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DZHAPARIDZE’s POLYMODAL LOGIC:
Arithmetical Completeness, Fixed Point Property, Craig’s Property.

Ignatiev K.N.
Steklov Mathematical Institute,
Vavilova str.,42, Moscow,
117966, GSP-1, USSR.

ABSTRACT: In [1] G. Boolos considered the notion of
W-provability in Peano Arithmetic PA. Later in [2] G. Dzhaparidze
introduced a polymodal 1logic GP ( referred to below as GLP ) for
iterated W-provability and obtained its arithmetical completeness.
In this paper we prove the fixed point property and the Craig’s
interpolation property for GLP. This allows us to give a simpler
proof of the arithmetical completeness of GLP and to obtain some

generalizations.
§1. Introduction.

Consider an arbitrary r.e. theory T in the language of
arithmetic. A formula A is provable in T if and only if the theory
T+1A 1is inconsistent. Analogously, one can also consider the
following notion of w-provability. The formula A is w-provable iff
T+1A is w-inconsistent. The formalized E3—predicate of w-provability
Pr?(-) is considered in [1] where it is shown that the modal
properties of this predicate are identical to those of the usual
provability predicate PrT(-), i.e.the provability logic for the
predicate Pr?(-) along with that for the PrT(-) is 1logic GL
( Gédel-Léb ).

Oon the other hand, the set T of all formulae w-provable in T
is closed under the usual inferences of predicate calculus and thus
forms an arithmetical theory which in general will not be r.e. ¢
will be referred below to as w-extension of T. The theory ™ is
given by the axioms of T together with all the formulae of the form

Vx Q(x) such that T+— Q(1), T— Q(2),..., T— Q(n),... ( 1i.e.



formula Vx Q(x) is derivable in T through just one application of
w—rule ).

We can iterate the construction leading from T to Tw, i.e.
starting with theory T we can construct a sequence of theories
To’T1""’Tn"" .Moreover, we can attach a natural provability
predicate to each one of these theories provided we are given one
for T ( see example 1 below ).In [2] the joint provability logic of
all the infinite family of theories To’T1""’Tn"" with To an
arbitrary sound r.e. arithmetical theory is considered .( This logic
is introduced below as GLP ).The language of logic GLP , apart from
boolean connectives, contains infinitely many modal operators
(ol,r13,...,[nl],... translated as the provability in the theories
TO,T1,...,Tn,... .Logics formulated in this 1language are called
polymodal.

However, the semantic for GLP used in [2] is too complicated to
be of help in the investigation of the modal properties of GLP. E.g.
the questions if GLP possesses fixed point property and Craig’s
property was left open. |

In the present paper we prove the properties of GLP mentioned
above. For this we provide a simpler semantic for GLP which allows
us to give a simplified presentation of the arithmetical
completeness theorem for GLP. Moreover, we make use of this new
semantic for GLP to prove some other properties of GLP and other
polymodal logics ( some of these properties were already obtained in
(21 )

When presenting the arithmetical properties of GLP we consider
a sequence of theories of more general form than the sequence of
w-extensions of a given theory T ( in fact, this sequence should
only satisfy the requirements imposed by the soundness of GLP ).

So, to interpret the modal language we are to associate with
each theory its provability predicate and a natural number
characterizing the arithmetical complexity of this predicate.

Now let us turn to the formal definition.

Definition 1. A theory T is a triple <T,PrT(-),n>, where T is a

set of arithmetical formulae, PrT(-) is an arithmetical formula with
one free variable and n is a positive integer ( referred to as the



degree of theory T, deg(T) ),possessing the following properties:
1. Pr(-)eE .
2. PA— Pr r¢ — Yl - (Pr el — Pr_ Myly.
3. If AeX”, then PA+— A — Pr_Mal.
4. T— A <=: |=Pr_l.rA".
5. AeEn, T— A => =A.
(" =A" stands for "A is true in the standard model of arithmetic".)
A theory T 1is correct, iff for any arithmetical sentence

T— A =3 =A.

Note. Actually property 5 of the above definition implies that
for all Aeﬂi':l T— A => =A.

Definition 2. A sequence of theories To’T1”"’Tn"°° ( finite
or infinite ) 1is an increasing sequence, if it satisfies the
following conditions:

1. deg(T°)<deg(T1)<...<deg(Tn)<... .

2. n<k =3 PA+— Pr_ gl — Pr_ Myl
n k
Note. In the following examples we will assume that all

theories under consideration have a stronger property than property

2 of definition 1:
2%, PA— Vx, y(x="qt»"Ay—"glf‘/\Pr_l."cl)"/\Pr'"¢>—->n/fI — Pr_ Myly.
If a theory T does not satisfy 2*, we should replace in th
following examples PrT(o) by
le,...,wn(Vksn Pr,r"wk'I A PrPAUAkSnwk — ¢1),
where PrPAr¢1 is the natural formalization of "¢ is provable in PA".

Examples.
l.Let T=<T, Pr (-),n> be a correct theory. Consider the triple

¥ =<T? Pr (¢),n+2>,
where
™ :=T U (Vx ¢(x) | Vn T— ¢(n)},
r2T¢1 = Jy(-) (Vn Pr_Ty(n)TAPr T(Vx ¥(x)) — ¢1).
It can be ea51ly shown that T% 1s a correct theory.
Let T be a correct theory. Define Tn by induction on n:

Tn+1 T . Then T , T ,...,Tn,... is infinite increasing sequence.

2.Let Tr (-) denote the 2 —deflnltlon of truth for 2Z -formulae,
i.e. if ¢ezn, then PA— ¢ & Tr F'p1. We also require that if ¢€2n,
then PA»—-ﬂTrnr¢1 and



PA — Vetb,n//(Trn"¢w[fI > Trnr¢1ATrnrw7),
PA — \/q&('I'rn"qS'I — Trn+1r¢1).
Consider the following construction:
Tn:=<T,PrT('),n>,

where

n is arbitrary, n>o0,

T is the set of all true Zn-sentence,

PrTr¢1:=3¢(Trnrw1APrPArw—e¢1).
Clearly Tn is a minimal theory of degree n ( by property 3 of
definition 1 ), T1=PA, where PA:=<PA,PrPA(-),1>, and

T oT veeesTprees
3.Let T1 and T2 be correct theories of the same degree. The

is an increasing sequence.

theory T1U T2 is defined as follows:

T1U T2:=<T1U T, ,Pr (-),n>,

TUT
1 2
where
n=deg(T1)=deg(T2),

PrTIU T2F¢1:=3w,e(PrT1FwWAPrTZFQTAPrPAFwAe—+¢T).
It can be easily shown that T1U T2 is a correct theory.

Definition 3. Let £ be the language consisting of propositional
variables P,49,... : boolean connectives —,1; modal operators
[i],i=0,1,... . Working with the language ¢ we use the standard
abbreviation for A,v,7,> and the following abbreviations:

<i>¢ :=1[i]v¢,

o¢ := [0]9,
0P := <0>¢,
) := ¢ADQ.

We will often write "modal formula" instead of "¢-formulae".
Consider an arbitrary sequence of theories To’T1’°"’Tn"" .
An arithmetical interpretation f 1is a mapping of ¢-formulae to
arithmetical sentences which commutes with the boolean connectives
and translates [n] as provability in Tn, i.e. for every modal
formula ¢
£([n]¢):=Pr_ FE£(¢)?.

n
Note that f(¢) depends not only on £f,¢, but also on the sequence

S P S

Using the standard Solovay’s framework one can show the



following fact:

Fact. Let ¢ be a modal formula, containing only boolean
connectives and modal operator [n]. Then for any interpretation f
PA— f(¢) iff GL— ¢ ( where GL is the Godel-Lob’s provability
logic, formulated in terms of [n]).

Definition 4. The logic GLP is given as the minimal set of
¢-formulae containing the following axioms and closed under the
following rules:

(in all axioms the statement "for all n>0" is supposed)

Axioms:

0. All tautologies of propositional logic.
1. [n](¢ — ¥) — ([n]l¢ — [n]y).
2. [n]([n]¢ — ¢) — [n]¢.
3. [n]¢ — [nt+l]¢.
4. <n>¢ — [n+l]<n>¢.
Inference rules:
1.Modus ponens.

2. T ( [O]-necessitation )
Some theorems of GLP are:

5.[k]¢ — [n]¢. } k<n

6.[k]1¢ — [n][k]¢

7.<k>¢ — [n]<k>¢ } k<n

8.[n]([k]l¢ — ¢)

Definition 5. The logic GLPY is given as the minimal set of
¢£-formulae closed under MP and containing the following axioms:
1. All theorems of GLP.
2. [n]¢ — ¢, n>0.

Theorem 1. Arithmetical completeness of GLP.
Let T ,T ,...,Tn,... be an increasing sequence of theories. Then fo
any modal formula ¢ GLP+— ¢ iff for any 1nterpretatlon f PA— £f(9).
Theorem 2. Arithmetical completeness of GLPY.
Let T , T ,...,Tn,... be an 1ncrea51ng sequence of correct theories
Then for any modal formula ¢ GLPY — ¢ iff for any interpretation £

=f(9).
Note. One can see that if an increasing sequence
To'T1""’Tn"" is infinite, then all theories To’T1""’Tn’°" are



correct.
Theorem 3. Fixed point property for GLP.
Let A(p;ql,qz,...,qn) be modalized in p ( i.e. every occurrence of p
in A lies in the scope of [k] for some k ). Then there exists a
formula F(ql,qz,...,qn) such that
GLP— o(p <> A) < o(p & F)
GLP+— B(p <> A) < o(p «< F)

" Theorem 4. The logics GLP and cLp¥ possess Craig’s interpolatio
property.

In the sequel we assume that the language £ contains modal
operators [n] only for 0<n<N for some fixed N>0. Obviously, this
bound does not affect theorems 1-4.

In order to prove theorems 1-4 we need to investigate a certain
polymodal logic LN and prove the fixed point theorem and Craig’s
property for ILN. We will then be able to investigate the
relationship between LN and GLP.

We now formulate our basic results.

Definition 6. The logic LN is given as the minimal set of

2-formulae containing the following axioms and closed under the
following rules:
Axioms:
0. All tautologies of propositional logic.
1. [n](¢ — ¥) — ([n1é — [n]¥). } o<n<N
2. [n]([n]¢ — ¢) — [n]¢
3. [k]¢ — [n][k]¢ } 0<k<n<N
4. <k>¢ — [n]<k>¢
Inference rules:
1.Modus ponens.

¢

Z'TET$ ( [n]-necessitation )

We define operators a¢ and a*¢ as follows:
Ag:=/\ [11][12].-~[ln]¢
0<i <i _<...<i <N
' 1 72 n
AT Pi=@dAAD
Note that GLP— a¢ <> n¢, GLP— a*¢ « mé¢.

Theorem 5. Fixed point property for LN.
Let A(p;ql,qz,...,qn) be modalized in p. Then there exists a formula



F(ql,qz,...,qn) such that
IN— A(p <> A) & A(p & F)

IN— a*(p & A) & o' (p & F)
Theorem 6. The logic LN possesses Craig’s property.

For any modal formula ¢ we define M(¢) by the following way:
M(¢):= A4 ( [kI¥y — [nly ),
[k1Y<P, k<n<N
where "elgez" stands for "61 is a subformula of 62".

Theorem 7. A reduction of GLP to LN.
For any modal formula ¢
GLP— ¢ & LN+— M(¢) — ¢
Theorem 8. 4 reduction of LN to GLP.
Assume that ¢ does not contain the sentence letters P /P seee/Py- We
define a translation w* for yYyc¢ as follows:
1. * commutes with boolean connectives.
2. ([n1¥)*:=[n](p,— ¥¥)
Then
IN— ¢ &> IN+— ¢* <> GLP— ¢*.

Theorem 9. Relationship between GLP and GLPY.
a) Define:

H(¢) := A\ ([nly — V).
[nlyc '

Then for any ¢
GLPY — ¢ «> GLP+— H(¢) — ¢.
b) For any ¢
GLP+— ¢ &3 GLP+— o¢ <> GLP” — o¢.
c) Assume that ¢ does not contain [N]. Then
GLPY — ¢ &> GLP+— [N]¢ «> GLPY— [N]¢.

We assume the reader to be acquainted with the basic facts
about Kripke semantic for polymodal logics.

Definition 7. An LN-model XK is a N+3-tuple <K,R°,R1,...,RN,w—>,
where K is a nonempty finite set ( support of XK ), R! is the
accessibility relation for [i], # is a forcing relation, possessing
the following properties:

1. Yn R" is irreflexive and transitive.



2. Vk,n: k<n A xRy A (xR"z v zR"x) — zRKy.

Definition 8. An LN-model X is ¢-complete, where ¢ is a modal

formula, iff
VxeK Vy: [k]yce Vn: k<nsN ( xw— [K]JY — [n]y ).

Theorem 10. IN+— ¢ iff ¢ is valid in every LN-model.
Theorem 11. GLP+— ¢ iff ¢ is valid in every ¢-complete LN-model

Note that by theorems 7,9,10 the logics GLP, GLPY and LN are
decidable.

§2. LN-models.

Proof of theorem 10.
Soundness is evident; thus, we only need to prove the
completeness.
Let ' be a finite set of modal formulae. We say that I is
LN-consistent, iff LN»+1A¢EF¢.
Let LN~¢, and W:=(y,"y|ycd}. Now we define an LN-model X, in
which ¢ is not valid:
:=<K,R%,R?,...,RY, >,
K:={xcW|x is maximal LN-consistent set},
xRPy:es
1.y ( [nlyex — ¥, [n)yey )i
2.Yy Vk<n ( [k]yex < [Kk]lyey ):;
3.3Y: [n]Yey A [n]ygx;
X+ p :&> PEX.
It is evident that X is LN-model.
Lemma. For any yYc¢, x€K X+ Y &> Yex.
Proof. The only interesting case is ¥ = [n]6.

"e=": Using condition 1 of the definition of R".

"=3": Assume [n]6¢x, i.e. a1 [n]@ex. Let x have the following
form:
x={1[n]e;[O]Fo,[l]Fl,...,[n-l]Fn_1;1[0]20,...,1[n-l]zn_l;[n]Fn;...}.
Consider the set of formulae:
y-:=(16,[n]6;[0]F ,[1IT ,...,[n-1]T _ ;7 [0]Z ,...,7[n-1]%__ ;

[n]Fn,Fn}



and suppose it to be LN-inconsistent. Then
IN — A;’"([ijr‘i A [1]Z)) A [DIT AT — ([n]e — ).
Using the [n]-necessitation rule, GL theorems for [n] and axioms 3,4
by the definition of LN we obtain:
IN — /\:)"1([i]r‘i A 7[i1Z)) A [nT_— [n]6,

i.e. x is inconsistent.

Then denote by y a maximal consistent extension of y.. We have:
xR"y, yw 8, hence xw [n]6. The lemma is thus proved.

Let u be a node of X such that ~¢eu. By the lemma, uw ¢. QED.

Note. One could think that we could use this proof to give a
normalization theorem for the calculus LN ( as for GL ) using the
following sequel rule:

[o]rol[1]F11"'l[n]Fnlrnl[n]¢ = ¢I[0]Zol"'l[n-1]zn_1

[o]rol[l]rll"'l[n]rnl = [n]¢l[o]zol"'l[n—l]zn_

The Gentzen system obtained by adding the above rule ( GLN ) will be
adequate for LN, but unlike GL, we cannot exploit the previous proof
to prove a cut-elimination theorem for GIN. The reason for this is
that: if we substitute in the proof of the theorem underivable in
GLN ™ "saturated" sequents for the maximal LN-consistent set, thus in
saturating y- new formulae ( which were not in x ) of the form [k]Y
can appear. Thus the right to the left implication in the second
condition of the definition of R" is the cause of the fact that the

cuts cannot be eliminated.

Construction of LN-models.
1.Submodels.
First a trivial remark: the restriction of an LN-model to a
subset yields an LN-model.

2.A cone restriction.
This 1is a standard idea that can be used for any Kripke
model. For x€K the cone restriction of x is defined as follows:
wX:={x}U LY
io i
W :={teK | there exists a chain x=x R °x_...R "t}.

One can easily see that for LN-models we can assume io<i1<...<in in



the definition of Wx. Thus,
Xh— AP &> Vyewx y— ¢

xi— At e Vyeﬁx y— ¢
Define xRy to be yewx. Then R is transitive and irreflexive.
As for arbitrary Kripke models, passing to the cone restriction
of LN-models preserves the forcing relations on formulae.

3.LN-closure.

If XK is an arbitrary Kripke model we say that K1 is
an LN-closure of K iff X and Kl have the same support and Kl is the
minimal LN-model which contains XK. Note that if Kl exists, then it
is unique.

4."Link" of LN-models.

Let s LN-models K1’K2"'°'Ks be given, and their supports do

not intersect. Let a node X, be fixed in each Ki. Also, let n be a
natural number and I' be a set of formulae that is closed under
subformulae. Assume that the following property is fulfilled:
(*) Vo,k: [k]¢el, k<n Vi,j<s ( X, — (K] & xj»— [(k]¢ ).

Define an LN-model K:

K:=K1U KZU ...U KSU {h};

before introducing R! we define the sets Ej , 1l<js<s, 0O<i<n, E;.C_K\j
as minimal sets satisfying the following conditions:
1.x €E'.
J J
z.er;, ( ( xR?y AKk>i ) v ( yR?x Ak2i) ) = yeE}

Note that
%% x Rix = Vyer! Rix.
(**) 55 . y j y j
Define now R' as the minimal binary relation on K such that:
1.ij;x, yeE3 = yR'x , i<n.
2.XJR;X — hRx , i<n.
3.hR"x ..
. J .
4.xR;y =3 xR'y.

The forcing relation on K is that induced naturally by Kl,...,KS.
We take an arbitrary forcing relation in h. It is easy to prove that
K is an LN-model.( In fact, we can obtain X by another way: use
conditions 3,4 in the above definition and then take the LN-closure

10



of the obtained Kripke model.)
Lemma. VY¢el' VxeKJ Xh— ¢ &> X ¢.
X

J
Proof. The only interesting case is ¢=[k]0, where k<n.

"e=" jis trivial.
"—", Assume Xxw [k]6. Then there exists a node y such that
X
yw0, kay ( by induction hypothesis, — 6 and — 6 are
X X,

1
equivalent ), where either y lies in Kj or the relation kay is the
result of applying rule 1 from the definition of RX . In the last
case yeK , x Rky, erF, but since yw 6, then x w [k]6. By (%),

m m J X moy

m . m :
xjw+[k]6, and therefore there is 2z such that ijgz, zw 6. But er?,
X, X,
J J
and thus by (**) kaz. So, xw [k]6.
X,
J
The lemma is thus proved.

§3.Fixed Point Property and Craig’s Property for LN.

The properties of LN-models established in the previous
paragraph have are of an independent interest. Now we consider some
technical concepts which will be used in proving theorems 5 and 6.

Define the set:

W:={<xo,x1,...,x

> | X 1X geeesX Ew}.

We impose on V the following ;Lructure: vectog sum x+y ( x+yeV ),
partial ( component ) order x<y ( :&> Vi xi<yi ) and linear
lexicographical order x<y ( :&> di: X<y, A Yi<i xj=yj ). We also
use a reflexive orders x<y, X<Y.
Define o(x,y) for x,yeV as the maximal number n for which there
exists a sequence:
X=X >X >X_>...>X ; Vi X <Y.
Let ¢ be a modal formula. Define p(¢)ew and v(¢)eV as follows:
v(¢):=<xo,...,xn>, where X, is the number of
all subformulae of ¢ of the form [i]D;
p(¢):=0(2v(¢),2v(9)).
In the following reasoning we will follow [3].
Let S be a finite set of sentence letters, K be an LN-model and
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x€K. We define by induction on n the n-S-character of x to be the
conjunction of all formulae of the form:

1.p, /P, | p, €S;

2.<k>C, a<k>C, where C is (n-1)-S-character.
( a modal formula C is n-S-character, iff C is an n-S-character of x
for some LN-model K and x€K ), which are true in x ( if n=0 the
definition consists only of clause 1 ).

Note that if x1 and x2 have the same n-S-character, then for

any y, such that leky1 there exists Y, such that szky2 and Y, and
Y, have the same (n-1)-S-character.

Proof of theorem 5.
Lemma 1. Let ¢, ¥ be modal formulae. The following statements
are equivalent:
1) .For any ILN-model X K+ ¢ => K Y3
( from now on K+ ¢ denotes VxeK xw— ¢ ),
2).LN+— A¢p — AY;

3).IN— at¢p — a .

Proof.
3) =2 2). LN+ ¢AAP — YAAY
LN — A(¢AAP) — A(YALY)
IN— A9 — AY
( Using the model completeness of LN ( theorem 10 ) it is easy to
see that LN contains all theorems of GL, formulated in terms of a
and that LN is closed under A-necessitation ). |
1) => 3). Assume IN~ a*¢ — A*yY. Then there exists an IN-
model X such that Xw (a*¢ — a*y), i.e. for some =xeK xw— a'g,
x# AtY. consider the cone ﬁx. Then ﬁx»— ¢, but there is yeﬁX such
that yw y.
2) => 1). Assume there exists an LN-model X such that XKw» ¢
Kwy. Adjoin a bottom node h to K such that for any xeK hR°x. Then
hw— A¢, hw Ay, i.e.2) does not hold.
This proves lemma 1.

Fix now a formula A(p;ql,...qm) modalized in p, and let
n:=p(A), S:={q1,...,qm}.

Lemma 2. Suppose that K1 and KZ are LN-models in which p « A

is valid, and let X X, be nodes of K1’K2 respectively which have
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the same n-S-character. Then X, and X, agree on p.

Proof. Suppose not. Define the function u: Kl,K2—+ Y as
follows: u(x):=<y0,...,yN> where yi is the number of those
subformulae of A of the form [i]D that are false in x.

Define by induction two finite sequences:

", xlex, ie(1,2),
such that ( for every step of the inductive definition ):

(o} 1
X, X, eeo e, X
1’ 1’ ’

1) x{,xg have the same (n-j)-S-character, jx<n
2) wd)+uxl)ysuEdtudtt), jsn
3) x{,xg differ on some YcA.
Basis. 2:=xi, ie{l,Z?: X X, differ on p.
Induction. Because xi,x; differ on Yy and yYcA, one of three

cases holds:
1. xi,xg differ on some sentence letter from S.

2. x{,xg differ on p.
3. x{,xg differ on some subformula A of the form [k]D.

Case 1 is impossible according to the assumption 1); case 2 implies
cases 1 or 3, because p¢«>A holds in K1 and Kz. Thus 3 must be the
case.

Let, for example, x{n+[k]D, xgw— [k]1D. ' Since
IN+— 2 [k]D— <g>(1DA[k]D) ( Léb’s axiom ), there exists xi*l s.t.
xinx{*l and xi+1w—-1DA[k]D. It is easy to see that

(*) 1. Vick xiw— (1] => xi+1*— [il¢
2. xin+ [k]D, x{*lw- [k]D.

Choose xi*l s.t. ng:xg+1 and x2+1,xg+1 have the same
(n-j-1) -S-character. Assumption 1) holds, 3) holds because xi+1n+D,

xi*lw— D (¢« xgw— [k]D ). Further ( as for (*) )

(%%) Vis<k xgw— [i]¢ = Xg+1w— [i1¢.

(*) and (**) imply that assumption 2) holds. The construction is
finished.

Let now yj:=u(x2)+u(xg)ew. Then yo>y1>...>yn+1
But this contradicts the definition on n. Lemma 2 is thus proved.

and Vj yj52v(A).

Let F be the disjunction of all n-S-characters C with th
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following property: there exists an LN-model X and a node xe€K such
that p¢«—A is valid in X, x+ p and C is the n-S-character of x.

Suppose that p«»A is valid in an arbitrary LN-model K1; we show
that p«—F is also valid in XK. Let xleK1 and C be the n-S-character
of X . If X = p, then C is among the n-S-characters disjoined to
form F; hence X F. Conversely, if X1"_ F then C must be a
disjunct of F; hence there exists an LN-model KZ in which p«>A is
valid and a node xzeK2 such that X_+—Pp and X X, have the same
n-S-character C. By lemma 2, X, and X, agree on p. Thus X = p.

Let now X+~ p be given. We show that p«A is valid in K.
Suppose not. Then there exists xeK, xw p¢>A; by the properties of
LN-models, there exists xleK such that xln—-ﬂ(peaA)AA(peaA).

Consider an LN-model K, which is different from Wx only in that
1
X P &3 X & D. The forcing of A and F is not being changed,
K X
1
because A is modalized in p and F does not to contain p. But then
Klu— p<A and 'K1n+pe+F, which contradicts to the above
considerations.

Theorem 5 is thus proved by applying lemma 1.

Proof of theorem 6.

Let A and B be arbitrary modal formulae, and S be a set of
common sentence letters of A and B. For an LN-model K and a node x€K
let uA(x) be <yo,y1,...,yN>eW, where yi is the number of subformulae
of A of the form [i]D, which are false in x; let also A(x) be a
conjunction of all formulae of the form pi,wpi,[k]D,w[k]D ( where
pi,[k]DgA ) which are true in x. The notations uB(x), B(x) are
similar. Let m:=u(A)+u(B)eV.

Lemma 1. Let xl,x2 be nodes of LN-models Kl,Ka respectively,
that have the same k-S-character, where kza(m,uA(x1)+uB(x2)). Then
A(X1)AB(X2) is satisfiable, i.e. there exists an LN-model XK and heK
such that hw A(xl)AB(xz).

Proof. Induction on k.

Basis. Let k=0. Then uA(x1)=uB(x2)=0. We take an LN-model X
with only one node h and define the forcing in h as follows:
hw— p:¢> p is the conjunct A(xl)AB(xz).( Note that x, and X agree
on all common sentence letters of A and B ).

Induction. k>0. Let
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X:={[m]D | ( [m]DCA A x1u+[m]D ) Vv ( [m]DSB A x2»+[m]D ) )
l:=max{d | [d]DeX for some D}.
Now for each D s.t. [1]DeX make the following construction:
Assume, for example, x1»+[1]D. Then there exists u such
that lelu, uw— 1DA[1]D. Let v be chosen such that
VEKZ, szav, u and v have the same (k-1)-S-character. Like
in the previous proof one can easily see that
By @)+ (V) <, (X )+ (%)),
hence
o(m,p, (u)+uy (v))<o(m,p, (x )+ug (% ))=<k.
So, the induction hypothesis holds for LN-models ﬁu and ﬁv.
Then there exists an LN-model X and yeK s.t. y#+ A(u)AB(Vv).
The construction is finished. '
Having done this for each formulalD of the agpropriate form we have

nodes U ,eee u eK x Ru,... x Ru ; V ,...,V €K
1 1’l ’ ’ 1 1’ ’ 1 s’ 1’ rYeg !

szzv reeer X, R V H IN—models Ki,...,KS w1th fixed nodes Y reeos¥os
yleKl,...,ySeK . It 1is =easy to show that if d<l1 then
v, = [d]¢ <> vji— [d]¢ ( &« X [(dl¢ ), u, [d]d <> uj»— [(d]l¢
( e X [d]9 ). By the construction, Y, ~ A(ui)AB(Vi), hence if
[d]¢<AVB then

y,+ [d]¢ <> Y [d]¢.

Thus we see that the link procedure can be used for LN-models
X',...,X° and nodes Y,r-+-sY, (where n:=1, T:={¢|¢cAv4cB} ). It
gives an LN-model K with bottom h. The forcing in h is defined as in
the case k=0.

The LN-model K and the node h are sufficient for our goals.
Proof: let ( for example ) [k]DcA. We show that

hw— [K]D &> X = [k]D.
Case 1. Let k>1. Then [k]DgX, i.e. X [k]D. On the other
hand hw [k]¢ for any ¢.
Case 2. Let k<l and hw [k]D.
Subcase 2.1. k<1l. Then yin+[k]D
Subcase 2.2. k=1. Then yi»+DA[k]D
for some 1i. Since yiu—-A(ui), Y, and u, agree on every boolean
combination of subformulae of A. So, the same formulae are true in
u., implying x1»+[k]D in both subcases.
Case 3. Let k<1 and x1»+[k]D.
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Subcase 3.1. k<1l. Then u1»+[k]D, hence y1»+[k]D and
h1 #w [K]D.
Subcase 3.2. k=1. Then there exists j s.t. uj»+D,
hence yju+D and hw [1]D.
Lemma 1 is thus proved.

Lemma 2. Let n=o(m,m) ( where m=v(a)+v(B) ). Let K1’Kz be
LN-models, xieKi, i=1,2, X and x2 have the same n-S-character and
x1"—'A' xzw— B. Then there exists an LN-model XK and xe€K such that
X — AAB.

( Equivalent formulation: if there exists an n-S-character C
such that AAC and BAC are each satisfiable then AAB is
satisfiable ).

Proof. The lemma is a consequence of lemma 1 and the following
inequalities:

B, (X )+ (x,) <V (R)+V (B)=m,
n=c(m,m) 20 (m,u, (X )+u(x)).

Now we prove Craig’s property for LN. Assume that LN+— A—C,
and let B be a disjunction of all the formulae D such that there
exists an IN-model K and x€K such that x»+— A and D is an n-S-
character of x, where S is a set of common sentence letters of A and
C, n=0(v(A)+v(B),v(A)+v(B)). It is clear that LN+— A—C. Assume that
IN+B—C, and let KI be an LN-model such that for some xleK1
X, BAnC. Let D be the disjunct of B which is true in X . Then: 1)
D is the n-S-character of X i 2) there exists an LN-model K2 and
xzeK2 such that xzn—-A and D is the n-S-character of xz. Hence, x1
and X, have the same n-S-character. By lemma 2, there exists an
IN-model XK and x€K such that xw AANC. This contradicts to
LN +— A—C. QED.

It is well-known that both finite irreflexive partial orders an
finite irreflexive trees can be considered as GL-models. Like
treelike GL-models, we introduce the concept of simple LN-models.

Definition. An IN-model X is simple, iff the following does not
hold ( x,y,z€K ):

xRiz, ijz, i=j.
( In fact we could give a stronger definition, including into it the
analogue of treelike structure, but this is not necessary for our
goals ).
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Theorem. If LN+ ¢ then there exists a simple LN-model X such
that Kw ¢.

Proof. From the proof of lemma 1 one can see that the LN-model
K constructed in the proof is simple ( it follows from the fact that
a link of simple models by their bottom nodes gives us a simple
model ). If LN~ ¢ then by theorem 10 there exists a model X and xe€K
s.t. X+— 1¢. Use now lemma 2 in the case K1=K2=K, x1=x2=x, A=B=1¢.

§4. Arithmetical Completeness of GLP.

We will prove theorems 1,7,11 together:
Theoremn. Consider an ihcreasing sequence of theories

To’T1""'TN’ For any modal formula ¢ the following statements are
equivalent:

1) GLP+— ¢.
2) For any arithmetical interpretation f PA+— f(¢).
3) for any ¢-complete LN-model XK K ¢.

4) IN+— M(¢) — ¢, where M(¢) was defined above. ( Before
theorem 7 ).

Proof.

1) => 2). We have to prove the arithmetical soundness of GLP.
By induction on ( the length of ) the proof of ¢.
Case 1. ¢ has the form:
¢ = [n](Yy — 6) — ([n]y — [n]0o).
Then 2) follows from condition 2 from the definition on the
theory.

Case 2. ¢ is Lob’s axiom:
¢ = [n1([n]y — ¥) — [nly.
Let T:=Tn. Note that by definition on the theory for any
arithmetical sentences A and B one has:

(*) If PA— A, then PA+— Pr_ rat,
(**) If PA— A — B, then PA— Pr_ ’l — Pr_ Bl.
(***) PA+— Pr_ 1 — PrTr Pr_ a1l 1,
Let A be such that:
(1) PA|—A<—9-|PrTr-|f(z//) — Al,
We have:
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(2) PA— Pr_Tf(y) — Al — PrTr PrTrﬂf(W) — A1 1 by (%%%)

PA — Prir-uf(t//) — Al — a2 by (1)

PA — PrTr PrTfﬁf(W) — Al 1 — PrTrHAJ by (*%*)

PA— Pr_ Hf(y) — A1 — PrTrﬂA-' by (2)
(3) PA+— Pr. Hf(y) — Al — PrTrf(t//)"

PAr— 1A — Pr_ FE(y)? by (1)

PA — (Pr_rrf(w)1 — f(Y)) — (A — £))
PA — 1>rTF1>rT FreE(y)l — £(Y)1 — prTF-nA — £(Y)! by (%*%%)
PA— £([n]([n]y — ¥) — [n]Y) by (3).

Case 3. ¢ has the form:
¢ = [k]J¥y — [n]y, k<n.
Then 2) follows from condition 2 of the definition of increasing

sequence.

Case 4. ¢ has the form:
¢ = <n>yY — [n+l]<n>y.
Let f be an arbitrary arithmetical interpretation, :=deg(Tn).
By condition 1 of the definition of the theory,

£(<n>y) = 2Pr_ FAf(w)TeHZAQEZfI.
n

By condition 1 of the definition of increasing sequence,
deg(Tn+1)zs+1. The third condition of the definition of the theory
states that

PA— £(<n>y) — Pr. E(<n>y)7.
n+1
Case 5. ¢ is the result of an application of MP. This case is

trivial.

Case 6. ¢ 1is the result of an application of the
necessitation rule, i.e. ¢ = oyYy. Then by the induction hypothesis,
for any arithmetical interpretation £ PA+— £(9¢). By (*),

PA— Pr_ Fre(y)l, i.e. PA— f(oy).
0

4) =» 1). This is trivial: GLP+— M(¢) for any ¢.

3) => 4). Assume IN+M(¢) — ¢. Then for some LN-model XK and
for some x€K x+— M(¢9)A1¢. It is easy to see that ﬁx is a ¢-complete
ILN-model in which ¢ does not hold.

2) =»> 3). Let K1 be a ¢-complete LN-model in which ¢ does not
hold. Adjoin a bottom node 0 to the model Kl such that OR°x for any
xeKl; call this ILN-model X. ( Note that X is also ¢-complete. ).
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Define the Solovay function h: w—K in the following way:

( We assume that PrT () is of the form:
. n
Pr. (x) = 3y Prf; (v,X)

Tn n
where Prf_l_n(-,')eﬂdeg(.rn)_1 and
PA+— PrfT (m,x) A PrfT (m,y) — x=y. )

n n

h(0):=0;

if there is a triple <z,n,y> ( z€K, n,yew ) such

that:
1.h(m)R"z

2.prf, (y, M1=z1)
n

then choose such triple to be minimal with respect
to n, and then minimal with respect to y; say

<z ,n >. Put
’ Olyo

0
h(m+1):=zo.

else
h(m+1l) :=h(m),

where 1=z denotes an arithmetic formula "1lim h(m)=2z" as usual.
m- >c0
ILemma 1.( PA ). Let

i i i
0=h(0)R 'h(1)R ®h(2)...R "h(n)=1lim h(m).
m- >0
Then i <i <i <...<i .
1" 72773 n i
Proof.( PA ). Let, for example, i1>i2. Then h(0)R 2h(2) and
Ti — 1%#h(2). This contradicts "n-minimality" in the definition
2 i

i
h and h(0)R 'h(1), i>i.

Introduce the binary relation s™, 0<n<N as follows:
us”™v iff there exists a chain:
m
quuleuz...quSR v,

m>n

for any iss Qi=Rk for k>n or RX for k>n

xRy :es yR¥x.
Note. 1. If u R?v ( i.e. m=n ), then uR"v.

2. s%s'28%>...28N; SMoRM, o0<n<N.
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y

Sn- 1

3. S"™ need not be irreflexive. Moreover, if xR"y then
y ( n21 ), because we have the chain yR"xR"y.

Let s:=deg(TN), BEA denotes the set of all arithmetic sentences

PA-equivalent to boolean combinations of En-sentences.

Lemma 2.
1. PA—\/__ 1=z.
2. PA+— l=zlAl=zz—e zl=z2.
3. If uR"™v then PA— l=u — ﬂPrTr1¢v1.
n
4. If not us”™ and u=0, PA— l=u — PrTr1¢v1.

n
5. For any zeK =zeBZA

6. 1=0 is true ( i.e. = 1=0).
7. For any z€K PAw 1#z.

Proof.
1,2,3 are entirely routine.
4. We reason in PA.

Let 1=u#0. Consider the Solovay function from the point of
view of T . It is clear that T knows everything about the
jumps of h through R¥ for k<n. ( In fact, h jumps of h through
Rk
unprovable in T

iff something is provable in Tk and something else: is
keo1® Both facts can be stated by means of Tn if
they are true ).

Let e be the last node on which h jumps through R¥ for ksn.
Thus, Tn knows that the Solovay function went through e:
1

i 1 io i 1
«..R "'"h(m-1)R °h(m)R 'h(m+1)...R "u
l

e ...i_lsiosn<ilsizs...si1
e=#0, because i1>0.
( Perhaps e=u ).
By the definition of h, TiF— l=e. So, Tn knows that 1l=e.
o .

The function h goes from e through Rll, where i >n. Thus, it
cannot go from e through RX for k<n, and obv1ously T knows it.
So, from T ’'s point of view all the jumps of the Solovay
function after e ( they must exist! ) proceed only through R¥
for k>n. Now it is clear that from Tn's point of view , if 1l=v,
then us”v. QED.

5. It is sufficient to prove that "h(m)=z"62:A for any zeK.
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By the definition of h ( PA proves that )

h(m)=z <> there exists a chain z°=0,zl,...,zm=z s.t. for any

: Mzl .3
o<igm \/k:z. gk, | Jy ( Prf_ (v, 1¢zi)AVy1<y Vz.:

i-1 i k
z, 1sz- -nPrfT (y,"1=z.1)) A Vj<k Vz.: z, 1Rjz, --PrT'"l#zfI }.
- k - J
6. Assume for some 2=0 1=z is true. Then for some exN

PAQHPA

Ter— 1#z, then TNF— 1#z. By the previous property, 1¢zeBs cr1’

hence = 1l#z. This is a contradiction.

7. Assume PA+— 1l#¥z, 2z=o. Then TOF— 1%z and OR®z, i.e. 1=0

cannot be true.

This proves lemma 2.

Lemma 3. Consider the Kripke model <K,S°,Sl,...,SN,wi>, where

+—coincides with » on all sentence letters. Then # and
coincide on every subformula of ¢.
Proof. The only interesting case is
x+— [kK]Yy = xw— [Kk]¥.
( The inverse statement is evident because R"cs" ).
Assume X#— [k]¥Y. Then there exists a chain:
lelezxz...anany, mxk, ywy.
By ¢-completeness, X = [k]y — [m]yY, hence xn»+[k]w. Thus, there
exists y- s.t. y-wy, anky'. It is clear that kay‘, hence xw [k]yY.
This proves lemma 3.
Define now an arithmetical interpretation f as follows:
f(p) :=3dz ( 1=2 A 2+—Dp ).

Lemma 4. Let z#0. Then for any yYc¢
Zi— Y => PA— 1=2 — £(¥)
zw Y => PAr— 1=z — £ (¥)
Proof. As usual, the only interesting case is ¥ = [n]6.

1. Let z#» [n]6. By lemma 3, for any u 2zS"™u => uw 6, hence
( using induction hypothesis )
PA— (1=u — zS8™u) — £(0).
Using the definition of the theory, we have

PA+— Pr_ M=u — zs™1 — Pr_£(0)7.
n n
By claim 4 of lemma 2, ( 2=0 ),
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PAr 1=z — PrTr1=u — zs™ul.
n
So,

PA 1=z — PrTrf(6)1.
n
2. Let zw [n]6. Then there exists u such that zR™u, uw 6. By

induction hypothesis,
PA+— 1=u — 1 £(9),
hence,

PA — PrT"f(e)'l — PrTr1¢uﬁ
n n
PAP—-1PrTr1#uJ — ﬂPrTrf(G)T.
n n
By claim 3 of lemma 2,

PAr— 1=z — 1PrTr1=u1.
n
So,

PA+— 1=z — a2 f([n]o).
Lemma 4 is thus proved.

Now it is easy to show that PAw f(¢). Suppose not. We know that
there exists x€K, x#0 such that xw ¢. By lemma 4,
PA— l=x — = £(9¢).
Since PA+— f(¢), PA+— 1l=x. This contradicts claim 7 of lemma 2. QED.

Theorems 1,7,11 are proved. Moreover, theorem 5 implies theorem

3, because GLPoLN and
GLP+— Ap ¢ op, GLP+— A+p <> op.

§5. Arithmetical Completeness of GLP®.

We will prove theorems 2, 9a,c together in the following
formulation:

Theorem. Let To’T1""’TN be an increasing sequence of correct
theories. Then for any modal formula ¢ which does not contain [N]
the following statements are equivalent:

1) GLPY — ¢.

2) GLP— H(¢) — ¢.

3) GLP+— [N]¢.

4) for any interpretation f = f(¢).

Proof.
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1) => 4) is trivial.
( Use the assumption that the theories To,...,TN are correct ).

2) =» 1) is trivial: GLPY — H(¢) for any ¢.

3) => 2). Assume that GLP+H(¢) — ¢. By theorem 11, there
exists (H(¢) — ¢)-complete LN-model X and x€K such that
X#+— H(¢)A¢9. Adjoin to model XK a bottom node h such that hRNx.
( Note that K does not contain RV ).

We claim that the obtained model Kl is [N]¢-complete. It is
sufficient to show that
Vy: [n]ycé¢ hw [nly — [NIY.
Let hw [N]Y. Then xw¥; but xw— [n]y — ¥ ( because xw+ H(9) ),
hence xw [n]yY. It is clear that hw [n]y also.
So, we obtain a [N]¢-complete LN-model K1 in which [N]¢ does
not hold. ( hw [N]¢ ). Thus, GLPw~ [N]¢.

4) => 3). Fix a [N]¢-complete LN-model X such that for some
x€K xw [N]¢, i.e. there is w such that xRVw and W .

Define a Solovay function h analogously to that defined in §4.
Because 0 is not defined here, it must be replaced by w in each case
( e.g. h(0)=w ). The proof is to be modified as follows:

1. Remove all the restriction to u from claim 4 of lemma 2
and add the restriction n<N. In the proof of the lemma 2 it is
necessary to deal also with the case e=w, using the existence of the
chain wRVxrRVw.

2. Claims 5,7 of lemma 2 are to be removed; claim 6 ( = 1l=w
is to be proved using the correctness of theories To’T1""'TN'

3. In the statement of lemma 4 z#w is to be removed. In the
proof of lemma 4 one must use the fact that ¢ does not contain [N]
and therefore the restriction n<N of claim 4 of lemma 2 is
irrelevant.

4. To prove lemma 4 it is sufficient to note that
PA— 1l=w — " f(¢), 1l=w is true and hence f(¢) is false. QED.
The proof of theorems 2, 9a,c is complete.

Proof of theorem 9b.
GLP+— ¢ => GLP+— o¢ by the definition of GLP.

GLP+— o¢ = GLPY — o¢ by the definition of GcLp®.
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GLP” — 0¢ = GLP— ¢.

Let To’T1""’Tn be an arbitrary increasing sequence of correct
theories such that T0=PA ( see e.g. examples 1,2 after definition
2 ). Assume GLP~ ¢. Then there exists an interpretation f such that
PArf(¢), i.e. =1f(o¢). Thus GLPY — o¢ is impossible.

Proof of theorem 4.
First consider Craig’s property for GLP. Let GLP— A — C. By

theorenm 7,

IN— M(A —>C) —» (A —> C).
it is clear that M(A — C)=M(A)AM(B); so,

IN+— M(A)AA — (M(C) — C).
By theorem 6, there exists a formula B, containing only common
sentence letters A and C such that

ILN— M(A)AA —- B and ILN— B — (M(C) — C).
But GLP+— M(¢) for any ¢, hence
GLP— A — B and GLP— B — C,
i.e. Craig’s interpolation property is proved.
Craig’s property for GLPY can be proved in the same way by

using Craig’s property for GLP and theorem 9a.( Note that GLPY — ¢
&> IN+— M(¢)AH(@) — ¢ ).

§6. Provability Semantic for LN.

Proof of theorem 8.
LN— ¢ = LN+— ¢*.

Suppose IN++¢* and K be an LN-model such that for some x€K
xw ¢*. Without loss of generality we can assume that K=WX and K is
simple. Define the function n: Wx—e w as follows: for any u if there
is y s.t. yR"™u then m(u)=n ( by the definition of simple IN-model,
this definition is correct ). Consider the set

K1:={zeWX|z»— p WU (x)

m(z)
as a submodel of XK.

Lemma. Let ¥ not to contain po,pl,...,pN.Then for every zeK1
Zh— Y &> Zw— w*.

X X
1

Proof. As usual, let yY=[n]6; then w*=[n](pn—+ 9*).
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"g | 1] .

Assume zn+[n](pn—e e*). Hence, for some yeK y»—-pnAwe*, zR"y.
X X

By the definition of m and Kl, n(y)=n and yeKl. By induction
hypothesis, yw 6. Thus zw [n]6.
X X
1 1
ll<:=" .
Assume zw [n]8, hence for some yeK1 yw 8, zR"y ( note that
X

X
1 1

y#x! ). By the definition of K1’ yf; P, By the induction

hypothesis, y»+9*. Hence, yw p — e*. Thus, z»+[n](pn—+ 6*).
K K

So, since xw ¢*, xw ¢, hence LNw ¢.
X X

GLP — ¢* = ILN+— ¢.

Assume that INw+¢ and K is a simple LN-model such that K=WX,
Xxw ¢. Using the function m defined earlier define the forcing of
sentence letters po,pl,...,pN in WX as follows:

ykpnm:nWFm
It is clear now that if n=k then
(*) K# [n]p, .

Using the previous lemma, one can see that xw ¢*. We need to
prove that K is ¢*—comp1ete. Let [n]Wg¢*. Clearly, ¢ has the form:
Y =p — 6; but if k>n then by (*) Xw» [n]Yy — [k]¥; by theorem 11,
this implies statement of the theorem 8.

Theorem. There exists a sequence of theories To'T1""’TN such
that for any modal formula ¢ ILN— ¢ iff for any interpretation f
PA+— f(¢).

g;ggﬁ. Fix an arbitrary increasing sequence To’T1""’TN .
Using a well-known trick due to Montagna ( cf.[4],[5],[6]1,[7] ), it
is easy to show that there exists a "uniform" interpretation f such
that

GLP— ¢ & PA+— f(9¢).

( We use: decidability of GLP, r.e. of PA, the effectiveness of the
construction of interpretation f ( "counter-interpretation" ) from

§4 and its bounded complexity ). Now it is clear that f(¢*) differ
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from f£(¢) only in the substitution of T0+f(po), T1+f(p1) .
T +f(pN) for T T ,...,T . So, theories T +f(p ), T +f(p ) P
T +f(p ) are sufflclent for own goals, and the theorem 1s proved.

( "Note that £(p ), £(p ),...,f(pN)eAPA , where n=deg(T,) ).

Note. This is the only place in this paper where the finiteness

the modal 1language is essential. We cannot answer the question
whether the theorem could be generalized to the infinite case, for
the uniform version of the arithmetical completeness theorem for GLP
fails ( [2] ).
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