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1. INTRODUCTION '

This work should be considered as part of the general investigation
into the arithmetical system [IAg+Q1. We will present a refinement
to IAop+Qq of aresult stated in [deJongh-Montagna, 1988], on wit-
ness comparison formulas having only provable fixed points in PA.

Briefly, let us introduce the arithmetical system and some of its
properties: IAg+ Q1 (Cf.[Paris-Wilkie,1987]) is a set of axioms
expressing the elementary arithmetic properties of the basic
symbols 0, ', +, ¥, < (in the following we will refer to the obvious
first order language containing these symbols as 3) together with
the bounded induction schema IAg (defined in 3):

Vx,z (@(x,0) A Vysz. (g(x,y) = @(xy)) — Vy<z @(x,2) (@elo)
plus the S-sentence Q1 expressing Vx3dy.c(x)=y where w(x):= x/x

and |-| is the length function for the binary representation of x.

We note that by the following result of [Verbrugge,1989]

IT NP=CO-NP then
K¥1Ao+Qq Vb,c(Ja (Prf(a,c) A Vz<a TPrf(z,b)) -
Pr("3aPrf(a,c) A Vz<aPrf(z,b)™))

it seems highly unlikely that the principle of 2;-completeness , i.e.

- Pr("@?) for ez,

1 Prerequisites: the reader is supposed to be familiar with [Smoryhski,1885]; knowledge of
[deJongh-Montagna, 1988] will be helpful.



is provable in IAg+ 1. However, it can be shown that [Ag+ Q1
proves Svejdar's principle (Cf.[Svejdar,1983]): i.e.

F1Ag+Qq Pr(T@ ") > Pr("3a(Prf(a,"y " )AVz<aPri(z,"@™")) - y¢")

(for all @,y)
(Cf. [Verbrugge,1989]) and Visser's principle (Cf. [Visser,1989])

F1ag+q Pr("C(3) - ') = Pr("s'")

where C(S)= /A{s — Pr("s?) : seS5.}, Sis a finite set of
21-sentences and s' is a 21-sentence.

In [Paris-Wilkie,1987], [Buss,1986] and [Verbrugge,1989] ample
motivation for the general study of IAg+Q1 is given; therefore we
will turn our attention here directly to the more specific aim of this

paper.

In [Parikh, 1971] it is shown that for each primitive recursive
function g, there is a Z1-sentence s such that Fpp s and
g(uz.Pripa(z,"Prpal™s™) ™)) < nz.Prfpalz,"s™) (*)

In [deJongh-Montagna, 1988] Parikh's result is analyzed in the modal
context R (Cf.[Guaspari-Solovay, 1979]) when g is the identity
function; a simpler proof is presented, based on the fact that (*) has
only provable fixed points. Furthermore, a characterization is given
for pairs of modal formulas B(p) and C(p) such that for each
arithmetical interpretation *, if Fpap*«e (OB(p)<OC(p))* then
Fpa P*: OB(p)<OC(p) has only provable fixed points in PA. In
[dedongh-Montagna, 1989] the result is extended to arbitrary g
which are provably recursive in PA.

Our aim is to refine the positive part of the proof of [deJongh-
Montagna, 1988], the part in which it is shown that the formulas
specified do indeed have only provable fixed points in PA, to a
weaker modal system in which the Z-completeness axiom (i.e. the



corresponding modal version of the Z4-completeness principle) does
not hold.

In section 3, it is shown that the modal version of Visser's
principle: i.e.

(V) O(c(s) —» s") —» Os'

where c(s) = AA{s - Os : seSs},
S is a finite set of Z-formulas
s'is a 2-formula,

playing the role of a weak version of 2-completeness, suffices to
obtain the refined theorem we are looking for.

What is provable in the weak modal system including Visser's
schema, is clearly provable in IAg+ 1 under every arithmetical in-
terpretation; therefore, it follows that PA has no withess compari-
son formulas having only provable fixed points which the system
IAg+ Q1 does not already have.

Based on the result obtained in section 3, in section 4 we present
the independence between (V) and the modal version of Svejdar's
principle

(S5v) OA - O(OB<KOA — B) for all formulas A,B.

In particular we give a counterexample to show that (5v) does not
imply Visser's schema: that gives an insight to understand why
Svejdar's schema cannot play much of a role in the study of formulas
having only provable fixed points.

In an appendix we give some proofs, mainly due to Visser [1989], of
modal principles derivable from Visser's principle.

2. MODAL SYSTEMS AND KRIPKE SEMANTICS

In this section we will briefly introduce the modal systems that we
are going to work with, together with the associated Kripke-
semantics.



Formulas of our system are built up from propositional atoms using
the boolean connectives A, V, 71, =, &, T, 1, a unary modality O
and binary witness comparisons <, <, where < and < are applicable
only to those formulas having O as principal connective. The
following definition will introduce the list of modal systems.

DEF 2.1:

(a) B~ (Basic System) is the modal system L (Prl in [Smorynski,
1985]) (including its rules: modus ponens and necessitation) to
which the following order axioms are added (see [deJongh,
19871]):

(01) OA — (OA<OB v OB<OA)

(02) OAOB-»OA

(03) OA<OB A OB<OC — OA<OC

(04) OA< OB < (OAXOB A 1(OBXOA))

(b) 2~ (Cf.[Svejdar, 1983]) is the system B~ plus Svejdar's schema:
(S5v) DOA - O(OB<KOA - B) for all formulas A,B
(c) BV~ is the system B~ plus Visser's schema:
(V) O(c(S) —» s') —» Os'

where C(S) = /A\{s — Os :seS}, S is a finite set of =-formulas
and s' is a 2-formula

(d) B, BV, Z are respectively the systems B~, BV~ and Z~ with the
rule OJE (see Definition 2.1.3 Part A) added.

Let A(p) be some formula of B of the form OB(p)XOC(p). As in
[deJongh-Montagna,1988] we take BC~, BYC™ and ZC~ to be the
systems B~, BV~ and Z~ respectively, plus the axiom c < A(c)
(analogous notation is used for the systems B, BV and 2). Since a
different system is defined for different choice of A it would be
more appropriate to name the systems BC(A)~, BVC(A)™ and 2ZC(A)".
But, as it will always be clear in the sequel which formula A is



intended, we will refrain from doing so, in order not to
unnecessarily complicate the notation.

DEF 2.2: a model for B~ is a finite, tree-ordered Kripke-model for L
in which withess comparison formulas are treated as atomic
formulas and in which every instance of (01)-(04) is forced at each
nhode.

DEF 2.3: models for BVY~, Z~ are Kripke-models for B~ where
respectively (V), (Sv) is forced at each node.

It is appropriate to remark that, just as is pointed out in
[Verbrugge,1989] for the system Z~, also for BV~ the forcing for
witnhess comparison formulas in BV~ -Kripke-models is not
persistent, i.e. it does not necessarily hold that if jlFOAXOB (resp.
j FOA<0OB) and jRk then kIFOAXOB (resp. kIFOA<OB).

No model-completeness theorem or even a general extension lemma
has been established for BV (for 2z, Svejdar did establish these
[Svejdar,1983]).

3. WITNESS COMPARISON FORMULAS HAVING ONLY PROVABLE
FIXED POINTS IN BV

Theorem 3.3 of [deJongh-Montagna,1988] reads:

If B(p) and C(p) are L-formulas (i.e. do not contain witness

comparisons), possibly containing propositional variables

other than p, then A(p) = OB(p) < OC(p) has only provable

fixed points in R iff

(i) . B(T)

(ii) F,.O%(OB(L) » OC(Ll)) — Ok+*1L, for some k
(where O*D abbreviates DALOID)



Our aim is to obtain a characterization for a witness comparison
formula to have only provable fixed points in BV. The result
presented in this section constitutes a refinement of the theorem
proved by de Jongh and Montagna; the proof that we present is
syntactical and based on a different approach characterized by the
proof of the following theorem:

THEOREM 3.1: Let B(p) and C(p) be L-formulas. If

(i) k. B(T)

(ii) +_O%(OB(L) —» OC(L)) —» Ok*11, for some k,

then A(p) = OB(p)XOC(p) has only provable fixed points in BV.

Some preparatory lemmas are needed. In the following we assume
that (i) and (ii) of theorem 3.1 hold, the systems BC™, BVYC™ and BVC
refer to the A(p) of this theorem. Some results already proved by
Visser (Cf. [Visser,1989]) for his principle and used in the proof of
the following lemmas are given in the appendix.

LEMMA 3.2: I"Bc-l:]+__|c — Ok+11
Pf:
1. Fg-O07c - O(c & 1)
— O%((OB(c) « OB(1)) A (OC(c) & OC(1)))
— (O*(0OB(c) —» OC(c)) — Ok+*11)
(by (b) and the Substitution Lemma(Cf. [Smoryhski, 1985]))

2. Fpe-O0%7¢c —» O%(OB(c) —»0OC(c)) (by obvious properties of <)
3. Fpe-O*71c —» Ok+11L (by 1 and 2)
X



LEMMA 3.3: +_Oc — OB(c)

Pf:

1. FLc —=B(T)

2. F Oc — 0OB(T)

3. F Oc—- O(ce T)
4. F_Oc — OB(c)

LEMMA 3.4: F O*c - 0O%B(c)
Pf:
1. FpLc —-B(T)
2. F_O%%c -»0O%B(T)
3. F O% >0 T

— (O*B(c) «O*B(T))
4. F_O% - 0O%B(c)

LEMMA 3.5: -, Ok+1L — (OC(L) —» B(1))

Pf: We claim that, if +, O%(OB —»0OC) »0Ok*11, then

(by (i)

(by 2 and 3)
X

(by (1))

(by 2 and 3)
X

. Ok11L - (OC —B), where B,C are arbitrary L-formulas.

For suppose not, then a model M exists such that

MEO* (OB - 0OC) —»0Ok+1L and w IFOK+1L A OC, wiB, for some
node w in M. Take the submodel of M generated by w and add a tail of
nodes below w of such a length that the new model gets a root x of
level greater than or equal to k+1 (end nodes are counted as having
level 0). Clearly none of the nodes added below w can force OB but
all of them force O%(OB — OC). By hypothesis, x IFOk+*1L and this

gives a contradiction, which proves our claim.

By the claim and (ii) it follows that: F Ok*11—(OC(L)—-B(l)). K



LEMMA 3.6: kpc-O%—c — O*B(c)

Pf:
1. F_O%c — (OC(c) < OC(L)) A (B(c) « B(L))
2. Fpge-0O*-c — (OC(c) — B(c)) (by 1lemma 3.2 and lemma 3.5)
3. Fpc- —¢ = (OB(c) —» OC(c)) (by obvious properties of <)
4. Fgc-0O%=c — (OB(c) — B(c)) (by 2 and 3)
o. |_BC' O*-c — D(DB(C) el B(C))

— [OB(c) (by formalized Lob)
6. — B(c) (by 4)

X

LEMMA 3.7:
Fev-OOA v OOB -» O(O*(O0A<OB) v O*(OBKOA))
Pf:

1. OOA v OOB- O(OA<OB Vv OBXOA)
—»0O(O0A< OB- O(0A<OB) AOBs OA->O(OBSOA)) —
—([@O*(OA<OB)v OT(OBLOA))
- (07 (O0A<0OB) v OT(OB<OA)) (by (V))
X

COROLLARY 3.8: Fpy-OA vV OB —» O(OA<OB — O(OA<0OB))
Pf: Trivial. X

LEMMA 3.9: Fpgyc-Ok+2c - OnOB(c) for each 0<n<k+1
Pf: by downward induction on n:

n=k+1: F Ok+2c — Ok+10c
— Ok+10B(c) by lemma 3.3;

n<k+1:recall that by induction hypothesis we have
Fgye- Ok+2¢c —» On+10OB(c), i.e.
Fgve- OK+2¢c — OrO0OB(c). So,

1. Fgy-Ok*2c > (ON*10B(c) -
- Om+1(O*(OB(c)xOC(c)) v O*(OC(c)< OB(c)))
(by lemma 3.7)



2. Fpgye-Ok+2c - (On+10B(c) —» O™(O*c v O%—c))
— (On+10B(c) —» O"1B(c)) (by 1emma 3.4 and lemma 3.6)
— On+1B(c) (by modus ponens with the induction hypothesis)
X

We are now ready to prove theorem 3.1:

Pf (theorem 3.1):
1. Fgve- Ok+2¢c — OB(c) (by lemma 3.9 where n=0)
— OB(c)x0OC(c) v OC(c)<OB(c)
(by obvious properties of )
2. FBvc-D(DB(C)'\<DC(C)) \% D(DC(C)'< OB(c)) — O*c v O*-c
— Oc v O%-c
— Ok+1c v Ok+11L

(by lemma 3.2)

3. Fgve- Ok+1c (by 1,2)
4. Fgyc C . (by OOE)
K

The refinement that we were looking for is an immediate
consequence of theorem 3.1:

THEOREM 3.10: Let B(p) and C(p) be L-formulas; then

A(p) = OB(p) s OC(p) has only provable fixed points in BY
iff

(i) F_B(T)

(ii) F_ OYOB(L) —» OC(l)) —» Ok+1L , for some k.

Pf: (=) If c is a fixed point for A(p) then Fpgy¢ c, therefore Fprcc
and by lemma 2.3 in [deJongh-Montagna, 1988]

Fg- O%c & A(c)) — Ok+lc for some k. Now apply theorem 3.3 in
[dedJongh-Montagna, 1988].

(<) by theorem 3.1. K



By theorem 3.10 and theorem 3.3 (Cf. [deJongh-Montagna, 1988]) it
follows that the formulas of the form A(p) = OB(p)<OC(p) having
only provable fixed points in R are exactly the formulas having only
provable fixed points in BV. In other words, to obtain the formulas
having only provable fixed points we do not need the strong
S-completeness schema (i.e. A—»[OA, for every Z-formula A) but we
can replace it by the weaker (V).

Although theorem 3.10 is formulated with iff one should note that,
unlike with R and PA, A(p) = OB(p)<OC(p) having only provable
fixed points in IAo+ 21 for all arithmetical interpretations does not
imply that A(p) has only provable fixed points in BV, since
arithmetic completeness even of L is unknown for IAg+Q 1 (see
[Verbrugge,1989]). At the present, theorem 3.10 does imply that
each formula of R having only provable fixed points in PA has only
provable fixed points in IAg+ 21 when arithmetical interpretations
are restricted to sentences. The restriction to sentences is
essential; otherwise Visser's principle loses its validity (see
[Visser, 1989]).

4. INDEPENDENCE OF VISSER'S AND SVEJDAR'S SCHEMAS

As already announced in the introduction, it can be shown that
IAo+ 21 proves Svejdar's principle. Because the principle appears as
a weak version of the 2-completeness axiom it may be of some
interest to study its relations with Visser's principle: in this
section we will prove the independence of the two principles.

First of all we show that Svejdar's schema does not imply Visser's
schema, i.e. Z ¥ (V). To prove that, consider the formula O3p<0O2p
having only provable fixed points in R, as proved in [deJongh-
Montagna,1988]. By theorem 3.10 it follows that this formula has
only provable fixed points in BV. On the other hand2, note that

2 the argument was suggested to the author by F Montagna.

10



O3p<0O2p cannot have only provable fixed points in Z, because by
Svejdar's essential reflexivity interpretation of DA< OB as "there
exists a proof of A using axioms with smaller Godel numbers than in
any proof of B" (Cf. [Svejdar,1983]) that would mean that for the
fixed point ¢ in PA, O2c would have a proof in PA using axioms with
smaller Gédel numbers than any proof of Oc would use. This is
impossible because being a provable Z-sentence, Oc wouldn't need
any but the axioms of Q and we could take those as the zero base of
our interpretation. This proves our claim.

At this point it may be of interest to remark that the formula
O2p<0Op has only provable fixed points in 2.

The following argument is due to Visser: in BC™ it is provable that
O2¢c - O(Oc<0O2c v O2c<0Oc). Thus, in 2C~, O2¢c—-0Oc is provable,
from which with L6b in 2C, immediately ¢ follows. Under the same
arithmetical interpretation used in the previous argument, the
result is not very surprising: it is well known that there are
theorems provable in PA and not in Q. From these observations we
can see that Svejdar's schema can by itself hardly be useful in
studying formulas having only provable fixed points in BV. Recall
also that in the proof of theorem 3.10, the schema (Sv) is not used.

To obtain our second claim, that Visser's schema does not imply
Svejdar's schema (i.e. BY ¥ (Sv)), it is enough to exhibit a
countermodel of BV to the formula Op-0O(Oq<0Op—q) (i.e. an
instance of (Sv) where p and q are propositional variables)3.

Let A be the formula Op —» O(Oq<0Op — q) and consider the
following A-sound model <({1,2,3,..},R,IF> where the forcing
relation is restricted to subformulas of A:

S Observe that Fgy- OA — OO(OB<OA — B), for all formulas A, B. The proof is an
immediate consequence of lemma 3.7.

11



terminal nodes

where E and F stand for Opx0Oq and Og<0Op respectively.

From the forcing relation indicated in the figure note that: 2 does
not force p or q; 4 does not force p or E—0OE, but does force F — OF;
for kRS and k=3, k does not force p, q, E, F, but does force E— OE
and F — 0OF. In particular note that 4 does not satisfy
Op - O(Og<0Op - q).

Observe that the role of node 1 is crucial to obtain a model forcing
all the instances of Visser's principle; consider the formula O7p
and suppose that node 1 did not exist. It is easy to check that

6 ¥ OW(E—-DOE) - O™71p) - OOp.

We claim that under a suitable forcing extension given to the model,
every instantiation of Visser's principle holds on the model. Before

12



giving the procedure to define the appropriate forcing relation, let
us fix some notation and definition which will be used in the sequel.
We write P to denote the set of all propositional variables except p
and q; S° for {p, q, Op, Oq, Op<0q, Og<0Op}; 52Mm*1 to denote the
closure of S2MyUP under the propositional connectives and O
(obviously P is effective only when m=0); S$2Mm*2 for g2m*1 y
{0A0OB, OA< OB | OA,O0BeS2Mm*1},

DEF 4.1:1et k, k' nodes of <{1,2,3,..}, R, F>; we write:
OA< OB iff 3k' ((k'Bk or k'=k) and k'IlFOA and k' 0OB)

OA <OB iff kIFOA and Vk' (if (k'Rk or k'=k) and k'IFOB then
kK'FOA)

Here is the procedure to construct the forcing relation:

stage O: for all reP fix
kikr iff klFp for all nodes K

stage 2m+1: automatically and uniquely define a forcing relation for
all members of the closure §2m+*1;

stage 2m+2: call (as in [deJongh, 1987]) a boxed formula OA old if

OA€S2M and new if OAeS2M*1\52M Tgo give an extension of the

forcing relation to S2M*2, it is enough to define the forcing on

witness comparison formulas OA<OB and OA<OB (belonging to

52m+*2) for OA, OB both new, OA old and OB new, and for OA new

and OB old. Before giving the way to construct the forcing let us

recall two definitions occurring in [deJongh, 19871:

(i) kIFDOA<OB iff OA<OB or, OA<kOB and OA old, OB new

(ii) kI OA<OB iff DA< OB or, OA<kOB and OB new.

We are now ready to present the procedure, to repeat for all nodes k.

Here it is:

If ke{1, 2, 3, 4, 5} and SIFOA and 5k 0B

then let kIFOA<OB and kiFOA<OB

else fix the forcing on OA< OB, OB<OA, OA<OB and OBXOA as
defined in (i) and (ii), respectively.
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Apply the procedure repeatedly (i.e for all melN) so as to cover all
formulas, and call the resulting model M.

Note that points 1 and 3 satisfy the same formulas since they are
always treated alike by the construction.

CLAIM 1:VseZ. 5Fs = klIs whereke{1, 2, 4}

Pf: suppose seZ and S5 I s; by cases:

s = OB: by the previous observation points 1 and 3 force the same
formulas, therefore the claim;

OB<0OC: by stage 2m+2 of construction and definition (i);

OB<0OC: by definition (ii) on stage 2m+2 of construction;

s = "boolean combination of Z-formulas”: by the previous cases. K

Using claim 1 and definition 4.1, it is easy to check that stage 2m+2
excludes the existence of two boxed formulas OA, OB for which
OA<0OB and OB<OA are both forced at node 4.

CLAIM 2: 5 I C(S) for all finite sets S of Z-formulas

Pf: straightforward from claim 1. X

CLAIM 3: (Persistency property) let OA, OB be two boxed formulas
such that at least one of them is new at some stage m>1;

if (k F OA<OB and kRk') then k'IF OA<OB and

if (k - OA<OB and kRBRk') then k' I OA<OB

Pf: immediate from the forcing procedure and the following
consequences of definition 4.1:

if (OA<kOB and kRk') then OA< OB and

if (OA<OB and kRk') then DOA < 'OB. X

Note that the only witness comparison formulas that do not satisfy

the persistency property are E and F (see definition of forcing at
nodes 3 and 4).

14



CLAIM 4: all instances of Visser's schema are forced in each node

of M.

Pf: obviously points 1, 2, 3 satisfy the claim; moreover notice that
Visser's principle is always satisfied at level 1 in any Kripke model
since each C(3S) is always satisfied at terminal nodes, therefore 4
and S satisfy the claim. By induction we check the tail of points k:
k=6: suppose there exist C(S) and s' such that 6 ¥ Os' and Vk (if

k+1:

6Rk then k I C(S) — s'); it follows that 3h (6Rh and h}s' and
hIKC(S)); but k I C(S) for k €{1, 2, 3, 5} therefore h must be 4.
By claim 1 we get a contradiction.
(with k+1>6) assume the claim holding for all h such that
k+1Rh and suppose there exist C(S) and s' such that k+1 ¥ Os'
and Vh (if k+1Rh then hl- C(S) — s'); it follows that
dh (k+1Rh and hls' and hJ¥C(S)); this node must be k since, by
induction hypothesis, every instance of Visser's schema holds
at k, so k I Os'. Therefore k ¥ C(S), i.e. for some s€S, ks
but k J¢ Os. By cases:
s = OB: k I Os, a contradiction;
s = OB<0OC: k I OB and B can be neither p nor q since
Op and Oq are not forced at any point kR6.
Therefore by claim 3, the forcing on witness
comparison formulas must be persistent and
this gives a contradiction.
s = OBXOC: similar to the previous case;
s ="boolean combination of Z-formulas”: by the previouscases.
X

To show that M is a model for BV it suffices to prove the following

CLAIM 5: for all formulas A,

if M F OA then M F A,

Pf: trivial. X
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APPENDIX: SOME THEOREMS PROVED BY VISSER'S PRINCIPLE

In [Visser,1989] the following theorems, proved using the principle
(V), are pointed out:

(v1) OWs - oOWs*

(V2) O(OA - WsS) A O(Ws* - A) -OA

(V3) 0O(C(S) - (A - s") » OA - Os’

(vV4) 0O(C(S) —» (Os' —»s")) —» Os'

where S is a finite set of S-formulas, C(3) = /A{s — Os : se3},
S*={s A Os:seS})and s'a=-formula.

We will give the proof of them in the modal system BV™:

(V1):

1. O Ws - O(c(s) » WoO's)

2. O(c(s) » WoO's)-» o(WwWo's) (by (V))
3. OWs - oWo's) (by 1 and 2)
(V2):

1. OM@OA - Ws) - Om@moaA —» OWs)

- O@OOA -» O(\Wo'*s)) (by (V1))
2. O(WO's » A) » O@Wo's -» OA)
3. O(OA - WsS) A O(WO's— A) - O(OOA — OA) (by 1 and 2)

- OO0OA (by formalized Ldb)
-0 3

- O(Wao's) (by (V1))
- 0OA
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(V3):

1.

0(C(S) —» (A-s')) - O(A - (C(S) - s'))
—0OA - O(C(S) — s")
- OA — 0Os' (by (V)

(V4):

1.

0(C(S) — (Os' —»s')) - O(O(C(S) —» (Os' —s')))
— 0O(O0s' —»0Os') (by (V3))
- 0O0s' (by formalized Lob)

- 0O(C(3) —» Os')
— O(C(S) - s')
- 0Os' (by (V))
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