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§ 0. Introduction

The study of the diagonalizable algebras of theories con-
taining arithmetic was initiated in the early seventies by Mac-
intyre & Simmons [28] and Magari [29]. In 1976 Solovay [47] cha-
racterized the equational theory of the diagonalizable algebra
of Peano arithmetic. This theory was shown to be adequately de-
scribed by the well-known modal logic L. Later on, Montagna
[31], Artemov [2], Visser [48] and Boolos [12] strengthened this
result somewhat by independently demonstrating that the free di-
agonalizable algebra on countably many generators is (isomorphic
to) a subalgebra of the diagonalizable algebra of Peano arithme-
tic. The equational theories of diagonalizable algebras of other
strong enough theories were calculated by Visser [49] (cf. also
Artemov [3]). These are given by the series L, L+oL., L+oot,
Among the recent investigations of the subject we may also men-
tion Montagna’s paper [32] which undertakes a systematic inquiry

into generalizations of Goldfarb’s Principle.

Nonetheless, the information on diagonalizable algebras of
theories currently available is dejectingly scarce and therefore
leaves ample scope to further research. Thus, for instance, it
would be natural to attempt a closer look at subalgebras of the-
se algebras. This is the theme of the present paper. It is pre-
dominantly devoted to the question which diagonalizable algebras
can be embedded into the diagonalizable algebra of a theory. For
the easier case of embeddings with r.e. range we obtain a comp-
lete solution. It turns out that a short list of most obvious
restrictions constitutes a characterization of r.e. subalgebras
of the diagonalizable algebra of a theory. Partial results in
this (or at least in a closely parallel) direction were obtained
by Jumelet [27]. In fact, the work of Jumelet was my main source

of ideas and inspiration.

The plan of the paper is as follows. § 1 recollects the ne-
cessary definitions and earlier results. It also contains a re-
sult on the length of proofs which, in view of a construction in
§ 11, does not look absolutely out of place here. In §§ 2, 3 and



5 we carry out some modal-logical work relevant for subsequent
progress. As a by-product of this we obtain a uniform version of
the Craig Interpolation Lemma for L. The main result of the pa-
per is to be found in §§ 4, 6 and 7 where r.e. subalgebras of
diagonalizable algebras of a wide class of theories are charac-
terized. This takes us three §§ because we use three slightly
different approaches to handle particular kinds of theories. He-
re we employ extensions of techniques developed by Solovay [47],
Artemov [2], Boolos [12], Jumelet [27] and Beklemishev [5]. §§ 8
- 11 are of marginal interest. In § 8 we apply the result of § 7
to give an alternative proof to a lemma in Simmons [41]. Unfor-
tunately the application will not require the full strength of
our methods. A question concerning the arithmetical complexity
of sentences needed to model a diagonalizable algebra in arith-
metic is treated in § 9. In the last two §§ we find out whether
our characterization of subalgebras of diagonalizable algebras
of theories extends from r.e. to arbitrary subalgebras. It is
shown in § 10 that for the case of Zl-ill theories an easy gene-
ralization is possible. As regards Zl—sound theories, the situa-
tion appears to be more complex and an example is given in § 11
that partially justifies our failure to describe subalgebras of

diagonalizable algebras of these theories.

I would like to thank Lev Beklemishev for numerous stimula-
ting ideas and invaluable comments. Without his help the present
paper could have hardly been written. In particular, Lev Bekle-
‘mishev brought my attention to a neat trick in Beklemishev [5]
which a key idea for the argument in § 6 was derived fronm.
Thanks are also due to Professors Sergei Artemov and Aleksandr
Chagrov, Marc Jumelet and Andrei Muchnik for interesting discus-

sions.

We assume that the reader is familiar with Smorynski [46]
or at least with Solovay [47]. Knowledge of (rudiments of) di-
agonalizable algebra theory and modal logic, especially of L,
should also be very helpful. For these matters, good references

are Magari [29], Bernardi [8] and Bellissima [7].



§ 1. Preliminaries

1.A. Arithmetic

We shall study r.e. consistent theories whose language com-
prises that of primitive recursive arithmetic. Given a set I' of
arithmetic formulae, AO(F) denotes the closure of I' under Boo-
lean combinations and primitive recursively bounded quantifica-

“tion. Let

Zo = Ho = Ao(atomic arithmeic formulae)

and define Zn+l to be the closure of Hn under lattice combinati-
ons and existential quantification. The class Hn is defined ana-
logously. We shall say that a formula ¢ is Zn over a theory T if
there exists a Zn formula which T proves ¢ equivalent to. Final-

ly, ¢ is An over T if it is both Zn and Hn over T.

For I' a set of arithmetic formulae, a theory T is said to
be I'—sound if each theorem of T which is in I' is true. A theory

is I'-il1l if it is not I'-sound.

In compliance with a recent tradition of not involving much
more arithmetic than is actually needed we take IZ1 as our base
theory. In other words it is assumed throughout the paper that
every theory under study contains induction for 21 formulae as
well as the basic axioms P (cf. Paris & Kirby [36]) and defi-
ning equations for primitive recursive function symbols. Note
that our theory IZ1 proves the same theorems as the theory PRA
of Smorynski [46]. The theory IZ1 of Paris & Kirby formulated in
the language (<, 0, S, +, *) is very much the same as ours.
That is not just to say that our variant of IZ1 is conservative
over that of Paris & Kirby. What is more, every formula of the
language of primitive recursive arithmetic translates easily and

IZl—equivalently into the smaller language.

The following facts about IZ1 are well worth being kept in
mind: The provably recursive functions of IZ1 are exactly the
primitive recursive ones (Mints [30]); IZ1 proves induction (and
therefore the least number principle) for Ao(21) formulae and

each Ao(z1) formula is A2 over I21 (Hajek & Kucera [24]):; every



AO(Zn) sentence 1is equivalent to a Boolean combination of Zn

sentences.

We assume that every theory comes equipped with a primitive
recursive way a to recognize its axioms with which we associate
a AO formula Prfa(y,x), the proof predicate (of T), to express
that y is a (say, Hilbert-style) proof of x from the (extralogi-
cal) axioms given by o (cf. e.g. Feferman [16]). Pra(x), the
provability predicate (of T), is short for dy Prfa(y,x). In
what follows we shall be omitting the subscript o since no con-

fusion is likely.

Each formula and, in general, each syntactical object is
identified with its godelnumber. The numeral for n, i.e. (the
godelnumber of) a zero followed by n strokes is denoted by n.

Finally, if Q(Xqsenn,X) is a formula then w(EI,...,EE) is the
primitive recursive term honestly representing the function

which sends (ny,...,n ) to the numeral for w(ﬁz,...,ﬁg).

The least n € w s.t. T proves Prn(I) is called the credi-
bility extent of T. (We let Prl(I) = Pr(L) and Prn+1(I) =

Pr (Prn(I))). If no such n € w exists then T is said to be of
infinite credibility extent. Note that if T is Zl—sound then
clearly its credibility extent is infinite. On the other hand,
the credibility extent of a Zl—ill theory does not only depend
on the set of theorems of T, but also on the primitive recursive
way o which the axioms of T are presented. Thus, Beklemishev
[5] shows that if a Zl—ill theory T contains full induction then
a particular choice of o can make the credibility extent of T

anything from 1 to ow.

1.B. The modal logic L

The modal logic L (whose other names are K4W (Segerberg
[40]), G (Solovay [47]), GL (Artemov [3]) and PRL (Smorynski
[46])) was presumably first introduced by Smiley [42] whose mo-
tive for doing so was investigation of ethics rather than of
provability in formal systems. The language of L consists of an
infinite stock of propositional letters P P s the wusual

propositional connectives and a unary modal operator o. In addi-



tion to the axioms and rules of the classical propositional lo-

gic, L contains the following axiom schemata:

o( A - B ) —. oA — oB
oA — ool

o( od > 4 ) — pA
and the necessitation rule: from A infer oA.

For A a modal formula we write ¢4 short for -~o14 and ota

short for A A DA.

We write +. A4 to mean that the formula A is derivable in

L. v ota - u+;; will usually be abbreviated as 4 + B. Note
that since ML A4 1is equivalent to ML nta (cf. Magari [29]),
our notation is coherent in that A if and only if 7 ML A.
Trivially,
L A — B implies A ML B ;
AI—LA,'
4+ B and B b C imply A4 b C i
y:| HL B implies A ML oB and o4 ML oB etc.

5, 3 etc. will be treated as variables ranging over finite

(possibly empty) tuples of propositional letters.

Kripke semantics has long been known as a mighty weapon in
the study of modal logic. We describe a variant of it suited for
our purposes. A triple K = (K, R, #) 1is a (Kripke) B—model if
K, the domain of K, is a non-empty set (of nodes); R, the acces-
sibility relation, is a strict partial order on K s.t. R™! is
well founded and # is a forcing relation between elements of K
and those modal formulae all of whose propositional letters are
among those in 3. # should satisfy the usual commutativity con-
ditions for Boolean connectives and for each a € K and each
modal formula A(B) one has a + uA(ﬁ) if and only if b A(B)
for all b € K s.t. a R b. We write K ¢ 4 (4 holds in K) if
a +» A4, all a € K.

By a model we mean a 3-mode1 for some tuple 3. A model K

(K, R, #) is finite if so is K. K is rooted if there exists a

node b € K satisfying b R a, all a € K s.t. a = b. This b



is then called the root of XK. A rooted model K is treelike if R
is a tree on K. For K a rooted model, we write XK # A4 (K forces
“A; A is forced in K; K is a model of A) if the root of K forces

A. Clearly K = A if and only if K & o’a.

It is well known that if a formula 4 is derivable in L then
it holds in every model provided that the forcing relation is
defined on A. Various specializations of the converse are also
true. Thus, if a formula is forced in every finite rooted model,
or even in every finite treelike model, then it is derivable in
L‘(see e.g. Segerberg [40] or Solovay ([47]; we shall be refer-
ring to this fact as the Completeness Theorem for L). The deci-
dability of L follows (cf. also Bernardi [8]).

1.C. Diagonalizable algebras

A diagonalizable algebra (Magari [29]) 1is a pair (4,0)
where @ is a Boolean algebra with the usual operations A, v, 1,
—, T and 1 endowed with an operator o satisfying the following

identities:

1

o( x >y ) —. ox — oy

nx — 0oox

o( ox — X ) — ox

T = T

The confusion between modal-logical and algebraic notation
is meant to stress the fact that a diagonalizable equation is an
identity of the variety of diagonalizable algebras if and only
if the corresponding modal formula is derivable in L (see Mon-
tégna [31]).

A Boolean filter f of a diagonalizable algebra ® is a <t-
- filter if x € f implies ox € f for each element x of . If a
_filter f is T- then there exists the quotient algebra D/f. Con-
versely, the elements that are sent to v by a homomorphism of
diagonalizable algebras constitute a t-filter (cf. Magari [29]
or Bernardi [8]). For each subset X of a diagonalizable algebra
D there exists the smallest t-filter t(X) containing X. Thus we
can define D/X, the quotient (algebra) of ® modulo X, to be



§)/r(X)'

Whenever we shall need to construct a particular example of
diagonalizable algebra we shall produce an algebra of the form
F/g where F is the free diagonalizable algebra on an appropriate

set of generators (this algebra may be identified with

Piljer
the set of modal formulas using the generators as propositional
letters modulo L-provable equivalence) and & is a set of ele-
{pi}ieﬁ' Note that for a

one has 4 = 71 in /g if and only if

ments of F, that is, of formulas in
formula A 1in {pi}ieI
there exists a finite subset ¥ of &€ s.t. M ¢ ML A.

The height of a diagonalizable algebra 9 is defined as the
least n e w s.t. o’ = 1. If for all n € w one has o'l = 1
then the height of ® is infinite. ® is w-consistent if 1 =# 7
and x = T whenever ox = 7 for each element x of . w-consis-
tency obviously implies infinite height. If ox v oy = 1 imp-
lies ox =T or oy =T then D is said to possess the disjunc-
tion property. Clearly the height, w-consistency and the dis-
junction property are inherited by subalgebras. One can show
that among homomorphic images of a diagonalizable algebra of in-
finite height there always are diagonalizable algebras with the

strong disjunction property.

A 1-generated diagonalizable algebra is determined by its
height up to isomorphism. Note that the disjunction property is
shared by all the L1-generated diagonalizable algebras whereas
the only w-consistent i1-generated diagonalizable algebra is the

free L-generated diagonalizable algebra.

A mapping v: w — )Y s.t. rng v generates the (denumera-
ble) diagonalizable algebra 9 is called a numeration of . A nu-
meration v is positive if the set of diagonalizable polynomials
A(g) satisfying A(vO,v1l,...) = T 1is r.e. A numeration v is lo-
cally positive if for each n € w the set of diagonalizable po-
lynomials A(po,...,pn) satisfying A(v0,...,vn) = T 1is r.e. An
algebra ® is (locally) positive if a (locally) positive numera-
tion of it exists. Clearly ® is locally positive if and only if
each of its finitely generated subalgebras is positive; a fini-
tely generated diagonalizable algebra is positive if and only if



it is locally positive.

1.D. Diagonalizable algebras and arithmetic

The example of a diagonalizable algebra which motivates the
definition is constructed from a theory T of the kind described
in 1.A. The Boolean algebra A is taken to be the Lindenbaum Sen-
tence Algebra of T, i.e. the set of sentences of T modulo T-pro-
vable equivalence and for the mapping o one takes the provabilty
predicate of T, that is, for ¢ a sentence, op = Pr(p). The
well-known properties of Pr(-) guarantee that the algebra ob-
tained in this way is a diagonalizable algebra. (In particular,
the identity o(ox — x) — ox = T disguises a formalized ver-
sion of Lob’s Theorem.) This diagonalizable algebra is called
the diagonalizable algebra of T and is denoted by DT. The con-
cept was originally introduced by Macintyre & Simmons [28] with-
out a name. The name was supplied later by Magari [29].

If T is a set of ifithmetic sentences closed under Boolean

T
A subalgebra of DT is r.e. if the underlying set of sentences

operations and o then 9., is the corresponding subalgebra of DT.
is. The usual godelnumbering of sentences gives rise to a posi-
tive numeration of each r.e. subalgebra of DT including DT it-
self.

Clearly the height of 3
of T.

T is equal to the credibility extent

In diagonalizable algebras (and even in diagonalizable al-
gebras of infinite height) neither of w-consistency and the dis-
junction property implies the other. The situation in diagonali-
zable algebras of theories is different. In fact, the following

are equivalent:

(i) T is Zl—sound;
(ii) T » o v T implies T +o or T + T for each pair of
Zl sentences o and tT;
(iii) T decides every sentence which is Al over T;
(iv) DT is w-consistent;
(v) The credibility extent of T is greater than 1 and 9

T
possesses the disjunction property.,



(i) © (ii) & (iii) is proved in Jensen & Ehrenfeucht [26] and
Guaspari [23] (cf. also Friedman [19] and Smorynski [45] and
[46]). The remaining equivalences are folklore and are typical
applications of Goldfarb’s Principle:

Let o be a 21 sentence and let T + Pr(L) — o. Then there
exists .a sentence T (which can be chosen 21 or H1) s.t. T v O

«— Pr(T).

(cf. Visser [49], Bernardi & Mirolli [9], Montagna [32] or Mon-
tagna & Sommaruga [34]).

As evidenced by (iv) & (v) it will, for the purposes of our
paper, be convenient to conjunct w-consistency and the disjunc-
tion property under the name of the strong disjunction property

which is clearly equivalent to
L # 7T, and ox Vv oy = T implies x =71 or y = T.

Before doing so however we shall take a final look at each one

of the former separately.

For thé remainder of the § we shali be confusing modal and

arithmetic notation.

In 1971 Parikh [35] proved that the implication of the sta-
tement (iv) for Zl—sound theories (T v+ op > T + ¢) may take ra-
ther long to materialize. That is, for each provably recursive
function g of T there exists a sentence ¢ and a proof p of op in

T s.t. no number < g(p) is a proof of ¢ in T.

'We shall prove the same for the disjunction property. Our
proof leans heavily on techniques-of de Jongh & Montagna [25]
and Carbone [13] and an idea in Carbone & Montagna [14].

'1.1. Proposition. Let g be a provably recursive function of
a Zl—sound~theory T.

(a) There exist (21) sentences 01 and 02 and a proof pO of
ao \% oo in T s.t. T bo T + o, and no p, < g(po) is a
proof of oo, or of o, in T.

(b) There exist (21) sentences T, and T, and a proof qO of



at, v th in T s.t. T *~ T, T non + T, and no q, < g(qo) is

a proof of ot in T.
Proof. First we fix a pair of (21) sentences a and B s.t.

T + (o v OB) <
oo

oo ¢ oot

Sentences a« and B satisfying these conditions could be produced
with the help of Solovay’s [47] Second Theorem applied to the
following Kripke model (at each node, only the letters forced

are shown) :

(This model also appeared in Visser [49] to accomplish a simili-

ar task).

Now let g <g oy denote the formula saying that there
exists a proof p of ¢ in T s.t. no q < g(p) is a proof of Y in
T.

(a) By self-reference find a sentence P, s.t.
(1) T *» p, [u(u(p1 Voa) Vv u(p1 vV B)) <g nu(p1 vV oa)] A
A [a(a(p, vV o) V.o(p Vv B)) <g oo(p, VvV B)]
We have

(2) T ro(a(p, v a) vaolp vB)) - n+p1 v n+1p1
(the antecedent implies that the
r.h.s. of (1) 1is decidable and so
P, is decidable)

(3) T l-"lpl .
—. u(n(p1 vV o) Vv :x(p1 vV B)) — (an(p1 vV oa) v nn(p1 vV B))
(by (1))

10



(4) T +~ D+1p1 -
- D+(D(n(p1 va) vaol vRe)) —. oo(p va) voo(p VE))

(by (3))
— ot (o(oa v 0B) —. ooa v oop)

— oY (ooor — oo1) (by the choice of a and B)

(5) T * |:|+-|p1 — oool (from (4) by Lob’s Theorem)
— ool (by (4))

(6) T v moL —. oo VvV of (by the choice of « and B)

—. 8(p, vV a)V a(p, v B)

(7) T + |:|+-1p1 . u(p1 vV oa) Vv D(p1 v B)
(by (5) and (6))

(8) T + ooop = um(m(p1 vV a) Vv u(p1 vV B))

— D(up1 \% u+1p1)
(by (2))
— o(a(p, v o) vo(p Vv B))
(by (7))
—. op Vv D+1p1
(by (2))
—. op Vv ool
(by (5))
- l:mp1
(9) T + oop, (from (8) by Lob’s Theorem)
(10) T + P, (from (9) by Zl—soundness)

By (10) also the r.h.s. of (1) is provable and hence by Zl—so—

undness true. Now let 01 = p1 vV a, 02 = p1 v B and note that

(a) is proved.
(b) Construct a sentence p2 s.t.
T *~ p, D(n(p2 vV a) Vv oB) <g l:n:l(p2 VvV a)

and show that T + P, in perfect analogy with the proof of (a).
Then take t1 = P, vV a and t2 = A. u

After the research underlying the present paper was essen-

tially completed I learnt that Proposition 1.1 fell corollary to
very general recent results of Montagna [33].
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Leaving alone the problem of actually constructing from a
proof of op v oY that of one of the disjuncts, one might at
least ask which one of those is true. The next proposition shows

that this generally also is a very difficult question.

1.2. Proposition. If T is a Zl-sound theory then there is
no provably recursive function of T which, given a proof in T of
a sentence of the form ogp Vv oy, picks a true disjunct (even if

one restricts the task to 21 sentences ¢ and Y ).

Proof. Suppose g were such a function. That is, if p is a
proof of a sentence of the form op v oy with ¢ and Y in 21
then

g(p) = 0=>T r ¢ and g(p) =1 =>T + Y.
Clearly we can assume w.l.o.g. that

T » Vx (g(x) = 0 v g(x) = 1)

We introduce two ad hoc "modal" operators:

op A g(the least proof of ¢)

(u]
-e
n

op A g(the least proof of ¢)

o
hS]
n

Next we define by parallel self-reference:

T v 0 & D1(DG VvV oT)

T r T & no(no VvV oT)
We have

T +» o(oo vV OT) —. (D0 \% Dl)(DU V OT)
—. OV T

—. 00 VvV OtT (0 and T are 21)
and hence

T » oo v ot

by Lob’s Theorem. Now if g(the least proof of oo Vv ot) = 0
then o is false and therefore by Zl—soundness T non + 0 cont-
rary to the assumptions on g; g(the least proof of oo v ot) = 1
contradicts the assumptions in the symmetric manner. ]

12



§ 2. On conservativity in L

2.1. Definition. The degree d(4) of a modal formula 4 is
defined inductively:

d(p;) = d(L) =d(r) =0
d(~4) = d(4)
d(4 AB) =d(A4v B) = d(2 — B) = max (d(4), d(B))
d(od) = 1 + d(A4)

Thus, formulae of degree 0 are precisely the o-free formulae.

Let 3 be a finite tuple of propositional letters. Formulae
of degree < n containing no letters other than in B constitute
(modulo L-equivalence) a finite Boolean algebra which we denote
by Fn(ﬁ). Elements of Fn(g) will 'be persistently confused with
modal formulas representing these elements. We also let An(B)
denote the set of atoms of Fn(ﬁ). Clearly FD(B) is a subalgebra
of Fm(g) whenever n < m and 3 c 3. It is convenient to think
of the modal operator o as sending elements of FD(B) to those of

Fn+l(3).

F and F(B) denote the diagonalizable algebras of all formu-
lae and of all formulae whose propositional 1letters are in B
respectively.

2.2, Lemma. Consider elements of Fn+1(B) of the form

a A oWy A Nov

with o ranging over AO(B) and ¥ ranging over subsets of AD(B).
Call such formulas types. (Here ¢ ¥y = { oC | C € v })

(a) The conjunction of two distinct types is (L-equivalent
to) 1.

(b) Each formula in Fn+1(B) is (L-equivalent to) a disjunc-
tion of types.

(c) Each formula in An+1(3) is (L-equivalent to) a type.

(d) Each type either belongs to An+1(3) or is (L-equiva-
lent to) ..

13



Proof. (a) It is straightforward to show that

M (cxl/\uWyl/\A\ow1)/\(ocz/\nw;rz/\/x\oxz) .
. (cxl/\cxz)A(uWWIAnW72)A(/X\oWIAMO72)
. (al/\az)/\nW(ylnwz)A/AO(VIUVZ)

and the claim follows by an easy Kripke model argument.

(b) By the definition of Fn+l(3) every formula therein can

be thought of as a lattice combination of elements a of Ao(ﬁ)
and formulas of the form oC and -oC with C € F“(B) or, equiva-
lently, o \} ¥ and =-o \{f v with ¥ ¢ AH(B). Thus to prove the
claim it will suffice to show that a, o \} ¥ and -~ o \f v are
L-equivalent to appropriate disjunctions of types and that the
conjunction of two disjunctions of types can be L-equivalently
brought into the form of a disjunction of types. This is unprob-

lematic:

FLOH_>W{oc/\cxwa/\/,(\oa|<S;An(f5)}

LoWreoW(BroWsANos | Bea’ B, s cr)

b T o\ 7 <
o WI(BAoOWSANOS | Ber’ @), s cA'B), 5 non c v )

and, finally,
»-L\z./(oci/\uwz(i/\/x\ovi)/\\E'/(aj/\mW'yj/\moyj)(__)

H.W.((ai/\DW'Ji/\fAO’Zi)/‘\(O(J./\DW'JJ./\/X\O'JJ.))
1,]

Since by (a) the conjunction of two types is L-equivalent to 1
and/or to a type we are done.

(c) and (d) follow easily from (a) and (b). n

The types of Lemma 2.2 are essentially the same as the nor-
mal form formulas of Fine [17] and the n-S-characters of Gleit &
Goldfarb [20].

2.3. Definition. Let K be a rooted model. The unique ele-
ment of AH(B) forced in K is called the (n,g)-character of K.
If the (n,ﬁ)—characters of two rooted models coincide then these

models are said to be (n,B)—twins.
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2.4, Definition. If K = (K, R, #) 1is a Kripke model and
a € K then K[a], the a-cone of X, is the rooted model whose do-
main is the set ({(a}) U { b € K | a R b } and the accessibility
and forcing relations are R and # restricted to this set respec-
tively. A proper cone of K is the a-cone of X for some a € K

which is not the root of XK.

The following lemma, although simple, will render us a num-
ber of valuable services. It should be compared with Theorem 1
of Fine [17].

2.5. Lemma (Fine Lemma).

(a) Two rooted B—models are (n+1,5)—twins iff

(i) they are (O,B)—tvins and

(ii) each proper cone of one of these models has got an
(n,ﬁ)—twin among the proper cones of the other model and vice

versa.
- , > ,
(b) (n+m,p)-twins are (n,p)-twins.
Proof. (a) is easy.

(b) is proved by induction on m using (a). .
2.6. Definition. Let 5 be a finite tuple of propositional
letters. A formula A is said to be B—conservative over a formula
B if for each C € F(B) one has L B — C whenever ML A -
C. A is conservative over B if it is A-conservative over B where
A is the empty tuple. A is (B—) conservative if it is (3—) con-

servative over T.

Our aim 1is to show that conservativity is decidable. 1In

fact we shall obtain stronger results.

2.7. Definition. Let Kl = (K1' R1’ wl) and Kz = (Ka' R2,
»2) be rooted models, a € K1 and assume K1 and K2 disjoint. By
saying that we graft Kz above a (in Kl) we mean that a new model

is constructed whose domain is K1 u Kz, the forcing relation

15



coincides with b U ¥, on propositional letters and the acces-

sibility relation R is defined by putting

bRc &
& b R1 c or b R2 c or ((b R1 a or b =a) and c € Kz)

Ilet XK = (K, R, #) Dbe a rooted B-model and a € K. Suppose
one grafts an isomorphic copy of the a-cone of K above b € K
in X with b R a. Then the "old" nodes can be easily shown to
force precisely the same modal formulae in the resulting model
as they did in X (cf. Artemov [3]). Suppose K’ = (K', R', )
is a B-model obtained from K by a finite number of graftings of
the sort described and let there exist a forcing relation ' ex-
tending # s.t. XK' = (K’, R, +') is a d-model that forces a
formula A4 € F(a). Then we shall say that K is expandable to (a
model of ) A and that Kt is an expansion of K to (a model of) A.

2.8. Lemma. Let B c 3. If every finite rooted (treelike)
3—mode1 of a formula A € F(ﬁ) is expandable to a model of B €
F(a) then B is B-conservative over A.

Proof. Easy. .

2.9. Definition. If A =a Ao\ 7 A\ o7 with o € A°(DB)
and ¥ ¢ An(ﬁ) and K is a rooted 3—model forcing 4 then a is
called the real world part of A and of K; elements of y are the
(n,g)—possible worlds of A and of K and 7 itself is the (n,B)—
possible worlds part of A and of K. The number of elements in 7

is the (n,B)—rank of A and of XK.

Clearly the real world part and the (n,B)—possible worlds
part of A2 and of each rooted B—model are defined uniquely up to

L-equivalence.

The following lemma may be thought of as an improvement on
the Joint Satisfiability Theorem of Gleit & Goldfarb [20].

2.10. Lemma (Expansion Lemma). Let 3 - 3. To every n € w
there corresponds an N € w s.t. every finite treelike B—model

of B € AN(g) is expandable to a model of C € An(3) whenever
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B A C 1is irrefutable in L.

Proof. The claim is immediate for n = 0 (in this case we
can take N = 0). For the remaining n € w we use induction on
the (n—l,a)—rank of C. When this rank is 0 and N > O the claim

is once again obvious.

Thus, given an r # 0, we assume for induction0 hypothesis
that each finite treelike B-model of D € AN(g) is expandable
to a model of E € An(a) once D A E 1is irrefutable in L and
the (n—l,a)—rank of E is smaller than r.

Now let C € AD(G) of (n—l,&)—rank r be forced in a rooted
model ¥ along with B € AN+C(3) and let K be an arbitrary fini-
te treelike B-model of B. The constant ¢ will be specified la-
ter. We are going to expand K to a model of C. To avoid heavy
notation we stipulate that K retains its name throughout the
process of expansion despite the changes it undergoes and, at

intermediate stages, despite being neither a B- nor a 3—model.

First we consider a particular case when the (n—l,a)—rank
of ¥ is greater than that of any of its proper cones. In this

case we let ¢ = 1.

Let @pr---s@p be the immediate successors of the root of
K. By the Fine Lemma (a) there exists a sequence R[bl],...,
H[bm] of proper cones of K s.t. R[bi] is an (N,z)—twin of
K[ai], 1 < i < m. Since the (n—l,a)—rank of each of the R[bi]'s
is smaller than r, the inductiono hypothesis yields an expansion
of K[ai] to the (n,a)—character of ﬂ[bi]. Now replace each of
the K[ai]’s by the corresponding expansion (this is possible be-
cause K 1is treelike). Analogously, each proper cone H[b] of *
has got an (N,g)—twin among the proper cones of K which is ex-
pandable to the (n,&)-character of ¥[b]. For each such ¥[b],
graft a copy of the corresponding expansion above the root of XK.
Finally extend the forcing relation at the root of X in the ob-
vious way.

We show that the resulting model is an (n,&)-twin of ¥. The
real world parts of their (n,&)-characters coincide by construc-

tion. That the proper cones of the model constructed have
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(n—l,&)—twins among the proper cones of X follows from the fact
that every proper cone of the new model is either an (n,a)— (and
therefore by the Fine Lemma (b) an (n—l,a)—) twin of a proper
cone of ¥ or is a proper cone of an (n,&)—twin of a proper cone
of ¥ (and hence by the Fine Lemma (a) an (n—l,é)—twin of a pro-
per cone of ¥). As to the opposite direction, recall that we
grafted in K an (n,a)—twin to each proper cone of ¥. Finally,

apply the Fine Lemma (a).

Now we drop the assumption on the (n—l,&)—ranks of the pro-
per cones of ¥ and increase c to 3, that is, we assume X and ¥
to be (N+3,5)—twins.

Our plan is as follows. We set the inductionO hypothesis
and the skills we acquired when treating the particular case to
work and let these expand as many proper cones of K as possible
to the characters of the corresponding proper cones of X. What
remains unexpanded in K after this first attack corresponds to
proper cones of H of (n—l,a)—rank r and hence the (n—l,a)—possi-
ble worlds of these cones have to be the same as those of ¥ it-
self. Thus, provided we have implanted all the (n—l,a)—possible
worlds of K above each of the yet unexpanded nodes of K, we only
have to care that .o (n—l,a)—possible world alien to X comes in-
to existence when the forcing relation at these nodes is being

extended to 3.

Our first move will be to classify the proper cones of K.

Thus, we call a proper cone K[a] along with its root a

- frontier, if there is an (N+1,5)—twin H[b] of K[a]
among the proper cones of ¥ s.t. the (n—l,a)—rank
of ¥[b] is r but each proper cone of X[b] is of a

smaller (n—l,a)—rank;

- high, if a is not frontier and there is an (N+1,B)-
twin of K[a] among the proper cones of ¥ of

(n—l,a)-rank smaller than r;

- low, if a is not frontier and every (N+1,3)-twin of
K[a] among the proper cones of ¥ is of (n—l,a)—
rank r;
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- genuinely frontier, if a is frontier and every node

which a is accessible from is low;

- critically high, if a is high and every node which a

is accessible from is low;

- essentially low, if a is low and every node which a

is accessible from is also low.

Claim 1. Each proper cone of K is either frontier or high

or low.

Claim 2. Of each node of K which is not the root of K
exactly one of the following statements is true:
(i) a is genuinely frontier;
(ii) a is critically high;
(iii) a is essentially low;
(iv) a is accessible from a genuinely frontier or from a

critically high node.

Indeed, Claim 1 is easy. Claim 2 follows from Claim 1 by

inspection of our classification.

Informally, we have this picture: To the root of X clings a
downward closed collection of essentially low nodes and immedi-
ately above this collection there is a one-node-thick layer of
genuinely frontier and critically high nodes which separates the

essentially low nodes from the rest of the model.

Claim 3. From each (essentially) low node a frontier node

is accessible.

The proof of Claim 3 explains why we chose c¢ to be so ab-

normally large:

By the Fine Lemma (a) each low proper cone K[a] has got at
least one (N+2,B)—twin among the proper cones of X. Each of the-
se (N+2,3)-twins has a proper cone of (n—l,a)—rank r, or else a
would be frontier. Pick one of these (N+2,B)—twins and a proper
cone H[b] of it of (n—l,a)—rank r s.t. each proper cone of H[b]
has a smaller (n-l,&)—rank. By the Fine Lemma (a) the root of an

(N+1,3)—twin of ¥[b] should be accessible from a. This root is
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by definition a frontier node so Claim 3 is proved.

Let us now start working. The root of K is as usual unprob-
lematic. Next we replace each genuinely frontier and each criti-
cally high proper cone of K by its expansion to the (n,a)echa—
racter of one of those of its (N+1,3)—twins in ¥ which this pro-
per coné owes its frontier or high statute to respectively. For
(genuinely) frontier proper cones such expansions were carried
out when treating the easy particular case with ¢ =1 and for
expansions of critically high nodes we turn to inductionO hypo-
thesis. By Claim 2 and since K is treelike these replacements
can not conflict. To each essentially low node a of XK we do the
following: extend the forcing relation at a to that at the root
of one of the (N+1,3)—twins of K[a] in ¥ and graft above a an
expansion of a frontier proper cone K[ao] with a accessible
from a, which corresponds to a by Claim 3, to the (n,3)-charac-
ter of an (N+1,3)—twin of K[ao] in ¥ which enjoys (n—l,a)—rank r
‘but none of its proper cones does. Lastly, for each proper cone
H[(b] of K s.t. every one of its proper cones has (n—l,a)—rank
smaller than r pick an (N+1,3)—twin in (the original copy of) X
and graft above the root of XK an expansion of this (N+1,3)—twin
to the (n,a)—character of H[b].

It is now easily seen from Claim 2 that K has been metamor-
phosed into a G-model. We check that the (n-l,&)—possible worlds
parts of ¥ and of the model constructed are the same.

If there is a proper cone of ¥ of (n-1,3)—rank r then at
.least one of such cones enjoys an (n,&)-twin in the modified X
grafted above the root. Since ¥ is itself of (n—l,&)—rank r,
each (n-l,a)—possible world of ¥ 1is also an (n-l,a)—possible'
world of this (n,a)—twin and hence of the expanded K. If there
were no proper cones of X of this (n-l,a)—rank then we would ha-
ve grafted in K an (n,a)—twin to each proper cone of ¥ and any-

way this is the easy ¢ = 1 case that we dealt away with ear-
lier.

It remains to see that each (n—l,&)—possible world of K is
that of ¥. Expansions of genuinely frontier, critically high and
- frontier proper cones of K grafted in K present, as in the c¢ =
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1 case, no problem. We show by rootward induction1 on the es-
sentially low nodes of K that these only gave rise to (n-l,a)—
possible worlds that are those of K. Consider an essentially low
node a of K. Recall that there is an expansion of something to
the (n,é)—character of a proper cone of ¥ having (n—l,a)—rank r
grafted above a. Hence the (n—l,a)—possible worlds part of the
a-cone of the new XK is the same as that of ¥: by induction1 hy-
pothesis no extra (n-l,a)—possible world could have crept in.
Find now the root b of the (N+1,B)—twin H[b] of K[a] which the
forcing relation at a was extended to. Since this (N+1,B)—twin
also had to have (n-l,&)-rank r and hence the same (n—l,a)-pos—
sible worlds as ¥ , we see by the Fine Lemma (a) that the a-cone
of the modified K is an (n,a)—twin of ¥[b] which gives us the
desiderata. Thus we have executed the induction1 step and the
proof is complete.

Since the (n—l,&)—rank of a formula can not be greater than

|Fn—1(3)| our proof yields N =1 + 3-|Fn_1(3)|. "

2.11. Lemma. Let 3 - 3. For each formula B € F(&) there
exists a formula C € F(B) s.t. L B —» C and a finite tree-
like 3—model is expandable to a model of B iff this model forces

C.

Proof. Let B € Fn(é) and let N be the number which cor-
responds to n by the Expansion Lemma. Take C to be the disjunc-
tion of those elements D of AN(g) whose conjunction with B is

irrefutable in L and use the Expansion Lemma. .

We are now able to prove the converse to Lemma 2.8.
2,12, Lemma. Suppose that 3 - 3 and B € F(&) is 3—con—
servative over A € F(ﬁ).rThen each finite treelike 3—model of A

is expandable to a model of B.

Proof. By Lemma 2.11 there exists a formula C € F(ﬁ) s.t.

ML B — C and each 3—model of C is expandable to a model of B.

Since B is 3—conservative over A we have that ML A —> C and so
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each finite treelike B-model of A is expandable to a model of B.

Smorynski [44] establishes the Craig Interpolation Property

for the modal logic L: If ML A — B then there exists a formu-

la C s.t. FL A —» C and L C — B and C only contains propo-

sitional letters common to 4 and B (cf. also Boolos [11] and
Gleit & Goldfarb [20]). The following corollary shows that all
we need know of B to construct C is what propositional letters A
and B have in common.

.13. Corollary (Uniform Craig Interpolation Lemma for L).

2 .
> 2
p

Let € d. Given a formula B € F(a) we can construct a formu-
la C € F(B) s.t. v B - C and + C — D whenever P is a

L L
tuple of propositional letters disjoint from 3 and D € F(g,?)

is s.t. ML B — D. Moreover, this formula C is unique up to L-
equivalence.

Proof. Let C be as in Lemma 2.11. Take a formula D meeting
the requirements of the present corollary and let E € F(B) be
the interpolant between B and D provided by the usual Craig In-
terpolation Lemma. We show ML C —> E whence L C —»> D fol-
lows by modus ponens. For if this were not the case then we
would have a finite treelike model forcing C A -E. By Lemma
2.11 this model would expand to a model of B and thus B A -E
would be irrefutable in L contradicting the assumption that E is

an interpolant.

Uniqueness is left to the reader. ]

Thus if B < 3 and B € F(a) then among the formulas in
F(B) implied by B exists the stongest one.

For the case of 3 an empty tuple Corollary 2.13 is essenti-
ally proved in Artemov [2] and [3]. The full strength of this
corollary will not be needed until § 10.

2.14. Corollary. (3-) conservativity is decidable.

Proof. To decide whether a formula A is B—conservative over

22



a formula B construct the formula C provided by the Uniform

Craig Interpolation Lemma s.t. b, 4 o C and + C — D when-
ever  + A - D and 4 and D do not have common propositional
letters other than those in B. Use the same lemma to see that 4
is B—conservative over B iff b, B — C. »

In what follows formalized versions of certain lemmas of
the present § will appear within IZ1 without special notice. In
each case the verification that such formalizations are possible

is unproblematic and therefore left to the reader.
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§ 3. A family of Kripke models

3.1. Definition. Let X be a finite B—model. K is said to be
differentiated if for each node a of K there exists a formula A

€ F(ﬁ) s.t. a is the only node in K forcing A.

Note that for finite models our definition of differentia-
ted is equivalent to that of Fine [17].

3.2. Definition. Let XK be a finite model. The least such n
€ w that X r oL is called the height of K. Thus the height
of X is equal to the number of elements in the largest subset of
the domain of XK linearly ordered by the accessibility relation.
Clearly if K is rooted then the height of K exceeds that of any

one of its proper cones.

3.3. Lemma. Let K be a finite rooted differentiated 3—mo—
del and let 4 € F(B).

(a) Each proper cone of K is differentiated.

(b) (Fine [18]) To each finite rooted B—model ¥ there cor-
responds a finite rooted differentiated 3-model which forces

precisely the same formulas in F(g) as ¥ does.

(c) There exists a formula, which we shall denote WK(B) (or
just WK), s.t. any rooted differentiated B—model K is isomorphic
to XK if and only if H® QK(B).

, 2
(d) K » A4 1iff ML WK(p) — A.

. 2 2

(e) Either L WK(p) — A or L Wx(p) — 4.

Proof. (a) Obvious.

(b) Let ¥ = (H, R, ). Define an equivalence relation E on

aEDb & a and b force the same formulas in F(B).

Define R/E to be the relation on H/E which holds between two E-
equivalence classes a and & whenever for each node a € a there

exists a node b € & s.t. a R b. Clearly R/E is transitive and

24



irreflexive. Let an E-equivalence class a force a propcusitional

letter p; € 3 (a o pi) if a representative of a forces p;-

We show by induction on the structure of A that if a € a

then

a v A 1iff a»EA.

The only interesting induction step occurs when A is of the form
nB. Suppose a # oB. If a R/E & then for some b € & one has
a Rb whence b ¥ B. Hence by the induction hypothesis & g B.

Conclude a kg oB. The converse direction is equally easy.

Thus, X and (H/E, R/E »E) force the same modal formulas
14

and trivially the new model is differentiated.

(c) We prove that for WK(B) one can take the (n,g)-charac—
ter of X where n is the height of XK. This we do by induction on
the height of XK.

So let the height of X be n + 1 and let ¥ and X be
(n+1,3)-twins. We construct a mapping f from the domain of X to
the domain of ¥. Let f map the root of K to that of ¥. Next let
f take the root of a proper cone K[a] of K to the root of its
(n,B)—twin among the proper cones of X (which exists by the Fine
Lemma (a)). Note that by the induction hypothesis K[a] is iso-
morphic to H[f(a)]. Since K is differentiated f is injective for
else there would exist two distinct but isomorphic proper cones
of K. Moreover f is surjective because each proper cone of X en-
joys an (n,g)-twin among the proper cones of K and since ¥ is

differentiated f connects these two.

By the Fine Lemma (a) f preserves forcing of propositional
letters. It remains to check that f respects the accessibility
relation. Let, in X, b be accessible from a in which case X[b]
is isomorphic to some proper cone of ¥[f(a)] and in particular
K[b] is an (n,B)—twin of a proper cone of ¥[f(a)]. So f must ta-
ke b to the root of that proper cone and hence f(b) is accessib-
le from f(a). A symmetric argument will establish that b is ac-
cessible from a whenever f(b) is accessible from f(a). This

shows that f is an isomorphism and completes the proof of (c).

(d) (if) By (b) for any finite rooted 3—model ¥ forcing
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Wx(g) we can construct a finite rooted differentiated 3—mode1
which forces the same formulas as ¥. By (c) this model will be
isomorphic to XK and will therefore force A. Hence ¥ » A. By the

Completeness Theorem for L we are done.
The (only if) direction is left to the reader.

(e) follows at once from (d). "

Thus, formulas of the form WK(B) are atoms of F(B). More-

over, it can be shown that each atom of F(B) has this form.

Lemma 3.3(c) is proved in Artemov [4] for treelike models
and a suitably adjusted notion of differentiated. To get diffe-
rentiated models from Artemov differentiated models one only has
to identify nodes that force the same formulae. Confer also Bel-

lissima [7] for a related result.

3.4, Definition. Let M(g) = (M(g), R(ﬁ), »9) denote the 5—

p
model whose domain is constituted by all finite rooted differen-
tiated B—models (we shall henceforth denote these by lower case

Roman letters) with the accessibility relation defined by
a R(ﬁ) b & b is isomorphic to a proper cone of a

: . 2
and with a »B p; 1ff a P; where p; € p.

The models M(g) will be our favourite playground and an im-
portant tool for our embeddability results. In fact, these mo-
dels can be shown isomorphic to the models employed by Grigolia
[21] and [22] and Rybakov [39]. We collect some facts about

M (D) -

3.5. Lemma. Let a, b € M(B), 4, B € F (B).
> . > >

(a) a R(p) b iff ML Wa(p) - o@b(p).

(b) a non R(B) b iff b ¥ (B) o mqu(B).

(c) a LN A iff a w A,
p

(d) M(g)[a] is isomorphic to a.
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(e) M(B) is differentiated.

(f) A non ML B iff there exists a node c € M(ﬁ) s. t. c

r 4 and ¢ + nB.

(g) If 4 non 1Wa(3) and 4 v B then a & B.

_9
(h) If a R(B) b and 2 - wwb(B) then 2 v 1¥_(B).
Proof. (a) and (b) follow from Lemma 3.3(d).

(c) 1is established by downward induction on .R(ﬁ) (since
R([_)>)~1 is clearly well founded). Assume that (c) holds for all
b e M(B) s.t. a R(B) b.

It will suffice to prove the claim for propositional let-
ters and formulas of the form oB. Since the case of propositi-

onal letters is self-evident we turn to oB.

We have: a b oB 1iff for each proper cone b of a there
b

holds b LN B, iff for each proper cone b of a there holds b
p
B (this is by the induction hypothesis), iff a # oB g.e.d.

(d) By (c) of the present lemma one has a Wa ergo

p
M(B)[a} # Ta and hence by Lemma 3.3 (c) M(g)[a] is isomorphic to

a.

(e) By (c) of the present lemma Wa differentiates a from
all the other nodes of #(B).

(f) We only prove (only if). If not « n*ta - o'B  then
there exists a finite rooted 3—model K s.t. K # A4 and K =+
~o*B. Thus there is a node d of XK s.t. d # ot2 and d non  B.

Apply to K[d] Lemma 3.3(b) to obtain the desired c¢ € M(B).

L

(g) By (f) since A4 non + wwa there exists a node ¢ €
M(B) s.t. ¢ # ofa and c Wa whence by Lemma 3.3(c) ¢ = a

and from A4 ML B we get a = B.

(h) Suppose A non L 1Wa. Then by (f) there is a node c €
M(B) s.t. c »o*a and c ¥_. By Lemma 3.3(c) c = a whence
c R(g) b. So we have b # ot2 and b Wb’ therefore by (f) A

non 1Wb contrary to assumptions. ]
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Lemma 3.5(c) permits us to drop the notational distinction

between LR and .
p

We shall also need to know something about the interrelati-

ons between the models #(B) with different B.

3.6. Definition. Let B - 3. We define a relation < between

nodes of M(a) and those of M(B). For a € M(a) and b € M(g)
put

a<b © a and b force the same formulas in F(3).

Thus a < b if and only if b is expandable to a model of Wa.

3.7. Lemma., Let A € F, 3 - 3, a, be M(B), c € M(a).

. - 2
(a) ¢ <« a 1iff L Wc(q) - Wa(p).
(b) There exists a unique d € M(E) s.t. ¢ < d.
(c) There exist only finitely many e € M(a) s.t. e < a.
2 - -
(d) rp, ¥ (P) & W ( ¥_(9) | e € M(q), e < a }.
2 2
(e) If c <a and A L ﬁ@a(p) then A kL 1wc(q).

(f) If a R(g) b and ¢ <« a then there exists a node e €
M(g) s.t. c R(a) e and e < b.

(g) If A non L ﬂWa(B) then there exists a node e € M(&)
s.t. e < a and A non ML 1%6(3).

Proof. (a) (only if) Since ¢ < a the node c forces the
same elements of F(z) as a does. In particular c wa(B). Hence
by Lemma 3.3(d) ML wc(é) - Wa(B).

(if) Suppose a forces a formula B € F(ﬁ). Then by Lemma
3.3(d) we have L Wa — B. Hence FL WC — B and therefore c
forces B by Lemma 3.3(d).

(b) For existence, apply Lemma 3.3(b) to the model obtained
from d by restricting the forcing relation to F(B). Uniqueness

follows by Lemma 3.5(e).

(c) If e < a then clearly the height of e is the same as

that of a and there can only exist finitely many finite
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differentiated 3-models of a given height.
(d) (¢« ) follows from (a).

(=) Let X be a finite rooted a—model forcing Wa. By Lemma
3.3(b) there exists a finite rooted differentiated a—model for-
cing the same formulas in F(a) as K does and hence it will force
Te for some e € M(a) s.t e <« a. Therefore K = We whence K
B WO We | e € M(a), e < a ). An application of the Completeness

Theorem for L completes the proof.
(e) follows from (a).

(f) By Lemma 3.5(a) we have L Qa — o@b. Since ¢ < a we

also have L Wc - o@b by (a) of the present lemma. Hence c

owb and there is a node e € M(a) s.t. R(a) e and e » V¥

By (a) and Lemma 3.3(d) this implies e <« b.

b

(g) follows from (d4d). -
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& 4, Finite credibility extent

4.1. Theorem. Let the credibility extent of a theory T be
n € w. A denumerable diagonalizable algebra ® is isomorphic to
an r.e. subalgebra of DT iff

(1) ® is positive and

(ii) the height of D is n.

The (only if) direction is straightforward. The present §
is devoted to the proof of the converse implication. Thus we are
given a denumerable positive diagonalizable algebra 9 which we

have to show isomorphic to an r.e. subalgebra of DT.

To this end we have to borrow some notation from §§ 2 and
3. But first we simplify it a little bit. The tuple (pl,...,pi)
of propositional letters will usually be represented by the sym-
bol i. So Fn(i) will stand for Fn(pl,...,pi); M. will stand for
the domain of the model M(pl,...,pi) etc. We shall allow oursel-
ves to omit the subscripts in ks and Ri since it will always be
clear which model is meant. We stipulate further that 0 is not
an element of any of the Mi's, 0 Ri (any element of Mi)’ 0 <« 0
and 0 # A for no modal formula A4 (thus a # "4 1is not the sa-
me as a non # 4 unless we assume a # 0). Moreover we shall be
confusing the names of sets, relations and properties introduced

in §§ 2 and 3 such as Mi’ "a formula A is conservative over

.
LI
a formula B" etc. with the names of their (honest) AO binumera-

tions in arithmetic.

We are now going to apply a variant of the Solovay cons-
truction (see Solovay [47]) to each of the models Mi' We start
with i = 0.

By self-reference define a AO function symbol hO and a clo-

sed e-term 20 s.t. IZ1 proves the following clauses:
(1) h_(0) =0

(2)
ho(x+1) =a 1if (i) a e M_ ;

(ii) a » oL ;
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(iii) ho(x) R a and

(iv) Prf (x, 80 =a — dy (ho(x) R ho(y) R a))

= ho(x) if no a satisfying (i) - (iv) exists
(3) ¢ = llmx__)oo ho(x) if ho reaches a limit
= 0 otherwise
Here Prf(-,-) is the proof predicate of the theory T under con-
sideration.
4.2, Lemma (IZI).
(a) Vx ¥y (x <y —>. h (x) =h (y) v h (x) Rh (y))
(b) eo = llmx__>00 ho(x)
(c) £ =0v e wolL
0 0]
(d) Vx (ho(x) = 80 Y ho(x) R EO)
(e) VaEMO (a v oL A 20 R a —.
—. 1 Pr (¢ =a — 3Ty (ZRhO(y) R a)))
(£) VaeM (a » oL A ¢, Ra —. 1 Pr (¢ = a))
(9) EO 0 —
— dx Prf (x, 20 = EO — dy (ho(x) R ho(y) R 20))
(h) 20 # 0 — Pr (20 = 20)
(1) BO # 0 — Pr (20 R EO)

Proof. (a) follows from inspection of (2) by induction on

(b)

ves.

(c)

h # Cln_L
0

(d)

(e)
rifiably

is immediate from (a) because h can make at most n mo-

By (1) and (2) for each x we either have ho(x) = 0 or

(this is established by induction on x). Now use (b).
follows from (a) and (b).

Consider an x s.t. 'ho(x) = Eo. By (a) and since R ve-

is a strict patrial order there holds ho(y) = 20 for
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each y > x. Therefore there can not exist a proof y 2> x of

the formula
80 =a — Jy (20 R ho(y) R a)

because then by (2) ho(y+1) = a. Finally, recall that each pro-

vable sentence is provable by arbitrarily large proofs.
(f) is immediate from (e).

(g) Since hO(O) = 0 and for some y ho(y) = 20 # 0 there
exists an x s.t. ho(x) = ho(x+1) = 20. By (iv) of (2) this x
has to be a proof of the formula

¢, =t -3y (h (x) Rh (y) R £_0)

(h) Once we assume 20 # 0 we have by (g) that there

is a proof x of the formula

s =t — 3y (A (x) Rh (y) RE)

Clearly by (2) and (d) ho(x+1) = 20. Moreover since hO is A0
and R is a strict partial order we have that (a) formalized im-

plies

Pr (+ 3y (A_(®) Rh () RT))

and therefore Pr (80 = F;).

(i) follows from (b) and (d) formalized and (h). n

4,3, Lemma.

(a) For each m s.t. 0 < m < n one has

Iz r Pr" (I) < e v o™y

(b) IZ + pr” (1) Fe #0
(c) For no a € M0 s.t. a #o?L dowe have T + { = a.
() N =2 =0
(0]
Proof. (a) Consider m = 1.

If Pr(L) then by Lemma 4.2(f) we have ¢ R a for no a €

M . Hence ¢ » oOl1.
0 0
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Conversely, if ¢ v ol then by Lemma 4.2(i) Pr (F; R ¢)

and therefore Pr (Va £ = a) whence Pr(L).

Now use induction on m.

Suppose m < n and Pr™ 1(I), that is Pr (Pr"(1)). By the

induction hypothesis this is equivalent to Pr (BO " Dml). In

n m
other words, for all a € Mo s.t. a #« o1 and a non # o 1

we have Pr (80 # a). By Lemma 4.2(f) no such a is accessible

m+1l
a

from BO and hence EO " 1.

As to the converse implication, 20 v oLy implies 20 # 0
whence by Lemma 4.2(1i) Pr (F; R 20) which entails Pr
(20 # oL) ergo Prm+l(f).

(b) follows immediately from (a).

(c) Assume T 20 # a and reason in 121: One has

Pr (¢ = a) and hence by Lemma 4.2(f) ¢ mon R a. In particular
¢ # 0. But then by (a) and by Lemma 4.2.(c) pr’(T).

Now step outside IZ . From IZ + pr'’(I) by = -soundness
we obtain T Prn_l(f) which contradicts the assumption on the

credibility extent of T.

(d) follows from (c) of the present lemma and Lemma 4.2(c)
and (h). =

Now we have to do "the same" to the models Mi with i > 0.
From a straightforward rewriting of (1) - (3) with i instead of
0 we could however only extract an embedding into DT of the di-
agonalizable algebra on i generators which is free in the varie-
ty of diagonalizable algebras of height < n. To insure that the
extra relations required by the structure of ® be provable in T
we have to restrict the range of the Solovay function hi travel-
ling in Mi (and therefore the possible values of Ei) to a set of
nodes smaller than the whole of Mi’ The relevant subset of Mi
can generally not be singled out by a condition decidable uni-

formly in i. (It can be done if the algebra Y we are dealing

33



with is finitely generated.) We therefore use decidable approxi-
mations to this set which can be made uniform in i so that the
model Mi is seen by hi as changing with the passage of time. The
approximating conditions on the set of nodes accessible to h
will be given the form of the requirement that these nodes be
expandable to models of a certain formula. The first variant of
Solovay construction employing changing models is due to Jumelet
[27]. The models in Jumelet [27] grew; ours will diminish.

It will be important for the success of our enterprises
that the models stop changing as soon as it becomes clear that h
is going to leave 0 as was the case in Jumelet [27]. A farewell
to 0 however can only be bid at a nonstandard moment and so in
the meantime we will have obtained the proofs of all the senten-
ces needed to mimick the structure of ) because we only care

about standard proofs.

It should also be kept in mind that we do not want to embed
into DT the finitely generated subalgebras of ® in arbitrary un-
related ways. In fact we would like the embedding of the subal-
gebra of D generated by the first i + 1 generators (in some
fixed enumeration of those) to prolong the embedding of the sub-
algebra generated by the first i generators. To achieve this a
kind of provable coherence between Solovay functions hi climbing
up different models Mi is needed. Recall that the model Mi+l is
a refinement of .Mi in the sense made precise by Lemma 3.7.
Roughly speaking, each node of Mi falls into several nodes of
Mi+1' ; to be a refinement of ﬂi in the same sense.
Put formally, Zi+1 < @i. Actually in our construction hi+1 will
move step in step with hi’ that is hi+l(x) < hi(x). It is to

We want £i+

maintain this kind of synchronicity that the extra property
4.2 (e) which the usual Solovay function does not seem to possess
is used.

Since the algebra 9 is positive a positive numeration v:
w-{0}) — ® is available (here we have only subtracted 0 from
dom v for technical convenience). Let {A(m)}mew be a AO enume-
ration of the. set of diagonalizable polynomials A(pl,pz,...)

that hit v of D when vi is substituted for p;. We rearrange this
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sequence slightly by defining within IZ1 a new sequence

{D(m) )} of polynomials with the help of an auxiliary AO func-

mew
tion k(-):
(4) D(0) =7

(5) k(0) =0

(6) D(x+1) = A(x) 1if (i) A(x) ML D(x)
(ii) A(x) v A(k(x)) and
(iii) o*a(x) is conservative over oy
= D(x) otherwise
(7) k(x+1) = k(x) + 1 if D(x+1) r A(k(x))

L
= k(x) otherwise

Thus {(D(m)} is a sequence of polynomials growing in r -

mew L
strength and k(x) points a finger at the element of {A(m)}mew
which waits to be majorized by {D(m)} . If one also recalls

mew
that any relation which holds in a diagonalizable algebra of

height n is conservative over o’L then the following lemma is

trivial:

4,4, Lemma.

(a) IZ1 r VYx Yy (x <y — D(y) + D(x))

L

(b) IZ v Vx "o*D(x) is conservative over oL

(c) For each y € w there exists an x € w s.t. D(x) ML
A(y).

(d) For each x € w there exists a y € w s=s.t. D(x) =
A(y).

Proof. Left to the reader. n

We now define the Solovay functions h(-,-):
(8) h(0,x) = h (x)
(9) h(i+1,0) = 0

(10)
h(i+l,x+1) = a if (i) a € Mi+1 ;
(ii) h(i,x) = h(i,x+1) ;
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(iii) h(i+1,x) R a ;
(iv) a <« h(i,x+1)

(v) if h(i+l,x) =0
then D(g(x)) non L 1@8 ;

~e

(vi) for each b satisfying (i) - (v) 1in place
of a one has

Vz<x (Prf (z, L(i+1) = b — 3Jy (h(i+l,x) R h(i+1l,y) R b)) -

— 3dw<z Prf (v, £(i+1) = a — Jy (h(i+l,x) R h(i+1l,y) R a)))
(vii) a is minimal among those c that satisfy
(i) - (vi) in place of a (here "minimal"

refers to the natural ordering of inte-

gers)
= h(i+l,x) 1if no a satisfying (i) - (vi) exists
(11)  £(0) = ¢
(12) 2(i+1l) = lim h(i+1l,x) if h(i+1,:) reaches a limit
X —c0

= 0 otherwise

Of course (vii) of (10) is just another way to say that we
do not care what h(i+l1l,x+1) is as long as it satisfies (i) -
(vi). The weakly monotonically increasing function g occurring
in (v) of (10) is AO and will be defined later.

4.5. Lemma (IZ ).

(a) Vi Vx ¥y (x <y —. h(i,x) = h(i,y) Vv h(i,x) R h(i,y))
(b) Vi Vx h(i+1,x) < h(i,x)

(c) Vj Vi<j Vx h(j,x) < h(i,x)

(d) Vi &(i) = lim__  h(i,x)

(e) Vi Vx (h(i,x) R &(i) v h(i,x) = £(i))

(£) Vj Vi<j £(j) < &(i)

Proof. (a) For i = 0, use Lemma 4.2(a) and (8) and for i
> 0 inspect (10) and apply induction on y.

(b) Note that since 0 < 0 the claim holds for x = 0 by
(9) and assume h(i+1l,x) < h(i,x) for (AO) induction hypothe-
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sis. We shall prove h(i+l,x+1) < h(i,x+1). If h(i,x) =
h(i,x+1) then the induction step is trivial (see (ii) of (10)).

So assume h(i,x) R h(i,x+1).

Case 1. h(i,x) = O

Since h(i,x) R h(i,x+1) we have by Lemma 3.7(f) that the-
re exists a node a € Mi+1 s.t. h(i+l,x) R a < h(i,x+1). The
existence of a node a satisfying in addition (vi) and (vii) of
(10) follows by the (Ao) least number principle applied first to

proofs and then to nodes of Mi+ Hence h(i+l,x+1) = a =<

l.
h(i,x+1) so we are done.

Case 2. h(i,x) =0

For i > 0, proceed as in Case 1 but use Lemma 3.7(g) in-
stead of 3.7(f). For i = 0, recall that by Lemma 4.4 (b) we have
D(x) non ML 1Wa, all x, all a € Mo s.t. a * oL and hence
D(g(x)) non L ﬂWa. Therefore by Lemma 3.7(d) there holds

D(g(x)) non L 1Wb for some b € M1 s.t. b < a.
(c) is proved with the help of (b) by (H1) induction on j.

(d) By Lemma 4.2(b) and (8) pick an x s.t. Yy2x h(0,y) =
20. By (a) and (c¢) Vy2x h(i,y) = h(i,x) and the claim follows
by (12).

(e) follows from (a) and (d).

(f) follows from (c) and (d) without any induction. n

By (11) and Lemma 4.5(f) we can introduce a sentence ¢ = 0

as an abbreviation of any of the sentences

eo =0, Vi e@i) =0 and 3Fi (i) =0

4,6. Lemma (IZ1 + & = 0).

(a) Vi Pr (Z(i) R £(1))

(b) Vi VaeMi (a » oL A (i) R a —.

—. 7 Pr ({(I) = a — 3y (Z(i) R h(i,y) R a)))
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(c) Vi VYaeM; (a o?L A 2(i) Ra —. 1 Pr (L(I) = a))

Proof. (a) By Lemma 4.5(d) and (e) we only have to prove

Pr (Z(i) = £(i)). From ¢ = 0 we get by (11) and by Lemma

4.2 (h) Pr (£(0) = £(0)) whence by Lemma 4.5(f) formalized

pr (Z(1) = ¢(I)).

(b) Please note that the formula

VaeMi (a ® oL A 2(i) R a —.

—. 1 Pr (£(I) =a — 3y (Z(1i) R h(i,y) R a)))

is Ao(Zl) over 121 because ¢ # 0 1is equivalent to the 21 for-
mula 3dJx h(i,x) = 0, the formula £(i) R a 1is equivalent to the

H1 formula VYx h(i,x) R a and the quantifier VaEMi is primitive

recursively bounded by the condition a oL, In view of this

we shall apply induction on i.

For i = 0 the claim follows by Lemma 4.2(e) and (11).
Assume that it holds for i and suppose a reductio that £(i+l) R
a and

Pr (£(i+1) = a — 3Jy (L(i+1) R n(i+1,y) R a))
Let c € Mi be s.t. a <« c (see Lemma 3.7(b)) and hence

£(i+1) R a < c. By the (AO) least number principle we obtain a
node b € Mi s.t. {£(i+l1]) R b « ¢ and

Pr (L(i+1) = b — Jy (Z(i+1) R h(i+1,y) R b))

satisfying the conditions (vi) and (vii) of (10). Note that
£(i) R c.

Now if h(i,-) were to jump from £(i) directly to c then
h(i+l1l,-) would have to jump directly to b because all the condi-
tions (i) - (vii) of (10) would be satisfied (in particular, (v)
would hold because £(i+l1l) # 0). This argument is formalizable
in IZ1 and so we obtain

Pr (L(i) = ¢ —. Jy (Z{d) R h(i,y) Rc) v &(i+1) = b)

Combining this with
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Pr (£(i+1) = b — 3y (L(i+1) R h(i+1,y) R b))

and with Lemma 4.5(b) formalized we get

Pr (£(I) = ¢ - Ty (T(1) R h(i,y) R ©))
contrary to the induction hypothesis.

(c) follows immediately from (b). ]

Time is now ripe to define the primitive recursive function
g.
(13) g(x) =z if (i) z < x ;
(ii) there exists an i € w and a node a €

n
Mi s.t. a » o1,

Prf (z, £(i) = a — Jy (0 R h(i,y) R a))
and D(g(z)) non L ﬂwa H

(iii) z is minimal among those satisfying (i)
and (ii)

= x 1f no such z exists
4.7. Lemma (IZ1)'
(a) Vx Yy (x <y — D(g(y)) b, D(9(X)))

(b) Vi Vx VaeM, (a » oL A

A Prf (x, (i) = a — 3y (0 R h(i,y) R a)) A
A D(g(x)) non ML wwa —. Vy2x g(y) = g(x))

(c) Vy (9(¥) =y — 3i 3aeM; (a v a1 A

A Pr (4(i) = a — dy (0 R h(i,y) R a)) A ¥Yz D(g(z)) non b 1E))

Proof. (a) We clearly have g(x) < g(y). Now recall Lemma
4.4 (a).

(b) Suppose the antecedent holds. By the (Ao) least number
principle find the least 2z < x satisfying the antecedent in
place of x. By (13) it is seen that Vyzz g(y) = =z.

(c) On inspection of (13) one sees that if g(y) # y then
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for certain i € w, x <y and a € Mi the antecedent of (b)j
holds. Since by (b) we have that Vz>x g(z) = g(x) it is seen
with the help of (a) that Yz D(g(x)) L D(g(z)) and hence
Yz D(g(z)) non ML v q.e.d. =

4,8. Lemma (121)'

(a) £ # 0 —
— Vi Vx VaeF(i) (h(i,x) = 0 A D(g(x)) b A O e(i) w A)

(b) £ =0 — Vi VaeM, (a » oL A

A Pr ((I) =a — Jy (0 R h(i,y) Ra)) —-. Ix D(g(x)) +r "¥)

(c) L =0 >

— Vi VaeMi (a » oL A Pr (£(i) = a) —. Ix D(g(x)) b )
Proof. (a) From £ # 0 we have (i) # 0. Consider the =z
>x s.t. 0 = h(i,z) # h(i,z+l1l). By inspection of (v) of (10)

one has D(g(z)) non + and from Lemma 4.7 (a) we get

L "Yhii,z+1)

D(g(z)) L A. Now by Lemma 3.5(g) there holds h(i,z+1) ¢ A

whence by Lemma 4.5(e) £(i) + A.
(b) The proof is much the same as that of Lemma 4.6(b). We
proceed by (AO(ZI)) induction on i. The case when i = 0 is im-

mediate by Lemma 4.2 (e).

So we assume the claim to hold for i, deny it for i + 1
and seek for a contradiction. We have that ¢ = 0 and for a no-

de a € Mi+1 s.t. a » Dnl and a suitable z there holds

Prf (z, L(i+1l) = a — Jy (0 R h(i+1l,y) R a)) and
D(g(z)) non L 1Wa

Let ¢ € Mi be s.t. a < c. By Lemma 3.7(e) one also has
D(g(z)) non L ﬁ%c

Note that by Lemma 4.7 (b) we have VYy2z D(g(y)) = D(g(z)) and
therefore a satisfies conditions (i) and (iii) - (v) of (10) for
all large enough x. Moreover, this fact is formalizable. By the
(Ao) least number principle we can w.l.o.g. stipulate that a al-
so satisfies (vi) and (vii) of (10). As in the proof of Lemma

4.6(b) we obtain
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Pr (£(I) = ¢ —. 3y (0 R h(i,y) Rc) v £(i+1) = a)

whence by Lemma 4.5(c) and since

Pr (L(i+1) = a — Jy (0 R h(i+l,y) R a))

one gets

Pr (L(I) = ¢ — 3y (0 R h(i,y) R c))

which along with Vy D(g(z)) b D(g(y)) non + 1Tc yields the
desired contradiction with the induction hypothesis.

(c) follows straightforwardly from (b). ]

4,9, Lemma. [N = "g is the identity function"

Proof. Suppose not. Then by Lemma 4.7(c) there would exist

n
a node a € Mi s.t. a % o'L,

Pr ((i)=a — Jy (0 R h(i,y) Ra)) and Vz D(g(z)) non S N

By Lemma 4.8(b) this would imply ¢ # 0 contradicting Lemma
4.3(4). .

Next we define a mapping ° from the set of propositional

letters {p;) to DT by putting

iew-{0}

(14) p;° = i) w»p;

and extend it in the obvious way to every modal formula in these

propositional letters.

4,10, Lemma. For each i € w and each modal formula

A(pl,...,pi) there holds
n, — ° -
IZ, + Pr (L) + (A(Py,.--,P;))° & &(I) » A(Py,...,P;)
Proof. We execute induction on the structure of
A(pl,...,pi). The case of propositional letters is handled by

Lemma 4.5(f). The induction step is immediate for Boolean con-

nectives.
We turn to o. Reason in Iz + pr’ (1) :

Suppose £(i) uA(pl,...,pi). Since # is AO this can be
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formalized: Pr (£(i) nA(pl,...,pi)). From Lemma 4.3(b) we ha-
ve ¢ # 0 so with the help of Lemma 4.6(a) conclude

Pr (8(_1—) * A(pll"'lpi))

Now assume £(i) oA(pl,...,pi). By Lemma 4.3(b) L = 0
so from Lemmas 4.5(f) and 4.2(c) we get 2(i) w o’L. There

exists a node a € Mi s.t. a Unl, a A(pl,...,pi) and

2(i) R a therefore with Lemma 4.6(c) one has 1 Pr (£(i) = a)

whence
A~ Pr (£(I) non A(py,---/P;)) .
4.11. Lemma. If there holds A(vl,v2,...) = T for
A(xl,xz,...) a diagonalizable polynomial then
n - o
IZ1 + Pr(L) (A(pl,pz,...))

Proof. By the definition of the sequence {A(m)}mew the
equality A(vl,v2,...) =7 implies that A(k) = A(pl,pz,...)
for a suitable k € w and hence by virtue of Lemma 4.4 (c) there
exists an m € w s.t. D (m) L A(pl,pz,...) so by Lemma 4.9
D(g(m)) L A(pl,pz,...) whence by Lemmas 4.3(b), 4.8(a) and
4.10

n - o
IZ1 + Pr(L) + IZ1 + L # 0 ~ (A(pl,pz,...)) [

. . . *
Lemma 4.11 licenses us to define a mapping P rng v — DT

by putting
ok o pyT _
(15) (vi) = p.i = L(1) v pi
because if vi = vj then this lemma guarantees that
n, — o °
T + IZ1 + Pr(L) + p; < pj
We shall show that gives rise to an embedding of ® into DT.

4.12. Proof of Theorem 4.1 concluded.

Clearly rng * is r.e.

42



Let A(vl,...,vi) hit T in ®». Then by Lemma 4.11 we have

T r IS+ pr(I) + (A(Pys---/Py))°
* R
rA((v1l) ,...,(vi) )
Conversely, let T r A((v1)",...,(vi)"). If it were not the
case that A(vl,...,vi) = T then by Lemma 4.4(d) we would have

D(g(m)) non ML A(pl,...,pi) for every m € w. Hence for each m
there would exist a node a € Mi s.t. a Dnl, D(g(m)) non FL
1Wa and a 1A(p1,...,pi). Since there are only finitely many
nodes in Mi forcing oL we can using Lemma 4.7 (a) choose a sing-

le a for all m € w. By Lemma 4.10

T v (A(Py,-++,P;))°

implies

T v (1) # a
whence by Lemma 4.8(c) L = 0 contrary to Lemma 4.3(d). The
contradiction completes the proof of Theorem 4.1. n
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§ 5. The strong disjunction property and apt formulae

5.1. Definition. A formula 4 is apt if A4 non oL and for

each pair B, C of formulas

A FL aoB v oC > A FL B or A PL C.

The definition of an apt formula bears a strong semblance
to the strong disjunction property in diagonalizable algebras. A
tighter connection between these will be brought out in Lemma
5.16.

5.2. Lemma. If A is apt and A ML nBO V... V DBn then for
some i s.t. 0 <1< n we have A ML Bi'
Proof. Use induction on n. For n = 0 and n = 1 the

claim holds by the definition of apt formulae. Let

A v OB, V ... V DBn vV oB

L 0 n+1

Then

A L D(DBO V... V DBn) \% an

whence by the aptness of A

+1

A FL DBO vV ... V DBn or A FL Bn+1.

Now apply the induction hypothesis to the former case. .

We work now towards an effective description of apt formu-
lae. To this end it will be convenient to think of each formula
4 in F“(B) as the disjunction of a set ¥ of atoms in An(B). We
shall introduce a preorder QD(B) on An(B). By analyzing the pre-
ordered set obtained by restriction of QH(B) to a certain subset
of ¥ it will be decided whether A is apt.

5.3. Definition. The binary relation Qn(B) on AD(B) is de-
fined by putting

B Qn(ﬁ) C & non L B — onC
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5.4, Lemma. Let K be a B-model, let b and c be nodes of X
s.t. ¢ is accesible from b and give the (n,ﬁ)-characters of b

and ¢ the names B and C respectively. Then B Q“(B) C.

Proof. Obvious. n

5.5. Definition. For A4 a formula, we define [A4] N the
n,p
(n,ﬁ)—shadOW' of A, to be the conjunction of all formulas in

F?(B) implied by A.

5.6. Lemma. If n < m and 3 c 3 then for each formula A

one has

o (21 e [a] 1
n,p m,qg n,p

Proof. Straightforward. .

5.7. Lemma. If A € An(fj)), m < n and B - c_q) then the
(m,B)-shadow of A2 is an element of Am(B).

Proof. Trivial. =

5.8. Lemma. For B, C € An+l(3) one has B Qn+l(3) c iff
(i) the (n,g)-shadow of C is an (n,ﬁ)—possible world of B
and

(ii) the (n,B)—possible worlds of C are among those of B.

Proof. (only if) is established by considering a rooted

model that forces B A ¢C.

(if) Let K1 # B and Kz # C. Graft Kz above the root of
Kl. Use (i) and (ii) to see that the resulting model forces B A
oC. .

5.9. Corollary. QD(B) is transitive.

Proof. Follows immediately from Lemma 5.8. .

5.10. Definition. If a formula A4 is in FD(B) and L A

W ¥ with ¥ ¢ An(ﬁ) then ||/ ¥ 1is called the (n,B)—normal form
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of A. A formula 4 in Fn(B) is called (n,g)—trimmed if letting
W » be its (n,ﬁ)-normal form one has A ML -G for no G € 7.
Equivalently, 4 is (n,g)-trimmed if and only if ML A «— [A]

n,p

5.11. Lemma. A formula of the form o'a is (n,B)-trimmed
whenever o'a € F*(B).

Proof. This is trivial since o‘*a H, G implies ML ota -

aG. u

5.12. Lemma. To each formula A in Fn(B) there corresponds
an (n,ﬁ)-trimmed formula B s.t. A L B and B ML A. The formu-
la B with these properties is unique up to L-equivalence.

Proof. Take B to be the conjunction of all such formulas C
in Fn(ﬁ) that A4 ML C. Let \ 7 be the (n,g)—normal form of B.
If G € A“(B) and B +. G then -G is a conjunct of B and hen-

L
ce G non € 7.

We leave uniqueness to the reader. L

5.13. Definition. Let 4 € F'(B) be (n,B)-trimmed and let
W v be the (n,ﬁ)—normal form of A. A formula E € ¥ 1is called
an (n,B)—bottom of 4 if E Q“(B) C for each C € ¥. In this ca-
se A is said to be (n,ﬁ)—bottomed.

The following lemma gives us a convenient characterization

of apt formulae along with an algorithm for deciding aptness.

5.14. Lemma., Let A be a formula in Fn(ﬁ) and let B be the
(n,ﬁ)—trimmed formula which corresponds to A4 by Lemma 5.12. Then
the following are equivalent:

(i) 4 is apt;

(ii) B is (n,B)-bottomed;

(iii) A is irrefutable in L and for each pair K1’ Kz of fini-
te rooted models in which A holds there exists a model ¥ s.t. X

r 4 and K1 and K2 are isomorphic to proper cones of K.
Proof. (i) =» (ii) Let \/ v be the (n,ﬁ)-normal form of B.

An (n,B)-bottom E of B exists for otherwise we would have A4 ML
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W ( oG | G € ¥ } which by the aptness of A4 and by Lemma 5.2
implies A ML AG for some G € ¥y contradicting the (n,ﬁ)—trim—
medness of B.

(ii) » (iii) Let E € F(B) be an (n,B)-bottom of B and let
¥ be a rooted 3—model forcing E A ota (and therefore D+B). For
3 2 B take a pair of 3—models in which 4 holds and extend to 3
the forcing relation at the nodes of ¥ in an arbitrary way. Next
graft the chosen pair of é—models above the root of K. The re-
sulting model will still force E A o'B (this can be seen

through Lemma 5.8) and hence will also force nta.

(iii) > (i) Let A by, ©C VvV oD. If it were the case that

neither 2 t, C nor A4 + D then there would exist two finite
rooted models K1 and Kz in which 4 holds s.t. Kl non # C and
K2 non # D. Taking the model ¥ which corresponds to K1 and K2 by
the assumption we would have H non # oC v oD and yet ¥ = 4. A

contradiction. n

5.15. Corollary. Aptness is decidable.

Proof. Follows from (i) & (ii) of Lemma 5.14. n

Consider the following property of modal schemes A:

for each pair B, C of modal formulas

FLt A oB v oC 1implies FL+a B or MLt A C

Chagrov [15] shows it to be undecidable in contrast to Corollary
5.15.

5.16. Lemma. Let ) be a diagonalizable algebra generated by

X X 5een Then ® enjoys the strong disjunction property iff for
each modal formula (= diagonalizable polynomial) B s.t.
B(Xo‘x1"") = 7T there exists an apt formula A s.t.
A(Xo’x1"") = T and ML A — B.

Proof. (if) Suppose that for elements ¢ and d of 9 we have
oc v od = 1. Let ¢ = C(xo,xl,...) and d = D(xo,xl,...) SO
that

DC(XO,XI,...) \Y DD(Xo’X1"") =T
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By the assumptions on D there exists an apt formula 4 s.t. A4 "L
oC v oD and A(xo,xl,...) = 7. We therefore have that A ML C

or A ML D whence ¢ =71 or d = 7. This proves the strong

disjunction property.

(only if) Let B € Fn(ﬁ) be s.t. B(Xo’X1"") = T and
let A be the conjunction of all such formulas C in Fn(B) that
C(xo,xl,...) = T (there are, up to L-equivalence, only finitely
many). Clearly L A — B. Suppose |/ 7 is the (n,B)—normal
form of A. Note that A4 is (n,g)—trimmed because if A b, 1C for
some C € AD(B) then 1C(X0,X1,...) = T whence FL A — C

and so C non € y. If there were no (n,g)—bottom to 4 then we

would have 4 v \{ { 07G | G € ¥ } and hence
W i{o6ex,x,...) | Gey ) =7

whence by the strong disjunction property we have 1G(x0,x1,...)
= 17 for some G € 7. Therefore ML A — G Dby the choice of 2
and so G non € y. The contradition shows that A4 is (n,ﬁ)—bot—

tomed and therefore apt by Lemma 5.14. u

5.17. Definition. An element a of a diagonalizable algebra
Y with the strong disjunction property is admissible if a — ob

= 7 implies b = T for each element b of DJ.

One of the intended uses of the notion of an admissible
element will be based on the fact that if T is a sound enough
theory then the elements of DT that correspond to true sentences

of low arithmetical complexity have to be admissible.

In fact, if T is a Zl—sound theory then a sentence ¢ is an

admissible element of DT if and only if T + ¢ |is Zl-sound.

5.18. Lemma. Let Y be a diagonalizable algebra with the
strong disjunction property.

(a) The element T of D is admissible.

(b) If an element a of D is admissible, b € » and a — b
= 717 then b is admissible,

(c) If an element a of D is admissible and b is an arbitra-
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ry element of D then at least one of the elements a A b and a

A b 1is admissible.
Proof. (a) and (b) are straightforward.

(c) Suppose neither a A b nor a A b is admissible.
Then there exist elements ¢ and d of D distinct from 71 s.t.

aNnb —-. obc=aA1b —-. od=T7

But then a —. oc vod =T whence a —. o(oc VvV od) = 7. Sin-
ce a is admissible we have that oc v od = T so by the strong
disjunction property ¢ = 1T or d = T which contradicts the
assumptions and therefore proves the lemma. n

5.19. Definition. Let A be an apt formula. A formula B is

said to support a formula A if for each formula C one has

AI—LB—-)DC > A»—LC.

The relation "to support" parallels the notion of an admis-
sible element of a diagonalizable algebra with the strong dis-
junction property in the same way that aptness parallels the
strong disjunction property itself.

5.20. Lemma. If B supports an apt formula A and A ML B —
(uCO V... V nCn) then for some i s.t. 0 <i<n we have A
&-L Ci.

Proof. Analogous to that of Lemma 5.2. .

5.21. Lemma. Let A be an apt formula.
(a) T supports A.
(b) If B supports A and + B — C then C supports A.

L
(c) Let B support A. Then for each formula C at least one

of the formulas B A C and B A "C supports A.

Proof. Similiar to the proof of Lemma 5.18. n

To decide the relation "A supports B" we have to take a

little bit closer look at the (n,g)-bottoms of B than we did
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when deciding aptness.

Our investigation of the relation "4 supports B" will hen-
ceforth be restricted to op-free formulas A. This involves no
loss of generality because A supports B if and only if g sup-

ports B A (q <> A) where g is a new propositional letter.

5.22. Lemma. Let A € F'(B), a« € F° and let B be the
(n,g)-trimmed formula which corresponds to A by Lemma 5.12. Sup-
pose A is apt. Then the following are equivalent:

(1) o supports A;

(ii) For some (n,ﬁ)—bottom E of B the formula E A oo is ir-
refutable in L (which is the same as to say that a is consistent
with the real world part of E in propositional logic);

(iii) For each finite rooted model X in which A holds there
exists a rooted model H s.t. H v o A 04 and K is isomorphic

to a proper cone of .

Proof. (i) »> (ii) Let \ ¥ Dbe the (n,B)—normal form of B.
Since B is (n,B)—trimmed A ML 1G holds for no G € ¥. Therefo-
re by Lemma 5.20

4non v o > W { MG | Gev )}

This implies that there exists a rooted model K forcing o*a A «
AN ¢ 7. For E the (n,g)—character of K we have that E A o 1is
irrefutable in L and E Q“(B) G, all G € 7.

(ii) » (iii) Consider a 3-model ¥ of E A n'a. Since E A «
is irrefutable in L there exists such an extension of the for-
cing relation at the nodes of H that the resulting model X for-
ces a A E A o*ta. If one grafts a model in which 42 (and hence
W 7) holds above the root of K and extends the forcing relation
to new propositional letters if necessary then Lemma 5.8 guaran-
tees that the result forces o A E A Q+A.

(iii) = (i) Suppose 4 non kL D. Then there is a finite
rooted model K forcing -D A o*4. From (iii) we obtain a model ¥
forcing a A o'2 of which XK is a proper cone. The model ¥ tes-

tifies A4 non b, @ — oD. Thus we have shown that a supports A.wm
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5.23. Corollary. The binary relation "A supports B" is de-
cidable.

Proof. Immediate from Corollary 5.15 and (i) & (ii) of Lem-

ma 5.22. u

5.24, Lemma. Let D be a diagonalizable algebra with the
strong disjunction property generated by Xo,Xl,... Suppose a €
F°.

each modal formula (= diagonalizable polynomial) B s.t.

An element a = a(xo,xl,...) of D is admissible iff for

B(xo,xl,...) = T there exists an apt formula C supported by o«

L

Proof. (if) Suppose a — ob = T for b an element of D.

s.t. C(xo,xl,...) =71 and . C — B.

Let b = ’B(Xo’x1"")' There exists an apt formula C s.t.
C(xo,xl,...) = T, a supports C and C T R oB. By the defini-

tion of the relation "to support" we have C L B therefore b

= 7 and hence a is admissible.

(only if) Let B(xo,xl,...) = 7 and let n and B be s.t. B
€ Fn(ﬁ). Call C the conjunction of all such formulas D in Fn(B)
that D(Xo’X1"") = 7. Clearly L C — B. As in Lemma 5.16 we
can show that C is apt and (n,B)-trimmed. Let W 7 be the
(n,B)—normal form of C. If C had no (n,g)—bottom E s.t. non ML
1 (E A ) then we would have

Cvr o >WI{oG| Gevw )}

L
- oW {oG| Gevr }
and hence
a — o\ ( D'!G(XO,Xl,...) | Ger } =7

Since a 1is admissible and ) possesses the strong disjunction

property, on the strength of Lemma 5.20 there exists a G € ¥

s.t. 1G(xo,x1,...) =T thus contradicting the choice of C.
Therefore an (n,g)—bottom E of C s.t. non L A (E A Q) exists
and hence by Lemma 5.22 a supports C g.e.d. .

The next goal is to show that the taking of shadows of cer-

tain formulas preserves aptness and does not diminish the number

51



of supporting formulas in F°.

5.25. Lemma. Suppose m < n and 3 c 3.
(a) Let 4 € F'(B). If 4 is (n,B)-trimmed then [A] _ is
m,q

(m,a)—trimmed.

(b) Suppose A € An+l(3) and let A = oa Ao W v A MNov7

where o € A°(B) and v c A"(B). Then

F [A] . [a] Ao W [7] AN (7]
L mi1,g 0,9 m,q m,q
where [¥] _ stands for ({ [¢1 | G € ¥ }.
m,q m,q
(c) Let 4, B € A"(B). Then 4 Q"(B) B implies [4]
m,q
o"(@) [B] .
m,q

(d) Let \ ¥ be the (n,ﬁ)-normal form of A € F“(B). Then

b (W YD o W vl
m,q m,q

(e) Suppose A € F'(B). If A is (n,B)-trimmed and apt then

[A] N is apt and if in addition a formula o € F° supports A

m,q
then it also supports [A]

5
m,q
Proof. (a) Let \f 8 and | ¥ be the (n,f)’)— and the (m,_q>)—
normal forms of 4 and of [4] N respectively. If [A4] _, were not
m,q m,q
(m,a)—trimmed then [A4] 5 L 7G for some G € y. There clearly
m,q
exists a formula D € & s.t. b, D = G and so
A L [A] 5 'L aG ML aD
m,q

contrary to the (n,ﬁ)—trimmedness of A.

(b) Clearly the r.h.s. is an element of Fm+1(3). By Lemmas

2.2 and 5.7 we only have to show

b 4 e fal oA~ e W [v] A Mo [v]
0,9 m,q m,q
But this is clear since
ML o —. [a] >
0,9

and for each G € 7
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H G —. [G] 5
m,q
hence
I-LDW'(Y-%DW[W]_:‘ and FL/AO'J'—)/AO['I]
m,q m
This completes the proof.

6
'q

(c) By Lemma 5.7 both [A4] N and [B] , are in Am(a). If m
m,q m,q
= 0 the claim is obvious so let n > 0 and m > O.

From Lemma 5.8 we have that all the (n—l,B)—possible worlds

of B as well as [B] _, are among the (n-l,g)—possible worlds
n-1,
of 4. By (b) the (m-1,dg)-possible worlds of [A4] 5 and [B] 5
m,q m,q
are precisely the (m—l,a)—shadows of the (n—l,g)-possible worlds
of A4 and B respectively and [B] 5 is an (m—l,&)—possible
m-1,q

world of [A4] 5 Therefore by Lemma 5.8 [A] 5 Qm(é) [B] 5
mlq mlq mlq

g.e.d.

(d) Straightforward.

(e) By (a) [4] N is (m,g)—trimmed. With (c) and (d) it is
m,q
seen that [A4] N is (m,a)—bottomed. If a supports A then by Lem-
m,q
ma 5.22 there exists an (n,B)—bottom E of A s.t. non ML T (E A

o). By (c) and (4d) [E] N is an (m,&)-bottom of [A4] 5 and cle-

m,q m,q

arly non ML A ([E] 5 A o). Hence by Lemma 5.22 [A] 5 is sup-
m,q m,q

ported by «. .

5.26. Lemma. 4 formula B is apt iff o*B is apt. A supports
B iff A supports o’B.

Proof. This is clear because for any formula C we have B

b C if and only if o'B h, C- .

5.27. Corollary. Let A be apt. Then [o'A] , is apt and if

) m,q
a formula o« € F° supports A then it also supports [o'a] .
m,q
Proof. Immediate from Lemmas 5.11, 5.25(e) and 5.26. »
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Finally we prove a lemma which will enable us to construct
apt formulae with a number of meritorious properties.

5.28. Lemma. Let B c 3, A € F(a) and B € F(g). Suppose
that B is apt and that n*a is B—conservative over o'B. Then the-
re exists an apt formula .C € F(a) s.t. C FL A and o'c is B—
conservative over n'B. Moreover C can be chosen to be supported

by every formula in FO(B) that supports B.

Proof. To keep notation at bay we shall only consider the
case when B supports just two elements of FO(B), namely a and R.
It will easily be seen how to generalize the proof to any larger

number of formulas.

Let 4 € Fn(é) and let \|/ 8 be the (n,a)-normal form of
the (n,a)—trimmed formula corresponding to 4 by Lemma 5.12. Put

7 = { D € 8§ | there exist formulas E_, E, € § s.t.
%8 P R n,>» n,>
E, 9 (@) Ey (@) E, 0"(@) D
and neither o A Ea nor f A EB is refutable in L)
Let ©o,G denote the formula o(D — G). Dually, ¢.G denotes

D D
~(D A G). Note that since B is apt and supported by o and B we

have B FL F whenever B L DaDF or B ML DBDF.

Claim 1. For each formula G € & - Wa 8 there exists an N
4

cws.t. W& r (uanB)NmG.

For if this were not so then there would exist models of
ot W é A (oaoB)NoG for arbitrarily large N € w. Hence by Lemma
5.4 there would exist arbitrarily long sequences Dy, E ..., Dy, Ey
of elements of § s.t. D, Qn(3) Ei QD(G) D, Qn(a) G, PLDi -«
and HE; B for each i satisfying 1 < i < N. But since
Qn(é) is transitive and 8 is finite this would imply the exis-
tence of formulas D, E € 8 s.t. D Qn(a) E Qn(a) D Q”(&) G,
D — o« and + E — B and this puts G in 7 and therefore

L L a,B
contradicts the assumption on G. Thus Claim 1 is proved.

. + . -2 .
Claim 2. o W’wa g 1s p-conservative over ot*B.
!’

> .
Suppose F € F and +. F. Since & - is
pp (P) WV %, "L Yo, B
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finite Claim 1 ensures the existence of a single N € w s.t.

N —
W 8 ML (DdDB) 01 G whenever G € & Yo,B"

We have

W o L(DaDB)n/x\{ﬂG|G€5-’Jd’B}
L (Fg%g) 8 W3
L(nanB)nW'JB
r—L(DuB)DF
But since ot W & is p—conservative over o*B we also have B L

(DaDB)NDF whence B ML F for B is apt and «a and B support B.

This proves Claim 2.
Next we let

€ = { D € 8 | there exist formulas E_, E, € § s.t.
B g > n,>» n,>»
D Q'(q) E, @°(q) Eg Q°(q) D

and neither o A E nor f A EB

o is refutable in L)

and for each E € ¢
a,B

y.=(Des | EQ@ D}

E

: +
Claim 3. \/ Woc,,B l—LW { o7 W T | E € Ca,B ).
Let a rooted g-model K be s.t. K = W’Wa B and let D be
14
the (n,g)—character of K. Since D € Yo there exists a formu-

o, B

la E € ea 8 s.t. FE Q (q) D. Consider an arbltrary node a of
K. For G the (n, q) -character of K[a] one has D Q (q) G or D=

G by Lemma 5.4. Therefore by Corollary 5.9 FE QH(G) G hence G
+
€ ¥p. So KcW'yE and X =\ { o WWE{EGCOC'B} q.e.d.

. . -
Claim 4. For each E € Sa,B the formula W’yE is (n,q)

trimmed.

Take a formula G € 7 Let ¥ be a rooted a—model forcing

E A of W ¢ (such a model Eexists because \ & is (n,c_f) -trim-
med). By Lemma 5.8 Vg holds in K. Next pick a rooted 3—model
K s.t. K » G A o'\ 5. since E Q"(4d) ¢ we have that X =
W’vE. Now graft K above the root of K. By Lemma 5.8 it is easily
seen that the resulting model forces E A u+‘w Vg and it clear-

. - .
ly forces ¢G. So ¥p non 1G. Thus Vg 1s (n,q)-trimmed.
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: . .o
Claim 5. There exists an E € ¢ s.t. o ¥ is p-
E

o,B

conservative over o'B.

Deny this. For each E € ¢ let GE € F(g) be a formula

a,B
s.t. W’yE L GE and B non ML GE. Now use Claim 3:

Wrgeg o W(e" Wag | Ecey o)
}-LW{D+GE|E€8a,B}
;—LW{DGEIEGSOC’B}

By Claim 2 this gives
BFLW{DGE|E€€(X,B}
whence for some FE € Ca,B we have B YL GE by Lemma 5.2 for B

is apt. This contradiction settles Claim 5.

Now note that we have actually proved that at least one of

the formulas \/ 7, meets the requirements on C in the statement

L

Tp S WG,B c 8; for each E € Sa,B the formula |/ Yp 1s clearly

(n,&)-bottomed by E and hence apt by Claim 4 and Lemma 5.14 and

of the present lemma. For |/ g L W Y%, 'L W 8 + A Dbecause

at least one of the formulas of W’wE is 3—conservative over
o*B. Finally, W Vg is clearly supported by both « and B for

each FE € ea ]

B

As usual we shall not hesitate to use appropriate versions
of certain results of this § formalized in 121' Thus Lemma 5.28

is meant to be applied to nonstandard formulae.

56



§ 6. Zl—ill theories of infinite credibility extent

6.1. Theorem. Let T be a Zl—ill theory of infinite credibi-
lity extent. A denumerable diagonalizable algebra  is isomor-
phic to an r.e. subalgebra of DT iff

(i) D is positive and

(ii) the height of ® is infinite.

Many details of the proof of this theorem are similiar to
those of that of Theorem 4.1. Therefore the proofs of certain
lemmas are omitted whenever they exhibit no considerable devia-
tion from the proofs of corresponding lemmas in § 4. Also the
conventions of § 4 on formalized modal logic and Kripke models

are still valid.

First we define the Solovay function for MO along with its

limit value:

(1) h_(0) =0

(2)
ho(x+1) =a 1if (i) a € MO ;
(ii) ho(x) R a and
(iii) Prf (x, EO =a — Jy (h (x) R h (y) R a))
= ho(x) if no a satisfying (i) - (iii) exists
(3) Zo = llmX—%m ho(x) if ho reaches a limit

= 0 otherwise

6.2. Lemma (IZ1)'
(a) Vx Vy (x < v —. ho(x) = ho(y) v ho(x) R ho(y))
(b) & = lim _,_ h_ (x)

(c) Vx (ho(x) = 20 Y ho(x) R Eo)

(d) VaeMO (., Ra - Pr (L, = a — Iy (T;R h_(y) R a)))

(e) VaeM0 (¢, Ra - Pr (¢, = a))

(£) & = 0 — JaeM U(0) 3x (h _(x) = a A
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A Prf (x, ¢ = Z; — dy (a R h (y) R E;)))

(9) Eo # 0 — Pr (20 = 20)

(h) &, =0 — Pr (I R ¢)

Proof. The only twist new to § 4 occurs in (b). In the pre-

sent situation we have to apply the least number principle on n

to the formula dx ho(x) v oL, L]

6.3. Lemma.
(a) IZ +VYn (n =0 —. pr? (I) & Low a1)
(b) For no a € Mo do we have T p-eo # a,

(c)|N=20=O =

The theory T will prove 20 # 0 as likely as not. In the

former case the constructions below could be considerably simp-

lified along the lines of § 4.

Y and let {4(m))

nomials in propositional letters (p.)}

As in § 4, let v: w-{0} — ® be a positive numeration of
be a Ao enumeration of diagonalizable poly-
that turn to 7 of D

mew

i'iew-{0)

on substituting vi for p;. We construct a better behaved and a

slightly longer AO sequence {D(m) }

The domain of the AO

mew-2"
function k(-) is however just w.
(4) D(0) =7
(5) k(0) =0
(6) D(x+1) = A(x) if (i) A(x) r D(x) ;

(7)

(8)

(ii) a(x) v 4(k(x)) and

(iii) o*a(x) is conservative

D(x) otherwise

k(x+1) = k(x) + 1 if D(x+1) + A(k(x))

L
= k(x) otherwise
Let D(w+x) be the formula manufactured by Lemma 5.28 s.t.
(i) D(w+x) ML D(x)
(ii) D(wtx) is apt and
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(iii)

6.4.

(a)
(b)
(c)
(d)
(e)
A(y) -
(f)
A(y) .

The
phically

atD(w+x) is conservative

Lemma.

IZ1 r VYxew Vyew (x <y — D(y) r, D(x))

121 + VYxew D(w+x) H, D(X)

I v Vxew-2 "o*D(x) is conservative"

IZ1 + VYxew "D(w+x) is apt"

For each y € w there exists an x € w s.t. D(x) L
For each x € w there exists a y € w s.t. D(x) =

n
definition of the Solovay functions h(-,-) 1s typogra-
identical with (8) - (12) of § 4. Of course the prova-

bility predicate employed here is that of the theory T of Theo-

rem 6.1 and the AO function symbol g(:) will be defined later in

a way different from that of § 4.

(9) h(0,x) = h_(x)

(10) h(i+1,0) = 0

(11)

h(i+l,x+1) = a 1if (i) a € M, ;

1+1
(ii) h(i,x) # h(i,x+1) ;

(iii) h(i+1,x) R a ;
(iv) a < h(i,x+1) ;
(v) if h(i+l,x) =0
then D(g(x)) non L 1?6 H
(vi) for each b satisfying (i) - (v) in place

of a one has

Vz<x (Prf (z, ¢(i+1l) = b — 3y (h(i+1l,x) R h(i+1l,y) R b)) —

— Jw<z Prf (w, L(i+1) = a — 3Jy (h(i+1l,x) R h(i+l,y) R a)))

(vii) a is minimal among those c that satisfy

(i) - (vi) in place of a
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(12) £(0)

= h(i+l,x) if no a satisfying (i) - (vi) exists

1
)

(13) 2(i+1l) = limx_ém h(i+l,x) if h(i+l,-) reaches a limit

= 0 otherwise

6.5. Lemma (121)'

(a)
(b)
(c)
(d)
(e)
(£)

Vi
Vi

Vi

Vi
Vi
vj

Vx Vy (x <y -. h(i,x) = h(i,y) v h(i,x) R h(i,y))
Vx h(i+1,x) < h(i,x)

Vi<j Vx h(j,x) < h(i,x)

¢(i) = lim___ h(i,x)

Vx (h(i,x) R &(i) v h(i,x) = £(i))

Vi<j £(j) = £(1) .

As in § 4 let £ = 0 abbreviate {(i) = 0 for each i.

6.6. Lemma (IZ1 + £ # 0).

(a) Vi Pr (Z(i) R &(1))

(b) Vi VaeM, (L(i) R a —

— 1 Pr (L(i) =a — dy (Z(i) R h(i,y) R a)))

(c) Vi VaeMi (8(i) Ra — 7 Pr (£L(1I) # a)))

Proof is essentially the same as that of Lemma 4.6. The on-

ly trouble happens with (b) and it is that the quantifier VaeMi

in the formula

VaeM, (¢(i) Ra —~ Pr (&(I) =a — 3y (Z(A) R h(i,y) R @)))

is no longer bounded and so we can not claim that this formula
is Ao(21)' However this quantifier does not, in a sense, "mind"
being bounded. That is,

proof of Lemma 4.6(b) to the formula

VaeMi (a » ol A 2(i) R a —-.

—. 1 Pr ({(I) = a — Jy (Z(i) R h(i,y) R a)))
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which is AO(Zl) with n a free variable to obtain

Vi VaeMi (a * oL A (i) R a —.

—. 1 Pr (.(I) =a - Jy (Z{d) R h(i,y) R a)))

and this formula after being prefixed by VYn turns equivalent to

Vi VaeMl. ((i) Ra —> 1 Pr ((I) =a — 3Jy (Z(1) R h(i,y) R a)))

g.e.d. =

Let o be a false Zl sentence proved by T. We assume that o
is of the form dx oo(x) where ao(x) is AO and introduce in
IZ1 + 0 a closed e-term o s.t.

(14) IZ1 + 0 r oo(o) A Vy<a 1oo(y)

(This is clearly possible by the (Ao) least number principle).

When working in IZ1 we can treat expressions

X <40, X =20 and x = &

as abbreviations for the AO expressions

Vy<x woo(y), ao(x) A Yy<x 1oo(y) and dy<x oo(y)
respectively.
Here is the definition of g:
(15)
g(x) =z 1if (i) z < x ;
(ii) z < 2 ;
(iii) there exists an 1 € w and a node a € M,

i
s.t.

Prf (z, £(i) = a — 3dy (0 R h(i,y) R a))

and D(g(z)) non ML 1Wa,

or there exists an i € w and a formula A4 s.t.

Prf (z, £ # 0 — (i) » A)

and D(g(z)) non ML A ;
(iv) z is minimal among those satisfying (i) - (iii)

=x 1if x < o and no z satisfying (i) - (iii) exists
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=w+ 4o if x > o and no z satisfying (i) - (iii) exists

The reason why we introduce the second disjunct in (iii) of
(15) is that when finishing the proof of Theorem 6.1 we shall
need to know that T does not prove sentences of the form (i)
A unless dx A(x) A (iii) is a way to make sure that once
an unwanted sentence f(i) # A is proved it results in the
proof of an equally unwanted sentence of the form L(i) = a
which we are able to bring to a contradiction. In § 4 an analo-
gous situation was handled by a compactness argument which de-
pended crucially on the number of nodes accessible to each of
h(i,+) being finite. In the present § this is not the case and
so the construction has to be more alert. This twist also comes

from Jumelet [27].

6.7. Lemma (IZ1)’

(a) Vx Vy (x <y — D(g(y)) r D(9(x)))
(b) Vx=o Vy D(w+x) + D(g(y))

(c) Vi Vx VaeMi (Prf (x, ¢(i) = a — Jy (0 R h(i,y) R a)) A
A D(g(x)) non ML 1Wa —. Vy2x g(y) = g(x))

(d) Vi Vx VAeF(i) (Prf (x, £ = 0 — (i) ¥ A) A
A D(g(x)) non . 4 —. Vy2x g(y) = g(x))

L
(e) Vx<o (g(x) = x —

— 3i (JaeM,; (Pr (2(7) a — 3dy (0O R h(i,y) Ra)) A

A Vz D(g(z)) non ML )V

*

v JAeF(i) (Pr (£ = 0 — £(7) 4) A Yz D(g(z)) non b A)))

(f) Vx=o (g(x) # 0w + x —

— 3i (JaeM, (Pr (£(1) a — dy (0 R h(i,y) R a)) a

A Yz D(g(z)) non b ¥) Y

v JAeF(i) (Pr (£ = 0 — &(i) » 4) A Yz D(g(z)) non b A)))

Proof. By inspection of (15) we see that either for some =z
< o the conditions (ii) - (iv) of (15) hold in which case for

all x > z there holds g(x) = z, or s exists and for all y <
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o we have g(y) =y and for all x 2> o, g(x) = w + o.

In the former case (a) is a direct consequence of Lemma
6.4(a) and in the latter case (a) follows from Lemma 6.4(a) and
(b) .

Clause (b) is also immediate.

(c) and (d) are proved in perfect analogy with Lemma
4.7 (b).

(e) and (f) enjoy proofs similiar to that of Lemma 4.7(cC).m

6.8. Lemma (121)°

(a) ¢ #= 0 —

— Vi Vx VYaeF(i) (h(i,x) = 0 A D(g(x)) b Ao £(i) » A4)

(b) £ =0 —

— Vi VaeMi (Pr (¢(I) =a — 3y (0 R h(i,y) R a)) —
— dx D(g(x)) b 1Y)

(c) £ =0 — Vi VaeMl. (Pr (L(i) # a) — 3Ix D(g(x)) b TE)
(d) £ =0 —

— AeF (Pr (L # 0 — £(1) » 4) — 3x D(g(x)) o A)
Proof. Clauses (a) - (c) are proved in the same way as tho-

se of Lemma 4.8. When handling (b) however we have to execute a
trick similiar to that in the proof of Lemma 6.6(b), that is,
before applying induction we impose on VaeMi the dummy bound a

n
# O L.

(d) Assume ¢ = 0 and Prf (x, £ =0 — &(i) » A). If
D(g(x)) ML A then we are done.

If D(g(x)) non L A then by Lemma 6.7(d) Vy2x g(y) =

g(x) and so Lemma 3.5(g) provides a node a € Mi s.t.

Yy D(g(y)) non b, 7Y, and a x4

We have Pr (£ # 0 — £(i) # a) whence Pr (£(i) = a). Now (c)

brings us to a contradiction. =
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In order to construct the desired embedding we have to de-
fine an analogon of forcing relation at 0. This analogon will be
denoted by T(-). And even before we construct T(-) we have to

introduce some notation.

In 121’ we shall think of lower case Greek letters from the
beginning of the alphabet as variables ranging over finite
strings of 1’s and T7’s. A is the empty string. The AO function
lh(-) tells the number of "digits" in a string. The ith digit in
o is written as (a)i. We shall always be careful enough not to
use (a)i when 1lh(a) > i. Stipulate also that each string begins
with its first digit so that the expression (a)0 is meaningless.
We write o < B 1if a and B are strings of equal length and «
lexicographically precedes B. If one adopts the first coding of
strings that comes to mind then < can be taken to coincide with
the usual ordering of integers. Finally, a ¢ 8 means that a is

an initial segment of B.

In fact we shall identify strings of length i with elemens

of Ao(i) so that when we say "o supports A" where 1lh(a) = i we

actually mean that the formula M ( pj — (OL)J. | 1 < j < i)

supports A.

Define in IZ1 + o

(16) Adm(a) = "a supports D(wt+a)"

6.9. Lemma (IZ1 + o).
(a) Adm(A)
(b) Va YB (Adm(B) A « € B —. Adm(a))

(c) Vi Va (1lh(a)

IA

i A Adm(a) —.
—. 3B (lh(B) =i A o € B A Adm(B)))

(d) Vi Ja (lh(«) i A Adm(a))
Proof. (a) follows at once from Lemmas 5.21(a) and 6.4(d).
(b) follows from Lemma 5.21(b).

(c) By Lemma 5.21(c) if B is a string of length i suppor-
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ting D(w+e) then there exists a string of length i + 1 which
also supports D(w+e) and of which B is an initial segment. Ap-
plying induction on i we establish the claim. Induction is ap-

plicable because the formula
Va (lh(a) < i A Adm(a) —. 3B (lh(B) = i A a < B A Adm(B))

is IT1 over 121 + 0. Indeed Adm(B) is A1 over IZ1 + o and the
condition 1lh(B) = i is a primitive recursive bound on the
quantifier JB so taking Adm(B) in its TI1 form we can by an ins-
tance of the 21 collection schema available in IZ1 also bring
the formula 3B (lh(B) = i A a & B A Adm(B)) into TI1 form.
Adm(x) is to be rewritten as a Z1 formula.

(d) follows from (a) and (c). u

Still in 121 + o, put

(17) Adm'(a) = Adm(a) A YB<a (lh(a) = 1lh(B) — = Adm(B))

6.10. Lemma (IZ1 + o).
(a) Vi 3ta (lh(a) = i A Adm™ (a))

(b) Vi Va (lh(a) < i A Adn*(a) —.
—. 38 (1h(B) = i A a € B A Adn'(B)))

(c) Ya YB (Adm®(a) A Adm*(B) A lh(a) < lh(B) —. a € B)

In other words, Adm+(-) singles out an infinite branch in

the tree of finite L-T-strings.

Proof. (a) follows from Lemma 6.9(d) by the (Al) least num-

ber principle.

(b) Suppose Adm+(a) for a string a of length < i. By (a)
there exists a string B of length i s.t. Adm'(8). Consider the
initial segment % ¢ B of length equal to that of a. We claim
o0 = 7. For if o < v then by Lemma 6.9(c) there exists a
string 8§ of length i s.t. o« ¢ 8 and Adm(8). Since «a < 7 imp-
lies & < B this contradicts Adm*(B8). Finally, it can not be
the case that % < a because then Adm+(a) would not hold.

(c) Let o and B satisfy Adm+(-) and let the length of B be
greater than the length of «a. By (b) there is a string 7 of
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length i prolonging a and s.t. Adm+(7). Conclude by (a) B

I
«Q
]

At last we can define T(-):

(18) T(A4) = 3Ji Tk JreF° (i+k) AB,,...,B,€F (i) Jo
(lh(a) = i + kK A A((a)l,...,(a)i+k) =T A
A A= A(Pys+--sP;s8By,...,0B,) A Vi<i (j = 0 —.
= (@) =T e 38 (lh(B) = i A Adm*(B) A (B); =T)) A
A Vjsk (J =0 —. (“)i+j = T <> D(wte) +p Bj))
6.11. Lemma (IZ1 + o).
(a) Vi (T(p;) ¢ 38 (1h(B) =i A Adn’(B) A (B); = T))
(b) VAeF (T(old) <> D(w+a) o A)
(c) Vi Vaer® (i) VB ,...,B;€F (T(A(By,...,B;)) ¢
¢« Ja (lh(x) = i A A((a)l,...,(a)i) =T A
AVj<i (j =0 —. (a)j =T < T(Bj)))
that is, T(-) distributes over Boolean connectives.
Proof. A routine inspection of (18). n
6.12, Lemma (IZ1 + o).
(a) Yo (T(C M (P; <> () ;) > Adm’(a))
1<j<1lh(a) J
(b) VA€eF VBeF (T(¢4 A oB) — T(¢(4 A ©B)))
(c) VAeF (T(od) — T(A4))
Proof. (a) Let i = lh(a).
T( M (pj — (a)j)) — VYj<i (j = 0 —. T(pj) > (a)j =T)
l<j<i

(by Lemma 6.11(c))
«— Yj<i (j =0 —. 38 (lh(B) = j A
Adm*(B) A (B); = T) & () ; = T)
(by Lemma 6.11(a))
— Vj<i (j =0 —. 3y (lh(?) = 1i A

Adm’(7) A (¥); = T) & (1) = T)
(by Lemma 6.10(b) and (c))
« VY7 (lh(y) = i A Adm* (%) —-.
—. Vj<i (j =0 —. (¥); = () ;)
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(by Lemma 6.10(a))
«— V7 (lh(y) =i A Adnt (7)) —-. 7 = a)
«—> Adm+(a) (by Lemma 6.10(a)) g.e.d.

(b) If T(¢A A oB) then by Lemma 6.11(b) and (c) we have

that D(wte) ML B and hence D(w+a) L oB. Suppose T(¢(4 A oB))

is not the case, that is, by Lemma 6.11(b) D(w+o) b, OB — ~A.

But then D(w+s) b, 14 which contradicts T(¢4).
(c) We shall prove that T(4) implies T(¢A4).

Let A be A(pl,...,pi,nBl,...,an) for A a Boolean formula.

Bring A into the disjunctive normal form:
W (A (p, & () AN (8B, & (B)])
J n m
for a« and B appropriate matrices of 1’s and T’s. Since we have
T(A) by Lemma 6.11(c) this implies the existence of a jo s.t.
jO jO
T( M (p, <> () ,7) A M (8B, <> (B), ))
n m
Clearly the above is equivalent to
T( M (P, & (1)) AN oC A M <E;)
n m 1
for the obvious choice of Cm’s and El's (we let (-)i stand for

J
(-)io). From this it follows on the strength of (a) that a sup-
ports D(w+e) and so by Lemma 5.20

D(w+e) non I—L/‘I‘]\ (pn > (oc)n) - \ij mEl
therefore
T(o( N\ (P, & (@),) A M ©E;))
n 1
With the help of (b) this yields

T(o( N (pn > (a)n) A M mCm A M <>El))
n m 1

that is, T(¢4). »
As 1n § 4 we define a mapping : {pi)iew—{O} — DT :
(19) P; = L= 0 A L(1) p; V- 2 =0 A T(pi)

° is prolonged to all modal formulae.
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6.13. Lemma.

(a) For each i € w and for each modal formula

A(pl,...,pi) there holds

IZ1 Fe = 0 —>. (A(pl,...,pi)) «— 2(i) » A(pl,...,pi)

(b) IZI + Vi VAEF(i) Pr (£ # 0 —. A° > £(1I) » A)

(¢) IZ +t=0 - VAeF (Pr (A°) — 3x D(g(x)) + 4)

(d) IZ1 + 0 r2 =0 5 gk) =w+ 2

(e) For each i € w and for each modal formula
A(pl,...,pi) there holds
IZ1 + O r (A(pl,...CPi)) >

«— (& # 0 A L(1) A(pl,...,pi) V. £ = 0 A T(A(pl,...,pi)))

Proof. (a) Analogous to the proof of Lemma 4.10. The assum-
ption ¢ # 0 Dbeing a 21 sentence finds its way inside the pro-
vability predicate and therefore validates the induction step
for o.

(b) is proved by (21) induction on the structure of A. For
the induction step, formalize that of (a).

(c) follows at once from (b) and Lemma 6.8(d).

(d) Suppose g(s) # w + 2. By Lemma 6.7(f) this means that
either

(i) there exists an i € w and a node a € M, s.t.

Pr ((i) = a — Jy (0 R h(i,y) R a)) and
Yz D(g(z)) non L 2

or

(ii) there exists an i € w and a formula A € F(i) s.t.

Pr (£ #= 0 — £(i) » 2) and VYz D(g(z)) non b A

But (i) contradicts Lemma 6.8(b) and (ii) contradicts Lemma
6.8(d). Thus g(8) = W + .

(e) We execute induction on A. Suppose A4 € F(i). The only

68



interesting case is o. So assume A is oB and go inside IZ1 + o.

By (a) we may also assume £ = 0.

(—) We have Pr(B°) whence by (b) Pr (£ = 0 — (i) + 4)

and so from Lemma 6.8(d) we have 3dx D(g(z)) L B. Hence by Lem-

ma 6.7(b) D(w+s) r B. Lemma 6.11(b) yields then T(oB).

(<) Since T(oB) is z over IZ +¢ it implies Pr(T(uB))

and hence Pr(T(B)) by Lemma 6.12(c) formalized. Therefore

Pr (¢ = 0 — T(B)).
On the other hand, T(uB) is equivalent to D(w+e) + B and

L

hence by (d) to D(g(e)) ML B. Since clearly h(i,e) = 0 for

each i € w it is seen through Lemma 6.8(a) formalized that

Pr (£ = 0 — L(i) * B).

Thus T (oB) implies Pr(B°). n

For proofs of lemmata of the kind represented by Lemmas
4.10 and 6.13(e) (i.e. lemmas of the form + A° <> ¢  A4) it is

typical to use some property like Pr (£ R ¢) which is usually
enjoyed by all nodes of the model but the root 0. Therefore the-
se lemmas usually need the assumption that the function h leaves
0 unless the node 0 is reflexive, that is 0 #» od implies 0
A4 for all the relevant formulas A. In the latter case the proof
goes through equally well (cf. Solovay [47]). Another way one
can use this observation is to let h jump to a reflexive node
the moment some AO event happens. A clever choice of this AO
event can help to obtain an h with some extra desirable proper-
ties. This idea flowered in Beklemishev [5] and [6].

In most applications the number of formulas for which it is
important that 0 # b4 — A4 1is finite. Our construction, on the
contrary, purports to take care of all the infinite collection
of modal formulae. Moreover, our Kripke models do not stay the
same and since the diagonalizable algebras we deal with are not
generally w-consistent we can not generally do with models whose
root comes close to being reflexive. Recall however that the
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theory T of the present § believes that there exists a nonstan-
- dardly large recursive number os. So the way out is to fool T in-
to thinking that after the moment s the model stops changing and
the root of this frozen model is reflexive. This is the content
of Lemma 6.12(c). In fact to achieve reflexivity of 0 at the mo-
ment o we have to delete a nonstandardly sophisticated collecti-
on of nodes which is specified by Lemma 5.28.

It should be noted that the construction in § 6 of Beklemi-
shev [5] also may be thought of as chopping off certain parts of
the Kripke model at a nonstandard moment so as to make the root
eventually reflexive, and that that construction led us to the

one presented in this §.

6.14. Lemma. N = "g is the identity function"

Proof. If g(x) # x for some x € w then it must be for
one of the two reasons given in Lemma 6.7(e). Lemma 6.8(b) and

(d) shows that either of the two reasons implies ¢ # 0. Quod

non. .
6.15. Lemma. If there holds A(vi,v2,...) = T for
A(xl,xz,...) a diagonalizable polynomial then
121 + 0 r (A(pl,pz,...))
Proof. Let A(pl,pz,...) € F(i). As in Lemma 4.11 we have
that D(g(m)) L D (m) L A(pl,...,pi) for some m € w. Note

that h(i,m) = 0.

Reason in IZ1 + 0. By Lemmas 6.11(b) and 6.7(b) we have

T(DA(pl,...,pi)) hence by Lemma 6.12(c) T(A(pl,...,pi)). If ¢ =
0 then by Lemma 6.8(a) £(i) forces A(pl,...,pi).

In view of Lemma 6.13(e) this amounts to (A(pl,...,pi))°
g.e.d. =

In full analogy with § 4 we define * P rng v — DT :
L * °
(20) (vi) = p;
*

and show that embeds 9 into DT
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6.16. Proof of Theorem 6.1
is concluded in nearly the same manner as the proof of Theorem
4.1 (see 4.12). The only difference is that instead of the com-
pactness argument in 4.12 we use Lemma 6.8(d) to see that T +

(A(vl,vz,...))* implies A(v1,v2,...) = T. .

The reasons why the proof of Theorem 6.1 requires the use
of an infinite sequence of increasingly restrictive conditions
on the range of the Solovay function h (cf. (v) of (11)) to car-

ry out the embedding of ® into 9, are somewhat deeper than those

T
of Theorem 4.1. Even if one is going to model in DT a finitely

generated diagonalizable algebra it will not generally do to im-

pose on h the constant condition
if h(x) = 0, then h(x+1) = 0 or VYm h(x+1) = D(m)

even in the case when this condition is recursive. To see that,
think of the diagonalizable algebra of infinite height on just

one generator a which satisfies the relation
n
a - oT =71

for each n € w and a = 1.

71



& 7. Zl—sound theories

7.1. Theorem. Let T be a Zl—sound theory. A denumerable di-
agonalizable algebra D is isomorphic to an r.e. subalgebra of DT
iff

(i) D is positive and

(ii) D enjoys the strong disjunction property.

The scheme of the proof of Theorem 7.1 coincides with that
of Theorem 6.1. We employ here much the same objects as we did
in § 6 and prove lemmas very similiar to those of § 6. Therefore
we shall be very sketchy about the proofs which will usually be

modifications of proofs of corresponding lemmas in § 6.

We proceed to list the necessary definitions.
(1) h_(0) =0

(2)
ho(x+1) =a 1if (i) a € MO :
(ii) ho(x) R a and

(iii) Prf (x, zo =a — 3Ty (ho(x) R ho(y) R a))

= ho(x) if no a satisfying (i) - (iii) exists
(3) Eo = 11mX___)oo ho(x) if h0 reaches a limit

= 0 otherwise

7.2. Lemma (121)'

(a) Vx Vy (x < ¥y —. ho(X) = ho(Y) v hO(X) R ho(Y))
(b) EO = lim}(__)QO ho(x)

(c) Vx (ho(x) = 20 v ho(x) R 20)

(d) VaeMo (¢, Ra — 1 Pr (e, a — 3Ty (EZRhO(y) R a)))
(e) Vaeno (¢, Ra — - Pr (e, = a))

(£) 20 = 0 — HaeMOU{O} Ax (ho(x) = a A

A Prf (x, ¢ = I; — dy (a R h (y) R Z)))
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(9) 20 = 0 — Pr (20 = 20)

(h) ¢ %0 — Pr (T RE) -

7.3. Lemma.

(a) I+ Vo (n # 0 —. Pr’ (I) < Lo+ a1)

(b) For no a € Mo do we have T »-20 # a.

(¢) N = ZO =0 .
As usual we fix a positive numeration v : w-{0} — D and
a AO enumeration {A(m)}mew of the set of modal formulae that v
brings to T. {A(m)}mew gives rise to a better manageable sequen-
ce {D(m)}mew'
is reflexive, that is 0 # nA implies 0 # A for each formula

As in § 6 our main concern is to guarantee that 0

4. This turns out to be possible once we secure that each of the

formulas in {D(m)}mE is apt.

W
(4) D(0) =7

(5) k(0) = 0O

(6) D(x+1) = A(x) if (i) A(x) + D(x) ;
(i1) A(x) v A(k(X)) ;
(iii) o*a(x) is conservative and

(iv) A(x) is apt

D(x) otherwise

(7) k(x+1) = k(x) + 1 1if D(x+1) ML A(k(x))
= k(x) otherwise
Recall that [A]i i is the (i, pl,...,pi)—shadow of the for-

mula A (see Definition 5.5). All notation concerning i-T-strings
not explained here comes from § 6.

7.4. Lemma.
(a) IZ1 r Vx Vy (x <y — D(y) H D(x))
(b) IZ1 + Vx "o*D(x) is conservative"

(c) IZ Vi Vx "[D+D(X)]i,i is apt"
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(a) IZ r Vi Vj Vx Va (i < j —.

—. “a supports [o D(x)]J J — "o supports [D+D(X)]i,i")

(e) For each y € w there exists an x € w =s.t. D(x) L
A(Y) -

(f) For each x € w there exists a y € w s.t. D(x) =
A(y) -

Proof. (a), (b) and (f) are unproblematic.

(c) This is easy for x = 0. For x > 0, let D(x) = A(y).
From (iv) of (6) and by Lemma 5.26 we have that ota(y) is apt
and therefore by Corollary 5.27 [n*D(x)]i i is also apt.
I

(d) By Lemma 5.6 °

+

p [0'D(0)]; ;e [[o D(X)]J ilii
Since «a supports [o D(X)] BT [o D(X)] is (j,Jj)-trimmed by
Lemmas 5.11 and 5.25(a) and apt by (c¢) we have by Lemma 5.25(e)
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