions show that, if our conjecture 1-2 is not

true, a2 counter—example should be a relatively wezk, complete but

not canonical (even not compact) extension of K.

Question 2°: Isn’t KM = K + 00p—¢0p such a counter—-example?

lLet L be an ¥Y-logic and ¢.y € FOR. et wu=s note that, as a

consequence of &.1; by is equivalent to L-consistency of the set

{aw,w,Dp,..,an,..}. So, an eguivalent definition of strong

completeness is: L ie strongly complete if for each g, € FOR, if

the set S = {qw,p,0¢,...,0np,...} is L-consistent then s is

saticfiable in a world of a normal L—-model . This condition is a

particular case of the notion of compactness: L is compact if each
L-consistent cet ics satisfiable in a normal L-model (see [HC1). €Eo,
the above condition could be called weakR compactness. Thus: an
£-logic L is strongly complete iff it is weakly compact.

. 3 . - - o ‘\
Here is a sufficient model-theoretic condition for compactness,

hernce for strong completeness of L-logics.

Proposition 6.6 If L ts a complete L-1c8lc and FR(L)Y s closed

under ultrapowers, then L s compact.

erated  eubf disioint

3

Procf: FRAL) is c¢leceed under ge r
urione arnd iscmorphisms, therefore closedrezs under ulitrapowers

implies cleseness vnder ultraprcducte (see [Ber, . MNow let S be

st and S, be the s=t of all finite subsets of S.

an L-consist=rt f

/

15

Ty .



For each FESf there exists a normal L-model ﬂ%.= Wrs R VI and

A i.. A -
xrewr, such that ﬂﬁ_ = [pérw][xr] i. e. IRr = _FST(p)]Exr] where
M. is considered as a model for the first-order 1anguage I.1 having a

r
binary predicate symbol R and unary predicate symbaols (corresponding

to the propositional variables) PI’P7"" and ST(p) i the standard

translation © in L1 (cf. CRenl). Let for sach 1’“e€~‘_F

Xr = -‘CAéS‘F / T'=A3>. The family X = {XF / Fec{} is centered, hence it

ig in i Filt D. L AR > = 4 X ¥ . i
included in a wltrafilter D. Le m, x gq ﬂ%“xr ]/D M is a

normal L-model (the underlying frame for M being an L-frame) and

M—SICx1. &

Here is an example of a weakly compact ( being transitive) but
not compact (cf. [HC1) 1logic:
K4.3W = K + 0(Op-»p)-20p + O((OpAp)>qg)A0((0OgAaqg)->p)

{
Warning.  ([Vakl) The results about completeness transfer do not

carryover to completeness results with respect to classes of frames,
defined through additional semantic conditions, inexpressible
syntactically. For instance the logic 54.3 is complete w.r.t. the
class of all linear orderings LC (cf. [Segl) but is characterized by
the class of weak linear orderings WLD. However, 84.3@ (which 1is
characterized by WLO too, thanks to 6.2, 6.4 and the canonicity of
S84.3) is not complete w.r.t. LO since the formula @(0Op3q)vB(Og-sp) is

true in LO and not true in WLO, hence nct a theorem of 84.3@. #

6.2 Transfer of f}nite completeness in x@.

Ncw we are interested in showing finite completeness of

f@—lcgics. 0f course we can confine ourselves to the class of

standard models. Let us irst nete the following analog of

-+~

Segerberg®s theorem, proved Just as in the classical case (see e.q.

fHET)
Fact 6.7 4n xE-logic has the finilte model progerty (ff it has the
finite frame property. #

We can trarpzlate the problem into £, tco:

Definition An £-logic L is stron&ly finitely complete if for each

¢, weFOR such that pktw there exists a finite normal L-model M such

16



that Me=¢ and Mk=y.
In virtue of the proof of the egquivalence between FMP and FFP

in ¥ the requirement of normality of the refuting model can be
dropped.

Here we suggest the next series of progressively harder problems:
Question 3: Do canonicity and finite completeness in ¥ imply strong
finite completsness?

Question 4: Do finite completeness and strong completeness imply

strong finite completeness?
Question 5: Deoes finite completeness imply strong completeness?

Question 6: Does finite completeness imply strong finite
completeness?
Theorem 6.8 An X-lc8ic L is stronfly finttely coeomplete (ff the
mintmal extension L@ is finitely complete.

Proof: The same as the proof of 6.3, since a finite disjoint

union cof finite models ics a finite model, too. #

Unfortunately for the time being we have no universal means to
prove strong finite completeness, so 6.8 still is not of a great
use. Yowever, we can easily eascertain the transferring of the
stronger but most freguerntly used property for proving FMP, viz.
admitting filtration.

lf an £-lo&lc L adnits filtrocticon then L does s0,

Thec 6.9
ieorem . @

too.

Froof: Let FSFDR@ be closed under subformulae and M=<F,V> be an
L@—model. For each epel” we take a formule ¢’ <FOR obtained from ¢ by
replacing all occurrences of subformulae of the sort 8y by T eor 1 in
accordance with V{(@y) ({as in the proof of S.2). Obviously
V(p)=V{lp™)Y. Thue we obtain 2 cset TI'7<FOR which is closed under
csubformulae, too. The <cete TI' ard I will 1lead to the <ame
filtrations since B does not add new conditions. We can cbtain by

filtration on I' (hence on ['7) an L-model hence an L@—model by 5.Z. 4

6.3 Transfer of decidability in 3@.
The next general problem is:

Question 7: Does decidability of an #£-logic L imply decidability of

17



o
L@.
Proposition 6.10

— EBe— (EpvEx)

The disjunction property — Besby o = Spoay sy, x € FOR,

helds in L@, for each fg—logic L.
Froof: Let us aszume L@ W EBe—Ey and L@ b— @p—@y. Then there

1771y

exist Lg—models Mm,=<w_,R, ,V, > and 1R2=<N2,R2,V2} and peints xlewl and
such that m1y=¢>, m1b=w[>:1], M_ —=¢ and ‘Iltzb-‘=xtx,?]. Let T be the

HoeW,
d;sj;int union of ml and mé, considered as L-models. M=L = m%=L@
las an L@—model) by 5.3%. Moreover M—¢ hence M—BEe but mﬁ=w[x1] =
M=y and Mr=xCx,1 = Nk=Ex hence Me=g— (My~Ey) . Therefore
LBPL@¢~»(@wv@z). # B

Though the translation 1, proposition 6.10 reduces the decision

to the problem of deciding provability in Eé of

problem for L@
FOR.

farmulae of the form Bep—oy (equivalent to Eep—Ey) where p,p €

Here we hazard a positive answer of question 7, raising the next

Conjecture 3: For each [decidablel &£-logic L there exists an

effective function fL: FORXFOR — IN such that for each ¢,yeFOR pktw

1FF F(palpn. - - A0 P)>w  where n=f (p,y). #

We finish this section with a strengthening cf question 7:

Question 8: Do minimal extensions preserve complexity?
And one more question:

Question 9: Is the interpolation property preserved by minimal

extensions?

7. Some uses of the universal modality.

The uauniversal modality can a be fairly useful tool for
axicmatization. Here we csketch some examples demonstrating its
merits.

7.1 Let us first mention that the <standard techniques for
proving completeness and finite model property in £ (canonical
model, filtrations etc.) works as well in f@. As we have already
noticed, the canonical! model technique will cause no additional
complications, connected witﬁ the non—-standard models, since all
B-rooted models are standard, which is sufficient for the purposes

of the completeness. For instance it is a routine task to prove that

18



all but the last conditione, adduced in 4.3, are axiomatized by the
corresponding formulae, added to K@. Indeed, &l1 of them but the
lest are cancnical {(ncte that BO corresponds to the compositicn W <R
and E0p-»p says that this relation is reflexive which is equivalent
to the condition given in section 5.3). All these examples
axiomatize logice admitting filtration and hence having the finite
model property and being decidable. (The proof for the 1logic of
finite paths K@ + @(Op»p)»p goes through a minimal filtration and is
a €light modification of the well-known proof of completeness for
GL.)

Another curious example is due to Dimiter Vakarelov, [Vakl. The
condition JuRxx is definable neither in £ nor in xﬁ as we have
already known. This condition is axiomatized in £ by K, i.e. no part

of it can be expressed there. In f@ however, it is axiocmatized over

K by the infinite set of axioms {e_z where
o n” nelN
8n=®((Dp1+p1)A...A(Dpnapn)). Firet, all frames with an reflexive

world sztisfy all en. Actually, wvalidity of Bn in F=<W,R>* means that

for every n subsets Pl,...,Pn of W there exists a world x which has

S-succezsors in all P’s contairing x. In particular, if F is Ffinite
ang W=1Ix %n} then Fh=8n implies (taking {xl},...,{xn}) that

F=3xRx». ESo, the axioms {en}nem guarantees existence of an
R-reflexive world in 2ll finite frames satisfying them though not in

all such infinite frames. The proof of completeness uses the

standard canonical model technique: observe that if L = K@ + {en}nem
and Lk then {gXulbDdra / deFDR@} is inconesistent and hence included

in a maximal L-consistent set which is reflexive.

7.2 The finitely axiomatized fm—logics form a lattice (unlike
the finitely exiomatized X-logics, cf. [Ben, ch. 31) as follows from
the next propocsition.

+pl and L_=K +¢2 are £ _—-lofics then

Proposition 7.1 1/ L1=K@ >~ Kg @

L I'"IL,? = K

1 g T By V8L,

FProof: It is clear that L1nL7F—@¢1V@¢o’ hence K@ + @@lv@p7 =
L10L7. Vice versa, & standard deduction lemma for x@—logics shows

that le—w iff K@F—@p;A...A@pf—aw for certain substitution instances

pi,...p? of 2% analogously L by iff K@F—@wéA...Aawg—ew for some

k 1 :
go,i, - .qof;‘. But K@ + t@plv@epﬂk——(mp:m . A@pi )v(@qOEA. . .A@(DZ) . whence

L



< .
Llﬁl..;2 < K@ + @plv@pz. #

The above fact is certainly not surprising; an analogous

property is proved by analogous arguments, for the nbrmal extensions
of S4 in [MRI].

7.3 The prime stimulus for considering the universal maodality
has come up in the context of the proger names for the possible
worlds {(s=ze [FT11, [PT21). They are special kind of propositional
variables evaluated in the Kripke semantics in single worlds which,

added to medal and dynamic languages, strongly increase their

expressiveness and deductive power. A complete axiomatization of the

in the modal language with names is given in

minimal normal legic KN
Gpoldblatt

[GPT]1 using special kinds of axiom <schemata, called by
[Gcl2] adnissible forms. The names are axiomatized by the scheme
M(cAAR) L {c>A), where € is a name, A is a formula, M is a pessibility
form and L i a necessity form.

Atter adding the universal modality to the language the need of
forms disappears becauvcse the form scheme is replaced by the axiom
schemz Q{cAA)>E(cH»A). In addition we can already say that each name

has a denotation by means of the schema ¢c.
7.4 Using E one could el=gantly axicmatize puzzling

non—-classical modalities. Just an example:

Let us concsider a modality B with the following semantics in
ordinary kKripke model M=<W,R,V>:
(x} M=RBplx] iff Vy(Rxy & M=plyl) i.e. REDI=V(p).

We chall call B the "iff-modality" having in mind a . natural

interpretation as "necessary and sufficient" (see [GFT]) cr "all and

only" (cf. Humberstone [Huml). This i a fairly cstrange madality:

neither monotonic, nor anti-—-mcnotonic, but extensional; no formula

of the kind Rp or its negation is universally wvalid.

Humbercetone hacs axiomatized ® in [Huml by means of an infinite

set of schematz and an infinite set of rules. Adding the universal

modality to the language we can replace this really ingsnicus

ariomatice by the fcllowing transparent one in the larguage £(X,E):
Axiom =chematz cf the logic IFF:

1) all propositional tautologies;

2) 85 avioms for W;

)
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3) (El): (RoARg) 28 (pea2g);
4) (BR)): @pesq)» (BpesRql;

gules: MF and NEC@.

Theorem 7.2 The leogic IFF i= sound ard complete.

Proof: Soundneeé ie straightforward. Let ¢ be an IFF-consistent
formula and.w be a maximal IFF-consistent set containing . (There
are no protlems in the Lindenbaum lemma.) Denote NQ={y / y is a
maximal IFF-concsistent set and Bwsy?. Let w° be a copy of w and
N=Nou{w’}. Tt %s clear that for each x,yel! @xSy. Now we define a
relation R in W:

Bxy if+f (Ryex % ypey for some y) or (Byex & y=w’ for each y)|.
Obviously R(w)=R{w*). Consider the model <W,R,V> with the canonical
valuation V: V{(p)={xeW / wex} for each propositional variable p.
Extend V to a valuation on 211 formulas through the standard
semantice of @ and (X). Now we shsll prove the truth lenma: For
each formula w,‘V(W ={xel / yexl.
The only non—-trivial case in the induction on yw is that
VIRy) = {x / Ryexl.
1) Let Rypex.

a) if yeV{y) then by IH wyey anc Rxy by definition;

h) if Rxy then there exists x such that RByex and yey.
Then Ew5ﬂxex hence by (El) B(ypesrx)ex, s0 ywesrxey and therefore ypey.

2) Let Byp=x.

case a) for each y, Ryex. Therefore Rxw’. If wew’ then
wPeR{x)\V ()3 if wpew’ then yew and so weV () \R(x);

cace b) Ryex for saome y. Then By-»Ryex hence by (Eﬂ) E(yes»y)ex
s0 @ {y~pdvlya-yllex i.e. there ex}sts y such that (w:ax)ey or
(€Y.

subcase bl) (ya-xdey. Then -Rxy: otherwise, since Ryex,
. there exists & such that ®Pex and 8¢y and hence BOARpex, sc
B{Ber»xYex, whence Beaxxey and so ye€y: a contradicticen.

cubcase b2) -yaAxey. Then RByrex and y€y imply Rxy and so
yeR{x\V{y).
The proof of the lemma is finished. So the theorem is proved, too.#

Note. Both modalities @ and R are expressible in the bimodal
language £(R,-R): Ep=BpABp and Bo=HpA AB-p where 8 and B are the

modalities corresponding to R and —R. The minimal logic of £(R,-R),
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K is axiomatized (see [GFT1) just.by SS—axioms for @ thﬁs expressed
and is proved to have the FMP and hence to be decidable. Since K~ is
conservative over IFF (by an easy semantic argument) we have the FMP
and the decidability of IFF.

. The last two examples suggest that the universal medality can
fairly well play the role of the admicscsible forms and more

precisely, that the admissible forms are devised as rough

zpproximations of M.

8. Epilogue.

In this paper ocne of the simplest and most natural enrichments
of the classical modal languages was investigated. Several
advantagss were shown and a series of naturally arising problems of
"transferring properties” (most of them, more or less, left open)
concerning the universal modality was raised. The advantages pointed
aut are specific for the case while the problems are typical: they
suggest a general approach to a large class of enrichments of this
kind. In our opinion, as far as most of the applications of
modality, arising at the present time, need and use such
enrichments, these problem=s should lay down an important direction
of advance.

Finally, we thirnk the paper gives enough grounds to advertise
the universal modality as a natuwral and helpful modal tool,

providing a better medium for the mission cof modality.
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