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Abstract

The situation calculus, originally conceived by John McCarthy, is
one of the main representation languages in artificial intelligence. The
original papers introducing the situation calculus also highlight the
connection between the fields of artificial intelligence and philosophical
logic (especially modal logics of belief, knowledge, and tense). Modal
logic changed enormously since the 60s. This paper sets out to revive
the connection between situation calculus and modal logic. In partic-
ular, we will show that quantified hybrid logic, QHL, is able to express
situation calculus formulas often more natural and concise than the
original formulations. The main contribution of this paper is a new
quantified hybrid logic with temporal operators and action modalities,
tailor-made for expressing the fluents of situation calculus.
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1 Introduction

The seminal paper that McCarthy and Hayes published in 1969, Some Philo-
sophical Problems from the Standpoint of Artificial Intelligence, marks a
watershed in artificial intelligence. It is the key reference for one of its
main representation languages—the situation calculus. We will focus here
on the original version of situation calculus (McCarthy 1963; McCarthy and
Hayes 1969, sometimes called the “snapshots” version, to distinguish it from
other variants). The most important construct of situation calculus is—no
surprise—situations. As (McCarthy 1963) has it:

One of the basic entities in our theory is the situation. Intuitively, a
situation is the complete state of affairs at some instant of time. . . .
Since a situation is defined as a complete state of affairs, we can never
describe a situation fully; and we therefore provide no notation for
doing so in our theory. Instead, we state facts about situations in the
language of an extended predicate calculus. Examples of such facts are
1. raining(s) meaning that it is raining in situation s.

The situations are fully informed instances of the world of which we have
limited knowledge, but still occur in the object language—this is what modal
logicians now call a hybrid language. Precisely the same intuition is present
in the writings of Arthur Prior, the founder of temporal logic (Prior 1967).
McCarthy and Hayes (1969) praise Prior’s work. They include his temporal
operators into the situation calculus and they note the similarity of their
use of situation variables to Prior’s time-instants. But that is it. Apart
from this promising beginning, the languages of situation calculus and the
modal languages based on Kripke’s and Prior’s work have always stayed far
removed from each other.

We think this is at least partly due to historical reasons. First of all,
Prior’s writing is notoriously difficult. Secondly, in the late 60’s first order
modal logic was a hot topic but the debate centered around all its philo-
sophical problems. At that time hardly anyone saw it as a useful language
for doing knowledge representation, with McCarthy and Hayes as notable
exceptions. In fact, Prior is an exception too; he saw that modal logic could
be used for a general (dynamic) theory of information. Another important
reason was the inadequate expressive power of the available modal languages
for the purposes McCarthy and Hayes had in mind. Since the late 60’s, this
situation has changed considerably. First and foremost, we know now that
actions can be naturally represented in dynamic logic, a branch of modal
logic.1 Secondly, nowadays modal logic has become a respectable member
in the field of knowledge representation, be it under the name of description

1Dynamic logic originates with Pratt (1979). The recent monograph Harel et al. (2000)
contains many applications of dynamic logic to computer science. The rendering of a
version of the situation calculus in GOLOG by Levesque et al. (1998) is also based on
dynamic logic.
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logic.2 Finally, the 90’s saw the emergence of a branch of modal logic called
hybrid logic which took up, or sometimes reinvented, many of Prior’s ideas.
E.g., seemingly unaware of Prior’s work, Passy and Tinchev (1991) argue
for the introduction of names for states in dynamic logic. Hybrid logic adds
to modal logic explicit reference to states, a mechanism to bind variables
to states (the modal–logical term for situation), and a holds operator @iφ,
allowing one to express that a formula φ holds at a state named i.

The purpose of this paper is to introduce hybrid logic to the artificial
intelligence community. We will do this by showing that hybrid logic is very
well suited to express what is normally formulated in the situation calculus.
We have chosen for a comparison with the very first situation calculus lan-
guage, from McCarthy and Hayes (1969). Our prime reason for choosing this
work, apart from the fact that it started the field, is that one can feel their
struggle with the first order language they are using. They have to intro-
duce λ–abstraction, and all the time they introduce abbreviations to make
their formulas look intuitive. These abbreviations foreshadowed a number of
later technical developments in modal logic (e.g., van Benthem’s celebrated
standard translation into first order logic). In fact, we see McCarthy and
Hayes as forerunners of the use of modal logic as a knowledge representation
language and would not be surprized if they had used hybridized first order
modal logic to state the situation calculus if only the right ingredients had
been available when they wrote their article.

The rest of this paper is structured as follows. We start with with a brief
introduction to hybrid logic. In the main part of the paper we show how to
express typical situation calculus statements in hybrid logic. Here we gently
introduce the notions of hybrid logic and show their use in examples. Rig-
orous definitions of its syntax and semantics are provided in the appendix.
We end with a discussion of the presented work.

2 Hybrid logic

The rapidly growing field of hybrid logic, although rooted in the philosophi-
cal logic of Prior, is now being recognized as a tool in the field of knowledge
representation. Hybrid logic has close connections with the field of descrip-
tion logic (cf., the page http://dl.kr.org/ or (Calvanese et al. 1999)).
At present, several description logic theorem provers are being adjusted to
handle the full nominals of hybrid logic. These provers handle propositional
hybrid fragments with an exponential time worst case complexity with sur-
prising efficiency. The proof and model theory of propositional hybrid logic

2Description logic (Borgida 1995; Calvanese et al. 1999) evolved out of Brachman and
Schmolze’s knowledge representation language KL–ONE (Brachman and Schmolze 1985).
There are now a number of very fast DL provers for very expressive (exptime complete)
languages, e.g., DLP and Racer, cf., the DL web page http://dl.kr.org/.
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is by now understood very well (Blackburn 2000; Areces et al. 2001). Recent
unpublished work on first order hybrid logic indicates it has enormous advan-
tages over first order modal logic. For instance, a complete analytic tableau
system exists which also yields interpolants. One of the strong indications
that something is missing in the usual formulation of first order modal logic
is its failure of the interpolation property (Fitting 1983). The computational
and applied logic group at the University of Amsterdam is currently imple-
menting a resolution–based theorem prover for hybrid logic. Carlos Areces
maintains a web page devoted to hybrid logic at http://www.hylo.net.
There have been a number of hybrid logic (HyLo) workshops. The next will
be held as a LICS–affiliated workshop during the summer of 2002.

3 Situation calculus as hybrid logic, First steps

In this section we argue that hybrid logic is an excellently suited formalism
to speak about situations and fluents. We do this by reviewing the key
examples in (McCarthy and Hayes 1969) and reformulate them in hybrid
logic. The hybrid language will be introduced informally and step by step.
A rigorous formal definition of the resulting quantified hybrid logic can be
found in the Appendix.

McCarthy and Hayes seem very much willing to suppress the situation ar-
gument in their formulas, just as in first order modal logic. This shows in
all example formulas in section 2 of (McCarthy and Hayes 1969). They find
it unnatural (and going against natural language practice) to add an extra
argument to each predicate symbol for the situation. For example “John
loves Mary” has to be expressed as love(j,m, s) where s refers to a situ-
ation. For this reason they introduce “abbreviations” in which this extra
argument is suppressed. (We write this between quotes as the syntactical
status of these formulas is not always clear.) Still they cannot do this in
all cases because they sometimes need to refer to situations explicitly. They
note the similarity with Prior’s nominals:

The use of situation variables is analogous to the use of time-instants
in the calculi of world-states which Prior (1967) calls U -T calculi. (Mc-
Carthy and Hayes 1969, p.480)

We will now show that the modern treatment of Prior’s ideas which has
become known under the name of hybrid logic provides exactly the linguistic
elements that McCarthy and Hayes seemed to be searching for.

The two most important semantic constructs in the situation calculus
are the situation and the fluent. A situation is the complete state of the
universe at an instant of time. A fluent is a function whose domain is the
set of situations. Propositional fluents are fluents whose range is the set of
truth values {true, false}. Situational fluents are those whose range is the
set of situations itself.
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We start with considering propositional fluents. The key idea of situa-
tion calculus is that the meaning of every expression is a fluent. If we equate
situations with the possible worlds from Kripke semantics, following the sug-
gestion in (McCarthy and Hayes 1969, p.495), then sentences in quantified
modal logic express propositional fluents. For example, the meaning of the
sentence “John walks” is traditionally given as the set of possible worlds
in which the sentence “John walks” is true. This set of course uniquely
determines a propositional fluent.

Key idea of modal logic: Every first order modal logical sentence ex-
presses a propositional fluent. It does so without referring explicitly to
situations. In fact in traditional modal logic one can not refer to the situa-
tions (more traditionally called “worlds”) in the models. Also in quantified
hybrid logic (QHL) every sentence expresses a propositional fluent. But in
addition one can refer to situations and indicate that a formula holds at a
certain situation.

Names for situations and a holds operator. But McCarthy and Hayes
need more expressive power than quantified modal logic has to offer. They
want to be able to express “At situation s, ‘John walks’ holds”.3 This is not
possible in quantified modal logic because it contains no machinery to refer
to possible worlds.

This is where Prior’s ideas and their modern treatment in the form of
hybrid logic come into action. For the moment, add a second sort of vari-
ables, called nominals, to the language of first order logic. Every nominal
is a formula, and nominals can be freely combined to form new formulas.
In addition, whenever i is a nominal and φ is a formula, then also @iφ
(pronounce: at i, φ) is a formula.

The function of nominals is to name situations. The meaning of a nom-
inal i—an atomic formula in hybrid logic—in a model will be the proposi-
tional fluent which is true only for the unique situation that is named by
i in the model. @iφ adds a holds–operator to first order logic: @iφ states
that the formula φ holds at the situation named i. Thus the meaning of @iφ
is the constant propositional fluent which sends every situation to true if φ
holds at the situation named i, and every situation to false otherwise.

Let’s consider the first example from McCarthy and Hayes (1969, p.478).
McCarthy and Hayes want to “assert about a situation s that person p is in
place x and that it is raining in place x.” This is expressed by at(p, x, s) ∧
raining(x, s). Not being satisfied with this notation they give two other

3The holds operator plays an important role in a number of knowledge representa-
tion formalisms, for instance in Allen’s work on events and intervals (Allen 1983) and in
Kowalski’s event calculus (Kowalski and Sergot 1986).
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possible equivalent notations:

[at(p, x) ∧ raining(x)](s) (1)
[λs′.at(p, x, s′) ∧ raining(x, s′)](s). (2)

In QHL all these are expressible by different formulas without lambda ab-
straction. The fluent λs′.at(p, x, s′) ∧ raining(x, s′) is simply expressed in
QHL by at(p, x) ∧ raining(x). The formulas (1) and (2) are then expressed
by @s(at(p, x) ∧ raining(x)), an almost literal translation of the statement
in natural language. Finally the original formulation is expressed by dis-
tributing @s over the conjunction as in @sat(p, x) ∧@sraining(x).

Theories and definitions. There is a second reason why McCarthy and
Hayes want explicit reference to situations. To express laws of nature, def-
initions or other information which is supposed to be true in all situations,
you have to universally quantify over situations. They give the example of
a kind of transitivity for the predicate in(x,y,s) which expresses that x is in
the location in situation s:

∀x∀y∀z∀s.(in(x, y, s) ∧ in(y, z, s)→ in(x, z, s)) (3)
∀x∀y∀z∀.(in(x, y) ∧ in(y, z)→ in(x, z)). (4)

In the second statement the situation argument is suppressed and ∀. is meant
to implicitly quantify over all situations. In modal terminology ∀. functions
as a universal modality. In description logic a special status is given to
statements which are supposed to be true in all situations. They are placed
in, what is called, the T–Box (for Theory Box). This is the natural place to
collect definitions and other laws which hold universally. We adopt this T–
Box machinery and express (3) and (4) simply by putting the QHL sentence
(5) in the T–Box.

∀x∀y∀z(in(x, y) ∧ in(y, z)→ in(x, z)) (5)

Note that this is almost literally the formulation (4) which is preferred in
(McCarthy and Hayes 1969), except that the unappealing empty quantifier
is replaced by the T–Box.

Prior’s temporal operators. In section 2 of (McCarthy and Hayes 1969),
Prior’s temporal operator F is introduced in the situation calculus. Here it
becomes clear that the used formalism is not suited: only with explicit λ–
abstraction can one make a simple causality assertion. F(π, s) means that
“the situation s will be followed (after an unspecified time) by a situation
that satisfies the fluent π”. To describe the temporal aspect of situations,
McCarthy and Hayes postulate a function time from the set of situations to
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a set of time–points. The last set comes with the usual (linear) earlier than
ordering.

Now (6) is the formalization of the assertion that “if a person is out in
the rain, he will get wet”.

∀x∀p∀s[raining(x, s) ∧ at(p, x, s) ∧ outside(p, s)→ F(λs′.wet(p, s′), s)]. (6)

This is also too much for McCarthy and Hayes and they quickly suppress
explicit mention of situations, yielding

∀x∀p∀.[raining(x) ∧ at(p, x) ∧ outside(p)→ F(wet(p))]. (7)

If we delete the empty quantifier ∀. in (7) and put the result in the T–Box,
we get the formalization in temporal QHL.

In temporal QHL, Prior’s temporal operators F and P are added to the
language: whenever φ is a formula, also Fφ and Pφ are formulas. Their
meaning is evaluated locally in a situation: Fφ is true in a situation s if
there exists a situation s′ such that time(s) < time(s′) and φ is true at s′.
The meaning of Pφ is defined similarly but with s′ before s. Thus Fφ is true
in a situation s if there exists a situation in the future of s at which φ is
true. Pφ expresses the same thing, but with respect to the past.

Actions. The largest change in the language comes from our treatment
of actions as compared to that in (McCarthy and Hayes 1969). (A related
approach is taken by Levesque et al. (1998), cf. also Reiter’s book (Reiter
1996–2000)). We treat actions as in dynamic logic (Harel et al. 2000) and
introduce a modality for every action. McCarthy and Hayes (1969) deal with
actions through the situational fluent result(p, σ, s). In this, p is a person, σ
an action and s a situation. The value of result(p, σ, s) is the situation that
results when p carries out σ, starting in s. If the action does not terminate
result(p, σ, s) is considered undefined.

Note that result(p, σ, s) is a function with the set of situations as its
range. Using functions one can only handle deterministic actions. Another
drawback of this representation is the use of partial functions. It is unclear
what truth value a formula should receive when some of its arguments are
undefined. Reiter (1996–2000) has similar problems which lead to the in-
troduction of “ghost situations.” Dynamic logic offers a solution for these
problems, but pays the price that explicit reference to situations is not pos-
sible in the language. As we will see, when this is needed it can be elegantly
done in hybrid logic. To simplify matters, we just consider actions and let
the actor be implicit. So assume there is a set ACT of primitive actions.
Then whenever φ is a formula and α ∈ ACT is an action, also 〈α〉φ and [α]φ
are formulas. 〈α〉φ is true in a situation s if there exists a situation s′ which
is the result of carrying out α in s and φ is true in s′. [α]φ is defined dually,
so that φ needs to be true in all situations s′ which result from carrying out
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α in s. Thus if α is a deterministic action @s[α]φ expresses that φ is true in
the situation result(α, s).

McCarthy and Hayes use result to express certain laws of ability of the
form @sφ→ @s′ψ with s′ = result(σ, s), expressing that if φ holds at s, then
ψ is true in the situation which is the result of carrying out σ in s. With
action modalities one can make more fine–grained distinctions. @sφ →
〈α〉> expresses that α can be carried out in situation s if φ holds there.
@sφ→ [α]ψ expresses that if α is carried out in s under the assumption of
φ, then ψ is true in every resulting situation (though there need not exist
one). Here are two more examples of properties which cannot be expressed
in situation calculus (or for that matter, in dynamic logic), but can in the
hybrid formalism:

• @s〈α〉> expresses that it is possible to carry out action α successfully
in situation s;

• @s[α]Ps expresses that the situation which results after carrying out
action α in situation s is later in time than s. In plain words this
formula expresses that it takes time to perform α.

The combination of actions into strategies is immediate in this approach.
Whenever φ is a formula and α1, . . . , αn ∈ ACT are actions, also 〈α1〉 · · · 〈αn〉φ
and [α1] · · · [αn]φ are formulas.

Dynamically creating names for situations. For some applications we
need to be able to refer to situations which result from carrying out actions.
This can be done by the downarrow binder from hybrid logic. Intuitively
↓x.φ is true at a situation s if φ is true at s under the assumption that x
refers to the situation s. A few examples will clarify its usefulness. ↓x.〈skip〉x
expresses that the result of performing skip in any situation named x is
always the situation named x. The next formula expresses that drinking
is a continuous action (meaning that every drinking action is a sequential
composition of two (smaller) drinking actions)

↓x.[drink]↓y.@x〈drink〉〈drink〉y.

To see how this works, suppose the formula is true in situation s. Then the
formula [drink]↓y.@x〈drink〉〈drink〉y is true in s assuming that x refers to s.
Hence for all situations s′ which result after drinking in s, ↓y.@x〈drink〉〈drink〉y
is true in s′. Thus, assuming also that y refers to s′, @x〈drink〉〈drink〉y is
true in s′. But under the naming assumptions this is true precisely if two
drinking actions performed after each other can lead from s to s′.
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4 Discussion and conclusions

The seminal paper that McCarthy and Hayes (McCarthy and Hayes 1969)
published in 1969 marks a watershed in artificial intelligence. Its importance
can simply not be underestimated: apart from introducing the situation cal-
culus as one of the main representation languages in artificial intelligence,
the paper is most famous for singling out a number of fundamental prob-
lems that did set artificial intelligence’s research agenda for years to come.
Amongst its most important contributions are its role in the identification of
the monotonicity of classical logic as a fundamental problem for intelligent
robots; and perhaps it is most famous for introducing the frame problem
(an area of unsurpassed activity in artificial intelligence). Both these fun-
damental problems resulted in important research traditions (see (Brewka
et al. 1997) for an overview of the field of non-monotonic reasoning, and
see (Shanahan 1997) for a survey of the frame problem). Nowadays, the
ideas of (McCarthy and Hayes 1969) seem to have reached their ultimate
success—they are part of the common knowledge and taken for granted by
most researchers. Nevertheless, we feel that there are more than historical
reasons for re-appraising (McCarthy and Hayes 1969).

A less frequently discussed contribution of the original paper is that it
highlighted the connection between the fields of AI and philosophical logic
(especially modal logics of belief, knowledge, and tense). This is even more
extraordinary considering that the formulation in terms of Kripke semantics
of these modal logics were recent developments in the 60s, and at that time
part of a rather peripheral area in logic, plagued by deep philosophical prob-
lems. However, also modal logic progressed since the 60s and broadened its
subject matter. As an illustration, the recent monograph (Blackburn et al.
2001) starts with stating that “modal languages are simple yet expressive
languages for talking about relational structures”. It is this view, of modal
logic as a multi–purpose knowledge representation language, which holds the
promise to shed new light on some of the fundamental problems of knowl-
edge representation. Arthur Prior held this view already, now it is being
fully developed in the fields of description logic (Calvanese et al. 1999) and
hybrid logic (Blackburn 2000).

The main contribution of this paper is a new quantified hybrid logic
with temporal operators and action modalities, tailor-made for expressing
the fluents of situation calculus. We have shown that in this quantified
hybrid logic, situation calculus formulas can be expressed more natural and
concise than the original formulations. Moreover, it comes with additional
operators such as a downarrow binder that may enhance its expressive power
beyond the original situation calculus. More generally speaking, the aim
of this paper was to revive the connection between situation calculus and
modal logic. This aim can perhaps best be viewed as an effort to bring
back together two research traditions that have worked independently for
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many years. This may also help to highlight some of the common interests
of knowledge representation and modal logic. We can only hope that this
inspires further collaboration, and fruitful exchange of ideas between the
two communities.
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A Formal definition of quantified hybrid logic

The language of quantified hybrid logic QHL is obtained by adding nominals
to name situations, the holds operator @s, Prior’s temporal operators F and
P, and the action modalities 〈α〉 and [α] to ordinary first order logic with
equality. In detail, we have a set NOM of nominals, a set ACT of action
statements, a set FVAR of first order variables, a set CON of first order
constants, and predicates of any (including nullary) arity.

The terms of the language are the constants from CON plus the first order
variables from FVAR. The atomic formulas are all symbols in NOM together
with the usual first order atomic formulas generated from the predicate
symbols and equality using the terms. Complex formulas are generated
from these according to the rules

@nφ holds operator
¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ booleans
∃xφ | ∀xφ quantifiers
Fφ | Pφ temporal operators
〈α〉φ | [α]φ actions modalities.

Here n ∈ NOM, x ∈ FVAR, and α ∈ ACT.
These formulas are interpreted in situation calculus models. Such a

model is a structure (S, time, T,<, {Rα}α∈ACT, Inom, D, Icon, Is)s∈S such that

• S is a set of situations

• time is a function from S to the set of time points T

• (T,<) is a linearly ordered flow of time

• {Rα}α∈ACT is a set of binary relations on S, one for each action α ∈
ACT.

• Inom is a function assigning members of S to nominals;

• Icon is a function assigning elements of D to constants in CON;

• for each s ∈ S, (D, Is) is an ordinary first order model

To interpret formulas with free variables we use assignments. An assignment
is a function g from FVAR to D. With gxd we denote the assignment which
is just like g except that g(x) = d. Given a model and an assignment g, the
interpretation of terms t, denoted by t̄, is defined as

x̄ = g(x) for x a variable
c̄ = Icon(c) for c a constant .

Now we define the crucial satisfaction relation: when is a formula φ true
in situation s in model M under the assignment g. We abbreviate this by

12



M, g, s  φ. Note that this is just a handy way of defining exactly which
fluents are expressed by which formulas. The definition follows the recursive
construction of the language. First we define s g φ for the atomic cases,

s g R(t1, . . . , tn) ⇐⇒ 〈t̄1, . . . , t̄n〉 ∈ Is(R), for R an n-ary predicate symbol
s g ti = tj ⇐⇒ t̄i = t̄j
s g n ⇐⇒ Inom(n) = s, for n a nominal

for the holds operator,

s g @nφ ⇐⇒ Inom(n) g φ for n a nominal

for the booleans,

s g ¬φ ⇐⇒ not s g φ
s g φ ∧ ψ ⇐⇒ s g φ and s g ψ
s g φ ∨ ψ ⇐⇒ s g φ or s g ψ
s g φ→ ψ ⇐⇒ s g φ implies s g ψ

for the quantifiers,

s g ∃xφ ⇐⇒ s gxd φ, for some d ∈ D
s g ∀xφ ⇐⇒ s gxd φ, for all d ∈ D

for the temporal operators,

s g Fφ ⇐⇒ s′ g φ for some s′ ∈ S such that time(s) < time(s′)
s g Pφ ⇐⇒ s′ g φ for some s′ ∈ S such that time(s′) < time(s)

and for the action modalities,

s g 〈α〉φ ⇐⇒ t g φ for some t ∈W such that Rαst
s g [α]φ ⇐⇒ t g φ for all t ∈W such that Rαst.

Let T be the T–Box which is a set of QHL sentences, and let φ be a QHL
sentence. We say that T and φ are satisfied in a model M, if

• all sentences in T are true in all situations in M, and

• φ is true is some situation in M.

For most cases, the above language is strong enough. If explicit reference to
situations obtained by an action is needed, the ↓ binder should be added.
With this operator added, the language becomes virtually equivalent to the
situation calculus. It is hard to state such a result in a precise way because
the situation calculus itself does not have a precise boundary. Still, in the
formulation of (McCarthy and Hayes 1969) it is a first order language. For
this language, the relation to hybrid logic is established in (Areces et al.
2001) as follows: a first order formula φ(s) is equivalent to a hybrid formula
if and only if the validity of φ(s) in a model is unaffected by adding or
removing situations to the model which cannot be reached through a finite
number of actions from s. The meaning of formula ∀sφ(s) can thus be
captured by placing the hybrid formula equivalent to φ(s) in the T–Box.
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