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' The ILindenbaum Fixed Point Algebra Is Undecidable
V.Yu, Shavrukov

Abstract. We prove that the first order theory of
consistent theory containing arithmetic is
hereditarily undecidable,

Fixed point algebras (f.p.a.'s) were introduced by Smorynski
in C47 (see also [é] )e A f.p.a. is a pair (A,B) of
Boolean aigebras, where elements of B are mappihgs A—>A,

éatisfying the following conditions:

(1) x=p ¢«> Va a=pPa
(iis (x #ﬁ)a = Aa# (52, (# is a Boolean operation)

(i1i) Va3« Vb Kb=a
(iv) Vxda Aa=a

(elements of A are denoted by Latin letters and those of B
by Greek ones). ) |

© F.p.a.'s arise most naturally from the consideration
of a theory T containing arithmetic. Take A to be the
Lindenbaum séntence algebra of T (i.e. 'the set of sentences

of T modulo T-provable equivaleﬁcé). Call a formula F(x)
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with no variable other than x free extensional if TF-?<+>$
implies T\ F(Tf?) <> F(ip) for all sentences \ and y .
These foi'muléé‘ induce "rhapiiings'f: P \——-?E(Tp) on A. ILet B
be the collection of mappings of this form. Property (iv)
is then an algebraic translation of G8del's Diagonal Lemma.
These algebras were studied by Montagna [f§:f and Solbvay
C73. In particular the latter paper establishes the
(recursi%e) isomorphism of f.p.a.'s associated with r.e.
5onsistent‘theories containing Peano Arithmetic (PA). We

-

shall call this f.p.a. the Lindenbaum f.p.a.

Theorem. --The first order theory of the lLindenbaum f£.p.a.
et e N N N Nl g W

-

(By "hereditarily" we mean that every one of its subtheories
is also undecidabie).

A first orderdtheory S possessing finite models is
said to be finitely inseparable if the set of theorems of §
is effectively inseparable from the set of sentences false
in an appropriate finite model of S. PFinite inseparability
of a finitely axiomatized theory S clearly implies that the
theory of finite models of § is hereditarily undecidable.
Phe finite inseparability of the theory of f.p.a.'s is
shown in [57 . “

We also recall a theorem of Paiclin [87] which asseris
that the theory of partially ordered sets is finitely
inseparable (see also [ 27]). Consider the following

-~ 4 )
interpretation of the language of poset theory into the
language of f.p.a.'s: The domain of = is the set of fixed

points of o(, whe:y:'e‘ < 'is a parameter from B, and the
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ordering relation x<y is interpreted by T-provable
implication. The lemma below says that e%ery finite poset
is isomorphic to the structure induced by the Lindenbaum
f.p.a. via this interpretation provided that we choose a

suitable ¢ . Then the set of (poset) sentences
{a \ Vo 4T holds in the Lindenbaum f.p.a.}

constitutes a subtheory of the theory of finite posets and

is therefore hereditarily undecidable. The theorem follows.
The above construction falls within theAéeneral scheme of

the relative elementary definability method detailed in [1J .

Lemma. Let R be  a (reflexive) partig} ordggﬂgg n>0. ’ghen
‘W (37) extensional formula B(x) such that
(n,R) is isomox;phic to ({aeA ( Ba = a} , M

tmplication).

Proof. By Solovay's result we may assume that we are working

with PA. |
"We sball define within this theory a recursive procedure

which in the course of its operation may paimt (gddelnumbers
of) some sentences black. The arithmetic formula B(x) will
sa& "x is eventually paintedvblack". The procedurémié defined
by s%ages using the gddelnumber ofﬁB(x); this is justified by
the formalized recursion theo:em. f;rmtechnical convenience
we assume that the language of aritﬁmetic contains two
distinct biconditionals «»> and = . We also fix an
enumeration of theorems of PA in which each theorem occurs

infinitely often.
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Stage 0. Pick n fixed points Gg,..., &yt of B(x)

with distinet g8delnumbers. Now take n empty boxes and
place 6 4 in the ith box. Go to the next stage.

Stage m+%1. For every arithmetic sentence y let X,

denote the finite set

{W}U{ P ) Psmand <>y is a tautological
consequence of the first m theorems of PA} .

Look at the mth theorem of PA.

Case 1. The mth theorem reads: y <> ¢;.
Put every element of 'Y‘P that has not been placed in some
box at an earlier stage into the ith box. Go to the next
stage. |
 Gase 2. The mth theorem reads: y = B(Y) and y
Look for a sentence in _ka which has already been put in
some box. -Let © in the jth box be the first such found.

Then put all elements of Y  into the Jth box except those

Y
put into some box at preceeding stages. In case no such ©

exists put all of Y ¥ into any box you like. Go to the

next stage.
Case 3. The wth theorem reads: ¢ ; —> ¢ and
- [""""”‘“ e L U A
i nonR j. A

e~

Paint the (contents of the) kth box black whenever iRk.
Then halt the whole procea;;re. "

Go to the next étage.
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The definition of the procedure is now complete., Note
that the instructions of Case 2 are recursive because at
every stage each box contains only finitely many sentences.
We proceed to prove that B(x) is as required. The proof is

contained in the following sequence of claims.

a) (PA) &% any stage any sentence can be found in at
sze box.
Obvious by induction on stages.

b) Case 5 never happens.
Suppose it does: i nonR j and the mth theorem of PA is
6 i e j- Reason in PA: Since iRi, by the instructions
of Case 3 & ; is painted black whereas ¢ j is in the jth box
and therefore by (a) not in any kth box with iRk. Hence ¢ 3
is never painted black for there are no stages after Case 3.
We have proved B(_é—;} and not B(Z—j). On the other hand,
& 's are fixed points of B(x) and 51 — 8 j» €rgo
B(Z;) —> B(Z—j) which is a contradiction. Now recall that
PA is consistent.

c) w ne w W m+’.t.
Tumediate from (b).

d) PA 6 —s d implies iRj.
Suppose i nonR j and é —> éj is the mth theorem of PA.
At Stage m+% which exists by (c) we would have Case 3. But
this contradicts (b). ‘

‘e) iRj implies PAF- &3 —> &,
Reason :in PA: The only way something can be painted black
is via Case 3. Suppose the (contents of the) ith box is
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painted black. But since iRj and R is transitive so is the
jth box. Therefore B(Z})%B(_g—j)'. Infer 6 ; — & j by the
choice of & 's.- In case nothing is ever painfed black we
clearly have not & ; and not €& j which also implies ¢, —> éj,

£) For every sentence \p in the ith box
PA - B(§ )e>B( 7).
Let \“fﬁgetﬂinto_ the ith box at Stage m. Since Case 3 has not
yet happened it is verifiable in PA that \p is painted black
iff 6 ever is. '

g) My i<n wgen’cence P in the ith box
PAi_I-—\p<—->B(\?). _ :
Suppose gets into the box because of Case I. We then have:

PAl——kPé—?éi

<> B(g;) by the choice of é's
~—B(¥) by (£).

In case \P is in the ith box via Case 2 there is a \y not yet
in any box with PAl- @ <> ¢ and PA\y ==3B({). The
instructions of Case 2 insure that y is also placed in the
ith box. Therefore

PA L.f <> Y
<~ B(Y) |
«>B(¢;) by (£)
<B(J) by (£).

h) Any two sentences in the same box are provably
/\/“/‘M/\/\'M‘—\/\/\N\/\/W‘

equivalent
A AN s
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Immedia:be from (£) and (g).

1) Sentences from distinct boxes are never provably
equivalent—
Denying this, we get PAl &3 <> ¢ 3 for i+ by (h)
Applying (d) one has iRjRi. GQuod non.

j) If PA& p<—>6 5 then y is eventually put into
the ity pox. |
Let y <>6; be the mth theorem with m>¥y. By (i) ¢ can
be in no box but the ith one. The instructions of Case %
put y there at Stage m+1 if not earlier. ‘

k) PA ¢ <>y implies PAF B(T)<—> B(T).
Consider first the case in which PA — u?“ <> 6 ; for some i.
By (j) both ¢ and  will eventually be put into the ith
;no_xi " Now apply (£f). Iet PA Y <> é ; i for no 1. By (h)
neither { nor y is ever in any box. Let <>y be the
mth theorem with m> @, m> ? At Stag; m+% these sentences
are not yet in a box and at succeeding stages for every
sentence ) we have YeY, iff yeY¥,. Therefore it can
be seen from inside PA that \¢ and y can only get into the
same box and at the same stage. This means that their
prospects of getting painted are i)recisely identical. The
claim follows. | “

1) Every fixed polnt of B(x) is evemkally placed in
some bok.
See Case 2.

- m) Bvery ;}W B(x) is provably equivalent to
WNM—M
¢ i fof seme i.

This follows from (1) and (h)

- e
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Note that (k) asserts the extensionality of B(x) while
(a), (e) and (m)ﬁeéwablish the desired isemerphism;m The
ﬁréofwo% the lemma and hence that of the theorem are now

complete.
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Introduction.

dolovay's arithmetical completeness theorem states that Lob's
logic L (PRL in Smorynski[85]) is the modal logic of provability in
PA and that the closure of L under reflection, OA— A, and modus
ponens is the provability logic of PA in the standard model. For
any sentence @ such that L#@, Solovay defines, using the for-
malized recursion theorem, a recursive function from which an
interpretation ( )* is obtained such that PA¥@*. The proofs of
the essential properties of this function, as well as the formal-
ization of the recursion theorem, employ, prima facie, Z4-induc-
tion.

In this article! we take another look at Solovay's proof of his
completeness theorem for the modal logic L with respect to
arithmetical interpretations. An at first sight dominant feature in
Solovay's proof is his use of the formalized recursion theorem.
The use of the recursion theorem in this proof and others like it
is not really necessary, but can be replaced by applications of
Godel's diagonalization lemma (mostly in the form including free
variables). Using the recursion theorem makes his procedure
somewhat easier to follow intuitively, but it adds to the mystery
of the proof, and makes it harder to judge exactly which princi-
ples are used. 3ince one of our purposes is to investigate in how
far one can weaken the arithmetical system and still have Solo-
vay's completeness result, it is important to us to do without it.
The concrete additional benefits of the proof of the arithmetic
completeness of L given in sec.io.a 2 are:

(1) it mainly uses modal proper. 2s of arithmetic as well as self-
reference and is, therefore, closer to the spirit of modal logic;

(2) the modal properties used, i.e. these of Guaspari-Solovay's R
plus diagonalization are valid .n weak 1, ac ments of PA; they hold,
for instance in any extension of IAg which proves Z{-complete-
ness, so they hold e.g. in IAq + EXP, but not in IAg +£4 (cf. Ver-

T Part of this article is a reworked version of the first chapter of the master's thesis of the
second author (Jumelet [88])



brugge [88]). Consequently, the present proof allows us to extend
Solovay's theorem to a large class of fragments of PA. The result
concerning the provability logic of true formulae for these frag-
ments falls under the scope of this proof as well.

The fixed point formulas used in the completeness proof for L are
then, in section 3 of this paper, slightly modified to obtaina Agp-
formula describing the behaviour of Solovay's function. This for-
mula is used to introduce, by means of the diagonalization lemma
again, standard proof predicates provably equivalent to the usual
one, yielding the arithmetical completeness of Guaspari and
Solovay's system R with respect to extensions of [Ag + EXP.

1. Preliminaries.

1.1. Definition. The language Lg of propositional modal logic is
defined as follows:
Lg:={1,-,),(,O}UP, where P is some set of propositional let-
ters, L a propositional constant (falsum), — a binary connective
(material implication) and O a modal operator. The class of well-
formed formulae 3EN_, of Lp is the smallest class such that:

PESSEN,,

1eSEN,,

@,peSEN = (@—y)e3SEN,,

and e SEN_ = 0@e3EN,.
Boolean connectives vV, A, 71, «, as well as & will be used as
abbreviations with their standard meaning.

1.2. Definition. A semantics for modal formulae is developed by
means of so-called Kripke-models. A model M for Lgis a triple
<M,R,IF>, where M is a non-empty set, R a binary relation on M
and I+ some subset of MxP. F=<M,R > is called the frame of the
model. The forcing relation is uniquely extended to all modal
formulae X in the following manner (writing xlFX for <x,X>€l-
and xJ¥x for <x,x>¢IF):



for all xeM:

for x=@—-y: xlFx iff xk@ or xl-y,

for x=0¢: xI-x iff for all yeM such that xRy: yl- @,
and, finally, xk 1.

1.3. Definition. The modal system that primarily concerns us
here, is the so-called modal provability logic L. This system is
defined as the smallest set of modal formulae containing:

all tautologies of propositional logic;

all expressions of the forms

Oe—-009, {eg->y)->(Oe—-0y), or O(Op—>@)-> 0O,

which is closed under the following two rules of inference:

F@ = F0Og (necessitation);

Feg—-yand F@ = Fy.

The axiom O@—-00¢ is put on the list rather to stress its im-
portance than its indispensability, since it can actually be derived
from the other axioms and rules. The next result is of essential
interest to us here.

1.4. Theorem. ¢ is not a theorem of L if and only if a model
M:=<M,R, IF> exists such that:
(i) M is finite, say M={1,...,n};
(ii) R is a transitive and conversely well-founded relation on M,
(i.e.: Vx,y,zeM(xRyAyRz—xRz) and no infinite ascending
chain xgR X1R X2 ... of elements of M exists);
(iii) for all jeM, if 1< j<n, then 1Rj;
(iv) 1IF 1.

This theorem is known as the i dal completeress theorem for L
with respect to the finite, transitive and conversely well-founded
frames. For its proof one may consult e.g. Smoryhski[85].

1.5. Interpretations. Let from now on T be a Z4-sound arith-
metical theory proving the three Lob conditions (and hence Léb's
theorem) and satisfying formalized Z,-completeness, i.e.:

TH3pprooft(p,"A—=B")—=(3pproof{(p,"A")—>3gprooft(q,"B™));
THA—-3pprooft(p,"A™), for all AeZq ;



An interpretation of a set of modal formulae is a function ( )*
that assigns a sentence @* in the language of T to each modal
expression ¢ and obeys the following criteria:

(L)*= 0=1;
(Qoy)* = @X—-y*;
(O@)* = Jpproofr(p, @*").

It is obvious that, once ( )* has been defined for each proposi-
tional variable in the modal language used, the translation of the
entire set of formulae is completely determined.

1.6. Solovay's first Completeness Theorem (Solovay[76]).
This theorem is formulated as follows:

Let @ be any modal expression. Then: @ if and only if TH@*
for every interpretation ( )* of the modal language used
which satisfies the clauses of the preceding paragraph.

The implication from the left to the right is of no concern to us
here. The proof is simple, due to the fact that T is closed under
the axioms and rules of L whenever the provability predicate is
substituted for the modal operator O. The arithmetical versions
of the rules and axioms of L are exactly the three L&b conditions
and L6b's theorem which are fulfilled in T. The conditions imposed
upon the interpretation function will do the rest. The implication
in the other direction will be treated in section 2.

2. A modification of Solovay's completeness proof.

The original proof of the completeness theorem is based on the
idea that a certain class of Kripke-models can be embedded in
arithmetic. We have already seen that any modal expression @
which is not derivable from the axioms of L gives rise to some
finite counter model falsifying . The embedding of such a model
into arithmetic was carried out by Solovay by defining, with the
aid of the recursion theorem, a recursive function h which paces
through the model in a very particular way. Intuitively speaking,
one can describe the Solovay function as follows. As its values it



takes only numbers denoting the nodes of the Kripke-model in
guestion. The next value can only be the same as the previous one
or one which is accessible from it by way of the relation R of the
model. Thus it is clear that this function eventually reaches a
limit. This 1imit is used to specify the next value, each time, in
the following manner: for each argument the function takes the
same value m as the previous one, unless the argument codes a
proof in T of the fact that, for a certain number n, R-accessible
from m, the limit of the function is not equal to n. In the latter
case the function takes this value n.

To be able to be more precise we now first give some notation.

2.1. Definition. Let F=¢ M,R> be a finite, transitive and con-
versely well-founded frame. M={1,...,n} and for all j, if 1<j<n,
then 1R j. A new root O is added to M, i.e., for all jeM, OR j.
We will use the following abbreviations:

iBj for i=jViRj;

ioj for TViBjA T1jRI.
The function h is represented by a formula Hxy. We write L=ifor
AxVy> xHyi, i.e.” the limit of h is i".

More formally, the function h, given by the formula Hxy, is defined
as follows, using the formalized recursion theorem:

h(0)=0
h(n+1)=h(n) unless

h(n)Rm and proof(n,” 7 =m") in which case
h(n+1)=m.

If the theory T is strong enov_.: .0 allow definition by primitive
recursion, the use of the recur. »n theorem cen immediately be
circumvented as follows. Let nonlim(u,v) be the function that, for
each u and u, if u is the code of a formula Hxy, gives the code of
—13xVy > xHyv. One can then define h'(u, ..}, ‘ependent on the extra
variable u, simply by primitive recursion:

h'(u,0)=0
h'(u,n+1)=h(u,n) unless

h(u,n)Rm and proof(n, nonlim(u, m)) in which case
h'(u,n+1)=m.



If h'(u, x) is defined by H'uxy, then Hxy with properties as required
can be found with the aid of the diagonalization lemma:

F Hxy e H'("Hxy ™, x, y)

However, we do not want to have to depend on our theory to be
strong enough to have primitive recursion available: in essence
this still requires 24-induction and it turns out that with defini-
tions like the one given above there is no necessity for this. For
the definition of h{n+1) we only have to look at numbers <n and
the proofs of negations of limit assertions about h which they
code.

Let us first consider the case of defining h only as a partial
function at those arguments where relevant negations of limit
assertions are actually proved. Then we can see that h(n+1)=m
iff

(1) n+1 proves the negation of the limit assertion with respect to
m,

(2) no such proof concerning a number m' with mBRm' (or m=m") is
coded by a number <n [otherwise, h should have "passed” m al-
ready ],

(3) if any such proof is coded by a number n'<n for an m' incom-
parable to m with respect to R, then there has to be an even
smaller number n" <n' that codes such a proof for a number m"Rm
(or m"=m) incomparable to m' [otherwise h should have taken a
direction from which it could no longer reach m; in other words,
any proof that could possibly “"side-track” h from its way to m,
has to have been preceded by a proof that makes it harmless, by
side-tracking it ].

More formally a partial function can be thus defined as Hp,
slightly changing the definition of f=y to

Ix (Hp xy AVX' > x713y" <nHpx'y'):

Hpxy & (x=0Ay=0)V
(Proof(x, "1 h=y")A
T1Ex" < x3y" <n(yRy"AProof(x", "1 l=y"")A
Vx'<xVy"<n{y“oy AProof(x"," 1 l=y"")—
Ix" < x"Iy" (y"oy"Ay"RBR YA Proof(x”, " "1 i=y"")

Hxy can then be obtained from Hpxy as follows:



Hxy & 3x' <X(HpxX'yAVX" (x' < x"<x - 713y <nHpx"y"))

This method of giving these definitions applies quite generally,
and we will use it in section 3, but for the Solovay proof for L it
can be further simplified. The proof involves only the mutual
relations between a finite number of 1imit assertions, and we can
more directly define corresponding sentences, using nothing but
the desired connection between these sentences. More precisely,
we may replace each expression “f=1i" we come across in the
original proof, by a single sentence A;, the definition of which is
an exact imitation of the conditions which lead to 2=i. It is im-
portant to notice that these conditions can all be spelled out in
the form of finite conjunctions, claiming the existence or non-
existence and order <f succession of certain proofs, namely
proofs of expressions of the form T 0=j. But within proof predi-
cates only codes of these expressions occur. It turns out to be
possible for that reason to define each A; by means of a fixed
point equation, containing only codes of these Aj's. It will be
demonstrated below, that, in doing so, the alternative sentences
satisfy the same lemmas Solovay proved for the original ones.
This makes them equally suitable to perform as a basis for
arithmetical interpretations of the modal logic.

The n-ary fixed point theorem produces a set of sentences Ag,...,An
in the language of T, which satisfy the following requirements:

TEaMeOTINA Qéi\—tu-mj;

for all i such that 1< <n:
TEXA e OTNA /@‘ID‘MJ/ /7;\ PBV]_ (O <O ),
B
Here "OA<0OB" is the usual notation for:

"Ip[prooft(p,"A™)A13q < pprooft(g,"B™]".
Finally, we define:

No="1 W .
1<i<h



2.2. Lemma. The set of sentences {Ag, ..., A\n} of T defined as
above has the following properties:

(M TF W .
0<ig<nh
(2) NE X .
(3) For all i such that 0 <i<n, T+X; is consistent.
(4) TE Aj— @ﬂmﬂxj for all i>0.
(5) TF ni— QQ\mjD-mj for all i>0.

This lemma represents the heart of Solovay's proof. If we replace
each expression of the form A; by £=1, we get the original lemma
(cf. Solovay[?76], lemma 4.1).

For reasons of economy, it is useful to prove lemma 2.2 within a
more general framework. This will show us exactly which prop-
erties of our theory are used to prove it. We take for this purpose
a modified version of R, the modal system of Guaspari and
Solovay (cf. Guaspari and Solovay[73]). We first recall that R™ is
an extension of L in which the class of well-formed formulae is
extended by the so-called witness comparison formulae, viz.
those of the forms OA<OB and OA<OB.

2.3. Axioms of R™. R™ is axiomatized by adding to L the follow-
ing axiom schemata (cf. de Jongh[871):

A—[A for all boxed and witness comparison formulae. It is to
be noted, that, since R~ is an extension of L, the same schema
applies to the closure of this class under conjunctions and
disjunctions, the so-called 2-formulae; this gives us the so-
called 2-complieteness axiom;

the order axioms (for all O-formulae A, B, C):
(01) A, AXBVB=XA;
(02) AXB—A;
(03) AXBABXC—AXC;
(04) AXB—=AXBA TBXA.
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We extend R™ as follows: for any frame F=<M,R>, which is finite,
transitive and conversely well-founded, with M={1,..,n} and 1R
for all i such that 1<i<n, let R be defined by the addition of
the following axioms to R~ (we assume the language to contain
propositional constants Lo, ...,Ln, and we write A for AAOA):

O(LyeO7LA ATO7L);

for each i such that 1<i<n:
O(LieOTLA /i)R(J\—ID_ILj/\ AN (OLe<0O7L));

io] Elg.i

O( Lo W L) :
1<i<n

These axioms will be referred to as the /imit axioms. In addition,

we let Rg contain
O((OLxO07L,A07L;07L )

for all i,j such that 0 <i,j<n and i#j, as so-called proof apart-
ness axioms. In the next two paragraphs we will mention some
properties of Rg that will be needed for the proof of lemma 2.2.

In the following discussion the frame F is to be thought of as
fixed.

2.4. Theorem (Soundness of R7). An interpretation ( )* of sen-
tences in the language of R into the language of arithmetic is
called F-sound if and only if ( )* fulfils the criteria cited for ( )*
in 1.5 and, in addition:

for all formulae @, y:

(Oe<0Oy)*=3p [proofr(p,"@*")A13g< p proofy(g,"y*™)];
(Oe<0Ow)*=3p [prooft(p, w* YAT13g<p proofr(g,"w*™)];
for all i such that 0 <i<n:

Li*=x; (as defined above).

For all F-sound interpretations ( )* of sen: .nces in the language
of Rg and any @ in that language, RpH@ = TH@*.

The proof is straightforward by induction on the length of proof in
R, since T is closed under the same rules and axioms we have at
our disposal in Rg, provided ( )* is F-sound. We will use this the-
orem extensively in the proof of lemma 2.2.
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A Kripke-model for R~ is a finite, tree-ordered Kripke-model
<X,U,IF> for L in which witness-comparison formulae are treated
as if they were atomic formulae and in which the following
requirements are fulfilled:
(1) persistency of < and X:

if slFAXB and sUs’, then s'lFAXB,

and likewise for <, viz.:

if slFAXB and sUs', then s'lFA<B;
(2) each instance of the order axioms is satisfied at each node.

The completeness theorem for R~ is stated as follows: R @ iff
(¢ is valid on all finite, tree-ordered Kripke-models for R™.
In the case of R this theorem implies:

2.5. Theorem (completeness of RE).
If Rz ¥, then a finite, tree-ordered Kripke-model for R™ exists,
in which all 1imit axioms and proof apartness axioms are forced
at each node, and on which @ is falsified.
Proof. This result is a consequence of the completeness theorem
for R™, because we have :

REF@p&e RTFE-(,
where 8 is the finite conjunction of limit axioms and proof
apartness axioms listed in the definition of R:.
The implication from the right to the left is easily proved. The
other direction is shown by induction on the length of the proof in
Rg. To obtain the desired result, we should check whether any
proof of a formula @ in Ry can be transformed into a proof of
68— in R™. This can cause no difficulty, since any axiom of R¢ is
gither an axiom of R~ or a consequence of 8, and, if the last rule
applied in a proof in Rg of some formula ¢ has been the necessi-
tation rule, then we can use 8 —08 which is a theoremof R~. K

A simple proof of the completeness theorem for R~ can be found
in De Jongh [871]. '

Now we are ready to commence the proof of lemma 2.2.
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Proof of lemma 2.2.
Fix a finite, transitive and conversely well-founded frame
F=<M,R>, with M={1,..n) and 1R i for all i such that 1<i<n. Let
Mo,...An and R; be as defined above. We first show:
(a) REF Lo AN\ O7L;.

1<i<n
As the implication from the right to the left is obvious, we will
concentrate on the opposite direction. Suppose the contrary to be
the case. We will derive a contradiction as follows. By theorem
2.5 we would have a finite, tree-ordered Kripke-model <X, U, IF>
for R~ with the 1limit and proof apartness axioms forced every-
where in the model and with some bottom node ko such that

N
kolF Lo A 1\3&@5 Ly.
wWe must have:

koOLi,A..AOL, A /AN 107y,
]¢{11 1k}

for some k such that 1 <k <n.
As any instance of the order axioms and the proof apartness ax-
ioms is forced at kg, we can stipulate, without 1oss of generality,
that at ko the following is forced:

O, <0O7L,A..AO07L,,<0O7L, .

At this point, we can construct a subset {m4,...,m} of the set of
indices {1, ...,k} as follows:

mq:=1;

Mp+1 = M if m is the smallest index number in {1,..k} such
im,Rim and koIFD‘!ijh-< O™l . If no such m exists, set 1=h
and Mp+1 =Mp.

It will be understood that this construction cones to an end, be-
cause the set {1,..,k} is finite. By means of a finite induction
procedure we will now prove the followii J: for all p such that
1<p<l:

kolk /A W (OLe<O7Ly).

o fol

The case of p=1 is trivial, since im, =11 .
Induction step: suppose
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kol /A W (O L=< O7L)).
jemp
kBm
Now let j be such that jomp+q . There are two possibilities: either
jemp as well, or not. In the first case we obtain

ko IF W (OL<O77L; )
KBmp+1

by the induction hypothesis, for kBmp implies kBmp+1 . In the lat-
ter case mpRj must hold. But the definition of mp.4 implies:
koll-EI—lLimp+1-<El‘le whence kg I % (O7Lg<0O77Ly) follows
by propositional logic. KBMp+1
This completes the induction procedure. 3ince im, has no R-suc-
cessors in {iq, ..., ik}, we can conclude:

Kol O Wi, A /A ,TETLA AW (OLe<07Ly) .

Ty joim; koj

But this implies kolr-Ln,m contradicting kol-Lg . The proof is hereby
completed.

(b) If 1 <i<n, thenRZFLi— /A T07L . This is immediate from
the defmltlon of R¢

Combining (a) and (b) we get lemma 2.2(4) by soundness.

(c) R contains all tautologies of propositional logic, so we have
ReFLoV TLo from which Rg k- o }Y/( Li readily follows. Employing
soundness, this accounts for of lemma 2.2 (1).

As all theorems of T hold in the standard model, we must have
INEA; for some i such that 0 <i<n. But it must be the case that
NEXNg , since for any i=0 we would have TFT1A; in case A; were
true. Combining this with of lemma 2.2 (4), we obtain

NE 0\/7}%\”‘1Dﬂ>\1 This settles lemma 2.2(2) and (3),

(d) If 0<i<n, then RFFLi— O Lo .

By (a) we have RS HJ“!L,-—-» “iLo. Applying the necessitation rule
we infer: RF'F-DD—IL,--—)D‘?LO. As O7L; is a boxed formula,
O7L;—» 0071, is a theorem of R. This completes the proof, as
ReFLij—=0O7L; is a direct consequence of the definition of R¢.
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(e) If 0<i<nandiRj, then REF-L;j—0O7L;.
If iRj is the case, we have R;FO™L;— 71L; by the Tlimit axiom
that defines L;. Arguing as in (d) we obtain the desired result.

(f)If 0<i<nand 0<j<nandioj, then RFFL;—O7L;.
Fix i and j such that ioj. By the definition of R we have:

RFFLi—» A W (O L <O7L;).
ioj" kRi
koj'
More specifically, we obtain:
RiFLi—= /A W (O L <071y ).
ioj" kBi
J'By kej’
As the order axioms and proof apartness axioms imply that the
OLg's in this formuia are linearly ordered by < (compare the

proof of (a)), there must be a smallest one; in other words:

REF A ?g(m-w.d 0Ly ) - y]/ {é} (OLg=< Ok ).

J"'HJ' kej’ kBi j'oi
But the consequent in the last formula is a 2-expression implying
-1L4, so: REF {g(kag(mwmm—wj-)—)m-nj.
J"E{J' koj’
(g) Putting (d), (e) and (f) together, we obtain:

REFLi—»O(7LoA ﬁ(j\ﬁLjA @-wj) for all i such that 0<i<n.

Applying soundness, this settles lemma 2.2 (5). X

Let M =<M,R,IF> be a finite, transitive and conversely well-
founded model with M={1,..,n} and for all i if 1<i<n, then 1Ri.
As usual, we expand M by add'ng an extra node O to it and defining
OIF as equivalent to 1l for al. r opositional letters. In the man-
ner indicated above we obtain sen.gnces Ag, ..., Ar satisfying lemma
2.2. We define an interpretation ( )* by setting for all peP:

p*:= ”\yp 2i. If there is no ( such th-t ill p, then set:
p*:="0=1"

The following lemma provides the necessary last step towards
the completeness theorem:
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2.7 Lemma: for all modal expressions @, if 1 <i<n, then:
iFe=TkFA— @* and
iFE=THFA—- 10>

The proof is exactly the same as 3olovay's original one, with each
expression of the form L=1i replaced by A;, so we will not give it
here. Some attention however should be paid to the way clause (5)
of lemma 2.2, in the form )\,—>E1\W>\J, is used, when ilF@ =
TEXi—(@)* is proved by 1nduct1on In fact, it is at this point
that full formalized 2,-completeness is used. This completes our
explanation concerning the adaptation of the proof of Solovay's
result.

3. Completeness of R.

In this section, we deal with the arithmetical completeness of
Guaspari and 3olovay's logic R with respect to arithmetical
interpretations in IAq + EXP or in any given Z1-sound RE-extension
of it. To formulate our result correctly, let us start with the
followihg definitions (as usual, T denotes an arbitrary Z1-sound
RE-extension of IAg+EXP).

3.1. Definition. A standard proof predicate for T is a Z1-for-
mula Th(v) numerating the set of theorems of T and such that for
any two sentences o, B, TFTh("a")JATh("x—-B " )->Th("g") and
TETh("ax")>Th("Th("a™)™)

In our proof, we shall make use of a standard proof predicate
which, in addition, is provably equivalent to the usual one.

3.2. Definition. Let Th(v) be a standard proof predicate for T. An
arithmetical interpretation based on Th{v) is a mapping * from R
formulas into arithmetical sentences satisfying the following
conditions: L*¥= 0=1, T*= 0=0; * commutes with the logical
connectives and witness comparisons, and OA*=Th("A*™).

We are now ready to state the main theorem of this section.
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3.3. Theorem. Let A be any formula of R. The following are
equivalent:
(i) RFA.
(ii) For any standard proof predicate Th(v) and for any interpre-
tation * based on it, T A*.
(iii) For any standard proof predicate Th(v) provably equivalent
to the usual one and for each interpretation based on it, THA¥,

Proof. That (i) implies (ii) is easy, and that (ii) implies (iii) is
trivial. So, let us prove that (iii) implies (i). Suppose R¥A. By a
result of Guaspari and Solovay (cf. [79]) there is a model M=
<{1,...,n},R, IF> of R~ with root 1 and a node i of M such that il A;
moreover, the model can be taken to be A-sound, i.e. we can as-
sume that 1IFOB—B for any subformula OB of A. Add a new node
0, stipulate that ORi for i=1,...,n, and give O the same forcing as
1 w.r.t. the subformulas of A. That this is possible is guaranteed
by the fact that the model is A-sound.

Let S denote the set of O-subformulas of A, K denote the cardi-
nality of 3 plus one. For i=0,...,n and for OC,ODeS define: OC=
;0D iff iFOC<OD and iFODOC;

Oc< ;0D iff ikOC<OD. Furthermore, let E,~1,...,E1hi be the
equivalence classes w.r.t. =; enumerated according to <; (i.e. if
DCéEij, ODekEj,, and j<h, then OC<;0D). Notice that, for
i=0,...,n, hj<K.

We add some more notation:

proof(v,"p™) :=prooft(v,"p™);

O"p” :=3v proof(v,"p”);

Ocyp” :=3v<x proof(v,"p™),

Oy p " S 0cy g :i=3v<xIprooi(v,"p")AYu< v Tproof(u,"q™)];
Ox P =710y " 7P

F =Tk

3.4. Definition. A formula A is stable iff
F3x(Vy>x Ay v Vy>x TAy).
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3.5. Lemma.

(1) Each Boolean combination of stable formulas in the same free
variable x is a stable formula.

(2) 0y P, Oex™p™, Ocx"p " KOy "q" are stable.

(3) if L{A4(x), ..., An(x)) is a 1attice combination of stable formulas
Aq1(x), ..., Ap(x), and if Ly = 3yVx>yAi(x), then:

= 3y‘v’x>yL(A1(x),...,An(x))HL(L1,...,Ln).

Proof. (1) and (2) are trivial, and (3) is proved by induction on the
complexity of L. The step corresponding to A is trivial; the step
corresponding to Vv is proved by means of (1) and the induction
hypothesis.

Next let the free variable formulas Hi(x) for 1 <i<n be defined,
by self-reference, in such a way that:

F H; (X)(“')D_(X—]L A m<><xl_l A 0(\ W (Dgx-_lLk{Dgx_-lL )

where iBj and iej are defined as in 2 1 and Ly :=3yVx>yH;(x).
Also, let Ho(x) := ﬁ%-:m(x).

By lemma 3.2, Hi(x), i=0,...,n, are stable. Therefore, by the same
lemma, clause (3):

FLoe RTIL
F LieBALA /A_IEI_‘LJ/\ {x]\ kW] (O L<O7Ly);
kOj

(of course we use: FO'p e« IxO"p7, FOT P VO p7,
}_DFD'I# qu1H5X(D<erﬂ R< D{){r‘q '!))
As in lemma 2.2, we can now deduce:

M W L.
0<ik<n
(2) NE Lo .
(3) For all i such that 0 <i<n, T+L; is consistent.
(4) F Li— %(J\ﬂu-ﬂ_j for all i>0.
(5) F Li=» A\ O7L; for all i>0. X
1iRj
3.6. Lemma.

(1) If is=], then F H(x,i)— 7TH(x, j);
(2) F H(x,i)— \%q Hix+y, j).
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Proof.

(1) Suppose i=]j. If iR j, then F H(x, i)— O «L; and

FH(x,i)> 0O L;. The reasoning in the case jRi is symmetric. If
io j, one can formalize the following argument: assume H(x, i) and
H(x, j). Then, for each h incomparable with i, there is a k such that
keh, kRi and O¢<y7Lx<O<xLy. Moreover, a similar condition
holds with j in place of i. Since ioj, H(x,i) implies that there is an
hq such that hqBi, hioj and O ¢y Ly <X O<xTLy. Using H(x, j), we get,
since hqoj, an h2Bj, hoohqy such that O¢xTLp,<O<xLy,. Thus,
h1,...,hn+1 @re obtained such that

O<xn,, X 0O<xLp, < ... <O«xLp,. The proof apartness condition
implies that the hy's are mutually distinct. This is impossible as X
has cardinality n.

(2) Induction on y (notice that the formula H(x,i)— W H(x+y,j) is
Ag). Assume H(x+y, j), where iR j. Clearly, if —ID<X+Y]+1‘th for any
h such that jRh, then H(x+y+1,j) and we are done; otherwise, let
h be such that O<y+y+1 7Ly and jRh. Note that:

(a) proof(x+y+1, L) AVU< x+y+17proof(x+y+1, L),

since otherwise we would have TTH(x+y,j);

(b) if hRk, then 710 ¢y+y+1 Lk, otherwise, since proof(x+y+1,7Ly),
and, consequently proof(x+y+1,7Ly), we would get O<y+y Ly and
TTH(x+Y,j);

(c) if moh, then, either jRm, in which case 710 ¢x+y L,
T10¢x+y+1 Lm, and, since, by (a), O «x+y+1 Ln, We can conclude
O¢x+y+1 Ln<DOcxsy+1hm,

or jom, in which case there exists 1 such that 1em, 1R j (whence
1Bh) and O ¢y+y Lp<XOcx+y Lm (whence

Oexey+1 L1 Dcxsysr TLm). In any case, if moh, there exists 1
(possibly 1=h) such that 1Rh, ., whence

Ocx+y+1 TL1XOcxey+1 m. Conciusion: H(x+y+1,h). This completes
our proof. X

3.7. Corollary.
F H(x, i)Ay > x— }?g H(y, j).

We now introduce a standard proof predicate O'"p '=3x
proof'(x,"p™), such that TKA*, where * is the interpretation
based on [O' given by:
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*=(i=i)An W L;
pi:=(1=D jp;

Roughly speaking, O proves p at stage Kx (K the cardinality of S
plus one) iff proof(x,p) and, for all OBe S, p=B*, and proves p at
stage Kx+y (0 <y <K) iff 3i<n[H(x,1) Ay <h;A 30BeE;, (p=B*)].
So, if H(x,i) and Eij{DB1, ..., OBg}, then O' proves B*,...,B¥ at
stage Kx+y. Of course, the definition of O' depends on the inter-
pretation * which in fact is based on it. This circularity is
avoided as usual by means of the diagonalization lemma. We will
now present the formal definition of proof":

3.8. Definition.
Let, by self-reference, the formula proof'(x, p) be such that:

F proof'(x,p) « 3y <x(Ky=xA proof(y,p) A VOBeS(x=B%))V
Ji<nIy<xIz(0<z<K A x=Ky+z A H(y,i) A
z<hya 30Be€E; (p=B*))

where * denotes the interpretation based on JIxproof'(x,p) given
p*:=(i=i)an W Li.
bypi=i=tn g b

Notice that proof' is provably Ag. To prove Theorem 3.3, it is
sufficient to show (cf. Smoryhski[85] or Guaspari-Solovay[79])
the following lemmas:

3.8. Lemma. If B is a subformula of A, then for all i <n:
FLi—(B*e ilFB).

3.10. Lemma. If OB is a subformula of A, then for all i <n:
FLi=»(OB*« il-0B).

3.11. Lemma. FVx (Oxes O°x).

Proof of lemma 3.S. By induction on the complexity of B; the proof
works as in Guaspari-Solovay[7?9]. The only problem is that we
have to be careful with the use of induction. But, even if we want
to allow only Ag-induction, there can be no problem, since both
H(x,y) and proof' are Ag. Anyway, the propositional cases and the
Boolean cases are trivial.
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O-case: if OB is a subformula of A, then B* can be proved only at
a stage of the form Kx+z, where 0< z<K. This happens iff H(x,i)
and ilFOB; so: F(LjA ilFOB)— (OB)*.
Next, suppose LA il-70B. Lemma 3.6 and corollary 3.7 and the
definition of H(x,0) ensure that, provably in T, H(x,y) defines the
graph of a weakly monotonic function from IN to {0,...,n}. So,
LiailF70B implies that, for all x:

H(x,j)— jBi

- j¥0OB.

S0, B* is never proved by proof’.
Steps <, <. Suppose L; A ilFOB<OC; then there is a least x such
that: 3] <nlH(x,j) A jiFOB] (we have applied the least number
principle to the Ag-formula 3j <n[H(x,j) A jIFOB1 ). Note that, by
lemma 3.6, this j is unique and jR1i, and therefore, by Z-persis-
tency, ji-0OB<0OC.
If u<x, then: H(uh)-hiOC (otherwise, h Rj, hiFOC<OB,
jIFOOC<0OB). So, C* is not proved by proof' at any stage <Kx.
dince jIFOB<OC, we get either jlI-70C or OBek;,, OCekEj,
where r<s. It follows, that B* is proved at stage Kx+r, and either
C*® is proved at stage Kx+s, s>r or 10 kx+1)C*. In both cases,
(OB)*<(OC)*.
The case Ly A ilFOBXOC is treated similarly.
If Ly A i¥OB<0OC, then either i¥OB and T (0OB)* by the O-step,
or it is the case that ilFOCXOB, in which case (OCKOB)*,
whence (OB OC)* follows.
The case Ly A i¥OBXOC is treated similarly.

Proof of lemma 3.10. By conditions (1),...,(5) of lemma 2.2 and by
lemma 3.9, we are in a positiv: *0 repeat the proof of the analo-

gous lemma in Guaspari-Solovay. '3].

Proof of lemma 3.11. Follows from lemm» 3.9 and 3.10 as in
Guaspari-Solovay[?79].

This completes the proof of Theorem 3.3.

3.12. Remark. Zi-completeness is used only in the proof of
Solovay's lemma, i.e; the the proof of lemma 2.2. It follows that
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if, for some Z¢-sound theory T2IAy we can get sentences L;
i=0,...,n satisfying (1),...,(5), we can embed finite R-models in
T. This does not necessarily imply that we have arithmetical
completeness for T, as R need not be arithmetically sound with
respect to the interpretations in T.
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