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Abstract

In this paper we introduce and illustrate the rule language RL/1. This language was designed
as an intermediate step towards implementing the more extensive rule language RL intended to be-
come a tool for integrating logical and functional programming and constraint solving with relational
databases into a relational framework.

1 Introduction

The language RL /1 described in this paper is intended to be an illustrative prototype and an intermediate
step towards implementing the declarative rule language RL (see [7], [8] and [9]). The language represents
an effort to integrate logical and functional programming with constraint solving and relational databases.
Towards the user, the free use of equational constraints together with the ease of logic programming
constitutes a declarative and user friendly framework for expressing a knowledge base. On the other
hand query processing should be executed with help of an existing relational database system; knowledge
and queries expressed in RL/1 are to be preprocessed by a constraint solver, and to be compiled into a
database query language in order that large amounts of data can be processed effectively. In the current
prototype RL/1 we do not focus on recursion as is done in the NAIL! system [6] and the LDL logical
database [5] but rather on the integration of a subsystem solving (numeric) constraints with a relational
database system; the architecture for such an integrated system has been presented elsewhere [2].

This paper intends to illustrate the user perspective of our intended system by providing some illus-
trative syntax and semantics for the prototype language RL/1 and some examples of RL/1 modules. A
compiler for the language RL/1 has been implemented in a prototype system. All examples presented
in this paper were processed successfully by this compiler in combination with a constraint solver and
a relational database coded directly in Prolog. A version of the compiler producing standard SQL is
currently being developed.

2 Logical objects in RL/1

In the RL language design a program consists of modules, each module describing a system of relations.
Relations are described using expressions originating from the worlds of relational databases, logic pro-
gramming and equational logic. Atomic relations can be combined using operators originating from these
worlds, providing maximal freedom and full conceptual transparence to the user. Syntactic categories
are introduced to keep track of the origin and nature of the various relational expressions. A query in
the RL language consists of a relational expression which is to be evaluated in the context of an existing
program, the result of which is shown to the user.

The RL/1 language was designed to become an implemented prototype for the full RL language,
which eliminates some amount of syntactic and semantic complexity while preserving the main ideas of
integrating relational databases with logic programming and algebraic constraint solving.

In RL/1 relations, called logical objects, come in four types: tables, maps, clauses and functors. A
property that logical objects share is that they have attributes and denote a relation. From the logical
objects tables and maps are exztensional objects in the sense that the relation denoted by the object is

*also CWI-AP6, Amsterdam



logical-obj relational-obj | functional-obj
(rule-exp) (scalar-exp)
extensional-obj table map
(EDB)
intensional-obj clause functor
(IDB)

Figure 1: Classification of logical objects.

stored explicitly in the relational database. Clauses and functors on the other hand are intensional objecis
whose relations can be materialized by evaluation of the definition of the object.

A second distinction for logical objects is that they are either relational (undirected) or functional
(directed). Tables and clauses are relational objects and therefore comparable to tables and views of a
relational database. Maps and functors on the other hand are functional objects, where conceptually
one attribute is considered to be dependent of the others (where dependence doesn’t exclude that the
function may be multivalued). They are invoked in scalar expressions, whereas relational objects are
used in rule expressions. The difference between functional and relational objects therefore is primarily
a matter of syntax; the first kind is used in functional notation and the latter is invoked as a predicate.
For evaluation of rule expressions the SHOW query is available and for scalar expressions the PRINT
query. The above properties are summarized in Figure 1.

3 The data language DL

Each language in the RL family contains a sublanguage DL called the data language which is intended
to reflect the nature of the underlying database system. In this sublanguage values and relations are
expressed which are intended to be evaluated directly by this database. The operators from the data
language DL need therefore to be supported by the corresponding relational database language. On the
other hand the language DL should be rich enough so that features which are provided by the database
can be accessed from the RL/1 system directly.

Given the fact that in our RL /1 prototype the database is implemented in Prolog an ad-hoc language
DL has been designed for RL/1. This language DL has two scalar types, namely NUMBER with
constants from category ‘num-val’ and STRING with constants from ‘str-val’. The syntax of scalar
expressions and constraints is defined in Figure 2 (predicates are not listed). In the grammar ‘functor-
inv’ and ‘map-inv’ are invocations to functional objects which are described in the sections below. The
grammar is incomplete with respect to the categories ‘str-func’ and ‘num-func’. In our grammar notation
below ‘x-list’ is a category consisting of a comma separated list of one or more ‘x’s. Similarly ‘x-colonlist’
is a category consisting of a colon separated list of ‘x’s.

4 The rule language RL/1

In contrast with the data language the rule language is independent of the underlying relational database.
The rule language has a declarative nature providing various means to express what is known about a
domain of interest. It does not specify how the knowledge is to be used for evaluation of a particular
query. The compiler for the rule language will compile this query in the context of the RL/1 program
into a program which can be optimized and evaluated by the database.

As indicated before there are extensional and intensional objects. In RL/1 an extensional object
can be initialized by an explicit listing of its value when it is first created. This value consists of a set
of tuples. A tuple is represented by the syntactic category ‘row’ and consists of a list of values. The
category ‘relation’ stands for a set of tuples. A ‘column’is a set of tuples consisting of one value only. All
values in a column are of the same type (either NUMBER or STRING). In case a relation or a column
has only one tuple or value a pair of square brackets may be omitted. Both relations and columns can
be declared external indicating that the extension of the object is already stored in the database. The
syntax of extensions is given in Figure 3.



num-fac
::= [ - 1 { num-val | functor-inv }
| [ -1 { map-inv | num-func }
| [ -1{ variable | ( num-exp ) }

num-term

::= num-fac | num-term { * | / } num-fac
num-exp

::= num-term | num-exp { + | - } num-term
str-term

::= functor-inv | map-inv

|  str-func | variable | str-val
str-exp ::= str-term | str-exp CAT str-term
scalar-exp ::= num-exp | str-exp

comp ::= { =|<|>|<|>]|#}
constraint-fac

::= [ = 1 { predicate | ( constraint ) }

| [ - ] num-exp comp num-exp

| [ - ] str-exp comp str-exp
constraint-term

::= constraint-fac

|  constraint-term A constraint-fac
constraint

::= constraint-term

| constraint V constraint-term

Figure 2: Scalar expressions and constraints.

val ::= num-val | str-val | NULL
row ::= "[" val-list "]1"
column
s:= "[" val-list "]" | val ' EXTERN
relation

::= "[" row-list "]" | row | EXTERN

Figure 3: Object extensions.

rule-fac

::= [ NOT 1 { clause-inv | table-inv}

| [ NOT ] { comstraint | ( rule-exp ) }
rule-term

::= rule-fac | rule-term AND rule-fac
rule-exp

::= rule-term | rule-exp OR rule-term

Figure 4: Rule expressions.



assignment ::= attribute = scalar-exp
positional-arg ::= scalar-exp | #
attribute-arg ::= assignment | attribute
arguments

::= positional-arg-list

| *[" attribute-arg-list "]" | =

Figure 5: Grammar for arguments.

Positional | Attributive Relation
(a) | t(*) t([a,bsc]) abe
123
(b) | txy#) | t(la=xb=y]) |=xy
12
(c) | t(x+1,,#) | t(la=x+1,b=y]) | x ¥
02
(@) | tGBy#) | tHa=3,b=y]) |y
void

Figure 6: Positional and attribute notation.

In RL/1 an intensional object is defined with use of the rule expressions in Figure 4 (the categories
‘table-inv’ and ‘clause-inv’ are described below). The declarative AND and OR operators used in rule
expressions are more general than the corresponding operators join and union in relational algebra (see
also [3]) since their operands are not restricted to be finite relations as is the case in relational algebra;
instead these operands may be constraints or clause invocations that, by themselves, can represent inten-
sional objects and thus potentially infinite relations. The question whether a rule expression as a whole
represents a finite or infinite relation is in general undecidable; partial information about this question is
obtained with help of a constraint solver (see [2]).

4.1 Object invocations

Both positional notation and attribute notation (Figure 5) can be used to supply arguments for invocations
of extensional and intensional objects (cf. the language LDL in [5] where attribute notation can not be
applied on intensional objects). This enables the user to use positional notation for objects with few
attributes whereas for objects with many attributes, attribute notation may be preferred. In positional
notation the positions of the invocation arguments should match the attribute positions in the object
definition. In attribute notation the number of arguments supplied in an object invocation may be less
than the number of attributes in the definition of the object. With each argument in the object invocation
also the name of the substituted attribute is given.

In both notations substitutions of general scalar expressions for object attributes are allowed. In
Figure 6 positional queries are shown next to equivalent queries in attribute notation (‘t’ is a relation
with attributes <a,b,c> and one tuple [1,2,3]). In query (c), 1 was subtracted from the attribute value for
attribute ‘a’ to yield the correct answer for ‘x’. In (d) the substituted value 3 for attribute ‘a’ functioned
as an implicit selection and the answer relation is empty.

4.2 Module definitions

In RL/1 each identifier appearing in the module is declared either to denote a value of the types NUMBER
or STRING, or to represent a logical object (see Figure 7). In the last case the type is determined by this
logical object (see the section on domain objects below). In addition to a type declaration, a variable can
have one or more property declarations. The property declarations listed in the grammar for variables
are useful for the definition of tables and maps. The USING declaration allows logical objects defined in
other modules to be imported, so that they become available in the declared module. For encapsulation



domain-decl

::= NUMBER : variable-colonlist

| STRING : variable-colonlist

| logical-obj : variable-colonlist
property-decl

::= KEY : variable-colonlist

|  NOTNULL : variable-colonlist

| PRIVATE : logical-obj-colonlist

|  USING : module-colonlist
decl ::= domain-decl | property-decl
module-decl

::= MODULE module ( decl-list )

Figure 7: Module declarations.

the PRIVATE declaration applied on a logical object ensures that the object is only visible inside the
module. Other modules are not allowed to use or modify private objects.

5 Tabular and map objects

Tabular and map objects are extensional objects corresponding to base tables of the underlying relational
database. The TABLE command creates a table with attributes in the order of the given attribute list.
The new object is initialized with a relation; in case the relation is omitted the object is left empty. A
table (or map) can be declared as an external relation by using the EXTERN option so that the object
may already be filled with a large number of tuples:

table-def ::=

TABLE table ( attr-list ) [ = relation ]
table-inv ::= table ( arguments )
map-def ::=

MAP map ( attr-list ) [ = relation ]
map-inv ::= map [ ( arguments ) ]

The MAP command creates a map object with attributes in the order of the attribute list. The last
attribute of the list is the return variable which yields the function value of the map. A map that is
defined with n attributes is called in a map invocation with n—1 arguments. Figure 8 lists some examples
of maps (the PRINT query evaluates scalar expressions). Both tabular and map objects are defined with
a single definition.

5.1 Vectors and arrays

Vectors are maps consisting of one column only; moreover this column has no attribute name. The syntax
is as follows:

VECTOR map [ = column ]

The vector name is declared in the module declaration together with the type of the vector (NUMBER
or STRING). A vector is internally compiled as a map with one attribute which serves as the return
variable. Vectors can be used in the same way as variables in programming languages. Consider the
definitions of vectors in Figure 8. The PRINT query (a) lists the value of vector v1. In (b) all values of
v2 are multiplied by two. In query (c) v2 is multiplied by itself, yielding three different values (duplicate
values are removed from the answer relation). Note that the answer relation in (c) is different from that
of (d) because v2 itself has more than one value.

In analogy to vectors arrays are maps where the last attribute name is omitted.

ARRAY map ( attr-list ) [ = relation ]



MODULE maps (NUMBER:x:v1:v2,STRING:y).
MAP mapi(x,y) = [[1,red],
[2,green], [2,yellow], [3,bluel].
MAP map2(x,y) = [1,red].
MAP map3(x,y) = EXTERN.
VECTOR vi = 2. VECTOR v2 = [2,3].
PRINT mapi1(1). 7 yields red
PRINT map1(2). % yields green,yellow

PRINT vl PRINT 2xv2
2 4
6
(2) (b)
PRINT v2«v2 PRINT pow(v2,2)

4 4
6 9
9

(o) (d)

Figure 8: Map and vector objects.

The type of the return value of the array is determined by the type listed for this array in the module
declaration. An array with n attributes is internally compiled as a map with n+ 1 attributes. The extra
attribute is the return variable of the map. Some examples are given in Figure 9. The query (a) lists
two return values for the index 2. In (b) and (c) the index ¢ occurring in the invocation of a2 and a3
limits the number of tuples in the answer relation. Query (d) lists four tuples because now all indexes
are variables. Choosing all index variables different in (d) would give the full cartesian product (eight
tuples).

An array object may have a non-dense index (i.e. not for all index values in the index range the array
object needs to have a return value) as illustrated in the object a4. In this respect array objects behave
like tables in the ‘B’ language (see [4]). Also the type of an array index is not restricted to be numeric
(as in the above examples) but string indexes are also allowed.

6 Clausal objects
Clausal objects are defined with one or more clause rules:

clause-rule
::= CLAUSE clause [ ( attr-list ) ]
WHEN rule-exp
|  CLAUSE clause ( * ) WHEN rule-exp
|  CLAUSE clause ( / ) WHEN rule-exp
clause-inv ::= clause [ ( arguments ) ]

In the first defining form the attribute may be omitted when empty; consequently the constants
TRUE and FALSE can be defined as clausal objects. In the second (short) defining form, the attributes
of the new clausal object are all the variables occurring in the rule expression. Since no specific order of
attributes is enforced by the ‘(*)’ notation, clauses defined by the second form can only be accessed in
attribute notation. The third defining form can be used if a clausal object is defined by multiple clause
rules. In this case the clause rule has the same attributes as the rule that was previously compiled for
the object and the attributes need not be restated. Specifying a clausal object with several clause rules
expresses disjunction between the clause rules. Using the OR operator, the definitions (a) and (b) in
Figure 10 for ‘p’ are equivalent.



MODULE arrays(NUMBER:i:j,
NUMBER:a2:a3:a4, STRING:al).

ARRAY a1(i) = [[1,red],
[2,green],[2,yellow], [3,bluel].

ARRAY a2(i) = [[1,10]1,[2,20]1].

ARRAY a3(i,j) = [[1,1,100],[1,2,200],
[2,1,300],[2,2,400]].

ARRAY a4(i) = [[1,10],[33,20],[53,301].

PRINT al(2) PRINT a2(i)+a3(1,i)
green 110
yellow 220
(a) (5)
PRINT a2(i)+a3(i,1) PRINT a2(i)+a3(i,j)
110 110
320 210
320
420
(9 @

Figure 9: Arrays

CLAUSE p(x) WHEN x=1. CLAUSE p(x) WHEN
CLAUSE p(x) WHEN x=2. x=1 OR x=2 OR x=3.
CLAUSE p(x) WHEN x=3.

(a) (b)

Figure 10: Extending a clausal object in a module.



MODULE domains (STRING:x:y).
CLAUSE sizes(x) WHEN
x=‘small’ V x=‘medium’ V x=‘large’.
CLAUSE colors(x) WHEN
x=‘red’ V x=‘green’.
MODULE products(USING:domains,
STRING:name, sizes:size, colors:color).
TABLE prod(name,size,color).
CLAUSE p(name,size,color) WHEN prod(*).

Figure 11: Domain Objects.

The definition of a clausal (or functor) object may span several modules. Suppose a clause is defined
by clause rules in both module A and module B. If module A is imported in module B, the definition of
the object is the disjunction of the clause rules in A and the rules in B.

6.1 Domain objects

In creating modules it is sometimes useful to introduce a subtype by restricting the domain of a variable.
In RL/1 this is achieved by defining a domain object representing the restrictions for the domain. A
domain object is a logical object which has only one attribute. For each occurrence of a variable in the
rule expression, an invocation of such a domain object can be used to restrict the domain of the variable.
However, in order to relief the user from repeatedly specifying domain restrictions in a rule expression,
it is allowed to immediately declare the domain restrictions for a variable in the module declaration (see
the section on module declarations above). For each restricted variable its domain object is compiled
automatically into the rule expression. The type of the variable (NUMBER or STRING) is inferred from
the domain of the (only) attribute in the domain object. Vectors are appropriate to serve as a domain
object since they are created as extensional objects with only one attribute.

As an example consider the declaration of the domains ‘sizes’ and ‘colors’ in Figure 11. Due to the
domain specification the compiler adds domain restrictions to the rule expression ‘prod(name,size,color)’
in the definition of the clause ‘p’ so that the original clause is replaced by the following:

CLAUSE p(name,size,color) WHEN
prod(name,size,color)
AND sizes(size) AND colors(color).

7 Functor objects

Functors add new functions to the set of standard functions already available in the system. Functor
objects are defined with use of rule expressions and as a consequence they may involve invocations to
other logical objects:

functor-rule
::= FUNCTOR functor ( attr-list )
WHEN rule-exp
|  FUNCTOR functor ( * , variable )
WHEN rule-exp
|  FUNCTOR functor ( / ) WHEN rule-exp
functor-inv ::= functor [ ( arguments ) ]

In the first defining form the last attribute of the attribute list is the return variable of the functor
and the other attributes represent the arguments of the functor. Functor definitions that have only one
attribute (i.e. the return variable) are allowed. In the second (short) defining form, ‘variable’ is the
return variable of the functor. All variables occurring in the rule expression, besides the return variable,
become attributes of the newly defined functor. The third defining form can be used in case a functor



MODULE functors(NUMBER:a:b:c:d:e:x:y:z).
FUNCTOR int(x,y) WHEN y=integer(x).
FUNCTOR sum(x,y,z) WHEN z=x+y.
FUNCTOR abs(x,y) WHEN

y=x AND x>0 OR y=-x AND x<O.
FUNCTOR pi(x) WHEN x=3.141.
SHOW x=sum(sum(1,2),3). % yields 6
SHOW x=abs(-10). Y% yields 10
SHOW x=pi+b6. Y% yields 8.141
TABLE data(a,b,c)= [[1,8,7],[1,4,0]].
FUNCTOR quad(a,b,c,x) WHEN x=(-bte)/(2+a)
AND d=b#b-4*axc AND

( e=sqrt(d) AND d4>0

OR e=-sqrt(d) AND d>0 ).

Figure 12: Functor objects.

object is defined by several functor rules or the definition spans more than one module. As for clauses the
first defining form can also be used for extending a functor object. Some examples are given in Figure 12.

The full expressiveness of rule expressions is available for functors also, so functors are not restricted
to yield only one function value for an assignment of argument values. For example a functor yielding a
value z for given values of a,b and ¢ such that a* 2% + b* z + ¢ = 0 can be defined as in Figure 12. The
OR operator in the functor definition results in two x values for each assignment of values to variables
a,b and c, since the conditions d > 0 and d > 0 are not exclusive:

SHOW data(a,b,c) AND x=quad(a,b,c)
x a b c

~NoOo~NOo

4
8
4
8

1
»
[E N WO

8 Examples

Logical objects are declarative representations of knowledge; therefore it is not known beforehand how
the attributes of an object are invoked. A single logical object may in fact be used in many different
ways.

For instance suppose rectangles are stored in a table with four numeric attributes x1,y1,x2,y2, the
pair (x1,y1) denoting the origin and (x2,y2) denoting the corner. A user might want a list of these
rectangles in an alternative representation system with center points (xc,yc) and size pairs (wc,hc) giving
the distance between the center and the origin. The alternative center representation for rectangles could
then be calculated with use of the clausal conversion rule given in Figure 13.

The conversion of point representation ((x1,y1), (x2,y2)) to center representation ((xc,yc), (wc,hc))
requires solving the constraints x1=xc-wc, yl=yc-hc, x2=xc+wc and y2=yc+hc for the variables xc, yc,
wc and hc. The constraint solver takes care of the solving process:

SHOW rectdata(#,x1,y1,x2,y2)
AND conv(x1,y1,x2,y2,xc,yc,wc,hc)
x1 y1 x2 y2 xc yc we hc

0 0 4 4 2 2 2 2
2 2 7 7 4.5 4.5 2.5 2.5
6 3 9 6 7.5 4.5 1.6 1.5

Another user might want to know for a center point (7.5,4.5) and a size pair (1.5,1.5) the associated



MODULE convs (NUMBER:x1:y1:x2:y2,
NUMBER:xc:yc:wc:hc, STRING:name).

TABLE rectdata(name,x1,y1,x2,y2)=
[[ra,0,0,4,4],[1b,2,2,7,71,
[rc,6,3,9,61].

CLAUSE conv(x1,y1,x2,y2,xc,yc,wc,hc)
WHEN x1=xc-wc AND yl=yc-hc
AND x2=xc+wc AND y2=yc+hc.

Figure 13: A conversion rule.

rectangle in origin and corner representation. For this query the same clause can be used since the rule
states declaratively what is known to be true about the representation systems:

SHOW conv(x1,y1,x2,y2,7.5,4.5,1.5,1.5)
x1 yi x2 y2
6 3 9 6

A second example: one of the most spectacular events in astronomy is the passage of a comet. The
orbit of a comet is usually available to observing astronomers in the form of tables listing the right
ascention (RA for short) and the declination. These two dimensions together constitute the location of
the comet in the sky. A problem with this tabular description of orbits is that for most comets the RA
and declination are not given for each day during the period of visibility. It is up to the astronomer
to compute the intermediate right ascentions and declinations for the missing days. What makes the
problem nasty is that the RA’s are given in a h-m-s notation and consequently need to be converted to
seconds. After computation of the interval values has finished the seconds are converted back to h-m-s
notation so that the telescope can be directed.

In the case of the comet Austin, which was visible in May 1990 in Holland, a table was available
with positions given for each five days. The module in Figure 14 lists an application to compute the
missing days. A clausal object ‘interval’ creates from the table ‘cometdata’ a new table with an RA
and associated next RA in one tuple. The table ‘intervaldays’ is used to vary over the five days of the
interval. Finally the ‘ra’ object lists the requested RA in h-m-s notation together with the number of the

observation day:

list ra

d h m 8
0 1 21 2
1 1 16 27
2 1 11 52

14 0 12 25
An unexpected application is the use of multivalued functors to represent type hierarchies. If types
are interpreted as subsets of a value domain, it is quite natural to establish a partial ordering among
types based on set inclusion: this is the key idea underlying type hierarchies (see [1]). As a consequence

a type t is a subtype of another type u when all the values of ¢ are also values of u. Figure 15 declares a
(rather incomplete) type hierarchy of animals with use of vectors and functors as domain objects.

The functional objects bird and fish represent sets of animals and are subtypes of vertebrate. Ver-
tebrate itself is a subtype of animal. Query (a) below shows that indeed a duck is warm blooded. The
same question for birds in (b) is answered positively because there are warm blooded birds.

SHOW SHOW
warm-blooded(‘duck’) warm-blooded(bird)
yes yes

(a) (b)
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module stars(number:i:t:t1:t2:t3:h:hi:h2:
h3:m:mi:m2:m3:s8:81:82:83:d:d1:iday).
table cometdata(i,h,m,s)= [[0,1,21,2],
[1,0,58,8]1,[2,0,34,1]1,[3,0,7,21].
table intervaldays(d)=L[[0],[1]1,[2],[3],[4]].
clause interval(i,hi,mi,s1,h2,m2,s2)
when cometdata(i,hi,mi,s1)
and cometdata(i+i,h2,m2,s2).
functor time(h,m,s,t) when t=s+60%m+3600%h.
clause hms(t,h,m,s) when s=mod(floor(t),60)
and m=mod(floor(t/60),60)
and h=mod(floor(t/3600),24).
clause calcra(hi,mi,si,h2,m2,s2,d,di,h,m,s)
when ti=time(hi,mi,s1)
and t2=time(h2,m2,s2)
and t3=t1-((t1-t2)*d1)/d
and hms(t3,h,m,s).
clause ra(d,h,m,s) when
d=i*5+iday and interval(*)
and calcra(hi,mi,si,h2,m2,s82,5,iday,h,m,s)
and intervaldays(iday).

Figure 14: Interpolation of RA values.

MODULE types(STRING:x:herbivore:
carnivore:bird:fish:invertebrate).
VECTOR herbivore= [elephant,kangaroo].

VECTOR carnivore= [dog,bat].
VECTOR bird= [duck,eagle,ostrich].
VECTOR fish= [shark,dogfish,plaice].
VECTOR invertebrate= [hydra,spongel.
FUNCTOR mammal(x) WHEN

x=carnivore OR x=herbivore.
FUNCTOR vertebrate(x) WHEN

x=mammal OR x=bird OR x=fish.
FUNCTOR animal(x) WHEN

x=vertebrate OR x=invertebrate.
MODULE animals(USING:types, STRING:x).
CLAUSE warm-blooded(x) WHEN x=mammal.
CLAUSE warm-blooded(x) WHEN x=bird.
CLAUSE cold-blooded(x) WHEN x=fish.

Figure 15: Functional objects in a type hierarchy.
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Since functional domain objects are allowed at the same locations as normal constants the question
whether there are animals that are both a mammal and a bird can be stated as in (a) below. The same
question for mammals and carnivores is represented as in (b):

SHOW mammal=bird SHOW mammal=carnivore
no yes

(2) (v)
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