Institute for Language, Logic and Information

ON ROSSER'S PROVABILITY PREDICATE

V.Yu. Shavrukov

ITLI Prepublication Series
X-90-09

%
&
%

University of Amsterdam



The ITLI Prepublication Series

1986

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
86-06 Johan van Benthem Logical Syntax Forward looking rators
1987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers :

87-05 Victor Sénchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time

Categorial Grammar and Type Theory

87-07 Johan van Benthem
The Construction of Properties under Pergectives

87-08 Renate Bartsch

87-09 Herman Hendriks Type Change in Semantics: The Scope of Quantification and Coordination
1988 | p.88-01 Michiel van Lambalgen Lo8ic, Semantics and Philosophy of Language: Algorithmic Information Theory
- LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987 : :
LP-88-04 Reinhard Muskens Going ial in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program
ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: [ ifschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Z-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early lglistory of Intuitionistic Logic
ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics
CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Tyq Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H, Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, LOﬁiC and Computation
CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas  Towards implementing RL

X-88-01 Marc Jumelet Other prepublications: O Solovay's Completeness Theorem .

1989 1 p.89.01 Johan van BenthemL08ic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof =~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action
LP-89-05 Johan van Benthem Modal Logic as a Theory of Information
LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application
LP-89-07 Heinnich Wansin The Adequacy Problem for Sequential Propositional Logic
LP-89-08 Victor Sénchez Valencia Peimc‘segropositional Logic: From Algebra to Graphs
o%istributed Systems

LP-89-09 Zhisheng Huang Dea?cndcpcy of Belief in
ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic and Foundations: Bxplicit Fixed Points for Interpretability Logic

ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative
ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna  On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge , Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provabfc_ Fixed points in IAj+Qq

CT-89-01 Michiel HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

'CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas ~ On Space Efficient Simulations

CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree i

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Complexity Tor the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Denneheuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas ..
X-89-01 Marianne Kalsbeek Other Prepublications:  Ap Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality

¥-83-06 Peter van Emde Boas Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project
990 SEE INSIDE BACK COVER

o A e m A S8 S B0 £ s R e G AT 30



Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

ON ROSSER'S PROVABILITY PREDICATE

V.Yu. Shavrukov

Steklov Mathematical Institute
Vavilova 42, 117966 Moscow GSP-1, U.S.S.R.

Received May 1990






ON ROSSER'S PROVABILITY PREDICATE

by V. Yu. Shavrukov  in Moscow (USSR)

In their paper ['4J Guaspari and Solovay investigate the
system R of modal provability logic extended with witness
comparison operators JA< OB and OAL OB (see also Smoryn-
ski (9) and de Jongh {5)). These are intended to express that
there is a proof of /A whose godelnumber is smaller than (resp.
smaller than or equal to) the godelnumber of any proof of B .
They prove an arithmetical completeness theorem which states
that R is precisely all that can be generally said (i.e. pro-
ved in arithmetic) about < and < .

In this paper we restrict our attention to witness com-
parison formulae of the form [JA<[J 1A . This is abbrevia-
ted by Dkﬁ because "to have a proof smaller than any refu-
tation" is, in essence, the provability concept used by Rosser
[7] to strengthen Godel's Pirst Incompleteness Theorem. Some
modal principles valid for [ , which stands for the usual
provabilitj formula, and ] R were listed in Visser [11].

Section 1 introducesa system GR of propositional modal
logic with operators i and O R and constructs a Kripke se-
mantics for it. This system of ours is in fact nothing but a
fragment og Guaspari and Solovay's R . In Section 2 we dis-
cuss the provability interpretation of GR . Section 3 is de-
voted to the proof of the uniform arithmetical completeness

0of GR which is the main result of the present paper.
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One of the difficulties the arithmetical completeness
theorem of [4]_meets is that R is not complete with'respect
to any single proof predicate and to prove completeness one
also has to vary proof predicates. A reason for this lies in‘
the fact that any proof predicate will either validate

O(TAT)% O(TvT) or O(TvT)< 3(TAT)
and it is not clear why we should prefer one of these to the
other. Of course, neither is derivable in K . Formulas like
these are absent in the language of GR and the completeness
proof for R employs only suitable proof predicate (although
some proof predicates validate more than GR ). It should hew-
ever be noted that the trivial examples like the one cited above
do by no means exhaust what is being lost by restricting wit-
ness comparisons to E]R . The weaker language also enables
another improvement. The completeness theorem for R requires
the use of proof predicates that view each proof as a proof of
not just one but possibly many theorems unless one imposes se-
vere and otherwise unjustified restrictions on the kind of in-
terpretations he takes into account. This shortcoming just va-
nishes when working with GR,

Section 4 is also inspired by Guaspari and Solovay's pa-
per. It is shown in [4] that provable uniqueness of Rosser fi-
xed points (i.e. fixed points of -1 EIR ) depends on the choi-
ce of a particular proof predicate. We take & look at those
predicates none of whose Rosger fixed points are provably equi-
valent. It turns out that such proof predicates not only do
exist but are in a sense inseparable from those possessing a
provably unique Rosser fixed point. |

I am grateful to S.N.Artemov, L.D.Beklemishev, and S.I.
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Adian for engaged discussions and constructive criticism.

1. The system GR

We work with a propositional language with two modal
operators J and = . Let ¢ abbreviate -1 37 and let .L
denote falsehood. stands for AAOA . The following
defines the system GR .

Axiom schemata.

A1, Those of GL for O (cf. Solovay [10])
A2, DR,‘I — 1A

A3, OA— DO DRﬁ’
A4, OA— (3l VUR/I)
5. 0O A —OA.
Rules of inference.
R1. A, A—=B i—B
R2. Ai—0OA
R3. OAHHA .
The system E-f\f is obtained from the above list by drop-

ping R3.

.1 Definition. A model K is a tuple (K,<,
0, ) where K is a non-empty set; < is a reversely
well-founded partial order on K with 0€K as the lowermost
element; and #— is a forcing relation for formulae of the
modal language. <  is the accessibility relation for I and

each node forces every instance of A2-5. Write KIA to mean
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thatdl—A , a1l a€k

1.2. Lemma. Tf GR A and K is a model then

Ki-4 |
Proof, Trivial. 0

Let K be a model andabe a top node of K . The rela-

tion Ca on modal formulas is defined as follows.
. | | .
C&——-{(‘ﬂ: —A4) a0 ﬂ} U {(ﬂﬂ,ﬂ)lailaéﬂﬂ} ,~
In other words,

‘ R
fc, 1A al-0% e A A al-d4.

Finally let Rq be the transitive closure of c:’a

1.3. L emma. Rq is an irreflexive partial order.

Proof. Suppose the contrary. There are then modal

formulas A, ,..., A, (nrv 1) s.t.
A Cu Ay Ca g A< A, .
But this implies that there exists & {f,... 9 7‘!] with

Ac<, A, Sqd; or A, S, A, A,
which is impossible.
14 Definitiomn., A top node a of a model K
is compact if every /?a. -chain possessing an uppermost ele-

ment is finite. The model K is compact if so is each one of

its nodes.
15 Definition. A finite set o of modal
formulae is said to be adequate if it is closed under subfor-

mulas. K= (-K,<a a, ”‘) is an A -model for o adequa-
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teif K, <, 0 and I are as in Definition 1.1. except
that -  is only defined for those modal formulas all of
whose variables and subformulas of the form URﬂ are in o
In particular, if the forcing of some instance B of schemas
A2-5 ig defined in K then KB , An of -model is called C-
-model if ol is the set of subformulas of the modal formula C.

1¢6. Lemma. Let o be an adequate set and K=
=(K,<,Q/k)an o -model. Then there exists a forcing rela-
tion —’'  extending j— s.t. K= (k,<,0,I—") is a
compact model.

Proof., Let acK . Define al’  inductively as
follows.

(i) Cl”—-/ﬂ; if @ is a propositional variable and f;éd;

(ii) the induction step for Boolean connectives and for

[ is as usual;

R
(iii) if O A is not in ol let

/
Ai—'A  if a is a top node of K

.1 R
ai— A1 A< .
ai—’'0A  otherwise
/

We show that K is a model, that is every instance of
A2-5 is forced in K’ . We only consider A3 and A5. Suppose
ERﬂqfd (otherwise the corresponding instances of axiom

)

schemas are forced in K because they are forced in K ).

Ad A3. In case a is & top node of K we have al~'dB
for every formula B and so e i— "OE°A , 1f a is not a

R
top node then aj—'7 A implies al—'0OA . Ergo for
all ek with o< one has 8i-/0A ana Ei-"A ,
hence Gi—'0 Rﬂ and therefore Q l—'O0 ,34 e In

R
either case @ l—' O A — DIJRH .



-6 -

 Ad A5. Assumedf—'OL1'@  so there is & mode b s.t.
a<b and 8i—'00 Rﬂ . £ & is a top node we get é/ﬁ-»iﬂ
whence Q/F'¢A . Otherwise Gi-'0A ana any Ce K with
6<c will force A . Such ¢ exists by the assumption on é
and we have A.<C which implies @fi~"(A . Conclude

ai-’9 a%a— 04,

Next it has to be shown that K is compact. Let 7 be
the cardinality of ol . Consider a top node & of K ’ . Suppose
for a contradiction that there exists a K -chain of length

k=3n+4 , that is there are formulas Ay, ) Se.t.
A;Cq o Ca Ay

It is easily seen that one either has ﬂz’ = '12-1171 for eve-
ry 1€ {(1,.;., k} or A= k'zﬂk for every
Z'é"{f,”., k} (we take ‘105 =b and ‘.7mde’= "'Im'75 ),
The choice of Kk guarantees the existence of Z“Cf’{i,,..g /(~2]

g.t. /72- , //2-+1¢°2 . Suppose qu~+g = '7/42-” f‘—""‘!'lﬂ{' . This
implies A;C, Ay S 7 1A;  and therefore ai—'A;

and Q~'—74, which is absurd. The situation A, = 7 A=
=174, is treated similarly. J

.7« Definitiomn, /A-model K='(f<,<,0,if'>
ig finite if so is K . K is nontrivial if there is a node
acK s.t. 0LQ.

1.8 T he orem.s The following are equivalent
(1) GR HA;
(2) There exists a finite /] -model K s.t. & A :

, /.
(3) There exists a finite compact model K ' s.t. K i/,
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Proof. (2) = (3) follows at once from Lemma 1.6;
(3) =>(1) is in fact Lemma 1.2.
(1) =1(2). Let DEBi

distinct subformulas of A of the form indicated. Fix a string

jalu7

R
a B'n be all graphically

-—9
9=9,,.5 9, of distinct variables not occurring in
A . We define & translation T of subformulas of 4 into
R
the modal language not containing O .
1 + — .
(1) P?. = 702 H
(ii) *  Qistributes over Booleans and UJ ;
R +
(111) (A B; ) =g, .
Privially, GL —B implies GK ~—DB . Thus assuming GR i+ A

one gets

6L (A 8 )A (g
3 (@ [ (g—~08; ) (%—»IJ%)A

A (aBT—~(OLvq ) A (0G,—~ 0B ) 4"

because the antecedent of the formula above is a conjunétion of
trenslations of axioms of GR . The modal completeness theorem
< _, é

for L (cf. Solovay [10)) provides a finite {P’CL’} -model

+ 0 A \ —>

k = (K, <, 0,) i—2 ) (elements of ¢ are propositional
o o, .

variables occuring in A ) with K =20 & (. o) and K A,

We turn it into an A -model K= (K,<,0, ) by letting

R
" il O
all— ad B—z’ = ali— 9,

, (o] .
That K is an A -model is now implied by K H—X\EI(.-. ), O

1.9. Theorem (a) It GRHA then there exists
a finite compact nontrivial model K s.t. KIH+A .
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(b) If GRFA then KIFA , all nontrivial K .
Prootf. (a). It follows from GRH~A thet GR H A ,
Theorem 1.8 supplies a finite compact X s.t. KIF+/JA and
hence K li~A . Clearly K can not be trivial. |
(b). Use induction on the length of proof of # in GR .
We only consider the step corresponding to K3 . Assume K O#4
for all nontrivial K . Let M= (M, <, 0, i~) be an arbitra-
ry nontrivial model. Define M’'=M U{D'} ; L=< U{(O;CZ)ICZEM}

and 1let I’ extend [~ so that

1y 4
. variabl , d
0 i— Pz ,all variables 192, , an

0'i—a"B <> 0'I—'06(< MI—-B)

We prove that M'= (M) <, 0% i~ ') is a model. It will
certainly suffice to check that &’ forces every axiom of GR .
The only interesting case is A5. Suppose Ulﬂ;’OURB whence

—an—-’ﬂR,B for some A€M |, 1t @=0 then a/F—iUDRB
by A3 and since M. is nontrivial there is a node 6, a<’é,
bi—'0O "B . Hence 0i—"'¢ a*B . In case Q#{  this
obviously is also true. Now Of— ' {7 RB implies [)/]—/O B

because M forces A5. Recalling 0/<0 we get 2M—"¢8 .

. VA -
By our assumption on # and because M is nontrivial we

nave M'i—0A .So MI-A . O
1.10. Corollary. GCRiFA<GR F0OA .

R
1.1« Exampl e. The fornmla 73 L being a
theorem of GK is not derivable in GR ™ .
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2. The provability interpretation

It X, .., X, ) is a formula of first order arithme-

tic then @ (X, ,..., #,) denotes the usual primitive recursive
(p.r.) term representing substitution of the X, th numeral
(i.e.0followed by Z; strokes) for the variable x, in ¥ .
PA is Peano Arithmetic.

2,7 Definition.A formula .Tbm(ﬁf,y) ("x is
a proof of g %) with just & and g free is a standard proof
predicate (s.p.p.) if letting Th (y) stand for Jx Thm ('ﬁ’,ﬁ’)
one has

P1. Th (gi) numerates theorems of P/ in Pﬂ;

P2. Let -P’)"d (y) be the formula expressing in & natural
way that y is provable from {xid (-'Y)} in the first order
logic (cf. e.g. Feferman [2]). Then

PA—Vy (Pr, (4) <> Th(y))

P3. There exists a p.r. term ?(x‘)s.t.

P4 - 'l/wy ( ?@c)’: Yo Thm (%,4)) .

2.2. Remarrk. All results of this paper remain va-

1id if one replaces the property P2 by a longer list of its

weaker consequences such as
PA—Th (oc—»y) A Thx)—=Th (%)

6 (Xyy.y®,) is 3 => PAF G (%, ., %)=

—Th (6 (%,.., %,))
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etc. Also the property P3 is only given its present form for
reasons of simplicity. Results below could do with the follow-
ing condition which is met by most of "usual"™ provability pre-

dicates.

P3'. There exist p.r. terms g(x) and M(Z) s.t.
PA — V-zg (’g (2) =y «Thm (m(_,g-,),y)')

PA - Vz (mc2)<m(z+1))

PA - Vay ( Thm (ﬁt’,y”) Tz mcz)=2),

In cases when we want to stress that a term (%) wit-

negses the fact that a formula is a s.p.p. we write Th/‘ﬂ( )(ﬂi’,‘y)
for this formula. For the sequel we fix one such term @ (&) .
If f'(oe) is & p.r. term we sometimes write Thi'ﬂf (&"L‘,y) for
f(:?C) - y even if we do not know at the moment whether ;(w) =y
is a S.p.D.

2.3, Definition.ds.p.ps T/sz (az,?) is cal-

led ? ~-like if
(1) P4+ Vy ( Thf (9) <—~>T/z(3)cy))ana
(11) wk= Ve (f@)=92).

Following Rosser [7] we define
Thm R(o(zy) =Thm *,y) A Vzex1Thm(Z, '7?)

Th'?%i) EJDCThmR(a?,y);

2.4, Definition. Let '17/1"77(%3) be & S.p.Po.
A function X¥ mapping modal formulae to arithmetic sentences

is said to be a Thm -translation if
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(1) 4% =(0=1);

(ii) % distributes over Boolean connectives;

(ii1) (QA*¥=Th(A%) ]

(iv) (O A)'=Th"(A*).
% is a translation if it is a [hmtranslation for some S.DePe
Thm#x,5).

(Y]

Let GR~ denote the modal gystem axiomatized by theorems

of GR (or GR™ ) and formulas of the form A > A and with R1

the only rule of inference.
~ . , *

2.5, Lemma. (a8) GRFHA=>PA+A for all transla-
tions * .

(v) GRwi——/‘f=> Wk A* for all translations ¥ .

R

Proof. We only check AS: {$[] A—> A . Reason in

PA . Assume (1 {)ﬂ)* , that is, Th (?7,4*). Phere is an X
) — , —_ R —

sete Thm (x,714%) . 12 VZ £ ¢ 71 Thm (2 ,A"then 1 Th (A%).

Formalizing this we get T[h (71 (W NCED) . Otherwise if
Jz <a Thm (z,ﬂ_}) we nave 17 (TA*) ana Th (ﬁ) whence

Th(0=1) ana so Th(T ThR(A%)) . We have proved (-1 A—>
—_ 1 [JR// Y* which is equivalent to (O A — O-Fl)* . O

2,6, Example. The following theorem of GR (GR™)

is an approximation to (formalized) Rosser's theorem [7].
R
Qlpeap)=(apvaip—.al).
2.7. Remar k. The converse of Lemma 2.5 need not

generally hold true. For example one can easily construct a

g ~like S.peDe Tkm(:l‘,y) g.t. for every Thm -translation ¥
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PA( ak(p—éc;)‘—*o DRP ~ 0% )*

whereas
- . R, R R
GRH-O(p—g)—.O0p—>09 .
3. Uniform arithmetical completeness of GR

3.7. Theorem There exist a p.r. term ]l‘(.ac) and

a  Thm _translation = s.t.
(1) Thmf (Wig) is a g -like S.p.p.
(2) PAFA* implies GRFA , all modal formulas A .

Fix a "natural" gSdelnumbering ! | of modal formulae.
By — we denote a p.r. term representing the function
(rAad1, 7B )sTA— B7 , similarly for the other connec-
tives of the modal language.
Looking at the proof of semantic completeness theorem for
&R (see Seetion 1) and the proof of the underlying semantic
completeness theorem for GL (see Solovay [10]) one can see that
given a modal formula A we can in a p.r. way associate with it
a finite compact nontrivial model F rAa with the property
GCRHHA Frﬁ-, li—A . Following Artemov {1] and de Jongh
and Montagna [6] we combine F;l ‘s into a single model X

shown in the picture.
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Letting L?ll—ﬂ, for all propositional variables f,. and
extending Ol— to all modal formulae in the usual way we have
that X is a compact nontrivial model s.t. Xi—A<> GR+A
for all modal formulas /# . Assume without loss of generality
that the domain of X is @ .

Next we choose p.r. formulas X < y and X Il—y binume-
rating the accessibility and forcing relations in X respec-
tively (see Artemov [1] and de Jongh and Montagna [6]) and also
a p.r. term ?’(-ﬂ;’,?} representing the height of a modal formula

19

(with the godelnumber) ? in the partial order X in case Z
is a top node of -X (see Section 1). Since all Pz' 's are com-

pact thié height is finite. By formalizing results of Section {1
in PA we can assume that the said formulas and term are chosen

so that PA proves the following conditions.
M. YT (X+0 —=>0<4x)

w2, Vay (‘w<y=—>'1?<9ﬁ)
M3. Vac?z (‘x«y/\7<z—>;x<z)
M4. Vacg% Cacl/—yzg\ze.xii—y/‘ﬂ’fi“z)
and similarly for other Boolean conmnectives
M5, Vocy (90:‘1-1334»'1/% (xxz—>Z[FYy))
M6, t/wy (xi—0g ?7; :‘»Dﬂy)and similarly for schemas A3-5
M7, Ya0i-0x—~0l—2)
us. Vay (Tl FoL’ A% Q'}' = J )<y 7 )
. V”‘y (i-0L7 Axie I;Rﬁ—*,g/(:)é,j?)q/(x,y)):
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It is well-known (see e.g. Solovay [10], Artemov {1] and
de Jongh and Montagna [6]) that there are a p.r. term fz("a)
and a t-term Z s.t.

s1. wis{=0
s2. PAi—Vz Chea)=h(xri) vha)< h(x+1)

s3. PA+da Vy wf/%(y) =1
s4. PA I~ VOﬁ({iC%’)aéﬁ—rTh( (ha)<?d)
s5. PAF Vo (& 9L—>‘1I"hcg)( f*f))

s6. PAl—L+n, a1 new.

Our arithmetical completeness proof will now follow that
of Guaspari and Solovay [4]. First we define the value of ¥ on

propositional variables f?z .

ﬁl* =fj— T Pz 1 ‘

We proceed to construct the desired term f(x) and a
p.T. term 2* to represent a Thm —trensiation ¥ . This is
done with the help of suxiliary finite sets ¥, and sets ),
which are constructed parallel to f- and #* , These sets are
formally represented by p.r. formulas. Think of each number
as a plea that g(x) be made a value of f . The set Y,, will
cinsist of those pleas =X that have not been satisfied by f%)
with ?43[. A plea is allowed to be satisfied by ]l(oc) ifs
it is in Sﬂc . Invoke the (formalized) recursion theorem to

insure that the following clauses are theorems of P4 .
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¥, = {o}
, . | R
S,=1{z| vy (gca =§/*—> Chen) - g A Che) b1y~
— 3w<xf(w)=7y‘*) A V?N(ﬁ:-.j vahca) - I;JR?J’) —
—Jw<a f @) =0"))}

: 3( /771'72-'(’{% /7594,)) if }; n 5’_,' is non-empty
fex) =
o=0 otherwise

({a+t U N mn (Y, 05, )} i£ ¥, NSy 1s

Y = < ‘ non-empty

L { 96-/-13 U Ym otherwise

X

& = the value of X under the unique T/”mf -translation

. . 11— 1 P. 1 ;
which assigns P, to 7?: , all variables ﬁ:

3.2 Lemma,

PA |- Y ('rhf (x)— ’J'h(g) x)) .

Proof., Trivial, 0O
33. L emma.
PA — Vo (¢ 3y Ve 2 y re §,) ~Th, (g(wj)) .
Proof. Reason in P4 . Fix an arbitrary 4 and assume
32 Vz 7’? neq, . In particular, this implies that
- , @ . .
Vz 7/‘9 ﬁz#"¢7 . If it were the case that g(a:) is not

output by f then we would have CCEYZ , all Zz2 , and
min (Yz N 52)49(5 , 8all  Z7max (OL‘,}’) . Therefore
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({21} = 1Y n{o,., x-1}]+1
for all large enough ¥ . This however can not be true. The
contradiction proves JZ f(z).._._g.(;(:) . i

3.4. Lemma,
PARLIF oLl « vy Thf(f)a

Prootf (PA). (<) . Assume Vy jz f(i’)=?f whence
iz f(?) Fi 17, By Lemma 3.2 this implies /h(f) (0=2)
Th 9) (’6*2) , all Z ., Supposing

£ i+ rgl’ provides a Z with f<Z (see M4, M5). Now

and hence by P2

apply S5 to obtain a contradction.

(—) « As in Solovay [10], Ci— ! U,Lj implies
I x T %X
(use M1, M4; M5, S3, S4 and P2). Consider an arbitrary modal

formula A . Assume
an V2 (pce)eyit, Ta) 3y fey)=2")

in the right of induction hypothesis. Let Xo Dbe s.t.

‘ ST
(II1) there exists ?0 s.t. jﬁg“xa and g(ya)”ﬁ
: ¥
(1v) there exists , a.t. ¥ <%, and 9(4)=14
(V) if / is of the form 78  then there exists

(I}{Q S.t. ﬁg‘xﬁ and 9(%4) "—3?
(vi) - Vyz%@ fé(yk
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(VII) for all modal formulas C
. Jy<z, fe)=C*

Such %, exists because all large enough X, satisfy
(III) - (V) as granted by (I) and all large enough X, satis-
fy (VI) because of S3., The property (VII) for large enough X,
is established by induction on Mm% (?’0, ‘7’1, %).

Let j?/%’ . Note that ﬁ(;’) { vy (vI). 12 b(g{)/l-kﬂﬁ
then ¥ ( £, 71 A7 )<y ({, A7) by u9, whence Jz f (Z)= 1A%
by virtue of (II). Therefore by (VII) one has :‘1243 £ =A%
In case when A is of the form 1B we can prove Jz< Y f (z)=B*
in a similar way (use M8, (II), (V), (VII)). All this amounts
to Y& ’5}" . Lemma 3.3 implies now that Iz f(z) =A% . O

3.5. Lemma, (a) For all modal formulas 4 ,

PA LI~ AT -A*

() PAF Vx Tk(i) (Ci—Z «<>2*)

Proof. (a). Use induction on the structure of # .
The induction step is straightforward for variables and Boole-
an connectives,

Treat (] . Reason in PA . Let fl— @A . If one has
fI- OL then (A follows from Lemma 3.4. We therefore
assume f i+ 7.1 . Incase =0 we get {j}—@AA Zfrom M7
which implies Tli(g) (0 - I‘th") by P2. In view of M1 and M5

we conclude Th( )( Voo o j— T ﬂ'T) and subsequently
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) (P "a 7) . In case f# (0 we choose an X

s.t. /z(‘w)*:l’ and use S4 to obtain Tfl(g) (f‘< E)
whence Th )( j— T4 7) by M5 as in the previous

case. PFormalizing the induction hypothesis (see P1) yields

T/lg (Li~ T 7+ A*) ergo T/’l(g)(ﬁ) . Now let ﬁk g(Z)

We show that for all ¥ with %72 there holds zeS, . In-
deed, since f forces A4 (see M6), I+~ DdL and ﬁ(y) =7
(use S2, M2, M3 and the assumptlon ﬁ(x) ﬁ ) :Lt is easily
seen from M4 that /2(?)”— a ,L] and [’(y) H O 5 in case #
is of the form 7 B . Apply Lemma 3.3 to conclude T/’t (A *)

Conversely, let Fi— A . There exists an 7 s.t. 1<%
end A IHA . By S5 we get 7 T/i(g} ( t# .'9L) « Therefore

‘1TJ’L @) (T4 T)  whence "I’T’hg (ﬂ )1mply1ng ¢ 1 Dﬂ)

by Lemma 3.2.

We now turn to the case of [1 R . Again reason in P4.
. R
Assume Cii— O A . Because of A2 and the equivalence of Pl— [JA

and /A o proved earlier it suffices to check that
: : — _ a %

Ve (fz)= A" —3y< z2f(y)=A )
Let us asgsume ’]"hmf(z 7/4*‘) . If ﬁ(z) 4 then it is seen
from the costruction of f and 5 that this could not be the
case unless there were g s.t. ?%.’z and ]7/sz (y ,4»‘) . Other_
wise, if one has f;(z)< f , one also has ﬁ(Z)H—GD A
(because of S2). Conclude by A5 that h(z) fl— 04 , that is
hez)ii+~— g A which implies yg’ ,5'2 whenever

?(?) =T A4X contradicting the assumption f(Z)’= TAX



- 19 -

Next let ([~ ﬂkfl « With the help of A3 it is not diffi-
cult to see that VZ h(Z)I—+ O 6’ . By the construction ofjﬂ
the equality f(Z) =A%  would imply gy< Z f(y)
entailing (71 A A)*.

(b). Formalize the proof of (a) in PA. [J

3.6 Lemmna.,

PA b= & (Thyy ()= LI G %)

Prootf (PA. Consider a modal formule # . By Lemma
3.5(b) Th(g) (A%)  implies ’I’h(g) ({i—7"q) whence

Th (g)(f#— X), all XA . In view of S5 this implies

xi— A , all X satisfying f<% . Conclude Z/}— aA
by M5. [

3.7. Lemma,.

PA— 72t (Theg, (00) — Thy (%)

Prootf (PA. In case ?*(%‘)&l i"/?gf' this is an imme-
diate consequence of Lemma 3.3. Therefore assume g( '&E’)==F
for some modal formula 4 . If Z][-— a4 then by Lemma 3.4 we
are done. Assume fj—+ gL and let M ( Z)=f . From Lemma |
3.6 one has fj—0A . We show V?:;maz’(ﬂc;z) %e Sy. Indeed,

A4 yields il(g) - O ﬂ and also /L(y) i+ 5111 case A
is 18 (see A2), The proof is completed by applying Lemma

3.3. O

3.8. Pr oo f of Thegrem 3.1 concluded. v(2). Suppose
GRI—A for A a modal formula. There is then a €0 with
nil+ A - and subsequently PA - ni+ l’,47 | « By Lemma 3.5(a) we

nave PAL-A* > € +4n  whence PAI~ 4% vy sé.
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(1), Pirst we check that for every Nne &  there holds
."'(n)=3(‘i’l) . We proceed by induction on 71 . We assume Y, =
_{n} and calculate f(n) . In case 9('1) is not in ?"l’l?

we clearly have f )= ?Cn) . Suppose g(/z) ﬂ* . By Lemma 3.6
this implies f}— 04 whence by S1 X |~/  and subsequently
GRI-A. Since ﬁ(iz) (= 5-"—‘70) is not a top node of X we
also have h(i) H—;‘JRH and } () L']RB in case A isiB .
From this it follows that 71€ S, and theretore {'<n)=Qcn) .
Note that in both cases S’;’ 1= {n+ i} o Finally combine Lem-
mas 3.2 and 3.7 to see that Thmf is a g—like s.p.p. [

3.9. Remar k. The set of modal formulae that are
true in the standard model under every translation is given by
G"Rw . Moreover, the following holds true.

There exists a p.r. term f'(;r) S.t.

(1) Thm f is a g ~like SeDsDe
(2) For every modal formula A , if WEA* for every
, o @
Thm, -translation ¥ then GR ™ FA,

4. Rosser fixed points

4.1, Definition. Let TAMm(% ¥) ve a s.p.p.
A sentence f is said to be a Rosser fixed point (R.f.p.) for
Thm is
R _.
PAI-p < TR (p)
4.2. R ema r k. The notation of a Rosser fixed point

is sometimes given a "dual" definition, that is

PA b= p < I CThm (%, TP A Vze 20 Thm(2,p))
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(see Guaspari and Solovay [4]). It turns out that quite a num-
ber of properrbies of R.fu.pe's in our sense is shared by nega-
tions of represéntatives of this alternative class. The same
.holds true for the result of this section.

4,3, Remark, Each s.p.p. is easily seen to possess
an infinite number of graphically distanct R.f.p.'s. Indeed,
the well-known proof of Godel's Self-Reference Lemma provides
the formula 7 =nA TTAY(.) with distinct fixed points for
distinet 7 e«  which are evidently Rosser for Thm.

Guaspari and Solovay [4] construct two ~like S.p.p.'s

Thm{ (ac,?) and T/?m‘,_, (%y} s.t. all R.f.z.'s for T/vm1 are
WO
provably equivalent while there are at leastVnon-equivalent

R.f.p.'s for Tﬁmé .

Consider two conditions on an arbitrary s.p.p. .

(1) 1f o, and @, are Rf.p.'s for Thm  then P/‘H—ﬂ é»é

(003 If P ( eand f’-z are R.f.p.'s for 7hm eand Pﬂ;—ﬁ é_)ﬁa
th P =0
en f1 fz J

- will now denote a godelnumbering of p.r.

The corners

terms with just & free. Define
ﬁi ={ rf 1 ) Thm is ag-—like S.p.p. satisfying (J)}
p _{,.f 9 ]7'/777’7 is a g-like S.p.p. satisfying (oce ‘)}
00=

In view of Remark 4.3 if ™ f71&# .o then the number of
non-equivalent E.f.p.'s for Th/m  is infinite.

For the remainder of the paper we shall allow 6urse1ves
"modal" abbreviations in arithmetic contexts. For example we

write
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o, L for Th(f) (0=1)
D/? P for 77/7'?(¢) etc.

The following theorem strengthens Theorem 6.2 of Guaspari
and Solovay [4] by saying that ﬁw can not be separated from

0
A vy eny Z’i set.

- O
4.4, Theorem Let S be dZ}i set. Then there

exists a p.r. term f(':}'&) s.t.
FEle (AN §)U(A,nS).

Moreover f can be constructed effectively from (an r.e. index
for) S.
The proof begins with the construction of 7[ and then

assumes the form of a sequence of lemmas,

Let 6(Z)= dx 6; (%, 2) be a formula numerating
 in PA and in PA+ [O_ | with G, p.r. The existence
? ()
of 6. (&, 2 with the said properties follows from §3
O )

in Smorynski (8] and it can also be seen that 6, can be
constructed effectively from J .

Next we turn to the (formalized) recursion theorem to pro-
duce (within PA) the function f(:)p) which is constructed by
stages. As in Guaspari and Solovay (4] we compile a list K&
which is empty before Stage O and keeps record of the R.f.p.'s
for Thm £ At every stage R will only contain a finite
number of sentences. Por simplicity assume that every number

is the godelnumber of some arithmetic sentence.

| Stage z . Let O, 9'& denote the sentences
constituting the list R compiled heretofore.
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Case A. The other cases do not apply.

In this case we set f(af)=?(w) "« Next find out whether
9’(0/') has the form P 1 iij‘)O for some sentence p . If
so and neither f nor ‘73' nor Y s.t. 9 isfﬁ r

o

then put ¢ inR .

Case B, g(x)'=5’—P-, ¥ is in K andggéﬂfd\é(;’ff7)

Set f (W) o, f (X+nfs)  equal to &, TP, p ﬁ,ﬁ;

P TR
2 =—'—,_(7—0 rr) . weax []
Case GC. g(’b) , Y isin R andgy"-léo"(%fd

respectively and set

Set ][‘(90)9“‘) ]['(95'* 2n ”;-{) equal to ”-7_<P, J?’
) 20 D ) ti d
150:19'-"9_lﬁn , ﬁ 9‘“9ﬁn respectively an

fut2n+24k )= k, a1l k .
For €, and 92— sentences, call a triple (@199‘2,&‘)

critical (at Stage & ) if

(1) 91 =+ 6, ;

(ii) B« X 3

(ii1) at Stage ¥ both 6, and §  are in R ;
(iv) there exists an y s.t. y ¢ 2 andg(}/) =

=91<—>92;

(v) for no y< Z is there a triple (2;?2’2, y)
gsatisfying (i) - (iv).
& ,2)

In the remaining two cases we suppose that (&,

ig critical,
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Case D. g(a)::q}' , ¥ is in R end Vy’ex-} 9 (yjrf-y

Set f(ﬂlf) and f(.ﬂ;"i'f) equal to QB end 1P respec-
tively. In case @4—% let f(él”v‘Z),,., 5 f(:?["/-j) be

91 , "’91 ,792 , 92 | regpectively, otherwise “791 9 9,1 P
TN respectively. If @z 's are undefined we may
give arbitrary values to f (H+2) .00, f (Z+5) . Purther de-
fine f(x+6+k)=k , all k .

case E g®=7T2, ¥ isin R eand iy < o
16,(4, TF 1), o
Detine {(x)=TP, Lf(o+1)=F

4 anything you like if there is no

critical triple
fQas2),.., f(xt5) =< 7, it P# 6,

6,7

@.Nl

,6,,0,,
917

P otherwise

f(a'+6f/<) k.
If Case A was the case then we go to the next stage.
Otherwise ][ is already total and Stage /) was the last stage.
The construction off is now complete. Please note that
since the proof of the formalized i;ecursion theorem is effecti-

ve the p.r. termf is constructed effectively from 6; (.2',,2)'

4.5. Lemma (PA)., (a) Each element of § at any
stage is a R.f.p. for Thm

Iz

(b) If one of the Cases B - E applies at Stage =
then Case A/ applied at every preceeding stage.
(¢} At no stage are there sentences f«’ ~and ) Dboth in

s.t. 53':"7\7 .
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(@) 12 (6, 6, ) Z) is critical at Stage & then so

it is at every succeeding stage.

Proof. BEasy. []

4,6, Lemma (PA). If one of the Cases B - E applies
rwg
at a stage then\/g=w .

Pr oo f., Suppose Case B or Case D applies at Stage X ,
that is CQL’)=§5 for Cf?' in . By Lemma 4'.5(9,) we have
R . .
@ 1 D)p ¥ erng J .+ By virtue of P2 this implies

O, 1 D; ¥ . In the case when for some g with y <X
there holds g(y) =7% one has Dgff an@ Ug 7% , ergo
Dgi . If on the contrary V?‘” 1 Thm @) (y? 1P)
then f (%)= ¢ by the comstruction of 7£ . Since by Lemma
4,5(b) V?<Qc ]’-’(y): ?(j/) , we get ﬂfﬁ? which impli-
es Dﬁ Dﬁ ® and so O L again. The Cases C and E are

treated similarly. [

4.7. Lemma (PA). mgf= rng(g. .

Proof, If Case A applies at every stage this is ob-

vious. Otherwise by the construction of f we have f—'—' w

and by Lemma 4.6 also g:w . [
4.8, Lemma. (a) Case A applies at every stage.
(b) Vo (f(ax)=gm).
Proof. (&) follows from P1 and the consistency of PA
by Lemma 4.6,

(b) is an immediate consequence of (a). [J

4,9 Lemma, If 9 is a R.f.p. for T/?mf thenj)

is eventually put in R .
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Proo f, As in Guaspari and Solovay [4] (use Lemma
4.7).

4,10, L emma (PA), If 7"/‘19?—'60 then there is a
stage at which one of the Cases B - E applies.

Proof., Choose some R.f.p. f’ for Thmf and a Stage
N s.t. p is in K at this stage (see Lemme 4.9). We have
that Va<n T/?m(g) (.il';jé) - Now rng gza) implies

da>n Thm( ) (x,f) activating Case B or Case D at Sta-
ge OC unless one of the Cases B - E applied earlier. [J

4,11 L emma, If f‘f 1€ S then all R.f.p.'s for
Thﬂ?f are provably equivalent.

Proo f. Let FJC] ) . Since 6 (Z) numerates S
in PA there axists a mumber % s.t. PAI~G (7, f71) . The-
refore Cases D and E can not apply at stages 72 # and this
fact is formalizable in PA. Let ﬁ, and ﬂ? be Refepe's
for "Z"hmf s.t. at Stage 7 with M7/ both .Pl and

'P?. are in K . Note that for no k £n do we have

| A =P .70. P .0 because R.f.p.'s are
($0)=) gR=F, ,Tf, 7> TP
independent of PA. Reason in PA., If Case A applies at every sta-
ge then (f'("{)t) ) g(&) ﬁ "lf) for no XX . In particu-
lar, f? . If Case B happens at Stage 2 then

all LxX by Lemma 4.5(b) and b
f KW m » TS 4 v v
the definition of Casr A. In view of Lemma 4.5(c) and by the

R R
construction of (Case B) this im 11es ’ and | C .
f ) p f £ RDf f:ﬁ_

Treat Case C similarly to ohtain ~7 10 f) and 10 | f:? .

The Cases D and E were excluded earller. We have obtained

R .
0 > D in eve ossible case, Infer P « ’
e £ 5 Ty P , fi*’fé"j
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4.12. Lemma. Let 9, and 92 ‘be graphically

distinet R.f.p.'s for Thm and PhAFG <6, . Then

2
PAFOL—6G(r£1) 7,

Proof, By Lemmes 4.5(d) and 4.9 and the assumption
of the present lemma there exists a triple (;(1 ) ',72 , 77)
which is critical at every large enough stage. Without loss of
generality assume ¥, = @, . The criticality of (6,6, %)

1 1 i 19 Y0
is clearly verifiable in PA. Reason in PA+ [ [ . At a
Stage ' one of the Cases B - E applies (see Lemma 4.10). For
ot YL X _ (y)+ G-, 10;

all 7 s.t ? 2 there holds f(?)* & . 91, as ixll?Lemma
4.11. Therefore in Cases D and E one has Uf 6, <7 Df. 6,
by the construction of f whence 76 <0, which is
impossible because 91 < 9&2 . Conciude that only Cases B
and C may happen which is impossible unless ﬁ(rf7) . O

4.,13. Pr oo f of Theorem 4.4 concluded. Combining
Lemmas 4.7 and 4.8(b) we see that Thmf is a g ~like Se.p.p.
In case rf le § Lemma 4.11 guarantees that Tﬁﬂ?f satig-
fies (1), that 48 " fI1€A, .12t T£1& 5 then
PA+0,1 H G(Tf T)because G (Z) numerates S in

P+ DZ J . In view of Lemma 4.12 this implies {14 .0

4.4, Corollary. The sets '4‘1 a.nclﬁp‘7 are

effectively inseparable.

0.
4.15. Rema r k. It can easily be seen that 21 :

can not be replaced by I f in the statement of Theorem 4.4.

4,16, Que st ion. I am not aware of a construction

which, given a S.p.p. T/zm(,f) -produces unprovable sentences

? and QU s.t.
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PAF 1 (O ¥<0,¢)
In fact it seems very unlikely that we should generally know
anything about the order in which the proofs of unprovable
sentences appear. It is therefore natural to ask whether there
exists & S.p.p. Thmf s.t. for any string (@ gevey QP% of

graphically distinct sentences

n-1
PAF 1 /X (O
Z\zj f

implies that one of ‘PZ 's is provable.

30{ < Ufsgi'#—i)

In [3] Goryachev investigates the local reflection prin-
ciple based on EJR and shows that there exists & S.p.p. Tbmf
s.t. the local reflection principle based on [] fR is equiva-
lent to the usual one (i.e. based on Df )e A positive answer
to Question 4.16 would provide an example of & S.p.p. 'T/%mf
s.t. the local reflection principle for D; is strictly

weaker than that for Uf .
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