Institute for Language, Logic and Information

THE CLOSED FRAGMENT
OF DZHAPARIDZE'S POLYMODAL LOGIC
AND THE LOGIC OF XZ;-CONSERVATIVITY

Konstantin N. Ignatiev

ITLI Prepublication Series
X-92-02

%
&
%

University of Amsterdam



The ITLI Prepublication Series

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella ] _Sequences with Simple Initial Segments

ML-90-06 Jaap van Oosten  Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
ML-90-07 Maarten de Rijke A Note on the lmcr%mtabﬂity Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx ~~ ~ ~~  Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jon{:, Duccio Pianigiani  Solution of a Problem of David Guaspari

ML-90-10 Michiel van Lambalgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet .

CT.90-01 John Tromp, Peter van Emde Boas Compuiation and Complexity Theory  pssociarive Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcdzar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs

CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL

CT-90-09 Roel de Vrijer Unigye Noi Forms for Combinatory Logic with Parallel Conditional, a case study in conditional rewritin
X-90-01 A.S. Troelstra Other Pr. ‘P’ﬂ’?“““o’“ Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version &
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev On the Complexitg of Arithmetical Interpretations of Modal Formulae

X-90-04 Annual Report 1939

X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy ~ Using the Universal Modality: Gains and Questons

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories

X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in [Ag+£,, revised version

X-90-12 Maarten de Rijke Bi-Unary Inte tabilitlLogic

X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's Property
X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on inea&[ﬁguc. .

1991 1P-91-01 Wiebe van der Hoek, Maarten de Rijke Logic, Semdnlics and Philosophy of Langauge Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics

LP-91-03 Willem Groeneveld Dynamic Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-06 Zhisheng Huang, Peter van Emde Boas_Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, van der Does The Semantics of Plural Noun Phrases

LP-91-08 Victor Sanchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic
LP-91-10 Johan van Benthem Logic and the Flow of Information

ML-91-01 Yde Venema AMathematical Logic and Foundations Cylindric Modal Logic

ML-91-02 Alessandro Berarducci, Rineke Verbru%ge On the Metamathematics of Weak Theories

ML-91-03 Domenico Zambella _ On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders :

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF
ML-91-10 Maarten de Rijke, Yde Venema Salﬂqt\"isl's Theorem for Boolean Algebras with Operators
ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

CT-91-01 Ming Li, Paul M.B. Vitinyi Computation and Complexity Theory Kolmogorov Complexity Arguments in Combinatorics
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitinyi How to Share Concurrent Wait-Free Variables

CT-91-03 Ming Li, Paul M.B. Vitanyi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity
CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence for Constraint Sets

CT-91-06 Edith S Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomg!cte Database

CT-91-08 Kees Doets L Levationis Laus

CT-91-09 Ming Li, Paul M.B. Vitinyi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
CT-91-10 John Tromp, Paul Vitinyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith Spaan  Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi  Reasoning about Termination of Prolog Programs

CL-91-01 J.C. Scholtes Computational Linguistics ¥ ohonen Feature Maps in Natural Language Processing
CL-91-02 J.C. Scholtes . Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

X-91-01 Alexander Chagrov, Michael Zakharyaschev Other Prepublications The Disjunction Property of Intermediate Propositional Logics

X-91-02 Alexander Chairov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of Intermediate Propositional Logics
X-91-03 V. Yu. Shavrukov Subalgebras of Diagonalizable Eebras of Theories containing Arithmetic
X-91-04 K.N. Ignatev Partial Conservativity and Modal Logics
X-91-05 Johan van Benthem Temporal Logic
X-91-06 Annual Report 1990
X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement
X-91-08 Giorgie Dzhaparidze Logic of Tolerance
X-91-09 L.D. Beklemushev On Bimodal Provability Logics for IT;-axiomatized Extensions of Arithmetical Theories
X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice
X-91-11 Michael aschev _ Canonical Formulas for K4. Part I: Basic Results
X-91-12 Herman Hendriks Flexibele Catﬁgor}alg Syntaxis en Semantiek: de proefschriften van Frans Zwarts en Michael Moortgat
X-91-13 Max I. Kanovich The Multiplicative Fragment of Linear Logic is NP-Complete
X-91-14 Max I. Kanovich The Horn Fragment of Linear Logic is NP-Complete
X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic, revised version
X-91-16 V.G. Kanovei Undecidable Hypotheses in Edward Nelson's Internal Set Theo:
X-91-17 Michiel van Lambalgen lndcpgndenc;. andomness and the Axiom of Choice, Revised ersion
X-91-18 Giovanna Cepparello . New Semantics for Predicate Modal Logic: an Analysis from a standard point of view
X-91-19 Papers gcsenlcd at the Provability Interpretability Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil., Utrecht University
1992 LP-9£81 ictor Sanchez Valencia Lambek Grammar: an Information-based Catcgorial Grammar
ML-92-01 A.S. Troelstra Comparing the theory of Rqrmsemauons and Constructive Mathematics
ow Graphs and their Semantics

CT-92-01 Erik de Haas, Peter van Emde Boas Olgrigct Oriented Application F
X-92-01 Heinrich Wansing e Logic of Information Structures .
X-91-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of X;-conservativity



" | Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

THE CLOSED FRAGMENT
OF DZHAPARIDZE'S POLYMODAL LOGIC
AND THE LOGIC OF XZ;-CONSERVATIVITY

Konstantin N. Ignatiev

Massachusetts Institute of Technology
Cambridge, Mass., U.S.A.

Received February 1992



Abstract

Dzhaparidze’s polymodal logic (referred in this paper as GLP) is an
important joint provability logic. It corresponds to the case in which the
powers of the theories grow so fast that every theory in the sequence proves
everything that the previous theories prove and also proves each sentence
unprovable in a previous theory to be unprovable in this theory. (Clearly,
theories in such a sequence — except, possibly, the first — cannot be recur-
sively enumerable). This logic was introduced by G.Dzhaparidze in [2], who
also gave an axiomatization and a decision procedure for it. In [3] the author
suggested a new approach to this logic and proved the fixed point property
and the Craig interpolation property for GLP.

In this paper we investigate the closed fragment of GLP. As usual,
there is a ordinal-indexed sequence of closed formulas (in the present case
its length is €9) which plays the main role in our reasoning. We introduce
all the standard notions connected with closed fragments (such as the uni-
versal model) and prove analogies of all the usual theorems. We also try to
give a general approach to these standard notions, for example, to give a
general definition of the ordinal complezity of an arbitrary modal logic. We
also consider the arithmetical complexity of (arithmetical interpretation) of
closed formulas.

Finally, we prove that the closed fragment of the provability logic for
¥;-conservativity predicate is isomorphic to bimodal fragment of GLP.
Thus, this closed fragment is decidable and its ordinal complexity is (ex-
actly) wv.
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1. Introduction.

The notion of w-provability , introduced by G.Boolos in [1]
for theories in the language of arithmetic, is defined as follows:
a sentence Q is w-provable in the theory T if theory Tu{-Q} is
w-inconsistent, i.e. it simultaneously proves =4(0), =4(1), .
mA(n), ... and 3x A(x) for some formula A(x). We obviously can
work with this notion in arithmetic using a 23-arithmetica1 formula
Pr?(-) that formalizes the above definition, provided that we have
some fixed provability predicate for theory T and it is 21.

It is easy to check that this predicate satisfies all the
usual conditions for the usual provability predicate, only we have
to consider provable Z3—completeness instead of the usual provable
Zl-completeness. Furthermore, if this predicate is Z3-sound, i.e.
if every w-provable Zs-sentence is true in the standard model, then
the usual Solovay completeness proof works for w-provability and
the provability logic for predicate w-provability (taken alone) is
exactly the Godel-Lob provability logic GL. This was also proved in
[1].

In [2], G.Dzhaparidze solved the next natural problem — the
Joint provability logic for ordinary provability and w-provability.
Moreover, Dzhaparidze studied an infinite sequence of (iterated)
w-extensions of the given theory and found the joint provability
logic for this sequence. So, this logic, which we call GLP and
which is the main subject of this paper, is formulated in the modal
language containing the infinite sequence of (unary) modal
operators: [0], [1], [2], ..., Inl, ...'. Sometimes we write o

instead of [0]. The logic is given by the following list of axioms:

1
We will be able to see soon, that it would be better to write
[1], [2], ««s « But we have no choice.



[n]1(A-B) - ([nlA-[nlB)
[n]A-[n]l[nlA
[n]1([n]A—A4) - ([nl]A
- [nJA-[n+1]4
<n>A - [n+1]l<n>4A
where the first three axioms are, of course, usual axioms of GL for
~ [n], and inference rules modus ponens (+~A, +~A-B = ~B) and
[0]-necessitation (~A 3 + [0]4). Of course, we can also apply
[n]-necessitation (by the fourth axiom).

In [3] the author considered a more general arithmetical
interpretation for GLP, based on an arbitrary sequence of
arithmetical predicates which must satisfy several natural
conditions. Maybe, however, a better way to deal with these matters
is to speak about theories, i.e. about the sets of arithmetical
formulas satisfying our predicates. The situation is not uncommon:
we often reason in arithmetic about provability in arithmetic,
although there are a lot of different (from the point of view of
arithmetic) predicates representing it. So, we must always keep in
mind that, when we say "theory", we mean some fixed provability
predicate which has been chosen for every theory considered. Since
we are going to deal with non-r.e. theories, we consider an
important invariant associated with each theory, the degree of the
theory, which 1is simply the arithmetical complexity of its
provability predicate, i.e. the minimal number n such that this
predicate is Zn.

It is now easy to introduce an arithmetical interpretation for

GLP. We consider a sequence of theories To, T1’ ceey Tn, ... such
that T ST (i.e. VQ PA-Pr_ rol —Pr_ fQl, where PA is Peano
k n

Arithmetic; we may take any other theory as basic of it, which is
sound and contains enough arithmetic to formalize our reasoning)
and deq(Tk)<deq(Tn) whenever k<n. This suffices for the
arithmetical soundness of GLP. In order to get completeness, we

have to require ”Tn to be Zde -sound. We call such sequences

g (T )
n



increasing sequences.
The previous paragraph shows that we often will have to write

something like Pr'_l_n and Zde
write Prn and Z(n) instead. Except in section 8, the reader can

g (T)" Since this does not nice, we will
n
suppose that some increasing sequence has been fixed and we are

considering it.

In this paper we consider the closed fragment of GLP, i.e. the
modal formulas containing no propositional variables (up to
GLP-provable equivalence). Let us consider an example here.

The well-known theorem of Kent asserts that for every n there
is an arithmetical statement Q which is not PA-equivalent to any
I -formula and such that PA-Q-Pr Q. Proofs of this theorem
usually use fixed points. But using the closed fragment of GLP, we
can give examples of such formulas Q without using fixed points.
Namely, it is enough to put Q:=Pro|'Pr1 ".l.'|'|/\Pr1 F1, where T =PA and
T1 is chosen such that deq(T1)>n, i.e. the arithmetical
interpretation of the closed formula 6:=[1]iAc[1]i. Obviously,
PA-Q-Pr_ TQl, which simply means GLP-6-06. We claim that Q is

not PA-equivalent to any 2(1)_1(=2degu_1)_1)-formula. Suppose not,

then =Q is PA-equivalent to some formula in T By the provable

1)’
Z  -completeness of T we  have PA+-Q —»Pr1 r-q1, or

(1 1
GLP+ -6 —[1]-68. We have:
GLP+n[1]1 v =ol1]1 - [1](=l1]1 v =ol1]1)
(*) GLP+a[1]1r > [1]1(-[1]L v =o[1]1)
GLP+ [1]1(al1]L v =o(1]1) A ol1]lL - [1]aoll]s

-[1](~[1]1)

-[1]1 (Léb’ s axiom)
GLP+—nl1]1 A ol1]lL - [1]L (by (*))
GLP+ol1]1 - [111
GLP+[1]1 (Léb’ s rule)



which is obviously incorrect.2

It is wellknown that such sentence Q cannot be constructed by
using the closed fragment of any other (known) provability logic.
So, the closed fragment of GLP is not without its uses.

The plan of this paper is the following: in section 2 we give
a brief summary of results about GLP. The reader can find all
~proofs in [3]. (As we noted above, the arithmetical completeness of
GLP was originally proved in [2]). In fact, we will not use most of
these results, except for the soundness results in theorems 2.6 and
2.11, which are quite routine.

In sections 3,4 we give a syntactic investigation of the
closed fragment of GLP. So, to read these sections the reader does
not have to know anything about GLP at all. Namely, in section 3 we
define a closed formula D(a) for every ordinal a<co, and prove a
kind of "monotonicity" theorem for this sequence. In section 4 we
prove that every closed formulas has a GLP-equivalent in a special
normal form. In particular, it will be shown that every closed
formula is a GLP-equivalent of a Boolean combination of some
formulas D(a).

In section 5 we introduce the universal model for the closed
fragment of GLP, a useful tool in the investigation of this system.

Section 6 is a digression. We discuss some general concepts
pertaining to the closed fragment of any modal system. In
particular, we'give a general definition of the ordinal complexity
of a modal logic or of its closed fragment.

In section 7 we consider the problem of the arithmetical
complexity of arithmetical interpretation of closed formulas. We
also consider this problem from an "internal" point of view. In

particular, we prove that if we add an additional predicate "Q is

zuote that for this proof we do not need the arithmetical
completeness of GLP. We can think of GLP as standing for the set of
arithmetically valid modal formulas, the only thing we need 1is that
certain fixed formulas (such as Lob’s axiom) are arithmetically
valid.



PA-equivalent t6~ é “El-formula" to our language, then (assuming
TB=PA) the closed fragment of the joint provability logic will not
change, i.e. will be isomorphic to the closed fragment of pure GLP
and thus decidable.

In section 8 we consider a very unexpected application of this
technique, the provability logic for Zl-conservativity. This logic
is still wunknown, but we prove that its closed fragment is
isomorphic to the closed fragment of bimodal fragment of GLP and

hence is decidable.

And in conclusion, we mention one unsolved problem. Note that
the proof of part 1)=24) of theorem 2.14, which is a basic theorem
proved in [3], uses the arithmetical semantics of GLP and thus
cannot be formalized in P4, but only in PA’:=PAU{PrfQl -Q|Q is an
arith. sentence}. Note also that all reasoning in this paper about
closed fragment of GLP wuse eo-induction and thus cannot be
formalized in PA, but only in PAu{the so-induction schema}. Since
this theory has the same theorems as PA’, a natural conjecture is
that several modal properties of GLP, such as the Craig property,
cannot be proved in PA. However, the author has no idea how to

prove it.

2. Dzhaparidze’s Polymodal Logic: Summary of Results.

We suppose the reader to understand that all our definitions
and theorems concerning arithmetical semantics for GLP are
"approximate", because they are formulated in terms of "theories"

instead of arithmetical predicates with certain properties.



2.A. Modal language and arithmetical semantics

Definition 2.1. A theory T of degree n (we write deg(T)=n) is
a set of é?ifhmetical formulas with an associated arithmetical
formula Pr(+) (with one free variable) such that:
1. Pr(-)ezn
~and for any arithmetical statements A4,B

2. PA- PrfA-Bl o (PrfAl -PriBl)
3. Aex_ = PA~ A-Prfa (provable I -completeness)
4. Aex , N=Prfal s Ne=4 (Z_-soundness)

5. PA—A » PA-Prlal,
and T is exactly set of arithmetical formulas Q such that PrfQl
holds in N.

The theory T is sound, if property 4 holds for all n.

Definition 2.2. A sequence of theories To, Ti,..., Tn,...

(finite or ipfinite) is an increasing sequence, if it satisfies the
following conditions:

1. deq(16)<deq(73)<...<deq(§‘)<...
2. for any statement 4 and n<k PAF—PrnrA1-»PrkrA1.

EXAMPLES:

(a) (see [1]) for any sound theory T the w-extension of T is
given by all theorems of T and all formulas of the form Vx Q(x), if
Vnew T+Q(n); we denote it T%;

(b) for any number n>0 the theory T: is given by all axioms of
PA and all true Zn-formulas?

CLAIM.
(a) for any sound theory T Tw is a theory and
deg (T°)=deg (T)+2;
(b) for any n>0 T: is a sound theory and deq(T:)=n;

3
Or if you like all true Hn X formulas.



(c) for any sound theory T the (infinite) sequence T, Tw,
w
() »... is increasing;
day TT, TZ, e, T:, ... is an (infinite) increasing
sequence.

Definition 2.3. Let £ be the 1language consisting of
prbpositiohal variables p,q,... ; Boolean connectives —,.1; modal
operators [il],i=0,1,... .We use the standard abbreviations for
A,V,2, and the following abbreviations:

<i>A := alil-A

oA := [0]4 04 := AvOA

OA := <0>4A [n]1*A := AA[nlA

o'A := AnoA <n>*A := Av<n>4
Consider an arbitrary sequence of theories To’ T1’ .o Tn.

(We do not specify the number of modal operators and the number of
theories; we assume only that each theory corresponds to a modal
operator). An arithmetical interpretation f is a mapping of
£-formulas to arithmetical sentences which commutes with Boolean

connectives and translates [n] by Prn, i.e. for every formula 4

£(Inl4) := Pr_Tf(a)1.*

Definition 2.4. The logic GLP is the minimal set of #-formulas
containing the following axioms and closed under the following
inference rules:

(in all axioms "for all n=0" is understood)

0. All tautologies of propositional logic.
[n](A-B) - ([nlA-I[nlB).
(n] ([n]A—>4) — [n]A.
[n]JA - [n+1]A.
<n>4 - [n+1]1<n>A.

LN e

4
As we noted in section 1, we will write Pr instead of PI‘T
n



Inference rules:
1.Modus ponens.

A ppr
2.—52 ({0]-necessitation)

Some theorems of GLP are:

5.[k]lA - [n]A. ks<n
6.[k]lJA - [nllklA
7.<k>A - [nl<k>A k<n
8.[n]([k]lA — A4)

Definition 2.5. The logic cLP® is the minimal set of
£-formulas closed under MP and containing the following axioms:
1. All theorems of GLP.
2. [n]lA - A, nz0.

Theorem 2.6. dnithmetical campleteneas of GLP.
Let IB'T1""’T;'"" be an increasing sequence. Then for any modal
formula A GLP+— A if and only if for every arithmetical
interpretation f PAw f(A).

Theorem 2.7. dnithmetical campleteness of GLE® .
Let TB’T1""’Tn"'° be an increasing sequence of sound
theories. Then for any modal formula A GLP—~4 if and only if

for every arithmetical interpretation f Nk f(A).

2.B. An auxiliary modal logic LN. Kripke semantics.

Definition 2.8. A model K=<K,R’,R',...,R", > consists of a
nonempty set K (the support of K), an accessibility relation R1 for
the modal operator [i] (0=<i=N), and a forcing relation ,
possessing the following properties:

1. for any i Rl is transitive, irreflexive and wellfounded;



2. x+[ild & Vy(xRiy—»yl—A)
If x+A we say that x forces A or A is true in x; a formula 4

is valid in a model K (K=4) if it is true in each node of K (VxeK
XK A).

Definition 2.9. The logic LN is the minimal set of £-formulas

containing the following axioms and closed under the following
rules:

Axioms:
0. All tautologies of propositional logic.
1. [nl1(4A-B) - ([n]A-([nlB)
2. [n]([n]A—>4) - [n]A }05“‘”
3. [k]lA - [n]l[k]A 0<k=n=N
4. <k>A - [nl<k>A 0=k<n=N
Inference rules:
1. Modus ponens.

A
2. TnTA ([n]-necessitation).

Definition 2.10. An LN-model K is a model <K,R°,R!,...,RY,r>
such that:

k n n k
Vk,n: k<n A xRy A (xR'z v zZRx) - 2ZRy.

Theorem 2.11. LN is complete with respect to LN-models, i.e.
for any modal formula A LN+ A if and only if A is valid in all
LN-models. So, LN is decidable.

2.C. Connections between LN, GLP and GLPw.

In this subsection it will be convenient to consider the

restricted variant of our language, with modal operators [0], [1],

., [N] only, where N is arbitrary.

Definition 2.12. An LN-model K is A-complete, where A is a

10



modal formula, if
Vk VB: [klBSA Vn: k<nsN ( K= [k]B - [n]B ).

Definition 2.13. For any modal formula A we define the modal
formulas a4, a*A and M(4) as follows:
8A =\ [4104,]...04]4

0=f <1 _<...<i =N
1 2 n

a2*A := Anaa

M(4) := A\ 2" ([k]1B—[nlB).
[k1BSA, k<n=N

Theorem 2.14. Consider an arbitrary increasing sequence of the
theories To('), Tl(-),... TN(-). Then for any modal formula A the
following statements are equivalent:

1) GLP+ A.
2) For any arithmetical interpretation f PAw f(A).
3) for any A-complete LN-model K XK= A.
4) LN+—M(A) -A.
So, GLP is decidable.

Definition 2.15. For any modal formula 4 we put

H(A) := \ ([n]lB—B)
[n1BSA

Theorem 2.16. Let To’T1""’Tu be an increasing sequence of
sound theories. Then for any modal formula A which does not contain
[N] the following statements are equivalent:

1) GLP”+A.

2) GLP+H(A) -A.

3) GLP+ [N]A.

4) for all interpretation f Nk f(A).
So, GLP” is decidable.

11



2.D. Fixed point property and the Craig property.

Theorem 2.17. Fixed paint propenty fon GLP.
Let A(P;qi.qz,...,qn) be modalized in p (i.e. every occurrence of
p in A lies in the scope of [k] for some k). Then there exists a
fdrmula F(qi,qz,...,qn) (a "fixed point” of A) such that
GLP+ o(p & A) & o(p & F)
GLP+ o' (p ¢ A) & o'(p & F)

Theorem 2.18. The logics LN, GLP and cLp’ possess the €raig

3. The Fundamental Sequence of Closed Formulas.

Before reading this section, we ask the reader to read the
beginning of section 7, up to corollary 7.4. In all formulas in

sections 3,4,5 o ranges over Z(o)-formulas, or if desired over

Zu' -formulas.
(0)

We begin with certain necessary operations on ordinals (In

this section ordinal denotes an ordinal below eo).

Definition 3.1. It is well-known that any ordinal o«>0 has the
following normal form:

Al 7\2 A
a=w + 0w +...+wn, AZA Z...2A .
1 2 n
We put ( Bz0 ):
A1 Az A-l
@ mw o +w o+ + 0"
d@) := A
n

12



AL
«P .=

min{y>a|d(7)28}
)"
Definition 3.2. It will be convenient also to use the

following "linear" notations:

Q@) := o

B(a,B) := P
and their iterations:

@) = %) := «

d"(a) := d(d(...d(a)...) ( n times )
Q%) := QQ(...Q)...) ( n times )

w :=Q(1)

n .

B(a) := «

B(ao,al,...an) i= B(ao,B(al,...B(ah_l,an)...)

We summarize here several elementary properties of these

operations:

Proposition 3.3.
a) a <a and d(a )zd(a)
b) o'P>a and dca*®)=p
¢) aPsa and d(afB)aﬁ
d) if B <a<B then B s« and d(a)<d(B)
e) (87)*4P)p
f) if y>B, then B(B(«,B),¥)=B(a,7)

We turn to closed formulas:
Definition 3.4. For any modal formula A the formula fA is the
result of raising each [n] in A to [n+l1]. We also will use the

operator "1" for sets of formulas, models, etc. 1”4 denotes 1}...14

(n times).

Definition 3.5. For each ordinal « we define the formula D(a)

13



by induction on a:
D(0) :
D(a) :

L
oD(a )VID(d(a)).

It is easy to prove that if &« =0 and a#1, then
GLP+D(a)e>!D(d(a)). Here are some examples of formulas D(«):

D(O) = 1 D(2w+n) = [0]1™([0][1]avI1]1)
D(1) = [0l D(3w) = [0]([0J[1]avI1]a)vI1]L
D(2) = [o0llolL D(W?) = [1]1[1]1

D(n) = [0]™s D(20°) = [0][1]1[1]avi1][1]L
D(w) = I[1l1 D™ = [11™:

D(w+1) = [0]1[1]1L D(”) = [2]1

D(w+n) = [0I™[1]1 DY) = (110211

D(2w) = [O0][1]avIl]L D(wn) = [n]1

In fact, we will prove below that each closed formula is
GLP-provable equivalent to a Boolean combination of D(a)s. But the
sequence {Da|a<_e°}, is not decreasing (D(w)=[1]L does not imply
D(w+1)=0[1]1). However, if we put

Definition 3.6.
H(e) := oD(a) ( = D(a+l) ),

then the sequence {H(oc)la«:o} is decreasing. It follows that for
any n the sequence {TnH(a)|a<e°} will also be decreasing . In the
next section we will ©prove that each <closed formula is
GLP-equivalent to a Boolean combination of formulas of the form
1"H ().

Definition 3.7. Let 7 be an ordinal. For any formula A4 we put:
A7A := a(-lD(y) -4).
If T is a sequence of ordinals, we put
A<>A = A ..

14



Bregys *= B ALA.

We write l"=<'a'1, cen ,7n><a, if and only if 71<a A 72<oc A ... A 7n<oc.

Thus using definitions 3.5 and 3.6 we can write

Al Az A
Hw +0 + ... +0™ =2 oL,

" where as usual A 2A 2...2A .
1 2 n
Lemma 3.8. Let B =a<B. Then there is a sequence of ordinals
r<d(g) such that H(a)=ArH(B').

Proof. Induction on «. The basis a=B8" is trivial (take I'=<>).
Suppose that B <a<B. By proposition 3.3.d), B s« <a and
d(a)<d(B). By the induction hypothesis for a°, H(a )=A,H(B") for
some I'’<d(B), and therefore
H(a) = oD(«) = a(H(a )VID(d(a))) = Ad(a)l‘l(a-) = Ad(a)Ar.,H(B-) =
S = AFH(B-).
where T:=I'"*<d(a)> < d(B). QED.

Theorem 3.9. If a<B, then GLP+uoD(a) —D(B).
Proof.

In this proof ~ A4 denotes GLP+ A.
The case a=0 is easy. Suppose that o«>0.
Induction hypothesis:
for all a<B<s, +~oD(a) »D(B)
Our goal is to prove that
if a<é, then +oD(a) -D(8)

CLAIM. If a<B<S8, then
' 'l—'A'B'(Aao‘ -c) or +alD(B) —»(Aacr —0).
( The first formula is the box of the second ).

15



Proof. We have:
=0 A o(-fD(x) »0) - [1]-c
- [11(-fD(a) »0)
- [111D(«)
- foD(a)
- 1p(B),
because by the induction hypothesis, +~oD(«) -»D(B). Thus,
— atD(B) - (a(-lD(a) -c) —a).
QED.

COROLLARY. If T'<B<S8, then
|—AB(A1.0~ —-0c) or +alD(B) —»(Aro- -0).

Proof is trivial.

Now we can prove that +aoD(a) -»D(8). Since
D(3)=aD(57)vID(d(3)),
we consider two cases:
Case 1. a<s . Then by the induction hypothesis,
+~oD(«) -»D(8"), hence (by o-necessitation)
+oD(«) »oaD(a) »oD(87) »D(8).
Case 2. & =a<8. By lemma 10.9, H(a)=ArH(6-). where I<d(3).
Thus, it is necessary to prove that
+aD(d(8)) — (AH(8) -H(5))
but this is a consequence of corollary above, because I'<d(8)<s.

The theorem is thus proved.

16



4. Normal Forms of Closed Formulas. The Main Theorem.

Let GLPB be the logic LN + {nD(a)-aD(B)|a<B<eo) +
{oL > ([nli|new} + a new inference rule ( +~4 » 1A ). As we proved
above, GLPOSGLP. In fact, GLP is conservative over GLPO with
" respect to clased formulas and we will prove this shortly; but it
is essential for us to use in the following reasoning GLPo instead
of GLP. So, for the remainder of this section + A denotes GLPOP-A.

Corollary 4.1.
a) For any new and a<B +1"H(a) -»1"H(B).
b) If « =0 and a#1, then ~D(a)—!D(d(a)).

Proof. Easy.

Lemma 4.2.
a) For any a,B
—-1D(B) - ( H(a) & H(«P) ).
Moreover, if B>0 and a°B=0, then
 +AD(B) - ( H(a) & L ).
b) For any «,B
—aMH(w) - ( HB™®) - H(B) );
moreover, if B=0, then '
—alH(a) - ( HB™®) > 1 ).
c) For any «,B
— HVID(B) & D(a*F);
moreover, for a=0 and B>0
~ 10(8) & D(WP).
d) for any a and n<m
~ 1"H00) v 1"H(0) & 1"H(w).

Proof.

17



a) Evidently, F-H(a-B)-»H(a). Let 7:=a*B. Then we have:
+~oD(a) - D(7)
- H(y )VID(d())
( If B>0 and a-B=7-=0,
- pd(y)) )
+aD(d(7)) - ( H(a) - H(y) )
—-1D(B) - ( H(a) - HF))
( if B>0 and a'B=0,
- =f(a) ). QED.
b) By the previous lemma,
M (@)=D(a*1) - ( HB™) -H( (7)™ ) )
but (B*%)" @ = ((g*%)* @y~ (8 @) = g o g
(here we have used proposition 3.3.f) ), hence
. '._H((B+a)-(a+1)) - H(B)
and we are done.

If B=0, we have: (g*%)~(®*V

=0 and since a+1>0, by the

previous lemma,
M (a)=A1D(a*1) - ( HB'®) - 1 ).

The proofs of the other claims are quite similar.

Definition 4.3. We say that a closed formula A is in normal
form, if A is a conjunction (possibly, the empty conjunction) of
formulas of the following form:

(H(e)) =HB))) v (H(e)SHEB)) v ... v (PH(a) -TH(B ) v

viI™abe v, v imEH),
n+1 m
(here it is supposed that m=0, but n=-1,0,1,...; we mean that if
n=-1, we consider the form
“H(a ) v 14H(a) v ... v 1™H(a ) ),

where
« € eou{m}.
H(w):=T,
d(0)=d(w):=w,
and

Vi=n ai>Bi

18



Vi<n d(ai),d(Bi) z B(BM,BHZ, ee ,Bn+1)
(in particular,
Vi<n @ = B(B‘,Bi*l,...,3n+1) ).

For instance, the formula o[1]1-[1]1 has the following normal

form:

ol1]li-0111 & (Hw) -H(0)) v (1H(w) -1H(0))

Theorem 4.4.
a) If A is a Boolean combination of the formulas of the form
1"H(a), then A has a GLPo-equivalent in normal form.
b) If A has a normal form, then for any n the formula [n]A

is GLPo-equivalent to a Boolean combination of the formulas of the
form 1"H(a).

Proof.
a) Here is the algorithm for reducing any such formula 4 to
the normal form:
Step 1. We write A in conjunctive normal form:
4 o AV {TH@, PH)
and fix an arbitrary conjunct B:
B = W {-1'H(a)|ieT} v W {1'H(B )| iea}.
(We have used here that two formulas H(a) and H(B) are always
comparable).
Put m:=max(Tuld).
Step 2.  Define « = for ie A\I'. Thus,
- B & W {tH()|isa} v ¥ {(1'H(B )] ien).
If A=p, we are done.
Step 3. Put n:=max(A). By lemma 10.12.d) we can define for
any ie{0,1,...,nN\A Bl:=0. Thus,
- B o W {-1'Ha)|i=m} v ¥ (1'HB)|i=n}.
Step 4. By lemma 10.12.c),
- 1"HB ) < 17 DB +1),
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- "HB ) v HB)  1"'D(B(B__ .8 +1))
=100 ) v TTHB ) v HB) o 1"PD(B(B_,8__ .8 +1))

for any j<n (including j=-1)

s . . j+1

- WAHB )| j<isn} & 1 D(B(BM,BM.-..,Bn_l,Bnﬂ)).

Hence, by lemma 4.2.a),

=2 W ATHB) | J<im) s (PHe) o PHE) )

- TJH(BJ) o TJH(B3) )
where
’ ’
d(aj),d(Bj) = B(BJ+1.BJ+2.o--,Bn_l.Bn'*U
(we must put aS :=0 whenever aj=oo, and B’J :=0 whenever BJ=0). Thus,
we can replace in B the ordinals aJ,Bj by a},BS. If we do so for
all j from n-1 to O, we can write B in the form:
- B o W GUEG@)|i=m) v W {(1'HB!) | isn).
where for any j<n
, , ’ , ’ ’
d(aj),d(Bj) = B(Bj+1’Bj+2"'"Bn-l’Bn+1)

(we put a’:=a , B’:=B ).

n n n n
In conclusion, if for some j a}sBS, by corollary 10.11 + B.
Therefore, we can assume oc3>B; for any j=n. Thus, we have reduced B

to normal form.

b) Suppose the formula A has a normal form. Evidently, we
can assume that A contains one conjunct only:
(*) A = \t'HEe)-1'HEB) v\ A1 EH)
i 1 1
0=i=p n<i=m
LEMMA.

- 0A & H(B(BO’B1”"’Bn+1))'
( if n=-1, -~ oA & H(0)=o1 ).

Proof. The case n=-1 is trivial. Suppose that n=0.

As we proved in the proof of claim a),
i
YA H(Bi) « D(B(BO’B1’BZ""’Bn-1’3n+1))’

0s=Si=np

so the part "« " is proved.
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To prove the converse implication we will decrease each ai as
much as possible; namely, as we noted above
a = B(Bi,Bm,---.Bnﬂ).
hence, it is sufficient to consider the case

@ = B(Bt’31+1""’Bn+1)’ i=n; ai=0, n<i=m.
But now by lemma 10.12.b),
() - e, ) - (PH@) - t'HB) ), osisn
- TiH(oci) - 1) , n<i<m

because for i=n
oz1 = B:(aiu).
Using (**) we can eliminate from A all disjuncts of the form
-uTIH(ai). except H(ao). Thus we obtain
H A e =He) vVHEB) VIHB) V... v T"H(Bn),
where
ab = B(BO’B1""’Bn+1)'
But we already noted above that
-
~ \/1'HB) < D(B(B,B,,...,8+1)) = D(a);
o=y ! 0’ 1 n ()
thus,
- A & -uH(ao) v D(Bo) = nD(oco) —»D(ao),
and by Lob’s axiom

- DA © uD(ao) = H(B(BO,BI,...,B;I)).

Using the lemma and corollary 7.4, one can see that if 4 has

the normal form (*), then
F k1A o\ PHGe) SPEE) v AMEE) v EG),

0=i=n, i<k n<i<k
where
x = B(Bu’Buu""’Bn*l)’ k=n; x=0, k>n.

This completes the proof of the theoren.

Corollar.yA 4 S
a) Each closed formula is a GLP-equivalent to a Boolean
combination of some formulas of the form TnH(a).

b) Each closed formula is a GLP-equivalent to a Boolean
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combination of some formulas of the form D(a)

Proof. GLP+ 1"H(a) & D(Q"(a+1)) by corollary 10.11.b).

c) if A has a normal form and A is not the empty
conjunction, then GLPwA.

Proof. One should use lemma 10.14.1 and the simple fact that
for any o the formula H(a) 1is arithmetically false (i.e.
GLP® wH(a)or GLPY—-H(a) ). We will give an alternative proof of
this fact in the following section using the universal model.

.d) For any closed formula A GLP+—A s GLPOF-A.

Proof. d) 1is a trivial consequence of c¢), because if
GLPOH-A. then by the previous theorem A has a GLPO-equivalent in
normal form which is not the empty conjunction. But we can prove
this without arithmetical arguments.

Obviously, it is sufficient to prove that for any closed
formula A GLPOF-[k]A-[k+1]A. By the previous theorem, we can
assume that A has the form (*). Here we consider the case k<n only.

By corollary 7.4, we must prove that

k k+1
- 1 H(B(Bk'Bk+1’°"'Bn+1)) -1 H(B(Bk+1,...,Bn+1)) :
vt (H(ak)-aH(Bk)).
or, if we put 7:=B(Bk+1,...,Bn+1), B:=Bk and @ = (this is
sufficient),

- HBY) - HBIVHE(Y).
but this holds by lemma 4.2.b). QED.
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5. The Universal Model.

Definition 5.1. We define the universal model U:
a) Informal definition. For any cc<£:0 we define the model ‘Ua:
‘Uo consists only of one node O.
Suppose that { ‘UB | B<a } are already constructed. Here

is a picture of ‘ua:

¢— The model U ‘UB
B<a

o,i. €— The
R
& M model Tud

AN

(o)

This node becames
the bottom node of ‘Ua

and we put U := U{Ua|a<eo}.
b) Formal definition.

U := <U,R°%R',...,R*,...>,
where
U := { <@, ... > | 1) vi<n @ #0 A d(ai)¢0 A cculsd(ai)
2) d(e )=0 v a =0 };
K n n
<cco,a1,...,an>R<Bo,Bl,...,Bm> e
1) Vi<k f.V.1=Bi
2) ak>Bk
3) Vizk, i<m B“1=d(Bi).
a denotes <a,d(a),d2(a),... ,dn(oc)>, where n:=maa:{i|a‘,‘ (x)>0}.
( 0 := <0> )
0 .1 n
U :=<U ,R,R,...,R,...>,
« a
where
Ua := <a°,a1,...an>eU | o <o }.

Thus, the universal model looks like a tree. The "trunk" of
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this tree will be called "the main axis"

consists of nodes of the

form &, oz<co and relations Ro; it has a lot of branches, each of

them has the same structure (but uses Rl),

Proposition 5.2.
a) U is an LN-model.

b) <a ,a ,...,0 ,...2K"4 & <a,.
o1 n n

etc.

..o A

c) If k<n, <ao,a1,...ak>|-T"A o OrA.

Proof left to the reader.

Proposition 5.3. For any ue‘ua awD(a) < a=a.

Proof. Induction on «. Observe:

D(a) = aD(a’) v 1D(d(a))

Here oOD(a” ) is true

if & <B<a , then d(B)<d(a)

o * and proposition 5.2.b) )

\ Here both disjuncts are false.

Corollary 5.4.
a) <oco,.. OFH(a) o o So

b) <& ,...,0,...>2KF"H(a) & « =«
(o] n n

( by the induction hypothesis )

A/ }Here TD(d(a)) is true, because

( we also use the induction hypothesis

Proof. a) by the previous lemma; b) by proposition 5.2.b).

Theorem 5.5. For any closed formula A
U=A (and also if and only if Va arA4).
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Proof. By corollary 9.15.b), GLP-A < GLPO»—-A.
Part 1. GLPOl—A s> U=A.
Since U is an LN-model, we need to check three facts:
1) U=oL-[nlL
2) UY=oD(a) -D(B) whenever a<B
3) U=4 > U=tA.
" The first fact 1is trivial (arolL u=6), the second is a
consequence of lemma 5.3 and the third is a consequence of
proposition 5.2.b).
Part 2. U=A » GLPov-A.
Suppose that GLPOHA. We can assume that A has the normal
form; let B be a conjunct of A:
B = V1tH@)-THEB) v\ -t'H@).

R 0=i=n n<i=m
If n=-1, OwB. Assume that n=0. Let a;:=B(Bl,B“1,...Bn+1), where
i=n. Evidently, aiza;. Using corollary 11.4, one can prove that
AI - < ’ ’ s
) ao ao,ai,...,an>l+B,
and thus a;b'-A. QED.

In fact, we have proved that if A is in normal form and A4 is
not the empty conjunction, then UwA, and therefore GLPOH-A and
GLPrA. We also have proved that every non-provable (in GLP or
GLPO) closed formula is false in some node on the main axle. This.

allows us to give the following natural definition:

Definition 5.6. The trace of the closed formula A4, denoted by
tr(A), is the set of ordinals a < €, such that aA.

As usual, trace "conversely commutes" with all Boolean
connectives (i.e. tr(AvB)=tr(4)ntr(B), etc.); the trace of a
formula is empty if and only if the formula is provable in GLP and
so defines (closed) formula uniquely.

However, traces do not have to be clopen in the order

topology. For example, tr([1]i)={e>0|« is 1imit} which is obviously
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closed, but not open. One consequence is that there is a sequence
of formulas (for example, ﬂ[l]i,ﬂl,nzl,nsl,...,Dnl,...) such that
the intersection of all their traces is empty, but GLP does not
prove any (finite) disjunction of them, which 1is obviously
impossible for finite sequences. This non-compactness is our price
for the restriction to the main axis.

However, we have several beautiful properties of traces

instead (they will be obvious after section 7):

Proposition 5.7. For any closed formula A,
(a) A e Z?P if and only if tr(A) is downward closed and
clopen (in order topology);
(b) A e H?j if and only if tr(A) is upward closed and
clopen; L o
(c) 4 ex" if and only if tr(A) is closed;
(d) Ae H?I if and only if tr(A) is open;

(e) Ae A‘:”’ = gtF

A if and only if tr(A) is clopen;

For example,

tr(a’[1]11) = tr(al1]L) v tr(l1]1) = {a|ww} U {e>0|a is a limit} =
= {«|azw},

this set 1is closed downward, but not open, it is only closed.

Therefore, this formula is in . but not in m

6. A Digression: on the Ordinal Complexity of Modal Logics.

Definition 6.1. A modal formula is closed, if it contains no

propositional variables, for instance: 1, o1, [1]1, [1]oL, etc.

In the next section we are going to give a full description of
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the "closed fragment of GLP", i.e. a description of the closed
modal formulas up to GLP-provable equivalence. However, before we
undertake this investigation it 1is necessary to discuss some
general concepts connected with provability logics and their closed
fragments.

Let us begin by considering several examples.

The first is the usual G&del-L&b provability logic GL, in the
language with only one modal operator o. Assign to each natural
number new the closed formula Cn:=u"L. As G.Boolos proved in [4],
each closed formula is GL-equivalent to a Boolean combination of
the formulas Cn, new. Furthermore, one can note that the sequence

. . C1’C2""’Cn"" , NEW
is decreasing, i.e. GLl—Cn —»Cm whenever n=m.

Next consider Carlson’s bimodal provability logic CSMls. This
logic formalizes provability in two r.e. extensions of PA such that
one of them contains the other and is reflexive over it. Thus the
modal language contains two modal operators o=[0] and [1] (Visser
in [S] writes A and o respectively) and the logic contains the
schemas:

gAd-[1]4
and
[1]1 (04 -A).
Note also that CSMll- [i]A-[jl[i]lA for any i, je{0,1}.

Now for any ordinal o below wz, i.e. a=n+w.m, we define the

closed formula
c, == [11"d".
(It is supposed that o’4=4, etc.). In [5] it is proved that
(Ca|a<w2) is a decreasing sequence and any closed formula is a
Boolean combination of these formulas.
We can easily generalize this example by considering a

sequence of r.e. extensions of PA (finite or infinite) To’T1""

)
There are many notations for this logic : PRLZF,... . Ours is

due to Visser [S].
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such that Tn contains Tk and is reflexive over it whenever k<n. If

there are N theories, Nsw, we denote the joint provability logic

csr::"’. Thus, G’L=CSM;1) and csu1=csrt:2’. If we define for a<w"
lk lk--]. 11 1O
Ca := [k] "[k-1] ...[1] "[0] "1,
wﬁere a = i°+w.11+wz.i2+...+wk.ik, the same properties as above
will hold.

Thus, it is natural to speak about the ordinal complexity of
these logics. But how to give a natural definition of this notion
for an arbitrary provability 1logic (such that the ordinal
complexity of CSM:N)is w") ? One way is to use ordinal-indexed
decreasing sequences with the corresponding properties. However,
many questions arise, for example: why must any set of closed
formulas possessing certain properties and linearly ordered by
derivability in our logic be wellfounded ? Moreover, GLP might not
have an ordinal complexity on this proposed definition. (How can we

compare [1]1 and ol1]L ?)

Now we can give our definitions: (L denotes any provability
modal logic or its closed fragment; in the last case "formula"

below means "closed formula")

Definition 6.2. We say that L is wellfounded if there is no
infinite sequence of modal formulas Ab’Ax""’An"" such that for

any i Ai is L-consistent, i.e. Lr+ﬂA1 and L+~ A,‘*°A1,f

Definition 6.3. We define the partial order P=<P,<> associated
with L as follows:
where equivalence means "L-provable equivalence", P is the
set of equivalence classes of all L-consistent modal formulas;
if a,b are equivalence classes and Aea, Beb, then
o d&:e¢L%BaOL
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Trivially, L is well-founded if and only if 7 is.
Henceforth we will denote modal formulas and their equivalence

classes by the same letters.

Definition 6.4. Let P be a wellfounded partial order. The
ordinal complexity of P 1is the supremum of ordinals £ such that
" there exists a P-linear sequence of elements from P of length £:
{ p,|a<€ }, Va,B<€ ( a<B » P,iPg ).
Given a well-founded logic L we can now define the ordinal
complexity of L as the ordinal complexity of the associated partial

order.

The main question now is how to calculate ordinal
complexities. We will use the following simple lemma (below £

denotes an arbitrary limit ordinal):

Lemma 6.5..Let P=<P,{> be an arbitrary partial order. Suppose
that there exists a sequence of elements from P {aa|a<§} ordered by
ordinals < § such that the following three conditions hold:

1.(linearity) if a<B, then aa<aB;
2. (unboundedness) there is no xeP such that for all « aa<x;
3.(density) if x<{y, then there exists a s.t. aa<y, but aa(x.

Then P is wellfounded and its ordinal complexity is €.

Proof. For any xeP we define a(x)ef€ as follows:
a(x) := min { a<€ | %u{x }.

(This set is non-empty by unboundedness). Suppose that x<{y. We
claim that a(x)<a(y). Indeed, linearity implies that a(x)sa(y) and
if a(x)=a(y), then { oa<g | aa«{x b= { g | a {y }. The last
equality 1is impossible by density. So we have proved that
a(x)<al(y).

But this -property of a immediately implies that ? is
wellfounded and its ordinal complexity is =£. On the other hand, by

the definition, the ordinal complexity is =£. Thus, the lemma is
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proved.

Theorem 6.6. As above, let L be an arbitrary provability
logic. Suppose that there exists a sequence of L-unprovable
formulas {Da|a<§} ordered by ordinals < & such that the following
three conditions hold: ( Ha:=nDa; A—B means L+ A-B):

1.(linearity) if a<B, then L'_nDa—)DB;

2. (unboundedness) for any formula A, if for all o<€ Har-A,
then L+ A;

3.(density) for any formula A and <€, if for all a<C Har—A,
then u*Dcl- A. (For fixed L we will call it C-density; one can

regard unboundedness as €-density).

Then L is wellfounded and its ordinal complexity is €.

Proof. Let P be the associated partial order. Define a, for
a<€ to be the equivalence class of wDa. We claim that all
conditions of lemma 6.5 hold. Indeed, linearity and unboundedness
are trivial. In order to prove density suppose that A<B (i.e.
L+~B-%4), but aa<A (i.e. Ln—A—»O-aDa, or Hal—‘lﬂ) whenever aa<B

(i.e. Ln—B—»O-Da , or Har—-:B). Let B be minimal such that aB-{A. By
density, u*DBn—-nA, hence (using necessitation) un*DB=nDB=HB»—u-|A,
hence we get HBt—-aB and thus aB<B and aB<A, contradicting the

definition of B.
Now we can conclude that the ordinal complexity of P as well
as L is €. QED.

In the case of GL we can define Dn:=nn.1.. Now linearity and
density are trivial, unboundedness is a consequence of the modal
completeness of GL with respect to finite models. In the general
case of CSM“I" we can define Da:=ca and, using modal completeness,
prove all necessary properties of these formulas (In fact, for N<w
unboundedness in the case of CSM":) is exactly w"-density in the

case of CSM “:) ).
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Conclusion. The ordinal complexity of (the closed fragment of)

(N)
CSM 1

is exactly wN.

Now we can consider our formulas H(a),D(a) from the point of
view of applying theorem 6.6. The first condition — linearity - is
theorem 3.9. Unboundedness is obvious, because for any modal

- formula A which does not contain [i] with i=N we have
GLP-A & u[N]1=H(w“)h-A;
density for closed formulas is a simple consequence of the last
theorem. Thus, we have proved the theorem:

Theorem S. The ordinal complexity of the closed fragment of

GLP is €, (or Oy in the case of GLP with only N modal operators).

Conjecture. For any ordinal §<co and for any modal formula A
if for any a<{ GLP+H(a) —-A, then GLP+—H(Z)AD(Z) —A.

If the conjecture holds, the ordinal complexity of GLP is €,
It seems that the best way to prove this statement would be to

introduce models for GLP which similar to the universal model.

However, this seefis rather difficult.

7. A Hierarchy of Closed Formulas.

Let us introduce classes of closed modal formulas Zn. Hn, B,
Z;, ﬂ:, Ai, B: (where L is an arbitrary modal system) for every nz0
as follows:

Definition 7.1. 20, 21, e zn, ... are the minimal sets of
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(closed) modal formulas such that for any (closed) modal formulas
A, B and for any nz0

1. 1,1 € Zo.

2. if A, B e Zn , then AAB, AVB € Zn;

3. if Ae X, then 4, -4 e X ;
n n+1

4. [nlA € En.
Furthermore,
N = (-4 | AeZll};
n

w
"

{A | A is a Boolean combination of Zn-formulas};
and for any modal system L
{ A | 3A'ezn s.t. L—AA’};

M‘_
"

n H

ni = { A | 3A’eﬂn s.t. L-Ae4A’ Y},
A =t amt

nL n .n . .. .

= { 4 |3Ne§\st.LhAeM’L

Lemma 7.2. If A € Zn, then LN+ A-[n]A.

Proof. By the definition, we can consider A as a positive
Boolean combination of the formulas of the form =[k]A for k<n and
[k]A for k=n. All these formulas obviously satisfy the lemma. Now
it is enough to note that the set of formulas A4 such that

LN+ A—[n]A is closed under disjunctions and conjunctions.

Corollary 7.3. If L=LN or GLP,
(a) if A e z"n then L (A—[n]A) A (RnA—[n+1]-4);
(b) if Ae rr"n then L+ (A—[n+1]4) A (=4 -[n]-4);
(c) if A€ A2B" (nz1), then Lv(A—[n]4d) A (~A—[n]=A);

Our goal now is to prove the converse statement in each case
(a)-(c) for L=GLP. But first, let us prove another useful corollary

which we already used in section 3:

Corollary 7.4. Assume, as above, L=LN or GLP. If B e A:, then
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L+~ [n]l(pvB) < [n]pvB.

Proof. By corollary 7.3.(c),
L~ B - [n]lB and L+ =B - [n]-B.
Hence, L+ [nlpvB—-I[n]l(pvB). On the other hand,
L~ =B A [nl(pvB) - [n]-B
- [nlp.
QED.

In the sequel we will be interested only in the classes Ef‘LP, HiLP

GLP GLP
A", B .
n n

and A°LF=p
n

’

In particular, we will prove that they are decidable
CL¥ So, we often will omit GLP and write T, nm,

Now we are going to introduce "the extended universal model"

V, which, intuitively, is U plus one "infinite" node, corresponding

to the standard model of PA. We also will define its restrictions

V1' Vz, ey Vn such that Vo will be exactly "the main axis" (of

V), ‘l/1 is V plus all its "immediate" branches, etc. Intuitively, Vn

is a kind of "universal model" for Bn_1 (or An).

Definition 7.5.
v := <v,R°R,....R,...>,

where
Vo= { <@ e, | vi ahlsd(al) }
and mi range over ordinals less than or equal to eo.

We define d(e ):=¢ .
) 0

S «
<a°,a1,...,an,...>R<B°,Bl,...,Bm,...> (e
1) Vi<k ai=Bi
2) ctk>Bk
3) Vizk Bl+1=d(Bi) (i.e. <Bo’B1""’Bm”“>EVk+1 — see
below)
a denotes <a,d(a),d*(a),...,d"(a),...>.
Vn = { @0, ,..> €V | Vizn a£=d(a1_1) } (nz1).
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-]
(We will not consider Vn as a submodel of V). Obviously Vv = U Vn.

n=1

Comparing definitions 5.1 and 7.4 one can note that if in
section 5 we took our universal modal to consist only of finite
sequence of ordinals, we now take it to contain only infinite
sequences. Namely, all the old sequences in U are now terminated
with an infinite sequence of zeros. We have also added some
sequences of the form

<e ,&

LA [something below eol, 0, 0, ...>

and only one essentially infinite sequence e°=<e°,eo,...>. So, we
will use proposition 5.2 and corollary 5.4 for V without any
changes. We should also mention the following almost obvious fact

(we will not use it):
Lemma 7.6. For any closed formula A GLPUP-A = EOL-A.

Proof is left to the reader.6

Now we are going to define a topological structure on every
set Vn as well as on the whole of V. We give the following
definition:

Definition 7.7. For every nz1, the topology T on Vn is given-
by the following (clopen) base:
{a | ar4}, where A ranges over Bn—f
Analogously, the topology T on V is given by the following
(clopen) base:

{a | akA }, where A ranges over all closed formulas.7

6
It is completely trivial using theorem 2.16. The reader may
wish to consider hoy_tp prove it without using arithmetic.

-
Note that Vn is not a subspace in V b T In V.
n
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We will need two facts about these topological spaces: 1) they
are compact, and 2) the clopen sets listed above are exactly the
clopen sets in these topological spaces. Proofs are quite similar

for all cases, so, we consider the Vn only.

First of all, we give an equivalent definition of our
topology:

Lemma 7.8. The topological space Vn can be given by the
following subbase:
1. { L R RNY NIVRRRE - 4 | LR }
2. { N R NEEEFL NIVRRPE L 4 | @ <a }
(where i<n in both cases).

Proof. In topological terminology, we have defined two
topological spaces and have to prove that identity map is a
homeomorphism.

Part 1. Fix an arbitrary formula 4 € E%—1' Our goal is to
prove that for any a4 there exists a set &, containing a, open
in sense of lemma 7.8 and such that Vbed bk A. Note that if A is a
conjunction (disjunction) it is obviously enough to prove this fact
for each conjunct (disjunct). Now the normal form theorem for
closed formulas immediately implies that it is enough to consider
the cases 4 = TiH(a) and A = -ﬂ‘H(a), where i=n-1. Now use
corollary 5.4. (b).

Part 2. Here we shall prove that for every set mentioned in
the statement of lemma 7.8 there exists a modal formula in Bn_1
which is true in exactly this set. According to corollary 5.4.(b),
it is enough to consider the formulas fHIa) and ﬂPH(a).

Thus the.lemma is proved. Note that this lemma immediately
implies that V; is Hausdorff.

Consider now the set of ordinals Seo with the natural (order)
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topology (the subbase consists of all sets of the form {a|aSB} and
(a|a>3}) and denote this topological space by &. It is well-known
that & is compact. Every sequence in V; is uniquely defined by its
n first elements, so we can consider Vn as a subset of
& :=6xEx...x€ (n times). Moreover, according to the definition of

the Tychonoff product and lemma 7.8, Vn is a subspace of §&".
Lemma 7.9. V; is closed in €".

Proof. Inspection of definition 7.5 shows that it is enough to
prove that the relation d(B)<a is open, i.e. that {<a,B>|d(Bo)<ao}
is open in 62. Indeed, suppose that d(ﬁb)<“5’ Consider the set

0 :=0n0
1 2
where

0, : {<a,B>|a>d.(Bo)).
0, := {<a,B>|B <B=B }.
Then O 1is open and <a0,Bo>eO§{<a,B>|d(B)<a}. (We have used

proposition 3.3.d))

Now we can easily prove the theorem:

Theorem 7.10.
(a) V (Va)' is Hausdorff and compact;
(b) set A eV (Vn) is clopen in V (Vn) if and only if

there exists closed modal formula A (a formula A in B
n

’

-1
respectively) such that A = { aeV (Vn) | a4 }.

Proof. (a) follows from lemma 7.9. (as we noted above, the
proof for V does not differ from the proof for V;). (b) is

immediate consequence of the following simple topological lemma:
LEMMA. Let X = <X,T> be a compact Hausdorff topological space

and let y be a collection of clopen sets that is a base for X. Then

every clopen set is a finite union of sets in ¥.
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PROOF. Let A be an arbitrary clopen set. It is well-known that
every compact Hausdorff space is regular (Ta)’ so for every point x
in A there is an open set Ox such that erXSA. (We have here used
that X\A4 is closed) Since ¥ is a base, we can assume that Oxe;r.
Since A is compact (4 is closed and X is compact) and 4 = Uxerx,
there exists a finite subset D of A such that A = U _0 . This

xX€D x
proves the lemma.

So, we have proved theorem 7.10. The following theorem is

exactly the statement that V is compact in modal language:

Theorem 7.11. Let T be an arbitrary GLP-consistent set of
closed formulas. Then there exists aeV such that a+TI (:= VAel

ar+A4). If T is maximal GLP-consistent, then any such a is um’que.8

Proof. Let l"={A°,A1,...}; since V 1is the universal model, for
each new the set Kn:={o,eV|a|-/\isnA!) is not empty. Of course, K°2K1
2Kz2... . Since each Kn is clopen and V is compact, for some a,
aenlele. Evidently, aT.

The second part of our statement (which actually expresses
that V is Hausdorff) is left to the reader.

Now we are ready to work with ¥V and Vn. The following
technical lemma is the main tool we use to investigate the

hierarchy of closed formulas in GLP:

Lemma 7.12. For every nzl and for every closed formula B the

set { a e Vn | ar[n]'B } is open in Vn.

8 . .
a does not have to be on the main axis ( V1)' This is the
explanation of some "strange" properties of traces. See the

discussion at the end of section 3.
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Proof. We may assume that B is in normal form (definition 4.3)
and, moreover, that B consists of only one conjunct. Thus, we can
write B in the form B = A v 1™X, where 4 € B . By corollary
7.4,

+~ [nlB & Av [nlfx
- [nI'B & Av [nI"X =4 v 1"'x.
{aer | ar-[nl'B} = {a e |ard}u{a eV | 10" }

It is enough to prove that the second set is open, because the
first is clopen. Suppose that

o= <o ,a,...,a dle ),d@ ),...> - 10X

n-1
Consider any bel/n of the form:

b=<B.B,,....B_.dB_),d°B_),...>
where cc;_l < Bn_'1 = « . It remains to prove that b-1"0'x,
because the set of possible b is obviously open. By proposition
5.2.(b), or1"0’X implies d(« )+o'X and brf"a’X if and
only if d(B _)+o'X. But by proposition 3.3.d), d(B_) < d(«_ )
and thus by the definition of our model &(an_lm%(sn_l) and we

are done.

Now fix an arbitrary arithmetical interpretation f; f is based

on the increasing sequence To' T,... . Recall that }:(o):=2

1 deg(T )’
q(o

etc.

Theorem 7.13. Let A be any closed modal formula.
(a) The following conditions are equivalent (nz1):

. 4 e B*,
&b

. Aed .
n

1
2
3. f(A) e Bz:_l).
4. f(4) e A, .
5. GLP+~ (A - [n]A) A (a4 - [n]-A).
(b) The following conditions are equivalent (nz0):
1. Aex .
2. f(A) e z‘(’:).

3. GLP+ (A - [n]JA) A (1A - [n+1]-4).
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Proof.

(a). Implications 123, 132, 334, 234, 435 are trivial. So
we only have to prove 531. Suppose that 5 holds for some formula A4.
Then GLP+ (A—[nl*A) A (-4e(nl*-4). Applying lemma 7.12 we get
that { aeV_ | a4 } is clopen in ‘I/n. By theorem 7.10.(b), it

" coincides with { c:;elln | a+-B } for some B € Bn_ In particular

tr(4) = tr(B). By an elementary property of tracest GLP+ A>B and
we are done.

(b). As above, we only have to prove 3s1. Suppose 3 holds.
From the previous paragraph we know that AeBn. Thus (using the

normal form theorem) we can suppose A has the form:
k

A= /1\=1( B vic vatD ), BeB , C,»D €E , GLPHC v-D .
Let
k n
A =/1\=1( B, fo1 ) e L.
We claim that GLPo—-A(—)Al. Suppose not. Obviously, GLPl—A1 —A. So,
there exists a<e° such that al-—AA-Idi, which implies that for some i
ar -|B1 A ﬂTnCi A -lTnDl.
Or
d™ @)+ ~C A =D,
Since GLP:—*Civ-nDl, there exists B such that Bl—-nCi A Di. Because
D €T, this implies d"(@)RB, or B<d’(a). Put
b := <a,d(a),d?(a),...,d" " (a),B,d(B),d%(B),...>.
First, we have br <1"C A 1°D . Secondly, by the definition of
our model, &Rnb, which implies bl--aBl (equivalently, &l—-.Bi).
Recall now that GLP—A-[n]A and o+ A. This gives br A4, but
bl—-.BiA-rTnclATnDi. Contradiction. Thus GLP—A«>4 €Z and we are
done.

Corollary 7.14.
(a) 7 = ( A| GLPH(4 > [n]A) A (A = [n+1]-4) };
(b) T = { A| GLPH(A4 — [n+1]14) A (<A - [n]-4) };
(c) B"=8%7 = ( A | GLP-(A — [n+1]14) A (<A - [n+1]~4) }

n+1
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The last corollary can be generalized in different ways. We
will mention the.gehéralization we shall need we will need in the
next section. Define the Zo-interpolation property of two formulas
A,B:

4> o 3oeZ GLP- (A-c) A (c-B).
Of course, 4 € Z?m < A-»A. We leave it to the reader, using the

same technique as above, to prove the following lemma:
Lemma 7.15. A-»B > GLP—<1>"A-0’B
In fact, we will need the following simple corollary:

Corollary 7.16.
( BAD(AI>'B) ) » ( Av <1>'B ).

Now we would };ke to consider our hierarchy inside PA, or as
would be better, inside T° (we always can suppose that 76=PA). The
question is then the following: Let Z“u(rQ1) be the arithmetical
formula (predicate) representing the relation Qezfg), i.e Q is
Tb-provably equivalent to some Zun-formula. We can regard Z(n) as
a new (unary) modal operator. Can we prove that

PA- £ (M) & Pr fQ—Pr Q11 A Pr f~@-Pr_ =011
(where Q 1is the arithmetical translation of a closed modal
formula), or in the modal language,

=4 & o(d-[nld) A a(4-(n+1]-4) ?
(compare with corollary 7.14.(a)).

To prove this, we need the following lemma, a simple

generalization of the statement 331 of theorem 7.13.(b):

GLP
9Perhaps, weé ~ ‘should have written something 1like A —»0 B. But

we will not use any other analogous notions.
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Lemma 7.17. For any closed formula A and aeV

aro0(A-[n]A)Aa(-A—>[n+1]-4) = 30~e>:n a+a(Aea).
Now we can prove the theorem mentioned above:

Theorem 7.18. Let A be a closed formula and f an arithmetical
interpretation based on To’T1"" , Q:=f(A). Then

ol r o1l T F4011
PA- Z(n)( Q') o Pro Q—»Pz'n QN A Pro -nQ--»Pz'ml -Ql1,

(where £ (TQl) := 30eX Pr Qesel).
(n) (n) O

Proof. The part " 5" holds for any arithmetical formula Q. So
we will prove the converse statement.

Let M be a model of PA, M=PA. By the theorem 7.11, there
exists a unique aeV such that for any closed formula 4
(*) R M=f(4) & arA.

Suppose that /M»=Prorf(A)—»Pr'“"_)"(t‘l)-"l A Pror-l_f(A)—>P£+{-1f(A)“.
By (*), aro(A-[nldA)ao(~A—-[n+1]1-4). By lemma 7.17, there exists a
formula ceX (whence ,f(o)ez(n)) such that aro(4¢<>c) and by (*)
M.-Proff(A)Hf(oﬂ. By the definition of I _, /nn=>:(n)(l'f(4)1).
This completes the proof of the theorem.

Thus, we can express in our modal language great many
additional modal operators. Actually, we have given proofs only for
z (n)(rQ1), but now the reader can believe that the same is true for
the Z (o)-interpolation predicate, and many other analogous
predicates. It is much more interesting and less trivial that, in
some special cases, we can express the Zl-conservativity predicate.
Our last section deals with this, perhaps the most beautiful,

application of Dzhaparidze’s logic.

41



8. The Logic of Zi-conservativity.

Let Ti, T2 be arbitrary theories in the language of
arithmetic, and I' be a set of arithmetical formulas. We say that T2
is TI'-conservative over Tz’ if every arithmetical statement in T
which is provable in.T2 is also provable in T1’ If T is decidable
and the theories T1’T2 have natural provability predicates

PrT ,Pr'_r », We can consider the arithmetical formula representing
1 2
this relation:

.= Y , Tyl
Conservr(Tl,Tz) := Vyel' ( PrTz 7! - PrT17 ).
Of course, we can use this predicate for the arithmetical

interpretation of the modal language £(o,>) (where b is a new
binary modal operator); i.e. we translate A>B as
Conservr(PA+A,PA+B). As usual, the provability logic for
F'-conservativity ( or the logic for TI'-conservativity ) is the set
of those modal formulas every arithmetical interpretation of which
is provable in PA. ‘

In (6] the logics of Zn-conservativity for nz3 and the logics
of ﬂ;-conservativity for nz2 were found. Recall also that
ﬂl-conservativity~qo;ncides with relative interpretability, so the
logic of ﬂl-conservativity is also known. But the logics of 21— and
Ez-conservativity are still unsolved problems.

In this section we give an axiomatization and a decision
procedure for the closed fragment of the logic of Zl-conservativity
by reducing it to the closed fragment of the bimodal fragment of
GLP. We also prove that the converse reduction is also possible.

Let Z£(»;o,[1],[2],...) be a modal language containing an
infinite set of unary modal operators o=[0],[1],[2],... and a
binary modal operator . We consider the following arithmetical
interpretation of £: ApB is translated as "PA+B is Zﬁ—conservative
over PA+A", DA 1is translated as "A is provable in PA", [1]4 is

translated as "PA+-1A4 is not Zl-sound", or, equivalently, "4 is
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provable in PA plus all true Zz-formulas", and [n]A for nz2 are
translated by an arbitrary increasing sequence of the strong
provability predicates.

We will not introduce here any specific modal system for £.

So, we write rfﬁ ;f the (modal) formula A is arithmetically valid.

Our basic theorem is the following:

Theorem 8.1.
a) For any modal formula A,

— [1]JA & gA v a(-4A>p-AA-DA).
b) If A,B are closed, then

— APB & O(AA[1]'-B) - <I1>B.

To prove this theorem we need to prove several

Zl-conservativity principles.

Theorem 8.2. The following list consists of arithmetically
valid modal principles:
Al. AvC A B>C - AVB»C
A2. A>B = ( OA4 - OB )
A3. AbB A B>C - ArC
A4. o(A-B) - AvB

M. ApB — AAOC b BAOC
A5 . <I>A b A

P. <1>(A»B) — AvB

42", APB - ( <I>A — <I>B )
C. <1>A - TPA

D. Ab(BACA) - ( ©A - <1>B )

Proof.
Axioms Al-A4 together with the axioms of the pure provability
logic GL form the pure conservativity logic CL (see [6]). The
arithmetical soundness of the axioms M.,AS‘,P*,AZ*,C is quite
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simple. So, we will prove the arithmetical soundness of principle
D.
We will prove it in the language with quantifiers on
Zl-formulas and with the Rosser orders <,{, where
3x60(x) < EIxal(x) Ix ( So(x) A Vys=x -.al(y) ),
3x6°(x) £ 3x61(x) Ix ( Go(x) A Vy<x -|61(y) ).
Here are four arithmetically valid principles of <,{:
R1. A{B — A{B
R2. A{B - A
R3. AVB — A{B v B<A
R4. A{B — =(B<A)
Of course, we can write in our language:
<1>4 := Vo ( 0(4d-0) - ¢ )
AbB := Vo ( o(B—c) - o(d-c) )

Reason in PA. Suppose that
(1) A>BAOA
and =<1>B. Then there is o such that
(2) o(B —oc)

(3) a0
We define Zl-formulas p and S as the fixed points:
p := o(d- -p)o
S := o4a(4A- -p)
w¢ have:
p — o(d- -p) R2
(4) p—oOp pez1
p—0O-A o two previous formulas
CA— -p
o —pVS R3
o(BACA »S) (2) and two previous formulas
o(4-S) (1)
o(S - =p) R4
(5) o(A- -p) two previous formulas
o(A- -p) - pvS R3
S - ¢ R1,R2
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(6) p three previous formulas and (3)
o-A4 (4), (5), (6)

Corollary 8.3. The following modal principles and inference

rules are arithmetically valid:

Bl. A>B - (AAm)>(BAm) by M, and Al-44
B2. <1>*ApA by 44,45
B3. if +~A-mn, then
+ APB <> A>pBAm "e" by A3, A4
" =" by Bl
B4. if ~B-9A, then
— APB & ( QA-<1>B) “>" by D
ne_
o-~A - A>B by A4
<1>B - AvB by C
B5
a). oA & (=4)pL "e" by A4
""" by A2
b). [1]A < A v =( =Ap-AA-DA ) by B4.

Proof of theorem 8.1.

a) has been already proved ( B5b) ).

b) Let A,B be closed formulas. Evidently, to prove the
theorem it is sufficient to consider the case when A,B do not
contain p. Thus, by corollary 7.16 there exists a closed formula
trezo such that

~ BAO(-4v<1>'B) - ¢
o — =4v<1>'B

Or, if we put m=-c,

(1) - AA[117-B - =@
(2) — BAT — O(AA[11%-B).
We have:
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A>B > (AA[11%-B) v (4A<1>*B) b B

< (AAT11%4B5B) A (4A<1>*BbB) Al

< AA[1]"<B > B B2

&> AA[1]7-B > Ban B3 and (1)

& ( O(4AA[11%4B) > <1>(BAm) ) B4 and (2)

& ( O(AA[117-B) - <1>Bam ) corollary 7.4.

& ( O(AA[117B) - <1>B )
(since - ©(AA[1]1%-B) - Om and ~On-m).

This concludes the proof of the theorem.
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Abstract

Dzhaparidze’s polymodal logic (referred in this paper as GLP) is an
important joint provability logic. It corresponds to the case in which the
powers of the theories grow so fast that every theory in the sequence proves
everything that the previous theories prove and also proves each sentence
unprovable in a previous theory to be unprovable in this theory. (Clearly,
theories in such a sequence — except, possibly, the first — cannot be recur-
sively enumerable). This logic was introduced by G.Dzhaparidze in [2], who
also gave an axiomatization and a decision procedure for it. In (3] the author
suggested a new approach to this logic and proved the fixed point property
and the Craig interpolation property for GLP.

In this paper we investigate the closed fragment of GLP. As usual,
there is a ordinal-indexed sequence of closed formulas (in the present case
its length is £9) which plays the main role in our reasoning. We introduce
all the standard notions connected with closed fragments (such as the uni-
versal model) and prove analogies of all the usual theorems. We also try to
give a general approach to these standard notions, for example, to give a
general definition of the ordinal complezity of an arbitrary modal logic. We
also consider the arithmetical complexity of (arithmetical interpretation) of
closed formulas.

Finally, we prove that the closed fragment of the provability logic for
¥;-conservativity predicate is isomorphic to bimodal fragment of GLP.
Thus, this closed fragment is decidable and its ordinal complexity is (ex-
actly) w¥.
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increasing sequences.
The previous paragraph shows that we often will have to write

something like PrT and Zde Since this does not nice, we will

n g(Tn) )
write Prn and Zun instead. Except in section 8, the reader can
suppose that some increasing sequence has been fixed and we are

considering it.

In this paper we consider the closed fragment of GLP, i.e. the
modal formulas containing no propositional variables (up to
GLP-provable equivalence). Let us consider an example here.

The well-known theorem of Kent asserts that for every n there
is an arithmetical statement Q which is not PA-equivalent to any
T -formula and such that PA-Q—Pr_ TQl. Proofs of this theorenm
usually use fixed points. But using the closed fragment of GLP, we
can give examples of such formulas Q without using fixed points.
Namely, it is enough to put Q:=Pr0rPr1rL11APr1rl1, where T =PA and
T1 is chosen such that deq(T;)>n, i.e. the arithmetical
interpretation of the closed formula 6:=[1]iAol[1]i. Obviously,
PA»—Q—»PrPArQ", which simply means GLP+6 —o6. We claim that Q is

not PA-equivalent to any 2(1%4(=Zdegua)_1)—formu1a. Suppose not,

then -Q is PA-equivalent to some formula in Z By the provable

(1’
T -completeness of T we have PAP—ﬂQ-ePrquQT, or

(1) 1
GLP+ -6 —[1]116. We have:
GLP+-[1]11 v =ol1]l1 - [1]1(-[1]1 v =o(1]1)
(*) GLP+=[1]11 - [11(-[1]1L v -ol1]L)
GLP+ [1]1(a[1]1 v =al1]l1) A ol1]lr - [1]ol1]s

-[11(-[1]1)

-[1]1 (Lsb’ s axiom)
GLP+—Al[1]11 A ol1]l1 - [1]1 (by (*))
GLP+nol1]lL - [1]1
GLP+ [1]1 (L6b’s rule)



which is obviously incorrect.2

It is wellknown that such sentence Q cannot be constructed by
using the closed fragment of any other (known) provability logic.
So, the closed fragment of GLP is not without its uses.

The plan of this paper is the following: in section 2 we give
a brief summary of results about GLP. The reader can find all
proofs in [3]. (As we noted above, the arithmetical completeness of
GLP was originally proved in [2]). In fact, we will not use most of
these results, except for the soundness results in theorems 2.6 and
2.11, which are quite routine.

In sections 3,4 we give a syntactic investigation of the
closed fragment of GLP. So, to read these sections the reader does
not have to know anything about GLP at all. Namely, in section 3 we
define a closed formula D(«) for every ordinal a<eo, and prove a
kind of "monotonicity" theorem for this sequence. In section 4 we
prove that every closed formulas has a GLP-equivalent in a special
normal form. In particular, it will be shown that every closed
formula 1is a GLP-equivalent of a Boolean combination of some
formulas D(e).

In section 5 we introduce the universal model for the closed
fragment of GLP, a useful tool in the investigation of this system.

Section 6 is a digression. We discuss some general concepts
pertaining to the closed fragment of any modal system. In
particular, we'give a general definition of the ordinal complexity
of a modal logic or of its closed fragment.

In section 7 we consider the problem of the arithmetical
complexity of arithmetical interpretation of closed formulas. We
also consider this problem from an "internal" point of view. In

particular, we prove that if we add an additional predicate "Q is

2Not’.e that for this proof we do not need the arithmetical
completeness of GLP. We can think of GLP as standing for the set of
arithmetically valid modal formulas, the only thing we need is that
certain fixed formulas (such as Lob’s axiom) are arithmetically
valid.



2.A. Modal language and arithmetical semantics

Definition 2.1. A theory T of degree n (we write deg(T)=n) is
a set of Aarithmetical formulas with an associated arithmetical
formula Pr(+) (with one free variable) such that:
1. Pr(-)ezn

and for any arithmetical statements A,B

2. PA+ Prfa-Bl - (PrfAl »prfBl)
3. AeZ_ = PA+ A-Prlal (provable Z -completeness)
4. Aezn, Ne=Prfal = Ne=4 (Zn-soundness)

5. PA—A > PA-Prfal.
and T is exactly set of arithmetical formulas Q such that PrlQl
holds in N. S
The theory T is sound, if property 4 holds for all n.

Definition 2.2. A sequence of theories To’ T ,..., T,..

1 n
(finite or infinite) is an increasing sequence, if it satisfies the
following conditions:

1. deq(Tb)<deg(T;)<...<deq({1)<...
2. for any statement 4 and n<k PA»—PrnrA1-+PrkrAﬂ.

EXAMPLES:

(a) (see [1]) for any sound theory T the w-extension of T is
given by all theorems of T and all formulas of the form Vx Q(x), if
Vnew T+ Q(n); we denote it Tw;

(b) for any number n>0 the theory T: is given by all axioms of

PA and all true zn-formulas?

CLAIM.
(a) for any sound theory T ™ is a theory and

deg(T”)=deq(T)+2;
(b) for any n>0 T: is a sound theory and deq(T:)=n;

3
or if you like all true II formulas.

-1



Inference rules:
1.Modus ponens.
A

2.—52 ([0]-necessitation)
Some theorems of GLP are:

5.[klA - [nlA. k=n

6.[k]JA - [nllkl4A

7.<k>A - [nl<k>A k<n

8.[nl([k]lA — A)

Definition 2.5. The logic GLPw is the minimal set of
¥#-formulas closed under MP and containing the following axioms:
1. All theorems of GLP.
2. [n]A - A, n=0.

Theorem 2.6. dnithmetical campletenecs af GLP.
Let 76’71""'Tn"" be an increasing sequence. Then for any modal
formula A GLP+ A if and only if for every arithmetical
interpretation f PAw f(A).

Theorem 2.7. dnithmetical caompleteness of cL? .
Let Tb,Tl,...,Tn,... be an increasing sequence of sound
theories. Then for any modal formula A GLP A if and only if

for every arithmetical interpretation f Nk f(A4).

2.B. An auxiliary modal logic LN. Kripke semantics.

Definition 2.8. A model X=<K,R’,R',...,R", > consists of a
nonempty set K (the support of K), an accessibility relation R' for
the modal operator [i] (0=i=N), and a forcing relation ,
possessing the following properties:

1. for any i R1 is transitive, irreflexive and wellfounded;



modal formula, if
Vk VB: [k]lBSA Vn: k<n=N ( K= [k]B - [n]B ).

Definition 2.13. For any modal formula A we define the modal
formulas a4, a'A and M(A) as follows:
ah = N (1 104)...0i 14

0=<i <i _<...<i1 =N
1 2 n

a*A 1= AnaA

M(4) := A a*([k]1B~I[nlB).
[k1BSA, k<n=N

Theorem 2.14. Consider an arbitrary increasing sequence of the
theories To('), Tl('),... TN('). Then for any modal formula A the
following statements are equivalent:

1) GLP+ A.
2) For any arithmetical interpretation f PAw f(A).
3) for any A-complete LN-model K KA.
4) LN+—M(A) -A.
So, GLP is decidable.

Definition 2.15. For any modal formula A we put

H(A) := \ ([n]B—B)
[n]1BEA

Theorem 2.16. Let To’T1""’TN be an increasing sequence of
sound theories. Then for any modal formula A which does not contain
[N] the following statements are equivalent:

1) GLP”+—A.

2) GLP+—H(A) -A.

3) GLP+ [N]A.

4) for all interpretation f Nk f(A).
So, GLPY is decidable.

11



AL
a-B :

min{y>a|d(y)=B}
+B)-

(o

Definition 3.2. It will be convenient also to wuse the
following "linear" notations:
@) := o
Bla,8) := P
and their iterations:
@) = @) =«

d"(«) := d(d(...d(a)...) ( n times )

Q" () := QQ(...Q(a)...) ( n times )

w :=Q"(1)

n .

B(a) := «

B(ao,al,...an) = B(ao,B(a1,...B(ah_1,an)...)

We summarize here several elementary properties of these

operations:

Proposition 3.3.
a) o < and d(a )zd(a)
b) a*B>a and d(a+B)=B
c) o« Bz and d(a-B)ZB
d) if B <a<B then B =a and d(a)<d(B)

e) (g 4UB) g

f) if ¥>B, then B(B(«,B),¥)=B(a,7)
We turn to closed formulas:
Definition 3.4. For any modal formula A the formula 14 is the
result of raising each [n] in A to [n+1]. We also will use the

operator "f" for sets of formulas, models, etc. 1"4 denotes 11...14

(n times).

Definition 3.5. For each ordinal a« we define the formula D(a)

13



AF*<7> = A7AFA'

We write F=<71,...,7n><a, if and only if 71<a A 72<a A ... A7y <.
. n

Thus using definitions 3.5 and 3.6 we can write

n —
Hw +w°+ ... +0 )= A<A1,...,A 5oL,

n

where as usual A ZA =...2A .
1 2 n
Lemma 3.8. Let B-$a<B. Then there is a sequence of ordinals
r<d(B) such that H(oc)=Ar.H(B-).

Proof. Induction on «. The basis a=8 1is trivial (take I'=<>).
Suppose that g <a<B. By proposition 3.3.d), B =a <o and
d(a)<d(B). By the induction hypothesis for o , H(a_)=Ar,H(B-) for
some I'"<d(B), and therefore
H(a) = oD(«) = a(H(a )VID(d(a))) = A, H(a) = Ay(a)ir-HB) =
. . = AI..H(B ),
where I':=I""*<d(a)> < d(B). QED.

Theorem 3.9. If a<B, then GLP+oD(a) —»D(B).
Proof.

In this proof + A denotes GLPr A.
The case a=0 is easy. Suppose that o>0.
Induction hypothesis:
for all a<B<3, +oD(a) -D(B)
Our goal is to prove that
if a<8, then +oD(a) -»D(3S)

CLAIM. If a<B<8, then
'FAB(AaO‘—w‘) or I—ﬂTD(B)-—»(Aao‘—)cy),

( The first formula is the box of the second ).

15



4. Normal Forms of Closed Formulas. The Main Theorem.

Let GLPB be the logic LN + {nD(a)-aD(B)|a<B<eo} +
{oL > [nli|new} + a new inference rule ( ~4 3 14 ). As we proved
above, GLPOSGLP. In fact, GLP 1is conservative over GLP0 with
respect to closed formulas and we will prove this shortly; but it
is essential for us to use in the following reasoning GLPo instead

of GLP. So, for the remainder of this section +— A denotes GLPOF-A.

Corollary 4.1.
a) For any new and a<B +1"H(a) -1"H(B).
b) If « =0 and «a#1, then +~D(a)e{D(d(a)).

Proof. Easy.

Lemma 4.2.
a) For any «,B
—-1D(B) - ( H(a) & H(aP) ).
Moreover, if B>0 and a-B=0, then
\ —=atD(B) - ( H(a) < L ).
b) For any «,B
FalH(e) - ( HB™) - H(B) );
moreover, if B=0, then ’
aMH(e) - ( HB™®) 5 1 ).
c) For any «,B
— H(VID(B) > D(a'P);
moreover, for a=0 and B>0
- 1D(8) > D(W®).
d) for any a and n<m
~ 1H(0) v 1"H(w) & 1"H(a).

Proof.

17



- "B ) v IHB) o 1D(B(R_ LB +1))
=172 ) v T ) v PH(B) o 1"PD(B(B_.B_ .6 +1))

for any j<n (including j=-1)
- W ATHB) |j<i=n} o PDBB, 8 ... .8 B +1)).

Hence, by lemma 4.2.a),

— o W (HB) [J<isn) o ( T"H(aj) o TJH(aS) )

- (PHB) o PHE) )
where
d(a;).d(B’J) z B(BJ+1,BJ+2,... B _,»B *1)
(we must put a;:=m whenever aj=m, and B;:=0 whenever BJ=O). Thus,
we can replace in B the ordinals aj,Bj by a;,BS. If we do so for
all j from n-1 to 0, we can write B in the form:
B o W {'HG) |ism} v W (1'HE)) |isn).

where for any j<n

d(«]),d(B)) = B(B| .8 v B ,B +1)
(we put o’ :=a , B':=B ).
n n n n
In conclusion, if for some j a}sBS, by corollary 10.11 +— B.

Therefore, we can assume a3>33 for any j=n. Thus, we have reduced B

to normal form.

b) Suppose the formula 4 has a normal form. Evidently, we

can assume that A contains one conjunct only:
(*) a = \/VH@)SVHEB) v\ At He)
0=i=n n<i=m
LEMMA.

- oA & H(B(BO’B1"°"Bn+1))’
( if n=-1, ~ BA & H(O0)=oOu1 ).

Proof. The case n=-1 is trivial. Suppose that nz0.

As we proved in the proof of claim a),

~ \ 1'HB) > D(B(B,B,.B,,---.B,_ B 1)),
0=<i=n

so the part "« " is proved.

20



To prove the converse implication we will decrease each « as
much as possible; namely, as we noted above
o = B(B B .....B+1),

hence, it is sufficient to consider the case

@ = B(Bi’31+1"°"3n+1)’ i=n; ai=0, n<i=m.
But now by lemma 10.12.b),
(**) e ) > (PHe) - 1'HB) ), osisn
> (PH@) > 1) ,  nci<m

because for i=n
« = B:(a1+1).
Using (**) we can eliminate from A all disjuncts of the form
-ﬁiH(ai), except H(ao). Thus we obtain
- A & nHe) vHEB) VIHE) v ... vITHEB),
where
a = 8(30’31""’Bn+1)'
But we already noted above that

~ V1'H(B) & D(B(B,,B,,...,B+1)) = D(«);
0=i=n
thus,
- A & 1H(a0) v D(Bo) = nD(ao)-eb(ao),
and by Lob’s axiom

- 0d © uD(ao) = H(B(BO'B1"“’Bn+1))'

Using the lemma and corollary 7.4, one can see that if A has

the normal form (*), then

- k1A e\ VH@) SPEE) v APEe) v TG,
0=<i{=n, i<k n<i<k
where

x =B(B.B, ..--,B*1), ksn;  x=0, k>n.
This completes the proof of the theorem.

Corollary 4.5.
a) Each closed formula is a GLP-equivalent to a Boolean
combination of some formulas of the form 1"H(w).

b) Each closed formula is a GLP-equivalent to a Boolean
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5. The Universal Model.

Definition 5.1. We define the universal model U:
a) Informal definition. For any a<80 we define the model‘ua:

Uo consists only of one node 0.

Suppose that { HB | B<a } are already constructed. Here

is a picture of Ua:

€— The model U UB
B<a

o.i. €é— The
1} M model T‘Ud(a)
o \

This node becames
the bottom node of ‘Ua

and we put U := U{Ua|a<eoh

b) Formal definition.

U := <u,R%,RY,....R%,...>,
where
U:={<e,e,...a> | 1) Vi<n «#0 A d(a )#0 A a =d(a )
0’ 1 n i 1 i+1 i
2) d{a )=0 v a =0 };
Kk n n
<a0,a1,...,ah>R <Bo’Bz""’Bm> (&=
1) Vi<k al=Bl
2) ock>{3k
3) Vizk, i<m Bx+1=d(Bi)'
« denotes <a,d(a),d2(a),...,dn(a)>, where n:=nuuz{i|d?(a)>0}.
(0 :=<0> )
o .1 n
4 :=<U ,R,R,...,R,...>,
(1 o
where
U :={ <o, ,...a>€U | «=a}.
a 0’ 1 n 0

Thus, the universal model looks like a tree. The "trunk" of
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Proof. By corollary 9.15.b), GLPHA & GLPOF-A.
Part 1. GLPOI-A > U=A.
Since U is an LN-model, we need to check three facts:
1) U~o1-[nlL
2) U=oD(a) -D(B) whenever a<B
3) U=A > UxT4.
The first fact 1is trivial (arol < u=6), the second 1is a
consequence of lemma 5.3 and the third is a consequence of
proposition 5.2.b).
Part 2. U=4d > GLPol—A.
Suppose that GLPohAA. We can assume that A has the normal
form; let B be a conjunct of A:
B = \ VHG) -UHB) v\ AHG).

. 0=i=np n<i=m
If n=-1, OwB. Assume that n=0. Let a;:=B(Bi,B“4,...Bn+1), where
i=n. Evidently, aiza;. Using corollary 11.4, one can prove that
&’ =<a ,0',...,0'>HB,
R 0] 0] 1 n
and thus aél+A. QED.

In fact, we have proved that if A is in normal form and 4 is
not the empty conjunction, then UxA, and therefore GLPOHA and
GLP+HA. We also have proved that every non-provable (in GLP or
GLPO) closed formula is false in some node on the main axle. This

allows us to give the following natural definition:

Definition 5.6. The trace of the closed formula A, denoted by

tr(A4), is the set of ordinals « < £, such that omA.

As usual, trace "conversely commutes" with all Boolean
connectives (i.e. tr(AvB)=tr(A)ntr(B), etc.); the trace of a
formula is empty if and only if the formula is provable in GLP and
so defines (closed) formula uniquely.

However, traces do not have to be clopen in the order

topology. For example, tr([1]1)={e>0|« is limit} which is obviously
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the "closed fragment of GLP", i.e. a description of the closed
modal formulas up to GLP-provable equivalence. However, before we
undertake this investigation it 1is necessary to discuss some
general concepts connected with provability logics and their closed
fragments.

Let us begin by considering several examples.

The first is the usual Godel-L6b provability logic GL, in the
language with only one modal operator o. Assign to each natural
number new the closed formula C;:=nn1. As G.Boolos proved in [4],
each closed formula is GL-equivalent to a Boolean combination of
the formulas Cn, new. Furthermore, one can note that the sequence

‘ C1’Cz""’cn”" , NeEw
is decreasing, i.e. GLk—Cn-ecm whenever n=m.

Next consider Carlson’s bimodal provability logic CSMIS. This
logic formalizes provability in two r.e. extensions of PA such that
one of them contains the other and is reflexive over it. Thus the
modal language contains two modal operators o=[0] and [1] (Visser
in [5] writes A and o respectively) and the logic contains the
schemas:

obA-[1]4
and
[1]1 (oA ->A).
Note also that CSMlk-[i]A-a[j][i]A for any i, je{0,1}.

Now for any ordinal « below wz, i.e. a=n+w.m, we define the

closed formula
c, := [11"a"L.
(It is supposed that u°A=A, etc.). In [5] it is proved that
{Ca|a<w2} is a decreasing sequence and any closed formula is a
Boolean combination of these formulas.
We can easily generalize this example by considering a

sequence of r.e. extensions of PA (finite or infinite) TB,TI,.“

S
There are many notations for this 1logic : PRL_,... . Ours is

due to Visser [5].
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Trivially, L is well-founded if and only if P is.
Henceforth we will denote modal formulas and their equivalence

classes by the same letters.

Definition 6.4. Let P be a wellfounded partial order. The
ordinal complexity of P is the supremum of ordinals & such that
there exists a P-linear sequence of elements from P of length £:

{ pa|a<E }, Va,B<€ ( a<B = pa<pB ).

Given a well-founded logic L we can now define the ordinal

complexity of L as the ordinal complexity of the associated partial

order.

The main question now is how to calculate ordinal
complexities. We will use the following simple lemma (below £

denotes an arbitrary limit ordinal):

Lemma 6.5.. Let P=<P,<{> be an arbitrary partial order. Suppose
that there exists a sequence of elements from P {aa|a<§} ordered by
ordinals < € such that the following three conditions hold:

1.(linearity) if a<B, then aa<aB;
2. (unboundedness) there is no xeP sugh that for all « aa<x;
3.(density) if x<y, then there exists « s.t. aa<y, but aa{x.

Then P is wellfounded and its ordinal complexity is §.

Proof. For any xeP we define o(x)ef£ as follows:
a(x) := min { a<g | aa{x }.

(This set is non-empty by unboundedness). Suppose that x<y. We
claim that o(x)<a(y). Indeed, linearity implies that a(x)=a(y) and
if a(x)=a(y), then { a<§ | aa{x } o= { a<€ | aa{y }. The last
equality is impossible by density. So we have proved that
a(x)<aly).

But this property of o immediately implies that ? is
wellfounded and its ordinal complexity is =£. On the other hand, by

the definition, the ordinal complexity is =€. Thus, the lemma is
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Conclusion. The ordinal complexity of (the closed fragment of)

CSM(N)
1

is exactly W,

Now we can consider our formulas H(«),D(a) from the point of
view of applying theorem 6.6. The first condition — linearity - is
theorem 3.9. Unboundedness is obvious, because for any modal
formula A which does not contain [i] with i=N we have

GLPHA < n[N]1=H(wN)h-A;
density for closed formulas is a simple consequence of the last

theorem. Thus, we have proved the theorem:

Theorem 5. The ordinal complexity of the closed fragment of

GLP is £, (or Wy in the case of GLP with only N modal operators).

Conjecture. For any ordinal §<eo and for any modal formula A

if for any a<{ GLP+H(a)—A, then GLP+—H(Z)AD(Z) —A.
If the conjecture holds, the ordinal complexity of GLP is €

It seems that the best way to prove this statement would be to
introduce models for GLP which similar to the wuniversal model.

However, this seems rather difficult.

7. A Hierarchy of Closed Formulas.

Let us introduce classes of closed modal formulas Zn, Hn, B,
ZL, HL, Ai, B: (where L is an arbitrary modal system) for every nz0
n n

as follows:

Definition 7.1. ZO, 21, e Zn, ... are the minimal sets of
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L+~ [n](pvB) < [n]pvB.

Proof. By corollary 7.3.(c),
L~ B - [n]lB and L+ =B - [n]-B.
Hence, L+ [nlpvB—-I[n]l(pvB). On the other hand,
L+ =B A [nl(pvB) - [n]-B

- [n]p.
QED.

In the sequel we will be interested only in the classes ZGLP, HzLP
n

AGLP, B?f. In particular, we will prove that they are decidable

n
and AiLP=BGu:. So, we often will omit GLP and write z, 0,
n

3

Now we are going to introduce "the extended universal model"
V, which, intuitively, is U plus one "infinite" node, corresponding
to the standard model of PA. We also will define its restrictions
V1’ VZ, ceey Vn such that Vo will be exactly "the main axis" (of
V), V1 is V plus all its "immediate" branches, etc. Intuitively, Vn

is a kind of "universal model" for Bn_1 (or An).

Definition 7.5.
v := <«v,R°,R',...,R",...>
where

1
and « range over ordinals less than or equal to €,

V= { <,y > | vi ai+15d(ai) }

We define d(e ):=¢ .
) 0

. . «
<ao,a1,...,an,...>R <Bo,31,...,Bm,...> 1=

1) Vi<k ai=Bi

2) ak>Bk
3) Vizk Bx+1=d(Bi) (i.e. <Bo’B1""’Bm"">EVk+1 — see
below)
a denotes <a,d(a),d2(a),...,dp(a),...>.
Vn := { NN AN R V | Vizn ai=d(ai_1) } (n=1).
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We will heed two facts about these topological spaces: 1) they
are compact, and 2) the clopen sets listed above are exactly the
clopen sets in these topological spaces. Proofs are quite similar

for all cases, so, we consider the Vn only.

First of all, we give an equivalent definition of our

topology:

Lemma 7.8. The topological space Vn can be given by the
following subbase:
1. { NN R R NIRRT S 4 | @ > }
2. { <o, ,.0.0,0 00,0 ,...06V | a=a }
0’1 n-1 i

i
(where i<n in both cases).

Proof. In topological terminology, we have defined two
topological spaces and have to prove that identity map is a
homeomorphism.

Part 1. Fix an arbitrary formula 4 € qu' Our goal is to
prove that for any arA there exists a set #, containing a, open
in sense of lemma 7.8 and such that Vbed br A. Note that if 4 is a
conjunction (disjunction) it is obviously enough to prove this fact
for each conjunct (disjunct). Now the normal form theorem for
closed formulas immediately implies that it is enough to consider
the cases A = 1'H(w) and 4 = -PH(a), where i=n-1. Now use
corollary 5.4.(b).

Part 2. Here we shall prove that for every set mentioned in
the statement of lemma 7.8 there exists a modal formula in Bn_
which is true in exactly this set. According to corollary 5.4.(b),
it is enough to consider the formulas MH(a) and -1'H(«).

Thus the  lemma is proved. Note that this lemma immediately

implies that Vn is Hausdorff.

Consider now the set of ordinals 580 with the natural (order)
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PROOF. Let A be an arbitrary clopen set. It is well-known that
every compact Hausdorff space is regular (T:;)’ so for every point x
in A there is an open set Ox such that erxSA. (We have here used
that X\A is closed) Since ¥y is a base, we can assume that Oxey.
Since A is compact (4 is closed and X is compact) and A = UxEAOx,
there exists a finite subset D of A such that 4 = Uxenox' This

proves the lemma.

So, we have proved theorem 7.10. The following theorem is

exactly the statement that ¥V is compact in modal language:

Theorem 7.11. Let I' be an arbitrary GLP-consistent set of
closed formulas. Then there exists ael such that awT (:= VAel

arA). If T is maximal GLP-consistent, then any such a is unique.8

Proof. Let 1"=(A0,A1,...}; since V is the universal model, for
each new the set Kn:={ueV|al—/\isnAi} is not empty. Of course, K 2K
2K22... . Since each Kn is clopen and V is compact, for some a,
Qenxewxx' Evidently, aT.

The second part of our statement (which actually expresses

that ¥V is Hausdorff) is left to the reader.

Now we are ready to work with ¥V and Vn. The following
technical lemma is the main tool we use to investigate the

hierarchy of closed formulas in GLP:

Lemma 7.12. For every n=l and for every closed formula B the

set { a € v | aw[n]'B } is open in Vn.

8 . .
a does not have to be on the main axis ( V1)‘ This is the
explanation of some "strange" properties of traces. See the

discussion at the end of section 3.
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Proof.

(a). Implications 123, 132, 334, 234, 435 are trivial. So
we only have to prove 531. Suppose that 5 holds for some formula A4.
Then GLP+ (A—[n1"4) A (24>[nl’-4). Applying lemma 7.12 we get
that { ueVn | arA } is clopen in Vn. By theorem 7.10.(b), it

coincides with { aeVn | a+-B } for some B € Bn_ In particular

tr(4A) = tr(B). By an elementary property of tracest GLP+ A—>B and
we are done.

(b). As above, we only have to prove 3s1. Suppose 3 holds.
From the previous paragraph we know that AeBn. Thus (using the
normal form theorem) we can suppose A has the form:

k

A= /1\=1( B vtc v-"D ), BeB , C,DeE, GLPwC VD .
Let
k n
A =/1\=1( B vic )ek.

We claim that GLPF—AeeAl. Suppose not. Obviously, GLP»—Al—eA. So,
there exists a<eo such that a|—AAﬁA1, which implies that for some i
ar ~B, A -|T"Cl A -J“Di.

Or

d™(a) °C, A -D,.
Since GLPF*CiVﬂDi, there exists B such that BI-ﬁCi A Dx’ Because
D.ex , this implies d"(«)R°B, or B<d"(a). Put
b := <a,d(a),d’(a),...,d"  (),B,d(B),d%(R),...>.

First, we have br 41"C_ A 1"D . Secondly, by the definition of
our model, &Rnb, which implies bF—ﬂBi (equivalently, &l—ﬂBi).
Recall now that GLP—A-[nlA and arA. This gives bk A4, but
bl—-uBiAﬂT"CiATnDl. Contradiction. Thus GLP+ A(—)Alezn and we are

done.

Corollary 7.14.
(a) 7 = { A| GLP(4 > [n]A) A (<A - [n+1]-4) };
(b) T = { A | GLP+(A > [n+1]4) A (A4 - [n]=4) };

(c) Bi= 2" ={ A|GLP-(A > [n+1]4) A (74 - [n+1]-4) )

n+l
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Lemma 7.17. For any closed formula A and aeV

aro(A-[n]JA)Aa(~A—-[n+1]-4) = 30ezn aro(Aeo).
Now we can prove the theorem mentioned above:

Theorem 7.18. Let A be a closed formula and f an arithmetical
interpretation based on To’Tl"" , Q:=f(A). Then
PA- £ (TQ1) « Pr TQ-pPr TQWV A Pr FT-Q-Pr _T-Q17.
(n) (o] n (o] n+1

(where = (TQ1) := 3ceZ  Pr fQerol).
(n) (n) O

Proof. The part " —»" holds for any arithmetical formula Q. So
we will prove the converse statement.

Let M be a model of PA, M=PA. By the theorem 7.11, there
exists a unique aeV such that for any closed formula 4
(*) o M=5(4) < aFrA.

Suppose that M|=Pr0rf(A)-»Prnrf(A)“ A Pror-:f(A) —>P'r;+{-nf(A)'”.
By (*), aro(4-[nlA)aa(-4—[n+1]-4). By lemma 7.17, there exists a
formula ¢e£n (whence f(w)ezun) such that aro(4<c) and by (*)
Mr=Prorj'(A)<-—->f(0‘)1. By the definition of I Mhz(n)(rf(A)-').
This completes the proof of the theorem.

Thus, we can express in our modal language great many
additional modal operators. Actually, we have given proofs only for
Z(n)(Qﬂ), but now the reader can believe that the same is true for
the Z“”-interpolation predicate, and many other analogous
predicates. It is much more interesting and less trivial that, in
some special cases, we can express the Zl-conservativity predicate.
OQur last section deals with this, perhaps the most beautiful,

application of Dzhaparidze’s logic.
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provable in PA plus all true Zz—formulas", and [n]A for nz2 are
translated by an arbitrary increasing sequence of the strong
provability predicates.

We will not introduce here any specific modal system for Z£.

So, we write ka if the (modal) formula A is arithmetically valid.

Our basic theorem is the following:

Theorem 8.1.
a) For any modal formula A,

— [1]A < oA Vv ~(-4p-AA-DA).
b) If A,B are closed, then

 ApB ¢ O(An[1]'-B) - <1>B.

To prove this theorem we need to prove several

Zl-conservativity principles.

Theorem 8.2. The following list consists of arithmetically
valid modal principles:
Al. AvC A B>C — AVvBrC
A2. AbB — ( ©A - OB )
A3. ApB A B>C - ArC
A4. o(A-B) - ApB

M. AbB — AAOC > BAOC
A5, <1>A b A

Y. <1>(A>B) — AbB

Az*. AbB — ( <1>A - <1>B )

C. <1>A - TPA

-

D. A>(BAQA) — ( ©A - <1>B )

Proof.
Axioms A1-A4 together with the axioms of the pure provability
logic GL form the pure conservativity logic CL (see [6]1). The

arithmetical soundness of the axioms M ,45 ,P ,42 ,C is quite
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(6) P three previous formulas and (3)

Corollary 8.3. The following modal principles and inference

rules are arithmetically valid:

Bl. AbB — (AAT)>(BAT) by M, and Al1-44
B2. <1>*ava by A4,A5
B3. if ~A-m, then
— AbB <> APBAT " " by A3, A4
" " by B1
B4. if ~B-®A, then
— AbB > ( OA—<I>B) " =" by D
v o
o-4 - AbpB by A4
<1>BAbB by C
B5
a). oA & (=4)p1L "« " by A4
" 5" by A2
b). [1]A < oA v a( =Ap-AA-DA ) by B4.

Proof of theorem 8.1.

a) has been already proved ( BSb) ).

b) Let A,B be closed formulas. Evidently, to prove the
theorem it is sufficient to consider the case when A4,B do not
contain p. Thus, by corollary 7.16 there exists a closed formula
ero such that

— BAo(=4v<1>'B) — ¢
— o - =Av<1>'B

Or, if we put m=-o0,

(1) — AA[1]17-B - =@
(2) — BAam — O(4A[11%AB).
We have:
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