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"How can we recognize, given axioms and inference rules of a
calculus, whether it has such-and-such property?’, a question of
that kind arises whenever we deal with a new logic system. For
large families of leogics, Lhis question may be considered as an
algorithmic problem, and a property is called decidable if there
exists an algorithm which is capable of deciding, for a finite
axiomatics of a calculus (in a given family), whether or not it
has Lhe properly.

In the class of intermediate propositional logics, for
instance, decidable are such non-trivial properties as the
tabularily, pretabularity and interpolation property (Maksimova
L1972, 197713, However, for many other important properties - the
decidability, finite model ©property, disjunction property,
Halldén-completeness, ete, - in spite of considerable efforts
effective criteria were not found.

In this paper we show that difficulties in investigating
these properties in the classes of intermediate logics and normal
modal logics containing S4 are of principal nature, since all of
them turn oul to be algorithmically undecidable. In other words,
there are no algorithms which can recognize, given a finite set of

axioms of an intermediate or modal calculus, whether or not it is



decidable, Halldén"cmmplet@, has the finite model or disjunction
propertiy.

The first resulis concerning the undecidability of properties
of calculi seems Lo be obtained by Linial and Post [19491 who
proved the undecidability of the problem of equivalence to the
classical calculus in the class of all propositional calculi with
the same language as the classical one and two inference rules:
modus ponens and substitution. Kuznetsov [1963] generalized this
result. having proved the undecidability of the problem of
equivalence Lo any fixed intermediale calculus (for instance, Lo
the intuitionistic calculus or even inconsistent). However, these
results will not hold If we confine ourselves only Lo the class of
intermediate logics, though the problem of equivalence to the
undecidable intermediate calculus of Shekhtmen [19781 is clearly
undecidable in this class as well.

Thomason  [18982) proved the undecidability of Kripke
completeness in the class of all normal modal logics. Chagrova
[1990, 19921 established the undecidability of the problem of
first~order definability of intuitionistiﬁ formulas. We will use
her method of simulating the Minsky machine behavior for obtaining
our undecidability results. Chagrov (19911 proposed a general
scheme for proving the undecidability of properties of calculi
with the help of which he established the undecidability of many
properties in the classes of normal and arbitrary extensions of
the Godel-Lob provability logic GL. We will take advantage of this
scheme below too,

The examples of decidable properties above show that from the
algorithmic point of view there is a fundamental difference
between properties of calculli and functional properties of

enumerations of computable functions: the undecidability of the
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latter iz provided actually only by their non-triviality whereas
for proving the undecidability of some property, say, of modal
caleuli it is necessary to construct rather complicated calculi
with and without the property, i.e. we have Lo know something
nen-trivial aboul the property itselff

In this respecl, Lhere are some problems concerning the
disjunclion properiy and Halldéhmcompleteneﬁg which are studied
much worse than the finite model property or decidability. We hope
this paper will help to improve the situation to some extent: here
we not only construct concrete logics (used for proving the
undecidability}  which are Halidéhmcamplete and have the
disjunction property, but prove a few syntactical sufficient
conditions fob these properties. We also obtain a number of
resulls characterizing the relationship between the disjunction
property and Halldén-completeness of intermediate and modal
logics.

Our study of the disjunction property and Hallden-
compleleness 15 based essentially on the canonical formulas which
were introduced by Zakharyashchey [18683, 1984, 1988, 1083].
Special cases of the canonical formulas are the subframe formulas
of Fine 119851 and the frame (or Jankov-Fine) formulas (see Jankov
(196831, Fine [19741). However, in contrast to these two kinds of
formulas the canonical ones can axiomatize all intermediate logics

and all modal logics conlaining S4.

4However, Rice's Theorem holds for properties of recursively

axtomatizable logics: each non-trivial property of such logics is
undecidable. This fact was discovered by A. V. Kuznetsov;, we are

grateful to L.L. Maksimova for this information.
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The plan of the paper is as follows. In §0 we collect all
necessary preliminaries. &1 describes a general scheme for proving
the undecidability of properties of calculi. It is partially
realized in &2, where the behavior of Minsky machines is simulated
by means of modal logics. In §3 we use Lhis scheme for proving the
undecidability of the finite model property and decidability of
normal modal calculi containing the Grzegorczyk system S46Grz. §4
and &6 are brief introductions to the canonical formulas of
Zakharyashchey [1988, 1989] which are applied in 85 and &7 for
obtaining syntactical sufficient conditions for the disjunction
property of intermediate logics and Halldén-cempletenegs of normal
extensions of S4Grz. Moreover, in &7 we show that unlike the
disjunction propertiy, H&ildéﬁweampieieness need nol be inherited
by any modal companion (with respect to the Godel translation) of
an intermediate logic and that there are a continuum of logics
containing S46rz with each of Lhe four possible combinations of
the disjunction property, Halldénwcampleteness and the

negat.ions of these properties (a proof of the continuality of the

£i

class of Halldén-incomplete modal logics with the disjunction

i

property can be found in Chagrov [1991al] and so is omitted here).
In §8 we prove the undecidability of the disjunction property,
Halldénwcampleteneﬁﬁ and some other properties of inLermediate and
modal calculi. In §9 we consider another property concerning the
disjunction., It i§$éalled Maksimova~completeness (or the variable
separation principle) which was introduced hy Maksimova [1978,
19781 for relevant and intermediate logics. A few open problems

are discussed in §10,



80. Preliminaries. In thiﬁ»paper we deal with two kinds of
propositional logics: inlermediate logics and normal extensions of
the Lewis modal system S4.

An intermediate logic L is a set of formulas (constructed
from propositional variables p, g, r, ... and the constant 1
(falsehood) by means of the connectives &, v, and >) containing
all Lthe axioms of the intuitionistic propositional logic Int and
closed under modus ponens and substitution. (Usually, L is also
required to be contained in the classical propositional logic Cl
which Justifies the term "intermediate 1agic"?3 Similarly, a
normal extenston of 5S4 is a sebt of modal formulas (differing from
the intuitionistic ones only by the unary connective O -
“"necessarily’™ containing all the axioms of S4 (i.e. the axioms of
Cl and the formulas OCpogio(ipog), OpolDp and DOpop as well) and
closed under modus ponens, substitution and necessitabion A4, As
usual, -4 is the abbreviation for Aol, ¢4 (Upossibly” 4) is the
abbreviation for -4 and T = L 2 L

Fach normal moedal logic M containing 54 can be represented as
the closure (under the inference rules) of some sel of formulas T
which is added to the axioms of S4. In tLhis case we write

M=S4 +T.

If [ ig a Finite set, say, T = {Ai, Chey An}? then we write

M= 54 + ‘41 oL, 4 An

and call M a calculus, (It would be more exact to say the logic M

igs glven by a calculus, i.e. by the axioms of 54, the additional

Zln the USSR more preferable is the term "superintuitionistic

logic" covering the inconsistent logic too.



axioms Ai? Ces én and the inference rules mentioned above, Note
by the way that the same finitely axiomatizable logic can be given
by infinitely many calculi and that the equivalence problem for
logics represented by calculi is undecidable, as it follows from
Shekhtman [19781.) In this sense, a calculus is, for instance, the
Grzegorezyk logic (see Segerberg [19711)

S46Grz = S4 + (ol potp) aplopd,
extensions of which we shall often deal with in what follows.

Similar notation will be used for intermediate logics and
calcull.

An  intermediate logic L iz said to have the disjunction
property (DPY if L ¢ AVB implies L + 4 or L + B, for any formulas
4 and B, A modal logic M has the (modal) disjunction property if,
for any modal formulas 4 and B, M+ 04AV0B implies M+ 04 or M HOB.
A Cmodal or intermediate) logic L is called HaiidénmcampLQZQ CHCD
if, for any 4 and B having no variables in common, L F AVE implies
L+ Ador L+ B

As is known (see Rasiowa and Sikorski [19631), each normal
extension of 54 is determined by a suitable class of topological
Boolean C(or interior) algebras. Relational representations of
these algebras, viz., general frames for 54, will be our main
semantic tools.

Remind that a genercl frame (or simply frame) for S4 (see,
for instance, Goldblatt [197613 is a triple § = <W,R,S>, where W
ig a non-empty sel (of worlds), R is a reflexive and transitive
relation (of accessibility) on W and S is a set of subsets of W
which contains @ and is closed under the sel-theoretic operations
n, U, = and the Cinterior) cperation I:

IV = {aeW|ybeW (aRb » belVl>, for all VoW

¢



The ordinary Kripke frames for 54, considered in the context of
general frames, have the form § = W,R,2¥>. However, we will keep
the conventional nctation and write § = <W,K> instead of § =
= <W,R, 2%

Valuations on a frame § = <W,R,S> are defined in the ordinary
way (the Lruth seb of every variable must be contained in S, of
coursa), As usual, akd means thal Cunder a given valuation on §) 4
ig true at the world aeW. If 4 is walid in §, 1l.e. A is true at
all the worlds in § under every valuation, Lthen we write §ed. § is
a frame for « logitc M (notation: JeMd if every formula in M is
valid in § M iz delermined (or characterized) by a class € of
frames if

M = {Aly§el A}

In the case when ¥ consists of only Kripke frames or finite
frames, M is said to be Kripke complete or have Lhe finlie model
property (FMP), respectively. For example, S46Grz is determined by

the c¢lass of all finite partially ordered frames (Segerberg

The equality in the previous paragraph may be used also as a
method for defining logics: for a class € of frames, the set of
formulas which are valid in all frames in € is a logic, and we
call 1t the logic of 6.

We use the following notation. For a frame § = <W,R,5», U,VEW
and ael, let

yt = {geW|db<V bRa ¥}, a* = {a>?,

Ve = {aeW|dbeV aRb ¥, ay = {a},,

UsV = T~ U V3,

8§ is called sharp if there is a point aelW such that a*=W; in this

case we say a is the origin of §.
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The relational counterparts of homomorphic images, direct
products and subalgebras of topological Boolean algebras are
generated subframes, disjoint unions and reductions (or p-morphic
imagesy, respectively. A general frame 3& = <Wi,Rz,S;> is a
generated subframe of § = <W,R,5 if W is an upwards closed
subset of W (i.e. w; = Wﬁ* in §J, Ri is the restriction of R Lo Wﬁ
and Si = {ymwig VeSh. The disjoint union § = $i+ 32 of frames 31 =
= <W.,E ,S5> and Eg = <w;,&;,5%> with disjoint Wg and W; is the
frame F = <W,R, S, where W = WiUWé§ R = RiURa and S =
& {ViuvagVi@Si,Vgﬁﬁa}. Finally, a mapping f from W onto ¥ is a
reduction for p-morphtsm) from Ei = <WQ,R1,S£> onto § = <W,R, S if

aR b # flalRfCB),

cRd 3 yaef™ () Fbef (d) aR b,

yWes f“‘CV}&ﬁxi

£ f is a partial (i e. not completely defined, in general)

o

mapping from iﬂ onto W satisfying these three conditions (the
first one must hold only for a,bef™ (W), of course) then we call f
a subreduction (Fine [19851) or a partial  p-morphism
(Zakharyashchev [198471),

The relational semantics for intermediate logics can easily
be derived from the relational semantics for modal logics if we
recall that each inlermediate logic is determined by a suitable
class  of  pseudo-Boolean (or Heyting) algebras and that each
pseudo~Boolean algebra is the algebra of open elements of some
Lopological Boolean algebra (see Rasiowa and Sikorski [16631).

4 general frame for Int is a triple § = <W,R,S>, where R is a
partial ordering on W and S is a collection of upwards closed
subsets of W which contains € and is closed under u, n and the

operation - defined above. If % conlains all upwards closed



subsets of W then ¥ = W,R, % is in effect the ordinary Kripke
frame for Ini; in this case we use a more simple notation: § =
= {W,R>.

The definitions of +truth, wvalidity, generated subframe,
disjoint union and reduction remain the same as for the modal
general frames and in the definition of subreduction only the last
of the three conditions is changed: il is replaced by

yWes m(f"i{~¥}4365!

(note that , is the closure operation which is dual to the
interior operation 1J.

The relationship between algebras and general frames
ment.ioned above guarantees that each modal or intermediate logic
is determined by an appropriate class of general frames. Moreover,
by the Generation Theorem of Segerberg [189711, we may use only
sharp general frames.

We say that a set VW is a cover for the frame § = <W,R, S if
W=V,

The following Proposition (which will be used in §5 and &7)
is proved only for intermediate logics though it can be readily
generalized to Lhe modal case too.

PROPOSITION. Each intermediale logic L is deiermined by some
class of general frames having finile covers.

Froof. We show that [ is determined by the class of all the
general frames for L having finite covers.

Let. L ¥ 4. Then there is a frame § = (W,R,5 for L such that
§ ¥ A Fix some valuation under which 4 is refuted in § Let
P+ .p, be all the variables in 4 and let

V, = {p/dakp,, 1£isn?,  for any aeW.

We say a is siable (in § if Va = V,, for all bea® Since aRb

é}’

N



implies V& V., there exists a stable aect, for each cel.

él’
We define an equivalence relation = on W by taking asb iff

£

either a and b are stable with Va = Vé or a=b. Consider the

quotient frame <W K>, where W = W/ and a/. R br. iff

e & 0/ It is clear that this frame has a finite cover (the
different equivalence classes generated by stable elements in W)
and the canonical mapping f @ W -+ W/  is a reduction from <W,R>
onto <W R >.

Define a truth-relation k on <W;,Rg> by taking

@’z kp, iff akp, for v =1, ,n
According to the well-known P-morphism Theorem of Segerberg
(19711,

ok B iff fla) e B,
for each formula B containing only the variables DI Let, S1
be generated (as a pseudo-Boolean algebra, i.e. by operations u,
1, » and @) by the upwards closed sels -

ool ars kEpd, for ©=1,....n,
that is VeS iff {a.| as. ¢ B}, for some formula B constructed
from p ,....p. Then F'{¥)eS, for every VeSﬂ. Therefore f is a
reduction from § onto 31 = <WQ,E1,Sﬁ>y and so, by the P-morphism
Theorem, § ¥ 4 and 8, F L. ]

To prove the undecidability of a property of calculi we will
simulate the behavior of Minsky machines by means of modal logics.

A Minsky machine (see bﬁnsky [1961]1) has itwo left-bounded
tapes, the machine heads (one on each tape) write or erase nothing
and information on a tape is the number of cells to the left of
the head.

A program for a Minsky machine is a finite set of
instructions of the form:

7O



Gy % TT . Gy= a3 TiTO,

Gy qﬁ T, T;gﬁquﬁTa}, Gy * g ?;iTaiquaTQ).
The last of them, for instance, means: if the machine is in the
state g, and there are cells to the left of the head on the first
tape then move this head one cell to the left and then pass to the
state g but. 1f the machine is in the state ¢, and there are no
cells to the left of the head on the first tape then, changing
nothing on both tapes, pass to the state @y We shall identify a
Minsky machine with its program

A configuration of a Minsky machine is a tiriple a=(g,m,nl,
where ¢, is a state, m is information on the first tape and n is
information on the second tape. Notation P:ra-t means that the
Minsky program F passes {rom the configuration a to the
configuration & by some computation, ctherwise we write P:osb,

According to the Minsky theorem, for any partial recursive
function ¢ there is a program P such that the value o(x) is
defined iff P:i(a,2%,034((,29%,0), vhere q, and gg are the
initial and terminal states, respectively. Thus, the fcllowing
configuration problem 1is  undecidable: for a program P and
configurations @ and ®, determine whether P:a=b. Moreover, it is
not. difficult to prove (see Chagrov and Zakharyashchev [19891)
that there are P and o for which the problem of the second
configuration 1is undecidable, i.e. there is no algorithm that is

capable of deciding, given a configuration b, whether F:a=b.
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§l. A general scheme for proving the undecidability of
properties of calculi. Suppose we deal with extensions of a logic
L, and are facing the following problem: is it possible to
determine, given a formula 4, whether the logic LO + A has some
property ®. Probably at first we will enthusiastically try to
construct an algorithm for recognizing P, and only after
exhausting and futile efforts to de this the brilliant idea will
strike us: what if the property 2 is algorithmically undecidable?
We will take then some undecidable problem, say, the configuration
problem for Minsky machines or the problem of the second
configuration, and try to reduce it to the problem of recognizing
P, Here is one of possible schemes for such a reduction.

First we construct a formula F such that
(1> L+ F has the property 7.

Then with a Mingky program P and configurations ¢ and o we
associate formulas AxF and Cla,®) satisfying

(@) L+ AxP+ CCa,8) iff Prasb,

in addition, F and AxF are chosen so that

(33 L+ Frt AxP

Now, consider the calculus

L{P,a,b) = L, o+ AxP + CCa,0) o F + G,
where G iz some formula which also satisfies
4y L +Fr G
If Prasb then, by (2) - (4), L(P,a,b) = L, + F, and so, by (13,
LCP,0,6) has F, but if P:agb then the fact that L(P,q,b) does not
have P must be ensured by an appropriate choice of G,

If we succeed in realizing this plan then we shall obtain
(53 LOP,a,%) has F (ff P:a=b,

since L{P,a,b) is effectively constructed of P, ¢ and o, it

72



follows al once that the property # is undecidable.
In 82 we will show how to construct the formulas A4xP and
CCa,b) when L 1is S46rz, and we will find also some semantic

characteristics of the formula F.

&2, Simulation of Minsky machines. Lel P be a Minsky program
and o = {a,m,n) be a configuration. Beginning our simulation of F
which starts with o, it is useful to keep in mind the frame § =
= <W,R> shown in Fig.1l. Intuitively, its left wvertical stripe
consisting of elements with the superscript 1 is intended for
represent.ing the states of P, its middle and right stripes whose
elements have the superscripts 2 and 3 represent the tapes of P
while the elements (B3,k,1) represent the configurations & =
= (f3,k, 1) for which P:a-% holds,

The formal definition of § = <W,R> is presented below:

W=Af e c,c,d,d,dru mJ z:-;j‘: 1€1s3, 2-3¥ U

U LLB, R, LIP: Ca,m,n)={(3,k, 123,

and K is the transitive and reflexive closure of the following

binary relation R":

xR'y iff 3,7,k 1,38 (x=f v f:xza;‘;& y=ai& J2R) v cxzb;f.& y=b& j2K) v
(x=a& y=b& jzk+2) v (x=b'& y=0[& j2R+2) v (x=a’ & y=a'') v
mebig& yzble) v x=c & (y:afav y=c, ) v
(x=d & (y=b’ v y=d v y=d 1) v (x=e & (y=c v y=d )} v

(x=t(B,k,1) &y & {ab,b%,ai,bi,af,bf}} ).

By 30 = <WO?EQ> we dencte the subrrame of § whose diagram is
shown in Fig. 2 (in Fig. 1 it is depicted by the bold-face lines).

The formula F is constructed so that § ¥ F and there are
formulas C , D, A, Bj (Jj=-2,-3, 1=1,2,3) for which, under every

J
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valuation refuting F in ¥, Lhe following equalities hold
(6> Laja ¥ Fr = {f3,
(77 Aalak €} =L ¥, {ala kD ¥ = {d }
and, for j=-2,-3, (=1,2,3,
(8 {ajak Aj;,} = {a;l}, {a]a k Bj;} = {bj,}.
The conditions (6) - (8) are satisfied, for instance, by tithe
negation of Fine's subframe formula for 59 (see Fine [19851).
However, we should remember that F must also satisfy the condition
{1} in &1.

Using 4%, B?S for ¢=1,2,3, j=-2,-3, €, and D, we construct
formulas ﬁ; Bl, for 1=1,2,3, j2-1, and T(B, 45,49 so that, for

N4
o

every valuation refuting F in §, (8) holds for all j2-3 and

LB, R, 1Y If PiCa,n,nd » (B,k, 1],

{
(9 Aala k T(ﬁ,Ai,AfB} = {é
' if PrCa,m,nd & (3, kR, 1),

(:zj [ bl fed
-3 -3
i )
G‘»z bmas
d'wzg bms
a® b*
3 . - -2
o R 3
amz b-s
c o a® d o b* o d
2 - 2 - /" ]
Vs

f
+
Fig. 2.
Thus, let
i 1 : Y. i 1 8 1 Y
A L oAn& QBnmg& aan, Bn+i an& OAnms& ﬁoAn (nz-2),



& =7, QIQ:‘: s, Q”ii’: p, Q:i:: g,

-2 ~2

- ; 2 g X1 ¢ ]
Q.= <>Ai& @Bfﬁ& A" & 0B & o & oq & ol

(n2-1):
. s 2 = - ’
@, = OA% B OB & <047 & 0B & oQ% oQ & oA,
R & =4 ” 2 3 29 = . =
Am‘i - ‘&Aw?ﬁ& 08-—3& TGAM:;;& “‘7()3__3& OAﬂ& OBn.._z& "":’gnv (nz-23;

R = 2 - % o - 20 2 Fid
BE, = A" & OB% & -0A° & ~0B” & OB& OA; & 0A,

“rukg

R =r', R =g, R =p', R =gq,

- v i i

™

R = OAZ& OB & ~0l, & 10D & OR & OR. & "OR,

) (rz-1);
R’ = 04% & OB & wC & ~0D & OR'& OR & —10R |
vk B 1 i i n Fro ) n

A = OA% & OF% & W0 & 0D & O0A*& ¢B° & 0B,
- R e i i b N .

Tty

) {nz-2J);
B = oA & OF® & 0 & 0D & 0B3& oA & -od,
vard -3 - i i T Rl 2]
Tin, @ . R) = od'% oB'% -04" & -0B° & oQ.% Q&
i 7 T k13 % i % i
& =0, & “0Q], & OR & OR'& R & R (n,1,20).

Since under substitution of 47 , B , 47 _, B, instead of

'
- -

r, s, p, ¢ and 4% _, B, 4 , B} instead of r', s', p', ¢',
{3 {-B Lz {2

respect.ively, the formulas Qﬁ?‘, Q; and P} R}, for 1,20, turn into

A2, B and 4% ., B® ., we use the following notation:
{4 jt L4 i R L ot

TCo, 4% 0 ) = T, Q.0 Y42 /v, B2 /s, A5 /p, B _/g»,
it jed T JT {3 {~3 i-2 -3

TCe, @, A2, ) = TCa,® R4S _/r', BY s/s', & _/p', B /q'),
2 FA B & J 13 L3 Lo o

where & does not contain r, s, p, ¢ and @2 does not contain r’,
s°, p', g,

LEMMA 1. If under some valuaiion on § formulas Ci, Di, A;
B";,, for i=1,2,3, j=-2,-3, satisfy (7} and (8) then (8) holds for
all 23 and (9) s also true.

Proof. (8) is proved by induction on j, and (&) follows from
(81, |

76



The formulas simulating instructions of a Minsky machine are
defined as follows:

ifl =aq,

L4

- qﬁTiTO then
Axl = oTCa, 0 ,R I > OT(B._ ,R IVF,
i1 =qg,-= qﬁTﬁTﬁ Lhen
Axl = oTCa, @ R ) o OT(B,8 K IV,
if I =q, = qﬁTc?lg€quaTg} then
AxI = (OT(a, @ R 2 2 OTCB, & R IVFY &
C¢T€a,ﬁa,A2) o) GTCy,Qi,Aj}vF}.
irl =g, = qﬁjli?oi@yTng} Lhen
AxI = (oTCo, &, R D 5 OT(3,& R VI &
wﬁajj&)sﬁﬂyﬁgﬁ3%}
For a Minsky program P, we let
AxP = & Axl.
1eP

o~

LEMMA 2. If P:la,m,n) » (3,R, 1) then
S4 + AxP F cTCa,Az,Ai) > oTiﬁ,Aa,Afva.

Proof. By induction on the length of the computation
transforming the first configuration to Lhe second. Here we confine
ourselves Lo consideralion of only one case: when the configuration
(B,k,1) is obtained from (a,m,n) as a result of applying the
instruction Gy qﬁTiTO. We have k =m + 1, 1 = n,

5S4 + AxP & oTCa,f R D 5 OT(B,8_,R I,
and so, by substituting 4 . B , 4 , B® in place of r, s, p,

g and 4 , B, 4 , B _in p§;Ze of r', ", p’, ¢', we obtain
S4 + AxP t o?Ca,Ai,Ai} > oT(B,ﬁa,Af)vF. ®
LEMMA 3. Let § be the frame shoun in Fig. 1 and corresponding
to a program P and o configuration a=Ca,m,n). Then
i) § k AxP and

(i) of Pila,m,n) & (B.k, 1) then

/7



3 ¥ oT(q, A“ A3 o T({‘Aa,fd)v¢

Proof. A detailed pr@@f of (i} which contains no conceptual
difficulties but is rather cumbersome can be found in Appendixz, and
(ii) follows from (6) and (9). ®

It follows from Lemma 3 and the obvious relation § k S46rz
that if P:Ca,m,n) # (8,k, 1) then

S4Grz + AxP ¥ QTim,AikAi3 > OT(R, A* 3)vF,
Thus, taking into account Lemma 2, for a program P and
configurations a = {a,m,n? and & = (B, k, 1), as a formula Cla,b)
satisfying (2) we may take
(10 CCa,b) = OTQa,ﬁigAi} > QTCS,Ai,Af}vfﬁ

The choice of F and G depends, of course, on the property 2.
It is not difficult te find suitable F and G for proving
the undecidability of FMP and decidability. We will demonstrate
this in the next section. However, the proof of the undecidability
of DP and HC requires somewhat greater efforts and will be
completed in §3.

18



§3. The undecidability of the finite model property and
decidability. Let us consider the frame 30 = <w;,Rg> shown in Fig.
2 and give its elements new names, viz., the integers from O to 18
so that the origin f obtains the name 0. Construct the subframe

formula 53 {of Fine [188%51) for §, which is the conjunction of
o

the following formulas:

P

OCp,>Tp ), 0Si<)s18,;

ol p, wp:) , for IR _J;

Dipimﬂoﬁj}, for t, <18 and R j.

By B, we denote the formula which is obtained from Bg by
) 0

replacing its first conjunct with o, It follows from Lemma 1 in

Fine [1985, &3] that a frame §° satisfies 83 iff §° is
¢}
subreducible to § ; moreover, if 83 is true at some world in §’
D

under some valuation then a subreduction f from §° onto 3, can be

constructed by taking

{ t if ar B,
fla) = ’
{ undefined ctherwise.

THEOREM 1. There 1is no algorithm which ts capable of
deciding, for a modal formula A, whether the logic S4Grz + A4 is
decrdable.

Proof. Take a Minsky program P and a configuration a for
which the problem of the second configuration is undecidable and
construct the frame § according to Fig. 1. Let

Fo=TBy.C =B .D =B, A, =B, , B, =B, ,

Z A
i 2 7 2 &

where 1, 1, t_, it are the new names (numbers) of c , d, a},

b;, respectively (i=1,2,3, j=-2,-3). There is essentially only one

19



subreduction from § onte § , viz., the embedding of 3@ in § shown
in Fig. 1 by the bold-face lines. So, by Fine’'s result mentioned
above, the constructed formulas satisfy (B) - (8.

Az for G, we may let 6 = T, that is in this case we can do
without & at all.

With sach configuration ©® we associate the calculus

L{P,a,b) = S46rz + AxP + C(a,b%) o F,
where C(a,b), remind, has the form (10},

Now, if P:a«b then, by Lemma 2,

L(P,a,b) = S4Grz + F.
Therefore, by Thecrem 5 of Fine [1985, 41, L(P,a,%) has FMP, and
so is decidable. Thus, it remains to show that if P:asb Lhen
LCP,6,b) is undecidable. |

Let Piadt and let ¢ be an arbitrary configuration. If P.a«¢
then, by Lemma 2,

L{FP,a,6) + Cla,c),
But if P:a#c then, by Lemma 3, (8} and (9D,

§ e LOF,0,0), ¥ ¥ Cla,c3,
and so

LEP,a,0) ¥ Cla,cl,
We have proved that L{P,a,%) + Cla,¢2 Iff Piaac, and the
undecidability of L(FP,a,®) follows now from the undecidability of
the problem of the second configuration for P and q. B

Since the undecidability of a finitely axiomatizable logic
implies that the logic does not have FMP, we have simultaneously
proved the following

THEOREM 2. There 1s no algorithm which 1is capable of
deciding. for o formula A, whether the logic S46rz + A has FMP. B

The proof above, as was to be expected, does not enrich us



too much with knowledge about the nature of the properties proved
to be undecidable. In this connection, it is worth to remember tLhe
well-known Rice Theorem from the theory of algorithms which is
proved actually by the same scheme. However, unlike the Rice
Theorem in which a property is required to be only non-trivial and
invariant, these two conditions are clearly insufficient for
proving the undecidability of properties of calcull, the examples
of decidable (non-trivial and invariant) properties mentioned in
the introduction being the witnesses. Proving Theorem 1 we used
Fine's results on FMP and decidability for constructing the
formula F with the desirable properties. In exactly the same way
in order to prove the undecidability of DP and HC we need some
results concerning these properties themselves., It is our next
goal Lo obtain them.

Cur investigation of DP and HC is essentially based on the
semant.ic sufficient conditions of Maksimova [1986] and van Benthem
and Humberstone [1983] which presuppose certain knowledge of the
construction of (general) frames for a logic. This is why we
prefer to deal with logics whose axioms are frame based formulas
such as the frame or subframe formulas of Fine [1974, 1985]. Both
these kinds of formulas are special cases of the canonical
formulas introduced by Zakharyashchev [1983, 1984, 1988, 188891, It
is these formulas that will be considered as axioms of modal and
intermediate logics. Note that doing this we do not lose
generality because all such logics c¢an be axiomatized by the
canonical formulas.

g4 and &6 contain all the necessary definitions and theorems
concerning the cancnical formulas and in §5 and §7 we obtain a few

general results on DP and HC
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&4. Canonical formulas for Int. We begin with the canonical
formulas for Int because it is the intuitionistic case that shows
most clearly a deep connection between syntactical parameters of
formulas and the construction of their countermodels. We will
explain the origin of the canonical formulas by the following

EXAMPLE. Leb uz consider the Scotl Axiom (see Kreisel and
Putnam [19571):

A = (UTpop) opv i 27 1p11p.

{Remind that the Scott logic SL = Int + 4 was one of the first
examples of proper extensions of Int having DP, and the formula 4
was invented just for producing such an example.)

Now imagine Lhat we want to find oul the construction of
frames refuting 4. Simple calculations (e.g. with the help of the
semant ic tableaux) show thal the elementary frame which refutes 4
is the frame § = <W,R> depicted in Fig. 3. Moreover, every
(general) frame §° such Lthat §F 4 must be subreducible to §, i.e.
it must contain a subframe which is reducible to § However, this
1s only a necessary condition, since the frame §, shown in Fig. 4
is reducible to § but 3{ B A (Lo refule 4 it is required that a_kp
and a, k p, but then a, k p&Ip). There are different ways to
forbid such elements as o, to appear. One of them is to request
that a subreduction from §° onto § should be confinal, i.e.,
roughly speaking, thal each world in §’ should "see" at least one
pre-image of a world in §. The exact definition of this notion is
as follows.

A subreduction f from §° = <W' ,R",5'> onto § = <W,R,% is
calied confinal if, for all asW',

(L et 3 ae AMan,.
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If in our Example a subreduction f from 31 onto § was

confinal then f(a ) would be an element in § which is impossible.

~»CQ
¥ 3 3, Q a,
Q, A 3
a Q, 4, 0, a, A
Q, a, @
Fig., 3. Fig. 4. Fig. 5.

However, the existence of a confinal subreduction from §’
ornto § does not guarantee the refutability of 4 in §° either.
Indeed, the frame § shown in Fig. 5 is confinally subreducible to
3, but BQk A. This time the world a, is to blame: it "sees”
pre-images of a, and 0, where (under a valuation refuting 4) 7ip
and p are false, and so pvIp must be false at a,;, but then

a, B 1pop, and so a  must ‘see” also a pre-image of @ which is
"responsible” for refuting Mpzp.

In general, it is impossible to forbid elements like a, to
appear using such a “global™ restriction as (1) and not making a
desired refutability criterion sufficient but not necessary. (It
is possible in the case of the Scott Axiom because it axiomatizes
the same logic as the negation of the frame formula for §.2

A "local™ restriction may be as follows. We declare that a
pair & = ({a,,a5},{as>) is a disjunciive domain (one can read it
like this: if some world "sees"™ all the worlds in the first
component. of the pair thém it "sees™ at least one world in the

second componernt), denote by U the set of all disjunctive domains
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(in our Example D = {&§3) and request that a subreductionYfrom §’
onto § should satisfy not only (1) but also one more condition

(dy if (a,B) e Dandc e f7* (W then

ce nirtty e cu Ay,
asa beb

Az a final result we obtain the necessary and sufficient
condition for refutability of the Scott formula in a frame §°,
viz. . the existence of a confinal subreduction f from §° onto §
satisfying (d). L

By this special example we have tried to illustrate a general
principle which was discovered by Zakharyashchev [19831: one can
characterize the construction of countermodels for an arbitrary
intuitionistic formula starting from some finite set of its finite
elementary countermodels and using only the notion of subreduction
and conditions (L) and (d), Moreover, Zakharvashchey [1883, 1984]
showed that if a formula is positive (i.e. it contains no 1) then
the requirement of confinalily may be nolt imposed on a
subreduction, and if a formula contains no v then its elementary
countermodels do not have disjunctive domains and so the condition
{d)} becomes degenerate. Roughly speaking, the role of > is
characterized (on the semantic level) in terms of subreduction,
the role of L (or 1) is characterized by the condition (1) and the
role of « is characterized by (d).

Now we will go in reverse direction. Beginning with a finite
frame § and a given set © of disjunctive domains in § we will
construclt a formula so that it will be refuted by a general frame
§° 1f and only if there is a confinal subreduction from ¥ onto ¥
satisfying (d).

so, let § = (W,R> be a finite sharp partially ordered frame,
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with ag,ay,...,a, being all the distinct elements of W and o
being the origin. A pair § = (a,B) of non-empty sets a,bs¥ is
called a disjunctive domain (d-domain, for short) in § if the
following three conditions are satisfied:
(i) @ and b are anti-chains in § and @ has at least two
elements;
(ii) yaea ybeb —Rb;

(iii) yoeW (c e n_ay 2 ¢ € U by,
aeq beb

Let. D be scome (possibly empty) set of d-domains in § With §
and P we assoclate Lthe formula

X 0,00 = & A & &B. &L o>p,
5 a,Ra, " 6eD ¢ ?

where
= { & . J o p.,,
At’j ey ?é(l p.?fe 7 pj - pzm
F Tk
C= 8 ¢ 8 ) 5 4
L= & ( & D o p) oL
=0 g Rg, % ¢

and if 6 = {a,b) then

Be = & ( & p opl o> v.p.
¢ a.eb ~aRa, . ¢ aea "

We denote by X(¥,D) the formula which is obtained from
X(§, 0,00 by deleting the conjunct €. The formulas of the form
X(§.D, 1) and X(§,D) are called canonicol formulas and positive
canonical formulas for Int, respectively.

The following criterion was proved by Zakharyashchev [1983
198497,

REFUTABILITY CRITERION FOR THE INTUITIONISTIC CANONICAL
FORMULAS. (1) §'¥ X(F,D,1) {ff there (s a confinal subreduction f

§
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from ' onto § salisfying (do.

(ii) ®¥ X(E,0) iff there is o subreduction f from §' onto §
satisfying CdJ. 2

The next theorem, also proved by Zakharyashchev [1983, 1989],
shows that the sel of the canonical formulas is complete in the
sense that every extension of Int (i e every intermediate logic)
can be axiomatized by canonical formulas.

COMPLETENESS THEOREM FOR THE  INTUITIONISTIC  CANONICAL
FORPMULAS. (i) There exists an algorithm which, for each formula A4,
constructs a fintie number of canonical formulas
XC§ .9, 42 ..., X(§ D 1) such that

Int + A4 =1Int + X(§ ,D L + .+ X(§ .0, 1.

Moreover, tf A has no occurrences of « then B; = 8, for all
t=1,...,n.

(ii) There exists an algorithm which, for each positiuve
formula 4, construcls a finite number of positive canonical
formulas XCEigDi) ey X(Sn,sn) such that

Int + 4 =1Int + X(§ .00 + ..+ X(§ .03,

Moreover, if A has no occurrences of ~ then B; = @, for all
L=i,... N |

For example, the Scotl logic can be represented in the form

SL = Int + X(§F,D,L00,
where § is the frame shown in Fig. 3 and ® contains only one
d-domain 6 = ({a_,a 3 {a ).

It is worth to note that the two boundary cases of the
canonical formulas - the formulas of the form X(§.0) and
Xtﬁ,ﬁ*,iﬁ, where 9% is the set of all d-domains in 3 - are similar

to the negations of Fine's subframe and frame modal formulas for
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¥, respectively, because §' ¥ X(§, @ iff §' is subreducible to §
and §'F XCE,B*,i} iff there is a generated subframe of §° which is

reducible to §.

§5. Two sufficient conditions for the disjunction property of
intermediate logics. The main tool for proving DP is the semantic
criterion which, for Kripke frames, seems Lo have been first used
explicitly by Gabbay and de Jongh [18741. In the most general
form, as an algebraic equivalent of DP, it was proved by Maksimova
110861, We need only the sufficient condition of this criterion.
It is formulated below for general frames in order Lo escape the
ef fect of Kripke incompleteness.

SEMANTIC SUFFICIENT CONDITION FOR THE DISJUNCTION PROPERTY.
Let o logic L be determined by a class § of general frames. Then L
has DP Uf, for every two fromes ﬁi,ﬁgéﬁg there is a sharp frome 50
such that

(i) 3, FL
and

(i1} the frame §i+§a is isomorphic to o genercled subframe of

et

]
Remork. This sufficient condition will be also necessary if §

.
D

contains only descripiive general frames (for definition consult
Goldblatt [19761). =

Thus, to prove DP (and many other properties as well) of
intermediate logics it is desirable to conceive well enough the
construction of frames for them. The employment of the canonical
formulas mekes this problem much easier, and so we will suppose

that each intermediate logic L is represented by its canonical
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axioms:

L = 1Int + {Xigi,ﬂi,ij}ieé.

First we note that the necessary condition for L to have DP
is non-emptiness of all the sets ﬁi in every such representation
of L Cor, which 1z equivaleni, the presence of v in each formula
in L=Int). This result was independently obtained by Minari [1986]
and Zakharyashchey [19871. (Much easier and more elegant proof,
using the semantic necessary condition for DP, can be found in
Zakharyashchev (199071 )

Fach intermediate C(or medal) logic L is known Lo be
d@t@rmin@d by an appropriate class of sharp general frames. Given
disjaiglcgrames 5, = <W;,Rigﬂi> and § = <w;,23,53>, the simplest
way of constructing a frame 8, = <w;,gc,50> satisfying (i1} is to
add origin ¢  to the frame <WiUWé,R1uE;> (which yields us the
frame <w;,§a>3 and take as 5, the system generated (as
pseudo~-Boolean algebral) by the elements from Si and 339 see Fig.

8. (It is easy to prove by induction on the construction of V e S,

Q

0
Fig. B,

that, for 1=1,2, V n W? € 5a’ and s0 Ei is a generated subframe of

3,2 In general, 30 will not be a frame for L, but for a rather



large family of logics this very simple method sycceeds. Indeed,
as axioms for L we can take canonical formulas X(§,D,1) in which
the origin of § has at least three immediate successors and
d-domains in © forbid, roughly speaking, the refutation of
XCF, 0,00 at worlds having less than three immediate successors.

THECREM 3. Let L be axiomaiized by cononical formulas
X(§.9,1) such thai the set V of the immediole successors of the
origin in § contains al least three elements and

VSV (W /e SV SV -l s FacyvrabcV ¥ (a,B) e
(see Fig., 70. Then L has DP. (Here "x' is the least integer which

ig greater than or egual o x.J

Fig. 7.

Froof. We show that the frame 80 = iW;,RQ,SQ>, constructed of
sharp frames § and 33 for L by the method discussed above,
satisfies (i), Suppose otherwise. Then 30 ¥ oX(E.D,L, for some
axiom X(§,D,1) of L, and so there is a confinal subreduction f
from 8, onto § = <W,R> satisfying (d). Note that the origin of 3,
belongs te (W), for otherwise fiwgb = W, for some 1(e{l,2>, and

s the restriction of f to Wé is a confinal subreduction from Ea
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onto ¥ satisfving (d) for X(§,9,1) which contradicts § ¢ X(§,D,1).
Moreover, for any 1 = 1,2, there is a world aeVﬁ such that
F'Cad n W= 0. For otherwise, when, say, f'(a) n W # @, for all

a eV , we can extend f by mapping the set n (f*'(a)y) onto the
* Qe

origin of § Since

=0 (ffladyd = U= flad, €S,
agl ael

the new mapping f is clearly a confinal subreduction from 30 onto
¥, with f7'(ad n W; # @, for all aeW. Therefore, the restriction
of f to W5 is a confinal subreduction from 31 onte § satisfying
() for X(§,0,L), and s0 31 ¥ X(§,D,1) which is a contradiction.

Take now that 1 for which W, contains f-pre-images of all

elements in some V ¢ Vﬁ such that f&g!E* < ; and does nolt contain
any pre~-imades of the other elements in Vo. (As we have just
proved, V -V # 0.) According to the condition of our Theorem,
there are a ¢ V* and b ¢ V_-V such that the d-domain 6 = (a,B)
belongs to ©. Thus, by (d4), hQ contains a pre-image of some
element in b which is impossible. ]

RKemark. The proof will not change if we take as (some) axioms
for L positive canonical formulas of the form X(§,D. B

Theorem 3 covers the Gabbay and de Jongh [1974] logics

n 13
= t + & ((p. o ( )
T,o=Int +& ((p, o vp)oyp)d oy p, (WD,

which can be differently represented as

T =1Int + X(§ .53,

n EH N
where § is the frame shown in Fig. 8 and P consists of all
d-domains of the form § = Ha,, aj},{ah});
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Moreover, the conditions of Theorem 3 are satisfied by the Ono
19721 logics

Int + B (n2l3,
whetr e

I3

E% = & (Cpia 1) Ejyipfﬁ ) i;gpi,
which otherwise can be represented as

Int + B = Int + X(¥ .9 .13,
where § and B are the same as for T, It is easy to show that
all logics of Wronski [1973] (remind that there are a continuum of
them) alsc salisfy the conditions of Theorem 3.

However, for the Scolt logic

SLo= Inb + X(§,D,17,
where § 1s the frame shown in Fig., 3 and © contains only
g = i{aé,ag},{ai}jg this construction does not work: the frame
8, = W ,E 5> bullt out of frames § = <w;,&i,si> and
3@ = <W_,R ,5 > for 5L by adding an origin to <W;Uw;,R£uRE> is not
in general a frame for SL. Now our goal is as follows. If X(¥.D, 1)
is refuted by 5, i.e there is a confinal subreduction f from 80
onto § satisfying (dd for X(¥, 0,10 then, putting inte W; new
elements below some elements in W; and W;, we should try to
~violate (d) and, of course, obtain no new confinal subreductions.
It is not difficult to realize this idea for SL because the first
component of & consists of the maximal elements in §, and so, by

(L), the maximal elements in W; and ¥_ are f-pre- images of a_ and
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a_; therefore we may put new elements only below each pair of

maximal elements in W_ (see Fig. .

Qo

Fig. 9.

We prove now a theorem which shows that this method of
constructing ¥ is suitable for another wide family of
intermediate logics. We shall say an element & is a focus for a
d-domain 6 = {a,b) in a frame § if aghb* and, for each cebt, either
c=b or cea?. (In other words, the world b "sees” itself and only
those worlds that can be "seen” from a.} According to the
definition of d-domain, if & is a focus for (a,b) then beb. By
h(F) we denclte the "height” of §, i.e. the number of elements in
its longest chain.

THEOREM 4. Let L be axtomatized by canonical formulas
X(§,9,13 for which h{(¥)} 2 3 and © contains a d-domain § = (a,b)
such thai it has no focus and its first component @ consists of
some moximal elements in § Then L has DP.

Proof. Applying the sufficient condition for DP, we will use
Proposition from §0 according to which every intermediate logic is
determined by a class of sharp frames with finite covers. Let 3, =
= W R ,5 > and 32 = <w;,R2,Sa> be sharp frames for L having

finite covers. With each set a consisting of at least two maximal
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elements in the frame {W;UW%§R1URE> we associate a new element Cp
the set of all such elements we dencte by V. Now we construct the

Tan = W S > where W = { i FW U,
frame § aﬂggﬁg,wa. where W = {a } U wgt Wulv,

2
xRy vff x=a_ v (X, yel & xR y) v Cx,yel, & XK, 9D ~
(x=ey, & (y=cy v yeal)
and 5& iz generated (as a pssudo-Boolean algebra) by the elements
in §i and ﬁﬁr 3, and 32 are generated subframes of § (the proof
for the previous construction may be used for the new one without
changes), and sc only ©i), i.e. § ¥ L, requires a Justification,
Suppose that X(¥.B,1} is an axiom of L and § ¥ X(§,0, L)
Since §, k X(F,0,00, for v = 1,2, and h(F) 2 3, there is a
confinal subreduction § from 30 onto § = <W,B> satisfying (d),
with a e f7(W). Take a d-domain ¢ = (¢,b) in D having no focus,
with ¢ consisting of some maximal elements in W, and consider the
set a of maximal elemenis in W_ such that f(a) = ¢ (the existence

of @ is provided by (1)), Since a ¢ cz®. we must have, by (d,

cy € #7 (b)Y, which is possible only when flegl = b e B. But then b
is a focus for 4 which is a contradiction. ]

Femark 1. Another interesting use of the notion of focus can
be found in Zakharyashchev [1990a] where it is proved that among
arbitrary (not necessarily closed under necessitation) extensions
of 546rz there is a greatest logic in which Int can be embedded by
the Godel transiation (see 8B). B

Remark 2. The sufficient condition of Theorem 4 is used in
Chagrov and Zakharyashchev [1883]1 for constructing incomplete and
undecidable intermediate calculi with DP starting from well-known
incomplete and undecidable calculi, =

The conditions of Theorem 4 are clearly satisfied by the
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Scott logic, since the d-domain C{az,az},{ai}l has no focus in the
frame shown in Fig. 3. However, using only Theorems 3 and 4 it is
impossible to prove DP of the Kreisel and Putnam [1857]1 logic

KP = Int + (mp 2 gvwr) 2Cap 2g) v (-pDrd,

which can be represented as
KP = Int + X(Eg,ﬁ,i} + X(§,0, 0

where 32 and ¥ are depicted in Fig. 8 and Fig. 10, respectively,

and D contains only one d-domain é = ({a_, a }, {a_ ). To prove DP

j{(;\\
o e, a a4 e
o i 2
\\ 1 f/
~17
Fig. 10.

of this and other logics which do not satisfy our sufficient
conditions new elements violating (d) should be put not only below
maximal elements in 3, and 3,. but below some other elements as
well., It is pot difficult to do this, but we must also guarantee
that no new confinal subreductions satisfying (d) for some axiom
will appear. The proofs of DP of KP (Gabbay [18701) and its
sublogics ND& (Maksimeva [18861) show a way for strengthening our
criteria, but this question is beyond the limits of the present

paper .



6. Canonical formulas for S4. According to the Blok-Esakia
theorem (Blck [19761, Esakia [189781), the lattice of extensions of
Int is isomorphic to the lattice of normal extensions of S46rz,
with the isomorphism preserving such properties of logics as the
tabularity, decidability, FMP, DP (the preservation theorems were
proved by Maksimova and Rybakov [18741, Gudovshchikov and Rybakov
119821 and Zakharyashchey {198%al). So, having proved the
decidability or undecidability of one of these properties for
intermediate calcull, we automatically obtain the same result for
normal extensions of S4Grz and vice versa (if the isomorphism and
its conversion are effective, of coursel). Unfortunately, the list
of  properties preserved by Lhe isomorphism does not contain
Halldénmcompletene$$~ Unlike the intermediate logics where HC
follows from DP (which may be used for proving the undecidability
of HC}, in the modal case HC need an individual approach. We will
study HC in the next section and meanwhile we give a brief
introduction to the modal canonical formulas of Zakharyashchev
[1984, 19881 which will be used in what follows.

The canonical formulas for S4 are defined similarly to the
canonical formulas for Int. The only difference is that they are
associated with quasi-ordered frames § = <W,R> which may contain
proper clusters, i.e. non-trivial equivalence classes under the
following relation =~ axb iff aqRb & bRa. The disjunctive domains
on the frame § are defined in the same way as in the
intuitionistic case.

Let § = <W,R> be a finite sharp quasi-ordered frame, with
@, ..., O being all the distinct elements in W and a, being an

o

origin. Let D be some (possibly empty) set of d-domains in §. Then
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Yig,n,1) = % 4, & &A & & B, &Cop,
. ' €

where

Aijﬂ D(Em&‘ﬂ ;%3,
4,= m(i&l"l. :»pﬂ):»pi) ,

r, = {p&,mpzlk#i, '“meaz}?
[ .
C=o&og > 1),
=0T

and if 6=Ca,b) then
Bg = & Op, o v.0p,J.

a.eb Q€0
Here & is the conjunction of all formulas in I' (if =@ then & is
.

The formula Y(§,D) is obtained from Y(§,9,L1) by deleting Lhe
conjunct €. The formulas of the form ¥(§, 0,10 and Y(F., D) are
called the canonical and positive canonical formulos for S4,
respectively.

REFUTABILITY CRITERION FOR THE MODAL CANONICAL FORMULAS
{Zakharyashchev [1984, 198813

(i) F'W Y(F, D, 1) 1ff there is a confinal subreduction § from
3 onto § satisfying (d).

Cii) F'¥ Y(E, D) Uff there (s a subreduction f from §' onto §
salisfying (d). 8

Remark, If Y(§,D,1) is refuted by a general frame §’ under

some valuation then a confinal subreduction f from §° onto §

a, if a¥ P, and a 4 where
flal = 4 is the premise of Y(F. D, 1),

3£



, undefined otherwise. -

COMPLETENESS THEOREM FOR THE MODAL CANONICAL FORMULAS
(Zakharyashchey [1984, 19881):

(i)} There exists an algorithm which, for each formula A4,
conslructs a fintte number of canontcal formulas
Yéyi,ﬁi,ii, Coy Y{En,ﬂn,ib such that

S4 + 4 =54 + Y(F 0,0+ 0+ Y(§ LD, 0.

{(ii) There exists on algorithm which, for each posiiive
formula 4 (which contains only o, &, v and D, constructs a finite
number of positive canonical formulas Y( '51 ,E)i D }’an,‘i)n) such
that

5S4 + A4 =54+ Y(F B+ ..+ Y., D). ]

As  we already know, each intermediate logic which is
axiomatizable by disjunctionless formulas can be represented in
the form

Int + {X(§,.0,102 ..

By the Diego-McKay theorem (see McKay [19681), all such logics
have FMP. Using the Refutability Criterion and Completeness
Theorem above, it is easy to prove (see Zakharyashchev [19881)
that each modal logic of the form

S4 + (§,.0,00) .

has FMP, and so is decidable if finitely axiomatizable. There are
a continuum of such logics as it follows, e.g. from Theorem 8
below,

It is worth noting that all normal extensions of S4, which
appeared in literature and were not created for obtaining anocther
"negative™ result, can be axiomatized only by formulas of the form

Y(§.0.1) or even ¥(§,0). For example,
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S46rz = S4 + YQGE,%D,
where ﬁ% is the simplest proper cluster, i.e. the frame with two
elements “seeing each other™.

Now, a few words about the correspondence between extensions
of Int and S4 which is given by the Godel translation T (remind
that T(4) is the result of prefixing O to every subformula of an
intuitionistic formula AJ.

A modal logic M is called a modal? companion of an
intermediate logic I if, for any intuitionistic formula A4,

L b ALt META.

Using canonical axiomatization, the relationship between
axioms of an intermediate logic and axioms of its modal companions
can be represented as follows (see Zakharyashchev (1984, 19837).

MODAL COMPANION THEOREM. A logic M is o modal companion of an
intermediale loglc

L = hﬂ'*{mswgwﬁ}ma
iff M can be represented in the form

M= S4 + {Yigi,ﬁi,LB}ieQ + {YCBj,ﬁj,AJ}jGPg
where each of the frames Bj, for jeFP, contains at least one proper
cluster. B

It follows from this theorem and the Refutability Criterion
that among the set of modal companions of each intermediate logic
L = Int «+ {X(§ D pL}%GQ there always exist the least and
greatest companions, viz. the logics 7L = S4 + {YC5é?DZ,L)%€Q and
ol = tL + Y(C .9 = S46rz + 7L, respectively. (These results were
first obtained by Maksimova and Rybakov [19741, Blok [18761 and
Esakia [19791),

We need also the following results concerning the

I



relationship between frames for logics L, 1L and oL (see
Zakharyashchev [1988al). If L is characterized by a general frame
<W,R,5» then, forming the Boolean closure $° of 5, we cbtain the
general frame <W,R,$’> which characterizes oL; in particular, if L
is the logic of a finite frame <W,R> then the same frame will
characterize ol (Lhis is not in general true for infinite frames
W,R>: moreover, Shekhtman [1980] constructed a logic L which is
Kripke complete but 6L is not), It follows from this result and
Proposition proved in §0 that each normal extension of 546Grz is
characterized by some class of general frames having finite
covers., As for 1L, we will use only the Dummett and Lemmon [18659]
conjecture which was proved by Zakharyashchev [188%al: if L is
characterized by a Kripke frame § then vL is characterized by the
Kripke frame «f oblained from § by replacing each of its elements
with the cluster containing w points. Thus, L is Kripke complete
iff L is.

The mapping ¢ preserves such properiies of logics as the
tabularity, FMP, decidability, DP, while v, in addition to this
list, preserves Kripke completeness but does nol preserve the
tabularity (consult Zakharyashchev [1988al). Note also that all
ment.ioned properties are preserved while passing from any modal
companion of an intermediate logic L to L itself. These results
will be used below under the name of Preservation Theorems.

To apply the Preservation Theorems for transferring results
on the decidability or undecidability of properties from modal
calcull containing S46rz Lo intermediate ones and vice versa, we
must justify the effectiveness of the transitions L & oL, The

transition from L to ol is effective by the definition: if L =

34



= Int+ 4 then ol = S4Grz + T(4). The effectiveness of the converse
transition follows from tLhe Completeness Theorem and Modal
Companion Theorem. Indeed, if ol = S4Grz + A then first we can
effectively find a canonical representation

ol = 54 + y€§i,®3,i} .+ y(gn,ﬂn,i} + Y{GH,Q),

with intuitionistic frames 3&,.~°,3n, and after that we oblain
L = Int + Xﬁgs?ﬁi,i) 00+ XCSﬂ,Bn,i;.

In the same way, given a modal formula 4, we can effectively find

an intermediate calculus with the modal companion 54 + 4.

47, Some theorems on Halldén~c0mpietenessa
THEOREM 5. There is a Haildénwcampiete intermediate logic
hauing no H&Zldéﬁ“ﬁompléi@ modal companions.
roof. Let us consider the intermediate logic L of the frame
§ shown in Fig. 11. If this frame refutes some intuitionistic
formulas A and Aa having no variables in commeon then the
disjunction 4 w4 is refuted at the point o Therefore, L is
Halldénwccmplet@‘ Note by the way that L (as well as any other

tabular logic) does not have DP,

<'\ R &
TN
3 N
e’
Fig. 11.

Now take an arbitrary modal companion M of L and show that it
is Halldén-incomplete. For this end we construct two canonical

formulas (without common variables) 4 = ¥(§,.2,1) and B= cha,ﬁ,L)

4O



where 51 and § are depicted in Fig. 12 and © contains all

Lot
) ey sesmacarmany
[5e7]
w
WG‘
F@

&
/&
\

5

Fig.12.
d-domains of the form Q{bwty}, {bk}), {(To refute 4 at x in some
frame, x has Lo "see” a chain containing three different clusters,
and te refute B at x, the subframe generated by x has to be
reducible to 3£.} 4 and B are evidently refuted in § (4 at o and B
at. &), and since § characlerizes the logic ol2M, we have M ¥ 4 and
M E.

Let w§ be the frame oblained from § by replacing its elements
with the clusters containing o points (in other words, of is the
direct product of § and the cluster with o points). As was
menticned in &6, w§ characterizes the least modal companion tLEM
of L. Tt remains to nolte that 7L + AVB. Indeed, 4 may be refuted
in of only at elements of the cluster generated by a, while B only
at, elements of the cluster generated by &, and so wy & 4AVE. ]

Remark., The proof above demonstrates only one example of a
HalldénMcompl@te intermediate logic having no Halldén-complete
modal companions. However, one can show that there are a continuum
of them, the witnesses are the logics of the frames shown in Fig.
13, where each + may he replaced by a point * or just omitted (the
proof above can be adapted for these logics too). We leave details

to the reader. ]
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13

In the class of intermediate logics, DP implies HC. In the

Fig

X

modal case these two properties iturn out to be practically
independent. of each other. The next theorem presents a Hallden-
incomplete modal logic with DP, and afterwards we will show that
there are a continuum of Halldén-complete modal logics with and
without DP.

THEOREM 8. There is a Halldén-incomplete modal logic having
the disjunclion propertly.

Proof. Take the class of all partially ordered frames having
the form of finite binary trees and join a copy of the frame § in
Fig., 11 to every maximal element of each such frame (see Fig. 14).
Consider the modal i@gic M of Lhe resulting class € If formulas
mAi and QAE do not belong to M, and so are refuted in some frames
§, and §  from €, then the disjunction ﬂAivDAQ is refuted at the
least. alement of the frame shown in Fig. 6 which is also in §.
Thus, M has DP.

In order to prove that M is Halldén-incomplete, we use the
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formulas A and B from the proof of Theorem S once again. Both
these formulas are refuted by all frames in € and so do not belong
to M. However, B is refuted only at & in the joined copies of §
where A is always true. Therefore, the disjunction 4AvB is valid in

all frames in € and so belongs Lo M [ ]

&\\ @ fﬁ
“ e N P
O s N N
\*‘"\nvf", ’ \\,1 “_/
Fig. 14,

Femark. Actually, there are a continuum of Haildé&“incomplete
modal logics with DP; for a proof see Chagrov [1981al. [

Now we obtain two sufficient conditions for HC of normal
extensions of S546rz which are formulated in the same spirit as
Theorems 2 and 4, It follows from the Refutability Criterion that
S4Grz + Y(F.D, 1), for any frame § having a proper cluster and any
set. D of d-domains. So each logic M 2 S4Grz is represented in the
form

11y M =54 + Y(C_,@B + {Yiﬁi,ﬁi,ij}ieq = S46Grz + {YCBaﬂgifi}}zE&'

where every frame 8, for ied, is partially ordered.

THEOREM 7. [/ a logic M of the form (11D is Kripke complete
and in every frame Ei, for iell, the least elemenl has only one
Lnmediate successor then M is HﬁlidéR“CGmpleié¢

Prooj. Suppoge formulas 4 and B have no common variables, M#d
and M ¥ B. We show Lthat in this case M ¥ 4vB. Since M is Kripke

complete, there are partially ordered sharp Kripke frames § and



¥ for M, with a, and a, being their least elemenis, respectively,
such that 4 is refuted at a and B al a. Note that ¥ and §°
contain no infinite ascending chains, for otherwise they will
refute Y(C_.@, i.e. they will not validate M. From ¥ and ¥ we
construct a new frame § by gluing a and a_ inte one peint a (see
Fig. 18) and show that § E ¥ and § F AVE

o
[

Fig. 15

Let § ¥ F{Ei,%i,i}, for scme te@d, i.e. there is a confinal
subreduction f from § onto §, satisfying (d) for Y(§,.0,,13. The
element a must be mapped by f onto the least element o’ in Bi, For
otherwise, taking the restriction of f to the frame §/ (je{1,2M
which contains a point from f(a’) different from a, we would
obtain a confinal subreduction from ¥ onto Si satisfying (d) for
Y{gi,ﬂi,i}o and so ¥ YCEa,@i,i} which is impossible. Suppose now
that a pre-image of the immediate successor of o' is contained in
%/, for some je{l,2}. Then again we take the restriction of f to
¥ and obtain a confinal subreduction from % onto §, satisfying
(dy, i.e F¥ Y(§,,0,,1) which is a contradiction.

It remains Lo show that AVB is refutable in §. As we know, 4
is refuted at a in ¥ = <WQ,R§>. Let b be some maximal element in
¥  (its existence is guaranteed by the absence of infinite
ascending chains in ¥ ). Define a mapping g from § onto § by

taking
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gla) = a,

and, for c#a,

¢ if ceW ,
gle) = { :
b if cﬁwi.

It is not difficult to see that this mapping is a reduction from §
onto § . So, by the P-morphism Theorem, 4 is refuted at a in §. By
the same arguments, B is also refuted at a. Since 4 and B have no
common variables, we can always do s¢ thalt both these formulas are
refuted at a simultaneously. B

As a consequence of Lhis sufficient condition, we obtain

THEOREM 8. There are a continuum of Halldénwcampi@te normal
extensions of S46rz without the disjunction property.

Proof. Let us consider the sequence of frames 3, shown in
Fig., 16 (cf, Fine 11985, p.6311). It is not difficult to see that
si validates Yixj,ﬂ,LQ, for all 1,j«, j#i, (and refutes
7(§,.2,1), of course). Thus, different sets of formulas ¥(§,.0.1)
will give us a continuum of different logics which have FMP (see
§6), hence are Kripke complete, and so, by Theorem 7, are

Halldéhwcomplete,

Fig. 186,
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These logics, however, do not have DP, since they are the
greatest modal companions of intermediate logics axiomatizable by
disjunctionless formulas which do not have DP, as was shown by
Minari (19861 and Zakharyashchev [1987]. »

The following sufficient condition for HC is (by Theorem 3,
the Modal Companion Theorem and the corresponding Preservation
Theorem) a sufficient condition for DP as well.

THEOREM @. Lel M be o normal extension of S5S4Grz which s
axtomatizable by canonical formulas Y(§,9, L0 Cwith partially
ordered §2 such that lhe set VQ of the immediale successors of the

origin in § contains at leas!t three elements and

WoeV, (VY /RVSV SV -l s 3acVr I VeV (3,6 en).

Then M (s Hallden-complele.

A

Proof. Suppose that formulas 4 and B have no variables in
comnon, M ¥ A and M ¥ B. Then there are sharp frames 352<W3,R1,Si>
and §, = <W, R ,5 > for M which have finite covers and refute 4

and B at their origins a, and a_, respectively. Construct from

i

them a frame 30 <WQ,RQ,S§>, as it is shown in Fig. ©, where SO

is generated (as a topological Boolean algebra) by the elements of
5, and 5 . An easy inspection may convince us of that 81 and 33
are generated subframes of 30, In exactly the szame way as in the
proof of Theorem 3 we can show that 3, ¥ M. Thus, it remains to
prove that both formulas 4 and B are refuted at the origin a, in
3,-

Choose some maximal element b in §, (it exists, since § has
a finite cover) and construct a mapping f from WQ onto W’1 by

taking
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fle d = a,

i
and, for aﬁag,
a if aew;,
b if aeW .

This mapping is clearly a reduction from 50 onto 319 and so, by

fla) = {

the P-morphism Theorem, A4 is refuted at o . B is considered
analcgou&ly. |

Note once again that modal logics satisfying the conditions
of Theorem 9 have DP, since they are the greatest modal companions
of intermediate logics with DP. There are a continuum of such
logics, as it is easy to show by considering the logics with
canonical axioms of the form Yﬂgﬁy@f,i , for 122, where 3? is
obtained from the frame 3, used in the proof of Theorem 8, by
throwing out its first element (i.e. the {th frame in the sequence

Fine 11985, p.B311) and ] is the set of all d-domains in ¥

™

of
Thus, we have the following

THEOREM 10. There are o coniinuum of Halldéﬁmcempléie normal
extenstions of S4Grz having the disjunction property. B

To complete the piclure we present two more theorems.

THEOREM 11. There oare «a continuum of Haildén“incompléte
normal extensions of 54Grz without the disjunction property.

Proof. Follows from Theorem 12 (iii) and the obvious fact
that both the absence of DP and Halldén-incompleteneﬁg are
preserved when passing from an intermediate logic to its arbitrary
modal companion. B

The first statement of the next theorem was obtained by
Wronski [19731 and the olhers by Galanter [18988].

THEOREM 12. There are a continuum of
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(i {Halldénwcampieze) intermediate logics with DP;
C1iD Halldén-complete intermediaie logics without DP;

Ciii) Hallden-incomplete intermediate logics Cwithout DP).

Proof., (i) and (ii) are consequences of Theorems 10 and 8 and
the corresponding Preservation Theorems. So we must prove only
(iiid.

By Cn, we denote the frame which is the chain of &k
{reflexivel) points. IL 1% easy to see Lhal there are a continuum
of different logics of the form

L=1Int + X(Cn @) + {X(§),0,07 .
where & is some sel of natural numbers and 3? is the ith frame of
Fine’s sequence. FEach of these logics is incomparable (by
inclusion) with the logic of the frame Cn , and so their
intersection is Haildéhmincomplete. It remains to note that there
are a continuum of such intersections, since XC@?,@,L} belongs to

the intersection of L and the logic of En4 iff jeq. ]
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§8. The undecidability of the disjunction property and
Halldén~completeness.

THEOREM 13. There 1is no algorithm which (s capable of
deciding, given a formula A, whether S4Grz + A has Llhe disjunction
property.

Proof. We will use the scheme for proving the undecidability
which was discussed in §1 and the constructions of &2,

Let. §  be the frame shown in Fig., 2. Take ¢ = Q{ca,dﬁ},{da}},
b, = {6 and construct the canonical formula Y(§ .8 _,1). Since, by
Theorem 4, the intermediate logic

Int + X(§_.9_, 1)
has DP, by the Preservation Theorem, ils greatest modal companion

S46rz + Y(§ .0 .1
has DP too.

Thus, we may take F = YCSQ,QO,i}n Let L= 4 & 1pii,

D, = 4 &p,, 4, = 4 & p, . B = 4 & Ip,, where 4 is the
B 4

=

&

premise of Y(Eogﬁa,ij and p,» Py . P, P, are the variables
i & 3 4

in Y{ﬁo,ﬁo,i} corresponding to the elements c, di, ai, b§ in 30,
respectively (¢=1,8,3, Jj=-2,-3J.

With a Minsky program P and a configuration o we associate
the frame § shown in Fig. 1. We have already noted that there is
only one subreduction from § onto 3, It is clearly confinal and
satisfies (d) for F, hence ¥ ¥ F. Therefore, by the Remark to the
Refutability Criterion from &8, the formulas F, C, . Ejg Ai, Bi
satisfy the conditions (B) - (8) of &2.

Let. us now choose G. Let 31 be the frame shown in Fig. 17.
Construct the formula YCSI,Q,L) having no common variables with F

and take
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G =0oF « OY(E 8,0,

It is clear that 6 satisfies (4) of gl.

Fig. 17.

Suppose b is an arbitrary configuration. Consider the logic

L{P,a,b) = S4Grz + AxFP + ((a,b) o F + G,

If Pra=b Lhen, by (2) - (4},

L{P,a,b) = S4Grz + F,
and so L{P,a,6) has DP.

suppose Pradb, According to Lemma 3, (B) and (9),

¥ e AP, FkCCa,%) o F.
Morecver, since § has only five maximal elements, § E Y(gi,@,il,
and so § F G. Thus, §F & L(P,a,b), ¥ FOF, i.e. L(P,a,b%) ¥V OF.

Now consider 32. It is clear that 81 k F, hence Sik LCP,a,b),
and so LOP,a,9) ¥ mY(ﬁz,ﬁ,i}, since 31 b YCEi?Q,LD.

Thus, we have L(F,0,%) + IOF v (g, .9,1, L(P,a,%) ¥ OF and
LCP,a,b) ¥ o¥(g, 8.0, ie L{P,a,b) does not have DP.

Our Theorem follows now from the undecidability of the
configuration problem for Minsky machines. B

Using the preservation of DP when passing from an
intermediate logic to its greatest modal companion and vice versa
and also the fact that, given a modal formula 4, an intuitionistic
formula B can be effectively constructed so that S46Grz + 4 =

= S46rz + T(B) (see the end of &§B6), as a consequence of Thecrem 13
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we obtain the following

THEOREM 14. There is no algorithm which can recognize, given
a formula A, wvhether Int + A has the disjunction property. [

The next theorem is a consequence of the proof of Theorem 13,

THEOREM 15. There is no algorithm which can recognize, given
a formula A, whether Int + 4 s Halldén-complete,

Proof. Let P be a Minsky program, a and b be configurations
and L{P,a,b) be the modal logic constructed in the proof of
Theorem 13, Consider the intermediate logic L’(FP,6,6) having
L{P,a,b) as its greatest modal companion. Note that L'(P,a,b) can
be effectively constructed of P, a and ®.

If Proawsb then L°CP,0,b3), as well as L{P,a,b), has DP, and so
is Halldénwcgmplate'

Suppese Pradb, We will show that in this case L'(P,a,b) is
Halldénwincomplete;

Let

B = X(§,.0 .0, C€=X3 .00,

BY = y(3 .00, " =¥y 0.0
where § , B, § are those defined in the proof of Theorem 13. We
may assume that B and €, as well as B' and €, have no variables
in common. By the Modal Companion Theorem,

S4 + BY =S4 + T(B
and

S4 + 0T =S4+ TCO).

According Lo the proof of Theorem 13, we have

(12) LCP,a,% + BT » e,
{13) LCP,a,%) ¥ mBY and L(P,a,b) ¥ 1C".

From (13} we obtain L'(F,a,%) ¥ B and L'(P,a,b) ¥ O Therefore, it
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suffices now to show that L'(P,a,8) + BVC.

Suppose otherwise, i.e. L'(P,a,%) ¥ BWC. Then L(P,a,0}¥T(BWC)
and hence L{P,a,b) ¥ T(B) « TC(C). So there is a sharp general
frame ¥ for L(P,a,%) refuting T(BY v T(C). Then § ¥ T(B), § ¥T(CY,
and so § ¥ ET and § ¥ T, But then § ¥ 0BT « ocT (since ¥ is sharp
and mBY and T have no common variables) which contradicts (12).m

THEOREM 18. There is no algorithm which s capable of
deciding, given o formula A, whether S46Grz + 4 1is Hal ldén~
complele.

Proof. Take F = YC&Oy@Gi}, G=X§, .0, v YCSS,@,L} where 30
and § are the frames shown in Fig. 2 and Fig. 17, respectively.
As was noted in &G, the logic

S4Grz + Y(§_ ,0.1)
has FMP, hence it is Kripke complete, and so, by Theorem 7, is
Halldéﬂwcamplatg,

The remaining part of the proof is similar to the proof of
Theoren 13, B

Having proved Theorems 1, 13 and 18, we incidentally
established the undecidability of some other properiies of
intermediate and modal calculi. Here are a few of them,

THEOREM 17, There i1s no algorithm which can recognize, given
a formula 4, whether the logic S4Grz + A is axiomatizable by

(12 canonteal formulas of the form Y(¥,0) (.. whether it is
a subframe logicl,

(112 canontcal formulas of the form Y(§,0,1).

Proof. Indeed, the logic L(P,a,b%) constructed in the proof of
Theorem 1 is a subframe logic iff P.a=b, Moreover, in that

proof we could use as F the formula 7(§,.2,L) instead of 783'
<
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This readily gives us (ii} 1if we remember that all logics
axiomatizable by formulas of the form Y(§,0,1) have FMP. E

The following theorem is a consequence the previous one, the
Modal Companion Thecrem and Completeness Theorem for the
intuitionistic canonical formulas.

THEOREM 18. There is no algoriithm which can recognize, given
a formula A, vhether the logic Int + A is axtomatizable by

Ci2 implicative formulas;

(i1 disjunclionless formulas. ]

Finally, the next theorem follows from Theorems 1, 2 and the
preservation of the decidability and FMP when passing from an
intermediate logic to its greatest modal companion and vice versa
{see Zakharyashchey [1898%9al),

THEOREM 18, There is no algorithm which can recognize, given
a formula A, whether ihe logic Int + 4

CiJ has the finile model property,

(ii2 1g decidable. B

It is interesting to compare the undecidability resulis above
with those obtained by Chagrov [18811 for exbtensions of the
Godel-Lob provability logic 6L, The finite model property,
decidability and disjunction property are also undecidable,
Moreover, the interpolation property turns out to be undecidable
too which contrasts with its decidability in the classes of
intermediate logics and normal extensions of S4 (see Maksimova
1977, 1978al). As for Halldénwcompletenegs, it is decidable in
the class of normal extensions of GL but undecidable in the class

of arbitrary extensions of GL and even of the Solovay logic S.



§9. On Maksimova-completeness. The following property - so
called variable separation principle - was considered by Maksimova
(1976, 19791 for relevant and intermediate logics: if
I+ A&B » OvD, with A>C and B»D having no variables in common,
then L + 4 > C or L + B » D. This property is clearly related to
Halldéﬁ~cwmpleteness, and we will call it Maksimova-completeness
(MC).

For modal logics, there is no difference betlween Lhe two
properiies.

THEOREM 20. Each modal logic is Makstimova~complete (ff (L (s
H&Zldéﬁwaomplete,

Froof. Trivial, since A&B o OvD is classically equivalent to
(4 2 C0AB > DD, ]

In the case of inlermediate logics we have only the obvious
half of the previous theorem:

THEOREM 21. Each Maksimova-complete intermediote logic is
Halhﬁ%rfampiet@* B

Indeed, the following is true.

THEOREM 22. There is a Halldéhwcomplet@ intermediate logic
which 1s Maksimova~incompleie.

Proof. Consider the logic L of the frame § in Fig. 11
constructed in the proof of Theorem 5 (see §7) and show that it is
Maksimova~incomplete. Take the canonical formulas X(Ea,@,JJ and
X{’Sa,ﬁ,ii) having no common variables, where 31 and 3?. are the
frames depicted in Fig. 12 and D consists of all d-domains of the
form C{bﬁ,bj},{bk}). et 4 =7, C = Xt@i,ﬂ,LD, B be the premise of
XCSg,ﬁ,ib and [ its conclusion. Then it is easy to verify that
IHFADC, §BE > D, but § k A& » OV ]
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Remark. In the proof above we might take the logic determined
by any of the frames shown in Fig. 13, and so there are a
continuum of intermediate logics with the properties mentioned in
Theorem 22. Note Lhat these logics do not have DP, since all of
them are the logics of width 2 (and contain, say, XCSi,ﬁ,i), for
8, depicted in Fig. 17). Using constructions of Chagrov [199lal,
one can show that Lhere are a continuum of Maksimova-incomplete
intermediate logics with DP, B

The following two criteria for Maksimova-completeness are
proved in exactly the same way as the criteria for Halldén-
completeness in §0.

THEOREM 23.1F an iniermedicte logic L = Int + {XCBi,Ei,L)}iég
15 Kripke complete and in every frame 8, for ie@, the least
elemen!  has only  one  lmmediate  successor then L s
Maksimona-complete. [ |

THECREM 24. Let L be an intermediate logic which 1is
axtomatizable by canonteal formulas X(F.D,L) such that the set V0
of Utmmediale successors of the least element in § contains at
least three elemenls and

WoeV, (VU ETSVEV -l s Tyt 3V - (E,B

o

).
Then L {s Maksimova-complete. |

)]

THEOREM 2B, There are a continuun of Maksimova-complete
tnlernediate logics with the disjunction property and as many
without the disjunciion property.

Proof. Similar to the proofs of Theorems 8 and 10. E

Thus, the relationship between the disjunction property,
Halldénmﬁgmplet&ness and Maksimova-completeness in the class IL of

all intermediate logics may be represented as in Fig. 18, with the
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cardinality of each depicted set of logics being of cont inuunm,

[L

HC
DP

Fig. 18.

THEOREM 26. There 1is no algorithm which 1s capable of
dectding, glven o  formula A4, whether Int + A4 s
Maoksimova-complete,

Proof. Let L(P,a,%) be the modal logic constructed in the
proof of Theorem 16 and L'(P,a,%) be the intermediate logic having
LLP,a,b) as its grealest modal companion.

If P:a-b then L(P,a,®) = 54Grz + Y(SO,@,J), where § is the
frame shown in Fig. 2. Hence, by the Modal Companion Theoren,
LCP,a,8) = Int + X{EG,@,LBE But. then L'{F,a,%) has FMP, and so,
by Theorem 23, it is Maksimova complete.

If P:adb then, taking

B=X(§, 0,0, C=X§.01,

B' = v(§,.0,00, C' = Y3 .01,
by the same arguments as in the proof of Theorem 15, we show that
LCP,0,8) is Halldéh~incomplete, and so, by Theorem 21,

Maksimova-incomplete. [



§10. Open problems. Thus, many important properties of modal
and intermediate calculi proved to be undecidable. It is worth,
however, noting that logics, used for obtaining these as well as
many other "negative” resulls, are too cumbersome t¢ be regarded
as "natural”. So, it would be interesting to look for effective
criteria for the properties of calculi from more simple and
"transparent” classes of logics. There are already some
encouraging results in this direction.

For instance, Anderson [1972] proved that DP is decidable in
the class of intermediate logics with additional axioms containing
only one variable. (Actually, Anderson determined which of the
Nishimura [1960] formulas F;, for nswe, n#l3, axiomatize logics
with DP and which without it. DP of Int + Fis have been recently
established by Professor Hosoi’s student Sasaki [19901.) On the
other hand, Sobolev {18771 showed that all such logics have FMP,
and so are decidable {(their finite axiomatizability was proved
earlier by Nishimura [19601).

PROBLEM 1. Whether it is true that all intermediate logics
with additional axioms containing one vartable are
Halidéﬁmcamplet@ and Maksimova-complete €

We conjecture that this problem has a positive solution. In
any case, such are the logics Int + Fg, for 05n<10, which can be
verified by a straightforward inspection.

PROBLEM 2. Whether the finite model property, decidability,
disjunction property, Haiidéh~ccmpleteness, Makstmova-completeness
are decidable for intermediate calculi with odditional axioms
containing two variables®

PROBLEM 3. Whether these properties are decidoble for
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extensions of S4 or S4Grz with additional axtoms coniaining one
vartable?

Another positive example is the class of intermediate logics
with additional axioms containing no . All these logics, as we
have already noted, have FMP and, with the exception of Int, do
not have DP. However, HC and MC are nol so trivial in this class.

PROBLEM 4. Give effective criteria for Halldén“compzetenéss
and Moksimova-completeness in the class of intermediate logics
axiomatizable by disjunctionless Cor even implicaiive) formulas.

PROBLEM 5. Give an effective criterion for Halldén-
compleleness in the class of extensions of S4 axiomalizable by
canonical formulas of the form Y(§,08,1) or Y(¥,0).

An effective criterion for DP in this class was found by
Zakharyashchev [18871.

Theorem 5 from §7 shows that HC may be not preserved while
passing from an intermediate logic L to its least and greatest
modal companions L and olL. However, the following questions
remain open.

PROBLEM 6. Is it true that, for any intermediate logic L[, L
ts HC Lff ol ts HC#

PROBLEM 7. [Is it true that, for any intermediate logic L, L
te MC off 1L {s MU (ff ol (s MCZ2

We conclude our paper with the following fundamental question
which naturally arises afler establishing the undecidability.

PROBLEM 8. Whether the set of modal or intermediate calculi
having FMP (DP, being decidable, HC, MC, etc.) is recursively

enumerableé
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Appendix. Proof of Lemma 3 (i). We should show that § k 4x/,
for any instruction I & P. Since all kinds of instruction are
considered in the same way, we will deal with only one case, when

I=gg = QET;iTﬁiggTﬂTa}.

Thus, our aim is to prove that

(143 3 E Qf{é,ﬂa,ﬁi} D GT(@,Qi,RiDvF
and
(13 3B OT(6,A2,R D o OTL, A2 R IVF.

First, we prove (14). Suppose that the formula oT(ﬁ,&z,Rg} is
true at a point x in § under some valuation and show that
Xk oTle, 6 R IV Let x ¥ F. According te (8), x=f, and there is
yel such that vy k e, R I, ie

(16) Y B OA& OB,

(1 y Eods, & 0Bs,
(18 Vv E Q& o,

(19) v EoQ & Q!
(20 Yy E OR & OR’,

(21 y E OR_& -0R’.

From (16) and (17), taking into account (8), we obtain yﬁag,
yﬁbg, “@EagﬂA and m@ﬁbéﬂ. Therefore, by the construction of §,
y=t{d,m",n"), for some m and n’ such that P:(o,m,n) = (&,n" ,n’).

Consider now (18) and (19). It follows from (18) that there
are points 2z, and z_  for which z(ﬁ,m’,n’)Rzig tﬁé,m’,n’)Rza and

2, FO, 2, FA, le

(22 oz ko & 0B .
(23 2k 047 & 1087,

(247 Z kO & OQ,
: 1 o



{25 zZ E 6

d 2"
(260 z F OA% & OB%_,
(27 z,F 04 & 087,
(28) 2 B O & o1,

& i &
(29) z F

From (222, (233, (€8} and (273, taking into account (8}, we
obtain 2z Ra® , zRV:, -2Ra®, =R’ , for 1i=1,2, hence
2.2, € {ai,bzikzwi}.

It follows from (24>, (25, (28) and (29) that the points 2,

and z_ are incomparable in ¥, moreover, there are points 2,0 2,

W

z , 2z _ such that 2z Rz , zRz , zRz , zRz
& i it b1 18 z 4 2

&1 4

and zag#&i,

2

LY

oy 3 o
“ EFQO '

%Qi, zEaF&Q,‘i;e.

(300 z, b OA% & OB |
(31) 2, F 047 & <08,

(32) 2, F 00 & o,

(387 P
(349) Z ok ﬂﬁﬂfg& ﬂoBfg,
(40D Z k 0&;& OQ«x’

3 O‘Awa& OEiBy

(33 Z F 0,
is 4]
(34> z k OA% & OB,
iz -3 -3
ey o - H - 3
(35 Z, F wﬁmg& wBﬂg.
(36) z FOQ & 0Q_,
(37) 2,k 0Q_,
k
E

@3
(413 z, k0,

. - z 2
(422 2,k OA® & OB°
(43) 2z, F 0A & 0B,
(44) oz FoR & oQ_,
(45) z, k0.

i:‘
=2 -1

X%



From (300, (310, (347, (353, (383, (383, (423, (432, taking

into account (8), we obtain that, for i, je{l, 2}, ::zijl?:aﬂ, zi}RbeE

o E

-z Ra® , -z, Rb* , hence z, & {¢®, b*|kz-13.
iy -3 [ B 1§ k™ Tk

By (25) and (28) and the fact that z E and z, EQ', the
accessibility relations between 2z, 2z, =2 and =z can be

i & 4 i 21

completely represented by Lthe following diagram:

Thus, by the construction of §, without loss of generality we may

assume that z =0, 2z =b* for some s20, and so z =0 =b*
4 & = & 44 & d &4 -2

Let us see now what are the elements z _ and z_ . By (372, (32)
and the definition of &, -e Rz , and by (45), (403 and the

definition of &, -e, Re . Using (33), (38), (37) and the

definition of (;2(;, we obtain e, Rziz, while using (413, (44), (45)

and the definition of & , we obtain -2 Rz . Therefore, z =bZ? ,

-

&

e, =a. _, and since 2 ,.€ {ap, bilk2-1}, we have

A el

(462 s 2z 1.

Note now bhat

(473 a? Kl

+ 1 3

W

and
(48> B EQ.
Bti .

il

We will establish only (472, because (48) is proved in exactly the
same way.

T v L ' ot . 2 2 2 2 :

In view of the fact that of RaZ, of RBI , aQ and
& ’ iy 2y 2 R
b, K (since a’=2 , b7 =27 ), we have

g & ¢
(49 a,, F oL & o,

&1



and, by the construction of § and (8),

f 4 - / = 3 x

(503 aZ, F OA% & OB & —04% & 0B

Thus, it remains to prove that

(51 a2 O

Suppose otherwise. Then aij#o&; and there is a point u such that

e 1
o, Ru and

(52) Uk oA & OB,

(53) Uk ﬂ@él& "“@stg

(543 Uk O& O,

(55) u k0

By the construction of §, (8, (8B2), (53}, we have
u e {ofl-12igs+1> u (BY|-1<iss-1). If u e s, . o7, a_ » then
uRe? | which contradicts (55), since of KA . If u e {af|-1SiSs-13
then aiﬁa, and now (54) and (25) contradict each other. Finally,
{b7]-15igs-1y then b7 Ru, and so (B4) and (41) are

inconsistent,

if u

D

o,

Thus, we have proved (51) and hence (47). From (47), (48) and
(1) we obtain =t(é,m,n"dRaZ, , -it{6,m" ,n'IRPZ . Therefore,
m'=s, i.e. a’=0°,, bZ=b%,
s n i
In the same way we consider (20) and (213. We obtain that
X - 2 ! 2 )3 4 3 Fi .
@ BR O DLERD, ale BR UL, RRD, . BR, DR, BRI, with these
points being the only ones having such properties.
Now we use the instruction IeP. Since, by (4B), m'=s>0, the
first part of the instruction is applicable to (&,m',n’), and so

tle,m'-1,n") is a point in § According to (9), we have
¢ B, s 4 4 i i i i
{562 tle,m -1,n"J k Oég& OBE& WA, & @Baﬂ .

and since, by the construction of §, t(&,m'~l,n')Ra§,“1 and
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" . [ L = > i =3 . 2' R ¢
tCe,m’~1,n"IR0", , using an. =a; =z FQ and O, =2, 2, K,

we obtain tle,n'-1,n") F O & O . Similarly (using tLhe
consequences of (20) and (21) mentioned above) we can prove that

tCe,m 1,3 k OR & OR], and so
(57) tle,m =1, n") F o6 & OQ & OR & Ok
Now we show that
(583 tle,m =1,0") F 0@ & ~0d].
Suppose otherwise. This means that at least one of Lhe conjuncts
is false abt ile,m' -1 ,n"). Let
(582 tle,m" 1,03 kE OQ .

{The second conjunct is considered in the same way.) Then there is

a point v such that i{e,m"~1,n")Ru and a%&g, i.e.

(803 Uk 04T & OF
(B1) Uk 04T & 0BT,

(62) Uk Qai& 0@;,
(63) 0k ﬂ@Q:i

It follows from (803, (61> and (8) that v e {aj,b}|-1sksSm'-1}. If
U o€ {a§|~iﬁkﬁmf~a} u {biiwlsRSm’mi} then zz=bz=bzakv, and so (62)
and (29 contradict each other. Therefore, v=a. =a2_1 =z ,» but
then (B2) and (33} are inconsistent.

Thus, we have proved {(58). Similarly we can prove that
(64 tle,m-1,n") k ﬁoRa& ~0OR! .

From (586), (57, (88) and (B4) we obtairn tle.n' -1,n") k
TCe,@ R, hence f k oT(e,@ KD, and so (140 is justified.

Let us consider (15). Suppose again that under some valuation

T(ﬁ,Ai,Ri} is true and F is false at a point x in §. Then, as we
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know, x=f, and there is a point y such that fRy and
(65) y E Odgk osg,

(66) v F0ds, & 0B,

(672 Vv E oAi& oBi,

(B8) Yk 047% 0B,
(69)  yEOR&OR,
(70)  y VR & “OR!.

[t follows from (65) - (68) that vy=i(§,0,n"), for some n’.
Using the second part of the instruction [ (since the second
component. of the configuration is 0), we obtain that t({,0,n') is

a point in ¥ Then, by (9), we must have

(712 t,o,n'l & 0&%& @52,

- 4 nowt P— i 0 . i
(722 1,0 k t}A§+i& 0By,
(73 LL.0,n") F 048 OB,

{74 L, 0,n") F 0478 0B

show that

(757 t€C,0,n"3 k OR & OR,
762 tCC,0,n") B 0R_& OR.

P

By (689, Lhere are points w, and w, such that i(ﬁ,O,n')Rwi,

t{&,0,n"IRuw_, wzyﬁi and w kR", hence

773 Wk OA7 & OB & -0C & 0D & OR & OR’ & 0K,

{78) w_k 6.41& oBfa& -0 & =D & OR'& OR_ & OR .

Using (77>, (78) and taking into account (8}, we obtain that
wo,w, e {af,b7|-15isn’>. But then, by the construction of §,
tCg,0,n JRw , t(L,0,n"JRw, which implies (79).

Let us prove (76). Suppose otherwise. Then there is a point w

&7



suych that t{{,0,n")Rw with wkR, or ukR’. So

Wk 047 & OB & 00 & 0D & OR & OR'& R/
or
Wk 04 & 0B & 00 & 0D & OR'& OR & R .
Each of these gives us w e {aj, b7|-1isn’}, hence t(4,0,n")Rw,
and so t0d,0,n") k 0K wOR] which contradicts (70).
From (71) - (76) we obtain t({,0,n') ¢ T({,A7,RJ, and
therefore f k §T€{,Ai,§i§. B
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