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§ 0. Introduction

The study of the diagonalizable algebras of theories con-
taining arithmetic was initiated in the early seventies by Mac-
intyre & Simmons [28] and Magari [29]. In 1976 Solovay [47] cha-
racterized the equational theory of the diagonalizable algebra
of Peano arithmetic. This theory was shown to be adequately de-
scribed by the well-known modal logic L. Later on, Montagna
[31], Artemov [2], Visser [48] and Boolos [12] strengthened this
result somewhat by independently demonstrating that the free di-
agonalizable algebra on countably many generators is (isomorphic
to) a subalgebra of the diagonalizable algebra of Peano arithme-
tic. The equational theories of diagonalizable algebras of other
strong enough theories were calculated by Visser [49] (cf. also
Artemov [3]). These are given by the series L, L+oL., L+oot,
Among the recent investigations of the subject we may also men-
tion Montagna’s paper [32] which undertakes a systematic inquiry

into generalizations of Goldfarb’s Principle.

Nonetheless, the information on diagonalizable algebras of
theories currently available is dejectingly scarce and therefore
leaves ample scope to further research. Thus, for instance, it
would be natural to attempt a closer look at subalgebras of the-
se algebras. This is the theme of the present paper. It is pre-
dominantly devoted to the question which diagonalizable algebras
can be embedded into the diagonalizable algebra of a theory. For
the easier case of embeddings with r.e. range we obtain a comp-
lete solution. It turns out that a short list of most obvious
restrictions constitutes a characterization of r.e. subalgebras
of the diagonalizable algebra of a theory. Partial results in
this (or at least in a closely parallel) direction were obtained
by Jumelet [27]. In fact, the work of Jumelet was my main source

of ideas and inspiration.

The plan of the paper is as follows. § 1 recollects the ne-
cessary definitions and earlier results. It also contains a re-
sult on the length of proofs which, in view of a construction in
§ 11, does not look absolutely out of place here. In §§ 2, 3 and



5 we carry out some modal-logical work relevant for subsequent
progress. As a by-product of this we obtain a uniform version of
the Craig Interpolation Lemma for L. The main result of the pa-
per is to be found in §§ 4, 6 and 7 where r.e. subalgebras of
diagonalizable algebras of a wide class of theories are charac-
terized. This takes us three §§ because we use three slightly
different approaches to handle particular kinds of theories. He-
re we employ extensions of techniques developed by Solovay [47],
Artemov [2], Boolos [12], Jumelet [27] and Beklemishev [5]. §§ 8
- 11 are of marginal interest. In § 8 we apply the result of § 7
to give an alternative proof to a lemma in Simmons [41]. Unfor-
tunately the application will not require the full strength of
our methods. A question concerning the arithmetical complexity
of sentences needed to model a diagonalizable algebra in arith-
metic is treated in § 9. In the last two §§ we find out whether
our characterization of subalgebras of diagonalizable algebras
of theories extends from r.e. to arbitrary subalgebras. It is
shown in § 10 that for the case of Zl-ill theories an easy gene-
ralization is possible. As regards Zl—sound theories, the situa-
tion appears to be more complex and an example is given in § 11
that partially justifies our failure to describe subalgebras of

diagonalizable algebras of these theories.

I would like to thank Lev Beklemishev for numerous stimula-
ting ideas and invaluable comments. Without his help the present
paper could have hardly been written. In particular, Lev Bekle-
‘mishev brought my attention to a neat trick in Beklemishev [5]
which a key idea for the argument in § 6 was derived fronm.
Thanks are also due to Professors Sergei Artemov and Aleksandr
Chagrov, Marc Jumelet and Andrei Muchnik for interesting discus-

sions.

We assume that the reader is familiar with Smorynski [46]
or at least with Solovay [47]. Knowledge of (rudiments of) di-
agonalizable algebra theory and modal logic, especially of L,
should also be very helpful. For these matters, good references

are Magari [29], Bernardi [8] and Bellissima [7].



§ 1. Preliminaries

1.A. Arithmetic

We shall study r.e. consistent theories whose language com-
prises that of primitive recursive arithmetic. Given a set I' of
arithmetic formulae, AO(F) denotes the closure of I' under Boo-
lean combinations and primitive recursively bounded quantifica-

“tion. Let

Zo = Ho = Ao(atomic arithmeic formulae)

and define Zn+l to be the closure of Hn under lattice combinati-
ons and existential quantification. The class Hn is defined ana-
logously. We shall say that a formula ¢ is Zn over a theory T if
there exists a Zn formula which T proves ¢ equivalent to. Final-

ly, ¢ is An over T if it is both Zn and Hn over T.

For I' a set of arithmetic formulae, a theory T is said to
be I'—sound if each theorem of T which is in I' is true. A theory

is I'-il1l if it is not I'-sound.

In compliance with a recent tradition of not involving much
more arithmetic than is actually needed we take IZ1 as our base
theory. In other words it is assumed throughout the paper that
every theory under study contains induction for 21 formulae as
well as the basic axioms P (cf. Paris & Kirby [36]) and defi-
ning equations for primitive recursive function symbols. Note
that our theory IZ1 proves the same theorems as the theory PRA
of Smorynski [46]. The theory IZ1 of Paris & Kirby formulated in
the language (<, 0, S, +, *) is very much the same as ours.
That is not just to say that our variant of IZ1 is conservative
over that of Paris & Kirby. What is more, every formula of the
language of primitive recursive arithmetic translates easily and

IZl—equivalently into the smaller language.

The following facts about IZ1 are well worth being kept in
mind: The provably recursive functions of IZ1 are exactly the
primitive recursive ones (Mints [30]); IZ1 proves induction (and
therefore the least number principle) for Ao(21) formulae and

each Ao(z1) formula is A2 over I21 (Hajek & Kucera [24]):; every



AO(Zn) sentence 1is equivalent to a Boolean combination of Zn

sentences.

We assume that every theory comes equipped with a primitive
recursive way a to recognize its axioms with which we associate
a AO formula Prfa(y,x), the proof predicate (of T), to express
that y is a (say, Hilbert-style) proof of x from the (extralogi-
cal) axioms given by o (cf. e.g. Feferman [16]). Pra(x), the
provability predicate (of T), is short for dy Prfa(y,x). In
what follows we shall be omitting the subscript o since no con-

fusion is likely.

Each formula and, in general, each syntactical object is
identified with its godelnumber. The numeral for n, i.e. (the
godelnumber of) a zero followed by n strokes is denoted by n.

Finally, if Q(Xqsenn,X) is a formula then w(EI,...,EE) is the
primitive recursive term honestly representing the function

which sends (ny,...,n ) to the numeral for w(ﬁz,...,ﬁg).

The least n € w s.t. T proves Prn(I) is called the credi-
bility extent of T. (We let Prl(I) = Pr(L) and Prn+1(I) =

Pr (Prn(I))). If no such n € w exists then T is said to be of
infinite credibility extent. Note that if T is Zl—sound then
clearly its credibility extent is infinite. On the other hand,
the credibility extent of a Zl—ill theory does not only depend
on the set of theorems of T, but also on the primitive recursive
way o which the axioms of T are presented. Thus, Beklemishev
[5] shows that if a Zl—ill theory T contains full induction then
a particular choice of o can make the credibility extent of T

anything from 1 to ow.

1.B. The modal logic L

The modal logic L (whose other names are K4W (Segerberg
[40]), G (Solovay [47]), GL (Artemov [3]) and PRL (Smorynski
[46])) was presumably first introduced by Smiley [42] whose mo-
tive for doing so was investigation of ethics rather than of
provability in formal systems. The language of L consists of an
infinite stock of propositional letters P P s the wusual

propositional connectives and a unary modal operator o. In addi-



tion to the axioms and rules of the classical propositional lo-

gic, L contains the following axiom schemata:

o( A - B ) —. oA — oB
oA — ool

o( od > 4 ) — pA
and the necessitation rule: from A infer oA.

For A a modal formula we write ¢4 short for -~o14 and ota

short for A A DA.

We write +. A4 to mean that the formula A is derivable in

L. v ota - u+;; will usually be abbreviated as 4 + B. Note
that since ML A4 1is equivalent to ML nta (cf. Magari [29]),
our notation is coherent in that A if and only if 7 ML A.
Trivially,
L A — B implies A ML B ;
AI—LA,'
4+ B and B b C imply A4 b C i
y:| HL B implies A ML oB and o4 ML oB etc.

5, 3 etc. will be treated as variables ranging over finite

(possibly empty) tuples of propositional letters.

Kripke semantics has long been known as a mighty weapon in
the study of modal logic. We describe a variant of it suited for
our purposes. A triple K = (K, R, #) 1is a (Kripke) B—model if
K, the domain of K, is a non-empty set (of nodes); R, the acces-
sibility relation, is a strict partial order on K s.t. R™! is
well founded and # is a forcing relation between elements of K
and those modal formulae all of whose propositional letters are
among those in 3. # should satisfy the usual commutativity con-
ditions for Boolean connectives and for each a € K and each
modal formula A(B) one has a + uA(ﬁ) if and only if b A(B)
for all b € K s.t. a R b. We write K ¢ 4 (4 holds in K) if
a +» A4, all a € K.

By a model we mean a 3-mode1 for some tuple 3. A model K

(K, R, #) is finite if so is K. K is rooted if there exists a

node b € K satisfying b R a, all a € K s.t. a = b. This b



is then called the root of XK. A rooted model K is treelike if R
is a tree on K. For K a rooted model, we write XK # A4 (K forces
“A; A is forced in K; K is a model of A) if the root of K forces

A. Clearly K = A if and only if K & o’a.

It is well known that if a formula 4 is derivable in L then
it holds in every model provided that the forcing relation is
defined on A. Various specializations of the converse are also
true. Thus, if a formula is forced in every finite rooted model,
or even in every finite treelike model, then it is derivable in
L‘(see e.g. Segerberg [40] or Solovay ([47]; we shall be refer-
ring to this fact as the Completeness Theorem for L). The deci-
dability of L follows (cf. also Bernardi [8]).

1.C. Diagonalizable algebras

A diagonalizable algebra (Magari [29]) 1is a pair (4,0)
where @ is a Boolean algebra with the usual operations A, v, 1,
—, T and 1 endowed with an operator o satisfying the following

identities:

1

o( x >y ) —. ox — oy

nx — 0oox

o( ox — X ) — ox

T = T

The confusion between modal-logical and algebraic notation
is meant to stress the fact that a diagonalizable equation is an
identity of the variety of diagonalizable algebras if and only
if the corresponding modal formula is derivable in L (see Mon-
tégna [31]).

A Boolean filter f of a diagonalizable algebra ® is a <t-
- filter if x € f implies ox € f for each element x of . If a
_filter f is T- then there exists the quotient algebra D/f. Con-
versely, the elements that are sent to v by a homomorphism of
diagonalizable algebras constitute a t-filter (cf. Magari [29]
or Bernardi [8]). For each subset X of a diagonalizable algebra
D there exists the smallest t-filter t(X) containing X. Thus we
can define D/X, the quotient (algebra) of ® modulo X, to be



§)/r(X)'

Whenever we shall need to construct a particular example of
diagonalizable algebra we shall produce an algebra of the form
F/g where F is the free diagonalizable algebra on an appropriate

set of generators (this algebra may be identified with

Piljer
the set of modal formulas using the generators as propositional
letters modulo L-provable equivalence) and & is a set of ele-
{pi}ieﬁ' Note that for a

one has 4 = 71 in /g if and only if

ments of F, that is, of formulas in
formula A 1in {pi}ieI
there exists a finite subset ¥ of &€ s.t. M ¢ ML A.

The height of a diagonalizable algebra 9 is defined as the
least n e w s.t. o’ = 1. If for all n € w one has o'l = 1
then the height of ® is infinite. ® is w-consistent if 1 =# 7
and x = T whenever ox = 7 for each element x of . w-consis-
tency obviously implies infinite height. If ox v oy = 1 imp-
lies ox =T or oy =T then D is said to possess the disjunc-
tion property. Clearly the height, w-consistency and the dis-
junction property are inherited by subalgebras. One can show
that among homomorphic images of a diagonalizable algebra of in-
finite height there always are diagonalizable algebras with the

strong disjunction property.

A 1-generated diagonalizable algebra is determined by its
height up to isomorphism. Note that the disjunction property is
shared by all the L1-generated diagonalizable algebras whereas
the only w-consistent i1-generated diagonalizable algebra is the

free L-generated diagonalizable algebra.

A mapping v: w — )Y s.t. rng v generates the (denumera-
ble) diagonalizable algebra 9 is called a numeration of . A nu-
meration v is positive if the set of diagonalizable polynomials
A(g) satisfying A(vO,v1l,...) = T 1is r.e. A numeration v is lo-
cally positive if for each n € w the set of diagonalizable po-
lynomials A(po,...,pn) satisfying A(v0,...,vn) = T 1is r.e. An
algebra ® is (locally) positive if a (locally) positive numera-
tion of it exists. Clearly ® is locally positive if and only if
each of its finitely generated subalgebras is positive; a fini-
tely generated diagonalizable algebra is positive if and only if



it is locally positive.

1.D. Diagonalizable algebras and arithmetic

The example of a diagonalizable algebra which motivates the
definition is constructed from a theory T of the kind described
in 1.A. The Boolean algebra A is taken to be the Lindenbaum Sen-
tence Algebra of T, i.e. the set of sentences of T modulo T-pro-
vable equivalence and for the mapping o one takes the provabilty
predicate of T, that is, for ¢ a sentence, op = Pr(p). The
well-known properties of Pr(-) guarantee that the algebra ob-
tained in this way is a diagonalizable algebra. (In particular,
the identity o(ox — x) — ox = T disguises a formalized ver-
sion of Lob’s Theorem.) This diagonalizable algebra is called
the diagonalizable algebra of T and is denoted by DT. The con-
cept was originally introduced by Macintyre & Simmons [28] with-
out a name. The name was supplied later by Magari [29].

If T is a set of ifithmetic sentences closed under Boolean

T
A subalgebra of DT is r.e. if the underlying set of sentences

operations and o then 9., is the corresponding subalgebra of DT.
is. The usual godelnumbering of sentences gives rise to a posi-
tive numeration of each r.e. subalgebra of DT including DT it-
self.

Clearly the height of 3
of T.

T is equal to the credibility extent

In diagonalizable algebras (and even in diagonalizable al-
gebras of infinite height) neither of w-consistency and the dis-
junction property implies the other. The situation in diagonali-
zable algebras of theories is different. In fact, the following

are equivalent:

(i) T is Zl—sound;
(ii) T » o v T implies T +o or T + T for each pair of
Zl sentences o and tT;
(iii) T decides every sentence which is Al over T;
(iv) DT is w-consistent;
(v) The credibility extent of T is greater than 1 and 9

T
possesses the disjunction property.,



(i) © (ii) & (iii) is proved in Jensen & Ehrenfeucht [26] and
Guaspari [23] (cf. also Friedman [19] and Smorynski [45] and
[46]). The remaining equivalences are folklore and are typical
applications of Goldfarb’s Principle:

Let o be a 21 sentence and let T + Pr(L) — o. Then there
exists .a sentence T (which can be chosen 21 or H1) s.t. T v O

«— Pr(T).

(cf. Visser [49], Bernardi & Mirolli [9], Montagna [32] or Mon-
tagna & Sommaruga [34]).

As evidenced by (iv) & (v) it will, for the purposes of our
paper, be convenient to conjunct w-consistency and the disjunc-
tion property under the name of the strong disjunction property

which is clearly equivalent to
L # 7T, and ox Vv oy = T implies x =71 or y = T.

Before doing so however we shall take a final look at each one

of the former separately.

For thé remainder of the § we shali be confusing modal and

arithmetic notation.

In 1971 Parikh [35] proved that the implication of the sta-
tement (iv) for Zl—sound theories (T v+ op > T + ¢) may take ra-
ther long to materialize. That is, for each provably recursive
function g of T there exists a sentence ¢ and a proof p of op in

T s.t. no number < g(p) is a proof of ¢ in T.

'We shall prove the same for the disjunction property. Our
proof leans heavily on techniques-of de Jongh & Montagna [25]
and Carbone [13] and an idea in Carbone & Montagna [14].

'1.1. Proposition. Let g be a provably recursive function of
a Zl—sound~theory T.

(a) There exist (21) sentences 01 and 02 and a proof pO of
ao \% oo in T s.t. T bo T + o, and no p, < g(po) is a
proof of oo, or of o, in T.

(b) There exist (21) sentences T, and T, and a proof qO of



at, v th in T s.t. T *~ T, T non + T, and no q, < g(qo) is

a proof of ot in T.
Proof. First we fix a pair of (21) sentences a and B s.t.

T + (o v OB) <
oo

oo ¢ oot

Sentences a« and B satisfying these conditions could be produced
with the help of Solovay’s [47] Second Theorem applied to the
following Kripke model (at each node, only the letters forced

are shown) :

(This model also appeared in Visser [49] to accomplish a simili-

ar task).

Now let g <g oy denote the formula saying that there
exists a proof p of ¢ in T s.t. no q < g(p) is a proof of Y in
T.

(a) By self-reference find a sentence P, s.t.
(1) T *» p, [u(u(p1 Voa) Vv u(p1 vV B)) <g nu(p1 vV oa)] A
A [a(a(p, vV o) V.o(p Vv B)) <g oo(p, VvV B)]
We have

(2) T ro(a(p, v a) vaolp vB)) - n+p1 v n+1p1
(the antecedent implies that the
r.h.s. of (1) 1is decidable and so
P, is decidable)

(3) T l-"lpl .
—. u(n(p1 vV o) Vv :x(p1 vV B)) — (an(p1 vV oa) v nn(p1 vV B))
(by (1))

10



(4) T +~ D+1p1 -
- D+(D(n(p1 va) vaol vRe)) —. oo(p va) voo(p VE))

(by (3))
— ot (o(oa v 0B) —. ooa v oop)

— oY (ooor — oo1) (by the choice of a and B)

(5) T * |:|+-|p1 — oool (from (4) by Lob’s Theorem)
— ool (by (4))

(6) T v moL —. oo VvV of (by the choice of « and B)

—. 8(p, vV a)V a(p, v B)

(7) T + |:|+-1p1 . u(p1 vV oa) Vv D(p1 v B)
(by (5) and (6))

(8) T + ooop = um(m(p1 vV a) Vv u(p1 vV B))

— D(up1 \% u+1p1)
(by (2))
— o(a(p, v o) vo(p Vv B))
(by (7))
—. op Vv D+1p1
(by (2))
—. op Vv ool
(by (5))
- l:mp1
(9) T + oop, (from (8) by Lob’s Theorem)
(10) T + P, (from (9) by Zl—soundness)

By (10) also the r.h.s. of (1) is provable and hence by Zl—so—

undness true. Now let 01 = p1 vV a, 02 = p1 v B and note that

(a) is proved.
(b) Construct a sentence p2 s.t.
T *~ p, D(n(p2 vV a) Vv oB) <g l:n:l(p2 VvV a)

and show that T + P, in perfect analogy with the proof of (a).
Then take t1 = P, vV a and t2 = A. u

After the research underlying the present paper was essen-

tially completed I learnt that Proposition 1.1 fell corollary to
very general recent results of Montagna [33].
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Leaving alone the problem of actually constructing from a
proof of op v oY that of one of the disjuncts, one might at
least ask which one of those is true. The next proposition shows

that this generally also is a very difficult question.

1.2. Proposition. If T is a Zl-sound theory then there is
no provably recursive function of T which, given a proof in T of
a sentence of the form ogp Vv oy, picks a true disjunct (even if

one restricts the task to 21 sentences ¢ and Y ).

Proof. Suppose g were such a function. That is, if p is a
proof of a sentence of the form op v oy with ¢ and Y in 21
then

g(p) = 0=>T r ¢ and g(p) =1 =>T + Y.
Clearly we can assume w.l.o.g. that

T » Vx (g(x) = 0 v g(x) = 1)

We introduce two ad hoc "modal" operators:

op A g(the least proof of ¢)

(u]
-e
n

op A g(the least proof of ¢)

o
hS]
n

Next we define by parallel self-reference:

T v 0 & D1(DG VvV oT)

T r T & no(no VvV oT)
We have

T +» o(oo vV OT) —. (D0 \% Dl)(DU V OT)
—. OV T

—. 00 VvV OtT (0 and T are 21)
and hence

T » oo v ot

by Lob’s Theorem. Now if g(the least proof of oo Vv ot) = 0
then o is false and therefore by Zl—soundness T non + 0 cont-
rary to the assumptions on g; g(the least proof of oo v ot) = 1
contradicts the assumptions in the symmetric manner. ]

12



§ 2. On conservativity in L

2.1. Definition. The degree d(4) of a modal formula 4 is
defined inductively:

d(p;) = d(L) =d(r) =0
d(~4) = d(4)
d(4 AB) =d(A4v B) = d(2 — B) = max (d(4), d(B))
d(od) = 1 + d(A4)

Thus, formulae of degree 0 are precisely the o-free formulae.

Let 3 be a finite tuple of propositional letters. Formulae
of degree < n containing no letters other than in B constitute
(modulo L-equivalence) a finite Boolean algebra which we denote
by Fn(ﬁ). Elements of Fn(g) will 'be persistently confused with
modal formulas representing these elements. We also let An(B)
denote the set of atoms of Fn(ﬁ). Clearly FD(B) is a subalgebra
of Fm(g) whenever n < m and 3 c 3. It is convenient to think
of the modal operator o as sending elements of FD(B) to those of

Fn+l(3).

F and F(B) denote the diagonalizable algebras of all formu-
lae and of all formulae whose propositional 1letters are in B
respectively.

2.2, Lemma. Consider elements of Fn+1(B) of the form

a A oWy A Nov

with o ranging over AO(B) and ¥ ranging over subsets of AD(B).
Call such formulas types. (Here ¢ ¥y = { oC | C € v })

(a) The conjunction of two distinct types is (L-equivalent
to) 1.

(b) Each formula in Fn+1(B) is (L-equivalent to) a disjunc-
tion of types.

(c) Each formula in An+1(3) is (L-equivalent to) a type.

(d) Each type either belongs to An+1(3) or is (L-equiva-
lent to) ..

13



Proof. (a) It is straightforward to show that

M (cxl/\uWyl/\A\ow1)/\(ocz/\nw;rz/\/x\oxz) .
. (cxl/\cxz)A(uWWIAnW72)A(/X\oWIAMO72)
. (al/\az)/\nW(ylnwz)A/AO(VIUVZ)

and the claim follows by an easy Kripke model argument.

(b) By the definition of Fn+l(3) every formula therein can

be thought of as a lattice combination of elements a of Ao(ﬁ)
and formulas of the form oC and -oC with C € F“(B) or, equiva-
lently, o \} ¥ and =-o \{f v with ¥ ¢ AH(B). Thus to prove the
claim it will suffice to show that a, o \} ¥ and -~ o \f v are
L-equivalent to appropriate disjunctions of types and that the
conjunction of two disjunctions of types can be L-equivalently
brought into the form of a disjunction of types. This is unprob-

lematic:

FLOH_>W{oc/\cxwa/\/,(\oa|<S;An(f5)}

LoWreoW(BroWsANos | Bea’ B, s cr)

b T o\ 7 <
o WI(BAoOWSANOS | Ber’ @), s cA'B), 5 non c v )

and, finally,
»-L\z./(oci/\uwz(i/\/x\ovi)/\\E'/(aj/\mW'yj/\moyj)(__)

H.W.((ai/\DW'Ji/\fAO’Zi)/‘\(O(J./\DW'JJ./\/X\O'JJ.))
1,]

Since by (a) the conjunction of two types is L-equivalent to 1
and/or to a type we are done.

(c) and (d) follow easily from (a) and (b). n

The types of Lemma 2.2 are essentially the same as the nor-
mal form formulas of Fine [17] and the n-S-characters of Gleit &
Goldfarb [20].

2.3. Definition. Let K be a rooted model. The unique ele-
ment of AH(B) forced in K is called the (n,g)-character of K.
If the (n,ﬁ)—characters of two rooted models coincide then these

models are said to be (n,B)—twins.
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2.4, Definition. If K = (K, R, #) 1is a Kripke model and
a € K then K[a], the a-cone of X, is the rooted model whose do-
main is the set ({(a}) U { b € K | a R b } and the accessibility
and forcing relations are R and # restricted to this set respec-
tively. A proper cone of K is the a-cone of X for some a € K

which is not the root of XK.

The following lemma, although simple, will render us a num-
ber of valuable services. It should be compared with Theorem 1
of Fine [17].

2.5. Lemma (Fine Lemma).

(a) Two rooted B—models are (n+1,5)—twins iff

(i) they are (O,B)—tvins and

(ii) each proper cone of one of these models has got an
(n,ﬁ)—twin among the proper cones of the other model and vice

versa.
- , > ,
(b) (n+m,p)-twins are (n,p)-twins.
Proof. (a) is easy.

(b) is proved by induction on m using (a). .
2.6. Definition. Let 5 be a finite tuple of propositional
letters. A formula A is said to be B—conservative over a formula
B if for each C € F(B) one has L B — C whenever ML A -
C. A is conservative over B if it is A-conservative over B where
A is the empty tuple. A is (B—) conservative if it is (3—) con-

servative over T.

Our aim 1is to show that conservativity is decidable. 1In

fact we shall obtain stronger results.

2.7. Definition. Let Kl = (K1' R1’ wl) and Kz = (Ka' R2,
»2) be rooted models, a € K1 and assume K1 and K2 disjoint. By
saying that we graft Kz above a (in Kl) we mean that a new model

is constructed whose domain is K1 u Kz, the forcing relation

15



coincides with b U ¥, on propositional letters and the acces-

sibility relation R is defined by putting

bRc &
& b R1 c or b R2 c or ((b R1 a or b =a) and c € Kz)

Ilet XK = (K, R, #) Dbe a rooted B-model and a € K. Suppose
one grafts an isomorphic copy of the a-cone of K above b € K
in X with b R a. Then the "old" nodes can be easily shown to
force precisely the same modal formulae in the resulting model
as they did in X (cf. Artemov [3]). Suppose K’ = (K', R', )
is a B-model obtained from K by a finite number of graftings of
the sort described and let there exist a forcing relation ' ex-
tending # s.t. XK' = (K’, R, +') is a d-model that forces a
formula A4 € F(a). Then we shall say that K is expandable to (a
model of ) A and that Kt is an expansion of K to (a model of) A.

2.8. Lemma. Let B c 3. If every finite rooted (treelike)
3—mode1 of a formula A € F(ﬁ) is expandable to a model of B €
F(a) then B is B-conservative over A.

Proof. Easy. .

2.9. Definition. If A =a Ao\ 7 A\ o7 with o € A°(DB)
and ¥ ¢ An(ﬁ) and K is a rooted 3—model forcing 4 then a is
called the real world part of A and of K; elements of y are the
(n,g)—possible worlds of A and of K and 7 itself is the (n,B)—
possible worlds part of A and of K. The number of elements in 7

is the (n,B)—rank of A and of XK.

Clearly the real world part and the (n,B)—possible worlds
part of A2 and of each rooted B—model are defined uniquely up to

L-equivalence.

The following lemma may be thought of as an improvement on
the Joint Satisfiability Theorem of Gleit & Goldfarb [20].

2.10. Lemma (Expansion Lemma). Let 3 - 3. To every n € w
there corresponds an N € w s.t. every finite treelike B—model

of B € AN(g) is expandable to a model of C € An(3) whenever
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B A C 1is irrefutable in L.

Proof. The claim is immediate for n = 0 (in this case we
can take N = 0). For the remaining n € w we use induction on
the (n—l,a)—rank of C. When this rank is 0 and N > O the claim

is once again obvious.

Thus, given an r # 0, we assume for induction0 hypothesis
that each finite treelike B-model of D € AN(g) is expandable
to a model of E € An(a) once D A E 1is irrefutable in L and
the (n—l,a)—rank of E is smaller than r.

Now let C € AD(G) of (n—l,&)—rank r be forced in a rooted
model ¥ along with B € AN+C(3) and let K be an arbitrary fini-
te treelike B-model of B. The constant ¢ will be specified la-
ter. We are going to expand K to a model of C. To avoid heavy
notation we stipulate that K retains its name throughout the
process of expansion despite the changes it undergoes and, at

intermediate stages, despite being neither a B- nor a 3—model.

First we consider a particular case when the (n—l,a)—rank
of ¥ is greater than that of any of its proper cones. In this

case we let ¢ = 1.

Let @pr---s@p be the immediate successors of the root of
K. By the Fine Lemma (a) there exists a sequence R[bl],...,
H[bm] of proper cones of K s.t. R[bi] is an (N,z)—twin of
K[ai], 1 < i < m. Since the (n—l,a)—rank of each of the R[bi]'s
is smaller than r, the inductiono hypothesis yields an expansion
of K[ai] to the (n,a)—character of ﬂ[bi]. Now replace each of
the K[ai]’s by the corresponding expansion (this is possible be-
cause K 1is treelike). Analogously, each proper cone H[b] of *
has got an (N,g)—twin among the proper cones of K which is ex-
pandable to the (n,&)-character of ¥[b]. For each such ¥[b],
graft a copy of the corresponding expansion above the root of XK.
Finally extend the forcing relation at the root of X in the ob-
vious way.

We show that the resulting model is an (n,&)-twin of ¥. The
real world parts of their (n,&)-characters coincide by construc-

tion. That the proper cones of the model constructed have

17



(n—l,&)—twins among the proper cones of X follows from the fact
that every proper cone of the new model is either an (n,a)— (and
therefore by the Fine Lemma (b) an (n—l,a)—) twin of a proper
cone of ¥ or is a proper cone of an (n,&)—twin of a proper cone
of ¥ (and hence by the Fine Lemma (a) an (n—l,é)—twin of a pro-
per cone of ¥). As to the opposite direction, recall that we
grafted in K an (n,a)—twin to each proper cone of ¥. Finally,

apply the Fine Lemma (a).

Now we drop the assumption on the (n—l,&)—ranks of the pro-
per cones of ¥ and increase c to 3, that is, we assume X and ¥
to be (N+3,5)—twins.

Our plan is as follows. We set the inductionO hypothesis
and the skills we acquired when treating the particular case to
work and let these expand as many proper cones of K as possible
to the characters of the corresponding proper cones of X. What
remains unexpanded in K after this first attack corresponds to
proper cones of H of (n—l,a)—rank r and hence the (n—l,a)—possi-
ble worlds of these cones have to be the same as those of ¥ it-
self. Thus, provided we have implanted all the (n—l,a)—possible
worlds of K above each of the yet unexpanded nodes of K, we only
have to care that .o (n—l,a)—possible world alien to X comes in-
to existence when the forcing relation at these nodes is being

extended to 3.

Our first move will be to classify the proper cones of K.

Thus, we call a proper cone K[a] along with its root a

- frontier, if there is an (N+1,5)—twin H[b] of K[a]
among the proper cones of ¥ s.t. the (n—l,a)—rank
of ¥[b] is r but each proper cone of X[b] is of a

smaller (n—l,a)—rank;

- high, if a is not frontier and there is an (N+1,B)-
twin of K[a] among the proper cones of ¥ of

(n—l,a)-rank smaller than r;

- low, if a is not frontier and every (N+1,3)-twin of
K[a] among the proper cones of ¥ is of (n—l,a)—
rank r;
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- genuinely frontier, if a is frontier and every node

which a is accessible from is low;

- critically high, if a is high and every node which a

is accessible from is low;

- essentially low, if a is low and every node which a

is accessible from is also low.

Claim 1. Each proper cone of K is either frontier or high

or low.

Claim 2. Of each node of K which is not the root of K
exactly one of the following statements is true:
(i) a is genuinely frontier;
(ii) a is critically high;
(iii) a is essentially low;
(iv) a is accessible from a genuinely frontier or from a

critically high node.

Indeed, Claim 1 is easy. Claim 2 follows from Claim 1 by

inspection of our classification.

Informally, we have this picture: To the root of X clings a
downward closed collection of essentially low nodes and immedi-
ately above this collection there is a one-node-thick layer of
genuinely frontier and critically high nodes which separates the

essentially low nodes from the rest of the model.

Claim 3. From each (essentially) low node a frontier node

is accessible.

The proof of Claim 3 explains why we chose c¢ to be so ab-

normally large:

By the Fine Lemma (a) each low proper cone K[a] has got at
least one (N+2,B)—twin among the proper cones of X. Each of the-
se (N+2,3)-twins has a proper cone of (n—l,a)—rank r, or else a
would be frontier. Pick one of these (N+2,B)—twins and a proper
cone H[b] of it of (n—l,a)—rank r s.t. each proper cone of H[b]
has a smaller (n-l,&)—rank. By the Fine Lemma (a) the root of an

(N+1,3)—twin of ¥[b] should be accessible from a. This root is
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by definition a frontier node so Claim 3 is proved.

Let us now start working. The root of K is as usual unprob-
lematic. Next we replace each genuinely frontier and each criti-
cally high proper cone of K by its expansion to the (n,a)echa—
racter of one of those of its (N+1,3)—twins in ¥ which this pro-
per coné owes its frontier or high statute to respectively. For
(genuinely) frontier proper cones such expansions were carried
out when treating the easy particular case with ¢ =1 and for
expansions of critically high nodes we turn to inductionO hypo-
thesis. By Claim 2 and since K is treelike these replacements
can not conflict. To each essentially low node a of XK we do the
following: extend the forcing relation at a to that at the root
of one of the (N+1,3)—twins of K[a] in ¥ and graft above a an
expansion of a frontier proper cone K[ao] with a accessible
from a, which corresponds to a by Claim 3, to the (n,3)-charac-
ter of an (N+1,3)—twin of K[ao] in ¥ which enjoys (n—l,a)—rank r
‘but none of its proper cones does. Lastly, for each proper cone
H[(b] of K s.t. every one of its proper cones has (n—l,a)—rank
smaller than r pick an (N+1,3)—twin in (the original copy of) X
and graft above the root of XK an expansion of this (N+1,3)—twin
to the (n,a)—character of H[b].

It is now easily seen from Claim 2 that K has been metamor-
phosed into a G-model. We check that the (n-l,&)—possible worlds
parts of ¥ and of the model constructed are the same.

If there is a proper cone of ¥ of (n-1,3)—rank r then at
.least one of such cones enjoys an (n,&)-twin in the modified X
grafted above the root. Since ¥ is itself of (n—l,&)—rank r,
each (n-l,a)—possible world of ¥ 1is also an (n-l,a)—possible'
world of this (n,a)—twin and hence of the expanded K. If there
were no proper cones of X of this (n-l,a)—rank then we would ha-
ve grafted in K an (n,a)—twin to each proper cone of ¥ and any-

way this is the easy ¢ = 1 case that we dealt away with ear-
lier.

It remains to see that each (n—l,&)—possible world of K is
that of ¥. Expansions of genuinely frontier, critically high and
- frontier proper cones of K grafted in K present, as in the c¢ =

20



1 case, no problem. We show by rootward induction1 on the es-
sentially low nodes of K that these only gave rise to (n-l,a)—
possible worlds that are those of K. Consider an essentially low
node a of K. Recall that there is an expansion of something to
the (n,é)—character of a proper cone of ¥ having (n—l,a)—rank r
grafted above a. Hence the (n—l,a)—possible worlds part of the
a-cone of the new XK is the same as that of ¥: by induction1 hy-
pothesis no extra (n-l,a)—possible world could have crept in.
Find now the root b of the (N+1,B)—twin H[b] of K[a] which the
forcing relation at a was extended to. Since this (N+1,B)—twin
also had to have (n-l,&)-rank r and hence the same (n—l,a)-pos—
sible worlds as ¥ , we see by the Fine Lemma (a) that the a-cone
of the modified K is an (n,a)—twin of ¥[b] which gives us the
desiderata. Thus we have executed the induction1 step and the
proof is complete.

Since the (n—l,&)—rank of a formula can not be greater than

|Fn—1(3)| our proof yields N =1 + 3-|Fn_1(3)|. "

2.11. Lemma. Let 3 - 3. For each formula B € F(&) there
exists a formula C € F(B) s.t. L B —» C and a finite tree-
like 3—model is expandable to a model of B iff this model forces

C.

Proof. Let B € Fn(é) and let N be the number which cor-
responds to n by the Expansion Lemma. Take C to be the disjunc-
tion of those elements D of AN(g) whose conjunction with B is

irrefutable in L and use the Expansion Lemma. .

We are now able to prove the converse to Lemma 2.8.
2,12, Lemma. Suppose that 3 - 3 and B € F(&) is 3—con—
servative over A € F(ﬁ).rThen each finite treelike 3—model of A

is expandable to a model of B.

Proof. By Lemma 2.11 there exists a formula C € F(ﬁ) s.t.

ML B — C and each 3—model of C is expandable to a model of B.

Since B is 3—conservative over A we have that ML A —> C and so
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each finite treelike B-model of A is expandable to a model of B.

Smorynski [44] establishes the Craig Interpolation Property

for the modal logic L: If ML A — B then there exists a formu-

la C s.t. FL A —» C and L C — B and C only contains propo-

sitional letters common to 4 and B (cf. also Boolos [11] and
Gleit & Goldfarb [20]). The following corollary shows that all
we need know of B to construct C is what propositional letters A
and B have in common.

.13. Corollary (Uniform Craig Interpolation Lemma for L).

2 .
> 2
p

Let € d. Given a formula B € F(a) we can construct a formu-
la C € F(B) s.t. v B - C and + C — D whenever P is a

L L
tuple of propositional letters disjoint from 3 and D € F(g,?)

is s.t. ML B — D. Moreover, this formula C is unique up to L-
equivalence.

Proof. Let C be as in Lemma 2.11. Take a formula D meeting
the requirements of the present corollary and let E € F(B) be
the interpolant between B and D provided by the usual Craig In-
terpolation Lemma. We show ML C —> E whence L C —»> D fol-
lows by modus ponens. For if this were not the case then we
would have a finite treelike model forcing C A -E. By Lemma
2.11 this model would expand to a model of B and thus B A -E
would be irrefutable in L contradicting the assumption that E is

an interpolant.

Uniqueness is left to the reader. ]

Thus if B < 3 and B € F(a) then among the formulas in
F(B) implied by B exists the stongest one.

For the case of 3 an empty tuple Corollary 2.13 is essenti-
ally proved in Artemov [2] and [3]. The full strength of this
corollary will not be needed until § 10.

2.14. Corollary. (3-) conservativity is decidable.

Proof. To decide whether a formula A is B—conservative over
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a formula B construct the formula C provided by the Uniform

Craig Interpolation Lemma s.t. b, 4 o C and + C — D when-
ever  + A - D and 4 and D do not have common propositional
letters other than those in B. Use the same lemma to see that 4
is B—conservative over B iff b, B — C. »

In what follows formalized versions of certain lemmas of
the present § will appear within IZ1 without special notice. In
each case the verification that such formalizations are possible

is unproblematic and therefore left to the reader.
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§ 3. A family of Kripke models

3.1. Definition. Let X be a finite B—model. K is said to be
differentiated if for each node a of K there exists a formula A

€ F(ﬁ) s.t. a is the only node in K forcing A.

Note that for finite models our definition of differentia-
ted is equivalent to that of Fine [17].

3.2. Definition. Let XK be a finite model. The least such n
€ w that X r oL is called the height of K. Thus the height
of X is equal to the number of elements in the largest subset of
the domain of XK linearly ordered by the accessibility relation.
Clearly if K is rooted then the height of K exceeds that of any

one of its proper cones.

3.3. Lemma. Let K be a finite rooted differentiated 3—mo—
del and let 4 € F(B).

(a) Each proper cone of K is differentiated.

(b) (Fine [18]) To each finite rooted B—model ¥ there cor-
responds a finite rooted differentiated 3-model which forces

precisely the same formulas in F(g) as ¥ does.

(c) There exists a formula, which we shall denote WK(B) (or
just WK), s.t. any rooted differentiated B—model K is isomorphic
to XK if and only if H® QK(B).

, 2
(d) K » A4 1iff ML WK(p) — A.

. 2 2

(e) Either L WK(p) — A or L Wx(p) — 4.

Proof. (a) Obvious.

(b) Let ¥ = (H, R, ). Define an equivalence relation E on

aEDb & a and b force the same formulas in F(B).

Define R/E to be the relation on H/E which holds between two E-
equivalence classes a and & whenever for each node a € a there

exists a node b € & s.t. a R b. Clearly R/E is transitive and
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irreflexive. Let an E-equivalence class a force a propcusitional

letter p; € 3 (a o pi) if a representative of a forces p;-

We show by induction on the structure of A that if a € a

then

a v A 1iff a»EA.

The only interesting induction step occurs when A is of the form
nB. Suppose a # oB. If a R/E & then for some b € & one has
a Rb whence b ¥ B. Hence by the induction hypothesis & g B.

Conclude a kg oB. The converse direction is equally easy.
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