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& 0. Introduction

The study of the diagonalizable algebras of theories con-
taining arithmetic was initiated in the early seventies by Mac-
intyre & Simmons [28] and Magari [29]. In 1976 Solovay [50] cha-
racterized the equational theory of the diagonalizable algebra
of Peano arithmetic. This theory was shown to be adequately de-
scribed by the well-known modal logic L. Later on, Montagna
[32], Artemov [2], Visser [51] and Boolos [12] strengthened this
result somewhat by independently demonstrating that the free di-
agonalizable algebra on countably many generators is (isomorphic
to) a subalgebra of the diagonalizable algebra of Peano arithme-
tic. The equational theories of diagonalizable algebras of other
strong enough theories were calculated by Visser [52] (cf. also
Artemov [3]). These are given by the series L, L+oi, L+oou,
Among the recent investigations of the subject we should also
mention Montagna’s paper ([33] which undertakes a systematic in-
quiry into generalizations of Goldfarb’s Principle.

Nonetheless, the information on diagonalizable algebras of
theories currently available is dejectingly scarce and therefore
leaves ample scope to further research. Thus, for instance, it
would be natural to attempt a closer look at subalgebras of the-
se algebras. This is the theme of the present paper. It is pre-
dominantly devoted to the question which diagonalizable algebras
can be embedded into the diagonalizable algebra of a theory. For
the easier case of embeddings with r.e. range we obtain a comp-
lete solution. It turns out that a short list of most obvious
restrictions constitutes a characterization of r.e. subalgebras

of the diagonalizable algebra of a theory. Partial results in



this (or at least in a closely parallel) direction were obtained
by Jumelet [27]. In fact, the work of Jumelet was my main source
of ideas and inspiration.

The plan of the paper is as follows. § 1 recollects the ne-
cessary definitions and earlier results. It also contains a re-
sult on the length of proofs which, in view of a construction in
§ 11, does not look absolutely out of place here. In §§ 2, 3 and
5 we carry out some modal-logical work relevant for subsequent
progress. As a by—product of this we obtain a uniform version of
the Craig Interpolation Lemma for L. The main result of the pa-
per is to be found in §§ 4, 6 and 7 where r.e. subalgebras of
diagonalizable algebras of a wide class of theories are charac-
terizéa. This takes us three §§ because we use three slightly
different approaches to hahdle particular kinds of theories. He-
re we employ extensions of techniques developed by Solovay [50],
Artemov [2], Boolos [12], Jumelet [27] and Beklemishev [5]. §§ 8
- 11 are of marginal interest. In § 8 we apply the result of § 7
to give an alternative proof to a lemma in Simmons [43]. Unfor-
tunately the application will not require the fuil strength of
our methods. A question concerning the arithmetical complexity
of sentences needed to model a diagonalizable algebra in arith-
metic is treated in § 9. In the last two §§ we find out whether
our characterization of subalgebras of diagonalizable algebras
of theories extends from r.e. to arbitrary subalgebras. It is
shown in § 10 that for the case of Zl—ill theories an easy gene-
ralization is possible. As regards Zl—sound theories, the situa-
tion appears to be more complex and an example is given in § 11
that partially justifies our failure to describe subalgebras of

diagonalizable algebras of these theories.



| We assume that the reader is familiar with Smorynski [49]
or at least with Solovay [50]. Knowledge of (rudiments of) di-
agonalizable algebra thedry and modal logic, especially of L,
should also be very helpful. For these matters, good references
are Magari [29] and [30], Bernardi [8] and Bellissima [7].

A few words of appreciation. I would like to.thank Lev Bek-
lemishev for numeroué stimulating ideas and invaluable comments.
Without his help the present paper could have hardly been writ-
ten. In particular, Lev Beklemishev brought my attention to a
neat trick in Beklemishev [5] which a key idea for the argument
in § 6 was derived from. Thanks are also due to Professors Ser-
gei Artemov and Aleksandr Chagrov, Marc Jumelet, Andrei Muchnik
and Domenico Zambella for interesting and fruitful discussions.

The present paper is a very slightly reworked version of

Shavrukov [42].



& 1. Preliminaries

1.A. Arithmetic

We shall study r.e. consistent theories whose language com-
prises that of primitive recursive arithmetic. Given a set T of
arithmetic formulae, AO(F) denotes the closure of I' under Boo-
lean combinations and primitive recursively bounded quantifica-

tion. Let

Zo = HO = Ao(atOmic arithmeic formulae)

and define Zn+1 to be the closure of Hn under lattice combinati-
ons and existential quantification. The class Hn is defined ana-
logously. We shall say that a formula ¢ is Zn over a theory T if
there exists a Zn formula which T proves ¢ equivalent to. Final-
ly, ¢ is An over T if it is both Zn and Hn over T.

For I' a set of arithmetic formulae, a theory T is said to
be I'-sound if each theorem of T which is in I' is true. A theory
is I'-ill if it is not I'-sound.

In compliance with a recent tradition of not involving much
more arithmetic than is actually needed we take IZ1 as our base
theory. In other words it is assumed throughout the paper that
every theory under study contains induction for 21 formulae as
well as the basic axioms P (cf. Paris & Kirby ([37]) and defi-
ning equations for primitive recursive function symbols. Note
that our theory IZ1 proves the same theorems as the theory PRA
of Smorynski [49]. The theory 121 of Paris & Kirby [37] formula-
ted in the language (<, 0, S, +, +) 1is very much the same as
ours. That is not just to say that our variant of IZ1 is conser-
vative over that of Paris & Kirby. What is more, every formula

of the language of primitive recursive arithmetic translates ea-



sily and IZl—equivalently into the smgller language and this
fact is formalizable in IZ1 itself. (This amounts to a canonical
isomorphism between the diagonalizable algebras of the two vari-
ants of the theory.)

The following facts about I21 are well worth being kept in
mind: The provably recursive functions of IZ1 are exactly the
primitive recursive ones (Mints [31], these functions will be
referred to as AO fgnctions); IZ1 proves induction (and therefo-
re thg least number principle) for Ao(z1) formulae and each
AO(Zl) formula is A2 over IZ1 (Hajek & Kulera [24]); every
AO(ZD) sentence 1is equivalent to a Boolean combination of Zn
sentences.

We assume that every theory comes equipped with a primitive
recursive way a to recognize its axioms with which we associate
a Ao formula Prfa(y,x), the proof predicate (of T), to express
that y is a (say, Hilbert-style) proof of x from the (extralogi-
cal) axioms given by o (cf. e.g. Feferman [16]). Pra(x); the
provability predicate (of T), 1is short for dy Prfa(y,x). In
what follows we shall be omitting the subscript « since no con-
fusion is likely.

Each formula and, in general, each syntactical object is
identified with its godelnumber. The numeral for n, ife. (the

godelnumber of) a zero followed by n strokes is denoted by n.

Finally, if P(X), e X)) is a formula then w(f},...,E;) is the
primitive recursive term honestly representing the function

which sends (n,...,n ) to the numeral for w(ﬁI,...,H;).

The least n € w s.t. T proves Pr’(I) is called the

credibility extent of T. (We let  Pri(I) = Pr(I) and

Prn+l(I) = Pr [Prn(I)]). If no such n € w exists then T is



said to be of infinite credibility extent. Note that if T is 21—
sound then clearly its credibility extent is infinite. On the
other hand, the credibility extent of a 21—111 thepry does not
only depend on the set of theorems of T, but also on the primi-
tive recursive way a which the axioms of T are presented. Thus,
Beklemishev [5] shows that if a Zl—ill theory T contains full
induction then a particular choice of « can make the credibility

extent of T anything from 1 to .

1.B. The modal logic L

The modal logic L (whose other names are K4W (Segerberg
[41]), G (Solovay [50]), GL (Artemov [3]) and PRL (Smorynski
[49])) was presumably first introduced by Smiley [44] whose mo-
tive for doing so was investigation of ethics rather than of
provability in formal systems. The language of L consists of an
infinite stock of propositional 1letters P iP reeey the usual
propositional connectives and a unary modal operator o. In addi-
tion to the axioms and rules of the classical propositional lo-

gic, L contains the following axiom schemata:

o( 4 > B) —. oA — oB
od — ool

o( gd —- 4 ) — DA

and the necessitation rule: from A infer nA.

For 4 a modal formula we write ¢4 short for o142 and o*a
short for A4 A DA.

We write F_L 4 to mean that the formula A4 is derivable in
L. }, 0'4 — o'B will usually be abbreviated as 4}  B. Note
that since |- 4 1is equivalent to |- ot4 (cf. Magari [29]

and [30]), our notation is coherent in that }-L A if and only



if T}—L 4. Trivially,
Fy A — B implies A} B ;
Al 4
A, B and B}—Lc imply A4}, C ;

AF—L B implies A}—L oB and uA}—L oB etc.

3, 3 etc. will be treated as variables ranging over finite
(possibly empty) tuples of propositional letters.

Kripke semantics has long been known as a mighty weapon in
the study of modal logic. We describe a variant of it suited for
our purposes. A triple XK = (K, R, |) 1is a (Kripke) B-model if
K, the domain of K, is a non-empty set (of nodes); R, the acces-
sibility relatién, is a strict partial order on K s.t. R™! is
‘well founded and |- is a forcing relation between nodes of K and
those modal formulae all of whose propositional letters are
among those in B. |- should satisfy the usual commutativity con-
ditions for Boolean connectives and for each a € K and each
modal formula A(B) one has a”—nA(g) if and only if bH—A(g)
for all b € K s.t. a R b. We write KEA (4 holds in K) if
al 4, all a € K.

By a model we mean a 3—model for some tuple 5. A model
XK = (K, R, |F) is finite if so is K. K 1is rooted if there
exists a node b € K satisfying b R a, all a € K s.t.
a # b. This b is then called the root of K. A rooted model K is
treelike if R is a tree on K. For K a rooted model, we write
K4 (K forces A; A4 is forced in K; K is a model of 4) if the
root of K forces A. Clearly X|E4 if and only if X|-o*a.

It is well known that if a formula A4 is derivable in L then
it holds in every model provided that the forcing relation is

defined on 4. Various specializations of the converse are also



true. Thus, if a formula is forced in every finite rooted model,
or even in every finite treelike model, then it is derivable in
L (see e.g. Segerberg [41] or Solovay [50]; we shall be refer-
ring to this fact as the Completeness Theorem for L). The deci-

dability of L follows (cf. also Bernardi [8]).

1.C. Diagonalizable algebras

A diagonalizable algebra (Magari [29]) is a pair (4, o)
where @ is a Boolean algebra with the usual operations A, v, 1,
—, T and 1 endowed with an operator o (alias t) satisfying the

following identities:

o(x — Yy ) —. ox — oy =
0X — oox =
o( ox — X ) — ox =

oT = T

The confusion betwéen modal-logical and algebraic notation
is meant to stress the fact that a diagonalizable equation is an
identity of the variety of diagonalizable algebras if and only
if the corresponding modal formula is derivable in L (see Mon-
tagna [32]).

A Boolean filter f of a diagonalizable algebra D is a <tT-
filter if x € f implies ox € f for each element x of . If a
filter f is T- then there exists the quotient algebra D/f. Con-
versely, the elements that are sent to T by a homomorphism of
diagonalizable algebras constitute a tT-filter (cf. Magari [29]
and [30] or Bernardi [8]). For each subset X of a diagonalizable
algebra 9 there exists the smallest t-filter t(X) containing X.

Thus we can define D/X, the quotient (algebra) of » modulo X, to

)]
be /t(X)'



Whenever we shall need to construct a particular example of
diagonalizable algebra we shall produce an algebra of the form
F/g where F is the free diagonalizable algebra on an appropriate

set of generators (this latter algebra may be identi-

{Pjlier
fied with the set of modal formulas using the generators as pro-
positional letters modulo L-provable equivalence) and & is a set

of elements of F, that is, of formulas in Note that

Pitier-

for a formula 4 in one has A4 = T in F/g if and only

Pitier
if there exists a finite subset ¥ of & s.t. M |- 4.

The height of a diagonalizable algebra ® is defined as the
least n € w s.t. o't =r71. If for all n € w one has oL = T
then the height of ® is infinite. D is w-consistent if 1 = T
and x = T whenever ox = T for each element x of 3. w—conéis—
tency obviously implies infinite height. If ox v oy = 17 imp-
lies ox =T or oy = T then D is said to possess the disjunc-
tion property. Clearly the height, w-consistency and the dis-
junction property are inherited by subalgebras. One can show
that among homomorphic images of a diagonalizable algebra of in-
finite height there always are w-consistent diagonalizable al-
gebras with the disjunction property.

A 1-generated diagonalizable algebra is determined by its
height up to isomorphism. Note that the disjunction property is
shared by all the 1-generated diagonalizable algebras whereas
the only w-consistent 1-generated diagonalizable algebra is the
free L-generated diagonalizable algebra.

A mapping v: w — Y s.t. rng VY dJenerates the (denumera-
ble) diagonalizable algebra D is called a ‘numeration of ®. A nu-

meration v is positive if the set of diagonalizable polynomials

A(po,pl,...) satisfying A4(vO,v1l,...) = T 1is r.e. A numeration



v is locally positive if for each n € w the set of diagonéli—
zable polynomials A(po,...,pn) satisfying A4(v0,...,vn) = T 1is
r.e. An algebra 9 is (locally) positive if a (locally) positive
numeration of it exists. Clearly 9 is locally positive if and
only if each of its finitely generated subalgebras is positive;
any numeration of a locally positive algebra is a locally posi-
tive numeration; a finitely generated diagonalizable algebra is
‘positive if and only if it is locally positive. Since any fini-
tely generated algebra of finite height is finite (cf. Bernardi
[8]), we also have that any denumerable diagonalizable algebra

of finite height is locally positive.

1.D. Diagonalizable algebras and arithmetic

The example of a diagonalizable algebra which motivates the
definition is constructed from a theory T of the kind described
in 1.A. The Boolean algebra @ is taken to be the Lindenbaum Sen-
tence Algebra of T, i.e. the set of sentences of T modulo T-pro-
vable equivalence, and for the mapping o one takes the provabi-
lity predicate of T, that is, for ¢ a sentence, o¢ = Pr(p). The
well-known properties of Pr(-) guarantee that the algebra ob-
tained in this way is a diagonalizable algebra. (In particular,
the identity o(ox — x) — ox = T disguises a formalized ver-
sion of Lob’s Theorem.) This diagonalizable algebra is called
the diagonalizable algebra of T and is denoted by DT. The con-
cept was originally introduced by Macintyre & Simmons [28] with-
out a name. The name "diagonalizable algebra" was supplied later
by Magari [29].

If ' is a set of arithmetic sentences closed under Boolean

operations and o then Dg is the corresponding subalgebra of DT.

10



The recursive enumerability of T guarantees that DT is locally
positive. A subalgebra ofEDT is r.e. if the underlying set of
sentences is. The usual godelnumbering of sentences gives rise
to a positive numeration of each r.e. subalgebra of DT including
DT itself.

Clearly the height of ST is equal to the credibility extent
of T.

In diagonalizable algebras (and even in diagonalizable al-
gebras of infinite height) neither of w-consistency and the dis-
junction property implies the other. The situation in diagonali-

zable algebras of theories is different. In fact, the following

are equivalent:

(i) T is Zl—sound;
(ii) To v Tt implies T + o or T + T for each pair of
Zl sentences o and T;
(iii) T decides every sentence which is A1 over T;
(iv) DT is w-consistent;
(v) The credibility extent of T is greater than 1 and DT

possesses the disjunction property.

(1) & (ii) & (iii) is proved in Jensen & Ehrenfeucht [25] and
Guaspari [23] (cf. also Friedman [19] and Smorynski [47], [48]
and [49]). The remaining equivalences are folklore and are typi-

cal applications of Goldfarb’s Principle:

Let o be a 21 sentence and let TW—Pr(I) — 0©0. Then there
exists a sentence T (which can be chosen either Zl or H1) s.t.

ThHo ¢« Pr(t).

(cf. Visser [52], Bernardi & Mirolli [9], Montagna f33] or Mon-

tagna & Sommaruga [35]).

11



As evidenced by (iv) & (v) it will, for the purposes of our
paper, be convenient to conjunct w-consistency and the disjunc-
tion property under the name of the strong disjunction property

which is clearly equivalent to
L #717, and ox v oy = T 1implies x =T or y = T.

Before doing so however we shall take a final look at each one

of the former separately.

For the remainder of the § we shall be confusing modal and
arithmetic notation.

In 1971 Parikh [36] proved that the implication of the sta-
tement (iv) for Zl—sound theories (T} op > T} ¢) may take rather
long to materialize. That is, for each provably recursive func-
tion g of T there exists a sentence ¢ and a proof p of op in T
s.t. no number < g(p) is a proof of ¢ in T.

We shall prove the same for the disjunction property. Our
proof leans heavily on techniques of de Jongh & Montagna [26]

and Carbone [13] and an idea in Carbone & Montagna [14].

1.1. Proposition. Let g be a provably recursive function of

a Zl—sound theory T.

(a) There exist (21) sentences o, and o, and a proof P, of
oo v oo, in T s.t, Tf—ol, T|——cr2 and no p, < g(po) is a
proof of mo, or of o in T.

(b) There exist (21) sentences r1 and t2 and a proof q, of
ot Vv ot in T s.t. Tk—tl, T non}--'c2 and no q, < g(qo) is a

proof of 0T, in T.

Proof. First we fix a pair of (21) sentences a and 8 s.t.

12



T (o v oB) <
oox €<

oof3 ¢« ool

Sentences a and B satisfying these conditions could be produced
with the help of Solovay’s [50] Second Theorem applied to the

following Kripke model (at each node, only the letters forced

are shown) :

(This model also appeared in Visser [52] to accomplish a simili-

ar task).

Now let op <g ay denote the formula saying that there
exists a proof p of ¢ in T s.t. no g < g(p) 1is a proof of Y in

T.
(a) By self-reference find a sentence P, s.t.
(1) T|——p1 . [n[u(pl vV oa) Vv u(p1 Y% B)] <g ::n::(p1 % a)] A

A {u[u(p1 Vo) vao(p Vv B)] <g oa(p v B)]

We have

(2) TI——D[D(p1 vV oa) Vv D(p1 v B)] -. m+p1 v u+-|p1
(the antecedent implies that the
r.h.s. of (1) is decidable and so

P, is decidable)

13



(3) T|—-|p1 —.
—. u[n(p1 vV o) Vv n(p1 \% B)] — [nn(p1 vV oa) Vv nn(p1 \ B)]

(by (1))

(4) TH l:|+'|p1 -

— ot |:|[l:|(p1 Voa) Vv I::(p1 Y B)] —. |:||:|(p1 vV o) Vv |:u:|(p1 v B)}

(by (3))

- ot o(ox v of) —. ooo V DDB]

— ot (ooor — oou) (by the choice of a and B)
(5) T}—n+ﬂp1 — oooi (from (4) by Lob’s Theorem)
— ool (by (4))
(6) ThooL —. oa v of (by the choice of « and B)

—. B(p, vV a) vVale VB

(7) T[——n+-|p1 —. o(p, v a) vaol VB)

(by (5) and (6))
(8) T|—f:1|:u:|p1 — r:||:|[l:|(p1 vV o) Vv 1:|(p1 % B)]
- x:l(l::p1 \% D+-|p1)
(by (2)) .

- l:u[l:l(p1 vV oa) Vv o(p, Vv B)]

(by (7))
—>. Dp1 \% |:|+'|p1
(by (2))
—. op  V ool
(by (5))
— oop,
(9) T}-—nup1 (from (8) by Lob’s Theorem)
(10) T|-—p1 (from (9) by Zl—soundness)

By (10) also the r.h.s. of (1) is provable and hence by Zl—so—

14



undness true. Now let o v B and note that

m
©
<
Q
9
I
e}

(a) is proved.
(b) Construct a sentence P, s.t.
T|—-p2 — u[m(p2 vV oa) Vv nB] <g nn(p2 vV oa)

and show that T|——p2 in perfect analogy with the proof of (a).
Then take T,= P, v o and T, = B. n

After the research underlying the present paper had been
essentially completed I learnt that Proposition 1.1 fell corol-

lary to very general recent results of Montagna [34].

Leaving alone the problem of actually constructing from a
proof of op v oy that of one of the disjuncts, one might at
least ask which one of those is true. The next proposition shows

that this generally also is a very difficult question.

1.2. Proposition. If T is a Zl—sound theory then there 1is
no provably recursive function of T which, given a proof in T of
a sentence of the form no¢ Vv oY, picks a true disjunct (even if

one restricts the task to 21 sentences ¢ and VY ).

Proof. Suppose g were such a function. That is, if p is a
proof of a sentence of the form op v oy with ¢ and ¥ in 21

then

g(p) = 0> Tk¢ and g(p) = 1> TFY
.Clearly we can assume w.l.o.g. that
THVx |g(x) =0 vV g(x) =1

We introduce two ad hoc "modal" operators:

15



o ¢ = o¢ A g(the least proof of ¢) = 0
o¢ = op A g(the least proof of ¢) =1
Next we define by parallel self-reference:
Tho < nl(mo vV oT)
Tt < DO(DG vV OT)
We have
Tl o(oo v oT) —. (no % ul)(no vV OT)
—>. OV T
—. 00 V OoT (o0 and T are 21)
and hence
Tl oo v ot
by Lob’s Theorem. Now if g(the least proof of noc v ot) = 0

then o is false and therefore by'Zl—soundness T non}-o contra-
ry to the assumptions on g; g(the least proof of oo v ot) = 1

contradicts the assumptions in the symmetric manner. u

16



§ 2. On conservativity in L

2.1. Definition. The degree d(4) of a modal formula A is

defined inductively:

d(p;) = d(L) =d(1) =0
d(na) = d(a)
d(A A B) =d(Av B) = d(A4 — B) = max |d(4), d(B)

d(od) = 1 + d(A4)

Thus, formulae of degree b are precisely the o-free formulae.
Let B be a finite tuple of propositional letters. Formulae

of degree < n containing no letteré other than in B constitute

(modulo L-equivalence) a finite Boolean algebra which’we denote

by FH(B). Elements of Fn(ﬁ) will be persistently confused with

modal formulas representing these elements. We also let An(g)

denote the set of atoms of FD(B). Clearly F“(B) is a subalgebra

> >

of Fm(3) whenever n < m and p < d. It is convenient to think

of the modal operator o as sending elements of Fn(ﬁ) to those of
n+1

F (p) -
F and F(ﬁ) denote the diagonalizable algebras of all formu-
lae and of all formulae whose propositional letters are in 3

respectively.

2.2. Lemma. Consider elements of Fn+l(3) of the form

o A oWr A Nov

with o ranging over AO(B) and ¥ ranging over subsets of AD(B).

Call such formulas types. (Here ¢ 7 = { oC | cev }.)

(a) The conjunction of two distinct types is (L-equivalent

to) 1.

17



(b) Each formula in F7 1(f))) is (L-equivalent to) a disjunc-

tion of types.

(c) Each formula in An+1(p) is (L-equivalent to) a type.

(d) Each type either belongs to An+1(3) or is (L-equiva-

lent to) ..

Proof. (a) It is straightforward to show that

|—L (ocl/\mwle/Aoarl)/\(ocz/\uwwz/\/X\oarz) —.
>, (ocl/\ocz)/\(DW71ADW72)A(/X\<>71A/X\<>72)

—. (ocl/\ocz)AnW(vlnvz)/\/X\o(vluvz)

and the claim follows by an easy Kripke model argument.

(b) By the definition of Fn+1(p) every formula therein can
be thought of as a lattice combination of elements o of AO(B)
and formulas of the form oC and -oC with C € Fn(ﬁ) or, equiva-
lently, o\ » and - o \f ¥ with ¥ ¢ AD(B). Thus to prove the
claim it will suffice to show that o, o Yy ¥ and -~ o \f v are
L-equivalent to appropriate disjunctions of types and that the
conjunction of two disjunctions of types can be: L-equivalently
brought into the form of a disjunction of types. This is unprob-

lematic:
|—La<—>w{ocAmW6/\[A<>6‘8 }
[- mW:/(——)W{BAuWSA/AOS‘BeA(p),agv}
oo Wy e
HW{BADWS/\/X\OSIBEAO(ﬁ),SgAn(B),SnonQW}
and, finally,
|—L\ix./(oti/\|:|W'a(i/\/X\07i)A\y(ajADWWj/\/X\O'Jj)(—-)

<—>in (ocl./\nwvi/\/x\ovi)/\(ocj/\uWyj/\/X\oyj)]
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Since by (a) the conjunction of two types is L-equivalent to 1

and/or to a type we are done.

(c) and (d) follow easily from (a) and (b). n

The types of Lemma 2.2 are essentially the same as the nor-
mal form formulas of Fine [17] and the n-S-characters of Gleit &
Goldfarb [20]. The satisfiable n-S-characters of the latter pa-

per bear the same relation to elements of our A“(B).

2.3, Definition. Let K be a rooted model. The unique ele-
ment of An(g) forced in K is called the (n,z)—character of K.
If the (n,g)—characters of two rooted models coincide then these

models are said to be (n,ﬁ)—twins.

2.4. Definition. If K = (K, R, |) 1is a Kripke model and
a € K then K[a], the a-cone of K, is the rooted model whose do-
main is the set ({(a} U { b € K | a R b } and the accessibility
and forcing relations are R and | restricted to this set res-
pectively. A proper cone of K is the a-cone of K for some a € K

which is not the root of K.

The following lemma, although simple, will render us a num-
ber of valuable services. It should be compared with Theorem 1

of Fine [17].

2.5. Lemma (Fine Lemma).

(a) Two rooted 3—models are (n+1,3)—twins iff

(i) they are (O,B)—twins and
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(ii) each proper cone of one of these models has an
(n,g)—twin among the proper cones of the other model and vice

versa.
N . -2 .
(b) (n+m,p)-twins are (n,p)-twins.
Proof. (a) is easy.

(b) is proved by induction on m using (a). n

2.6. Definition. Let 5 be a finite tuple of propositional
letters. A formula 4 is said to be 3—conservative over a formula
B if for each C € F(g) one has |—L B — C whenever
}—L A — C. A is conservative over B if it is A-conservative
over B where A is the empty tuple. 4 is (3—) conservative if it

. 2 .
is (p-) conservative over T.

Our aim is to show that conservativity is decidable as a

ternary relation. In fact we shall obtain stronger results.

2.7. Definition. Let K = (1‘<1, R, "‘1) and
K, = (K, R, H—z) be rooted models, a € K and assume K  and
K2 disjoint. By saying that we graft Kz above a (in Kl) we mean
that a new model is constructed whose domain is K1 u K2, the

forcing relation coincides with w-l u |F2 on propositional

letters and the accessibility relation R is defined by putting

bRc &

s b R1 c or b R2 ¢ or |(b R1 a or b = a) and c € K2

Let K = (K, R, ) be a rooted p-model and a € K. Suppo-
se one grafts an isomorphic copy of the a-cone of K above b € K

in K with b R a. Then the "o0ld" nodes can be easily shown to
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force precisely the same modal formulae in the resulting model
as they did in K (cf. Artemov [3]). Suppose K = (K, R, |')
is a 5—model obtained from K by a finite number of graftings of
the sort described and let there exist a forcing relation |7
extending |-’ s.t. Kt = (K, R/, W-+) is a d-model that forces
a formula A4 € F(&) where 3 c 3. Then we shall say that K is

expandable to (a model of) A and that K* is an expansion of K to

(a model of) A.

Instead of 2.7 we could have given a much smoother-looking
definition of expansion using the notion of p-morphism. There
seems however to be less than no use counting twenty-five steps
if the activity we are getting ready for is a fist fight as will

be the case in 2.10.

2.8. Lemma. Let B c 3. If every finite rooted (treelike)
B—model of a formula A € F(ﬁ) is expandable to a model of B €

F(&) then B is 3—conservative over A.

Proof. Easy. n

2.9. Definition. If A2 =a Ao\ 2 A M o7 with o € A°(D)
and ¥ < An(ﬁ) and K is a rooted B—model forcing 4 then & is
called the 5—real world of K (and of A4) and elements of ¥ are
the (n,ﬁ)—possible worlds of K (and of A). The number of ele-
ments in ¥ is the (n,B)—rank of K (and of A4).

Clearly the 5—real world and the (n,g)-possible worlds of

n+l >

each rooted 5—model (and of each element of A (p)) are defined

uniquely up to L-equivalence.
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The following lemma may be thought of as an improvement on
the Joint Satisfiability Theorem of Gleit & Goldfarb [20].

2.10. Lemma (Expansion Lemma). Let 3 C 3. To every n € w
there corresponds an N € w s.t. every finite treelike 3—model
of B € AN(ﬁ) is expandable to a model of C € An(a) whenever

B AN C 1is irrefutable in L.

Proof. The claim is immediate for n = 0 (in this case we
can take N = 0). For the remaining n € w we use induction on
the (n—l,é)-rank of C. When this rank is 0 and N > 0 the claim
is once again obvious.

Thus, given an r # 0, we assume for inductionO hypothesis
that each finite treelike 3—model of D € AN(ﬁ) is expandable
to a model of E € An(é) once D A E 1is irrefutable in L and
the (n—l,a)—rank of E is smaller than r.

Now let C € AD(G) of (n—l,3)—rank r be forced in a rooted

N+C(3) and let K be an arbitrary fini-

model K along with B € A
te treelike 3—model of B. The constant ¢ will be specified la-
ter. We are going to expand K to a model of C. To avoid heavy
notation we stipulate that K retains its name throughout the
process of expansion despite the changes it undergoes and, at
intermediate stages, despite being neither a 3— nor a g—model.

First we consider a particular case when the (n—l,a)—rank
of ¥ is greater than that of any of its proper cones. In this
case we let ¢ = 1.

Let @1, ,8, be the immediate successors of the root of
K. By the Fine Lemma (a) there exists a sequence H[bl],...,

Hib ] of proper cones of ¥ s.t. H[bi] is an (N;ﬁ)—twin of

K[ai], 1 < i £ m. Since the (n-l,g)—rank of each of the ﬂ[bi]'s
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is smaller than r, the inductionO hypothesis yields an expansion
of K[ai] to the (n,&)—character of R[bi]. Now replace each of
the K[ai}'s by the corresponding expansion (this is possible be-
cause K 1is treelike). Analogously, each proper cone ¥[b] of ¥
has got an (N,g)—twin among the proper cones of K which is ex-
pandable to the (n,a)-character of H[b]. For each such H[b],
graft a copy of the corresponding expansion above the root of X.
Finally extend the forcing relation at the root of K in the ob-
vious way.

We show that the resulting model is an (n,&)—twin of H.
Their a—real worlds coincide by construction. That the proper
cones of the model constructed have (n—l,&)—twins among the pro-
per cones of H follows from the fact that every proper cone of
the new model is either én (n,&)-Q(and therefore by the Fine
Lemma (b) an (n—l,&)—) twin of a prbper cone of K or is a proper
cone of an (n,&)—twin of a proper cone of ¥ (and hence by the
Fine Lemma (a) an (n-l,a)-twin of a proper cone of ¥). As to the
opposite direction, recall that we grafted in X an (n,&)—twin to
each proper cone of K. Finally, apply the Fine Lemma (a).

Now we drop the assumption on the (n—l,&)—ranks of the pro-
per cones of ¥ and increase c¢ to 3, that is, we assume K and ¥
to be (N+3,B)-twins.

Our plan is as follows. We set the inductionO hypothesis
and the skills we acquired when treating the above particular
case to work and let these expand as many proper cones of K as
possible to the (n,&)— or the (n—l,&)-characters of the corres-
ponding proper cones of H. What remains unexpanded in K after
this first attack corresponds to proper cones of ¥ of (n—l,a)—

rank r and hence the (n—l,a)—possible worlds of these cones have
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to be the same as'those of # itself. Thus, provided we have im-
planted all the (n—l,&)—possible worlds of H above each of the
yet unexpanded nodes of K, we only have to care that no (n-l,a)—
possible world alien to # comes into existence when the forcing
relation at these nodes is being extended to 3.

our first move will be to classify the proper cones of K.

Thus, we call a proper cone K[a] along with its root a

- frontier, if there is an (N+1,B)-twin H[b] of K[a]
amohg the proper cones of K s.t. the (n-l,&)-rank
of H[bj is r but each proper cone of HK[b] is of a

smaller (n—l,a)—rank;

- high, if a is not frontier and there is an (N+l,3)—
twin of XK[a] among the proper cones of X of

(n—l,a)—rank smaller than r;

- low, if a is not frontier and every (N+1,B)—twin of
K[a] among the proper cones of X is of (n—l,&)—

rank r;

- genuinely frontier, if a is frontier and every node

which a is accessible from is low;

- just high enough, if a is high and every node which
a is accessible from is low;
- essentially low, if a is low and every node which a

is accessible from 1is also low.

Claim 1. Each proper cone of K is either frontier or high

or low.

Claim 2. Of each node a of K which is not the root of X

precisely one of the following statements is true:
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(i) a is genuinely frontier;
(ii) a is just high enough;
(iii) a is essentially low;
(iv) a 1is accessible from a genuinely frontier or from a

just high enough node.

Indeed, Claim 1 is easy. Claim 2 follows from Claim 1 by

inspection of our classification.

Informally, we have this picture: To the root of K clings a
downward closed collection of essentially }ow nodes and immedi-
ately above this collection there is a one-node-thick layer of
genuinely frontier and just high enough nodes which separates

the essentially low nodes from the rest of the model.

Claim 3. From each (essentially) low node a frontier node

is accessible.

The proof of Claim 3 explains why we chose ¢ to be so ab-
normally large:

By the Fine Lemma (a) each low proper cone K[a] has at
least one (N+2,3)—twin among the proper cones of H. Each of the-
se (N+2,5)—twins has a proper cone of (n—l,&)—rank r, or else a
would be frontier. Pick one of these (N+2,3)—twins and a proper
cone H[b] of it of (n—l,&)-rank r s.t. each proper cone of H[b]
has a smaller (n—l,&)—rank. By the Fine Lemma (a) the root of an
(N+1,3)—twin of ¥[b] should be accessible from a. This root is

by definition a frontier node so Claim 3 is proven.

Let us now start working. The root of K is as usual unprob-
lematic. Next we replace each genuinely frontier and each one of
the just high enough proper cones of X by its expansion to the

(n,&)—character of one of those of its (N+1,3)—twins in ¥ which
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this proper cone owes its frontier or high statute to respecti-
vely. For (genuinely) frontier proper cones such expansions were
carried out when treating the easy particular case with ¢ =1
and for expansions of just high enough nodes we turn to inducti-
on hypothesis. By Claim 2 and since K is treelike these repla-
cements can not conflict. To each essentially low node a of X we
do the following: extend the forcing relation at a to that at
the root of one of the (N+1,3)—twins of K[a] in X and graft abo-
ve a an expansion of a frontier proper cone K[ao] with a acces-
sible from a, which exists by Claim 3, to the (n,a)—character of
an (N+l,3)—twin of K[ao] in ijhich enjoys (n—l,a)—rank r but
none of its proper cones does. Lastly, for each proper cone H[b]
of ¥ s.t. every one of its proper cones has (n—l,&)-rank smaller
than r pick an (N+1,3)—twin in (the original copy of) K and
graft above the root of K an expansion of this (N+l,3)-twin to
the (n,q)-character of ¥[b].

It is now easily seen from Claim 2 that XK has been metamor-
phosed into a 3—model. We check that the (n—l,a)—possible worlds
of ¥ and of the model constructed are the same.

If there is a proper cone of H of (n—l,a)—rank r then at
least one of such cones enjoys an (n,a)—twin in the modified K
grafted above the root. Since ¥ is itself of (n—l,&)—rank r,
each (n—l,a)—possible world of ¥ is also an (n—l,a)—possible
world of this (n,&)—twin and hence of the expanded K. If there
were no proper cones in ¥ of this (n—l,&)—rank then we would ha-
ve grafted in K an (n,&)-twin to each proper cone of ¥ and any-
way this is the easy ¢ = 1 case that we dealt away with ear-
lier.

It remains to see that each (n—l,&)—possible world of K is
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that éf ¥. Expansions of genuinely frontier, Jjust high enough
and frontier proper cones of K grafted in K present, as in the
c =1 case, no problem. We show by rootward induction1 on the
essentially low nodes of K that these only gave rise to (n—l,&)-
possible worlds that are those of ¥. Consider an essentially low
node a of K. Recall that there is an expansion of something to
the (n,&)—character of a proper cone of ¥ having (n—l,a)—rank r
grafted above a. Hence the (n—l,a)—possible worlds of the a—coﬁe
of the new K are the same as that of ¥: by induction1 hypothesis
no extra (n—l,a)—possible world could have crept in. Find now
the root b of the (N+1,5)—twin H[b] of K[a] which the forcing
relation at a was extended to. Since this (N+1,B)—twin also had
to have (n—l,&)—rank r and hance the same (n—l,&)—possible
worlds as H , we see by the Fine Lemma that the a-cone of the
modified K is an (n,&)— and hence (n—l,&)-twin of H[b] which
gives us the desiderata. Thus we have executed the induction1
step and the proof is complete.

Since the (n—l,a)—rank of a formula can not be greater than

|Fn_1(3)| our proof yields N = 1 + 3-|Fn_1(3)|. n

2.11. Lemma. Let 5 - 3. For each formula B € F(&) there
exists a formula C € F(B) s.t. F—L B — C and a finite tree-
like B—model is expandable to a model of B iff this model forces

C.

Proof. Let B € Fn(a) and let N be the number which cor-
responds to n by the Expansion Lemma. Take C to be the disjunc-
tion of those elements D of AN(ﬁ) whose conjunction with B is

irrefutable in L and use the Expansion Lemma. : ‘ n
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We are now able to prove the converse to Lemma 2.8.
.2
2.12. Lemma. Suppose that 3 - 3 and B € F(&) is p-con-
servative over A € F(g). Then each finite treelike 5—model of A

is expandable to a model of B.

Proof. By Lemma 2.11 there exists a formula C € F(g) s.t.
}—L B — C and each 3—mode1 of C is expandable to a model of B.
Since B is 5—conservative over A we have that }—L A4 — C and
so each finite treelike 3—mpdel of 4 is expandable to a model of

B. [ ]

Smorynski [46] establishes the Craig Interpolation Property
for the modal logic L: If }—L A — B then there exists a for-
mula C s.t. |, 4 - C and |, C — B and C only contains
propositional letters common to 4 and B (cf. also Boolos [11]
and Gleit & Goldfarb [20]). The following corollary shows that
all we need know of B to construct C is what propositional let-

ters 4 and B have in common.

2.13. Corollary (Uniform Craig Interpolation Lemma for L).

Let B - 3. Given a formula B € F(a) we can construct a formu-
- 2 .

la C e F(p) s=s.t. }—L B — C and }-L C — D whenever r is a

tuple of propositional letters disjoint from 3 and D € F(ﬁ,?)

is s.t. }—L B — D. Moreover, this formula C is unique up to L-

‘equivalence.

Proof. Let C be as in Lemma 2.11. Take a formula D meeting
the requirements of the present corollary and let E € F(z) be
the interpolant between B and D provided by the usual Craig In-

terpolation Lemma. We show F—L C — E whence }—L C —- D fol-
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lows by modus ponens. For if this were not the case then we
would have a finite treelike model forcing C A -7E. By Lemma
2.11 this model would expand to a model of B and thus B A 7E
would be irrefutable in L contradicting the assumption that E is
the interpolant.

Uniqueness is left to the reader. n

Thus if 3 c 3 and B € F(&) then among the formulas in
F(ﬁ) implied by B exists the stongest one. .

For the case of B an empty tuple Corollary 2.13 is essenti-
ally proved in Artemov [2] and [3]. The full strength of this

corollary will not be needed until § 10.

2,14, Corollary. (3—) conservativity is decidable.

Proof. To decide whether a formula A4 is 3—conservative over
a - formula B construct the formula C provided by the Uniform
Craig Interpolation Lemma s.t. }-L A —> C and F-L cC — D
whenever }-L A 5 D and 4 and D do not have common propositi-
onal letters other than those in 3. Use the same lemma to see

that 4 is 3—conservative over B if and only if }—L B — C. ]

In what follows formalized versions of certain lemmas of
the present § will appear within IZ1 without special notice. In
each case the verification that such formalizations are possible

is unproblematic and therefore left to the reader.
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§ 3. A family of Kripke models

3.1. Definition. Let K be a finite B-model. K is said to be
differentiated if for each node a of K there exists a formula

A€ F(g) s.t. a is the only node in K forcing A.

Note that for finite models our definition of differentia-

ted is equivalent to that of Fine [17].

3.2. Definition. Let K be a finite model. The 1least such
n € w that KF=DnL is called the height of K. Thus the height
of K is equal to the number of elements in the largest subset of
the domain of K linearly ordered by the accessibility relation.
Clearly if K is rooted then the height of K exceeds that of any

one of its proper cones.

3.3. Lemma. Let K be a finite rooted differentiated 3—mo—

del and let A € F(ﬁ).
(a) Each cone of K is differentiated.

(b) (Fine [18]) To each finite rooted 5—model # there cor-
responds a finite rooted differentiated 3—model which forces

precisely the same formulas in F(g) as ¥ does.

(c) There exists a formula, which we shall denote Wk(ﬁ) (or
just WK), s.t. any rooted differentiated 3—model ¥ is isomorphic

to K if and only if H|-¥,(B).
) >
(d) K|-a iff }—L v (p) — A
(e) Either |- WK(B) -4 or | Wx(z) > na.

Proof. (a) Obvious.
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(b) Let # = (H, R, |F). Define an equivalence relation E

on H:
aEb o a and b force the same formulas in F(B)

Define R/E to be the relation on H/E which holds between two E-
equivalence classes a and & whenever for each node a € a there
exists a node b € & s.t. a R b. Clearly R/E is transitive and
irreflexive. Let an E-equivalence class a force a propositional
letter p. € B (a ”_E p;) if a representative of a forces p;-
We show by induction on the structure of 4 that if a € a

then
a4 iff a“—E A

The only interesting induction step occurs when 4 is of the form
oB. Suppose al-oB. If «a R/E & then for some b € & one has
a R b whence b|-B. Hence by the induction hypothesis &“"E B.
Conclude aH—E oB. The converse direction is equally easy.

Thus, ¥ and (H/E, R/E’ H—E) force the same modal formulas

and trivially the new model is differentiated.

(c) We prove that for WK(B) one can take the (n,ﬁ)-charac-
ter of K where n is the height of K. This we do by induction on
the height of K.

So let the height of XK be n + 1 and let ¥ and K be
(n+1,3)-twins. We construct a mapping f from the domain of K to
the domain of H#. Let f map the root of K to that of ¥. Next let
f take the root of a proper cone K[a] of K to the root of its
(n,B)—twin among the proper cones of ¥ (which exists by the Fine
Lemma (a)). Note that by the induction hypothesis K[a] is iso-
morphic to R[f(a)]. Since K is differentiated f is injective for

else there would exist two distinct but isomorphic proper cones
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of K. Moreover f is surjective because each proper cone of ¥ en-
joys an (n,g)—twin among the proper cones of K and since ¥ is
differentiated f connects these two.

By the Fine Lemma (a) f preserves forcing of propositional
letters. It remains to check that f respects the accessibility
relation. Let, in K, b be accessible from a in which case K[b]
is isomorphic to some proper cone of H[f(a)} and in particular
K[b] is an (n,ﬁ)—twin of a proper cone of H[f(a)]. So f must ta-
ke b to the root of that proper cone and hence f(b) is accessib-
le from f(a). A symmetric argument will establish that b is ac-
cessible from a whenever f(b) is accessible from f(a). This

shows that f is an isomorphism and completes the proof of (c).

(d) (if) By (b) for any finite rooted 5—model ¥ forcing
@K(B) we can construct a finite rooted differentiated ﬁ—model
which forces the same formulas as ¥. By (c) this model will be
isomorphic to K and will therefore force 4. Hence #|-A4. By the

Completeness Theorem for L we are done.
The (only if) direction is left to the reader.

(e) follows at once from (d). =

Thus, formulas of the form Tk(ﬁ) are atoms of F(B). More-
over, it can be shown that each atom of F(ﬁ) has this form.

Lemma 3.3(c) 1is proved in Artemov [4] for treelike models
and a suitably adjusted notion of differentiated. To get diffe-
rentiated models from Artemov differentiated models one only has
to identify nodes that force the same formulae. Confer also Bel-

lissima [7] for a related result.

32



3.4. Definition. Let M(B) = [M(B), R(B), |- ,| denote the
p

3-model whose domain is constituted by all finite rooted diffe-
rentiated 3—models (we shall henceforth denote these by lower

case Roman letters) with the accessibility relation defined by
a R(B) b ¢ b is isomorphic to a proper cone of a

and with af-_, p; iff af-p; where p; € B.
p

The models M(B) will be our favourite playground and an im-
portant tool for our embeddability results for diagonalizable
algebras. In fact, these models can be shown isomorphic to the
models employed by Grigolia [21] and [22] and Rybakov [40]. We

collect some facts about M (B).

3.5. Lemma. Let a, b € M(B), 4, B € F (B).
2 ,
(a) a R(B) b iff | ¥_(B) — o¥, (B).
-2 .
(b) a non R(B) b iff | @a(B) - qub(ﬁ).

(c) al-_, 4 iff al-a.
p

(4) M(ﬁ)[a] is isomorphic to a.
(e) M(B) is differentiated.

(f) 4 nonk—L B iff there exists a node c¢ € M(B) s.t.
ckE4 and c non|B.
..9
(g) If A4 nonf——L 1Ta(p)‘ and A}—L B then alfB.
> >
(h) If a R(B) b and A} ¥, (B) then A4} wwa(B).

Proof. (a) and (b) follow from Lemma 3.3(d).

(c) 1is established by downward induction on AR(g) (since

R(g)'1 is clearly well founded). Assume that (c) holds for all
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b e M(B) s.t. a R(B) b.

It will suffice to prove the claim for propositional let-
ters and formulas of the form oB. Since the case of propositi-
onal letters is self-evident we turn to oB.

We have: a|-_, oB iff for each proper cone b of a there
p
holds b|-_, B, iff for each proper cone b of a there holds b|-B
' p
(this is by the inductién hypothesis), iff alloB g.e.d.
(d) By (c) of the present lemma one has a"—% v ergo
b

M(ﬁ)[a]ﬂ-@a and hence by Lemma 3.3 (c) M(ﬁ)[a] is isomorphic to

a.

(e) By (c) of the present lemma Ta differentiates a from

all the other nodes of M#(B).

(f) We only prove (only if). If not |- n*ta — o*'B then
there exists a finite rooted B-model K s.t. K2 and X|--o'B.
Thus there is a node d of K s.t. df-o'2 and d non|-B. Apply

to K[d] Lemma 3.3(b) to obtain the desired c € M(B).

(g) By (f) since y:| non|——L ﬂ@a there exists a node
c € M(g) s.t. CH—D+A and cﬂ—@a whence by Lemma 3.3(c) ¢ = a

and from AI—LB we get al=B.

(h) Suppose A non}—L 1Wa. Then by (f) there is a node
c € M(B) s.t. clofa and c"—@a. By Lemma 3.3 (c) c = a
whence c R(g) b. So we have bﬂ—n+A and b"—@b, therefore by

(£) A4 non]——L ﬂwb contrary to assumptions. [

Lemma 3.5(c) permits us to drop the notational distinction

between |- | andvﬂ—.
: p

We shall also need to know something about the interrelati-
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. . >
ons between the models M(ﬁ) with different p.

3.6. Definition. Let 3 - 3. We define a relation < between

nodes of M(&) and those of M(ﬁ). For a € M(a) and b € M(g)

put
a <b & a and b force the same formulas in F(g)

Thus a <« b 1f and only if b is expandable to a model of Ta.

3.7. Lemma. Let A € F, Bcd, a, be MB), c € M@Q).
, > 2>

(a) ¢ < a iff F—L Tc(q) - Wa(p).

(b) There exists a unique d € M(B) s.t. c < d.

(c) There exist only finitely many e € M(G) s.t. e < a.

- -
(@ by ¥, B oW { @

e € M(a), e <« a }.

> -
(e) If ¢ < a and A}—L 1¢a(p) then A}—L ¥ ().
(£) If a R(g) b and ¢ < a then there exists a node

e € M(&) s.t. ¢ R(g) e and e < b.

(g) If A non}—L 1Wa(3) then there exists a node e € M(Q)

9
s.t. e <a and A non|——L 1We(q).

Proof. (a) (only if) Since ¢ < a the node ¢ forces the
same elements of F(B) as a does. In particular c|- Wa. Hence by

Lemma 3.3 (d) }—L v, - V.

(if) Suppose a forces a formula B € F(g). Then by Lemma

3.3(d) we have }—L ¥ — B. Hence }—L ¥. — B and therefore c

forces B by Lemma 3.3(d).

(b) For existence, apply Lemma 3.3(b) to the model obtained

from ¢ by restricting the forcing relation to F(B). Uniqueness
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follows by Lemma 3.5(e).

(c) If e < a then clearly the height of e is the same as
that of a and there can only exist finitely many finite

differentiated g—models of a given height.
(d) (¢« ) follows from (a).

(—) Let K be a finite rooted é—model forcing Ta. By Lemma
3.3(b) there exists a finite rooted differentiated a-model for-
cing the same formulas in F(a) as K does and hence it will force

¥_ for some e € M(a) s.t e < a. Therefore K“—Te whence

KW {2,

ness Theorem for L completes the proof.

e € M(a), e <« a }. An application of the Complete-

(e) follows from (a).

(f) By Lemma 3.5(a) we have }—L v oo o, Since ¢ < a

we also have }—L Tc — oV¥ by (a) of the present lemma. Hence

b
c”—o@b and there is a node e € M(Q) s.t. ¢ R(4) e and

eﬂ—@b. By (a) and Lemma 3.3(d) this implies e < b.

(9) follows from (d). -
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& 4, Finite credibility extent

4.1, Theorem. Let the credibility extent of a theory T be
n € w. A denumerable diagonalizable algebra ® is isomorphic to
an r.e. subalgebra of ST iff

(i) ® is positive and

(ii) the height of ® is n.

The (only if) direction is straightforward. The present §
is devoted to the proof of the converse implication. Thus we are
given a denumerable positive diagonalizable algebra Y which we
have to show isomorphic to an r.e. subalgebra of DT.

To this end we have to borrow some notation from §§ 2 and
3. But first we simplify it a little bit. The tuple (pl,...,pi)
of propositional letters will usually be represented by the sym-
bol i. So Fn(i) will stand for Fn(pl,...,pi); M. will stand for
the domain of the model M(pl,...,pi) etc. We shall allow oursel-
ves to omit the subscripts in ”_i and R, since it will always be
clear which model is meant. We stipulate further that 0 is not
an element of any of the Mi's, 0] Ri (any element of Mi)’ 0«0
and O|F-4 for no modal formula A (thus al-14 1is not the same
as a nonW-A unless we assume a # 0). Moreover we shall be
confusing the names of sets, relations and properties introduced
in §§ 2 and 3 such as Mi’ f—L, "a formula A is i-conservative
over a formula B" etc. with the names of their (honest) AO binu-

merations in arithmetic.

We are now going to apply a variant of the Solovay cons-

truction (see Solovay [50]) to each of the models Mi. We start
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with 1 = 0.
By self-reference define a Ao function symbol h0 and a clo-

sed e-term 20 s.t. IZ1 proves the following clauses:

b

(1) h_(0) =0

(2)

ho(x+1) =a 1if (i) a € MO ;
(ii) a“—DnL ;
(iii) ho(x) R a and
(iv) prf |x, L= a — 3Ty [ho(x) Rh (y) R 5]
= ho(x) if no a satisfying (i) - (iv) exists
(3) ¢ = 1lim h (x) if h reaches a limit
0] X —co [0} [0}
= 0 otherwise
Here Prf(-,-) 1is the proof predicate of the theory T under con-
sideration.

4.2, Lemma (121)‘

(a) Vx Vy [X <y —. ho(x) = ho(y) v ho(x) R ho(y)

(b) ¢ = lim _ h (x)

n
() ¢, =0 v e o

0

(d) Vx [ho(x) = 20 v ho(x) R 20]

. .
(e) VaEMO alFo L A EO R a —.

—. 1 Pr {Eo=a — 3y [ZORho(y) RE]

(f) VaeM alFo"L A ¢t Ra —. 1 Pr (L = 5)]
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(g)£0¢0——>

— dx Prf |x, ¢ = F; — 3y h (x) Rh (y) R Eo]}

- (h) BO = 0 — Pr (Eo = Eo)
(1) 20 # 0 — Pr (EO R 20)

Proof. (a) follows from inspection of (2) by induction on

(b) is immediate from (a) because h can make at most n mo-

ves.

(c) By (1) and (2) for each x we either have ho(x) = 0 or

hO“—Dnl (this is established by induction on x). Now use (b).
(d) follows from (a) and (b).

(e) Consider an x s.t. ho(x) = 80. By (a) and since R ve-
rifiably is a strict patrial order there holds ho(y) = 20 for

each y > x. Therefore there can not exist a proof y > x of

the formula

20 =a — dy EO R ho(y) R a
because then by (2) ho(y+1) = a. Finally, recall that each pro-

vable sentence is provable by arbitrarily large proofs.
(f) is immediate from (e).

(g) Since hO(O) = 0 and for some y ho(y) = 20 # 0 there
exists an x s.t. ho(x) = ho(x+1) = 20. By (iv) of (2) this x

has to be a proof of the formula

tg =% —3y |h ) Rh (y) R

(h) Once we assume 20 #= 0 we have by (g) that there

is a proof x of the formula
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¢, =% -3y [ (x) Rh (y) RT

Clearly by (2) and (d) ho(x+1) = Eo. Moreover since hO is AO
and R is a strict partial order we have that (a) formalized im-

plies

Pr |- 3y {ho(x) R ho(y) R F;]}

and therefore Pr (BO = E;).

(1) follows from (b) and (d) formalized and (h). n

4,3, Lemma.

(a) For each m s.t. O <m < n one has

m ,— m
IZIP—Pr (L) < EOW—D 1

(b) IZ + pr’? (1) e =0

(c) For no a € M s.t. alo’L do we have T|t¢ = a.
[0] 0]

(d) Nt =0

Proof. (a) Consider m = 1.

If Pr(L) then by Lemma 4.2(f) we have 20 R a for no
a €M . Hence ¢ |FouL.

o] (0]

Conversely, if EOW—DL then by Lemma 4.2(i) Pr (Fg R L)
and therefore Pr (Va BO # a) whence Pr(L).

Now use induction on m.

Suppose m < n and Prm+l(f), that is Pr [Prm(f)]. By the

induction hypothesis this is equivalent to Pr (Bow-mml). In
other words, for all a € MO s.t. a“—unl and a nonW—uml we
have Pr (EO # a). By Lemma 4.2(f) no such a is accessible from

2 and hence ¢ W—nm+11.
[0} 0
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. . . +1 . .
As to the converse implication, ROW-nm 1L implies Eo = 0

whence by Lemma 4.2(1) Pr (Zo R 20) which entails

Pr (ZOW-nmL) ergo Prm+l(I).

(b) follows immediately from (a).

(c) From T}—ﬂo # a one has by Lemma 4.2(f) EO non R a.
In particular EO # 0. But then by (a) and by Lemma 4.2.(c)
TF—Prn-l(I) which contradicts the assumption on the credibility

extent of T.

(d) follows from (c) of the present lemma and Lemma 4.2(cC)

and (h). . n

Now we have to do "the same" to the models Mi with i > oO.
From a straightforward rewriting of (1) - (3) with i instead of
0 we could however only extract an embedding into DT of the di-
agonalizable algebra on i generators which is free in the varie-
ty of diagonalizable algebras of height < n. To insure that the
extra relations required by the structure of Y be provable in T
we have to restrict the range of the Solovay function hi travel-
ling in Mi (and therefore the possible values of Zi) to a set of
nodes smaller than the whole of Mi' The relevant subset of Mi
can generally not be singled out by a condition decidable uni-
formly in i. (It can be done if the algebra » we are dealing
with is finitely generated.) We therefore use decidable approxi-
mations to this set which can be made uniform in i so that the
 model Mi is seen by hi as changing with the passage of time. The
approximating conditions on the set of nodes accessible to h
will be given the form of the requirement that these nodes be

expandable to models of a certain formula. The first variant of
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Solovay construction employing changing models is due to Jumelet
[27]. The models in Jumelet [27] dgrew; ours will diminish.

It will be important for the success of our enterprises
that the models stop changing as soon as it becomes clear that h
is going to leave 0 as was the case in Jumelet [27]. A farewell
to 0 however can only be bid at a nonstandard -moment and so in
the meantime we will have obtained the proofs of all thé senten-
ces needed to mimick the structure of ® because we only care
about standard proofs.

It should also be kept in mind that we do not want to embed
into BT the finiﬁely generated subalgebras of ®» in arbitrary un-
related ways. In fact we would like the embedding of the subal-
gebra of 3 generated by the first i + 1 <generators (in some
fixed enumeration of those) to prolong the embedding of the sub-
algebra generated by the first i generators. To achieve this a
kind of provable coherence between Solovay functions hi climbing
up models Mi with different i is needed. Recall that the model
Mi+1 is a refinement of Mi in the sense made precise by Lemma
3.7. Roughly speaking, each node of Mi falls into several nodes

of M We want £,
i+

R to be a refinement of Ei in the same sen-

1

se. Put formally, £i+l < Ei. Actually in our construction hi+1
will move step in step with hi’ that is hi+l(x) < hi(x). It is
to maintain this kind of synchronicity that the extra property
4.2(e) which the usual Solovay function does not seem to possess

is used.
Since the algebra » is positive, a positive numeration

v: w-{0} — 9 1is available (here we have only subtracted 0 from

dom v for technical convenience). Let {A(m)}mew be a AO enume-
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ration of the set of diagonalizable polynomials A(pl,pz,...)
that hit 7 of D when vi is substituted for p;- We rearrange this
sequence slightly by defining within IZ1 a new sequence

{D(m)}mew of polynomials with the help of an auxiliary AO func-

tion k(-):
(4) D(O) =7
(5) k(0) =0
(6) D(x+1) = 4(x) if (i) A(x)}, D(x) ;
(ii) A(X)F—L A[k(x)] and
(iii) o*a(x) is conservative over oL
= D(x) otherwise
(7) k(x+1) = k(x) + 1 1if D(x+1)}-L A[k(x)]

= k(x) otherwise
Thus {D(m)}mew 1s a sedquence of polynomials growing 1p F—L—
strength and k(x) points a finger at the element of {A(m)}mew

If one also recalls

which waits to be majorized by {D(m)}mew'

that any relation which holds in a diagonalizable algebra of
height n is conservative over oL then the following lemma is

trivial:

4.4, Lemma.

(a) IZlk-VX Vy [x <y — D(y)]——L D(X)]

(b) IZlf—Vx "o*D(x) is conservative over oli"

(c) For each Yy € w there exists an X € w s.t.

D(x) |-, A(y).
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(d) For each X € W there exists a y € w s.t.
D(x) = A(y).

Proof. Left to the reader. =

We now define the Solovay functions h(-:,-):
(8) h(0,x) =h_ (x)
(9) h(i+1,0) =0

(10)
h(i+l,x+1) = a 1if (i) a € Mi+1 ;
(ii) h(i,x) = h(i,x+1) ;
(iii) -h(i+1,x) R a ;
(iv) a < h(i,x+1) ;

0

(v) if h(i+l,x)
then D[g(x)] non|—-L 1Qa ;
(vi) for each b satisfying (i) - (v) in place

of a one has

Vz<x |Prf |z, £(i+1l) = b — Ty [h(i+l,X) R h(i+l,y) R E] -
— dw<z Prf [w, L(i+1) = a — 3Ty [h(i+1,x) R h(i+l,y) R E]
(vii) a is minimal among those c¢ that satisfy
(i) - (vi) in place of a (here "minimal"
refers to the natural ordering of inte-
gers)
= h(i+l,x) 1f no a satisfying (i) - (vi) exists
(11) £(0) = ¢

¢}
(12) L&(i+1) = limX_Aw h(i+l,x) if h(i+1,-) reaches a limit

= 0 otherwise
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Of course (vii) of (10) is Jjust another way to say that we
do not care what h(i+l1,x+1) is as long as it satisfies (i) -

(vi). The weakly monotonically increasing function g occurring

in (v) of (10) is Ao and will be defined later.

4.5, Lemma (IZ1)‘

(a) Vi Vx Vy |x <y —. h(i,x) = h(i,y) v h(i,x) R h(i,y)

(b) Vi Vx h(i+1l,x) < h(i,x)

(c) Yj Vi<j Vx h(j,x) < h(i,x)

() Vi &(i) = lim__ _ h(i,x)

(e) Vi Vx [h(i,x) R (i) Vv h(i,x) = £(i)

(£) Vj Vi<j &(j) < &(4)

Proof. (a) For i = 0, use Lemma 4.2(a) and (8) and for
i > 0 inspect (10) and apply induction on y.

(b) Note that since 0 < 0 the claim holds for x = 0 by
(9) and assume h(i+l,x) < h(i,x) ‘for (AO) induction hypothe-
sis. We shall | prove h(i+1l,x+1) < h(i,x+1). If

h(i,x) = h(i,x+1) then the induction step is trivial (see (ii)

of (10)). So assume h(i,x) R h(i,x+1).
Case 1. h(i,x) = 0

Since h(i,x) R h(i,x+1) we have by Lemma 3.7(f) that
there exists a node a € Mi+1 s.t. h(i+l,x) R a < h(i,x+1).
The existence of a node a satisfying in addition (vi) and (vii)
of (10) follows by the (AO) least number principle applied first
to proofs and then to nodes of Mi+1' Hence

h(i+l1,x+1) = a < h(i,x+1l) so we are done.
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Case 2. h(i,x) =0

For i > 0, proceed as in Case 1 but use Lemma 3.7(g) in-
stead of 3.7(f). For i = 0, recall that by Lemma 4.4 (b) we have
D(x) mnonf-, =¥ , all x, all a € M s.t. a”—nnl and hence

D[g(x)] non}—L 7¥_. Therefore by ILemma 3.7(d) there holds
D[g(x)] non|—-L 1@b for some b € M1 s.t. b < a.
(c) is proved with the help of (b) by (H1) induction on j.

(d) By Lemma 4.2(b), (8) and (11) pick an x s.t.
Vy>x h(0,y) = EO. By (a) and (c¢) Vy=2x h(i,y) = h(i,x) and the

claim follows by (12).
(e) follows from (a) and (d4d).

(f) follows from (c) and (d) without any induction. n

By (11) and Lemma 4.5(f) we can introduce a sentence £ = 0

as an abbreviation of any of the sentences

t, =0, Vit(i) =0 and 3i L(i) =0

4.6. Lemma (IZ1 + £ = 0).

(a) Vi Pr [2(1') R 2(?)]

(b) Vi VaeMi a”—ﬂﬁl A L(i) Ra —.

—. 1 Pr

L(i) = a — Iy [E(i) R h(i,y) R 5]

(c) Vi VaeM, aﬂ—uﬁl A L(i) Ra —. 1 Pr [2(7) # 5]

Proof. (a) By Lemma 4.5(d) and (e) we only have to prove

Pr |L(i) = E(Y)J. From ¢ = 0 we get by (11) and by Lemma
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4.2 (h) Pr [ﬂ 0) = 2(0)] whence by Lemma 4.5(f) formalized

Pr [e(i) = fz(I)J.
(b) Please note that the formula

VaeMi aﬂ-nnl AL(i) Ra —.

¢(I) =a — 3y |T(Iy R h(i,y) R 5]

is Ao(Zl) over IZ1 because ¢ # 0 1is equivalent to the Zl for-
mula 3dx h(i,x) # 0, the formula {¢(i) R a 1is equivalent to the
II1 formula Vx h(i,x) R a and the quantifier VaeMi is primitive
recursively bounded by the condition a”—nﬁl. In view of this we
shall apply induction on i.

For i =20 the claim follows by Lemma 4.2(e) and (11).
Assume that it holds for i and suppose a reductio that

L(i+1) R a and

Pr |£(i+1) = a — dy |Z(i+1) R h(i+1,y) R E]
Let ¢ € Mi be s.t. a < c (see Lemma 3.7(b)). By the (Ao)
least number principle we obtain a node b € Mi s.t.

L(i+1) R b <« ¢ and

Pr [£(i+1) = b — 3Jy |Z(i+1) R h(i+l,y) R B]

satisfying also the conditions (vi) and (vii) of (10) for all
large enoegh x. Note that {(i) R c.

Now if h(i,-) were to jump from £(i) directly to c then

h(i+1,:) would have to jump directly to b because all the condi-
tions (i) - (vii) of (10) would be satisfied (in particular, (V)
would hold because {(i+1l) # 0). This argument is formalizable

in IZ1 and so we obtain
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Pr [e(l—') =c —. dy [E(i) R h(i,y) R E] v L(i+1l) = b

Combining this with

pr |2(IF1) = B — Jy {e—(im R h(iF1,y) R B]

and with Lemma 4.5(b) formalized we get

Pr [2(?) =c — dy [e(i) R h(i,y) R E]

cbntrary to the induction hypothesis.

(c) follows immediately from (b).

Time is now ripe to define the primitive recursive function

g.

(13) 9g(x) ==z 1if (i) z < x ;

(ii) there exists an i € w and a node

aeM, s.t. a“—nnl,

Prf

and D[g(z)] non}—L 1Wa ;

z, (i) =a — Jy |0 R h(i,y) R 5]

(iii) z is minimal among those satisfying (i)

and (ii)

= x 1f no such z exists

4.7. Lemma (IZl).

(a) Vx Vy

X <y — D[g(y)]}—L D[g(x)]]
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(b) Vi Vx YaeM, |a|- oL A

A

A Prf |x, £(I) = a — 3Ty [0 R h(i,y) R E]

A D{g(x)] nonf—L o o Vy>x g(y) g(x)

(c) ¥y |g(y) # y — 3i Jaem, |a|-o"1 A

A Pr |[£(i) =a — dy |0 R h(i,y) R 5] A Vz D[g(z)] non}—L Y

Proof. (a) We clearly have g(x) < g(y). Now recall Lemma

4.4 (a).

(b) Suppose the antecedent holds. By the (AO) least number
principle find the least 2z < x satisfying the antecedent in

place of x. By (13) it is seen that Vy2z g(y) = =z.

(c) On inspection of (13) one sees that if g(y) # y then
for certain i € w, x <y and a € Mi the antecedent of (b)
holgs. Since by (b) we have that Vz>x g(z) = g(x) it is seen

with the help of (a) that Vz D[g(x)]}—L D[g(z)] and hence

Vz D[g(z)] non}—L ¥, g.e.d. "

4,.8. Lemma (121)‘

(a) £ = 0 —

— Vi Vx VaeF(i) |h(i,x) = 0 A D[g(x)] b2 > t(i) |2

(b) £ =0 — Vi VaeM, |ao"s A

A Pr |L(i) = a — 3y [o R h(i,y) R a

—. dx D[g(x)]y—L 1@8
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(c) £ =0 —

— Vi VaeMi aﬂ—mni A Pr [ﬂ(f) = E] —. dx D[g(x)]}—L 1@6

Proof. (a) From ¢ # 0 we have {(i) # 0. Consider the
z >x s.t. 0 =nh(i,z) # h(i,z+1l). By inspection of (v) of (10)
one has D{g(z)] non}-—L 1Qh(i,z+1) and from Lemma 4.7 (a) we get
D[g(z)]}—L 4. Now by Lemma 3.5(g) there holds h(i,z+1) 24

whence by Lemma 4.5(e) {(1i) | A.

(b) The proof is much the same as that of Lemma 4.6(b). We
proceed by (Ao(Zl)) induction on i. The case when i = 0 is im-
mediate by Lemma 4.2(e).

So we assume the claim to hold for i, deny it for i + 1

and seek for a contradiction. We have that ¢ = 0 and for a no-
de aeM, , s.t. a”—uni and a suitable z there holds
Prf |z, £(i+l) = a — 3Ty [O R h(i+1,y) R E] and

D[g(z)] non|——L w@a
Let ¢ € Mi be s.t. a < c¢c. By Lemma 3.7(e) one also has
D[g(z)] non|»—L 1TC
Note that by Lemma 4.7 (b) we have Vyxz D[g(y)] = D[g(z)] and
therefore a satisfies conditions (i) and (iii) - (v) of (10) for
all large enough x. Moreover, this fact is formalizable. By the
(AO) least number principle we can w.l.o.g. stipulate that a al-

so satisfies (vi) and (vii) of (10). As in the proof of Lemma

4.6(b) we obtain

Pr |L(i) = ¢ —. Jy |0 R h(i,y) Rc| v L(i+1) = 5]

whence by Lemma 4.5(c) and since
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1
|

Pr |£(i+1) — 3y {0 R h(i+1l,y) R 5]

one gets

al

Pr [E(f) = — dy [0 R h(i,y) R E]

which along with Vy D[g(y)] non[——L 1WC (this follows from

D[g(z)] nonk—L-wwc) yields the desired contradiction with the

induction hypothesis.

(c) follows straightforwardly from (b). |

4.9. Lemma. NgE"g is the identity function"

Proof. Suppose not. Then by Lemma 4.7(c) there would exist

a node a € M. s.t. a“—nnl,

Pr |£(i) = a — 3y [O R h(i,y) R 3]

and Vz D[g(z)] non|——L wwa
By Lemma 4.8(b) this would imply £ = 0 contradicting Lemma

4.3(4d). n

Next we define a mapping ° from the set of propositional

letters {p;} to QT by putting

iew-{0}
(14) p,° = D |p;
and extend it in the obvious way to every modal formula in these

propositional letters.
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4.10. Lemma. For each i € w and each modal formula

A(pl,...,pi) there holds

IS+ pr’ (1) |- A(py,---,py) | o D AP, - ;)

Proof. We execute induction on the  structure of
A(pl,...,pi). The case of propositional lefters is handled by
Lemma'4.5(f). The induction step is immediate for Boolean con-
.nectives.

We turn to o. Reason in IZ1 + Prn(I):

Suppose E(i)H—DA(pl,...,pi). Since | is AO this can be

formalized: Pr [é(i)H—DA(pl,...,pi)}. From Lemma 4.3 (b) we have

L # 0 so with the help of Lemma 4.6(a) conclude

Pr [e(T) APy, - pp) |
Now assume E(i)W-oA(pl,...,pi). By Lemma 4.3(b) £ # 0 so
from Lemmas 4.5(f) and 4.2(c) we get l(i)“—nnl. There exists a
n ,
node a € M, s.t. alFoyL, a“—A(pl,...,pi) and {(i) R a the-

refore with Lemma 4.6(c) one has - Pr [E(I) = 5] whence

2 Pr [£(1) nonﬂiA(pl,...,pi)J n
4.11. Lemma. If there holds A(vi,v2,...) =T for
A(xl,xz,...) a diagonalizable polynomial then
n - o
IZ1 + Pr(1) |- A(pl,pz,...)]
Proof. By the definition of the sequence {A(m)}méw the
equality A(vl,v2,...) =T implies that A(k) = A(pl,pz,..J

for a suitable k € w and hence by virtue of Lemma 4.4 (c) there

exists an m € w s.t. D(m)[——L A(pl,pz,...) so by Lemma 4.9
D[g(m)]}—L A(pl,pz,...) whence by Lemmas 4.3(b), 4.8(a) and
4.10
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n, — °
Iz1 + Pr (L)I—Izl + 0= 0f A(pl,pz,...) n

. *
Lemma 4.11 licenses us to define a mapping : rng v — ST

by putting

L F o - —
(15) (vi)" = p;" = &I |-p;
because if vi = vj then this lemma guarantees that

D - o o
T}——IZ1 + Pr (l)F—pi P

* .
We shall show that gives rise to an embedding of 9 into DT

4,12. Proof of Theorem 4.1 concluded.
*
Clearly rng is r.e.

Let 4(vl,...,vi) hit T in 9. Then by Lemma 4.11 we have

n - o
T}——IZ1 + Pr (l)}-[A(pl,...,pi)]
* R
}-A[(Vl) y oo, (V1) ]

Conversely, let [(Vl ,...,(Vi)*]. If it were not the
case that A4(vl,...,vi) = T then by Lemma 4.4(d) we would have
D[g(m)] non}—-L A(pl,...,pi) for every m € w. Hence for each m
there would exist a node a € M, s.t. a"—nnl,
D{g(m)] non}—L ¥, and a”—ﬂA(pl,...,pi). Since there are only

finitely many nodes in M, forcing o'l we can using Lemma 4.7 (a)

choose a single a for all m € w. By Lemma 4.10

Tl |A(Pys---,D;)
implies
THL(I) = a
whence by Lemma 4.8 (c) L = 0 contrary to Lemma 4.3(d). The
contradiction completes the proof of Theorem 4.1. n
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§ 5. The strong disjunction property and steady formulae

5.1. Definition. A formula A4 is steady if A4 non|——L L and

for each pair B, C of formulas

A, oBvVv ol > A4}, B or A4}, C

The definition of a steady formula bears a strong semblance
to the strong disjunction property in diagonalizable algebras.
An even tighter connection between these will be brought out in

Lemma 5.15.

5.2. Lemma. If A is steady and A}—L oBy V ... V oB_ then
for some i s.t. 0 < i <n we have A} _ B..
L "1

Proof. Use induction on n. For n =20 and n =1 the

claim holds by the definition of steady formulae. Let
A}—L oBy V ... vV BBV BB,

Then
AF—L o(aBy V ... V oB) V oB_ .

whence by the steadiness of A
A, ©By Vv ... voB or A\ B_ ..

Now apply the induction hypothesis to the former case. ]

5.3. Lemma. If a formula A is steady then o*a is conserva-

tive.

Proof. If o'2 were not conservative then we would have
n .
}—L ota — o'L for some n € w whence A}—L oL  which would

imply A}—L L since 4 is steady. A contradiction. n
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We work now towards an effective description of steady for-
mulae. To this end it will be convenient to think of each formu-
la 4 in F“(B) as the disjunction of a set ¥ of atoﬁs in An(z).
We shall introduce a preorder Q“(ﬁ) on A“(B). By analyzing the

preordered set obtained by restriction of Q“(ﬁ) to a certain

subset of ¥ it will be decided whether A is steady.

5.4, Definition. The binary relation Qn(ﬁ) on An(ﬁ) is de-

fined by putting

Bo"@®B) ¢ e nonf-, B — o7C

5.5. Lemma. Let K be a 3—model, let b and c¢ be nodes of K
s.t., c is accesible from b and give the (n,ﬁ)-characters of b

and c the names B and C respectively. Then B Q”(B) C.

Proof. Obvious. =

5.6. Definition. For 4 a formula we define the (n,B)—shadow
of A4 to be the conjunction of all formulas in Fn(ﬁ) implied by

A.

5.7. Lemma. If A4 € A’(d), m <n and B < d then the

(m,g)—shadow of A is an element of Am(g).

Proof. Trivial. n

5.8. Lemma. For B, C € An+l(3) one has B Qn+l(B) c iff
(i) the (n,g)—shadow of C is an (n,g)-possible world of B

and
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(ii) the (n,g)—possible worlds of C are among those of B.

Proof. (only if) is established by considering a rooted
L 4

model that forces B A ¢©C.

(if) Let K |FB and X _|-C. Graft K_ above the root of K .
1 2 2 1
Use (i) and (ii) to see that the resulting model forces B A ¢C.

5.9. Corollary. Q“(B) is transitive.

Proof. Follows immediately from Lemma 5.8. n

5.10. Definition. If a formula ‘A is in Fn(g) and
Fp 4 < W 7 with ¥ ¢ A" (B) then W 7 is called the
(n,ﬁ)-normal form of A. A formula A4 in Fn(z) is called
(n,ﬁ)—trimmed if letting \/ » Dbe its (n,ﬁ)—normal form one has

A}—L 1G for no G € 7.

5.11. Lemma. To each formula A in FD(B) there corresponds
an (n,ﬁ)—trimmed formula B s.t, A}—L B and BF—L A, The formu-

la B with these properties is unique up to L-equivalence.

Proof. Take B to be the conjunction of all such formulas C
in Fn(B) that AF—L C. Let | » Dbe the (n,ﬁ)-normal form of B.
If G € AH(B) and B}-L 1G then -G is a conjunct of B and hen-
ce G non € 7.

We leave uniqueness to the reader. u
s e n,>» > .
5.12, Definition. Let A4 € F (p) be (n,p)-trimmed and let

W 7 Dbe the (n,z)—normal form of 4. A formula E € ¥ 1is called

an (n,ﬁ)—bottom of 4 if E Qn(g) C for each C € 7. In this ca-
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se 4 is said to be (n,g)—bottomed.

The following lemma gives us a convenient characterization
of steady formulae along with an algorithm for deciding steadi-

ness.

5.13. Lemma. Let A4 be a formula in F“(ﬁ) and let B be the
(n,ﬁ)—trimmed formula which corresponds to A by Lemma 5.11. Then
the following are equivalent:

(i) A4 is steady;

(ii) B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>