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PARTIAL CONSERVATIVITY AND MODAL LOGICS.

Ignatiev K.N.
Steklov Mathematical Institute,
Vavilova str., 42, Moscow,
117966, GSP-1, USSR.

ABSTRACT: PA is Peano arithmetic. Let I' be an
arbitrary decidable set of arithmetical formulas;
the Il -formula_. a> B ( where a,B range over
codes of arithmetical sentences ), is a forma-
lization of the assertion that the théory PA+8 is
F-conservative over PA+a, i.e. any sentence ¥ in T
which is provable in PA+f is also provable in PA+a.
We extend Solovay’s modal analysis of the forma-
lized provability predicate of PA to the formalized
conservative relation. Namely, for TI=I , n22,
r=2 ,n23, we give an axiomatization and a ndecision
progedure for the class of those modal formulas
that express arithmetically wvalid principles of
[-conservativity.
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§¢1. Introduction.

In [3] Guaspari considered a notion of I'-conservativity,
( where F=2n, Hn, nz1l ): theory T, is I'-conservative over theory T,
if any I'-sentence provable in T2 is also provable in T1 ( "theory"
means "r.e. theory in arithmetical 1language containing Peano
Arithmetic PA"™ ). Guaspari proved some "obvious" properties of
partial conservativity: for example, each consistent theory T has a
proper extension which is I'-conservative over T , and the set of
all sentences A such that PA+A is I'-conservative over PA is not
r.e. .

Guaspari also noted, using Orey-Hajek results ( [1], [2] ),
that Hl—conservativity ( over reflexive theories like PA,ZF, etc. )
coincides with relative interpretability, and gave a model-
-characterization of the notion of relative interpretability.

Later Lindstrom ( [4],[5] ) proved that the set of "all
sentences A s.t. PA+A 1is TI'-conservative over PA is Hg—complete
( here F¢21 ). Bennet ( [6] ) proved some other facts connected
with the partial conservativity.

The notion of TI'-conservativity ( as well as relative
interpretability ) can be used for an arithmetical interpretation
of modal 1language with unary modal operator o and binary modal
operator =, where o is translated as provability in PA, and A=B is
translated as "PA+B 1is TI'-conservative over PA+A" ( or "PA+A
interprets the theory PA+B" ) . Provability logic for
I'-conservativity ( respectively, provability 1logic for relative
interpretability ) is, by definition, a set of all modal formulas,
any arithmetical translation of which is provable in PA; we denote
this set by CL(I').

In [9],[10] it was proved, ( with a use of some results from
[7],[8] ) that the modal system ILM is the 1logic of relative
interpretability over PA; thus, ILM is also the 1logic of
Hl-conservativity ( in [11] this result was extended generalized to
more rich class of basic theories ).

The aim of this paper is to give an axiomatization and a
Kripke-like semantic for the logic of Hn-,En—conservativity for nx>3

( this 1logics coincide ). 1In appendix we also prove the



arithmetical completeness of the logic of ﬂz-conservativity.
If we consider axioms of ILM:
Al. AsB— (0A—0B)
A2. A>C A B=C — (AVB)eC
A3. o(A—B)—A-B
A4. A>B A BeC — AcC
A5. OAmA_
M. AsB— (AAOC)e>(BAOC)

from the point of view of the translation & as C-conservativity, we
can note that axioms A2,A3,A4 are alwayé arithmetically valid, and
axioms- Al, A5, M express, respectively, that 1er;  VYyer
PAI— 0 % — 7 “Vyel, neﬂ yvnel’. Thus, one can see that for F=Hn,
En, n>2 only A5 falls. Oon the other hand, for such I', the
principle M has an obvious generalization: for example, for»F=H2 it
is
Sb. As>B— (AA (C>D) ) (BA1 (CeD)) .
ynfortunately,ithe absence of A5 create some difficulties in the
proof of modal completeness theorem for conservativity logics-s

In modal completeness proof we use Veltman models ( [7] ),
Visser’s simplified models ( [8]- ), and some technical concepts
from [7]; in proving the arithmetical completeness we use some
1deas from [5] and [10]._

We believe that the technlque developed in thlé paper w1ll be

useful in 1nvest1gatlop of other logics of partial conservativity.
We are special thanks to V. Shavrukov for his substantial

support and helpful discussions. ) ] ~

§2.M6da1<Systems and Arithmetic.

Definition 2:1. The modal language £(o,>) consists of an

infinite set of propositional variables p,q,...; boolean connectives.
1,V,A,L,—,> ;, and two modal operators: -unary operator ‘o’ and
binary operator ’‘s’; ‘¢’ is abbreviation for ’-aoa’.

We write "modal formula" instead of "¢(o,»)-formula".

-Definition 2.2. The 1logic CL is the minimal set of modal

formulas containing the following axioms and closed under following



rules:
L0. All tautologies of propositional logic.
Ll. o(A—B)— (oA—oB)
L2. oA—ooA
L3. o(oA—A)—DA
Al. AcB— (0A—OB)
A2. A=C A B=C — (AVB)eC
A3. o(A—B)—AsB
A4. AB A BeC — AcC
Rl. — A, — A—B > — B ( modus ponens )

R2. — A > +— oA ( necessitation )

Definition 2.3. The logic CLM is the minimal set of modal
formulas closed under R1,R2 and containing LO0-L3,Al1-A4, plus
M. A=B—> (AAOC)>(BAGC)

Definition 2.4. The logic SCL is the minimal set of modal

formulas closed under R1,R2 and containing LO0-L3,Al1-A4, plus
Sa. A>B— (AA(CeD) ) (BA(CeD))
Sb. AcB— (AA" (CeD) )= (BA (CeD))

Proposition 2.5. SCL2>CLM.
Proof. CL+— pDA¢<>(7A)s>1 by Al,A3; hence, CL+Sa~— M.

Let ProofPA(n,x) be the Ao-arithmetical formula representing
the relation: n is the Goédelnumber of the PA-proof of the formula
with Goédelnumber x; ProvPA(x):=3n ProofPA(n,x); DPAQ will stand for

ol
ProvPA( Ql).
Definition 2.6. Let I' be a decidable set of arithmetical

formulas closed under disjunctions such that 1el’, and TI'(x) be
APA
1

-formula representing the relation "x=TQlAQel'"; then we define:

AclB := Yo (I'(T@1) Ao (B—Q)—no,, (A—Q))
It is clear that A>FBEHZA.

Definition 2.7. et T be as above. An arithmetical

PA

interpretation fF is a mapping of £(o,>)-formulas to arithmetical
sentences which commutes with the boolean connectives and
translates o as provability in PA and » as I'-conservativity:
fF(DA):=mPAfF(A)
£ (A>B) :=f (A)>£.(B)



Definition 2.8. Let I' be as above. We define provability logic
and minimal provability logic “for

I'-conservativity CL(T)
logic of TI'-conservativity and

for
( - shortly,

I'-conservativity cLY(I)
minimal logic of TI'-conservativity ) as follows:

CL(T) :={ A€f(o,») | for any arithmetical interpretation fF
CPA— fL.(R) )
CL+(r):=gr,QFCL(r’) .
as well as I 1is closed under

( It is supposed that T’

disjunctions ) -

Theorem 1. For n>3,

cL(ll ) = CL(Z ) = CL+(Hn) =,CL+(in) = SCL.

Theorem 2. CL=CL+({L}).

Theorem 3. QLM=CL+(H1).

§3. Kripke Semantics.

Definition 3.1. A model K=<K,R,{SX},w— > contains a nonempty
set K, binary relation R, for
each xeK and a forcing relation — such that:

1. R is transitive and ( converse ) wellfounded;

a family éf binary relations {Sx}

2.. — commutes with boolean connectives;

3. X4+ DA > Vy (xRy — y#+A)
X#— AcB & Vy (XRYAYy +A — Bz(ys ZAXRZAZ +—B) )

We say that model K is simplified 1ff S does not depend on x,

and that modal formula A is valid in X, ( K:A ), iff VYxeK xw»A.

Pfoposition 3.2.A formula oA« (7A)>1 is valid in every model X

Deflnltlon 3.3. -
1. A CL-model is a model K=<K, R.{S }, — > such that for each

S - is transitive and reflexive.

X
A CLM-model is a CL-model K=<K;R;{SX},»— > such -that for

2.

any %,y,z,tekK nyth > YRt.

3. A SCL-model is a CLM-model K=<K,R,{SX},»— > such that for
any X,y,z ysxz > Ky=Kz A Sy=Sz, where for any uekK Ku denotes
{V | uRv}.

Definition 3.4.



1. A simplified CL-model is a simplified model K=<K,R,S, + >
such that:
1. K is finite or countable.
2. S is an equivalence relation.
2. A simplified CLM-model is a simplified model K=<K,R,S, +>
such that: '
1. K is finite or countable. ‘
2. S is reflexive and transitive.
3. XSyRz > xRz.
4. There exists a natural number N and a mapping
u: K — {1,2,...N} such that:
a) xSy > u(x)=u(y):
b) xRy > u(x)<u(y).
3. A simplified SCL-model is a simplified model K=<K,R,S, >
such that:
1. K is finite. -
2. S is an equivalence relation.
3. xSyRz > xRz.

Lemma 3.5 ( Soundness ). For 1=CL,CIM,SCL respectively,
for any modal formula A if 1— A then A is valid in each
l1-model X.
Proof. Entirely routine.

Theorem 4. ( First modal completeness theorem ).
For 1=CL,CLM,SCL respectively,

for any modal formula A if 1~A, then A is not valid in some
finite l-model X. |

Theorem 5. ( Second modal completeness theorem ).
For 1=CL,CLM,SCL respectively,

for any modal formula A if 1~A, then A is not valid in some
simplified l-model X.

§4. Modal Completeness: Preliminaries.



In this paragraph let 1 be an arbitrary extension of CL, clo
under modus ponens and necessitation.
our goal is to prove a modal completeness of 1 with respect to
some élass of CL-models ( i.e. Sx must be reflexive and
transitive ). We will act by the usual way: to use l-consistent
. subsets of an "adequate" set % as. nodes of a countermodel; it is
‘supposed that & contains all subformulas of the refuting formula,
is closed under negations, subformulas and some special operations
which will be explained later._ '
Definition 4.1. An adequate set of formulas is -a finite set ¢
which fulfills the following conditions:
1.3 is closed under subformulas.
2.If A€? and A is not a negation, then 1 A€d.
3.1>1€0.
4.If A as well as B is an antecedent or a consequent of some
>-formula in ¢, then AsBed. )
5.If A»B,A »B ,A>B_,...,A >B €2, then n(A—>A1\/..‘.vAn)e<I>.

1
Definition 4.2. & :={A|A>Xed or X-A€d for some X}.

Proposition 4.3. Each finite -set of formula can be extended to
an adequate set &.

In the follbwing reasoning we consider a fixed_adequate set &.

Definition 4.4. W:={xc®|x is maximal l-consistent set}

Further it will be necessary-to define a binary relation < on
W ( we will write ‘<’ instead of ‘R’ for convenience ) and a family
of binary relations {Sx}, X€EW, su?h that '
(*) for any Ae®, xeW X+ A &> Aex.
( Where as usual we have defined x#+w p :&> pex ).

By l-consistency of x and propositions 2.5, 3.2 it is enough
to prove condition (*) for formulas of the form BsC and 7 (B=C) .

The definition of /<’ is natural:

Definition 4.5. For x,yewW

X<y :¢3> 1) VoDed: oDex =» D,oDey.

( vy is a successor of x’) 2) doDed: obgx, oDey.

In the definition of Sx the following concept of "C-critical

successor" is essential:



Definition 4.6. For Xx,Ye€eW, Ce®>
x<cy s> 1) x<Yy.
( y is a C-critical successor of x ) 2) Yas=Cex -Aey.

To explain why C-critical successors must be used we note that
Proposition 4.7.
CL+— 1(A>C)ABI>CA...ABH>C — 1((AAﬂBiA...A1BD)>(CVB1V...VBH)).
Proof. Let B:=B1v...an. We have:
CL+— B1>CA...ABn>C — BeC

CL+— BsC — (AAB)>(CVB)
CL+— B>C A (AA"B)>(CVB) — Aws(CVB) (A2)

— (CvB)e=C (A2)

— AcC (A4) -
CL+— B>C A 1 (A>C) —> = ((AA1B)>(CVB)). QED.

Suppose it is necessary to provide x# 2 (A=C) in the model
that we want to construct. Let {B1>C,...,Bn>C}:={X>C|X>C€x}.> By
proposition 4.7, because x is l-consistent,

XH—-ﬁ((AAﬂBlA...AﬂBn)>(CVB1V...VBn))
Thus, by definition 4.6, we obtain:
(**) dy: 1) X<.Y, Y+ A
2) Vz YS _2z,%<z — a) X< 2
b) zwC.
( In fact, a) implies b), because by condition 4 of definition 4.1,
C>Ced )
Condition (**)1) can always be satisfied:

Lemma 4.8. Let x€eW, - (A=C)ex. Then there exists a C-critical

successor y of x such that Aey.
Proof. Assume that x ‘has the form:
x={1 (A=C) ; B1>C,...,Bn>C; DDI,...,an,...}
( Since i1r-1€® and CL+— 1>C, 1>Cex and n>0 ).
Consider a set
y :={A; 1B1,...,ﬂBn; DDl,...,qu; Dl,...Dm; m(A—»BIV...an)}.
By condition 5 of the definition of an adequate set, y'c®. We show
that y’ is l-consistent. Suppose not. We have:
l1— oD A...A0D AD A...AD — (n(A—B Vv...VB )—>(A—B Vv...VB )).
1 m 1 m 1 n 1 n
Using the necessitation rule, Loéb’s axiom ( L3 ), and L2, we

obtain:



1~ DDIA.,.Aqu — D(A—»Blv...an).
on the other hand, by A2,
S l— A — (Blv...an)n>C.
Thus, by A3,A4 we obtain:
1— A\x — (B=C),
i.e. x is inconsistent.Contradiction.

Now it is sufficient to put y:=maximal l-consistent extension
of y’. QED. ‘

As to the definition of Sx , it is clear from (**) that
ideally we were to demand Sgto maintain the status of C-critical
successor for any C ( it means that if;7x<cy, nyz; then X<y ) .
Unfortunately it is impossible in a general case, however, it
becomes éossible, if ¢ is fixed. » -~

Lemma 4.9 Let x,yeW, AcBex, A€y and y is c-critical successor
of x, where CGQD, Then there exists a C-critical successor z of x
such that Bez. _

Proof. By condition 4 of the definition of an adequate set,
é>C€¢. Therefore, 71 (B>C)ex or BsCex. In the last case by A4 AcCex
and, since X< Y, 1Aey; it contradict;‘1—consistency of y. Hence,
7 (B>C)€ex. Now we use lemma 4.8. QED. -

" To counteract these difficulties we will, following [7],
multiply the nodes of W such that for any node there would be only
one C such that the relations s, are to maintain_the C-critical
status of x for just this C.

) _ This idea along with lemmas 4.8, 4.9 is sufficient for the
proof of Ehéamodal~completeness of CL, which will be shown in the
following paragraph.

§5.Modal Completeness of CL.

Proof of theorem 4 for 1=CL.

Fix a modal formula ¢ such that CLFQ¢,’an adequate set & such
that ¢€®, a set W of maximal CL-consistent subsets of & and an
element X of W such that 1¢€x0. Now we define a countermodel for
¢ ( we use some concepts from the previous paragraph ):

Definition 5.1. Let xeW. The depth of x is the maximal n such




that there exists a chain:
X=Y <Y oo o<y
Proposition 5.2.
a). Let x<y. Then depth(x)>depth(y).
b). Let {oD|oDex)c{oD|oDey). Then depth (x) >depth (y) .

Definition 5.3. Let K:=<K,R,{SX},F—>, where
:={<x,T>, where xeW, T is a sequence of formulas from ¢>’
and |t|sdepth(xo)-depth(x)},

<X ,T >R<x ,T > t€> X <X and T _cT_,
1" 71 2’72 12 12
( i.e. T, is a proper initial segment of T, )
<X ,T >S <X ,T > &> 1if T 2T *<E> and y <_x , then
1 1 2 1 o o E 1

< T > 2
YorTs

X
5!

T 2T *<E> and <
z‘to yo E

<X,T># P :&> PEX.
Of course, S<x,r> is reflexive and transitive, hence we have-
defined a finite CL-model. » -
Lemma 5.4. For any A€® and <x,Tt>€K
<xX,T>w+— A &> Aex.
Proof. Induction on the structure of A. We only need to
consider the case A=BeC.
1. Suppose - (B=C)ex. By lemma 4.8, there_exists y such that
X< Y and Bey. By the induction hypothesis, <y,T*<C>># B. ( Note
that by proposition 5.2 a), <y,T*<C>>€K ). On the other hand, 1let
<y,'z:*<C>>S<
By the definition of S

and <z,0>w C.

x’.C><z,<7‘>, <xX,T>R<z,0>.

<x,T>' x<cz, hence, ( because Cs=Cex ), -11Cez
2. Suppose BeCex, and <y,o0>#+— B, where <x,T>R<y,0>. By the
induction hypothesis, Bey. Since tco, there exists a unique E s.t.

02T*<E>. There are two cases to consider:
Case 1. x<Ey. Then, by lemma 4.9, there exists 2z such

- <Z,T*<E>>,

that x<_z and Cez. So, we have: <z,T*<E>>€K, <y,cr>S<x >

E
<z ,T*<E>>#»— C.

4

Case 2. x<Ey does not hold. Note that each successor is
L-critical successor. So, we can apply lemma 4.9 to obtain z s.t.
X<z, Cez and use the construction from case 1 with any @D-formula
instead of E. QED.

Now it is enough to note that by the last lemma and definition
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of X s <xo,<>>»+¢. This completes the proof.

To finish the paragraph,wé discuss the principal difficulties
arising in consideréﬁion of richer logics of conservativity and the
basic ways to overcome them.

First, to provide the condition ySXth > YRt it is necessary
~to demand the condition T <T, for § to be fulfilled. So, the
-problem arises how to provide -for the pair <z,o> obtained in part 2
- of the proof’of lemma 5.4 to belong to K, i.e. for the depth of z
not to be ﬁoré that the depth of y. The natural way to solve this
problem — to transfer all boxés from y to z — cannot be applied
because the necessary adequate set became infinite. |
) We propose the following way to approach this problem. Imagine
that our model is graduated by levels ( by the length of Tt ). Now
restrict the validity of the C-critical-maintain condition in the
definition of S only to the @evéi immediately above <x,T>. It is
enough to preserve the reasoning in part 1 of the proof of lemma
5.4, because the "counterexample" construqtéd ‘there lays
immediately above the node <x,T>. On the other hand, one can easily
see that the difficulty mentioned above ( sufficiently small depth
of -the node z ) does not arise if we deal with <y,o> laying
immediately above <x,r>i¥Considering_the higher levels one needn’t

to worry about C-critical status, and so it becomes possible to

transfer a sufficient quantity of boxes from y to z.

Second, for the cpndition zsxy, zRt > yRt to be fulfilled, we
cannot use the above method ( to transfer the sufficient quantity
of boxes’ negationé from y to z ), because adequate sets-expand too
fapidly. The solution of this problem ( described in §7 ) formally
uses Visser’s construction of obtaining the simplified models
( c£.[8] ), but really it is the idea that "counterexample" for the
formula AeB ( i.e. , if xwArB,_ such y that xRy, y;; A,

Vz(yS;z,szfaz»+B) ) must not be an end of an S-arrow.
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§6.Modal Completeness of CLM.

Definition 6.1. A CLM-adequate set of modal formulas is a
finite set & s.t. there exist set ¢ and set QD containing only
boxed formulas which satisfy the following conditions:

1. & ={A|A>Xed? or Xe-A€d for some X);

2. @Dgé; :

3. & is closed under negations and subformulas ( in sense of
definition 4.1 );

4., if A,BEQD, then A-Bed;

5. lEQD;

6. if A,Bl,Bz,...BneQD, then n(A—eBlv...an)eé:

7. if AGQD,nDl,...,nDnGQ, then there is a formula A’ which
is GL-equivalent to AAnDlA...AnDn such that nﬁAKEQD;

8. if B€®>, nDe@D, then there is a formula B’ which is
GL-equivalent to BAoD such that B'ed . i
Note that each CLM-adequate set is an adequate set.

We will show that every finite set of modal formulas is
contained in some CLM-adequate set.

Definition 6.2. Consider an arbitrary set of modal formulas X.

The LR-closure of X is the minimal pair <L,R> ( with respect to
each component ) of sets of modal formulas such that L>X and:

(L) YaeL, BeLUR AAo7BeL;

(R) VYAeLUR VB,cl,...,cneL Ao (B—C Vv...VC )€R.

Lemma 6.3. Let X be a finite set of modal formulas, and <L,R>
be the LR-closure of X. Then L as well as R consists of finitely
many equivalence classes with respect to GL-provable equivalence.

Proof. We can assume that X={1,p1,...,pm}. The proof proceeds
by induction on m. First, we note that formula D belongs to R iff D
has the form:

(%) D=aAno (B!’ — cil
where A,B(i),Cfi)
(**) D=piAD1%1A...AD1Bn, or D=1,

) (1) )

v...vCn )A...An(B(k)—» Cik V...VC
€L, and D belongs to L, iff

(k)
n

).

where p.€X and Bl,...BneLUR.
By (*), it is sufficient to prove that L consists of finitely
many equivalence classes. By (**), it is enough to prove that there

modulo to GL-provable equivalence there are only finitely many
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formulas of the form oiB with BeLUR. By (*) and (**), B has the
form - )
. . 'B=piAnD
where D is a boolean combinations of formulas from LUR. But it
is welfeknown that '
GLh—u(ﬂpikuD)een(ﬂinﬂnDﬁ,
. where D’ is obtained from D by replacing all the occurrences of P,
in D by 1. By the induction hypothesis, there are only finitely
many such D’ modulo to GL-equivalence. QED.
Corollary 6.4. Let X be a finite set of modal formulas. Then
there exist finite sets L and R such that I2>X and:
(L) VAL, BELUR 3JA’€L : GLr— A’>AAG7B;
(R) YA€IUR ¥B,C ,...,C_eL 3A'eR : GL+— A%—aAAu(B—»CIV;..CB)7
(o) if oD is a subformula of some formula from LUR, then
either oD is .a subformula of some formula from X or D=-B for BeLUR
or DéB—eclv ..vC_ for B,C reeerCo €L;
(=) 1if D>E is a subformula of some formula from TUR, then

D>E is a subformula of some formula from X.
Proof.  We define two sequences: Lo’L1""’Ln""7
Ro’R1”°"Rn"":

i L :=X, R :=2;
0°- 0

Ln+1'=L U{D=AAD1B‘ s.t. there is- no formula in L
GL-equivalent to D, where A€L.,BeL UR )i :

Rn+1"R U{D‘AAD(B—%C v...vC ) s.t. there is no formula in R
‘GL—equlvalent to D, where AeL UR o B C ree+sC €L }.

Define now L'-U oLn’ R.—U -Rn. By lemma 6f3, L and R are

finite and have all necessary propertles.
Lemma 6.5. Each finite set @0 of modal formulas can be

extended to a CLM—adedqgte set 9. 7

Proof. We can _assume that LE@O. Let @1 be the_closure of @o
under subformulas and negations, L-and R be sets defined in
corellary 6.4 ( where X=@1 ) .- We define:

.
’

®_:=(o ovA|A€eLUR} ;
@2:—{D1A|A€LUR}U{A>B|A BEL}U{D(A—»B V...VB_)|A,B G, ...,B €L};

Lo
v
III

n
- & is closure of @2 under subformulas and negatlons.

Now we check conditions 1-8 of the definition 6.1.
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1. Obviously, Aed implies AsA€®. Conversely, if AsXed or
Xe-A€e® then by corollary 6.4 (=) Ae@r ( because @1 is closed under
subformulas ).
2,3,4,5,6 are trivial.
7. Suppose uDl,...,anGQ. For any is<n by corollary 6.4 (o)
one of three cases holds:
a) D,=nA for A€LUR; ,
b) Di=B—+C1V...VCn, B'Cl"°'CnEL;
c) Dieél.
Case c) can be easily reduced to case a), because Die<I>1 implies
ﬂDiEQIQE. Let now (oD ,...,oD } be the set of boxes satisfying
condition (a) and {DDk+1,...,nDn} be the set of boxes satisfying
condition (b). Let also A€® . By 6.4(L),
there exists A’eL such that GL+— A'<——>A/\DD1/\. - +ABD, ;
by 6.4 (R),
there exists A”eR such that GIn—-A"e»AfAnDk+1A...AnDn. -
By the definition of ® DﬂA"G@D.A
8. If BeL and oD=o1A for AcLUR, then by corollary 6.4 (L)
there exists B’€? such that GL+— B'¢>BaoD. ‘
This completes proof of lemma 6.5.

Proof of theorem 4 for 1=CIM.
As usual, we fix a modal formula ¢ such that CIMw~¢, an

CLM-adequate set & ( with the corresponding sets ¢>’Qu ) such that
$p€d, the set W of maximal CLM-consistent subsets of & and an
element x0 of W such that w¢exo.

Definition 6.6. For x,yeW

x<wy tes VnDe@D oDex — oDey;
x<wy te VDDEQD oDex — D, oDey.
Proposition 6.7. <W,<W are transitive and x<wy<wz 5> x<"z.

Definition 6.8. Let K=<K,R,S, > , where

K=(<x,T>, where xeW, T is a sequence of formulas from ®> and
|t|sdepth(xo)—depth(x)};
<X ,T >R<xX_,T_> (&3 X <wx and T _ctT_;
1" 71 2" "2 1 2 1 2

<X ,T >S <X ,T > (&>
17 1 27 2

< >
YT,
1) T =t _;

1 w2
2) x1< X, i

1 = = * > 7
3) if tl T, =T, <E> and yO<Ex1, then yO<Ex2

14



<X,T># p &> PEX.
Proposition 6.9. X ié a CLM-model.
Proof. Use proposition 6:7.
Proposition 6.10. Let xeW and ¢oDex ( i.e 7o1Dex). Then there
exists-QeW such that x<y, Dey.
Proof. Use lemma 4.9 for AsC=De..
Lemma 6.11. Let A be a subformula of ¢. Then for any <x,T>€K
o <X,T>+ A &> A€X.
Proof. Let A=B=C. Of course, B’CEQ>’.-
1. Let - (B>C)ex.-By lemma 4.8, there exists y such that X< Y

and Bey. Of course, <y,T*<C>>€K, and if -<y,T*<C>>S <z,0>,

<x,T>

' x<_.z, hence -Cez.
<x,T> c’

2. Let BeCex, and <y,o>#— B, where <x,T>R<y,oc>. We consider

<x,r>Réz,o>, then by definition of S

two cases:
Case-l,_a=r*<E> and X<LY-

Let {uDl,...,an}:=yn¢D. By condition 8 of the definition of a
CIM-adequate set there exist B’,C’ which are GL-equivalent to
BAnDlA.../\nDn and CAmD_A...ABD_ respectively such that- B'>C’ed.
Evidently, ( by axiom M ) B'»C’ex, B’ey. Therefore by lemma 4.9
there exists 2z such- that x<Ez and C’ez. So, we have <z,0>€K
( because |o|=|T|+1 'ang depth(z)<depth(x) ), y<wz and 2+ C

( because z CAnDlA...Aan ) and thus <y,o>S <z,0>, <z,0>+— C.

_ <x,T>
- Case 2. |o|x}ft]+2 or x<_y does not hold.

Let {uDl,...,aDn}j={nD|uD€@ny}. By condition 7 of the definition of
CLM-adequate set, there exist B’,C’ which are GL-equivalent to
BADDxA“'KDDn and CABD_A..ADD reépéctively such that nﬂBQucheén.
By axioms (Al), (M), CLM+— )\x— (oB'—oC’). , -

We show that oB’ex. Suppose not. Then o B’ex and ~x<wy implies
aB’ey ( because cx-uB'€<_I>[:l )_. Coptradiction. Thus, ¢B’ex and hence
oC’ex. By proposition 6.10, ~there exists z such that C’ez and x<z.
By proposition 5.2b), depth(z)sdepth(y{) therefore <z,0>€K. So, we

have: <y,o0>S <z,0>, <%x,T>R<2z,0>, <z,0>+ C. QED.

- <xX,T>
As usual, we note that <xo,<>>»+¢. This completes the proof of

theorem 4 for 1=CILM.
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§7 .Modal Completeness of SCL. Second Modal Completeness Theorem.

Note that any simplified SCL-model is also finite SCL-model.
Thus, it 1is enough to prove modal completeness of SCL w.r.t.
simplified models.

First, we define for each CL-model a "pattern" which will be
used for definition of corresponded simplified model ( this
definitions will be different for different considered logics ).

Definition 7.1. Let K=<K,R,{SX},+—> be a CL-model. Assume that
O0¢K. A heir of the first type of XK is the tuple

¥ = <H,c,<,R(-),end(-)>,

where
H:={(<I,A>: 1) T is a finite sequence of elements from K;
2) A is a finite sequence of elements from KU{0};
3) |A|=|T|-1;
So, let F=<x0,...,xn>, A=<y0,...,yn_1>. -
4 i< =
) Vi<n Y, 0 = xini+1,
=0 .
Yy > Xisyixi+1 )
<I' ,A >c<I'"_,A > &> T cI' A A cA
1"71 2’72 12 12
<I' ,A ><<I'_,A > &> 1) <I' ,A >c<U _,A >;
1 1 2 2 1 1 2 2
So, let F1=<x0,...,xn>, A1=<yo,...,yn_l>
F2=<xo,...,xm>, A2=<yo,...,ym_1>
m>n
2) Jdi ( n<i<m A yi=0 A
A Vi (i<j<m — 3k(yj=xk A n<k<i)) )
R(<<x0,...,xn>,<yo,...,yn_1>>):=<<xo,...,xk>,<yo,...,yk_1>>,
where t=min{ j | Vi ( j<i<n — y #0 }
end(<<xo,...,xn>,<yo,...,yn_1>>):=xn.

A heir of the second type of the K is the tuple
Ri = <H1IC11<11R1(')/endl(°)>l
where
H1:={teH|ngt Yy (R(x) cycx—end (x) Zend (y) ) },
and c1,<1,R1(-),end1(-) are restrictions of <,<,R(-),end(+) on H1'
( ’c’ is the reflexive closure of c ).

We left to the reader verification of the following simple
facts ( it is supposed that H=<H,c,<,R(-),end(-)> is a heir of an
arbitrary type of XK=<K,R,S, > ):
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Proposition 7.2 ( For any X,Y,Z,...€H )
a) c is transitive and_ irreflexive;
b) R(R(x))=R(X):; ’

-¢) R(X)cx;

d) " R(X)<x;

e) X<Y > Xcy:

f) xcy<z™> x<z; )

g) < is transitive and irreflexive;
h) x<y, R(y)czcy > x<z.

Proposition 7.3. If K is é CLM-model, then
‘a) the heir of K of the 2-nd typé is finite;
b) Vx,yeH x<y = end(xX)Rend(y). '

Proof. a) Let H be the heir of K of the second type;
<C,A>€H , where F—<x ,...,x >. We claim that for any i=j 'xi¢xj,
hence there are only flnltely many such I'; on the other hand, since
|A|=|T'|-1, for each sequence I'= <X e X > there are only finitely

many such A that <", A>€eH.

Suppose not: <I‘,A>—<<x0,...,xn>,<yb,..’.,yn 1>>eH1, i<j, xi=xj.

Let :=<<Xo’""Xj>féyo"°"yj—1>>’ _ti=<T,A>, y:=<<x0,...,xi>,
<yd,...,yi:1>>; <<xo,...!xk>,<yo,.u.,yk_1>>:=R(x).

Case 1. k<i.. Then =xct, - R(x)cycx, end(y)=end(x). It

contradicts the definition of‘Hl.

Case 2. k>i. Then by definition of R(:), Yy ,=0, hence

k -
X Ql TPTRRRL 2Qk 2 k-1R Q "'xj-1Qj—1xj=xi’
where Q —(R or Sy ). Because K is a CLM-model, xQSsz implies
S
xRz, and thus X Rx . Contradiction. - B
‘b) Let y:=<§x0,.).,xn>,<yo,...,yn_1>>, x:=i<xo,..1,xk>,
<yo,...,yk_1>>, X<y. We must show that kaxn. Indeed, by the

definition of <, for some i, k<i<n, . -

X —... .
QX _lQi_lxinl+le .S, %
i+ n-1

By the property of CLM-models x Rx ‘1 ._If i+l1=n, we have done;

else, there is j, n<j<i, such that yn_1=xj, and ijxn; as above, we
obtain x Rx o
Lemma 7.4. Let end(xX)Ry. Then there exists y such that
1) end(y)=y;
2) x<y:
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3) R(y)=Y’

4) for any z ( R(z)=y A X<z — end(y)send(x)end(z) A
A end(x)Rend(z) ).

Proof. Let x=<<x0,...,xn>,<yo,...,yn_1>>, any. We define
y:=<<x0,...,xn,y>,<yo,...,yn_1,0>>. The properties 1), 2), 3) are
trivial. We check property 4): fix z such that R(z)=y, x<z; let

z=<<x0,...,xn,y,zo,zl,...,zl>,<y0,...,ynfl,o,yn+1,...,yn+1+1
Since R(z)=Yy, Y Y% #0; because x<z, we have i=n in the

n+1’ """ " nslsa .
definition of < and thus for any j>n yj=xn, i.e.

L ) * & o x Rz .
ySX ZOSX Z, SX Zyr anzo' n71

By the transitivity of an, ysxnz1 and anzl. QED.
ILemma 7.5. Let x<y, end(y)S
exists z such that:
1) end(z)=z;
2) X<Zz;
3) R(Y)=R(z);
4) y<z or zcy.

ond (x) 2" end(x)Rz. Then there

If our heir has the 1-st type, we also can require
4*) ycz.
Proof. Let y=<<x0,...,xn>,<y0,...,yn_1>>, x=<<x0,...,x >,
<y0,...,yk_1>>, ( k<n ), x<y. Let also
<<xo,...,xj>,<y0,...,yj_1>> := R(y).
( Note that k<js<n ). Fix z s.t. x S_ z, X Rz.
n Xk k .

Case 1. zE{xj,...,xn} or our heir has the 1-st type.
Then z:=<<xo,...,xn,z>,<y0,...,yn_1,xk>> has all  necessary
properties.

Case 2. Z2=X_, j<s<n, and our heir has the the 2-nd type.
Then it is sufficient to define ZI=KSK e X >SY geeanY >
Because R(y)<zcy and x<y, by proposition 7.2 h), x<z.

Lemma is proved.

We have proved all necessary properties of a heirs and
continue with the following definition:
Definition 7.6. Let 1=CL,CLM,SCL and ¢ be a modal formula such
that 1+~ ¢; l-countermodel for ¢ is
a) ( for 1=CL,CLM ) finite l-model X such that K= ¢;
b) ( for 1=SCL ) finite CIM-model K such that K=¢ and for
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any subformula ¢ of the type A=B or oD, for any x,y,z€K, if ysxz,
then y and z agree on this subformula. ’

We will reduce a l-countermodel for ¢ to a simplified
l-countermodel for ¢; however, before it we must show that if
SCL+~ ¢, then there exists a SCL-countermodel for 9.

Definition 7.7. For any modal formula ¢ let X(¢) be the set
- of all o-subformulas of ¢ and all formulas of the form (°D)eL,
-where oD is a subformula of ¢; X is the set of negations of all
formulas from X. -

- Definition 7.8. For any modal formula ¢
S(¢) :=o0"/\ A=B— (AAD)=>BAD) ,

D=C A...AC_ , C_,...,C €xU X, A-BeX.
- 1 n 1 Tn
where o'E := EAQE.
Lemma 7.9. If SCL~¢, then there exists a SCL-countermodel
for ¢. ' ‘
-Proof. Assume that SCLw~ ¢, then CLM+ S(¢)—¢; let

K=<K,R,{Sx},w—? be a finite CIM-countermodel for $(¢)—+¢. We can
‘assume that xO»+S(¢)—+¢ and K={X0}U{X|X6RX}. Define~S as an
equivalence relation on K: xSy iff x and y agree on each formula
from X. We_ claim +that  the model <K,R,{SXnS},|;> ( where |;
coincides with #— on propositional variables ) has all properties
required. — - - . }
- It is sufficient :to show that the restriétiogﬁof S, to s ns
preserves forcing‘of formulas from X(¢). Indeed, let x+ AxB, xRy,
y+— A, and D be a conjunction of all formulas from X(¢) and its
negétions*which are true in y. Since K=S(¢), x# (AAD)>(BAD) and
there exigts‘ z s.t. ySXz, XRz, zw BAD; evidently, ySx. QED.
Definition 7.10. Suppose that 1=CL,CLM,SCL; ¢ - is a -modal

formula such that 1lw¢; X is a l-countermodel for ¢; X, Hl are

heirs of XK. We define'a simplified l-model K'=<K’,R’,S’, > by the
following table: - -

’

1 -K'| xR’y xS'y Xi— p

cL H x<y/\p:nd(X)R€nd(Y) R(x)=R(Yy) end(X) — p

CLM H X<y i A 7 R(x)=R(y) /\x_gy in any case.

SCL | H | R(x)<y R(x)=R(y)
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Proposition 7.11. K’ is, indeed, a simplified l-model.
Proof.
1=CL.
1. R’ is transitive and wellfounded: by proposition 7.29)
2. S’ is an equivalence relation. It is trivial.
1=CIM.
1. R’ is transitive and wellfounded: by propositions
7.2g) and 7.3b).
2. S’ is reflexive and transitive. It is trivial.
3. xS'YyR'z = xR’z: by proposition 7.2f)
4. There exists a natural number N and a mapping
u:K'— {(1,...,N} such that
a) xS’y > u(x)=u(y):
b) xR’y > u(x)<u(y):
Define for x=<<xo,...,xn>,<yo,...,yn:1>>
u(x):=]{i:yi=0}|+1.
1=SCL.
1. K’ is finite: by proposition 7.3a).

2. R’ is transitive.
Let R(x)<y and R(y)<z. By proposition 7.2h), R(xX)<R(y).
By proposition 7.2g), R(x)<z. ,
3. R’ is irreflexive: by proposition 7.2 d).
4. S’ is an equivalence relation. It is trivial.

5. xS'yR'z » xR'z. It is trivial.

Lemma 7.12. For any x€K' and modal formula A ( in the case

1=SCL it is necessary to require that A is a subformula of ¢ ),
x»—, A &> end(x)+— A.

Proof. Induction on the complexity of A. We consider the case
A=B>C. Let x:=end(x); t:=R(x), 1if 1=SCL, t:=x otherwise;
t:=end(t). In any case ( by definition 7.6b) ), t+— A &> xw A.

1. Suppose that x+ B=C. We will show that tw— BeC. Indeed,
let tRy, y+ B. We use lemma 7.4 to obtain yeK’; by the induction
hypothesis, y+ B, hence there is z such that ,z»—’ C, tR'z, yS’z. 1In
any case, y=R(y)=R(z) and t<z ( for 1=SCL it follows from t=R(t) ),
hence by a property of y ( claim 4) of lemma 7.4 ), ystz, tRz,
where 2z:=end(z). By the induction hypothesis, zw C. Thus, we
proved that t+ BeC.
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2. Suppose that tw— B-C. We will show that x+:B>C. Indeed,
let xRy, ( y:»=end(y) ), y+~ B. One can see ( using proposition
7.3b) ) that tRy; by the inéuction hypothesis, y#+ B, hence there
is z sﬂg; tRz,- yStz, z+— C. Now we can use lemma 7.5 and obtain z
s.t. z— C ( end(z)=z and induction hypothesis ), yS'z ( in the
case 1=CLM we use property ﬁ of z from lemma 7.5 ), XR'z ( we use
- that tRz and t<z ). Thus, x+ BeC. - ’

Thus, if xw ¢, then <<i>,<>>»+¢ and K'=¢. This complete the

proof of the second'mo@al completeness theorem.

Cbrollarx 7.13. For any modal formula 9,-
» SCL+— ¢ &> CIM+— S(¢) — ¢.
7 Remark. Tihé author doesn’t know whether we can use only finite
simplified model for 1=CL, but for 1=CLM we cannot. Indeed,‘the
following formula
(oT)>(oTA(PEa)) A (0T)=(oTA1 (P>q)) —> ool
is not provable in CLM: '

-and is valid in every finite simplified CIM-model.
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§8. Arithmetical Completeness of SCL.

We will prove theorem 1 in more general formulation:

Theorem 8.1. Let I' be decidable set of arithmetical formulas
closed under conjunctions such that EZUHZQFQZN for some N. Then SCL
is the provability logic for I'-conservativity ( i.e. SCL = CL(I') =
cL*(r) ) |

Proof. Arithmetical soundness of SCL is evident. Assume that
SCL+~+ ¢, and let XK=<K,R,S, > be a simplified SCL-countermodel for
¢. Without a loss of generality we can assume that
(*) JweK VxeK ( x=w Vv WRx )

(*%) Juek ( u=w A uw ¢ )
Define now a usual Solovay function h:
Definition 8.2.
h(0)=w;
if ProofPA(n,rl¢z7) and h(n)Rz
then h(n+l):=2z;
else h(n+l):=h(n).

"]=z" stands for ( 2 -formula ) "Zim h(n)=2z".
2 n->o0
and establish its usual properties:

Lemma 8.3. ( PA proves that )
1. There exists unique z such that 1=z.
2. If xRy, then 1=x — 1nPAl¢y.
3. If x*w, then I=x — DPA(l=y—+ny).

In the following considerations we will use inside PA notion
"truth" for some formulas defined by their Goédelnumbers. It is
admitable, because one can check ( using assumption FQEN ) that
complexity of all such formulas bounded by HN.

Definition 8.4. For all zeK we define a formula L=z ( by
Diagonal Lemma ):

L=z :&» "For any X such that I=x
if there exists n such that
ProofPA(n,rL=z—eQ7);
Qel', Q is false;
xSz, h(n)Rz
then our z must be minimal with respect to such n
else z=x."
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Lemma 8.5. ( PA proves that )

1. There exists unique z such that L=z.
2. If xRy,xRz,ySz, then L=x — L=y>rL=z.
3. If X=W, then L=x — DPA(L=y—+ny).
4. If xRy, then L=x — ﬂnPAL¢y.

Proof.
1. is trivial.
2. Reason in PA:

3.

Let L=x and nPA(L=z—+Q), where Qe€r. Let also 1=t, and
ProofPA(n,rL=z=»Q7);-qwhere n. so great that h(n)=t;
evidently, mPA(h(Q)=t).
Reason in PA+L=y:
Let 1=v, then vSy, hence QSz. Suppose that Q is
false, and note that t=h(n)Rz. ’

f Why L=z? By de@initﬁon 8.4, we have the only
reason: dm<n ProofPA(m,rL=y—»Q17), where Q1 is
false. Of course, it implies that7L=y——>Q1 is true
and L#y. Contradiction. Thus, Q- is true.™

So, pPA(L=y—eQ).

Reason in PA:

Let L=x=w, and suppose 1=V, where vSx and h(n)=v. By claim

3_of lemma 8.3,-DPA(1=t—+vRt).

Reason in PA: - - ] . .

| ~Let L=y and l=t. We have VRt, tSy and xRt; hence,

we can assume t#y. )
By definition 8.@1 fix a number m and a sentence
Qel’ s.t.:

|__= 1 .
PronPA(m, L=y—Q') ;

' Q is false;
h(m)Ry.
Consider two cases: -

Case 1. m<n. Then, as above, L=y is false.

Contradiction.
Case 2. m>n. Then h(m)=h(n)=v or vRh(m);
- hence, VvRy and xRy. '
Thus, we proved that xRy.

So, (L=y—XxRYy) .

“pa
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4. Reason in PA+L=Xx. v

Let 1=t. Assume that nPA(L¢y). We claim that nPA(l¢y).
Indeed, consider an arbitrary z such that xRy, ySz. By
claim 2 of present lemma, L=z>FL=y, hence DPA(L#Z). We
have:

DPA(L=ZAySZ — axRz) ( as we proved above )

DPA(L=Z — xRz) ( by claim 3 of present lemma )
Thus, nPA(L=z — 1ySz), hence by definition 8.4 DPA(1¢y).
But tSxRy, hence tRy and we have a contradiction with
claim 2 of lemma 8.3. So, our assumption ( uPAL¢y ) is
false.

This completes the proof of lemma 8.5.

Now we can define an arithmetical interpretation fr:
fr(p) t=3dz ( L=2 A 2+— D ).
ILemma 8.6. Let x#w and A be an arbitrary modal formula. Then
X+— A > PAr— L=xX — fF(A)
Xt A > PA+— L=X — 1fF(A)

Proof. As usual, we consider only the case A=BsC.

1. Suppose x# BeC. Reason in PA+L=Xx:
Let uPA(fF(C)—eQ), where Qel.
Reason in PA+fr(B):
Let L=y. By the induction hypothesis for B,
y+— B. By claim 3 of lemma 8.5, xRy, hence there
exists z such that ySz, xRz, z#+ C. '
Here we interrupt our reasoning and note that by the
induction hypothesis for C, mPA(L=z—efr(C)), hence
nPA(L=z—+Q); by claim 2 of lemma 8.5, DPA(L=y—+Q).
We continue reasoning in PA+fr(B):
Since L=y, Q is true.
So, we have proved DPA(fF(B)—»Q), therefore fF(B)>rfr(C).
( Note that in this proof the finiteness of K is essential. )
2. Suppose xw B>C, then there exists y such that xRy, y+ B,
Vz(ySzAxRz — zw C). Reason in PA+L=Xx:
Let Q denote the arithmetical formula 3Iv(l=vAaySv). Of
course, 'Qezz' Note that by definition 8.4,
PA+— Q ¢« Jv(L=vAySv); by the induction hypothesis ( for
C) PA—Q — 1fr(C).
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Assume that f..(B)>f(C). Since o, , (f(C) — 10Q) and F;ﬂz,
DPA(fF(B) — 1Q). By the induction hypothesis ( for B ),
DPA(L=y—+ff(B)). Thus, nPA(L=y — Q) and DPA(L¢y). It .
- contradicts claim 4 of lemma 8.5. Thus, ﬂfr(B)>rfF(C).
Using standard PA-soundness argument one can obtain a
following proposition: )
Proposition 8.7. L=w is true ( i.e. =L=w ).
Corollary 8.8. For any x€K PA does not prove L#X.
~ Proof. If x=w, it is trivial. If wRx, claim 4 of lemma 8.5
shows that L=w — 1uPA(£¢x) is ‘true and by the previous proposition
nPA(L¢x) is false. QED. o
Recall now that u#w and uw 1¢ ( see (**) in the beginning of
this paragraph ). By lemma 8.6; if PA+— fF(¢)’ then PA+— L#u. It
contradicts corollary 8.8. Thus, PA++fﬁ(¢).
‘This completes the proof of theorem 1.

In conclusion of this paragraph we éonsider a "truth variant"
of provability logic for I'-conservativity. - S
‘ Definition 8.10. The logic scl¥ is the minimal set of -modal
formulas closed under -modus ponens and containing all theorems of
SCL and all formulas of the form nA—»Ai

Lemma 8.11. Assuﬁe that SCLwF+¢. ~Then there exists a
simplified SCL-model X=<K,R,S, +> and a node weK such that:
) 1. VxeK WwRX V wSX; - -

2. Wi

B 3.-if B=C is a éubformula of ¢, ww B=C, and for some X WSX
and x#+ B, then thefe exists y such tQat wSy and yw C; -

4. if oD is a subformula of ¢ and ww oD, then for any xeK

X+ D.
Proof. Assume §CLw1+¢.ﬁLet'X be the set of all formulas of the
form uA—»A, then by definition of scL” xU(-¢) is SCL—consiéient
(i.e- evefy finite subset of XU{~¢} is SCL-consistent ). Define a .
set & as the maximal SCL-consistent extension of XU{-¢}, and ¢y as
the conjunétion of all subformulas of ¢ and their negations which
belong to ®. Obviously, Ye€d and YAoyed ( because (oY — 1Y) € X ),
hence SCL++1(¢Aow) and there &exist a simplified SCL-model
K=<K,R,S, +> and nodes v,weK such that K={v}U{x|VvRx}, VRw, Vv V,

Wi— Y.
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We claim that SCL-model X and node w satisfy conditions 2,3,4
from the formulation of present lemma. Indeed, "¢ is a conjunct of
Y, hence ww— 2¢. We check condition 3 ( condition 4 is analogous ).
Let ww— B>C and x+— B, wSx. Since B>C is a subformula of ¢, BeC is
a conjunct of ¥ and v+ B=C. Obviously, VRx and hence there exists
y such that wSy, y+ C. )

Thus, the model X’'=<K’,R’,S’,#>, where K':={x€K|wRx or wSx)
and R’, S/, ;-are restrictions of R,S,#+ on K, has all necessary
properties.

Remark. As in the proof of modal completeness of SCL, we note
that if oD is a subformula of ¢, (-D)s=1 needs not to be among
subformulas of ¢. But applying condition 4 of the previous lemma,
we claim that we can assume that (2D)s1 is a subformula of ¢
whenever oD is. So, in the following reasoning, as usual, we will
consider only s-subformulas of ¢.

Theorem 8.12. ( Arithmetical completeness of scr? ) .

Let I' be as above ( see theorem 8.1 ). For any modal formula ¢
scr? — ¢ iff for any arithmetical interpretation fF ==fr(¢).

Proof. Arithmetical soundness of SCL® is evident.

Let SCLw++¢. Fix a simplified SCL-model described in lemma
8.11. Define a binary relation R’ on K by the following:
XR'y :¢&3> xRy V (XSwSy).

Proposition 8.13. If B>=C and oD are subformulas of ¢, then for
any xekK
X #— BeC &> Vy(xR'YyAy +—B — Iz (xR'zAySzAz +C)),
x#— oD &> Vy(xR'y — ywD).

Proof. Using conditions 3,4 from lemma 8.11.

We change definition 8.4 by replacing R with R’. ( So, Il=w
does not imply L=w ). The proof is to be changed as follows:

Lemma 8.14. ( PA proves that )

1. There exists an unique 2z s.t. L=z.

2. If xR'y,ySz,xR’z then L=x — L=y>rL=z.

3. For any X L=x — DPA(L=y—+xR3O.

4. For any x,y, 1if xRy, then L=x — ﬂDPA(L¢Y).
Proof

1. is trivial.

2. The only interesting case is wSxSySz. Reason in PA+L=y:
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Let P;oofPA(n,rL=z—eQ1), Qel'; of course, l=w, DPA(h(g)=w).
Reason in PA+L=y:
Assume thaé Q is false. Because h(n)=wR'z, the
only reason why»L#z is dm<n ProofPA(m,rL=y—+Q17).
Like earlier, L=y is false. Contradiction. So, Q
is true. B
Thus, BPA(L=y—eQ), hgnce *L=y>FL=z.
3. It is a trivial modification of claim 3 of lemma 8.5.
4. Proof does not differ from the proof of lemma 8.5.

We define Solovay-like interpretation fF-as above.
Lemma 8.15. Let a be a subformula of ¢, x€eK. Then
- X+ A =3 PA+— L=x — £.(B), -
Xt A = PAr L=x — ﬂfF(A).
Proof. We assume that A=BeC. ‘
_In the case xm BoC proof does not differ from the proof of
the similar case of lemma 8.6;
- In the case x#+ B>C one must replace R-by R’ in the.proof of
1emma78.6 and use claims 2,3 of lemma 8.14 and proposition 8.13.
The proof of proposition 8.7 is not changed. Therefore, since
PAt— L=w — 1fr(¢) and L=w is true, fr2¢) is false.
We have proved arithmetical completeness of scr®.

- Remark. In fact,iwe proved that the exisﬁence;of a SCL-model
described in -lemma 8.11, is equivalent to SCLwr+¢. Thus, the logic
'scL” is decidable. o
Examples:
1. Cpnsider a formula o(Tep)—op. We claim that this formula

is not derivable in SCLw: Indeed, there 1is a "countermodel" for

this formula ( in senég}of lemma 8.11 ):

S

N
A 4

p

w -'p
( Note that we must define ww p, because ww Top and ww— T ).

Thus, we proved that there exists a sentence Q such that ( for
fixed ' ) )
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(*) PA~Q, but PA+ T>FQ.
2. If we want to find a false sentence Q satisfying (*), we

are to consider a formula
apAD(Tep) — Op

and a following countermodel:

o€ A
P 5 o 7P

We have: Wi Tep, Wi— T and X+ p.

§9. Arithmetical Completeness of CL and CLM,

Proof of theorem 2.
An arithmetical soundness is evident. We only need to prove a
completeness.
Assume that CL~¢. By the second modal completeness theoren,
there exists a simplified CL-model K=<K,R,S, > such that:
1) . There is w,ueK such that:
VxeK WwRx V w=X;
usw; uw .
This condition is not strong enough to work in PA with X, because K
may be infinite. So, we need also the following properties of X
( these properties can be checked by inspection of the modal
completeness proof ):
2). The relations R,S,+ are p.r.; moreover, the p.r.

definitions of R,S, +— are provable in PA.
3). All properties of K as a simplified CL-model are

provable in PA ( more precisely, we must demand, instead of "R is
wellfounded", that there exists new such that ( PA proves that ) K
does not consist any R-chain of the length more that n )
Let for XcK [X] denote ({yeK|dxeX: xSy}.
4). If XcK is finite and C is a modal formula, then the

arithmetical formula A(x,X):=3Jz(xRzaze[X]Az+C) is PA-equivalent to
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Ao-formula. )
We define a usual Solovay function h ( see definition 8.2 ).

For an infinite K we need the following lemma ( instead of lemma
8.3 ): '
Lemma 9.1. ( PA proves that.)
1. There exists a unique x such that I=x.

2. I=x — Vy(ny—eoPAl=z);
3. l=x#w — DPA(1=y-+§Ry).

For any finite XcK we define also -a formula 7X:=lg[X] ( i.e.
°—3x(1—XAXE[X]) ) Let ' be the set of formulas
{7 |X<K, X is flnlte}U{l}
of coursé, PA — WXAVYeewqu PA — Y VT STy Sq,_working in PA
we can assume that I' is closed under disjunctions. _
We introduce an arithmetical interpretation fF as usual:
fr(p) = dx (1=%AX + P) .
We will prove that PAp+f ().
Lemma 9.2. For any modal formula A PA proves that for any x=w
l=x — ( X+ A "l fF(A) ).
Proof.We consider the case A=B>C. Reason in PA:
Let 1=x, where x=w. ‘
1. Suppose x# B>C. Consider an-arbitrary finite subset
X of K épd assume that DPA(fr(C)—eyx). We claim that -
(*) ~ there is no ze€K s.t. xRz, z€[X], z+ C.
Indeed, if such z exists, then by the induction hypothesis
for c, o, (1=2—£.(C)), hence o, (1=z—7,) and o, (1#z).
It contradicts claim 2 of lemma 9.1. Thus, by property 4)
of model K PA proves (*). i o
We reason in PA+f (B):
- Let 1=y. By clalm 3 of lemma 9. 1 XRy. We _knew
that x# Be=C. By the induction hypothesis for B,
- y#+— B. So, there exists z s.t. 2z~ C( XRz, ySz.
- By (*), z€[X], hence yg[X]. So, we proved that
1¢[X], i.e. Ve '
Thus, we proved that mPA(fF(C)—avx) implies DPA(fF(B)—eqx)
and left to the reader to prove that DPA(fr(C)—%l) implies
o A(fl..(B)—>.L). .
2. Suppose xw BeC. Then there exists y such that xRy,
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y+— B,
(**) there is no zeK s.t. xRz, ySz, z+ C.
Let Y:={(y}. Obviously, x€[Y]«>xSy. As above, PA+ (**).

Claim 1. DPA(fr(C)—ewy). Proof: Reason in PA+1wy.

Let 1=z, then ySz; of course, xRz; by (**), twC;
by the induction hypothesis for C, 1fF(C).

Claim 2. ﬂnPA(fF(B)—ewy).'Suppose not. Then ( by the
induction hypothesis for B ) nPA(l=y—97Y), i.e. DPA(l¢y).
Contradiction.

So, since WYEF, fF(B)>rfr(C) does not hold.

As usual, we conclude that PA+— l=u — 1fr(¢) and PA++fr(¢).

Proof of theorem 3
First, we recollect several facts connected with the 1logic of
ﬂl—conservativity ( see also §1 ):

Theorem 9.3. ( Hajek-Guaspari, cf.[2],[3] ). If TH, T2 are

r.e. extensions of PA in the language of PA, then ’I‘2 is
ﬂl-conservative over T, iff T, interprets T, . |
Definition 9.4. The logic ILM is given by all axioms of CLM
( i.e. LO-L3, Al-A4, M , see §2 ) plus
A5. ©AcA
and usual inference rules ( modus ponens and necessitation ).
Definition 9.5. A simplified ILM-model K is a simplified model
<K,R,S, +> which fulfills the following conditions:
1. K is finite or countable.
2. S2R.
3. XSyRz > xRz.
Theorem 9.6. ( Visser [8], cf. also [7] ). Logic ILM is
complete w.r.t. simplified ILM-models.
Theorem 9.7. ( Shavrukov [9], Berarducci [10] ). ILM is
provability logic for relative interpretability ( over PA ). So, by
theorem 9.3., ILM is also the logic of Hl-conservativity.

We begin to prove the theorem. As above, we only need to prove
a completeness of CLM.

Assume that CILMw»¢ and K=<K,R,S, +> is simplified CLM-model
s.t.K=¢. We remind that by definition 3.4.2 there exists a mapping
u: K — {1,...,N} such that Vx,yeK ( xSy — u(x)=u(y), XRy —
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L(x)<u(y) ). Let S={q1L...,qN} be a set of new propositional
variables which are not contained in ¢. -

Definition 9.8.- A simplified model x* is <K*,R*,S*,»i> , Where
" ,

K 2:=K;

R*:=R;

xs*y :es> xSy v 3z (xRzSy);
xwip , where p €S, &> Xwp i
xw—q , where q, eS tes u(x)=i.

One can ea51ly check- that K* is a simplified ILM-model.
Definition 9.9. TFor any modal - formula A we ~define a
translation a* by the following way: ) ’
1. for any propositional variable P p*:=p;
2. * commutes with boolean connectives and o; ' ~
3. (AsB)*:= (A*Arq; A...nrgy e (BYAn q Aeeemray )

k 1 k
“ qil,...}qinES
Lemma 9.10. For any x€K and modal formula A which does not

contain ql,...;qn ,

* ¥
X+— A & Xwm— AT,

Proof. We consider the case A=B>C}

1. Suppose x#— B>-C. We show that for any q; ,...,q; €S
_ - h 1 k
X #— (B*Awq._A...Aﬂq. )>(C*A1qh AeeoeA]: ).
_ i i o i,
Indeed, assume that xRy, y = B*/\-uqi AeeoM1dy - By. the induction
’ 1 k

hypothesis, y+ B, then there is 2z s.t. xRz, ySz, z# C. Since
mL(yy=u(z), Vq €S y»iL q, e z ¥ d. hence ( by the induction

hypothes1s ) zw— c* Aﬂq A...Aﬂq . By definition of s* ys*z.
1 Ty - h
2. Suppose x# B>C. Then there exists y s.t._ny, y +— B,

Vz (xRz, ySz — z# 1C). Let n'—u(y) We claim that

] xe (B7nng, ) o (hg, )
hence x»f(B>C)*. Suppose not. Slnce y»— B Aﬂq ( because yw é_and
L(y)=n ), there is z __s.t. xRz, yS‘z, z CAﬂqn. Since .
z»i’ﬂqn, n(z)=n=u(y), and by definition of s* and properties of u,
ySz. Thus, ySz, xRz, z#+ C. Contradiction.

Lemma 9.10 implies that K*==¢*, hence by theorems 9.6, 9.7
there exists an arithmetical interpretation fH s.t. PA++fn (¢*).
1

Define a set I' as closure under disjunctions of the set
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{fnfql),...,fnfqn)} um,.
To conclude the proof it remains to check the following simple
fact:

Lemma 9.11. For any modal formula A,
PA — foA*) — f.(3),

where f“ is defined above, frcoincides with fﬂ on propositional
1 1

variables.
Proof. Induction on A; for A=B-C we use the following
proposition:

Proposition 9.11.1. Let I be an arbitrary set of
arithmetical formulas ( as usual, we assume that I' is closed under
disjunctions ), A be an arbitrary finite set of arithmetical
formulas. Define I’ as closure of I'UA under disjunctions, i.e.

r”={7vq1v...vqnlver, q1""’qn€A}°
Then for any arithmetical formulas A,B

PA+— A>L/B & N (AAﬂqlA...Aqu)>r(BA1q1A...Aﬂqn).
ql,...,qneA
Proof is trivial.

S0, PAr£L.(9).

§10. Conclusion Remarks.

Generalization. We can consider any r.e. theory T as an
"internal" theory instead of PA ( i.e. translate A-r B as "T+B is
I'-conservative over T+A", and oA as "A is provable in T" ); if T is
21—sound ( i.e. each El-sentence which is provable in T is true )
theorem 1 holds ( in fact, it is sufficient to demand T++n¥1 for
any n ).

Unsolved problems.

1. The main unsolved problem in this area is, of course, the
logic of 21—,22-conservativity. The logic of Zi-conservativity is,
evidently, an extension of CL+M*, where M* : =A=B—> (AAOC) > (BAGC) , but
it is a proper extension ( for example, CL(EI)F—DL>(DZLA101)—%DL ) -
So, we have not now any interesting hypothesis about axiomatisation
of CL(ZI).
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As to Ez-conservativity, the author does not Kknew ~any
principle which extend CL+M*+sa. However, there is a non-trivial
truth principle: — A

- "~ AsB A o(B — CoD) — (A — CoD).
( This principle is also valid for Zn—conservativity for any n, but
for n>3 it is derivable from Sb and oA—A ).

3. Does theorem 1 holds for T=IAO+EXP, etc.? ( Note that the
proof of c}aim 1 of_;emma 8.5 uses Tr—IZn, where F=Hn ).

4. What is the truth provability logic for Hz-conservativity
(i.e. the set of all modal formulas. whose arithmetical
interpretations are truth ) ? - |

5. Is it sufficient to consider only finite simplified models
for CL? —

6. Has the logic of Hz—conservatiﬁity a simple finite models ?

( A _variant: is there a modal formula ¢ such that for any n
CL(ﬂz) — ¢ — -o"1L, but CL(HZ) g ? ).
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APPENDIX

The Logic of Hz-conservativity.

Definition A.1. The 1logic SbCLM is given by axioms LO-L3,
Al1-A4,M,Sb and wusual inference rules ( modus ponens and
necessitation )

Theorem A.2. SbCLM is the logic of Hz—conservativity ( i.e.
SbCLM=CL(I'l2)=CL+ (M) ).

Proof. Arithmetical soundness of SbCILM is evident. Fix an
arbitrary formula ¢ s.t. SbCLMw ¢.

Definition A.3.

X:={A>B|A>Bc¢}U{ (" D)>1|0Dco )} ;

Sb(¢):=o0*\ ( A=B — (AAC A...AC )& (BAC A...ACn) ).
A>BEX, € ,...,C €X " !

( cf. definitions 7.7, 7.8 )
Lemma A.4. There exists CLM-model K=<K,R,{Sx},»—> such that:
1) K is finite; .

2) for any AeBeX, x,y,zeK, if ysxz and 2z« Ac>B, then

y +— AcB;
3)K=¢.
Proof. One can see that CLMw~ Sb(¢)—¢. Let K=<K,R,{Sx},»—> be
a finite CLM-model with a bottom node X, such that X Sb(¢)n 1 ¢.
We define a binary relation S on K: xSy iff for any AsBeX if
y#+— Ac>B, then xw# A=B. The model K1:=<K,R,{SXnS},w—> has all
properties required ( cf. proof of lemma 7.9 ).
Lemma A.5. There exists a simplified CIM-model X=<K,R,S, +— >
and a set KogK such that:
1) K is finite;
2) for any AeBeX, x,yeK, if xSy, and yw AcsB, then x+ AsB;
3) a) ySx, yRz, zeK0 > XRz
b) if AcsBeX, x€K, xw AxB, then there is yeKo such that
xRy, y+A, Vz(xRzAySz—z v B)
c) x,yeKo, XSy > x=y
4) Ke¢.
Proof Fix an CLM-model K=<K,R,{Sx},w—> defined in lemma A.4.
We define a binary relation S1 as a transitive closure of USx
( x€K ), and equivalence relation S:=Slnst( i.e. XSy:c$XSIYAySIX ) .
Proposition A.5.1.
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a) xSy > Vz( xRz. <> yRz );
b) xSy-=‘> VCceX( x+— C &> yw—C );
c) xRy, YS1X is impossible.

Proof a) use definition of CLM-model;

b) use property 2 of K ( from lemma A.4 )
c) use definition of CIM-model ( cf. proof of proposition
-7.3) B} ~
Definition A.5.2.
H=<H;c,<,R(" )<wuu )> 1s the heir of the second type of X
( see definition 7.1 ) i
_for any xeH S(x):=nun{ygx|end(x)§end(y)}
K’=<K’,R’,S’, u—’>. is the simplified model:
K := H '
XR'y &3> _S(x)<y :
xS’y &3 R(x)=R(Yy) A S(x)CS(y)
X p &> end(X) w— p

Ko is subset of K’:
7 Ko := {xX€K’'|R(x)=x}.
Lemma A.5.3 . ]
a) end(S(x))Send(x) ;
b) S(S(x))=S(x);
c) xR'Y 3 end(x)Rend(y):;
d) S(x)2R(x); ‘
e) R’ is transitive;
f) K- is finite;
g) K’ is a finite simplified CLM-model;
'h) xS’y A CEX A end(y) = C "3 end(x)# C;
i) ys'x, yrR'z, zeK > XR'zZ;
k) R(x)=R(y) A x2y > xS'y;
1) R(xX)=R(y) A XY A end(y)S end(x) > yS'x.
Proof )
a) iﬁmediately from théAdefinition_of S(-);
b) is trivial;
c) use a) and propositions A.5.1a) and 7.3b);
d) use definition of R(-) and proposition A.5.1c);
e) if S(x)<y, S(y)<z, then by d) and proposition 7.2h),
S(x)<S(y): by proposition 7.2g), S(x)<z;

35



f) use proposition 7.3a);:

g) use e), f) and some obvious properties of R’ and S’;

h) let wend(y)=—C. By a) and proposition A.5.1.b).
end(S(y)) — C. Since R(y)cS(x)cS(y), end(S(x))+ C; and as above
end (x) +— C.

i) use the following simple property of heirs:

(*) 1if R(z)=z, y<z, R(x)=R(y), then x<z.

k), 1) immediately from the definition of S'.

Lemma A.5.4. If A is a subformula of ¢, and x€K’, then

xu—’ A &> end(x) — A.

Proof. We consider the case A=BsC; x:=end(x); t:=5(x);
t:=end(t). By lemma A.5.3a) and proposition A.5.3b), tw BxC &>
X +— BeC.

1. Suppose x»—’- B>C. We will show that t#+ B=C. Indeed, let
tRy, y+ B. We use lemma'7.4 to obtain yeK’ ( moreover, yeK0 );’ by
induction hypothesis, y# B; since S(x)=t<y, there is z s.t. z# C,
xR'z, yS'z. By definition of S’, R(z)=R(y)=y, and by definition of
R’ and lemma A.5.3b), t=S(t)<z; lemma 7.4 implies that yStz, tRz,
where z:=end(z). By induction hypothesis, z+ C. Thus, we proved
th§t t+— BeC. ( vIn fagt, we proved that tw BeC implies EiyeKo (xR’y,
y+B, Vz(xR'zAyS'z—zwC) ) .) ’

2. Suppose t# B>C. We will show that x+ B=C. Indeed, let
xRy, y=end(y), yn-: B. By definition of R’ and lemma A.5.3c), tRy.
Since y+ B, there is 2z such that tRz,, yStz, z+— C. Now we can use
lemma 7.5 and obtain z such that zw C, R(y)=R(z), xR’z ( because
S(x)=t<z ). By lemma 7.5, we consider two cases:

Case 1. z2y. Then by lemma A.5.3k), yS’'z.
Case 2. y2z. Then by lemma A.5.31), because ystz, we
obtain yS’z.

’

Thus, in any case yS’z, and we proved that xw B=C. QED.

We have proved that XK' =¢. Set K0 was defined in definition
A.5.2; as to properties a)-c) of KO, a) was be stated in lemma
A.5.3.1i); b) can be easily obtained from part 1 of the proof of
lemma A.5.4, and c) ig trivial. It remained to show that for any
x,yeK’, if xS’y and yw+ C, then xu—' C, where CeX. Indeed, by lemma
A.5.4 end(y)w C e y~C, end(x)w— C & x»—'- C; now it is enough
to use lemma A.5.3h).
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Lemma A.5 is thus proved.

We continue with the arithﬁetical part of our proof.

We will use the following fact which is a simple modification -
of Goldfarb’s theorem:

Lemma A.6. Let To""’Tn be r.e. extensions of PA, S(x)eil.
~ Then there exis?s a formula cr(x)ez1 such that PA + "for any i Ti
"is consistent" proves that for any x

1) if S(x), then PAr— o(X);
2) if not S(x), then for any i Ti;}o(z).
Proof ( sketch ). Let S(x)=3dyd(x,y) where 6(x,y)€Ao. The
following formula ( defined by Diagonal Lemma ),

a(x):=3y(6(x,y)AVz<yVinrodfT(z;ro(z)“))
i o
has all necessary properties.

Fix a model K’'=<K’,R’,S8’,#> and a set Ké which fulfills

conditions of lemma A.5; we can suppose that v ¢, where v is a

bottom node of K. Let w be a new node, and K:=KU{w},
k:=R1M<w,x>|xeKﬁ, S:=S'U{<w,w>}, +— 1is an arbitrary extension
of = on K, 0:=K(;U{vg,v}.,

. We claim that the model X satisfies all conditions of lemma
A.5. The only interesting case is 3b).
Let x€K, As-BeX, x# AsB. A -

Case 1. xX=Ww. Uséﬂthe property 3b) of K’ from lemma A.5. B

- Case 2. x=w, V+—AA1B. We can put y:=v.

Case- 3. X=w, v —A—B. One can see that Vv AsB; sO, we can

reason as in case i.

Consider a set Ko as a submodel of K and define a Solovay
function h on this submodel; thus, we will use lemma 8.3 w.r.t.
X,¥,..-€K . l:=tim h; of course, leKo. )

Definition A.7. .
- 1) Tr(-) is Ea-definition of truth for 22-formulas;
2) let Tr(x)=3dytr(y,x), where tf(-}-)eﬂl; it is - supposed
that
PAr—VTr(x)‘—evﬂmy tr(y,x):
3) {Q,n,m} will stand for
EAGEZ(ProofPA(n,rA—»QW)Atr(m,rAW)).

( This formula is H1’ because the first quantifier can be bounded
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by p.r. function on n ).
Proposition A.8. VQ Vn0 PA — 3m3n<no{Q,n,m) — Q.

Proof. It is enough to show that
Yo Vn PA+— dm{Q,n,m} — Q,

or

Yo Vn PA+— VAe22 ( ProofPA(g, rA-—>QT) A dmtr(m, A1) — Q ).
We noted above that the quantifier on A is bounded by n, hence we
can assume that this quantifier is "external"; on the other hand,
Jmtr (m, 'A1)«>A. Thus, we must show that

YQ Vn VAGE2 PA — ProofPA(g,rA—er) — (A—Q).

But it is trivial.

Definition A.9. We will define ( in PA ) a function

H:wo—KX(w+1l) ( Ho and H1 will stand for left and right components
of H ) and a constants L and Rk by induction on pu(l); we will
define them such that the formula Q(m,n,z) := H(m)=<z,n> will be 22
Basis. If 1=w, H(m)=<w,w>.
Induction. Assume that we have defined H in the case u(l)<n.
1. Let A (y):=1(l=xAyeRange(H )), where u(x)<n; by the
induction hypothesis, Ax(-)eﬂz. Let Ax(y)=Vm Sx(m,y), where
Sx(-,-)(—:E1 and it is supposed that PA+— ( 1Ax(y)—+3mmﬂsx(m,y) ) .
We use lemma A.6 ( where {To,...,Tn}:={PA+L=z|sz,zeKo} ) to define
a formula ox(m,y) such that
PA + Vz(xRZAzeKo—ﬁoPA(L=z)) proves that for any y,m
1. if 1sx(m,y), then VzeKo (xRz— 1o, (L=2—0 (m,y))),
2. if Sx(m,y), then GPAax(m,y).
or, by the definition of Ax(-),
PA + Vz(xRZAzeKo—eoPA(L=z)) proves that for any y
1. if 1=x and yeRange(Ho), then
3%m Vzek =~ (xRz— 7oy, (L=2—0 (m,y))),
2. if 1=x or yeRanqe(Ho), then VYm DPon(m,y).
2. H(O0) :=<x,0>, where
l=x ( it is supposed that u(x)=n );
if o, , (L#x), then
a:=nwn{k|ProofPA(k,FL#xW)

else

ai=Ww.

3. For any mx0,
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if there exists a pair <z,k> such that
1) Ho(m)Sz;
2) H_(m)>k;
3) ‘h(k)Rz;
4) {(L=z,k,m}; -
5) Vi<k Vb (h(i)Sb — o

(1, (i/b) V bRz)

h
then - 4
H(m+l):=<zo,ko>,
- where <z_,k > is the minimal pair <z,k>
satisfying conditions 1)-5) ( w.r.t. k).
else
H(m+1) :=H(m).
4, L:=fim H (m).
m->c0 ?
5. RKk:=¢im H_(m).
m-H>co ! B

One can see using condition 2) from the definition of H, that H can
-"jump" only finitely many times, hence these limits exist. Note
also that by condition 1) for any m .u(Ho(m))=u(l)=n, and by

condition 3)  wu(h(k))<n; thus, we can. use the formula Ty in! where
i<k, in the definition of H.
Lemmé_A.lo (PA )
a) if L=y, YEK -, -then l=y;
b) for any n, nPA(Rk>g);
c) if xRy, yeKo, then l=xf+ﬂnPAL¢y;
d)- 1=x=w _9~DPA(L=Y_9XRY)'
Proof. ) }
_a)_Use property c)_of KO_( lemma A.5 ), and an. obvious fact

1SL.

b) Fix n>0 and reason in PA: B
Let 1=t. Suppose that Rk<n and"m0:=nun{m|H(m)=<L,Rk>}.
Case 1l.m =0. By the definition of H, ProofPARk,ertj),-
. “hence L#t. Contradiction.~ - :
Case 2.m0>0. By the definition of H, {L#x,Rk,mo}: by
proposition A.8, L#x. Contradiction.
Thus, Rk>n. )
c) One can see from the definition of H that ( PA proves

that ) for any y
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(*) l=yAProofPA(n,rL¢y7) — RKk<n.

We have:
r 1 r 1
PA — ProofPA(n, L=y') — nPA(ProofPA(g, L=y'))
- nPA(1=y—eRksg) by (*)
— nPA(1¢y) by claim b)
PA — nPA(L¢y) — UPA(1¢y) ‘
PAr— I=x — wnPA(L#y) by claim 2 of lemma 8.3.
d) Let l=x=h(n). Reason in PA:
Let L=y

Case 1. l1=y. Then by claim 3 of lemma 8.3, XRy.
Case 2. l=y. Then by definition of H, h(Rk)Ry; by claim
a), Rk>n, hence _
x=h(n)Rh(Rk) or h(n)=h(Rk):;

in both cases xRy.

Corollary A.1l1l. For any xe€K,
PA + 1=x proves that for any y
1. if ye?anqe(Ho), then
I%m VzeKo (XRz—> 1nPA(L=z—+0X(m,y))),
2. if ye?anqe(Ho), then VYm DPon(m,y).
Proof. Use definition of o and lemma A.10.c).
We define arithmetical interpretation £ ( henceforward f

denote fH , = ( in the arithmetical context ) denote ™1 ) as usual:
2 2

f(p):=Lw+ p.
Lemma A.12. For any subformula A of ¢ and x=w,
Xt+— A > PA— L=x — f(A)
X+ A > PA+— L=x — 1f(A).
Proof. We consider the case A=BsCeX.
1. Suppose X+ B=C. Reason in PA+L=X.
Let 1=t; of course, tSx and t=w.
Let F:=Range(Ho), mo:=nun{m|H(m)=<L,Rk>} and for any a,beF
a<b :& mam{ismo|Ho(i)=a} < mam{ismolHo(i)=b}.
Set F is finite, and we can work with F inside PA, using
the following properties of F:
1. < is a linear order with maximal element x;
2. X<y > XSy:
3. teF.
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( But,‘of course, PA does not knew that F=Ranqe(Ho) ) .
Note also that by - corollary A.11, if bgF, then

(*) ) Ym o0, (m,b)
- Suppose that nPA(f(C)—eQ), Qeﬂz.
Reason in PA+f(B):
Let L=y. Assume that Q is false, i.e. for some m
tr(m,™Q1); by definition A.7, we can choose m so
great that H(m)=<y,RKk>.
By the induction hypothesis, y+ B.
Let u be the maximal element of the set {a€F|aRy}
w.r.t. order < ( such_u exists, because by lemma
A.10d), tRy, and teF ). Since u<x, uSx, ( by the
properties 1—3‘of F, see above ), by the property
-2 of K, ( lemma A.5 ) we have uw BeC; -on the
- other hand, by the definition of u, uRy. Thus,
there exists z such that uRz, ySz, z# C. Note
also that tSuRz implies tRz. o
Interrupting our reasoning, we note that DPA(L=£—»§(C)),
hence o, (L—z—»Q) Let n be so large that h(n)=t and
Proof (n, 1Q—+L#27) We continue:
By definition A. 7, {L#¥z,n,m}. We claim that the
pa1r_<z,g> satlsfles conditions 1)-5) from the
definition of H; it implies that—H(m+l)=<z’,n’>,
where n’sn. It is a contradiction, because Rk>n.
Indeed, using Rk>n, we check these conditions:
"1),2),3) are trivial, because ySz, Rk>n and
h(n)=tRz. - ' -
4): see above.
5).- Fix i<n, beK, where h(i)Sb ( note that
h(n)=t ). : -
Case 1. h(if#t. Therefore, h(i)Rt and,
since teKo,”h(i)Sb implies bRt; but weAhave tRy,
hence bRy.
Case 2. h(i)=t, bgF. Then by (*) Gt(i,b).
Case 3. h(i)=t, beF, 1=y ( hence, yeKO ) .
Then by the property of KO ( lemma A.5 ) tRy and
tSb imply DbRy.
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Case 4. h(i)=t, beF, 1#y, b<u. Then bSu
and uRy imply bRy.
case 5. h(i)=t, beF, 1=y, u<b. We claim
that ot(i,b). Suppose not. Because i<Rk, L=y#l
implies bRy ( it is enough to apply condition 5)
from the definition of H to the "jump" H to
<y,Rk> ). However, if contradicts the definition
of u.
Thus, in any case at(i,b) or bRy.
We proved that Q is true.
Thus, nPA(f(B)—eQ), hence f(B)sf(C). »
2. Suppose x»+B>C; by the property of KO, there is y such
that YEK , Y+ B, xRy, Vz(xRzAaySz — zwC).
Reason in PA+L=Xx.
Let 1=t, tSx. Since xeRange(Ho), by corollary

A.11, there exists m such that 1uPA(L=y—+o m;x))

(
and h(m)=t. Let Q := l=y—+ot(m,x). of ;ourse,
Qeﬂz.
Claim 1. quA(f(B)—eQ). Proof: Suppose not. Because
y +— B, nPA(L=y—+f(B)) and nPA(L=y—+Q), hence by
lemma A.10.a) nPA(L=y—aat(m,x)). Contradiction.
Claim 2. npA(f(C)—eQ). Proof: Reason in PA+1Q:
Let L=z. Since 1=y, ySz. We claim that xRz;
hence, by the definition of y, z+w C, and by the
induction hypothesis, ~£(C).
Since xRy, we can assume that y#z. Consider a
"Jump" H to <z,RKk>. Since 10t(m,x), t=h(m), tSx
and Rk>m, by the condition 5) from the definition
~of H, we have xRz. QED.
We proved that f(B)s=f(C) does not hold.
As usual, we finish our proof by PA+— L=v —f(¢), hence
PA+w f(¢) ( we used that veKo, hence by lemma A.10.c) PAwL=V ).
This concludes the proof of the arithmetical completeness of
SbCIM. As in the case SCLw, we in fact have proved some more:
Corollary A.13. For any modal formula ¢
SbCIM +— ¢ <> CILM+— Sb(¢) — ¢.
In particular, the logic SbCLM is decidable.
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