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1 Introduction

In recent years several modal systems have been introduced to study the rela-
tion of relative interpretability between arithmetical theories. The intepretabil-
ity principles of several important classes of arithmetical theories have been
axiomatised. In [6] the system ILP is shown to be the interpretability logic of
all £9-sound finitely axiomatised sequential theories that extend 1A+ SupExp;
in [1] it is shown that ILM is the interpretability logic of PA. Montagna and
Hajek [2] show that ILM is also the logic of II%-conservativity of all £9-sound
extensions of I¥;. (As is well-known, in the case of PA the two relations of
relative interpretability and of I19-conservativity coincide).

Given the above results it is only natural to consider a modal logic with
two binary modal operators, one of which is to be interpreted arithmetically
as the relation of II{-conservativity between extensions of some given finitely
axiomatized sequential extension T of IX;, while the other operator is to be
interpreted as relative interpretability over the same theory T. Such a system,
called ILM /P, has been introduced by Dick de Jongh and Albert Visser, and is
conjectured to be the logic of relative interpretability and II9-conservativity of
all ©?-sound finitely axiomatized sequential extensions of IZ;. Both the modal
and arithmetical completeness of ILM/P are still open.

Interpretability may also be viewed as a unary predicate over extensions
of a fixed theory T. The modal analysis of the interpretability predicate has
been undertaken in [3], using, of course, a unary modal operator. In this note we
axiomatize the bi-unary subsystem of ILM/P. That is, we introduce two unary
operators Iy, Ip with the following interpretations: Iy A stands for ‘T'+ Aisa
I{-conservative extension of 77, and Ip A stands for ‘T + A is interpretable in
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T°, and we axiomatize all formulas A in the language with only [J, Ins, Ip that
are provable in ILM/P.

2 Axioms and models

The provability logic L is propositional logic plus the axiom schemas [1(4 —
B) — (0A — 0OB), 04 — 0O0A and 0O(C0A — A) — [OA, and the rules Modus
Ponens (F A, + A — B = I B) and Necessitation (- A = - 0A). We use
L£(O) to denote the language of L. L£([) is extended with a binary operator
> to obtain the language £([J,>) of binary interpretability logic. The binary
interpretability logic IL is obtained from L by adding the axioms

(J1) O(A—B)—AD B . (J4) Ap B—(OA— OB)
(J2) (A>B)A(B>C)—(ADC) (J5) OAD A
(J3) (A>C)A(B>C)— (AVB)>C

where & = -0-. ILM is IL+ M and ILP is IL+ P, whetre M = A> B —
AAOCD>BADOC and P=A> B — O(A> B).

The system ILM/P is defined in a language £(0J, > s, > p) which contains
the operator [1 as well as two binary interpretability operators: >pr and > p.
For the operator >3 we assume the axioms J1-J5 and M; for the operator >p
we assume the axioms J1-J5 and P. In addition there is one mixed axiom:

Aby B— AN(C>p D)>py BA(CDp D).

Define in £(0,>) the unary interpretability operator ‘I’ by I4 := T > A,
and let £(0, I) extend £(00) with L. The unary interpretability logic il is obtained
from L by adding the axioms

(rn) 1miv (I3) I(AVOA)—1IA
(r2) 0O(A - B) — (IA—1B) (I4) IAAOT — OA.

We use ilm to denote il+m and ilp to denote il+p, where m = I4 — I(AAOL)
and p =14 — [OIA.

In £(0O, > ar, >p) we define the unary interpretability operators Ips and Ip
by InqA := T Dy A and IpA := T Dp A respectively. It is sometimes
convenient to assume that the unary system ilm is defined in the language
L(0,X5) with O and Ins as the only modal operators, and similarly for ilp and
L£(O,Ip). The system ilm/p is defined in £(O,Ip,Ip) as follows; it contains
the axioms I1-I4 and m for the operator Ins, and the axioms I1-I4 and p for
the operator Ip; it has no mixed axioms. (Note that ilp F m, so in ilm/p we
also have axiom m for the operator Ip.)

Recall that an L-frame is a pair (W, R) with R C W? transitive and con-
versely well-founded, and that an L-model is given by an L-frame F together



with a forcing relation I that satisfies the usual clauses for - and A, while
ul- A iff Vv (uRv = v A). A (Veltman-) frame for IL is a triple (W, R, S),
where (W, R) is an L-frame, and S = {S,, : w € W } is a collection of binary
relations on W satisfying

1. S, is a relation on wR

2. S, is reflexive -and transitive

3. if w', w" € wR and w'Rw" then w'S,w".

An IL-model is given by a Veltman-frame F for IL together with a forcing
relation |- that satisfies the above clauses for —~, A and 0, while

ulFA> B & Vv (uRvandv - A = Jw(vS,wandw I~ B)).

An ILP-model is an IL-model that satisfies the extra condition: if wRw’' RuS,v
then uSy,v. An ILM-model is an IL-model satisfying the extra condition: if
uS,vRz then uRz.

An ILM/P-frame is a tuple (W, R, SM, SP) such that (W, R, SM) is
an ILM-frame, and (W, R, ST) is an ILP-frame, while the following extra
condition connecting SM and SF holds:

Veyzuv (zRySY zRuS] v — uST v).

An ILM/P-model is a tuple (W, R, S, SP, ) such that (W, R, SM, SP) is
an ILM/P-frame, and such that the semantics of the operator [> s is based on
the relation S, while the semantics of the operator [>p is based on the relation
SP,

The truth definition for Ix (K € { M, P}) follows from the above defini-
tions:

z |- Ix A iff Vy(zRy — 3z (ySEz A z I A)).

3 Preliminaries

In this Section we introduce the tools needed to prove the modal completeness
of ilm/p. We start with some definitions.

Definition 8.1 Let K € {M, P}, and let T, A be two maximal ilm/p-
consistent sets.
1. A is called a successor of T' (T' < A) if
(a) A,0A€c AforeachOA €T
(b) OA € A for some [JA ¢ T.
2. A is called an (Ix, C)-critical successor of T if



(ayr<aAa
(b) IxC ¢ T
(c) =C,0-C € A.

Note that if A is a successor I' then it is both an (I, L)-critical and an
(Ip, L)-critical successor of I'.

Proposition 8.2 Let T' be a mazimal ilm/p-consistent set such that OC €T
Then there is a mazimal ilm/p-consistent successor A of I' with C, O0-C € A.

Proof. Well-known (or cf. [4]). QED.

Proposition 3.8 Let K € { M, P}, and let T' be a mazimal ilm/p-consistent
set such that -IxC € T. The“ther‘e ezists ¢ mazimal ilm/p-consistent (Ix,
C)-critical successor A of T with 0L € A.

Proof. Cf. [3, Proposition 2.4]. QED.

Proposition 8.4 Let K € {M, P}, and let IxC € T, where ' is a mazimal
ilm/p-consistent set. If there ezists a mazimal ilm/p-consistent (Ix, E)-critical
successor A of T', then there ezists a mazimal ilm/p-consistent (Ix, E)-critical
successor A’ of T' such that C, 0L € A'.

Proof. By axiom m, IxC implies Ix(CAO.L). By [3, Proposition 2.5] the result
follows. QED.

Here is one more definition:
Definition 3.5 A set of formulas & is called adequate if

1. if B € ® and C is a subformula of B then C € &
2. if B € ® and B is no negation then -B € &

It is clear that every formula is contained in a finife adequate set.

4 The main theorem

Given some maximal ilm/p-consistent set I' and a finite adequate set ®, we
define the structure (W, R, SM, SP), which consists of pairs (A, 7), where
A is a maximal ilm/p-consistent set needed to handle the truth definition for
formulas in I', and 7 is a sequence of pairs we use to index the pairs we put into
Wr.

For the time being, we fix a maximal ilm/p-consistent set I' and a finite
adequate set . We use @, 9,... to denote pairs (A, 7). If @ = (A, 7), then
(@)o = A, (0)1 = 7. We write o C 7 for o is an initial segment of 7, and o C 7
if o is a proper initial segment of 7. Finally, 0™ 1 denotes the concatenation of
o and 1.



Definition 4.1 Define Wr to be a minimal set of pairs (A, 7) such that

[

.

(T, {())) € Wr;

. if (A, ) € Wp, OB € AN, and if there exists a successor A’ of A with

B, 0-B € A’, then (A’, ™ ((OB, _L))> € Wr for one such A’

. if (A, ) € Wy, “IyB € AN &, and if there exists an (I, B)-critical

successor A’ of A with 0L € A’, then (A, 77 ((~InB, B))) € Wr for
one such A’;
if (A, 7y € Wr, -IpB € AN @, and if there exists an (Ip, B)-critical
successor A’ of A with (0L € A/, then (A/, 7~ ((-IpB, B))) € Wt for
one such A’;
if (A, 7) € Wr, InB € AN®, C € ¥, and if there exists an (I3, C)-critical
successor A’ of A with B, O0L € A’, then (A’, 7~((Ix B, C))) € Wt for
one such A’;

. if (A, 1) € W, IpB € AN®, C € ¥, and if there exists an (Ip, C)-critical

successor A’ of A with B, 0L € A/, then (A’, 7~((IpB, C))) € Wt for
one such A,

Define R on Wr by putting @R if (@)1 C (9)1.
Define S on Wr by putting 55X 4 iff for some B, B, C, C', o and o:

(8)1 = (@):~((B, C))"0 and (@), = (@)1"((B', C")) "¢’

and either (9)1 C (@)1, or B is not of the form IpsD or —IpD, and then
B' = Iy D' and C' = 1 for some D’, or B is of the form Iy D or —Ip D, and
then C’ = C and B’ = Iy D’ for some D’.

Define S¥ on Wr by putting 5SZ 4 iff for some B, B’, C, C', T, 7’ and o:

(8)1 = (@177 ((B, C)) and (@)1 = (@)1~ 7" ((B',C")) "o

and either (9); C (@)1, or B is not of the form IpD or —IpD, and then
B'=1pD’ and C' = 1 for a D', or B is of the form IpD or ~IpD, and then
C' = C and B’ = IpD’ for some D'.

Proposition 4.2 1. (Wr, R, SM, SP) is finite.

2.

3..

If w € Wr, and (@)1 = 7 (((~)IkB, C))" o, where K € { M, P}, then
W s an R-endpoint, (0L € (©)o, and o = (-).

Ifa € Wr, (@)1 = 7~ ((OB, 1)), and if we have 5SM @ or 5SEu, then
wRvRE.

4. If (@)1 = (9)1 then © = 3.
5. If R then (@)o < (%)o-

6.
7
8
9

(Wr, R) is a tree.

. (Wr, R, SM) is an ILM-frame.
. (Wr, R, SP) is an ILP-frame.
. (Wr, R, S™, SP) is an ILM/P-frame.



Proof. Left to the reader. QED.

Theorem 4.8 Let A € £(0O,Iy,Ip). Then ilm/pt A iff for all finite ILM /P-
models M we have M = A.

Proof. We only prove completeness. Assume ilm/p lf A. Let T' be a maximal
ilm/p-consistent set with =4 € T, and let & be a finite adequate set with
—A € &. Construct (Wr, R, S™, S?) as in 4.1. We complete the proof by
putting @ |- p iff p € (@)o, and by proving that for all F € ® and w € Wr, we
have @ |- F iff F € (@)o. The proof is by induction on F. We only consider
the cases F = OC, Iy D and IpD.

If F = OC € (W)o, then we have to show that 35 (@R% A B € (7)o). Now,
by 3.2 there exists a successor A of ()o with B, 0-B € A. We may assume
that 3 := (A, (@)1 ((OB, 1))) € Wr. Obviously, ®R% and B € (7)o, as
required.

The case F = OC ¢ (W)o is trivial.

Assume that IpsD € (@)o. We have to show that Vo (0R% — 3u(3S¥a A
D € (@)o)). So assume that WR%; then for some B, C and g, (7)1 = (@)1 ((B,
C))Y"o. If B is not of the form (—)Ip B’, then we consider (7)o to be an (I,
L)-critical successor of (@)o. By 3.4 there exists an (I, L)-critical successor
A of (®)o with D, OL € A. Put @ := (A, (@)1 ((IxD, 1))). We may
assume that @ € Wp. It is clear that 5S4 and D € (@)o, as required. Next
we suppose that B is of the form (—)IpB’. Then (7)o is an (I, C)-critical
successor of (W)o. By 3.4 there exists an (In, C)-critical successor A of (@)
with D, 01 € A. Put @:= (A, (@)1 ((In D, C))) Then we may assume that
@ € Wp. Moreover, we have 5S4 % and D € ()0, as required.

Assume that Iy D ¢ (@)o. Then —-IyD € (@)o. We have to prove that
35 (wRv A Vi@ (9SMa — D ¢ (©)o)). Now, by 3.3 there exists an (In, D)-
critical successor A of (®)o with 0L € A. We may assume that 3 := (A,
(®)1”((~IxD, D))) € Wr. Now suppose that for some @, 3SM @. By definition
(@)1 = (@)1~ ((B’, C"))"0o’, for some B’, C' and o’. Since 0L € (7)o, we can
not have 5R%. Hence, we have either % = 7 and then D ¢ (@)o, or C' = D and
B’ = Iy D' for some D’. But then (@)o must be an (Isr, D)-critical successor
of (w)o—and so D ¢ (@)o.

Assume that IpD € (@)o. We have to show that V& (wR3 — Ja(3S5a A
D € (@)o)). So assume that wR%. Since (Wr, R) is a tree, we can find a
unique immediate R-predecessor @’ of v. By axiom p (for Ip) we must have
IpD € (@')o, and so, by axiom m for Ip, also Ip(D AL) € (@')o. By
construction (7); = (w')1”((B, C)) for some B and C. If B is not of the form
(=)IpB’, then we consider (¥)o to be an (Ip, L)-critical successor of (@')o.
By 3.4 there exists an (Ip, L)-critical successor A of (@')o with D, O0L € A.
We may assume that @ := (A, (@'); " ({(IpD, L1))) € Wr. Moreover it is clear
that 3SP 4@ and D € (@)o, as required. If, on the other hand, B is of the form
(=)IpB’, then (%)o is an (Ip, C)-critical successor of (@’)o. By 3.4 there exists
an (Ip, C)-critical successor A of (@')o with D, OL € A. As before we may



assume that @ := (A, (@)1” ((IpD, C))) € Wr. Moreover, we have 5S5 @ and
D € (@)o, as required.

The last case we have to consider is the case that IpD ¢ (@)o. But this case
is entirely analogous to the case Iy D ¢ (@)o. QED.

Proposition 4.4 Let A € £(O,Ix,Ip). Then ilm/pt A iff ILM/P | A.

Proof. If ilm/p - A then, by a simple induction on derivations, ILM/P | A.
If ilm/p I/ A then by 4.3 there is a finite JLM/P-model M with M £ A. By
the soundness of ILM/P w.r.t. ILM/P-models it follows that ILM/P If A.
QED.

Proposition 4.5 Let A € £(00,Iy). Thenim/pt Aiffilmb AFILM - A.

Proof. The second equivalence is [3, Proposition 2.15]. If ilm |- A then obviously
ilm/pt A. And if ilm If A then by [3, Theorem 2.14] there is an ILM-model
M with M £ A. M may be turned into an ILM/P-model M’ by defining
ySP 2z iff zRyRz. Obviously, M’ | A. So by 4.3 ilm/plf A. QED.

Proposition 4.6 Let A € £(0O,Ip). Then ilm/pt A iff ilpt A iff ILP |- A.

Proof. Similar to the proof of 4.5—using [3, Proposition 2.25 and Theorem 2.23].
QED.

Fix T to be a ©¢-sound finitely axiomatized sequential extension of I¥;, and
define the arithmetical interpretation (-)* of £(0J, I, Ip) into the language of
T as usual for proposition letters, Boolean connectives and [], while

(IpA)*
(Irr A)*

‘T'+ A* is interpretable in 1"
“for all II9-sentences ¢, if ¢ is provable in T+ A*,
then ¢ is provable in 1.

Proposition 4.7 1. Let A € £(O,Iy). Then ilm/p - A iff for all (-)*,
Tk A*.
2. Let A€ L(O,Ip). Then ilm/pt A iff for all (-)*, T+ A*.

Proof. To prove (1) use 4.5 and the fact that by [5, Theorem 10.1], ILM I A
iff for all interpretations (-)* of £([J,Ix) into the language of T, T A*. To
prove (2) use 4.6 and the fact that by [6, Theorem 8.2], ILP F A iff for all
interpretations (-)* of £(0J,Ip) into the language of T, T+ A*. QED.

According to Propositions 4.4 and 4.7 what ILM/P says about unary inter-
pretability and unary II9-conservativity considered separately is precisely what
it should say about these predicates. This lends additional support to the con-
jecture that ILM/P is the logic of the relations of relative interpretability and
I19-conservativity (taken together) of all £9-sound finitely axiomatized sequen-
tial extensions of I¥;.
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