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UNDECIDAELE FROBLEMS IN THE CORRESFONDENCE THEQRY
L. A.CHAGROVA

§ i1.Introduction. In this paper we prove undecidability of
first-arder definability of propositional formulas. The main re-
sult is proved for intuitionistic formulas, but it remains valid
for other kinds of propositional formulas by the analogous argu-
ments or with the help of various translations.

For general background on correspondence theory the reader is re-
ferred to van Benthem [11, [2]1 (L3]1 for survey on recent results).

The method for the proofs of undecidability in this paper will be
to simulate calculations of a Minsky machine by intuitionistic for-
mulas.§3 concerns this simulation. In the literature effective pro-
cedure to construct these formulas is present (cf.[4]1), but anly
modal formulas were used.

The principal results of the paper are in §4. §S gives some fur-
ther undecidability results, that will be proved in another paper

by modification of the method of this paper.

§7 First—-order definable intuitionistic formulas. Two examples

Intuitionistic formulas are constructed in the usual way from Po »
(sentence letters), 7 (negation), > (implication)., & (con-

pi'..-

junction) and v (disjunction). A Kripke frame for the intuitionism



(frame) is a pair g; =W, 2>, where W is a nonempty set (whose ele-
MENts X.YsWyVyea. are called worlds) and € € WxlW is a partial or-
dering.

Ny=<%,V> is a model (based on the frame % ) if ¥ is a frame
and V is a function, cailed valuation, that associates with each
propositional variable p & subset V(p) of W such that if xeV(p) and

#iy then y£V(p). Truth (&) relative to a model W¢ is defined by

®Ep iff xEV(p),

xETA 16 (Wy£W) (xiy = not (ykeA)),
HEAXB iff xFA and xkB,

“EAVE iff xEA or HEB,

xEASE iff (WysW) (xfy, yEA D yEE).

In the case, when not(xkA), we write xgA.

’mhé, A is true in m, if (V)-:'EN)(K\':Q)- ?l—:é, Ais valid in ?;, if
YW based on '5—' ) (MeeA) . Otherwise we write ,'5:\-;‘(-\.

Let an intuitionistic sentence A be an implication B>C. Then we
write A for xEB and xpC. Int+ARR, B is derivable from A, if from
A and the set of theorems of Int one may derive B with the help of
maodus ponens and substitution.

We say that intuitionistic formulas A a;d B fare deductively
equivalent iff Int+ARR and Int+EBHA.

An intuitionistic sentence A is first-order definable iff there
iz a first-order sentence A¥ (A¥ is a sentence from the first-order

language (with equality) of a single binary predicate) such that,
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for any frame ’E, ’;FA iff ’th a*¥ in the classical first-order
sense. If A* is V-formula (Va-fcr’mula), A is called V-—definable
(VJ—definable). For example, an intuitionistic formula pvap is
V-de+ihable (by formula V:/.Vy(x_’:y:x':y)), and qpvaap is V:]—definable
(by formula VuVyVYzJt (xsysmizsysttzit)), but isn’t VY-definable.

We need two examples of V—definahle and Vg-—definable formulas -

-

Fi and F,.

The formula Fi is defined as follows:

{ == i = 1 =
A_s sga tx . B-B tsa 58 . Q-Z «5?: sgvA_3 5

i _ 1 2 _ 1 2 _ 1
8_2 = t;l:tg*vB_a, A-B = séss?vé_a . B_s teatqu(_z,

2 _ 2 L2 _ .. oon? 3 2
A'?. = s5956 vﬁ_s, B*?. = t53 tGVB-a’ 9_3 - sqsssvﬂ_z, :

3 2 3 _ 3 3 . 2
B-g - t49t5VE{_2 LY A_z 53354 VQ_B « B_a tag t4 VB“S [

= & .
C = Sig‘tg:sthth(’ Do ti 53351 VS2Vt2'

3
== = > - = "
Ci 952:353 vé_z . 01 1:2 t3v B-2' C2 513 svaj vDo_
D = ot vD VD c = D %B“ ‘ c
= o>t,.v o * 3 T Do¥B_33s5,vC,,

2 17271
1
Dy = CoUAL, 2t vDyy Fy = CyvD,.

For ease in readability, we may abbreviate a first-order sentence



by its English translation with the help of pictures, in qguotation

marks,
LEMMA 1. The formula F,; is V-definable.
- N~ . :
FROOF. Clearly, for any frame @, 'S’\#F1 iff *there are H,YsZa«Tnhs

3 3 2 .2 i i . 3 3 2 2 i |
Ti BT s Xy s K3 X5 aX G s %, e Xy ,82.51 ,.50,?_2,?_3 ,ﬁ_a ,f-‘__s,ﬁ_a Py from
[

/ /
4 such that they form the subframe ’; af a frame g”, where @ is
depicted graphically in Figure 1°7. The sentence in quotation marks
is 3-+crmula, and its negation, being V—fcrmula, is true precisely

in that frames, in which Fi is valid.

The formula F’2 is obtained from Fi by replacing the formulas A_‘s,

B1 by the formulas (s &t ), q(t & s ), respectively.

-3
LEMMA 2. The formula F‘2 is Vﬂ—definable, but isn’t V-*definable.

-
FPROOF. Clearly, for any frame 'S*,?#Fz iff **there are M,¥Y:sZsTy»

3 3 2 2 1 i . 3 .3 2- o2 1 |
TyeTo X g 1F g 1% g X 3% 9 93_3!52!51 55035_235_3;9_2 59,3.5_2,F_3 from

' od l ad O~
4 such that they form the subframe X of a frame & « and, for the
. }

worlds ':x._1 ,P_‘g; °‘-3~“50; 9-13 +Tp in given frame, there are no common

3
successors’’®. The sentence in quatétion marks 1is HV—formula, and
its negation, being Va-formula_. is true precisely in that frames,
in which F2. is valid.

Show that F-‘2 isn"t V-definable. Denote by E‘” the Fframe obtained
from ';I by adding of the world r accessible from the worlds «__43 .
P_‘g. Clearly g”h'Fa and @"# F?.' But "S;/ is submodel of'?” in the
sense of the classical model theory. Hence F2 isn’t V—-definable by
well known criterion (theorem S.2.4 [51).

It is clear that if A and B are deductively equivalent then clas-

ses of frames, in that they are valid, are equal, and so we obtain






lemma % by lemmas 1 and 2.

LEMMA Z. a) I¥f an intuitionistic formula is deductively equiva-
lent to ﬁ_, then it is VLdefinable.

b) I¥f an intuitionistic formula is deductively equiva-
lent to Fa, then it is Va*definable, but isn®t V—definable.

REMARK. The lemmas 1 and 2 immediately follow from [&] or £71. In
£6]1 the algorithm is described which, given an intuitionistic
formula without negative occurences of disjunction (F2 is such ),
constructs a first-order Va—equivalent, and if V-fmrmula isn’t ob.
tained as a result of the algorifhm work then given the intuitio—
nistic formula isn’t V—definable; Besides this algorithm, any for-

mula without negative occurences of disjunction and without occu-

rences of negation (F1 ie such), gives its V«equivalent.

Z. Minsky machines and their simulations by intuitionistic for-

mulas

The Minsky machine is the two-tape machine operating on two inte-

gers s, and 52. The Minsky machine program 1is the finite set of

instructions I: of the forms:

$

(1 qd—»?FTiTO - being in q . add 1 to s,, go to qﬁ,

o
(2) g >0 TOT

- bei i . add 1 to s . o to .
" & { eing 1n qd. 9 Q ?P.

g —>q

<

T-iTO(qIToTb) - being in qd, subtract 1 from Si « 1f



51;£ o. and qgo to ?ﬁ, otherwise go to ql,

4) - T.T (quT. T,) — being in « subtract 1 from s if

= -# 0, and go to g,. otherwise go to q,.
2 f x

A Minsky machine configuration is an ordered triple (i, j,k) of
natural numbers, where I is a state number, ; = s{, b = 52.

We write Fr{x,m,n) —>(F,k,1) i¥+ the program P starting at confi-
guration (x,m,n) can reach a configuration (f,k,1), otherwise we

write P:{x,m,n)">(f,k,1). Define
P(i,j,k)={(1,m,n) / P:(i,j,k)-—»(l,m,n)}.

The basic unsolvable problem supposed to be used is to recognize,
given Minsky machine P and two configurations (x,m,n) and (f,k,1),
true that (F,k,1) € Pl(x,m,n) [41].

We introduce the following formulas:

I
H]
w

b3
v
D
by
<
m
g
1
m
]
D
3
v
i
h y
<
D
o gl S
3
W
!
S

a = a2 wr® wa’sa va'  vel vrl
hig = ez FE-3 TR ER YRR YR-3 VE 3

Q’ = ﬁg %83 %0 au{va vAz VB2 (nz—-1)3
h+4 -3 =3 T R RT3 7T =3 T '



2 3 3 2 2 2 2 2
= % % vA B _.
Ah+1 A_s 573 Bh:ﬁhvﬂh_if 13v -3
2 3 3 2 2 2 2 2 .
E = n° B>, LASE AS VEBZ (nz-2)
htd —3 ¥E_gHA BB VA (VA3VE 3 )
R N F\, = =/, R =o' R =g
..2 bl -2 s "i P oa —'1 g
. ) N, 3 _3
) = C, % &R v vR ;
Rh+4 { Di Ew:Fh/Rh_i\A_st_s,
R =, D, wR.oR VR a3 vr3 (nz-1)1
h+i 4 HHg EREPRpVR VA3 YE_g 0= :
a2 ¢ wp, wloadve? value?d
h+4 1 74 h h T h-4 -3 -3
3 3 3 3 3 3 .
= b & A% =2
Eh+1 C1 D1 Qﬁ:Bh Ah_ivﬁ_sva_s (n ) .
. ' /
Tn.G..Fk) = At w6t sa, s/ wr W/ Sa 4\/0 vm VR, VR
h+4 (+1 (+4 A+4 i h d

(Nyi, j20).

2 2
Because the formulas Ai, B.. A?, E

e W

; (i2p) are obtained from the

/ /
formul as Qi, Gi’ Hi’ R, by replacing r, 8« P, g by the Fformulas

i
2 2 2 2 s et o g 3
Aoz s B3 Ai~2’ Bip and r’y 87y p’y q by the formulas A.7,
3
%?5 . A£~2’ BC'2 respectively, we write
2 . ' 2 2 2 2,
T(n,A(,Ii) for T(n,Qi,ri)(Azﬁsfr, Bl—3/5’ A z/p. B. _o’ qa)d,

. 3 . 3 3 3
Tin,d, A7) for T, R DIA, _/r*y, B, /s« A /p", E,
2 O DALY R S F M PT. B



where mi doesn’t contain r, s, p, d, ¢2 doesn®t contain r’, s*, p’.

q’.

We are now in a position to define the set of formulas AxI: which
correspond to the instruction set of the program F. For each
instruction I& of P the formula AxlI. is defined as follows:

(1) If Ié is of form (1), then Axl. will be the formula

Axl. = T(ﬁ,mz,Ri)aT(m,ai,Ri)vF,
(2) I Ii is of form (2), then AxI. will be the formula
AxI, = TF,Q,, o) R, IVF
¥ F,91,R2 T(m,mi_ 1 .
(3) If I. is of form (3), then Axl. will be the formula
Axl. = (T(ﬂ,mi,Ri):T(a, Gz,Ri)vF)&(T(T,Ag,RS):T(a,Ag,Ri)VF),
{(4) I+ I& is of form (4), then AKIJ will be the formula
3 3
nl., = (T(F, R, Xy K F)e - . ’ . .
A 13 ﬁ,ai‘ { ST (i, Qi'FZ)V &(T(ﬂ.D%'QO)DT(a_Qi,AO)VF)

Here F ig either Fi or F2. Difference between Fi. and F2 isn™t

essential almost always, and in those cases, when we need F1 or Fé,

we shall note this fact specially.



Define the axiom AxF as follows:

LEMMA 4. I+ (x,y.2)EF (i, j.k). then

Int+axF T(><,A2,A:)DT(1,As,ék)vF.

FROOF. For any (i, j,k) it is proved by induction on the number of
steps from (i,3i.k) to (x,y.z). For the case where this number is 0O,
. , . 2 3 . .2 .3 .
it is obvious that T(H,AZ,AZ)Dth,Aj,Ak)vF ie provable.

Now suppose that the lemma holds for computation v steps long,
and let ¢ i, é ,$ ) be the configuration after fhe first r steps  an
r+l steps computation from (i,j;,k). By the induction hypothesis,
3)3T(i,Ag,A3
3 ik

putation is to apply If' We shall treat the case, where IC is .of

TS 3,A§,A JvF is provable. Now the next step of the com-
the form:*’being in qi, subtract 1 from 51, if sifD, and go to qx,
otherwise go to qx”. The other cases are‘similar.

First consider possibility that 2={L Then, at the (r+l)st step,
after the application of instruction, the configuwation will be
otai.a2.83vF is pro-
¢ ik

vable. But the formula AmIe corresponding to IC contains a conjunct

(X Aj,g )e 80 we must show that T X,Az,A

2 . 2 .
TCY AR ISTCY L AG R D VF,
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which gives rise to

3

T(){A 3

)=>T(§ ﬁ )y vF
by substitution. Taken with

T(E N A YD T, Q?.Ak,vF

this leads to the desired result.
If 2#0, then at the (r+l)st step, after the application of

instruction, the configuration will be (x,z-—l,é), s0 we must show

that T(x,A?,A;):T(i,AE,Az)vF is provable. Now we can use the
conjunct T(x,mi,Ri)bT(g ’Qz’Ri)VF of AHIC and proceed as above.

REMARE. lLemmas 10 and 11 nave as the consequence the converse of
lemma 4. Thus & calculus Int+AxPF is undecidable by an appropriate

choice of program F.
§4.The proofs of the principal results
Define the following formulas:

= (C % & s
G ( Li Disp):J(C2 DZ:’C1VD1"

E = (p&Di::s vCi)-‘Z/.(p%:CI >t ,vD, )D(C %D SC, vD ),

2 1im 274 2 2 1 1

I
it

GHESF ,



A

3
B(F, (,m,n), (1,5,k)) = ﬁxP&((T(m,Aa, h

)DT(i,AE,Ai)vF):F)&(FvH).

LEMMA 8. I+ (x,m,n)éFP(i, j.k), then B(F, (x,mn), (1,5,k)) is first-
-order definable. Besides, if F is ﬁ_’ then B, (x,m,n), (i, ,k)) is
V—definable, and i+t F ias Fy,, the B(F, (o, mn){i,5.K)) is Va—defina—
ble, but isn’t V-definable.

FROOF. We wuse the lemma 3. It’s enough for us to show that if
(x,m,NYEF (i, 5.k), then B(F, (x,myn),(i,j5,k)) is deductively eqguiva-
lent to F.

By lemma 4 we obtain that

INt+BP, (xoman), (i, 5.k b Tix,A (A

3
2 a3)o7i,a2,00) vF,
m h i k

and using the second conjunct of B(F, (x,m,n), (i, . k) and modus po-

nens we have
INt+B(F, (x,m,n), (i,5.k)) b F.

Now we note that all conjuncts of B(F, (a¢,m,n), (i, j.k)) have one

of the forms: AvF, ABvF, and so
Int+F F B(P, (xym,n) (i, jek)).

LEMMA &. If (m,m,n){?(i,j,k), then E(F, (x.m,n), (i,3.,k)) isn't

first—order definable,



FROOF. Let (m,m,n)%P(i,;,k). We shall write B instead of
BF_ (x,myn), (1,45.k)). For the proof we construct some uncountable
frame ??, in which B is valid, and in some its countable elementary

. ~ ¥
subframe (as submodel [51) §F the formula B is false (cf.[11).

ol r~
Define the frame ﬁ’ as follows. The set of elements W of & is to

contains:

for each né{i,E,E « —3EM<A,

t(p.guerl., where (p,g.r)sF((i,j.k),






Al of the above mentioned elements of W are to be distinct from
ones anather. Now we define the relation € on W as a closure to a

partial ordering of the following binary relation R:

S S S S S s
= ;= LRV Lt p (M= qy=hb_ %t H= Ly= &p<t-2
xRy & x=fvix at %y aP Wt2p) v b't Y bP tZplvi( ay &y bP pst-2) v

S S 2 1 3 2 3
W= y= ps<t—-2 W= Liy= W= Ly= =, By=g
v ( b-& Y aP E&pst-2)v( a_s Y a_2)v( a_g fy a_z)v( t:1 Y a_z)v
v(><=b3 -°-4y=b2 )v(,:=b2 ?«y=b1)v(:-:=d -°-:y=b3)v(:-<=c Ly=c Iv(x=d qy=d, v
-3- -2 -3 " -2 1 -2 2 1 27 1

3
o)v(:~:=t(p,q,r)84yé{a;, t:a1 a2 b;, 33 bg)v

P! 75

vi{x=c Ly=c v iu=d_ &y=d
2% 2™

(=T Ly=c Ivin=0 &y=d,)vix=x &y=x _JIvix=x &y=c Ivi{x=x &y=d )v
v LY2 -‘/2 hY . hox\/i n1Y1

h

¢ ’

(n=Ff L((y=x &ny Jviy=x  &ne W) vyes dc d, 1)),
v P y n0 7 y hi £¢P)vy {1.- j} :
where each disjunctive member is the disjunction on all possible
meanings of undefined indexes. Frame ?3: is depicted graphically in
Figure 2.

LEMMA 7. For any x#W, HB‘F'] (;~:#F—'2) iff uw=f and either

{7 mali =t o

IR L3 T A SRS PR ST B Sl BP
Lo e ald wfal] . fe s ek} doh,

b oarall=fa23. Lo/ amel =2,

~

>-<l=<5884-1t8} ={af3}), \




- 14_

»®
~

- 5_22} ={b_22§,
¢ 7 B3 ={b_33} . } (%)
v/ xESY =4p3,3,
xEDy Y ={d,}
¢ 7wy ={ay
/ey =fa)
w7 :<I|7!DB} = {0'} . J

aé a2 =fa2 ]
s |l A%g} ={a?3} ’
it 0} ={a37,
¢/ xkCo Y ={c,} .
xlh‘c4} ={ei}
v/ ;dl#(:z} ={CZ} ,

o) =473

~

<
~

14
~

~— P ~A P NS N
X P B B4 i 4 b4
~
~

~
~

or

¢/ :-:1)74(:\_13 ={b_3} ({ / *"’5:3‘"'*'8}%“}3} )
s /7 i E!_is =4a_13} ({;.:
{

® |# 9‘125 ={b—12§ ] v/ oH "# E{}a} ={E\ .12_} L]

¥

/ )-:t:tg 841s2§ ={a_13'} Yy

P24
~

¥ /N l#B_23} = {ags} .
s B 9_22} =<bgz} e 4 7 x 8_22; ={a?z-§=, . |
s/ xlbt AES; -—-{ni} N PR 9_33} =]a%3, k (%%)

« s xiEalt =33, |
{
{
xl a2, ={b,32§ A" E§23=4a§2; .
!
|
{

x
~

~

x4 xHCoY ={a,8 . b 7 Dy} ={co} \

):I#PJ ={di} 4/ :-:l#DJ ={c1} .

Pe
~

w 7 :-:ll?g 025 ={c2§ !
% I#DB-S = {T} : )

,\:I#Cz} ={d2} .
):I#CS; ={0’} . {:-:

~— P A
~

a
~
~

FROOF. The statement follows from lemmas 1 and 2, respectively.
In the further we shall suppose that the set of conditions (¥) is
satisfied. The case, when the conditions (¥¥) hold, is similar.

-

(\J
LEMMA 8. If 5’# F. then, for any €W and any number nz-3 and



hyy S 1 v o S s, S 1 o S
a) ,-‘#Ah iff M=a b A#Bh iff x=b .
’ . 1 1
{ = & v=a ., . HEt % i W= .
(In the case, when F F‘2 MES sg & -;t iff 2y h*e 1«58 iff b_3)

PROOF. We use induction on n. The cases for n=-2 and n=-3 hold by

lemma 7.
Now suppose that A, (ki-1). It means that xEBS , xHAS . xlf By
pp RbpR, (k2 . REB, (0% Ky * K-5°
. 4 . S .S . s
By the induction hvpothesis, x ‘bk~1 . ,-‘.:ak_i . ,a..bk " Thus KA.

3
Similarly \/#Bi implies y=bk.

S s s
For the converse we use the fact if HE=R and y=bk then xI¥ Ak and

S s._S SRS s /.S S¢S s.._S S /.S
yn#gk because Apiay s bk 2 * ak#bk—i . bk"bk~1 . bk'ak-a’ bk;{akq
by the induction hypothesis.

LEMMA 9. I+ & HF and, for any €%, natural =3 €, §£4{1,2%,

a#’(.,.ae,ﬁ's), “then x=t(x,y,.2? - for some triple (M,y.z)EP0i, j.k) and

. 2 2 1
a) either az#ae, bzl#QE, aa I Gleﬂ . gﬂ‘#aﬁ-i‘
2.4+ 2
or ag'#ae’ bznalae, 3*’"# QSH . 3**# Opyq
. 3 3.,/ , 3
b) either a;‘#RS’ bzl#ﬁ . #Rsﬂ . b lb‘: RS’H
3,/ 3 3
or a ¥R, . bR a R R .
ey z# §* "" S+¢4 " # S+ .
4 5 1 < 1
PRODF. If ot T(x.8.,Ro), by lemma 8 m#axﬂ -:x#bxﬂ » @fay, &by
therefore d=t(x,y.,z) for some y20, =>0. There are fi’ 'f,a such that
yaz) <€ HaVYa < ) i i
tix,y,2) € B, 5 tOty,2) .,Fz and f’i"" ‘Fab!m that implies
Fi’ ﬁ'aﬁ{aﬁ, bﬁfu,vl-l} and f1 #fz,‘ﬁa# ) by lemma 7 and constructing
N
of the frame ¥. :
If f-’*1 =a2 « for some uz-~1, then there are 7, ., 7T such that a2 L
u 1 2 u 1
Faoir, . TIEG . q‘ihéD, » that implies v,. 7 'ﬁ{az . b2 / r.séi—l} and
2727 47T e~ T 2T e 1' 2 rt s '
2 2

- v a4 - . N~ = 2 = u o
T #’12, 'ra{'\i, f«”ifﬁa, ﬁz qu1, therefore TSR f-’a By, * Ty bu-i'
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/ . , . - 2
e that implies t(,.,y,..);{aqﬁ,

- 2 2
Then we have au+1l# Oppq bu+1ll=;4 8]

2
i:(x,‘s,v,”-.)jl::u_H » theretore u=y.
g2 " =
If ﬁi— " then f-’z a, and u=vy.

The clause b) is similar.
LEMMA 10. If V is a valuation on %f' such that g#F, then, for any

~ 2 .
x££ % and natural x,y:20, z:0, oBT(x,A ,Ai) iff a=t{d,y,2).

d

PROOF. Clearly t(:-:,y,z)l#‘\'(x,ag,éi), by the definition of 37 . Con-
verse aftfirmation is proved similarly to lemma 9.
f"
LEMMA 11. &k AxP.

PROOF. Show that the formulas A}:Ie corresponding to the instruc-

tions I, hold in the <.

Ve consider the formulas which arise from rules of form (1). So
suppose instruction Iz is "’being in g 4 add 1 to s § go to q *°.
To show that A:~;,I£ _holds we first assume that w B T_‘,""Dupu ) vF. Then
whH F, so, by lemma 7, wzf Then -F#T(vx,ai,ﬁ‘i), i.e. there is » such
that fix and x T(‘x’ai’Ri)' By lemma 9, % = t(x,y,2), and
(xX,yYa2)EFP (i, j4 k) Now in such a configuration, the machine will

proceed, using Iz_. to a configuration (f,y+1,2), so the definition

of £ provides that fit(F,y+1,z). To show that the formula holds, we

-

must prove that FRT(F,Q Ri)' But by the lemmas 8 and ? we see

2’
that t(f,y#-l,z)l#T(ﬁ,G)a,F:i) and hence fhﬁT(f,Qa,R1). Then we have
(g' TR, B R )Tl 0, R

= ‘Fs "y 2T oT (s 4° '1)\!F.

The other cases are similar.

N

yoT (i ,Af,ﬁg)vF)bF.

N~
LEMMA 12, If (dam,m)¢ Fli, k) then&k(T(x,A ,Q:. "

T

~
PROOF. If ¥ F, then, by lemma 7,



(1) fI¥F.

By lemma 10 we have conditions

2 3
(2 L ¥ x [}
(2) fl= TA LA,
2 3
= (i,A. .
()f\aéTl_Ad,Ak)
. . . 2 3 o2 .3
From conditions (1)*(&)-F#1W¢,Am,ﬁh):T(1,A.,Ak)vF.

]
LEMMA 13. If ??51 F. for some valuation VY, then by this valuation
besides (¥) of lemma 7 the following conditions hold
&) wuIHC -‘Z-.:D'2::CivD1 iff u=x_ or x=ﬁ?, for some niw, ¢62ai
b) =i Dy>s,vC, implies x=x

3

no * for some ngw or x=7T or u=c
’

c)>ﬂ#tﬁ:t2vDi implies x=x . for some niw or x=0 or x=d

h,1
3 ¥ % i 3 M . M n MEC, . KE
FROOF. a) xIbf C,uD>C vD, iff (by lemma 7) xfec,. xfdy, xic , xid,
iff x=x  or x=ﬁ¢,

b) ulEf Dfss vCiimplies (by lemma 7) xfdi, x#cithat implies

2
for some n<w,
c) is proved similarly to b).

LEMMA 14. T =H.

FROOF. If =iF, by some valuation, then, by lemma 7, x=f. If xkEE,
then, by lemma 13a), for each nsw, -xh#p&cistavbi or -xht;( p-?-z.le Svat,
hence, by lemma 13b),c),-xmogp or avuih p. Choose (P52“>such that
ah1hp, for each n< . Then, clearly,ﬁ?#ﬁ, so «H¥G.

LEMMA 15. & EE.

FROOF. Immediate from lemmas 11, 2 and 14.



¥ ~
LEMMA 16. There is elementary subframe & of the frame & such

% ~¥
that & ZFvH and so & HB.

* .
PROOF. Let ?F be some countable elementary subframe of @; whose

. . h h - - o
domain cantains ., ah', bh1’ for all nﬁ{l,&,&}, -Zimiwg Ci’

~ i YEP (i, 5,008
dz, T . 0. t(pyg.rd. for all triples (p.q.r)EP(i, j.k); X8 uh# .

o
%hnot for all néw. There must be some @£2 such that ﬁPEW\w*, bhe-
¢

~%*
cause W is uncountable. Define V on & hy the following conditions:
sxvol,s)z}

{xlc
vipr=4a, 7/ n'E(P} u{.x / ny!(\o}u\ . e and V(r) for

h,4

t tg} is the same as in  lemma

ré{éo, 54, 525...,'58, to, ti’ PEEEEY
7(%). Then we have 1) fHF, fRE, 2) fEG. Here 2) follows from the
fact mhbG for n£w and %h:ﬁ for allJ%Ew* (because g7@ ). To see that
1} holds, first note that for each ntw ah\# p-?-f.CibtavD1 or
g VprDac VCi' Moreover, for each ﬁbéul, there is some ntEw such that
n€gNP. (If g=W\@ then 52 would be in W since the existence of
’5cqmplementary” worlds P? is elementary expressible.) EBecause of

2

i & 2 -
this fact, ﬁg B pPC>t, vD, or ﬁ*a B puD>s,vC, . In other words,
¥
(GEESF) vF has been shown to fail (at £ ) in ?? .

The lemma & is proved.

Thus, since the problem > (x,m,n)EF({i, ;. k)?*" is undecidable, and
the formula B(F, (x,m,n), (i, 5.k)), given F, (Xeman), (1450k), is
constructed effectively, from the lemmas § and & the following the-

orems are obtained.

THEOREM 1. The problem of first—-order definability of intuiti -
onistic formulas is algorithmic undecidable.
THEOQREM 2. The problem of V—definability of intuitionistic formua-

las is algorithmic undecidable.
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THEOREM Z. The problem of VYi-definability of intuitionistic for-
mulas is algorithmic undecidable.

THEOREM 4. A set of intuitionistic formulas that are \d3~definab-
le, but aren’t V~de+inab1e, is undecidable.

REMARK. If we consider the formula F as the formula F&, then the
formula BF (x,m,n), (i, jak?)) doesn’t contain negation, and conjun-
ction, as it is well-known, is eliminated from any formula. Thus,
in the theorems 1 and 2 we can consider intuitionistic formulas
constructed from sentence letters, implication and disjunction on-
iv. Further simplification of formulas in this direction is impos-
sible, because all disjunctionless and all implicationless intuiti-

cnistic formulas are first—order definable (cf.L71 or [81).

4, Further results - . o

In the following paper we suppose to present some other results
on undecidability in the correspondence theory. We note some ones.

THEDREM. The problem of first-order definability of intuitionis-
tic formulas in the class of countable frames is undecidable.

THEOREM. A set of intuitionistic formulas that are first-order
definable in the class of countable frames but aren*t first-order

definable is undecidable.

The proofs of these theorems wse variants of the formula AxF

that are first—order definable, and the proof of their first-order
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definability is gquite bulky. The variant of the proof of the the-
orem 1 that we have given here is obtained with the help of one

idea of A.V.Chagrov from [?] that is used in fhe proof of the lem-
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