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PROVABILITY LOGICS FOR NATURAL TURING
PROGRESSIONS OF ARITHMETICAL THEORIES

We shall deal here with the usual arithmetical interpreta-
tion of propositional language with several modal operators,
i.e. modal operators will be interpreted as provability predi-
cates in certain recursively enumerable (r.e.) theories. We
shall assume for simplicity that all the theories considered
are true extensions of Peano Arithmetic (PA) in the language
of PA.

Let (g; ) s i-——fyi,,y n be a provably increasing sequen-
ce of theories. Carlson's logic PRL (l’ﬂ)+ axiomatizes the
collection of all modal formulas which are universally prova-

ble in PA under the interpretation w.r.t. (ﬁ;) s, provided

T

of, f o Mo n . 3 - -
each '/ZH is "much stronger" than \C/; (i.e. ‘/z'f-/z pro
ves the local reflection principle Pfﬂ (Z) for . )

z
_ for
(cf. [1]). 0f course the analogous result still holdsYinfinite

monotone recursive progressions of theories (Zl) , where &/
is a constructive ordinal notation (cf.l21). For every ordinal
A the provability logic PRL (ﬁ)+ in the language with A
operators is common for all the progressions of this kind of
length A
We shall describe the provability logics associated with

recursive progressions (57;) ’ 0(<c90 being a "natural®" or-
dinal notation, where each theory @4_1’ is obtained from
‘6/:( by adding the consistency statement for 9‘; as a new
axiom. The reason we restrict ourselves to "natural" ordinal
notations is that, in contrast with Carlson's result, provabili-

ty logics in this situation depend essentially on the choice of



ordinal notation system.
The provability logics introduced below turn out to be de-

cidable and admit natural Kripke-like semantics.

Te Arithmetical interpretation.

Let < denote the canonical primitive recursive (p.r.)
well-ordering described in [3, 5] . <+ is a p.r. formula
which provably linearly orders the set N of natural numbers
and has order type é"g in the standard model of PA. We also
have p.r. terms %@y, .?,"@y s _&_)x , SC(X) 705/(.’7&’) repre-
senting (oridnal) addition, multiplication, exponentiation, suc-
cessor, and predecessor functions respectively (ﬂd(fl‘)=$
if ) has no predecessors) and p.r. formulas Limcz):=n"Z
is a limit ordinal®™ and ,50(2)5= v Z is a successor". For any
ordinal o <& let o denote the standard closed arithmeti-

(4]
— j + v /
cal term representing o 3 N will denote the term [)L__J

7l times
representing the natural number 7} (of course we generally will
not have 7Z=7 ).

We know (cf.[3, 5]) that all "natural® properties of func-
tions and predicates mentioned above are provable in PA. More-
over for every arithmetic formula QD(ZZ, ﬁ_) and every ordinal

A< E,

(TI) . Voo <ot (V24 <= 27 P (at, Z)— P (Y, 2) Vs P (20, %)

where 2£<%) abbreviates the formula U < W AUFW.
Let T(Z;2) Dbe an r.e. formula s.t. for all 7 ey s

’C(ﬁ; ) is a numeration of a theory Z: in PA. The for-
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mula Pff,z (Z; 96(7) constructed from €(Z %) in a natural
way denotes the predicate ® is a proof of the formula X
in the the theory @ " (ef.[2]). Por any arithmetic formula

- @(x) rso(ﬂz)j denotes the natural p.r. term representing
©orn) | _ ) =
the p.r. function A%. = (7Y . Define: [Z], (X): =

"”J?" Pf'/‘f («2;*%'9 g) ’ 00/72, @ :=7 [z:[z- (ro—zj“?) 7
(2], ¢cr)i=[2]. (o)) .
Let 2; (%) be an r.e. numeration of a given theory %J .

An r.e. formula T(Z;%) is called a natural Turing numera-

tion for T (%) iff the following conditions hold:
N1) 0 ~ (o
(N1) > Z”(Q,&L)€—>’COCOL),
P g » Py ™ A P R r VE u’
(N2) ;;’C(’JC(%),:?L)@Z“(.%,QL) va = Con, (2)

(N3) ff;ﬁ— Lim ()~ (T@sX)e>Ju< 2 Tw; x)) ?

This definition is analogous to that of [2] when restricted
to a certain natural path of length €, within f . As in
[2] one can easily show, via the arithmetical fixed point the-
orem, the e;'cis‘tence of a natural Turing numeration for arbit-
rary T, ) .

Given a natural Turing numeration T (Z, ) , let g(;
denote the theory numerated by T(d; %) . Of course we have
T =9 +Con (o) and = U 7, , if o is a limit
oAif L x P

ﬁ<0( '
ordinal,
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Lemmsa, 1. Let T(Zy ) Ybe a natural Turing numeration for

(8 T (%) . Then for all A<
1 b Ve, w (U< W< A ([u], (0~ [w] (x),

2 b < a([e@] @) =2, ( "Con, (%) T )
—[a], ( "Con () ),

30— Vz< A (Lim (z>_,.(fz] m)ﬁaw«zw] (x)
PA
~Jw< zfa] ("Con (w)-»oc)))

Proof: Statement 1 and the first part of 2 and 3 are easy.

o

To check the second part of 2 and 3 note that the following

argument can be formalized in PA using (TI) and 1: "The axioms

a . a : '
of J:Hi not in ‘/o are those of the form Con,z, (/_3_) ,
j?)f-‘ol . Among them Cant (o) is the strongest one. Hence
Z = g~“f' CO/Z ) " , i

Corollary 1. Let T (%; ) and f(z Z) YDe natural Turlng

numerations for ’Z,; (%) . Then for all A<<

£ Va<a(lz], @) <[zl ). m

By this Corollary the natural Turing progression of theo-
ries (/ )?\<6 actually depends only on the choice of
T, (%) . Prom now on we fix T, (%) and an arbitrary natu-

ral Turing numeration Z(g; x) for 2“0 x) .

‘Let L‘g be the language consisting of
D

propositional variables pj 9) . R
boolean connectives —= , L ;

modal operators [o] for all ol<¢’0 .
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Define: <«7:="T[«] 7, DO:=[p], ¢:=<a>.

Let f be an arbitrary assignment of arithmetic sentences
to propositional variables. An interpretation fz‘ (97) of a
formula ¢ in Lg induced by 7[ is defined inductively as

f))
follows:

(1) ft(50)=f((,0) , if 9 is a propositional variable,
(12) £ (1) = (T=1), f(F>P)=(f (P~ { ¥,
) £, ([819) =[], £, (9.

TL P is the logic in the language Ld: with the
D 0

following axiom schemata:
(1) Tautologies, (v) [a]@ > [2]P, iz <A |
(1) [d] (P @)= (BIP>BIY) (vi) [IP— O (I LVE)
(ii1) O (AP»@) - O, (vii) A1 P-[2]<t7 (P A z\i(la]sge?;)

(iv) [A]9—T[]P, it o<2,
n
(viii) ftnr] @O0 ]I+ P),

where of , A are either () or limit ordinals <&, sy NeEN,
and the rules of inference of TL&: are Modus Ponens and Neces-
sitation: @r— Q¢ . TZ,; Dis the logic in Leo gene-~
rated from all the theorems gi‘ TL‘SO and the scheme (JP —¢p

and o a limit ordinal, using Modus Ponens only.
_I_:e_mga_g. TLeF_q? @i—fT (@P) for every assignment f .
) PA

Proof: The statement is trivial for formulas % of the

form (i)-(iv) and for those of the form (v), (vi) and (viii)

it follows immediately from Lemma 1. We only derive (vii).
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Notice that (vii) is a generalized variant of Goryachev's result
about interpretability of the theory ://5- 71>f71 (67) in 76; [12].

Let GL be the provability logic for PA (called PRL in
[4]). It is known (see e.g. [11)) that for all pne N

GL— 1 a _L—><>/\ ( ljfj)-—>f9) . It follows that

A — 72 (1 fz],c _L—*<2> ([z] A.—HA;)) tor eny tuple of
/Iﬂ . Since PA I—'V%'(dOZGRﬁ»

arithmetic sentences ,4 .

-_;..([ ] ﬂ _9[&,1,4 )) we have Pﬂi—-o( Z<2—»(7f2] J.""
— <fz’> /\ ([OZJN _,,4 )) . But for all sentences A and B

PAl—« < z< A A fzjfﬂe—('(,%%Be(g_(%(ﬂ,(ﬁ))ﬁence
n
PA—d<a<anlz] A~ (T [z]fil.-»«_zzz (fl/\_zé\i ([ A;~A;))
It follows that

F; o <og< AA[2], ,4_>[0] (<2< A[2].A)
T+ h
0] (18], L <5, (ArA (1] A,~A,))

RS E AT

by Lemma 1, because A 1s a limit ordinal. Using Lemma 1

again we obtain:

— (2] A—3Jz(a <g<aalzlA)
PA ¢



—-»-[7\ < ﬂ{ﬂ/\/\ (fd] A; =4, ), q.e.d. . &

— e — — —

of PA for every ass:.gnment f
Proof: Trivial. @
For the sake of convenience we restrict ourselves to a lan-
guage with a finite number of modal operators. Let A be a fi-
‘nite sequence of limit ordinals and let max A denote the maxi-
mum of A .

[ is the propositional language with modal operators
I Aand [*] for a11 aehA . T['A (TL;&) is the logic in
LA Whose axioms and inferenc;e rules are precisely those
of T[, ('T’L ) formulated in LA . In particular no axiom

D
of TL has the form (viii),

2, Models for GDG .

CSM is the logic in LA whose axiom schemata are
(i)-(v) and whose inference rules are modus ponens and necessi-
tation. This logic has been studied in [1, 4, 6] under seve-
ral different names. The present one is a modification of that
from [9].

Let CI?CM’ be CJSﬁtﬂ together with scheme (vi).

A ([ -model ]f is a structure ( K, {Ky\i RG_/\} , < -, b),
where
(¢1) (K,<,8) is a finite irreflexive tree with bottoft
node 6 ,

(C2) K?\SK , _éefi?\ for all 2 ,

(€3) Ko\-:/ K/\ for all o< A ,
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(c4) b is a forcing relation on :ff s.t. for all
re K and formulas ¢ and

) XhAL , X (PP (XH P or 2h-Y¥),

b) X - [A]P<= Vy}% (?/6]’%%7”—99) , where
Ae Aufo}, K i =K.

We write AP  irr GFP .
It is well known (cf.[1]) that CSMA is complete w.r.t.

G "'models, ioea

CSMAI—SD<:> ( K- for any O -model J ).

We shall show the completeness of CDC:/L w.r.t. ( -models

of a special kind.

A C-model X is called a DC -model iff

(C6) :ﬁ'y\ is downward dlosed for all A A , 1ee.

oc<ye Kh-@xeKz.

Proof: (=») Easy.
(&) VWe apply the Henkin Construction. In doing
this we follow the presentation of [9].
Iet X Dbe a set of formulas of "LA . We write X — ¢
for: there is a finite ,Xoc;x s.t. CDC, —AX, =%

Suppose CD CA = @ and [’ is the set of all subfor-

mulas of formulas in {?}U{[ﬂ]iiﬂ@.fl} . A set X is
I' -saturated iff X+ 1 and for all & and ¢ in [
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X—Hvy = e X or Pex.
Define W := {XSET/ X is T—saturated} . Purther
for every ne A u {0} and every X, YEW define:

X *;37\'\[ iff (W1) for all o( 2, ([a]¥e X =’>‘P,[0<]‘7V€Y>;

(W2) for all 72, ([dlyeX = ([dI¥eY
and (YeY or [¥]1€Y D))
(W3) for some (¢ snd o , [Q]¥EY ang

[QRJYEX .
It is a matter of routine to check that for every AeAU{0}

(R1) 7?;\ is irreflexive and transitive,

(R2) X]?J\Y => XFC(Y for all o< A ,

(R3) XRdYRAZ=>X7?ﬂY for all ol£ A

Let |-  be a forcing relation defined on W  inductive-
ly as follows:
a) Xﬂ—f)<=> PEX , where f? is a propositional
variable;
b) X0+ Ve (X O or X9 ), XL
) Xi—[alge=> VY (XR Y = Y ¥).

Lemma 4. For all WEI , XeW ,

Xi—¢ ¥ X,
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Proof: By induction on ¢ in I' . We only consider the

by (W1). By I.H. VY, (XR,Y=Y#6) . Hence XI-[2]10 .

(=) Suppose [A]@& X . Define
Vo ={[7,x <2, ]xe X Ju{ladn, x v [a1Lla72, lxexju{re}
We claim: ’K - 6 . Otherwise we would have
(], xlot< 2, [lyeX fu{ [, v [2]L ]2, [0xeX }-[x16-6,

evgo { []x | []xe X} 121 (1216~ 6).
Since for any ) csMA;—[z] ([A10—8)->[2]6 (c£.[6], p.183),

it would follow that X —[a]6 , quod non.

A A
. - A N
Let V} be [ -saturated s.t. KQK\ and I/:\H'ﬁ.
Put Yy\: -—-V;\nf . It is easily seen that X /g Y,
Since f& Y we obtain Yziy-ﬁ by I.H., q.e.d. [}

Since GDCA H- by Lemma 4 we can find a [ -satura-
tea BeW s.t. Bt @ . Define the desired DC -model

K= <"_K, {KJ\MEA}’ -{9/-]—, k) ag follows:
7(*‘——-{(5(1,.,,,)(,,,)/)(1:39'/777/1 and

Ve )(iG‘W7 X; R, Xz‘+1}3‘

K:i={x,. ., X )ekIX R X mz2JulB};

m-1 A" m?
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(o

<Xi""’3i)< <Y19*“9Ym):<=>(k<m and X,‘:Y? for Z‘-"-'f,.»,.,/( )s

(X,,..,X,)p: = X lFp;

b:=(B). ,

It is not difficult to see that A is indeed a DC -model.
Notice that property (C6) follows from (R3). 4s in [9] for eve-
ry formula (/J we obtain (5(1',,., Xm)ﬁ-—w<_=>Xmlf—90 . Hence
BIH@ ana B9 , Qec.d. L

Corollary 2. CDCA is decidable. -

Proof: This follows from the proof of Theorem 1.

Remark. Let C_DCn be the logic in the language with mo-
dal operators [0],..., [n] whose axioms and inference
rules are obtained from those of CD CA. by subvstituting na-—
tural numbers for ordinals preserving the ordering. CD Cﬂ is
complete w.r.t. the following provability interpretation. Con-
gider a (finite) sequence of theories (Z//;)? ‘&’=0,“,,'72 g.t.
for every i? ?/;+1= g’;-/-ﬂz. where ﬂé is a (true) /71-sen-
netce. For any assignment f let sz' (¥) denote the usual

arithmetical interpretation of a modal formula & induced by

f , where ' is the natural r.e. numeration of the sequence

(17;;) . Then

CDC, —¢ <= Vf Vr ;; fﬁ (P) .

The proof, which we omit, is based on Theorem 1 together with
the usual arithmetical completeness theorem for GL (cf.[6],

p.201-204).
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Let H = (K,<, b) be a countable upwards well-founded

tree with bottom node g « Depth d is the function from K

to the ordinals uniquely determined by the following conditi-

(01) dx) =0, if Vieff xky

(D2) d ()= sup (d(;/}t/j, otherwise.
Yo

We write /L(%) for a’(é?) .

Let Ae AU .{0} . A TA —model A  is a structure
(K, {KZ' 12’72, Z/GA }9<9 H, 4 ) » where

(1) (K, <, 8) is a countable upwards well-founded tree

with bottom node §
(r2) A(HK)<r+w
(T3) KJ/C.Z K , ‘éeKz, for all J>2 gfeA ,
(T4) K]Q‘KJ for all <§>J/ ,

(T5) K is downward closed,

(r6) H is a forcing relation on jf s.t. for all

x€K  and all formulas ¥ and @

a) %X MAL, OC#+¢~>SV<‘=-> (X P or Y ),
b) L0 t/y > Zf?b‘—éﬂ,
c) for all ﬁz/e/[ , 2’4 A

xi [ploesIa<y vyrx (dgrd= y1-9),

(Note that A is not assumed to be in A ).
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d) for all ]/e/l R 2/72
at- [yl t/y - ("yeKa,-—»y/,L—cP).

As usual K4~ ¢  stands for 6+ ¥ .

Clearly a T -model X is in fact a DC-model pro-
. - . . 7 m
vided K is finite. jmay'c/l -models are also called T-
-models. Note that no formula of L is forced via (T64)

A
at any T -model X .

is a sequence of nodes of jf s.te. d(%)?.'l and for all 72
Xpes < %‘n . Then 1) for any formula & there is at

most one Q‘m Sete 9[,‘”7 H [A]P— @ ;

2) for any %7,,,99% there are
at most 7 different modes X ,..., % s.t. for all 2 ,
“m, .

7
Qimz_, - 2‘44 (e — % ),

Proof: 2) follows from 1) by the Pigeon-hole Principle. 1)

is obvious. -]

Lemma 6. Let K be a T-model. Then for all ¥ in L/l

TZAI_99=> X H— .

Proof: We only consider the case that & is an axiom of

the form (vii), say [7&]@[)-—9[2]0%) ((/QAH:), where H:; =
n

.—_:/\ ([d]@iﬁ%) . Suppose 5/’{—%@ ; then Vg &6 (d (&)~
=1

7,‘7/;)0”{}}—90) for some ]‘<?\ . Put J:=max (08,2’) ;
clearly S<x .
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| o
Singe b i-[A]<oA > (P A H,ﬂ ) , there is a sequence (a;e)keN

s.t.

1) V/(E/\/ :Y/:EK and .%“k>~£ ,

2) si{,a o)z,

3) Vkel X =[] T (P H:),

Since A is a limit ordinal, by 2) we may choose an ﬂék
S.te C[(?L"k>7/é5’+ﬁ+:l . Hence there is a sequence- Qo}-ai ...

,g,ran}-mk s.t. for all z'? d(dz-)?énf'i' . Since

. ol o 2
X =[] 1(PrH, ) end d(a;)7d7d  we have a; ¥ H
for all ¢ . But d7jJ ; hence a; F—% and ergo CZ”H’-HZ

for z=40,.., W . This contradicts Lemma 5.

Before proving the completeness of TLA Werets ‘7 -mo-
dels, we introduce some abbreviations. Suppose I is a finite
set of formulas of L/l closed under subformulas and contain-

ing {[2Jl]ae A} . For A€AU{0} , define: Ij:=

2{(;0“?‘]?611} o H/\(]v)=/\{[]l]$”—>‘f)/‘7‘);%l}} . For
any S< F.’)l , A<max A define
ISX(P)5=[7\+]/\ 3— [ﬂ.’.]('?\? (NS A Hﬁ(]’)) , where

7\+ is the minimum of {2’6A{3’>A} ;
1Ty = A{I} (T) 4 oI(T)|s<T},

clearly I7(T') is a theorem of TLA . Note that if S

is empty then

C5M, =1, (T) < [2']<a7 H'(T)
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We are now in a position to describe a procedure transfor-
ming Ty‘ -models into Tﬂi. -models, which (under certain con-

ditions) preserves the forcing relation.

]';.e_a_m_ma?.__’/. Let j{ be a T) -model, a<max L, Suppose

Ki-T? (') . Then there is a '];+ model K s.t. for
all @e ]’ ’
K¢ X I-¢

Proof: Define Z::{EEK‘# [V =Z xéKz,,}o U: ={UEKA+I
JgeZ (&&u ana Visu €KE .

1z U is empty then X ={€} for a11 }» A% . Tt fol-
lows by (T2) that K= (K, {}g 2/7)\ fe/l} <, +,8) i

the degired T+ -model.,

Suppose 9/ is not empty. For every Z& Z. we shall now
define a node g(.’f) . Let € U be the unique node s.t.
u<2 end Visu tAZ . Define §: {q:’c]" [wi-[2 197§

Since (,Uf"l (]") and %h‘—[X*]AS we have UH—[/‘*J<2>

(/\SAH'A(T),) ; thus zhA~[A]J1(ASAH A(T)) . Hence
there is an X =% s.t. X ASAH'(T) | put 9(2): =
any such X . Note that a’(g(z))»ﬂ because T[A]L occurs
in H (l) if rsA
Furthermore, without loss of generality we may‘assume that
for no ?GK Z<y'< ?C::Z) . If not we add to our model
an isomorphic copy of the structure jf(?(g) ‘= ({9CC‘TK J 905‘-?(2)};
<, H—,g(&')) right over & (cf.[11], p.925). Define J: =

—_-{?&')/;{GZ} end Ci={xeK|[JzeZ iAOL} Let
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be the standard increasing sequence of ordinals s.t. A+){T—>7\+.

The desired T, -model K’ is defined as follows:
2
/ , ,
(v) K:‘={(90,m,])l(gcef,me//‘/,/:[’)or (xeV,meN, Y4V, )
or (xe K\C, m=0,3/=0)} ;
6:=(8,0,0);
. / ‘ . , ,
%, my, 1)< Cay,my, 7,) ie (04 A A2y,

02) a,C=>m, =m,,

(03) a=%,=F, >} .

i / .
For any %= (X, M, y)eK aerine f(2)i=2% . Thus £ is
a surjective function from K/ to K . Por all propositio-
nal variables f) and all '€ K’ define 2 ///—-./I;) L= f (.'?C/)/f"p,
/ 5! i
0 _— Y 4 e
7 {areK [ fax)eK, ],
.7 7 YA /. 7y
Lemma 8. 1. For all 9c,geK; x5 y =>f(x)kff(}’))

2. For a1l £€ K, ac’eK; (2 %f(oc’)=>32/>’9c’ (f(g/)=£c’)),

+
Finally for all }72 put K

/

/ Y ‘
3. For all JL’, y/e}(, (o~ g’ and f(oc’):f(y')=>f(oc‘*)ei//
Proofi Straightforward. o - =

/
Lemma 9. < is transitive, treelike and upwards well-fo-

unded.
ggggfz We verify only the well-foundedness. Let P be a

/
non-empty subset of K . First consider f(P)QK . Since

K is upwards well-founded we may choose an x'e P , say

(H,m,g) s sete VY& f () yEfP) .1 EFic

={§/EP[§’IK“ ’%i} is empty, we are done. Other-
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. ‘ /_ . / 5 ! . ]
wise for all ?Ee f(yjaf(,l) . Suppose (ib»?ﬂ?i,ﬁ)ezz ,
then by (03) ]14 2/ and by Lemma 8.3 and (02) 7771=77Z .

7/ ¢ g
Thus for all gy = (x, ,m“-];)e}z and \72: =(9l‘,'777»22)€€ ,
we have:

;.
_%<’%<=>]§ %,
Put ol =inf {d[(gz“) m,d)e _‘/«Z} . Clearly (Z,M,o) is a
maximal element of P .
Since <'i is upwards well-founded the depth function is
defined properly on ﬁ‘/ . Let C[;\ denote the depth functi-
on defined on the tree ('K.?." \NZ, <) . By the construction

of ?(2) we have &/ (Z)7 d (9(z))z A for all Ze 7 . Hence,
by (T2) d,‘(ﬂf)<a) for all 16](.2+\Z .

1) 2e Z = (%) =man (d (gcz)ﬂ V,t1, ),

2) eV = d &)= d)+],

3 ReK \NZ =) -2"td, (2),

4) For all remaining & , c(Z)=d(Z) .

Proof: Long and trivial. a

] -/
TLemma 11. For all Z€ K

1) d(z)» Al f(ﬂe](/,\g Z,
2y d(Z)7d (f(2)),
3y d@E)rd (f('z”)) => ci(f(z}) 72,

/ +,
1 /fi(ff) < A+,
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Proof: Follows immediately from Lemme 10. a

L
Tt follows from Lemma 8 that J satisfies (T3), (T4) and

/- .
(T5). By Lemma 11.4) we also have (T2), thus K is indeed a

7' -model.

nal

at

Lemma_12. For all )LE_K and pe]’

2P f(:%'«/)b‘- @.

Proof: By induction on & in T + The cases of propositio-

variables and boolean connectives are trivial.

I. Suppose =0y .,
a) Suppose I ‘4~ 0¥ . Then V? = o (f(y)l{—‘f)) by I.H.

It follows by Lemma 8.2 that [z »f(x) (ZF¥) . Thus

f )0y .

b) Suppose Ot‘;/lh‘ asy . Then ﬂy/'?-/&ﬁi (f(yl)ﬂ-;‘ (/}) .
It f(y) }-f(_)c) then trivially 7((:76) - O% . other-
wise by Lemma 8.3 f(y) 7[(06) and f(oc)eV .
Note that if 9te€V and OCH- O¢ then XY , becau-
se SUEI;A end g j— H ' (I’). Hence fco) = f(y)ﬂ+ avy.

II. Suppose & = [?’]9) 04?/"* A
a) Suppose X "— fg/] ¢ . Then f/j ot (d(y)%f =>

—>f(y)/f~(ﬂ) for some [5<3’ . By Lemma 8.2 for every
y#f(:?f) one can find an j = JL Sete f(y)-y’
By Lemma 11.2) d(y) d(f(y)) d(ﬁ/’ hence we ob-
tain t/g rf(,%) (d(y)z \-—>y/;.¢) , q.e.d.

b) Suppose H+ [y]ﬂb’ . Then there is a sequence (?n e
s.t. for all 7 y ' f(yﬂ)ﬁ'v"wand
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sup ol ("y,; 78
- :

b1) Suppose ]7/12 f(y,:) '?][1(01;‘/). By Lemma 11.3) either
In difcg)z A ox Vn d(‘f(;/ﬂ’))w(yé)
T 7. VY . (£( ;
n any case %&/0 ol (f(yﬂ )) /// Thus f yﬂ e is
the desired sequence.

b2) Suppose 7 f(yﬂ) ][(:%) . Then by Lemma 8.3
f(Ot)CV and, as in I. b), we obtain ]1(93)1{'7"[2’](//

IIT. Suppose ¥ = L}/]ﬁl) J/7/\
a) Suppose OLH—-[]]QV . Then Vy f.% (?EK —>7[(y)l'f—“ﬂ)e

If ? ](COL) and %c}r then by Lemma 82 f(y) ?
for some y o’ By the definition of kK’ yé‘]f

and hence Y = ]L(y)ﬁ—-su g.e.d.

b) Suppose X ih" [y]¥ . Then there is an y/e;}{’ se.t.

yka and f(y)lb‘-%” . We claim: ]e(yﬁ sfcx) .
Otherwise we would have f(y) f(g,), ergo f(y)eVand
f(g)é]{ , quod nomn,

We hav:a ]L(f)CKJ’ , f(y’)}f(;)c/) and «f(y’)/{vcfﬂ

Thus o (%) k(319 |

IV. Suppose ?:f?ﬁ]%ﬁ .

a) Suppose f(:’)lfi)ﬂ-——fﬂ“*:’(i) . If f(x')¢'Ka+\'Z then by
Lemma 11.1) d({)ci)<2+ . Hence % #— [A*]L and clear-
ly a;“’ﬂ’-— [,71”;](# . Suppose f(x/)EKR.,.\Z . Defi-
ne ﬁ::{er/yff(%i)}u{yéK,L]y}f(gc’)} . Then
by the construction of ¥V , yi- ¢ for all ic/‘f . By
I.?I. Vy/&K/ (f(y)cﬂ —>9’//~‘7”) . Suppose
gf’r*iac' and f(y)éﬁ’ . Theny‘(y)¢VUK2+
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and hence by Lemma 10.4) d(?b:d(f(yﬁ)éé(ﬁ)<ﬁ+w “-‘2
Put }': —ACHK) . Tt follows that V;”}'ﬂﬁ’ ,
(y’/f—gu or d(y/) é?/ ), Qee.d.
b) Suppose f(?ﬂ’)}}-#[j\_*](,u . Clearly Jl(x)c]{ AWAR
Let yeK+ be a node s.t. 9/>f(9c) and ;/;H—w .
b1) Suppose yqé Z B Then for someic:f( f(ﬁ)«-y
and d(y’)"zﬁ-" . By I.H. y //7“@17 . Hence x I}f[fi+]$”,

. .
b2) Suppose yé Z . Consider the sequence (yf?)fneﬁ\/' ’
where ‘ = (y n,0) . Clearly for all # ,yé/y%/

and g /f+<// « By Lemma 10.7) SZ%Od(yn)Z

7 sup (ol(gcy))w +1)7 SUp (ﬂ+>7+j) =7,
It follows that VJ’< 2+§Iny ?'QL (0/(?’) and
y}}—;‘(// )y d.e.d. '

This completes the proof of Lemma 12 together with Lemma 7.834
Theorem 2. Suppose ¥ is a formula of L, and TLA""LQQ .

Then there is a T —model K  s.t. Ki+—p .
Proof: Let I' be the set of all subformulas of formulas

in {CP}U{ [A] L l/lé‘A} . Since TLA el we have
CDC“‘/lI-—v‘-I(?)—a«? , where
2 ,
Io): = A{1(T)| acfou A, a<maz A}

By Theorem 1 there is & finite DC -model M, s.t. S, b+
I(’S")-; ¥, Apply now Lemma 7 several times to obtain a sequence
of models {j{ﬁ l?\G‘A} s.t. for all A jfﬂ is a 7:'2 ~mo >
del and for all ¢ in I ]i" — ¢ K, ¢ . Clearly
%amaoc./l is the desired T -model.
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Corollary 3. For all ¢ in L. R

TLAI-—{P<=> CDCAP—I(S")—> ¢

Corollary 4. T[, is decidable.

4., Arithmetical completeness of TL, and TL. .

- - - - — - ™" 0’“—'—"' 0

Our proof of the arithmetical completeness is very close to
the usual one for GL due to R.Solovay [8]. Therefore we only
sketch it, omitting some boring details of formalization. How-
ever in addition to the usual proof we have to treat some quan-
tifiers "on ordinals" occuring in the definition of forcing re-
lation and in Lemma 1.3. The reason why the Solovay construc-
tion still works is the extreme simplicity of the countermodels
constructed via Theorem 2. Somewhat similar idea has been exploi-
ted by C.Smoryﬁski in [7].

Theorem 3. Suppose & is a formula in LA and TL W9 .

------- A
Then there is an arithmetical assignment f S.t. H/;y‘t @) .
. X/

Proof: Pirst apply Theorem 2 to produce a T -model X S.t.

(K1) K isa p.r. subset of N ”;{EK :

(K2) The relations 954? and X , for every formila
in L A , are primitive recursive;

(XK3) e K is the bottom node and {JCCK f}"
=K\ {0} 5

(K4) The depth function A () is primitive recursive;
(x5) { -9 .

To satisfy requirements (X1)-(K5), note that the countermo-
del for & produced via the proof of Theorem 2 is constructed

from a finite model applying several simple p.r. procedures. In
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particular p.r. definitions of K and £ can be read off from
(U) and (01)-(03) (of course we should apply them several times).
P.r. definitions of Xi~¢ and A(X) can be read off from Lem-
ma 12 and Lemma 10 respectively.

PFurther, all the p.r. functions and predicates mentioned
above can be represented in PA by natural p.r. terms and formu-
las. As soon as this is done, we formalize the proofs of Lemmas
7-12 in PA to verify the (formalizations of) recursive clauses
of the usual definitions of d(Z) and X% such as (D1),
(p2), (T1), (T2), (T6) a)-c).

The upwards well-foundednegs of < is expressed by the

scheme
.+ 4 ;_’
(wr) dae K QJCOL',Z?)%E}QC@K ( Vy‘roc 790(%%)/\?(:%7‘00),

whose proof in PA can be obtained by formalization of (the proof
of) Lemma 9. Using (WF) all the "natural" properties of introdu-
ced formulas are easily verifiable in PA.

We turn to the Solovay type construction. By formalization
of the Recursion Theorem, a p.r. function A (M) is defined
g.t. provably in PA:

RO

z, it ze K z>h¢m) ana P’fy{": (Q;’Z*ﬂm)/

h (mt1)=
¢m) » otherwise.

Here [= Z abbreviates the formula 7 Vm > 7 é(ﬂ?)'-'-f. By
Craig's Theorem we assume without loss of generality that f%f;

is a p.r. relation.
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Lemma 13. 1. i;/i_ 3l ze K (Z:z)} |

2. — Vu ({=uwo—I0] 32 (L=zrw),
Pa

30 = Vu,r (b=u<v—T1081, L#7),
PA

4. {=0 is true in the standard model of PA,

5. PA+f=1 1is consistent.

Proof: As in [8]. To check 1 use (WF) and the provable mono-

tonicity of ﬁL . [}

«—Con_(2)] - Note that provably {+ol=o if A is an in-
T
finite ordinal.

Proof: By transfinite induction up to A in PA.

(=) Define ¥ (Z):=Va (dX)7{@ZA €=27L"-“Cafle (z)).
We apply (TI) to the formula Q?(z)f=é§(2)/\[9]t§§(z) , l.e. we
show that

f— . 27) — F (=)
Pﬂz<3_/‘l/%< 2P (u)— P (2). =

It is easily seen using (D1) and Lemma 13.3 that
a) — Z=Q——9—C@_’(Z)a
PA

Further using (D2), Lemma 13.3, Lemma 1.2 and some simple

properties of functions 4C(%) and /190/(:75) , we obtain

b) »;—ﬂ— Secz) a Vu< z2D(u) A 2< A= D (B),
We trea’c the case when Z is a limit ordinal more formally.

) b Limcz) n Vu< 2 u)yn 2<A— (z).
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Let A abbreviate the formula Lim (@) Vu<z2P () r2<-A 4

AM=xrdx)z1i®Z. Then we obtain by (D2)

—A—> {@Z=Z AYu< Z:'ly'?%(dcy)'?i@“)’
PA

On the other hand
—AAY < Z Ad(y)ezieau/\ 7#9&' — @ ()
PA

—~[e]_(6=yAdy) ¥ 101~ Con, )
s, Since

— [Q]c (f—-—y-ﬁ-&mz e))

- oltg)7iew—~Lal, dy)ziey , because deg) is a p.r.
t +« Theref i— vZA ; 1 A }. v a1l Z Y —-
erm erefore Ly A A U< d(y);_@a y x—( [__]t ;&y

1007, Con_(u)) —~<@% Cong () » BV 135
Hence j— AA U< ZA Hy?%(d(’y)‘?i@ﬂ)—><Q>ffmz (%),
P

— A A Vu< Z‘]? b (c[(y)»zi@u)—» V2e< 20 2:0"’7/0 (2) and
PA

!T-); A — Vu<~z<g>@_ Concdzz):

Consequently ip—ﬂ- ,4_-+€0/2€ (2) by Lemma 1.3.
Of course, a), b) and c) together imply (&3}, q.e.d.

(<) Define @ (D: =V (dw)<-1@Z A L=0+0—1Con,<2)),
B (D=4 @A0] %),
We only treat the case

c) Pi—ﬂ Limcz) A Vu < z(%(u)/\ Z< A — @ (),

Let A abbreviate the formula Lim (2) A Z<-AA Ve < ZG???(ZZ)/\ =

=x#pad @) i@z Then we obtain by (D2)
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E A Ju < zl/y;—x(o[(y)< L®i)
—- Ju <~Z[Q]t(f/y ra dy) <{®w) , since
- V? }xd(?’)(*i@%‘-’d(«’/ﬁ)é'i@” and (%) is a p.r. term.
PA . . |
Therefore 5@; A—Vu<z [‘g],c ( Vy (€= y# O/ d(y)o 1ot ~lon_(w))

~3ucz[o] (Vylysan Z=?—+ TCon, (w)))

—Ju < 2(10]_( :‘/ymé@?)-»w]r 1lon,. (1))
—([0].(Fy*x €=y)~—>5u<‘ z[o] TCon (u)).

By Lemma 13.2 — A4—Ju< Z [Q]T 1 Con,, (%)  and by Lemma 1.3.
P

— A — ‘yC"oni.(Z) » dee.d.
PA
The desired arithmetical assignment j— is defined in the follow-

ing way: for every propositional variablep) ]L(P):- ('396-(“53937\“3’7'}(7)).

Lemma 15. Suppose ¥ is a formula of I:'A' . Then

1o = 2=X40 4 X-¥Y—~L (¥),

PA
20 = 0=240A T X)) —>T1F (¥).

PA

Proof: By induction on ¢ . We consider only the case that
@ has the form [2]6 Y-V

1. First of all by (T6)c) we have

-~ A Vs (dey)zz— ‘
Em—[me Fz<- A 17’7?:% (ol(ypz yll—e),

By I.H. fa; Z< Ag??@#f) A £~=i,ayy-9—>7q€ (6).

On the other hand by Lemma 14,
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- Vo Vz<d (d)<zal=a+0—-1Con(2)).
PA )
It is not difficult to see that the formula Vy‘?’%’(d(y]zz—-?yé“ﬂ)

is in fact equivalent to a p.r. formula, because, by the const-
ruction of X , the quantifier lf/y can be reduced to one rang-

ing over a finite set. Therefore, we obtain

; <A A 17? - (‘dcy)?/ Z—=Z#-6)~[0] (¢ 24 i/y?%(d(y)%}{éz#-ﬁ))

->[Q]t Vy = (Z=?A Con,f(z)-e-ft (8))

—~ (101, (3y ratl=y) —[0], (Con (2)~ £, ).

Hence, by Lemma 13.2 ;; 2’3)‘]—[7‘]9/\2:‘3:?‘0"?[Q],C(ay?xfr'y)

—~Jz< A [8], (Con, @)—~F, ().
Consequently, by Lemma 1.3

— x i [ﬂ]@,\f:—y(jqéﬂ —_ f/l]fff(e) s dee.d.
Pq
2. By (T6)c) we have
- X+ [2]6 = Vz< 2 J?Mc (d(é/)?/z ANZ ).
Pa
He —l=9y#0 AQiL6-7 e
By I.H '1;;[ y# y - fz.() and by Lemma 14

z2< A Ady)7ZAl=t940 —s Con, (2).
m 4 / <

Therefore, [— ?} X£0AZ< AN 0[(?)-735/! yiH-ﬁ—»
PA |

= [a] (YSX+0 4 Z<A AA(G)2Z A Yhe0)
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—~[0], (¢-y—Con () A7 f (6)).
Hence 1};; €n+0 A Z<.Z/\ 3??91, (0[(?)‘7/2 /\y’ﬂ-/- 5)—’-
—+3g,~w[QJt ((Con(2)—£,(8)) — i#y)
—~ Jyra (1001 L4y ~1[0], (Con (z) ~f (8)).

Tt follows by Lemma 13.3 that ;‘—;’ P=ox+0AXH[2]6—
P

—- Vze A 1 [Q],C (Con (2 é‘»«f,c ) -
Consequently by Lemma 1.3

—l=x+0 A x A [Ae—>TIAI £ 6) , qea. @
PA
To derive the statement of Theorem 3 note that by Lemma 15
e ¢al=1r0—1f{ (%)
PA :
Clearly by (K3) and (k5) —1#+® AT %0 | nence |- €=T—>7f (%)
PA P4 ¢
By Lemma 13.5 ’ﬁ ft ). n

+
Theorem 4. Suppose TLA H & o« Then there is an arithmeti-

cal assignment f S.te f,c (¥) is false in the standard model

of PA. /[
max
Proof: Let H(®) denote the formula H (T) s Whe-

re I' is the set of all subformulas of formulas in {(P} U
U{D\]-L(?\GA} . Since Tl;\. ¥  we have TLAH-H @)% .

Let K be a countermodel for H(P)—-¢ as in the proof of
Theorem 3. Of course {fi—H(¥) and 14+¢ . Since 7 [max A] 1
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occurs in H (¥) , we obtain d)rmax A ,
Tt is emsily seen now that for all ¢ in I' , OFY< 1 ¥,
Consequently 0 #—H(¥P) and Ohre

Lemma 16. For every formula ¢ in [’ ,

1. :—Z 04 Ob-9—f, (¥);

= l=0n 0 Y —Tf ().
PA

Proof: 2 1is analogous to Lemma 15.2.

1. We only consider the case where ¥ has the form [AJO
el .

a) Suppose 0#-[2]6 . Then |— 0 #+ [7‘]9 and trivially
PA |
—¢=0 0#—-W—>f (¥).
PA

b) Suppose J#—[A]6 . Pick A <A st V) (dax)z {td =
= 2ZJ-0) . Clearly l—— Vo =0 (ol ()7 14— 2i—4).

On the other hand by Lemma 14, I—Cofz (o)A l=x+0—dx)z1itd .
P4
Hence by Lemma 15.1

i—- Con W)y l=2+0 —2 8
£ .c0),

ergo |— Cony (d)A Jx l=a+0—>f_(8).

PA
Since 0 #~[A16 and OH-H(¥), cleariy 046 andilj;-f)”—a .

By I.H. we obtain IE; {=0—f, @) . It follows that
— Coﬂ @) A (39‘, (7 A0 Vf-ﬁ)-»f(@l and by Lemma 13.1
PA

— Con_ () — £, €8).

pA K
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Since o <A | we obtain fj/l]ft (6) and trivially
PA o
Fl=0 2061, (¥) , q.e.d. =
PA

To derive Theorem 4 note that hy Lemma 16

—{0=0 A 09— T{ (9.
b4
By Lemma 13.4 [—‘:O/l OF% is true; hence ‘JZZ‘ (@) igs false

in the standard model of PA. =

+
2 TI"A is decidable.

Proof: Follows from the proof of Theorem 4 and Corollary 4. W

Corollary 6. Let ¢ be a formula in L€ . Then
0

1, If TLé H @ then there is an assignment {  s.t.
6
PA -, (®).
+
2. If T’Le H @ then there is an assignment f s.t.
0

frc(?y) ig false in the standard model of PA,

Proof: Suppose ¢ is any formula in Lg . Bvery nﬁodal ope-
rator occuring in @ has the form either ;’.70 or L[A+m] ,
where A  is a limit ordinal and #1<cw . Let A denote{ﬂl?\
is a limit ordinal and for some N’ﬂ < [71‘/'42] ' occurs in gﬂ}
and let ‘?O denote the result of substituting the formula
d( ag®rall— @) for each subformula of ¥ of the
form [A+#+4]¢ . Clearly ?° is a formula of LA and
T —e—9° .

(4

By Theorem 3 (respectively 4) there is an assignment f s.t.

JCC ($°) is unprovable in PA (false). On the other hand by Lemma
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2, 1'9; ff (9?“0) —— f’C (90) . It follows that ft((Po) is unpro-

vable (resp. false) whenever f%,(@d is, q.ed. [+
+
Corollary 7. TZ'E and TL£ are decidable. |
heydunhedoimpipl S 2 -
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